1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
30 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "parser-defs.h"
42 #include "breakpoint.h"
45 #include "gdb_obstack.h"
47 #include "completer.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
57 #ifndef ADA_RETAIN_DOTS
58 #define ADA_RETAIN_DOTS 0
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 static void extract_string (CORE_ADDR addr
, char *buf
);
72 static struct type
*ada_create_fundamental_type (struct objfile
*, int);
74 static void modify_general_field (char *, LONGEST
, int, int);
76 static struct type
*desc_base_type (struct type
*);
78 static struct type
*desc_bounds_type (struct type
*);
80 static struct value
*desc_bounds (struct value
*);
82 static int fat_pntr_bounds_bitpos (struct type
*);
84 static int fat_pntr_bounds_bitsize (struct type
*);
86 static struct type
*desc_data_type (struct type
*);
88 static struct value
*desc_data (struct value
*);
90 static int fat_pntr_data_bitpos (struct type
*);
92 static int fat_pntr_data_bitsize (struct type
*);
94 static struct value
*desc_one_bound (struct value
*, int, int);
96 static int desc_bound_bitpos (struct type
*, int, int);
98 static int desc_bound_bitsize (struct type
*, int, int);
100 static struct type
*desc_index_type (struct type
*, int);
102 static int desc_arity (struct type
*);
104 static int ada_type_match (struct type
*, struct type
*, int);
106 static int ada_args_match (struct symbol
*, struct value
**, int);
108 static struct value
*ensure_lval (struct value
*, CORE_ADDR
*);
110 static struct value
*convert_actual (struct value
*, struct type
*,
113 static struct value
*make_array_descriptor (struct type
*, struct value
*,
116 static void ada_add_block_symbols (struct obstack
*,
117 struct block
*, const char *,
118 domain_enum
, struct objfile
*,
119 struct symtab
*, int);
121 static int is_nonfunction (struct ada_symbol_info
*, int);
123 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
124 struct block
*, struct symtab
*);
126 static int num_defns_collected (struct obstack
*);
128 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
130 static struct partial_symbol
*ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab
*symtab_for_sym (struct symbol
*);
136 static struct value
*resolve_subexp (struct expression
**, int *, int,
139 static void replace_operator_with_call (struct expression
**, int, int, int,
140 struct symbol
*, struct block
*);
142 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
144 static char *ada_op_name (enum exp_opcode
);
146 static const char *ada_decoded_op_name (enum exp_opcode
);
148 static int numeric_type_p (struct type
*);
150 static int integer_type_p (struct type
*);
152 static int scalar_type_p (struct type
*);
154 static int discrete_type_p (struct type
*);
156 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
159 static struct value
*evaluate_subexp (struct type
*, struct expression
*,
162 static struct value
*evaluate_subexp_type (struct expression
*, int *);
164 static int is_dynamic_field (struct type
*, int);
166 static struct type
*to_fixed_variant_branch_type (struct type
*,
168 CORE_ADDR
, struct value
*);
170 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
172 static struct type
*to_fixed_range_type (char *, struct value
*,
175 static struct type
*to_static_fixed_type (struct type
*);
177 static struct value
*unwrap_value (struct value
*);
179 static struct type
*packed_array_type (struct type
*, long *);
181 static struct type
*decode_packed_array_type (struct type
*);
183 static struct value
*decode_packed_array (struct value
*);
185 static struct value
*value_subscript_packed (struct value
*, int,
188 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int);
190 static struct value
*coerce_unspec_val_to_type (struct value
*,
193 static struct value
*get_var_value (char *, char *);
195 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
197 static int equiv_types (struct type
*, struct type
*);
199 static int is_name_suffix (const char *);
201 static int wild_match (const char *, int, const char *);
203 static struct value
*ada_coerce_ref (struct value
*);
205 static LONGEST
pos_atr (struct value
*);
207 static struct value
*value_pos_atr (struct value
*);
209 static struct value
*value_val_atr (struct type
*, struct value
*);
211 static struct symbol
*standard_lookup (const char *, const struct block
*,
214 static struct value
*ada_search_struct_field (char *, struct value
*, int,
217 static struct value
*ada_value_primitive_field (struct value
*, int, int,
220 static int find_struct_field (char *, struct type
*, int,
221 struct type
**, int *, int *, int *, int *);
223 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
226 static struct value
*ada_to_fixed_value (struct value
*);
228 static int ada_resolve_function (struct ada_symbol_info
*, int,
229 struct value
**, int, const char *,
232 static struct value
*ada_coerce_to_simple_array (struct value
*);
234 static int ada_is_direct_array_type (struct type
*);
236 static void ada_language_arch_info (struct gdbarch
*,
237 struct language_arch_info
*);
239 static void check_size (const struct type
*);
241 static struct value
*ada_index_struct_field (int, struct value
*, int,
244 static struct value
*assign_aggregate (struct value
*, struct value
*,
245 struct expression
*, int *, enum noside
);
247 static void aggregate_assign_from_choices (struct value
*, struct value
*,
249 int *, LONGEST
*, int *,
250 int, LONGEST
, LONGEST
);
252 static void aggregate_assign_positional (struct value
*, struct value
*,
254 int *, LONGEST
*, int *, int,
258 static void aggregate_assign_others (struct value
*, struct value
*,
260 int *, LONGEST
*, int, LONGEST
, LONGEST
);
263 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
266 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
269 static void ada_forward_operator_length (struct expression
*, int, int *,
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit
;
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters
=
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
288 = "__gnat_ada_main_program_name";
290 /* The name of the runtime function called when an exception is raised. */
291 static const char raise_sym_name
[] = "__gnat_raise_nodefer_with_msg";
293 /* The name of the runtime function called when an unhandled exception
295 static const char raise_unhandled_sym_name
[] = "__gnat_unhandled_exception";
297 /* The name of the runtime function called when an assert failure is
299 static const char raise_assert_sym_name
[] =
300 "system__assertions__raise_assert_failure";
302 /* A string that reflects the longest exception expression rewrite,
303 aside from the exception name. */
304 static const char longest_exception_template
[] =
305 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
307 /* Limit on the number of warnings to raise per expression evaluation. */
308 static int warning_limit
= 2;
310 /* Number of warning messages issued; reset to 0 by cleanups after
311 expression evaluation. */
312 static int warnings_issued
= 0;
314 static const char *known_runtime_file_name_patterns
[] = {
315 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318 static const char *known_auxiliary_function_name_patterns
[] = {
319 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322 /* Space for allocating results of ada_lookup_symbol_list. */
323 static struct obstack symbol_list_obstack
;
329 ada_get_gdb_completer_word_break_characters (void)
331 return ada_completer_word_break_characters
;
334 /* Print an array element index using the Ada syntax. */
337 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
338 int format
, enum val_prettyprint pretty
)
340 LA_VALUE_PRINT (index_value
, stream
, format
, pretty
);
341 fprintf_filtered (stream
, " => ");
344 /* Read the string located at ADDR from the inferior and store the
348 extract_string (CORE_ADDR addr
, char *buf
)
352 /* Loop, reading one byte at a time, until we reach the '\000'
353 end-of-string marker. */
356 target_read_memory (addr
+ char_index
* sizeof (char),
357 buf
+ char_index
* sizeof (char), sizeof (char));
360 while (buf
[char_index
- 1] != '\000');
363 /* Assuming VECT points to an array of *SIZE objects of size
364 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
365 updating *SIZE as necessary and returning the (new) array. */
368 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
370 if (*size
< min_size
)
373 if (*size
< min_size
)
375 vect
= xrealloc (vect
, *size
* element_size
);
380 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
381 suffix of FIELD_NAME beginning "___". */
384 field_name_match (const char *field_name
, const char *target
)
386 int len
= strlen (target
);
388 (strncmp (field_name
, target
, len
) == 0
389 && (field_name
[len
] == '\0'
390 || (strncmp (field_name
+ len
, "___", 3) == 0
391 && strcmp (field_name
+ strlen (field_name
) - 6,
396 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
397 FIELD_NAME, and return its index. This function also handles fields
398 whose name have ___ suffixes because the compiler sometimes alters
399 their name by adding such a suffix to represent fields with certain
400 constraints. If the field could not be found, return a negative
401 number if MAYBE_MISSING is set. Otherwise raise an error. */
404 ada_get_field_index (const struct type
*type
, const char *field_name
,
408 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (type
); fieldno
++)
409 if (field_name_match (TYPE_FIELD_NAME (type
, fieldno
), field_name
))
413 error (_("Unable to find field %s in struct %s. Aborting"),
414 field_name
, TYPE_NAME (type
));
419 /* The length of the prefix of NAME prior to any "___" suffix. */
422 ada_name_prefix_len (const char *name
)
428 const char *p
= strstr (name
, "___");
430 return strlen (name
);
436 /* Return non-zero if SUFFIX is a suffix of STR.
437 Return zero if STR is null. */
440 is_suffix (const char *str
, const char *suffix
)
446 len2
= strlen (suffix
);
447 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
450 /* Create a value of type TYPE whose contents come from VALADDR, if it
451 is non-null, and whose memory address (in the inferior) is
455 value_from_contents_and_address (struct type
*type
,
456 const gdb_byte
*valaddr
,
459 struct value
*v
= allocate_value (type
);
461 set_value_lazy (v
, 1);
463 memcpy (value_contents_raw (v
), valaddr
, TYPE_LENGTH (type
));
464 VALUE_ADDRESS (v
) = address
;
466 VALUE_LVAL (v
) = lval_memory
;
470 /* The contents of value VAL, treated as a value of type TYPE. The
471 result is an lval in memory if VAL is. */
473 static struct value
*
474 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
476 type
= ada_check_typedef (type
);
477 if (value_type (val
) == type
)
481 struct value
*result
;
483 /* Make sure that the object size is not unreasonable before
484 trying to allocate some memory for it. */
487 result
= allocate_value (type
);
488 VALUE_LVAL (result
) = VALUE_LVAL (val
);
489 set_value_bitsize (result
, value_bitsize (val
));
490 set_value_bitpos (result
, value_bitpos (val
));
491 VALUE_ADDRESS (result
) = VALUE_ADDRESS (val
) + value_offset (val
);
493 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
494 set_value_lazy (result
, 1);
496 memcpy (value_contents_raw (result
), value_contents (val
),
502 static const gdb_byte
*
503 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
508 return valaddr
+ offset
;
512 cond_offset_target (CORE_ADDR address
, long offset
)
517 return address
+ offset
;
520 /* Issue a warning (as for the definition of warning in utils.c, but
521 with exactly one argument rather than ...), unless the limit on the
522 number of warnings has passed during the evaluation of the current
525 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
526 provided by "complaint". */
527 static void lim_warning (const char *format
, ...) ATTR_FORMAT (printf
, 1, 2);
530 lim_warning (const char *format
, ...)
533 va_start (args
, format
);
535 warnings_issued
+= 1;
536 if (warnings_issued
<= warning_limit
)
537 vwarning (format
, args
);
542 /* Issue an error if the size of an object of type T is unreasonable,
543 i.e. if it would be a bad idea to allocate a value of this type in
547 check_size (const struct type
*type
)
549 if (TYPE_LENGTH (type
) > varsize_limit
)
550 error (_("object size is larger than varsize-limit"));
554 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
555 gdbtypes.h, but some of the necessary definitions in that file
556 seem to have gone missing. */
558 /* Maximum value of a SIZE-byte signed integer type. */
560 max_of_size (int size
)
562 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
563 return top_bit
| (top_bit
- 1);
566 /* Minimum value of a SIZE-byte signed integer type. */
568 min_of_size (int size
)
570 return -max_of_size (size
) - 1;
573 /* Maximum value of a SIZE-byte unsigned integer type. */
575 umax_of_size (int size
)
577 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
578 return top_bit
| (top_bit
- 1);
581 /* Maximum value of integral type T, as a signed quantity. */
583 max_of_type (struct type
*t
)
585 if (TYPE_UNSIGNED (t
))
586 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
588 return max_of_size (TYPE_LENGTH (t
));
591 /* Minimum value of integral type T, as a signed quantity. */
593 min_of_type (struct type
*t
)
595 if (TYPE_UNSIGNED (t
))
598 return min_of_size (TYPE_LENGTH (t
));
601 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
602 static struct value
*
603 discrete_type_high_bound (struct type
*type
)
605 switch (TYPE_CODE (type
))
607 case TYPE_CODE_RANGE
:
608 return value_from_longest (TYPE_TARGET_TYPE (type
),
609 TYPE_HIGH_BOUND (type
));
612 value_from_longest (type
,
613 TYPE_FIELD_BITPOS (type
,
614 TYPE_NFIELDS (type
) - 1));
616 return value_from_longest (type
, max_of_type (type
));
618 error (_("Unexpected type in discrete_type_high_bound."));
622 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
623 static struct value
*
624 discrete_type_low_bound (struct type
*type
)
626 switch (TYPE_CODE (type
))
628 case TYPE_CODE_RANGE
:
629 return value_from_longest (TYPE_TARGET_TYPE (type
),
630 TYPE_LOW_BOUND (type
));
632 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, 0));
634 return value_from_longest (type
, min_of_type (type
));
636 error (_("Unexpected type in discrete_type_low_bound."));
640 /* The identity on non-range types. For range types, the underlying
641 non-range scalar type. */
644 base_type (struct type
*type
)
646 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
648 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
650 type
= TYPE_TARGET_TYPE (type
);
656 /* Language Selection */
658 /* If the main program is in Ada, return language_ada, otherwise return LANG
659 (the main program is in Ada iif the adainit symbol is found).
661 MAIN_PST is not used. */
664 ada_update_initial_language (enum language lang
,
665 struct partial_symtab
*main_pst
)
667 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
668 (struct objfile
*) NULL
) != NULL
)
674 /* If the main procedure is written in Ada, then return its name.
675 The result is good until the next call. Return NULL if the main
676 procedure doesn't appear to be in Ada. */
681 struct minimal_symbol
*msym
;
682 CORE_ADDR main_program_name_addr
;
683 static char main_program_name
[1024];
685 /* For Ada, the name of the main procedure is stored in a specific
686 string constant, generated by the binder. Look for that symbol,
687 extract its address, and then read that string. If we didn't find
688 that string, then most probably the main procedure is not written
690 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
694 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
695 if (main_program_name_addr
== 0)
696 error (_("Invalid address for Ada main program name."));
698 extract_string (main_program_name_addr
, main_program_name
);
699 return main_program_name
;
702 /* The main procedure doesn't seem to be in Ada. */
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 const struct ada_opname_map ada_opname_table
[] = {
712 {"Oadd", "\"+\"", BINOP_ADD
},
713 {"Osubtract", "\"-\"", BINOP_SUB
},
714 {"Omultiply", "\"*\"", BINOP_MUL
},
715 {"Odivide", "\"/\"", BINOP_DIV
},
716 {"Omod", "\"mod\"", BINOP_MOD
},
717 {"Orem", "\"rem\"", BINOP_REM
},
718 {"Oexpon", "\"**\"", BINOP_EXP
},
719 {"Olt", "\"<\"", BINOP_LESS
},
720 {"Ole", "\"<=\"", BINOP_LEQ
},
721 {"Ogt", "\">\"", BINOP_GTR
},
722 {"Oge", "\">=\"", BINOP_GEQ
},
723 {"Oeq", "\"=\"", BINOP_EQUAL
},
724 {"One", "\"/=\"", BINOP_NOTEQUAL
},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
728 {"Oconcat", "\"&\"", BINOP_CONCAT
},
729 {"Oabs", "\"abs\"", UNOP_ABS
},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
731 {"Oadd", "\"+\"", UNOP_PLUS
},
732 {"Osubtract", "\"-\"", UNOP_NEG
},
736 /* Return non-zero if STR should be suppressed in info listings. */
739 is_suppressed_name (const char *str
)
741 if (strncmp (str
, "_ada_", 5) == 0)
743 if (str
[0] == '_' || str
[0] == '\000')
748 const char *suffix
= strstr (str
, "___");
749 if (suffix
!= NULL
&& suffix
[3] != 'X')
752 suffix
= str
+ strlen (str
);
753 for (p
= suffix
- 1; p
!= str
; p
-= 1)
757 if (p
[0] == 'X' && p
[-1] != '_')
761 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
762 if (strncmp (ada_opname_table
[i
].encoded
, p
,
763 strlen (ada_opname_table
[i
].encoded
)) == 0)
772 /* The "encoded" form of DECODED, according to GNAT conventions.
773 The result is valid until the next call to ada_encode. */
776 ada_encode (const char *decoded
)
778 static char *encoding_buffer
= NULL
;
779 static size_t encoding_buffer_size
= 0;
786 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
787 2 * strlen (decoded
) + 10);
790 for (p
= decoded
; *p
!= '\0'; p
+= 1)
792 if (!ADA_RETAIN_DOTS
&& *p
== '.')
794 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
799 const struct ada_opname_map
*mapping
;
801 for (mapping
= ada_opname_table
;
802 mapping
->encoded
!= NULL
803 && strncmp (mapping
->decoded
, p
,
804 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
806 if (mapping
->encoded
== NULL
)
807 error (_("invalid Ada operator name: %s"), p
);
808 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
809 k
+= strlen (mapping
->encoded
);
814 encoding_buffer
[k
] = *p
;
819 encoding_buffer
[k
] = '\0';
820 return encoding_buffer
;
823 /* Return NAME folded to lower case, or, if surrounded by single
824 quotes, unfolded, but with the quotes stripped away. Result good
828 ada_fold_name (const char *name
)
830 static char *fold_buffer
= NULL
;
831 static size_t fold_buffer_size
= 0;
833 int len
= strlen (name
);
834 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
838 strncpy (fold_buffer
, name
+ 1, len
- 2);
839 fold_buffer
[len
- 2] = '\000';
844 for (i
= 0; i
<= len
; i
+= 1)
845 fold_buffer
[i
] = tolower (name
[i
]);
851 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
854 is_lower_alphanum (const char c
)
856 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
860 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
861 These are suffixes introduced by GNAT5 to nested subprogram
862 names, and do not serve any purpose for the debugger.
863 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
864 . Discard final N if it follows a lowercase alphanumeric character
865 (protected object subprogram suffix)
866 . Convert other instances of embedded "__" to `.'.
867 . Discard leading _ada_.
868 . Convert operator names to the appropriate quoted symbols.
869 . Remove everything after first ___ if it is followed by
871 . Replace TK__ with __, and a trailing B or TKB with nothing.
872 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
873 . Put symbols that should be suppressed in <...> brackets.
874 . Remove trailing X[bn]* suffix (indicating names in package bodies).
876 The resulting string is valid until the next call of ada_decode.
877 If the string is unchanged by demangling, the original string pointer
881 ada_decode (const char *encoded
)
888 static char *decoding_buffer
= NULL
;
889 static size_t decoding_buffer_size
= 0;
891 if (strncmp (encoded
, "_ada_", 5) == 0)
894 if (encoded
[0] == '_' || encoded
[0] == '<')
897 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
898 len0
= strlen (encoded
);
899 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
902 while (i
> 0 && isdigit (encoded
[i
]))
904 if (i
>= 0 && encoded
[i
] == '.')
906 else if (i
>= 0 && encoded
[i
] == '$')
908 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
910 else if (i
>= 1 && strncmp (encoded
+ i
- 1, "__", 2) == 0)
914 /* Remove trailing N. */
916 /* Protected entry subprograms are broken into two
917 separate subprograms: The first one is unprotected, and has
918 a 'N' suffix; the second is the protected version, and has
919 the 'P' suffix. The second calls the first one after handling
920 the protection. Since the P subprograms are internally generated,
921 we leave these names undecoded, giving the user a clue that this
922 entity is internal. */
925 && encoded
[len0
- 1] == 'N'
926 && (isdigit (encoded
[len0
- 2]) || islower (encoded
[len0
- 2])))
929 /* Remove the ___X.* suffix if present. Do not forget to verify that
930 the suffix is located before the current "end" of ENCODED. We want
931 to avoid re-matching parts of ENCODED that have previously been
932 marked as discarded (by decrementing LEN0). */
933 p
= strstr (encoded
, "___");
934 if (p
!= NULL
&& p
- encoded
< len0
- 3)
942 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
945 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
948 /* Make decoded big enough for possible expansion by operator name. */
949 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
950 decoded
= decoding_buffer
;
952 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
955 while ((i
>= 0 && isdigit (encoded
[i
]))
956 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
958 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
960 else if (encoded
[i
] == '$')
964 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
965 decoded
[j
] = encoded
[i
];
970 if (at_start_name
&& encoded
[i
] == 'O')
973 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
975 int op_len
= strlen (ada_opname_table
[k
].encoded
);
976 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
978 && !isalnum (encoded
[i
+ op_len
]))
980 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
983 j
+= strlen (ada_opname_table
[k
].decoded
);
987 if (ada_opname_table
[k
].encoded
!= NULL
)
992 /* Replace "TK__" with "__", which will eventually be translated
993 into "." (just below). */
995 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
998 /* Remove _E{DIGITS}+[sb] */
1000 /* Just as for protected object subprograms, there are 2 categories
1001 of subprograms created by the compiler for each entry. The first
1002 one implements the actual entry code, and has a suffix following
1003 the convention above; the second one implements the barrier and
1004 uses the same convention as above, except that the 'E' is replaced
1007 Just as above, we do not decode the name of barrier functions
1008 to give the user a clue that the code he is debugging has been
1009 internally generated. */
1011 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1012 && isdigit (encoded
[i
+2]))
1016 while (k
< len0
&& isdigit (encoded
[k
]))
1020 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1023 /* Just as an extra precaution, make sure that if this
1024 suffix is followed by anything else, it is a '_'.
1025 Otherwise, we matched this sequence by accident. */
1027 || (k
< len0
&& encoded
[k
] == '_'))
1032 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1033 the GNAT front-end in protected object subprograms. */
1036 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1038 /* Backtrack a bit up until we reach either the begining of
1039 the encoded name, or "__". Make sure that we only find
1040 digits or lowercase characters. */
1041 const char *ptr
= encoded
+ i
- 1;
1043 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1046 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1050 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1054 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1058 else if (!ADA_RETAIN_DOTS
1059 && i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1068 decoded
[j
] = encoded
[i
];
1073 decoded
[j
] = '\000';
1075 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1076 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1079 if (strcmp (decoded
, encoded
) == 0)
1085 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1086 decoded
= decoding_buffer
;
1087 if (encoded
[0] == '<')
1088 strcpy (decoded
, encoded
);
1090 sprintf (decoded
, "<%s>", encoded
);
1095 /* Table for keeping permanent unique copies of decoded names. Once
1096 allocated, names in this table are never released. While this is a
1097 storage leak, it should not be significant unless there are massive
1098 changes in the set of decoded names in successive versions of a
1099 symbol table loaded during a single session. */
1100 static struct htab
*decoded_names_store
;
1102 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1103 in the language-specific part of GSYMBOL, if it has not been
1104 previously computed. Tries to save the decoded name in the same
1105 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1106 in any case, the decoded symbol has a lifetime at least that of
1108 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1109 const, but nevertheless modified to a semantically equivalent form
1110 when a decoded name is cached in it.
1114 ada_decode_symbol (const struct general_symbol_info
*gsymbol
)
1117 (char **) &gsymbol
->language_specific
.cplus_specific
.demangled_name
;
1118 if (*resultp
== NULL
)
1120 const char *decoded
= ada_decode (gsymbol
->name
);
1121 if (gsymbol
->bfd_section
!= NULL
)
1123 bfd
*obfd
= gsymbol
->bfd_section
->owner
;
1126 struct objfile
*objf
;
1129 if (obfd
== objf
->obfd
)
1131 *resultp
= obsavestring (decoded
, strlen (decoded
),
1132 &objf
->objfile_obstack
);
1138 /* Sometimes, we can't find a corresponding objfile, in which
1139 case, we put the result on the heap. Since we only decode
1140 when needed, we hope this usually does not cause a
1141 significant memory leak (FIXME). */
1142 if (*resultp
== NULL
)
1144 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1147 *slot
= xstrdup (decoded
);
1156 ada_la_decode (const char *encoded
, int options
)
1158 return xstrdup (ada_decode (encoded
));
1161 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1162 suffixes that encode debugging information or leading _ada_ on
1163 SYM_NAME (see is_name_suffix commentary for the debugging
1164 information that is ignored). If WILD, then NAME need only match a
1165 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1166 either argument is NULL. */
1169 ada_match_name (const char *sym_name
, const char *name
, int wild
)
1171 if (sym_name
== NULL
|| name
== NULL
)
1174 return wild_match (name
, strlen (name
), sym_name
);
1177 int len_name
= strlen (name
);
1178 return (strncmp (sym_name
, name
, len_name
) == 0
1179 && is_name_suffix (sym_name
+ len_name
))
1180 || (strncmp (sym_name
, "_ada_", 5) == 0
1181 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1182 && is_name_suffix (sym_name
+ len_name
+ 5));
1186 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1187 suppressed in info listings. */
1190 ada_suppress_symbol_printing (struct symbol
*sym
)
1192 if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
)
1195 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym
));
1201 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1203 static char *bound_name
[] = {
1204 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1205 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 /* Maximum number of array dimensions we are prepared to handle. */
1210 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1212 /* Like modify_field, but allows bitpos > wordlength. */
1215 modify_general_field (char *addr
, LONGEST fieldval
, int bitpos
, int bitsize
)
1217 modify_field (addr
+ bitpos
/ 8, fieldval
, bitpos
% 8, bitsize
);
1221 /* The desc_* routines return primitive portions of array descriptors
1224 /* The descriptor or array type, if any, indicated by TYPE; removes
1225 level of indirection, if needed. */
1227 static struct type
*
1228 desc_base_type (struct type
*type
)
1232 type
= ada_check_typedef (type
);
1234 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1235 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1236 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1241 /* True iff TYPE indicates a "thin" array pointer type. */
1244 is_thin_pntr (struct type
*type
)
1247 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1248 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1251 /* The descriptor type for thin pointer type TYPE. */
1253 static struct type
*
1254 thin_descriptor_type (struct type
*type
)
1256 struct type
*base_type
= desc_base_type (type
);
1257 if (base_type
== NULL
)
1259 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1263 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1264 if (alt_type
== NULL
)
1271 /* A pointer to the array data for thin-pointer value VAL. */
1273 static struct value
*
1274 thin_data_pntr (struct value
*val
)
1276 struct type
*type
= value_type (val
);
1277 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1278 return value_cast (desc_data_type (thin_descriptor_type (type
)),
1281 return value_from_longest (desc_data_type (thin_descriptor_type (type
)),
1282 VALUE_ADDRESS (val
) + value_offset (val
));
1285 /* True iff TYPE indicates a "thick" array pointer type. */
1288 is_thick_pntr (struct type
*type
)
1290 type
= desc_base_type (type
);
1291 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1292 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1295 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1296 pointer to one, the type of its bounds data; otherwise, NULL. */
1298 static struct type
*
1299 desc_bounds_type (struct type
*type
)
1303 type
= desc_base_type (type
);
1307 else if (is_thin_pntr (type
))
1309 type
= thin_descriptor_type (type
);
1312 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1314 return ada_check_typedef (r
);
1316 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1318 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1320 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1325 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1326 one, a pointer to its bounds data. Otherwise NULL. */
1328 static struct value
*
1329 desc_bounds (struct value
*arr
)
1331 struct type
*type
= ada_check_typedef (value_type (arr
));
1332 if (is_thin_pntr (type
))
1334 struct type
*bounds_type
=
1335 desc_bounds_type (thin_descriptor_type (type
));
1338 if (desc_bounds_type
== NULL
)
1339 error (_("Bad GNAT array descriptor"));
1341 /* NOTE: The following calculation is not really kosher, but
1342 since desc_type is an XVE-encoded type (and shouldn't be),
1343 the correct calculation is a real pain. FIXME (and fix GCC). */
1344 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1345 addr
= value_as_long (arr
);
1347 addr
= VALUE_ADDRESS (arr
) + value_offset (arr
);
1350 value_from_longest (lookup_pointer_type (bounds_type
),
1351 addr
- TYPE_LENGTH (bounds_type
));
1354 else if (is_thick_pntr (type
))
1355 return value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1356 _("Bad GNAT array descriptor"));
1361 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1362 position of the field containing the address of the bounds data. */
1365 fat_pntr_bounds_bitpos (struct type
*type
)
1367 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1370 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1371 size of the field containing the address of the bounds data. */
1374 fat_pntr_bounds_bitsize (struct type
*type
)
1376 type
= desc_base_type (type
);
1378 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1379 return TYPE_FIELD_BITSIZE (type
, 1);
1381 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1384 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1385 pointer to one, the type of its array data (a
1386 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1387 ada_type_of_array to get an array type with bounds data. */
1389 static struct type
*
1390 desc_data_type (struct type
*type
)
1392 type
= desc_base_type (type
);
1394 /* NOTE: The following is bogus; see comment in desc_bounds. */
1395 if (is_thin_pntr (type
))
1396 return lookup_pointer_type
1397 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1)));
1398 else if (is_thick_pntr (type
))
1399 return lookup_struct_elt_type (type
, "P_ARRAY", 1);
1404 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1407 static struct value
*
1408 desc_data (struct value
*arr
)
1410 struct type
*type
= value_type (arr
);
1411 if (is_thin_pntr (type
))
1412 return thin_data_pntr (arr
);
1413 else if (is_thick_pntr (type
))
1414 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1415 _("Bad GNAT array descriptor"));
1421 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1422 position of the field containing the address of the data. */
1425 fat_pntr_data_bitpos (struct type
*type
)
1427 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1430 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1431 size of the field containing the address of the data. */
1434 fat_pntr_data_bitsize (struct type
*type
)
1436 type
= desc_base_type (type
);
1438 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1439 return TYPE_FIELD_BITSIZE (type
, 0);
1441 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1444 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1445 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1446 bound, if WHICH is 1. The first bound is I=1. */
1448 static struct value
*
1449 desc_one_bound (struct value
*bounds
, int i
, int which
)
1451 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1452 _("Bad GNAT array descriptor bounds"));
1455 /* If BOUNDS is an array-bounds structure type, return the bit position
1456 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1457 bound, if WHICH is 1. The first bound is I=1. */
1460 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1462 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1465 /* If BOUNDS is an array-bounds structure type, return the bit field size
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1470 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1472 type
= desc_base_type (type
);
1474 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1475 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1477 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1480 /* If TYPE is the type of an array-bounds structure, the type of its
1481 Ith bound (numbering from 1). Otherwise, NULL. */
1483 static struct type
*
1484 desc_index_type (struct type
*type
, int i
)
1486 type
= desc_base_type (type
);
1488 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1489 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1494 /* The number of index positions in the array-bounds type TYPE.
1495 Return 0 if TYPE is NULL. */
1498 desc_arity (struct type
*type
)
1500 type
= desc_base_type (type
);
1503 return TYPE_NFIELDS (type
) / 2;
1507 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1508 an array descriptor type (representing an unconstrained array
1512 ada_is_direct_array_type (struct type
*type
)
1516 type
= ada_check_typedef (type
);
1517 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1518 || ada_is_array_descriptor_type (type
));
1521 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1525 ada_is_array_type (struct type
*type
)
1528 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1529 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1530 type
= TYPE_TARGET_TYPE (type
);
1531 return ada_is_direct_array_type (type
);
1534 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1537 ada_is_simple_array_type (struct type
*type
)
1541 type
= ada_check_typedef (type
);
1542 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1543 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1544 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_ARRAY
));
1547 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1550 ada_is_array_descriptor_type (struct type
*type
)
1552 struct type
*data_type
= desc_data_type (type
);
1556 type
= ada_check_typedef (type
);
1559 && ((TYPE_CODE (data_type
) == TYPE_CODE_PTR
1560 && TYPE_TARGET_TYPE (data_type
) != NULL
1561 && TYPE_CODE (TYPE_TARGET_TYPE (data_type
)) == TYPE_CODE_ARRAY
)
1562 || TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
)
1563 && desc_arity (desc_bounds_type (type
)) > 0;
1566 /* Non-zero iff type is a partially mal-formed GNAT array
1567 descriptor. FIXME: This is to compensate for some problems with
1568 debugging output from GNAT. Re-examine periodically to see if it
1572 ada_is_bogus_array_descriptor (struct type
*type
)
1576 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1577 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1578 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1579 && !ada_is_array_descriptor_type (type
);
1583 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1584 (fat pointer) returns the type of the array data described---specifically,
1585 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1586 in from the descriptor; otherwise, they are left unspecified. If
1587 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1588 returns NULL. The result is simply the type of ARR if ARR is not
1591 ada_type_of_array (struct value
*arr
, int bounds
)
1593 if (ada_is_packed_array_type (value_type (arr
)))
1594 return decode_packed_array_type (value_type (arr
));
1596 if (!ada_is_array_descriptor_type (value_type (arr
)))
1597 return value_type (arr
);
1601 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr
))));
1604 struct type
*elt_type
;
1606 struct value
*descriptor
;
1607 struct objfile
*objf
= TYPE_OBJFILE (value_type (arr
));
1609 elt_type
= ada_array_element_type (value_type (arr
), -1);
1610 arity
= ada_array_arity (value_type (arr
));
1612 if (elt_type
== NULL
|| arity
== 0)
1613 return ada_check_typedef (value_type (arr
));
1615 descriptor
= desc_bounds (arr
);
1616 if (value_as_long (descriptor
) == 0)
1620 struct type
*range_type
= alloc_type (objf
);
1621 struct type
*array_type
= alloc_type (objf
);
1622 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1623 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1626 create_range_type (range_type
, value_type (low
),
1627 longest_to_int (value_as_long (low
)),
1628 longest_to_int (value_as_long (high
)));
1629 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1632 return lookup_pointer_type (elt_type
);
1636 /* If ARR does not represent an array, returns ARR unchanged.
1637 Otherwise, returns either a standard GDB array with bounds set
1638 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1639 GDB array. Returns NULL if ARR is a null fat pointer. */
1642 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1644 if (ada_is_array_descriptor_type (value_type (arr
)))
1646 struct type
*arrType
= ada_type_of_array (arr
, 1);
1647 if (arrType
== NULL
)
1649 return value_cast (arrType
, value_copy (desc_data (arr
)));
1651 else if (ada_is_packed_array_type (value_type (arr
)))
1652 return decode_packed_array (arr
);
1657 /* If ARR does not represent an array, returns ARR unchanged.
1658 Otherwise, returns a standard GDB array describing ARR (which may
1659 be ARR itself if it already is in the proper form). */
1661 static struct value
*
1662 ada_coerce_to_simple_array (struct value
*arr
)
1664 if (ada_is_array_descriptor_type (value_type (arr
)))
1666 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1668 error (_("Bounds unavailable for null array pointer."));
1669 check_size (TYPE_TARGET_TYPE (value_type (arrVal
)));
1670 return value_ind (arrVal
);
1672 else if (ada_is_packed_array_type (value_type (arr
)))
1673 return decode_packed_array (arr
);
1678 /* If TYPE represents a GNAT array type, return it translated to an
1679 ordinary GDB array type (possibly with BITSIZE fields indicating
1680 packing). For other types, is the identity. */
1683 ada_coerce_to_simple_array_type (struct type
*type
)
1685 struct value
*mark
= value_mark ();
1686 struct value
*dummy
= value_from_longest (builtin_type_long
, 0);
1687 struct type
*result
;
1688 deprecated_set_value_type (dummy
, type
);
1689 result
= ada_type_of_array (dummy
, 0);
1690 value_free_to_mark (mark
);
1694 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1697 ada_is_packed_array_type (struct type
*type
)
1701 type
= desc_base_type (type
);
1702 type
= ada_check_typedef (type
);
1704 ada_type_name (type
) != NULL
1705 && strstr (ada_type_name (type
), "___XP") != NULL
;
1708 /* Given that TYPE is a standard GDB array type with all bounds filled
1709 in, and that the element size of its ultimate scalar constituents
1710 (that is, either its elements, or, if it is an array of arrays, its
1711 elements' elements, etc.) is *ELT_BITS, return an identical type,
1712 but with the bit sizes of its elements (and those of any
1713 constituent arrays) recorded in the BITSIZE components of its
1714 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1717 static struct type
*
1718 packed_array_type (struct type
*type
, long *elt_bits
)
1720 struct type
*new_elt_type
;
1721 struct type
*new_type
;
1722 LONGEST low_bound
, high_bound
;
1724 type
= ada_check_typedef (type
);
1725 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
1728 new_type
= alloc_type (TYPE_OBJFILE (type
));
1729 new_elt_type
= packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
1731 create_array_type (new_type
, new_elt_type
, TYPE_FIELD_TYPE (type
, 0));
1732 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
1733 TYPE_NAME (new_type
) = ada_type_name (type
);
1735 if (get_discrete_bounds (TYPE_FIELD_TYPE (type
, 0),
1736 &low_bound
, &high_bound
) < 0)
1737 low_bound
= high_bound
= 0;
1738 if (high_bound
< low_bound
)
1739 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
1742 *elt_bits
*= (high_bound
- low_bound
+ 1);
1743 TYPE_LENGTH (new_type
) =
1744 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
1747 TYPE_FLAGS (new_type
) |= TYPE_FLAG_FIXED_INSTANCE
;
1751 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1753 static struct type
*
1754 decode_packed_array_type (struct type
*type
)
1757 struct block
**blocks
;
1758 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
1759 char *name
= (char *) alloca (strlen (raw_name
) + 1);
1760 char *tail
= strstr (raw_name
, "___XP");
1761 struct type
*shadow_type
;
1765 type
= desc_base_type (type
);
1767 memcpy (name
, raw_name
, tail
- raw_name
);
1768 name
[tail
- raw_name
] = '\000';
1770 sym
= standard_lookup (name
, get_selected_block (0), VAR_DOMAIN
);
1771 if (sym
== NULL
|| SYMBOL_TYPE (sym
) == NULL
)
1773 lim_warning (_("could not find bounds information on packed array"));
1776 shadow_type
= SYMBOL_TYPE (sym
);
1778 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
1780 lim_warning (_("could not understand bounds information on packed array"));
1784 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
1787 (_("could not understand bit size information on packed array"));
1791 return packed_array_type (shadow_type
, &bits
);
1794 /* Given that ARR is a struct value *indicating a GNAT packed array,
1795 returns a simple array that denotes that array. Its type is a
1796 standard GDB array type except that the BITSIZEs of the array
1797 target types are set to the number of bits in each element, and the
1798 type length is set appropriately. */
1800 static struct value
*
1801 decode_packed_array (struct value
*arr
)
1805 arr
= ada_coerce_ref (arr
);
1806 if (TYPE_CODE (value_type (arr
)) == TYPE_CODE_PTR
)
1807 arr
= ada_value_ind (arr
);
1809 type
= decode_packed_array_type (value_type (arr
));
1812 error (_("can't unpack array"));
1816 if (BITS_BIG_ENDIAN
&& ada_is_modular_type (value_type (arr
)))
1818 /* This is a (right-justified) modular type representing a packed
1819 array with no wrapper. In order to interpret the value through
1820 the (left-justified) packed array type we just built, we must
1821 first left-justify it. */
1822 int bit_size
, bit_pos
;
1825 mod
= ada_modulus (value_type (arr
)) - 1;
1832 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
1833 arr
= ada_value_primitive_packed_val (arr
, NULL
,
1834 bit_pos
/ HOST_CHAR_BIT
,
1835 bit_pos
% HOST_CHAR_BIT
,
1840 return coerce_unspec_val_to_type (arr
, type
);
1844 /* The value of the element of packed array ARR at the ARITY indices
1845 given in IND. ARR must be a simple array. */
1847 static struct value
*
1848 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
1851 int bits
, elt_off
, bit_off
;
1852 long elt_total_bit_offset
;
1853 struct type
*elt_type
;
1857 elt_total_bit_offset
= 0;
1858 elt_type
= ada_check_typedef (value_type (arr
));
1859 for (i
= 0; i
< arity
; i
+= 1)
1861 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
1862 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
1864 (_("attempt to do packed indexing of something other than a packed array"));
1867 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
1868 LONGEST lowerbound
, upperbound
;
1871 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
1873 lim_warning (_("don't know bounds of array"));
1874 lowerbound
= upperbound
= 0;
1877 idx
= value_as_long (value_pos_atr (ind
[i
]));
1878 if (idx
< lowerbound
|| idx
> upperbound
)
1879 lim_warning (_("packed array index %ld out of bounds"), (long) idx
);
1880 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
1881 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
1882 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
1885 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
1886 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
1888 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
1890 if (VALUE_LVAL (arr
) == lval_internalvar
)
1891 VALUE_LVAL (v
) = lval_internalvar_component
;
1893 VALUE_LVAL (v
) = VALUE_LVAL (arr
);
1897 /* Non-zero iff TYPE includes negative integer values. */
1900 has_negatives (struct type
*type
)
1902 switch (TYPE_CODE (type
))
1907 return !TYPE_UNSIGNED (type
);
1908 case TYPE_CODE_RANGE
:
1909 return TYPE_LOW_BOUND (type
) < 0;
1914 /* Create a new value of type TYPE from the contents of OBJ starting
1915 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1916 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1917 assigning through the result will set the field fetched from.
1918 VALADDR is ignored unless OBJ is NULL, in which case,
1919 VALADDR+OFFSET must address the start of storage containing the
1920 packed value. The value returned in this case is never an lval.
1921 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1924 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
1925 long offset
, int bit_offset
, int bit_size
,
1929 int src
, /* Index into the source area */
1930 targ
, /* Index into the target area */
1931 srcBitsLeft
, /* Number of source bits left to move */
1932 nsrc
, ntarg
, /* Number of source and target bytes */
1933 unusedLS
, /* Number of bits in next significant
1934 byte of source that are unused */
1935 accumSize
; /* Number of meaningful bits in accum */
1936 unsigned char *bytes
; /* First byte containing data to unpack */
1937 unsigned char *unpacked
;
1938 unsigned long accum
; /* Staging area for bits being transferred */
1940 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
1941 /* Transmit bytes from least to most significant; delta is the direction
1942 the indices move. */
1943 int delta
= BITS_BIG_ENDIAN
? -1 : 1;
1945 type
= ada_check_typedef (type
);
1949 v
= allocate_value (type
);
1950 bytes
= (unsigned char *) (valaddr
+ offset
);
1952 else if (value_lazy (obj
))
1955 VALUE_ADDRESS (obj
) + value_offset (obj
) + offset
);
1956 bytes
= (unsigned char *) alloca (len
);
1957 read_memory (VALUE_ADDRESS (v
), bytes
, len
);
1961 v
= allocate_value (type
);
1962 bytes
= (unsigned char *) value_contents (obj
) + offset
;
1967 VALUE_LVAL (v
) = VALUE_LVAL (obj
);
1968 if (VALUE_LVAL (obj
) == lval_internalvar
)
1969 VALUE_LVAL (v
) = lval_internalvar_component
;
1970 VALUE_ADDRESS (v
) = VALUE_ADDRESS (obj
) + value_offset (obj
) + offset
;
1971 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
1972 set_value_bitsize (v
, bit_size
);
1973 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
1975 VALUE_ADDRESS (v
) += 1;
1976 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
1980 set_value_bitsize (v
, bit_size
);
1981 unpacked
= (unsigned char *) value_contents (v
);
1983 srcBitsLeft
= bit_size
;
1985 ntarg
= TYPE_LENGTH (type
);
1989 memset (unpacked
, 0, TYPE_LENGTH (type
));
1992 else if (BITS_BIG_ENDIAN
)
1995 if (has_negatives (type
)
1996 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2000 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2003 switch (TYPE_CODE (type
))
2005 case TYPE_CODE_ARRAY
:
2006 case TYPE_CODE_UNION
:
2007 case TYPE_CODE_STRUCT
:
2008 /* Non-scalar values must be aligned at a byte boundary... */
2010 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2011 /* ... And are placed at the beginning (most-significant) bytes
2013 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2017 targ
= TYPE_LENGTH (type
) - 1;
2023 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2026 unusedLS
= bit_offset
;
2029 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2036 /* Mask for removing bits of the next source byte that are not
2037 part of the value. */
2038 unsigned int unusedMSMask
=
2039 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2041 /* Sign-extend bits for this byte. */
2042 unsigned int signMask
= sign
& ~unusedMSMask
;
2044 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2045 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2046 if (accumSize
>= HOST_CHAR_BIT
)
2048 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2049 accumSize
-= HOST_CHAR_BIT
;
2050 accum
>>= HOST_CHAR_BIT
;
2054 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2061 accum
|= sign
<< accumSize
;
2062 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2063 accumSize
-= HOST_CHAR_BIT
;
2064 accum
>>= HOST_CHAR_BIT
;
2072 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2073 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2076 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2077 int src_offset
, int n
)
2079 unsigned int accum
, mask
;
2080 int accum_bits
, chunk_size
;
2082 target
+= targ_offset
/ HOST_CHAR_BIT
;
2083 targ_offset
%= HOST_CHAR_BIT
;
2084 source
+= src_offset
/ HOST_CHAR_BIT
;
2085 src_offset
%= HOST_CHAR_BIT
;
2086 if (BITS_BIG_ENDIAN
)
2088 accum
= (unsigned char) *source
;
2090 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2095 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2096 accum_bits
+= HOST_CHAR_BIT
;
2098 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2101 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2102 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2105 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2107 accum_bits
-= chunk_size
;
2114 accum
= (unsigned char) *source
>> src_offset
;
2116 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2120 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2121 accum_bits
+= HOST_CHAR_BIT
;
2123 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2126 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2127 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2129 accum_bits
-= chunk_size
;
2130 accum
>>= chunk_size
;
2137 /* Store the contents of FROMVAL into the location of TOVAL.
2138 Return a new value with the location of TOVAL and contents of
2139 FROMVAL. Handles assignment into packed fields that have
2140 floating-point or non-scalar types. */
2142 static struct value
*
2143 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2145 struct type
*type
= value_type (toval
);
2146 int bits
= value_bitsize (toval
);
2148 toval
= ada_coerce_ref (toval
);
2149 fromval
= ada_coerce_ref (fromval
);
2151 if (ada_is_direct_array_type (value_type (toval
)))
2152 toval
= ada_coerce_to_simple_array (toval
);
2153 if (ada_is_direct_array_type (value_type (fromval
)))
2154 fromval
= ada_coerce_to_simple_array (fromval
);
2156 if (!deprecated_value_modifiable (toval
))
2157 error (_("Left operand of assignment is not a modifiable lvalue."));
2159 if (VALUE_LVAL (toval
) == lval_memory
2161 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2162 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2164 int len
= (value_bitpos (toval
)
2165 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2166 char *buffer
= (char *) alloca (len
);
2168 CORE_ADDR to_addr
= VALUE_ADDRESS (toval
) + value_offset (toval
);
2170 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2171 fromval
= value_cast (type
, fromval
);
2173 read_memory (to_addr
, buffer
, len
);
2174 if (BITS_BIG_ENDIAN
)
2175 move_bits (buffer
, value_bitpos (toval
),
2176 value_contents (fromval
),
2177 TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
-
2180 move_bits (buffer
, value_bitpos (toval
), value_contents (fromval
),
2182 write_memory (to_addr
, buffer
, len
);
2183 if (deprecated_memory_changed_hook
)
2184 deprecated_memory_changed_hook (to_addr
, len
);
2186 val
= value_copy (toval
);
2187 memcpy (value_contents_raw (val
), value_contents (fromval
),
2188 TYPE_LENGTH (type
));
2189 deprecated_set_value_type (val
, type
);
2194 return value_assign (toval
, fromval
);
2198 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2199 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2200 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2201 * COMPONENT, and not the inferior's memory. The current contents
2202 * of COMPONENT are ignored. */
2204 value_assign_to_component (struct value
*container
, struct value
*component
,
2207 LONGEST offset_in_container
=
2208 (LONGEST
) (VALUE_ADDRESS (component
) + value_offset (component
)
2209 - VALUE_ADDRESS (container
) - value_offset (container
));
2210 int bit_offset_in_container
=
2211 value_bitpos (component
) - value_bitpos (container
);
2214 val
= value_cast (value_type (component
), val
);
2216 if (value_bitsize (component
) == 0)
2217 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2219 bits
= value_bitsize (component
);
2221 if (BITS_BIG_ENDIAN
)
2222 move_bits (value_contents_writeable (container
) + offset_in_container
,
2223 value_bitpos (container
) + bit_offset_in_container
,
2224 value_contents (val
),
2225 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2228 move_bits (value_contents_writeable (container
) + offset_in_container
,
2229 value_bitpos (container
) + bit_offset_in_container
,
2230 value_contents (val
), 0, bits
);
2233 /* The value of the element of array ARR at the ARITY indices given in IND.
2234 ARR may be either a simple array, GNAT array descriptor, or pointer
2238 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2242 struct type
*elt_type
;
2244 elt
= ada_coerce_to_simple_array (arr
);
2246 elt_type
= ada_check_typedef (value_type (elt
));
2247 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2248 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2249 return value_subscript_packed (elt
, arity
, ind
);
2251 for (k
= 0; k
< arity
; k
+= 1)
2253 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2254 error (_("too many subscripts (%d expected)"), k
);
2255 elt
= value_subscript (elt
, value_pos_atr (ind
[k
]));
2260 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2261 value of the element of *ARR at the ARITY indices given in
2262 IND. Does not read the entire array into memory. */
2265 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2270 for (k
= 0; k
< arity
; k
+= 1)
2275 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2276 error (_("too many subscripts (%d expected)"), k
);
2277 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2279 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2280 idx
= value_pos_atr (ind
[k
]);
2282 idx
= value_sub (idx
, value_from_longest (builtin_type_int
, lwb
));
2283 arr
= value_add (arr
, idx
);
2284 type
= TYPE_TARGET_TYPE (type
);
2287 return value_ind (arr
);
2290 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2291 actual type of ARRAY_PTR is ignored), returns a reference to
2292 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2293 bound of this array is LOW, as per Ada rules. */
2294 static struct value
*
2295 ada_value_slice_ptr (struct value
*array_ptr
, struct type
*type
,
2298 CORE_ADDR base
= value_as_address (array_ptr
)
2299 + ((low
- TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type
)))
2300 * TYPE_LENGTH (TYPE_TARGET_TYPE (type
)));
2301 struct type
*index_type
=
2302 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
)),
2304 struct type
*slice_type
=
2305 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2306 return value_from_pointer (lookup_reference_type (slice_type
), base
);
2310 static struct value
*
2311 ada_value_slice (struct value
*array
, int low
, int high
)
2313 struct type
*type
= value_type (array
);
2314 struct type
*index_type
=
2315 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2316 struct type
*slice_type
=
2317 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2318 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2321 /* If type is a record type in the form of a standard GNAT array
2322 descriptor, returns the number of dimensions for type. If arr is a
2323 simple array, returns the number of "array of"s that prefix its
2324 type designation. Otherwise, returns 0. */
2327 ada_array_arity (struct type
*type
)
2334 type
= desc_base_type (type
);
2337 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2338 return desc_arity (desc_bounds_type (type
));
2340 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2343 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2349 /* If TYPE is a record type in the form of a standard GNAT array
2350 descriptor or a simple array type, returns the element type for
2351 TYPE after indexing by NINDICES indices, or by all indices if
2352 NINDICES is -1. Otherwise, returns NULL. */
2355 ada_array_element_type (struct type
*type
, int nindices
)
2357 type
= desc_base_type (type
);
2359 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2362 struct type
*p_array_type
;
2364 p_array_type
= desc_data_type (type
);
2366 k
= ada_array_arity (type
);
2370 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2371 if (nindices
>= 0 && k
> nindices
)
2373 p_array_type
= TYPE_TARGET_TYPE (p_array_type
);
2374 while (k
> 0 && p_array_type
!= NULL
)
2376 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2379 return p_array_type
;
2381 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2383 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2385 type
= TYPE_TARGET_TYPE (type
);
2394 /* The type of nth index in arrays of given type (n numbering from 1).
2395 Does not examine memory. */
2398 ada_index_type (struct type
*type
, int n
)
2400 struct type
*result_type
;
2402 type
= desc_base_type (type
);
2404 if (n
> ada_array_arity (type
))
2407 if (ada_is_simple_array_type (type
))
2411 for (i
= 1; i
< n
; i
+= 1)
2412 type
= TYPE_TARGET_TYPE (type
);
2413 result_type
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, 0));
2414 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2415 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2416 perhaps stabsread.c would make more sense. */
2417 if (result_type
== NULL
|| TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2418 result_type
= builtin_type_int
;
2423 return desc_index_type (desc_bounds_type (type
), n
);
2426 /* Given that arr is an array type, returns the lower bound of the
2427 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2428 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2429 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2430 bounds type. It works for other arrays with bounds supplied by
2431 run-time quantities other than discriminants. */
2434 ada_array_bound_from_type (struct type
* arr_type
, int n
, int which
,
2435 struct type
** typep
)
2438 struct type
*index_type_desc
;
2440 if (ada_is_packed_array_type (arr_type
))
2441 arr_type
= decode_packed_array_type (arr_type
);
2443 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2446 *typep
= builtin_type_int
;
2447 return (LONGEST
) - which
;
2450 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2451 type
= TYPE_TARGET_TYPE (arr_type
);
2455 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2456 if (index_type_desc
== NULL
)
2458 struct type
*range_type
;
2459 struct type
*index_type
;
2463 type
= TYPE_TARGET_TYPE (type
);
2467 range_type
= TYPE_INDEX_TYPE (type
);
2468 index_type
= TYPE_TARGET_TYPE (range_type
);
2469 if (TYPE_CODE (index_type
) == TYPE_CODE_UNDEF
)
2470 index_type
= builtin_type_long
;
2472 *typep
= index_type
;
2474 (LONGEST
) (which
== 0
2475 ? TYPE_LOW_BOUND (range_type
)
2476 : TYPE_HIGH_BOUND (range_type
));
2480 struct type
*index_type
=
2481 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, n
- 1),
2482 NULL
, TYPE_OBJFILE (arr_type
));
2484 *typep
= TYPE_TARGET_TYPE (index_type
);
2486 (LONGEST
) (which
== 0
2487 ? TYPE_LOW_BOUND (index_type
)
2488 : TYPE_HIGH_BOUND (index_type
));
2492 /* Given that arr is an array value, returns the lower bound of the
2493 nth index (numbering from 1) if which is 0, and the upper bound if
2494 which is 1. This routine will also work for arrays with bounds
2495 supplied by run-time quantities other than discriminants. */
2498 ada_array_bound (struct value
*arr
, int n
, int which
)
2500 struct type
*arr_type
= value_type (arr
);
2502 if (ada_is_packed_array_type (arr_type
))
2503 return ada_array_bound (decode_packed_array (arr
), n
, which
);
2504 else if (ada_is_simple_array_type (arr_type
))
2507 LONGEST v
= ada_array_bound_from_type (arr_type
, n
, which
, &type
);
2508 return value_from_longest (type
, v
);
2511 return desc_one_bound (desc_bounds (arr
), n
, which
);
2514 /* Given that arr is an array value, returns the length of the
2515 nth index. This routine will also work for arrays with bounds
2516 supplied by run-time quantities other than discriminants.
2517 Does not work for arrays indexed by enumeration types with representation
2518 clauses at the moment. */
2521 ada_array_length (struct value
*arr
, int n
)
2523 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2525 if (ada_is_packed_array_type (arr_type
))
2526 return ada_array_length (decode_packed_array (arr
), n
);
2528 if (ada_is_simple_array_type (arr_type
))
2532 ada_array_bound_from_type (arr_type
, n
, 1, &type
) -
2533 ada_array_bound_from_type (arr_type
, n
, 0, NULL
) + 1;
2534 return value_from_longest (type
, v
);
2538 value_from_longest (builtin_type_int
,
2539 value_as_long (desc_one_bound (desc_bounds (arr
),
2541 - value_as_long (desc_one_bound (desc_bounds (arr
),
2545 /* An empty array whose type is that of ARR_TYPE (an array type),
2546 with bounds LOW to LOW-1. */
2548 static struct value
*
2549 empty_array (struct type
*arr_type
, int low
)
2551 struct type
*index_type
=
2552 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type
)),
2554 struct type
*elt_type
= ada_array_element_type (arr_type
, 1);
2555 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2559 /* Name resolution */
2561 /* The "decoded" name for the user-definable Ada operator corresponding
2565 ada_decoded_op_name (enum exp_opcode op
)
2569 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2571 if (ada_opname_table
[i
].op
== op
)
2572 return ada_opname_table
[i
].decoded
;
2574 error (_("Could not find operator name for opcode"));
2578 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2579 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2580 undefined namespace) and converts operators that are
2581 user-defined into appropriate function calls. If CONTEXT_TYPE is
2582 non-null, it provides a preferred result type [at the moment, only
2583 type void has any effect---causing procedures to be preferred over
2584 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2585 return type is preferred. May change (expand) *EXP. */
2588 resolve (struct expression
**expp
, int void_context_p
)
2592 resolve_subexp (expp
, &pc
, 1, void_context_p
? builtin_type_void
: NULL
);
2595 /* Resolve the operator of the subexpression beginning at
2596 position *POS of *EXPP. "Resolving" consists of replacing
2597 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2598 with their resolutions, replacing built-in operators with
2599 function calls to user-defined operators, where appropriate, and,
2600 when DEPROCEDURE_P is non-zero, converting function-valued variables
2601 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2602 are as in ada_resolve, above. */
2604 static struct value
*
2605 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2606 struct type
*context_type
)
2610 struct expression
*exp
; /* Convenience: == *expp. */
2611 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2612 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2613 int nargs
; /* Number of operands. */
2620 /* Pass one: resolve operands, saving their types and updating *pos,
2625 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2626 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2631 resolve_subexp (expp
, pos
, 0, NULL
);
2633 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2638 resolve_subexp (expp
, pos
, 0, NULL
);
2643 resolve_subexp (expp
, pos
, 1, exp
->elts
[pc
+ 1].type
);
2646 case OP_ATR_MODULUS
:
2656 case TERNOP_IN_RANGE
:
2657 case BINOP_IN_BOUNDS
:
2663 case OP_DISCRETE_RANGE
:
2665 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
2674 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
2676 resolve_subexp (expp
, pos
, 1, NULL
);
2678 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
2695 case BINOP_LOGICAL_AND
:
2696 case BINOP_LOGICAL_OR
:
2697 case BINOP_BITWISE_AND
:
2698 case BINOP_BITWISE_IOR
:
2699 case BINOP_BITWISE_XOR
:
2702 case BINOP_NOTEQUAL
:
2709 case BINOP_SUBSCRIPT
:
2714 case UNOP_LOGICAL_NOT
:
2731 case OP_INTERNALVAR
:
2740 case STRUCTOP_STRUCT
:
2741 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2754 error (_("Unexpected operator during name resolution"));
2757 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
2758 for (i
= 0; i
< nargs
; i
+= 1)
2759 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
2763 /* Pass two: perform any resolution on principal operator. */
2770 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
2772 struct ada_symbol_info
*candidates
;
2776 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2777 (exp
->elts
[pc
+ 2].symbol
),
2778 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
2781 if (n_candidates
> 1)
2783 /* Types tend to get re-introduced locally, so if there
2784 are any local symbols that are not types, first filter
2787 for (j
= 0; j
< n_candidates
; j
+= 1)
2788 switch (SYMBOL_CLASS (candidates
[j
].sym
))
2794 case LOC_REGPARM_ADDR
:
2798 case LOC_BASEREG_ARG
:
2800 case LOC_COMPUTED_ARG
:
2806 if (j
< n_candidates
)
2809 while (j
< n_candidates
)
2811 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
2813 candidates
[j
] = candidates
[n_candidates
- 1];
2822 if (n_candidates
== 0)
2823 error (_("No definition found for %s"),
2824 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2825 else if (n_candidates
== 1)
2827 else if (deprocedure_p
2828 && !is_nonfunction (candidates
, n_candidates
))
2830 i
= ada_resolve_function
2831 (candidates
, n_candidates
, NULL
, 0,
2832 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
2835 error (_("Could not find a match for %s"),
2836 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2840 printf_filtered (_("Multiple matches for %s\n"),
2841 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2842 user_select_syms (candidates
, n_candidates
, 1);
2846 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
2847 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
2848 if (innermost_block
== NULL
2849 || contained_in (candidates
[i
].block
, innermost_block
))
2850 innermost_block
= candidates
[i
].block
;
2854 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
2857 replace_operator_with_call (expp
, pc
, 0, 0,
2858 exp
->elts
[pc
+ 2].symbol
,
2859 exp
->elts
[pc
+ 1].block
);
2866 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2867 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2869 struct ada_symbol_info
*candidates
;
2873 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2874 (exp
->elts
[pc
+ 5].symbol
),
2875 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
2877 if (n_candidates
== 1)
2881 i
= ada_resolve_function
2882 (candidates
, n_candidates
,
2884 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
2887 error (_("Could not find a match for %s"),
2888 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
2891 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
2892 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
2893 if (innermost_block
== NULL
2894 || contained_in (candidates
[i
].block
, innermost_block
))
2895 innermost_block
= candidates
[i
].block
;
2906 case BINOP_BITWISE_AND
:
2907 case BINOP_BITWISE_IOR
:
2908 case BINOP_BITWISE_XOR
:
2910 case BINOP_NOTEQUAL
:
2918 case UNOP_LOGICAL_NOT
:
2920 if (possible_user_operator_p (op
, argvec
))
2922 struct ada_symbol_info
*candidates
;
2926 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
2927 (struct block
*) NULL
, VAR_DOMAIN
,
2929 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
2930 ada_decoded_op_name (op
), NULL
);
2934 replace_operator_with_call (expp
, pc
, nargs
, 1,
2935 candidates
[i
].sym
, candidates
[i
].block
);
2945 return evaluate_subexp_type (exp
, pos
);
2948 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2949 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2950 a non-pointer. A type of 'void' (which is never a valid expression type)
2951 by convention matches anything. */
2952 /* The term "match" here is rather loose. The match is heuristic and
2953 liberal. FIXME: TOO liberal, in fact. */
2956 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
2958 ftype
= ada_check_typedef (ftype
);
2959 atype
= ada_check_typedef (atype
);
2961 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
2962 ftype
= TYPE_TARGET_TYPE (ftype
);
2963 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
2964 atype
= TYPE_TARGET_TYPE (atype
);
2966 if (TYPE_CODE (ftype
) == TYPE_CODE_VOID
2967 || TYPE_CODE (atype
) == TYPE_CODE_VOID
)
2970 switch (TYPE_CODE (ftype
))
2975 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
2976 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
2977 TYPE_TARGET_TYPE (atype
), 0);
2980 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
2982 case TYPE_CODE_ENUM
:
2983 case TYPE_CODE_RANGE
:
2984 switch (TYPE_CODE (atype
))
2987 case TYPE_CODE_ENUM
:
2988 case TYPE_CODE_RANGE
:
2994 case TYPE_CODE_ARRAY
:
2995 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
2996 || ada_is_array_descriptor_type (atype
));
2998 case TYPE_CODE_STRUCT
:
2999 if (ada_is_array_descriptor_type (ftype
))
3000 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3001 || ada_is_array_descriptor_type (atype
));
3003 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3004 && !ada_is_array_descriptor_type (atype
));
3006 case TYPE_CODE_UNION
:
3008 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3012 /* Return non-zero if the formals of FUNC "sufficiently match" the
3013 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3014 may also be an enumeral, in which case it is treated as a 0-
3015 argument function. */
3018 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3021 struct type
*func_type
= SYMBOL_TYPE (func
);
3023 if (SYMBOL_CLASS (func
) == LOC_CONST
3024 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3025 return (n_actuals
== 0);
3026 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3029 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3032 for (i
= 0; i
< n_actuals
; i
+= 1)
3034 if (actuals
[i
] == NULL
)
3038 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
, i
));
3039 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3041 if (!ada_type_match (ftype
, atype
, 1))
3048 /* False iff function type FUNC_TYPE definitely does not produce a value
3049 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3050 FUNC_TYPE is not a valid function type with a non-null return type
3051 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3054 return_match (struct type
*func_type
, struct type
*context_type
)
3056 struct type
*return_type
;
3058 if (func_type
== NULL
)
3061 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3062 return_type
= base_type (TYPE_TARGET_TYPE (func_type
));
3064 return_type
= base_type (func_type
);
3065 if (return_type
== NULL
)
3068 context_type
= base_type (context_type
);
3070 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3071 return context_type
== NULL
|| return_type
== context_type
;
3072 else if (context_type
== NULL
)
3073 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3075 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3079 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3080 function (if any) that matches the types of the NARGS arguments in
3081 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3082 that returns that type, then eliminate matches that don't. If
3083 CONTEXT_TYPE is void and there is at least one match that does not
3084 return void, eliminate all matches that do.
3086 Asks the user if there is more than one match remaining. Returns -1
3087 if there is no such symbol or none is selected. NAME is used
3088 solely for messages. May re-arrange and modify SYMS in
3089 the process; the index returned is for the modified vector. */
3092 ada_resolve_function (struct ada_symbol_info syms
[],
3093 int nsyms
, struct value
**args
, int nargs
,
3094 const char *name
, struct type
*context_type
)
3097 int m
; /* Number of hits */
3098 struct type
*fallback
;
3099 struct type
*return_type
;
3101 return_type
= context_type
;
3102 if (context_type
== NULL
)
3103 fallback
= builtin_type_void
;
3110 for (k
= 0; k
< nsyms
; k
+= 1)
3112 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
3114 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
3115 && return_match (type
, return_type
))
3121 if (m
> 0 || return_type
== fallback
)
3124 return_type
= fallback
;
3131 printf_filtered (_("Multiple matches for %s\n"), name
);
3132 user_select_syms (syms
, m
, 1);
3138 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3139 in a listing of choices during disambiguation (see sort_choices, below).
3140 The idea is that overloadings of a subprogram name from the
3141 same package should sort in their source order. We settle for ordering
3142 such symbols by their trailing number (__N or $N). */
3145 encoded_ordered_before (char *N0
, char *N1
)
3149 else if (N0
== NULL
)
3154 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3156 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3158 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3159 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3163 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3166 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3168 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3169 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3171 return (strcmp (N0
, N1
) < 0);
3175 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3179 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3182 for (i
= 1; i
< nsyms
; i
+= 1)
3184 struct ada_symbol_info sym
= syms
[i
];
3187 for (j
= i
- 1; j
>= 0; j
-= 1)
3189 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3190 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3192 syms
[j
+ 1] = syms
[j
];
3198 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3199 by asking the user (if necessary), returning the number selected,
3200 and setting the first elements of SYMS items. Error if no symbols
3203 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3204 to be re-integrated one of these days. */
3207 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3210 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3212 int first_choice
= (max_results
== 1) ? 1 : 2;
3214 if (max_results
< 1)
3215 error (_("Request to select 0 symbols!"));
3219 printf_unfiltered (_("[0] cancel\n"));
3220 if (max_results
> 1)
3221 printf_unfiltered (_("[1] all\n"));
3223 sort_choices (syms
, nsyms
);
3225 for (i
= 0; i
< nsyms
; i
+= 1)
3227 if (syms
[i
].sym
== NULL
)
3230 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3232 struct symtab_and_line sal
=
3233 find_function_start_sal (syms
[i
].sym
, 1);
3234 if (sal
.symtab
== NULL
)
3235 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3237 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3240 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3241 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3242 sal
.symtab
->filename
, sal
.line
);
3248 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3249 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3250 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3251 struct symtab
*symtab
= symtab_for_sym (syms
[i
].sym
);
3253 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3254 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3256 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3257 symtab
->filename
, SYMBOL_LINE (syms
[i
].sym
));
3258 else if (is_enumeral
3259 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3261 printf_unfiltered (("[%d] "), i
+ first_choice
);
3262 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3264 printf_unfiltered (_("'(%s) (enumeral)\n"),
3265 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3267 else if (symtab
!= NULL
)
3268 printf_unfiltered (is_enumeral
3269 ? _("[%d] %s in %s (enumeral)\n")
3270 : _("[%d] %s at %s:?\n"),
3272 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s (enumeral)\n")
3277 : _("[%d] %s at ?\n"),
3279 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3283 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3286 for (i
= 0; i
< n_chosen
; i
+= 1)
3287 syms
[i
] = syms
[chosen
[i
]];
3292 /* Read and validate a set of numeric choices from the user in the
3293 range 0 .. N_CHOICES-1. Place the results in increasing
3294 order in CHOICES[0 .. N-1], and return N.
3296 The user types choices as a sequence of numbers on one line
3297 separated by blanks, encoding them as follows:
3299 + A choice of 0 means to cancel the selection, throwing an error.
3300 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3301 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3303 The user is not allowed to choose more than MAX_RESULTS values.
3305 ANNOTATION_SUFFIX, if present, is used to annotate the input
3306 prompts (for use with the -f switch). */
3309 get_selections (int *choices
, int n_choices
, int max_results
,
3310 int is_all_choice
, char *annotation_suffix
)
3315 int first_choice
= is_all_choice
? 2 : 1;
3317 prompt
= getenv ("PS2");
3321 printf_unfiltered (("%s "), prompt
);
3322 gdb_flush (gdb_stdout
);
3324 args
= command_line_input ((char *) NULL
, 0, annotation_suffix
);
3327 error_no_arg (_("one or more choice numbers"));
3331 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3332 order, as given in args. Choices are validated. */
3338 while (isspace (*args
))
3340 if (*args
== '\0' && n_chosen
== 0)
3341 error_no_arg (_("one or more choice numbers"));
3342 else if (*args
== '\0')
3345 choice
= strtol (args
, &args2
, 10);
3346 if (args
== args2
|| choice
< 0
3347 || choice
> n_choices
+ first_choice
- 1)
3348 error (_("Argument must be choice number"));
3352 error (_("cancelled"));
3354 if (choice
< first_choice
)
3356 n_chosen
= n_choices
;
3357 for (j
= 0; j
< n_choices
; j
+= 1)
3361 choice
-= first_choice
;
3363 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3367 if (j
< 0 || choice
!= choices
[j
])
3370 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3371 choices
[k
+ 1] = choices
[k
];
3372 choices
[j
+ 1] = choice
;
3377 if (n_chosen
> max_results
)
3378 error (_("Select no more than %d of the above"), max_results
);
3383 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3384 on the function identified by SYM and BLOCK, and taking NARGS
3385 arguments. Update *EXPP as needed to hold more space. */
3388 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3389 int oplen
, struct symbol
*sym
,
3390 struct block
*block
)
3392 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3393 symbol, -oplen for operator being replaced). */
3394 struct expression
*newexp
= (struct expression
*)
3395 xmalloc (sizeof (struct expression
)
3396 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3397 struct expression
*exp
= *expp
;
3399 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3400 newexp
->language_defn
= exp
->language_defn
;
3401 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3402 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3403 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3405 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3406 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3408 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3409 newexp
->elts
[pc
+ 4].block
= block
;
3410 newexp
->elts
[pc
+ 5].symbol
= sym
;
3416 /* Type-class predicates */
3418 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3422 numeric_type_p (struct type
*type
)
3428 switch (TYPE_CODE (type
))
3433 case TYPE_CODE_RANGE
:
3434 return (type
== TYPE_TARGET_TYPE (type
)
3435 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3442 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3445 integer_type_p (struct type
*type
)
3451 switch (TYPE_CODE (type
))
3455 case TYPE_CODE_RANGE
:
3456 return (type
== TYPE_TARGET_TYPE (type
)
3457 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3464 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3467 scalar_type_p (struct type
*type
)
3473 switch (TYPE_CODE (type
))
3476 case TYPE_CODE_RANGE
:
3477 case TYPE_CODE_ENUM
:
3486 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3489 discrete_type_p (struct type
*type
)
3495 switch (TYPE_CODE (type
))
3498 case TYPE_CODE_RANGE
:
3499 case TYPE_CODE_ENUM
:
3507 /* Returns non-zero if OP with operands in the vector ARGS could be
3508 a user-defined function. Errs on the side of pre-defined operators
3509 (i.e., result 0). */
3512 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3514 struct type
*type0
=
3515 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3516 struct type
*type1
=
3517 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3531 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3535 case BINOP_BITWISE_AND
:
3536 case BINOP_BITWISE_IOR
:
3537 case BINOP_BITWISE_XOR
:
3538 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3541 case BINOP_NOTEQUAL
:
3546 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3550 ((TYPE_CODE (type0
) != TYPE_CODE_ARRAY
3551 && (TYPE_CODE (type0
) != TYPE_CODE_PTR
3552 || TYPE_CODE (TYPE_TARGET_TYPE (type0
)) != TYPE_CODE_ARRAY
))
3553 || (TYPE_CODE (type1
) != TYPE_CODE_ARRAY
3554 && (TYPE_CODE (type1
) != TYPE_CODE_PTR
3555 || (TYPE_CODE (TYPE_TARGET_TYPE (type1
))
3556 != TYPE_CODE_ARRAY
))));
3559 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3563 case UNOP_LOGICAL_NOT
:
3565 return (!numeric_type_p (type0
));
3572 /* NOTE: In the following, we assume that a renaming type's name may
3573 have an ___XD suffix. It would be nice if this went away at some
3576 /* If TYPE encodes a renaming, returns the renaming suffix, which
3577 is XR for an object renaming, XRP for a procedure renaming, XRE for
3578 an exception renaming, and XRS for a subprogram renaming. Returns
3579 NULL if NAME encodes none of these. */
3582 ada_renaming_type (struct type
*type
)
3584 if (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_ENUM
)
3586 const char *name
= type_name_no_tag (type
);
3587 const char *suffix
= (name
== NULL
) ? NULL
: strstr (name
, "___XR");
3589 || (suffix
[5] != '\000' && strchr ("PES_", suffix
[5]) == NULL
))
3598 /* Return non-zero iff SYM encodes an object renaming. */
3601 ada_is_object_renaming (struct symbol
*sym
)
3603 const char *renaming_type
= ada_renaming_type (SYMBOL_TYPE (sym
));
3604 return renaming_type
!= NULL
3605 && (renaming_type
[2] == '\0' || renaming_type
[2] == '_');
3608 /* Assuming that SYM encodes a non-object renaming, returns the original
3609 name of the renamed entity. The name is good until the end of
3613 ada_simple_renamed_entity (struct symbol
*sym
)
3616 const char *raw_name
;
3620 type
= SYMBOL_TYPE (sym
);
3621 if (type
== NULL
|| TYPE_NFIELDS (type
) < 1)
3622 error (_("Improperly encoded renaming."));
3624 raw_name
= TYPE_FIELD_NAME (type
, 0);
3625 len
= (raw_name
== NULL
? 0 : strlen (raw_name
)) - 5;
3627 error (_("Improperly encoded renaming."));
3629 result
= xmalloc (len
+ 1);
3630 strncpy (result
, raw_name
, len
);
3631 result
[len
] = '\000';
3637 /* Evaluation: Function Calls */
3639 /* Return an lvalue containing the value VAL. This is the identity on
3640 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3641 on the stack, using and updating *SP as the stack pointer, and
3642 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3644 static struct value
*
3645 ensure_lval (struct value
*val
, CORE_ADDR
*sp
)
3647 if (! VALUE_LVAL (val
))
3649 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
3651 /* The following is taken from the structure-return code in
3652 call_function_by_hand. FIXME: Therefore, some refactoring seems
3654 if (INNER_THAN (1, 2))
3656 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3657 reserving sufficient space. */
3659 if (gdbarch_frame_align_p (current_gdbarch
))
3660 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3661 VALUE_ADDRESS (val
) = *sp
;
3665 /* Stack grows upward. Align the frame, allocate space, and
3666 then again, re-align the frame. */
3667 if (gdbarch_frame_align_p (current_gdbarch
))
3668 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3669 VALUE_ADDRESS (val
) = *sp
;
3671 if (gdbarch_frame_align_p (current_gdbarch
))
3672 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3675 write_memory (VALUE_ADDRESS (val
), value_contents_raw (val
), len
);
3681 /* Return the value ACTUAL, converted to be an appropriate value for a
3682 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3683 allocating any necessary descriptors (fat pointers), or copies of
3684 values not residing in memory, updating it as needed. */
3686 static struct value
*
3687 convert_actual (struct value
*actual
, struct type
*formal_type0
,
3690 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
3691 struct type
*formal_type
= ada_check_typedef (formal_type0
);
3692 struct type
*formal_target
=
3693 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3694 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
3695 struct type
*actual_target
=
3696 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
3697 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
3699 if (ada_is_array_descriptor_type (formal_target
)
3700 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
3701 return make_array_descriptor (formal_type
, actual
, sp
);
3702 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
)
3704 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
3705 && ada_is_array_descriptor_type (actual_target
))
3706 return desc_data (actual
);
3707 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
3709 if (VALUE_LVAL (actual
) != lval_memory
)
3712 actual_type
= ada_check_typedef (value_type (actual
));
3713 val
= allocate_value (actual_type
);
3714 memcpy ((char *) value_contents_raw (val
),
3715 (char *) value_contents (actual
),
3716 TYPE_LENGTH (actual_type
));
3717 actual
= ensure_lval (val
, sp
);
3719 return value_addr (actual
);
3722 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
3723 return ada_value_ind (actual
);
3729 /* Push a descriptor of type TYPE for array value ARR on the stack at
3730 *SP, updating *SP to reflect the new descriptor. Return either
3731 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3732 to-descriptor type rather than a descriptor type), a struct value *
3733 representing a pointer to this descriptor. */
3735 static struct value
*
3736 make_array_descriptor (struct type
*type
, struct value
*arr
, CORE_ADDR
*sp
)
3738 struct type
*bounds_type
= desc_bounds_type (type
);
3739 struct type
*desc_type
= desc_base_type (type
);
3740 struct value
*descriptor
= allocate_value (desc_type
);
3741 struct value
*bounds
= allocate_value (bounds_type
);
3744 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
))); i
> 0; i
-= 1)
3746 modify_general_field (value_contents_writeable (bounds
),
3747 value_as_long (ada_array_bound (arr
, i
, 0)),
3748 desc_bound_bitpos (bounds_type
, i
, 0),
3749 desc_bound_bitsize (bounds_type
, i
, 0));
3750 modify_general_field (value_contents_writeable (bounds
),
3751 value_as_long (ada_array_bound (arr
, i
, 1)),
3752 desc_bound_bitpos (bounds_type
, i
, 1),
3753 desc_bound_bitsize (bounds_type
, i
, 1));
3756 bounds
= ensure_lval (bounds
, sp
);
3758 modify_general_field (value_contents_writeable (descriptor
),
3759 VALUE_ADDRESS (ensure_lval (arr
, sp
)),
3760 fat_pntr_data_bitpos (desc_type
),
3761 fat_pntr_data_bitsize (desc_type
));
3763 modify_general_field (value_contents_writeable (descriptor
),
3764 VALUE_ADDRESS (bounds
),
3765 fat_pntr_bounds_bitpos (desc_type
),
3766 fat_pntr_bounds_bitsize (desc_type
));
3768 descriptor
= ensure_lval (descriptor
, sp
);
3770 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
3771 return value_addr (descriptor
);
3777 /* Assuming a dummy frame has been established on the target, perform any
3778 conversions needed for calling function FUNC on the NARGS actual
3779 parameters in ARGS, other than standard C conversions. Does
3780 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3781 does not match the number of arguments expected. Use *SP as a
3782 stack pointer for additional data that must be pushed, updating its
3786 ada_convert_actuals (struct value
*func
, int nargs
, struct value
*args
[],
3791 if (TYPE_NFIELDS (value_type (func
)) == 0
3792 || nargs
!= TYPE_NFIELDS (value_type (func
)))
3795 for (i
= 0; i
< nargs
; i
+= 1)
3797 convert_actual (args
[i
], TYPE_FIELD_TYPE (value_type (func
), i
), sp
);
3800 /* Dummy definitions for an experimental caching module that is not
3801 * used in the public sources. */
3804 lookup_cached_symbol (const char *name
, domain_enum
namespace,
3805 struct symbol
**sym
, struct block
**block
,
3806 struct symtab
**symtab
)
3812 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
3813 struct block
*block
, struct symtab
*symtab
)
3819 /* Return the result of a standard (literal, C-like) lookup of NAME in
3820 given DOMAIN, visible from lexical block BLOCK. */
3822 static struct symbol
*
3823 standard_lookup (const char *name
, const struct block
*block
,
3827 struct symtab
*symtab
;
3829 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
, NULL
))
3832 lookup_symbol_in_language (name
, block
, domain
, language_c
, 0, &symtab
);
3833 cache_symbol (name
, domain
, sym
, block_found
, symtab
);
3838 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3839 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3840 since they contend in overloading in the same way. */
3842 is_nonfunction (struct ada_symbol_info syms
[], int n
)
3846 for (i
= 0; i
< n
; i
+= 1)
3847 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
3848 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
3849 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
3855 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3856 struct types. Otherwise, they may not. */
3859 equiv_types (struct type
*type0
, struct type
*type1
)
3863 if (type0
== NULL
|| type1
== NULL
3864 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
3866 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
3867 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
3868 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
3869 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
3875 /* True iff SYM0 represents the same entity as SYM1, or one that is
3876 no more defined than that of SYM1. */
3879 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
3883 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
3884 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
3887 switch (SYMBOL_CLASS (sym0
))
3893 struct type
*type0
= SYMBOL_TYPE (sym0
);
3894 struct type
*type1
= SYMBOL_TYPE (sym1
);
3895 char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
3896 char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
3897 int len0
= strlen (name0
);
3899 TYPE_CODE (type0
) == TYPE_CODE (type1
)
3900 && (equiv_types (type0
, type1
)
3901 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
3902 && strncmp (name1
+ len0
, "___XV", 5) == 0));
3905 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
3906 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
3912 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3913 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3916 add_defn_to_vec (struct obstack
*obstackp
,
3918 struct block
*block
, struct symtab
*symtab
)
3922 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
3924 /* Do not try to complete stub types, as the debugger is probably
3925 already scanning all symbols matching a certain name at the
3926 time when this function is called. Trying to replace the stub
3927 type by its associated full type will cause us to restart a scan
3928 which may lead to an infinite recursion. Instead, the client
3929 collecting the matching symbols will end up collecting several
3930 matches, with at least one of them complete. It can then filter
3931 out the stub ones if needed. */
3933 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
3935 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
3937 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
3939 prevDefns
[i
].sym
= sym
;
3940 prevDefns
[i
].block
= block
;
3941 prevDefns
[i
].symtab
= symtab
;
3947 struct ada_symbol_info info
;
3951 info
.symtab
= symtab
;
3952 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
3956 /* Number of ada_symbol_info structures currently collected in
3957 current vector in *OBSTACKP. */
3960 num_defns_collected (struct obstack
*obstackp
)
3962 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
3965 /* Vector of ada_symbol_info structures currently collected in current
3966 vector in *OBSTACKP. If FINISH, close off the vector and return
3967 its final address. */
3969 static struct ada_symbol_info
*
3970 defns_collected (struct obstack
*obstackp
, int finish
)
3973 return obstack_finish (obstackp
);
3975 return (struct ada_symbol_info
*) obstack_base (obstackp
);
3978 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3979 Check the global symbols if GLOBAL, the static symbols if not.
3980 Do wild-card match if WILD. */
3982 static struct partial_symbol
*
3983 ada_lookup_partial_symbol (struct partial_symtab
*pst
, const char *name
,
3984 int global
, domain_enum
namespace, int wild
)
3986 struct partial_symbol
**start
;
3987 int name_len
= strlen (name
);
3988 int length
= (global
? pst
->n_global_syms
: pst
->n_static_syms
);
3997 pst
->objfile
->global_psymbols
.list
+ pst
->globals_offset
:
3998 pst
->objfile
->static_psymbols
.list
+ pst
->statics_offset
);
4002 for (i
= 0; i
< length
; i
+= 1)
4004 struct partial_symbol
*psym
= start
[i
];
4006 if (SYMBOL_DOMAIN (psym
) == namespace
4007 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (psym
)))
4021 int M
= (U
+ i
) >> 1;
4022 struct partial_symbol
*psym
= start
[M
];
4023 if (SYMBOL_LINKAGE_NAME (psym
)[0] < name
[0])
4025 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > name
[0])
4027 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), name
) < 0)
4038 struct partial_symbol
*psym
= start
[i
];
4040 if (SYMBOL_DOMAIN (psym
) == namespace)
4042 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
), name_len
);
4050 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
4064 int M
= (U
+ i
) >> 1;
4065 struct partial_symbol
*psym
= start
[M
];
4066 if (SYMBOL_LINKAGE_NAME (psym
)[0] < '_')
4068 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > '_')
4070 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), "_ada_") < 0)
4081 struct partial_symbol
*psym
= start
[i
];
4083 if (SYMBOL_DOMAIN (psym
) == namespace)
4087 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym
)[0];
4090 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym
), 5);
4092 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
) + 5,
4102 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
4112 /* Find a symbol table containing symbol SYM or NULL if none. */
4114 static struct symtab
*
4115 symtab_for_sym (struct symbol
*sym
)
4118 struct objfile
*objfile
;
4120 struct symbol
*tmp_sym
;
4121 struct dict_iterator iter
;
4124 ALL_SYMTABS (objfile
, s
)
4126 switch (SYMBOL_CLASS (sym
))
4134 case LOC_CONST_BYTES
:
4135 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
4136 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
4138 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
4139 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
4145 switch (SYMBOL_CLASS (sym
))
4151 case LOC_REGPARM_ADDR
:
4156 case LOC_BASEREG_ARG
:
4158 case LOC_COMPUTED_ARG
:
4159 for (j
= FIRST_LOCAL_BLOCK
;
4160 j
< BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s
)); j
+= 1)
4162 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), j
);
4163 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
4174 /* Return a minimal symbol matching NAME according to Ada decoding
4175 rules. Returns NULL if there is no such minimal symbol. Names
4176 prefixed with "standard__" are handled specially: "standard__" is
4177 first stripped off, and only static and global symbols are searched. */
4179 struct minimal_symbol
*
4180 ada_lookup_simple_minsym (const char *name
)
4182 struct objfile
*objfile
;
4183 struct minimal_symbol
*msymbol
;
4186 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4188 name
+= sizeof ("standard__") - 1;
4192 wild_match
= (strstr (name
, "__") == NULL
);
4194 ALL_MSYMBOLS (objfile
, msymbol
)
4196 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
)
4197 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4204 /* For all subprograms that statically enclose the subprogram of the
4205 selected frame, add symbols matching identifier NAME in DOMAIN
4206 and their blocks to the list of data in OBSTACKP, as for
4207 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4211 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4212 const char *name
, domain_enum
namespace,
4217 /* FIXME: The next two routines belong in symtab.c */
4220 restore_language (void *lang
)
4222 set_language ((enum language
) lang
);
4225 /* As for lookup_symbol, but performed as if the current language
4229 lookup_symbol_in_language (const char *name
, const struct block
*block
,
4230 domain_enum domain
, enum language lang
,
4231 int *is_a_field_of_this
, struct symtab
**symtab
)
4233 struct cleanup
*old_chain
4234 = make_cleanup (restore_language
, (void *) current_language
->la_language
);
4235 struct symbol
*result
;
4236 set_language (lang
);
4237 result
= lookup_symbol (name
, block
, domain
, is_a_field_of_this
, symtab
);
4238 do_cleanups (old_chain
);
4242 /* True if TYPE is definitely an artificial type supplied to a symbol
4243 for which no debugging information was given in the symbol file. */
4246 is_nondebugging_type (struct type
*type
)
4248 char *name
= ada_type_name (type
);
4249 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4252 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4253 duplicate other symbols in the list (The only case I know of where
4254 this happens is when object files containing stabs-in-ecoff are
4255 linked with files containing ordinary ecoff debugging symbols (or no
4256 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4257 Returns the number of items in the modified list. */
4260 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4267 if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4268 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4269 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4271 for (j
= 0; j
< nsyms
; j
+= 1)
4274 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4275 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4276 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4277 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4278 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4279 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4282 for (k
= i
+ 1; k
< nsyms
; k
+= 1)
4283 syms
[k
- 1] = syms
[k
];
4296 /* Given a type that corresponds to a renaming entity, use the type name
4297 to extract the scope (package name or function name, fully qualified,
4298 and following the GNAT encoding convention) where this renaming has been
4299 defined. The string returned needs to be deallocated after use. */
4302 xget_renaming_scope (struct type
*renaming_type
)
4304 /* The renaming types adhere to the following convention:
4305 <scope>__<rename>___<XR extension>.
4306 So, to extract the scope, we search for the "___XR" extension,
4307 and then backtrack until we find the first "__". */
4309 const char *name
= type_name_no_tag (renaming_type
);
4310 char *suffix
= strstr (name
, "___XR");
4315 /* Now, backtrack a bit until we find the first "__". Start looking
4316 at suffix - 3, as the <rename> part is at least one character long. */
4318 for (last
= suffix
- 3; last
> name
; last
--)
4319 if (last
[0] == '_' && last
[1] == '_')
4322 /* Make a copy of scope and return it. */
4324 scope_len
= last
- name
;
4325 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4327 strncpy (scope
, name
, scope_len
);
4328 scope
[scope_len
] = '\0';
4333 /* Return nonzero if NAME corresponds to a package name. */
4336 is_package_name (const char *name
)
4338 /* Here, We take advantage of the fact that no symbols are generated
4339 for packages, while symbols are generated for each function.
4340 So the condition for NAME represent a package becomes equivalent
4341 to NAME not existing in our list of symbols. There is only one
4342 small complication with library-level functions (see below). */
4346 /* If it is a function that has not been defined at library level,
4347 then we should be able to look it up in the symbols. */
4348 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4351 /* Library-level function names start with "_ada_". See if function
4352 "_ada_" followed by NAME can be found. */
4354 /* Do a quick check that NAME does not contain "__", since library-level
4355 functions names cannot contain "__" in them. */
4356 if (strstr (name
, "__") != NULL
)
4359 fun_name
= xstrprintf ("_ada_%s", name
);
4361 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4364 /* Return nonzero if SYM corresponds to a renaming entity that is
4365 visible from FUNCTION_NAME. */
4368 renaming_is_visible (const struct symbol
*sym
, char *function_name
)
4370 char *scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4372 make_cleanup (xfree
, scope
);
4374 /* If the rename has been defined in a package, then it is visible. */
4375 if (is_package_name (scope
))
4378 /* Check that the rename is in the current function scope by checking
4379 that its name starts with SCOPE. */
4381 /* If the function name starts with "_ada_", it means that it is
4382 a library-level function. Strip this prefix before doing the
4383 comparison, as the encoding for the renaming does not contain
4385 if (strncmp (function_name
, "_ada_", 5) == 0)
4388 return (strncmp (function_name
, scope
, strlen (scope
)) == 0);
4391 /* Iterates over the SYMS list and remove any entry that corresponds to
4392 a renaming entity that is not visible from the function associated
4396 GNAT emits a type following a specified encoding for each renaming
4397 entity. Unfortunately, STABS currently does not support the definition
4398 of types that are local to a given lexical block, so all renamings types
4399 are emitted at library level. As a consequence, if an application
4400 contains two renaming entities using the same name, and a user tries to
4401 print the value of one of these entities, the result of the ada symbol
4402 lookup will also contain the wrong renaming type.
4404 This function partially covers for this limitation by attempting to
4405 remove from the SYMS list renaming symbols that should be visible
4406 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4407 method with the current information available. The implementation
4408 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4410 - When the user tries to print a rename in a function while there
4411 is another rename entity defined in a package: Normally, the
4412 rename in the function has precedence over the rename in the
4413 package, so the latter should be removed from the list. This is
4414 currently not the case.
4416 - This function will incorrectly remove valid renames if
4417 the CURRENT_BLOCK corresponds to a function which symbol name
4418 has been changed by an "Export" pragma. As a consequence,
4419 the user will be unable to print such rename entities. */
4422 remove_out_of_scope_renamings (struct ada_symbol_info
*syms
,
4423 int nsyms
, struct block
*current_block
)
4425 struct symbol
*current_function
;
4426 char *current_function_name
;
4429 /* Extract the function name associated to CURRENT_BLOCK.
4430 Abort if unable to do so. */
4432 if (current_block
== NULL
)
4435 current_function
= block_function (current_block
);
4436 if (current_function
== NULL
)
4439 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4440 if (current_function_name
== NULL
)
4443 /* Check each of the symbols, and remove it from the list if it is
4444 a type corresponding to a renaming that is out of the scope of
4445 the current block. */
4450 if (ada_is_object_renaming (syms
[i
].sym
)
4451 && !renaming_is_visible (syms
[i
].sym
, current_function_name
))
4454 for (j
= i
+ 1; j
< nsyms
; j
++)
4455 syms
[j
- 1] = syms
[j
];
4465 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4466 scope and in global scopes, returning the number of matches. Sets
4467 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4468 indicating the symbols found and the blocks and symbol tables (if
4469 any) in which they were found. This vector are transient---good only to
4470 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4471 symbol match within the nest of blocks whose innermost member is BLOCK0,
4472 is the one match returned (no other matches in that or
4473 enclosing blocks is returned). If there are any matches in or
4474 surrounding BLOCK0, then these alone are returned. Otherwise, the
4475 search extends to global and file-scope (static) symbol tables.
4476 Names prefixed with "standard__" are handled specially: "standard__"
4477 is first stripped off, and only static and global symbols are searched. */
4480 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
4481 domain_enum
namespace,
4482 struct ada_symbol_info
**results
)
4486 struct partial_symtab
*ps
;
4487 struct blockvector
*bv
;
4488 struct objfile
*objfile
;
4489 struct block
*block
;
4491 struct minimal_symbol
*msymbol
;
4497 obstack_free (&symbol_list_obstack
, NULL
);
4498 obstack_init (&symbol_list_obstack
);
4502 /* Search specified block and its superiors. */
4504 wild_match
= (strstr (name0
, "__") == NULL
);
4506 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
4507 needed, but adding const will
4508 have a cascade effect. */
4509 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
4513 name
= name0
+ sizeof ("standard__") - 1;
4517 while (block
!= NULL
)
4520 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4521 namespace, NULL
, NULL
, wild_match
);
4523 /* If we found a non-function match, assume that's the one. */
4524 if (is_nonfunction (defns_collected (&symbol_list_obstack
, 0),
4525 num_defns_collected (&symbol_list_obstack
)))
4528 block
= BLOCK_SUPERBLOCK (block
);
4531 /* If no luck so far, try to find NAME as a local symbol in some lexically
4532 enclosing subprogram. */
4533 if (num_defns_collected (&symbol_list_obstack
) == 0 && block_depth
> 2)
4534 add_symbols_from_enclosing_procs (&symbol_list_obstack
,
4535 name
, namespace, wild_match
);
4537 /* If we found ANY matches among non-global symbols, we're done. */
4539 if (num_defns_collected (&symbol_list_obstack
) > 0)
4543 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
, &s
))
4546 add_defn_to_vec (&symbol_list_obstack
, sym
, block
, s
);
4550 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4551 tables, and psymtab's. */
4553 ALL_SYMTABS (objfile
, s
)
4558 bv
= BLOCKVECTOR (s
);
4559 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4560 ada_add_block_symbols (&symbol_list_obstack
, block
, name
, namespace,
4561 objfile
, s
, wild_match
);
4564 if (namespace == VAR_DOMAIN
)
4566 ALL_MSYMBOLS (objfile
, msymbol
)
4568 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
))
4570 switch (MSYMBOL_TYPE (msymbol
))
4572 case mst_solib_trampoline
:
4575 s
= find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol
));
4578 int ndefns0
= num_defns_collected (&symbol_list_obstack
);
4580 bv
= BLOCKVECTOR (s
);
4581 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4582 ada_add_block_symbols (&symbol_list_obstack
, block
,
4583 SYMBOL_LINKAGE_NAME (msymbol
),
4584 namespace, objfile
, s
, wild_match
);
4586 if (num_defns_collected (&symbol_list_obstack
) == ndefns0
)
4588 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4589 ada_add_block_symbols (&symbol_list_obstack
, block
,
4590 SYMBOL_LINKAGE_NAME (msymbol
),
4591 namespace, objfile
, s
,
4600 ALL_PSYMTABS (objfile
, ps
)
4604 && ada_lookup_partial_symbol (ps
, name
, 1, namespace, wild_match
))
4606 s
= PSYMTAB_TO_SYMTAB (ps
);
4609 bv
= BLOCKVECTOR (s
);
4610 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4611 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4612 namespace, objfile
, s
, wild_match
);
4616 /* Now add symbols from all per-file blocks if we've gotten no hits
4617 (Not strictly correct, but perhaps better than an error).
4618 Do the symtabs first, then check the psymtabs. */
4620 if (num_defns_collected (&symbol_list_obstack
) == 0)
4623 ALL_SYMTABS (objfile
, s
)
4628 bv
= BLOCKVECTOR (s
);
4629 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4630 ada_add_block_symbols (&symbol_list_obstack
, block
, name
, namespace,
4631 objfile
, s
, wild_match
);
4634 ALL_PSYMTABS (objfile
, ps
)
4638 && ada_lookup_partial_symbol (ps
, name
, 0, namespace, wild_match
))
4640 s
= PSYMTAB_TO_SYMTAB (ps
);
4641 bv
= BLOCKVECTOR (s
);
4644 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4645 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4646 namespace, objfile
, s
, wild_match
);
4652 ndefns
= num_defns_collected (&symbol_list_obstack
);
4653 *results
= defns_collected (&symbol_list_obstack
, 1);
4655 ndefns
= remove_extra_symbols (*results
, ndefns
);
4658 cache_symbol (name0
, namespace, NULL
, NULL
, NULL
);
4660 if (ndefns
== 1 && cacheIfUnique
)
4661 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
,
4662 (*results
)[0].symtab
);
4664 ndefns
= remove_out_of_scope_renamings (*results
, ndefns
,
4665 (struct block
*) block0
);
4670 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4671 scope and in global scopes, or NULL if none. NAME is folded and
4672 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4673 choosing the first symbol if there are multiple choices.
4674 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4675 table in which the symbol was found (in both cases, these
4676 assignments occur only if the pointers are non-null). */
4679 ada_lookup_symbol (const char *name
, const struct block
*block0
,
4680 domain_enum
namespace, int *is_a_field_of_this
,
4681 struct symtab
**symtab
)
4683 struct ada_symbol_info
*candidates
;
4686 n_candidates
= ada_lookup_symbol_list (ada_encode (ada_fold_name (name
)),
4687 block0
, namespace, &candidates
);
4689 if (n_candidates
== 0)
4692 if (is_a_field_of_this
!= NULL
)
4693 *is_a_field_of_this
= 0;
4697 *symtab
= candidates
[0].symtab
;
4698 if (*symtab
== NULL
&& candidates
[0].block
!= NULL
)
4700 struct objfile
*objfile
;
4703 struct blockvector
*bv
;
4705 /* Search the list of symtabs for one which contains the
4706 address of the start of this block. */
4707 ALL_SYMTABS (objfile
, s
)
4709 bv
= BLOCKVECTOR (s
);
4710 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4711 if (BLOCK_START (b
) <= BLOCK_START (candidates
[0].block
)
4712 && BLOCK_END (b
) > BLOCK_START (candidates
[0].block
))
4715 return fixup_symbol_section (candidates
[0].sym
, objfile
);
4718 /* FIXME: brobecker/2004-11-12: I think that we should never
4719 reach this point. I don't see a reason why we would not
4720 find a symtab for a given block, so I suggest raising an
4721 internal_error exception here. Otherwise, we end up
4722 returning a symbol but no symtab, which certain parts of
4723 the code that rely (indirectly) on this function do not
4724 expect, eventually causing a SEGV. */
4725 return fixup_symbol_section (candidates
[0].sym
, NULL
);
4728 return candidates
[0].sym
;
4731 static struct symbol
*
4732 ada_lookup_symbol_nonlocal (const char *name
,
4733 const char *linkage_name
,
4734 const struct block
*block
,
4735 const domain_enum domain
, struct symtab
**symtab
)
4737 if (linkage_name
== NULL
)
4738 linkage_name
= name
;
4739 return ada_lookup_symbol (linkage_name
, block_static_block (block
), domain
,
4744 /* True iff STR is a possible encoded suffix of a normal Ada name
4745 that is to be ignored for matching purposes. Suffixes of parallel
4746 names (e.g., XVE) are not included here. Currently, the possible suffixes
4747 are given by either of the regular expression:
4749 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4751 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4752 _E[0-9]+[bs]$ [protected object entry suffixes]
4753 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4757 is_name_suffix (const char *str
)
4760 const char *matching
;
4761 const int len
= strlen (str
);
4763 /* (__[0-9]+)?\.[0-9]+ */
4765 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
4768 while (isdigit (matching
[0]))
4770 if (matching
[0] == '\0')
4774 if (matching
[0] == '.' || matching
[0] == '$')
4777 while (isdigit (matching
[0]))
4779 if (matching
[0] == '\0')
4784 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
4787 while (isdigit (matching
[0]))
4789 if (matching
[0] == '\0')
4794 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4795 with a N at the end. Unfortunately, the compiler uses the same
4796 convention for other internal types it creates. So treating
4797 all entity names that end with an "N" as a name suffix causes
4798 some regressions. For instance, consider the case of an enumerated
4799 type. To support the 'Image attribute, it creates an array whose
4801 Having a single character like this as a suffix carrying some
4802 information is a bit risky. Perhaps we should change the encoding
4803 to be something like "_N" instead. In the meantime, do not do
4804 the following check. */
4805 /* Protected Object Subprograms */
4806 if (len
== 1 && str
[0] == 'N')
4811 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
4814 while (isdigit (matching
[0]))
4816 if ((matching
[0] == 'b' || matching
[0] == 's')
4817 && matching
[1] == '\0')
4821 /* ??? We should not modify STR directly, as we are doing below. This
4822 is fine in this case, but may become problematic later if we find
4823 that this alternative did not work, and want to try matching
4824 another one from the begining of STR. Since we modified it, we
4825 won't be able to find the begining of the string anymore! */
4829 while (str
[0] != '_' && str
[0] != '\0')
4831 if (str
[0] != 'n' && str
[0] != 'b')
4836 if (str
[0] == '\000')
4840 if (str
[1] != '_' || str
[2] == '\000')
4844 if (strcmp (str
+ 3, "JM") == 0)
4846 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4847 the LJM suffix in favor of the JM one. But we will
4848 still accept LJM as a valid suffix for a reasonable
4849 amount of time, just to allow ourselves to debug programs
4850 compiled using an older version of GNAT. */
4851 if (strcmp (str
+ 3, "LJM") == 0)
4855 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
4856 || str
[4] == 'U' || str
[4] == 'P')
4858 if (str
[4] == 'R' && str
[5] != 'T')
4862 if (!isdigit (str
[2]))
4864 for (k
= 3; str
[k
] != '\0'; k
+= 1)
4865 if (!isdigit (str
[k
]) && str
[k
] != '_')
4869 if (str
[0] == '$' && isdigit (str
[1]))
4871 for (k
= 2; str
[k
] != '\0'; k
+= 1)
4872 if (!isdigit (str
[k
]) && str
[k
] != '_')
4879 /* Return nonzero if the given string starts with a dot ('.')
4880 followed by zero or more digits.
4882 Note: brobecker/2003-11-10: A forward declaration has not been
4883 added at the begining of this file yet, because this function
4884 is only used to work around a problem found during wild matching
4885 when trying to match minimal symbol names against symbol names
4886 obtained from dwarf-2 data. This function is therefore currently
4887 only used in wild_match() and is likely to be deleted when the
4888 problem in dwarf-2 is fixed. */
4891 is_dot_digits_suffix (const char *str
)
4897 while (isdigit (str
[0]))
4899 return (str
[0] == '\0');
4902 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4903 Certain symbols appear at first to match, except that they turn out
4904 not to follow the Ada encoding and hence should not be used as a wild
4905 match of a given pattern. */
4908 is_valid_name_for_wild_match (const char *name0
)
4910 const char *decoded_name
= ada_decode (name0
);
4913 for (i
=0; decoded_name
[i
] != '\0'; i
++)
4914 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
4920 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4921 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4922 informational suffixes of NAME (i.e., for which is_name_suffix is
4926 wild_match (const char *patn0
, int patn_len
, const char *name0
)
4932 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4933 stored in the symbol table for nested function names is sometimes
4934 different from the name of the associated entity stored in
4935 the dwarf-2 data: This is the case for nested subprograms, where
4936 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4937 while the symbol name from the dwarf-2 data does not.
4939 Although the DWARF-2 standard documents that entity names stored
4940 in the dwarf-2 data should be identical to the name as seen in
4941 the source code, GNAT takes a different approach as we already use
4942 a special encoding mechanism to convey the information so that
4943 a C debugger can still use the information generated to debug
4944 Ada programs. A corollary is that the symbol names in the dwarf-2
4945 data should match the names found in the symbol table. I therefore
4946 consider this issue as a compiler defect.
4948 Until the compiler is properly fixed, we work-around the problem
4949 by ignoring such suffixes during the match. We do so by making
4950 a copy of PATN0 and NAME0, and then by stripping such a suffix
4951 if present. We then perform the match on the resulting strings. */
4954 name_len
= strlen (name0
);
4956 name
= (char *) alloca ((name_len
+ 1) * sizeof (char));
4957 strcpy (name
, name0
);
4958 dot
= strrchr (name
, '.');
4959 if (dot
!= NULL
&& is_dot_digits_suffix (dot
))
4962 patn
= (char *) alloca ((patn_len
+ 1) * sizeof (char));
4963 strncpy (patn
, patn0
, patn_len
);
4964 patn
[patn_len
] = '\0';
4965 dot
= strrchr (patn
, '.');
4966 if (dot
!= NULL
&& is_dot_digits_suffix (dot
))
4969 patn_len
= dot
- patn
;
4973 /* Now perform the wild match. */
4975 name_len
= strlen (name
);
4976 if (name_len
>= patn_len
+ 5 && strncmp (name
, "_ada_", 5) == 0
4977 && strncmp (patn
, name
+ 5, patn_len
) == 0
4978 && is_name_suffix (name
+ patn_len
+ 5))
4981 while (name_len
>= patn_len
)
4983 if (strncmp (patn
, name
, patn_len
) == 0
4984 && is_name_suffix (name
+ patn_len
))
4985 return (is_valid_name_for_wild_match (name0
));
4992 && name
[0] != '.' && (name
[0] != '_' || name
[1] != '_'));
4997 if (!islower (name
[2]))
5004 if (!islower (name
[1]))
5015 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5016 vector *defn_symbols, updating the list of symbols in OBSTACKP
5017 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5018 OBJFILE is the section containing BLOCK.
5019 SYMTAB is recorded with each symbol added. */
5022 ada_add_block_symbols (struct obstack
*obstackp
,
5023 struct block
*block
, const char *name
,
5024 domain_enum domain
, struct objfile
*objfile
,
5025 struct symtab
*symtab
, int wild
)
5027 struct dict_iterator iter
;
5028 int name_len
= strlen (name
);
5029 /* A matching argument symbol, if any. */
5030 struct symbol
*arg_sym
;
5031 /* Set true when we find a matching non-argument symbol. */
5040 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5042 if (SYMBOL_DOMAIN (sym
) == domain
5043 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (sym
)))
5045 switch (SYMBOL_CLASS (sym
))
5051 case LOC_REGPARM_ADDR
:
5052 case LOC_BASEREG_ARG
:
5053 case LOC_COMPUTED_ARG
:
5056 case LOC_UNRESOLVED
:
5060 add_defn_to_vec (obstackp
,
5061 fixup_symbol_section (sym
, objfile
),
5070 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5072 if (SYMBOL_DOMAIN (sym
) == domain
)
5074 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
), name_len
);
5076 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
))
5078 switch (SYMBOL_CLASS (sym
))
5084 case LOC_REGPARM_ADDR
:
5085 case LOC_BASEREG_ARG
:
5086 case LOC_COMPUTED_ARG
:
5089 case LOC_UNRESOLVED
:
5093 add_defn_to_vec (obstackp
,
5094 fixup_symbol_section (sym
, objfile
),
5103 if (!found_sym
&& arg_sym
!= NULL
)
5105 add_defn_to_vec (obstackp
,
5106 fixup_symbol_section (arg_sym
, objfile
),
5115 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5117 if (SYMBOL_DOMAIN (sym
) == domain
)
5121 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
5124 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
5126 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
5131 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
5133 switch (SYMBOL_CLASS (sym
))
5139 case LOC_REGPARM_ADDR
:
5140 case LOC_BASEREG_ARG
:
5141 case LOC_COMPUTED_ARG
:
5144 case LOC_UNRESOLVED
:
5148 add_defn_to_vec (obstackp
,
5149 fixup_symbol_section (sym
, objfile
),
5157 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5158 They aren't parameters, right? */
5159 if (!found_sym
&& arg_sym
!= NULL
)
5161 add_defn_to_vec (obstackp
,
5162 fixup_symbol_section (arg_sym
, objfile
),
5170 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5171 to be invisible to users. */
5174 ada_is_ignored_field (struct type
*type
, int field_num
)
5176 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
5180 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5181 return (name
== NULL
5182 || (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0));
5186 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5187 pointer or reference type whose ultimate target has a tag field. */
5190 ada_is_tagged_type (struct type
*type
, int refok
)
5192 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
5195 /* True iff TYPE represents the type of X'Tag */
5198 ada_is_tag_type (struct type
*type
)
5200 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
5204 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
5205 return (name
!= NULL
5206 && strcmp (name
, "ada__tags__dispatch_table") == 0);
5210 /* The type of the tag on VAL. */
5213 ada_tag_type (struct value
*val
)
5215 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
5218 /* The value of the tag on VAL. */
5221 ada_value_tag (struct value
*val
)
5223 return ada_value_struct_elt (val
, "_tag", 0);
5226 /* The value of the tag on the object of type TYPE whose contents are
5227 saved at VALADDR, if it is non-null, or is at memory address
5230 static struct value
*
5231 value_tag_from_contents_and_address (struct type
*type
,
5232 const gdb_byte
*valaddr
,
5235 int tag_byte_offset
, dummy1
, dummy2
;
5236 struct type
*tag_type
;
5237 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
5240 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
5242 : valaddr
+ tag_byte_offset
);
5243 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
5245 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
5250 static struct type
*
5251 type_from_tag (struct value
*tag
)
5253 const char *type_name
= ada_tag_name (tag
);
5254 if (type_name
!= NULL
)
5255 return ada_find_any_type (ada_encode (type_name
));
5266 static int ada_tag_name_1 (void *);
5267 static int ada_tag_name_2 (struct tag_args
*);
5269 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5270 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5271 The value stored in ARGS->name is valid until the next call to
5275 ada_tag_name_1 (void *args0
)
5277 struct tag_args
*args
= (struct tag_args
*) args0
;
5278 static char name
[1024];
5282 val
= ada_value_struct_elt (args
->tag
, "tsd", 1);
5284 return ada_tag_name_2 (args
);
5285 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5288 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5289 for (p
= name
; *p
!= '\0'; p
+= 1)
5296 /* Utility function for ada_tag_name_1 that tries the second
5297 representation for the dispatch table (in which there is no
5298 explicit 'tsd' field in the referent of the tag pointer, and instead
5299 the tsd pointer is stored just before the dispatch table. */
5302 ada_tag_name_2 (struct tag_args
*args
)
5304 struct type
*info_type
;
5305 static char name
[1024];
5307 struct value
*val
, *valp
;
5310 info_type
= ada_find_any_type ("ada__tags__type_specific_data");
5311 if (info_type
== NULL
)
5313 info_type
= lookup_pointer_type (lookup_pointer_type (info_type
));
5314 valp
= value_cast (info_type
, args
->tag
);
5317 val
= value_ind (value_add (valp
, value_from_longest (builtin_type_int
, -1)));
5320 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5323 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5324 for (p
= name
; *p
!= '\0'; p
+= 1)
5331 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5335 ada_tag_name (struct value
*tag
)
5337 struct tag_args args
;
5338 if (!ada_is_tag_type (value_type (tag
)))
5342 catch_errors (ada_tag_name_1
, &args
, NULL
, RETURN_MASK_ALL
);
5346 /* The parent type of TYPE, or NULL if none. */
5349 ada_parent_type (struct type
*type
)
5353 type
= ada_check_typedef (type
);
5355 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
5358 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5359 if (ada_is_parent_field (type
, i
))
5360 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5365 /* True iff field number FIELD_NUM of structure type TYPE contains the
5366 parent-type (inherited) fields of a derived type. Assumes TYPE is
5367 a structure type with at least FIELD_NUM+1 fields. */
5370 ada_is_parent_field (struct type
*type
, int field_num
)
5372 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
5373 return (name
!= NULL
5374 && (strncmp (name
, "PARENT", 6) == 0
5375 || strncmp (name
, "_parent", 7) == 0));
5378 /* True iff field number FIELD_NUM of structure type TYPE is a
5379 transparent wrapper field (which should be silently traversed when doing
5380 field selection and flattened when printing). Assumes TYPE is a
5381 structure type with at least FIELD_NUM+1 fields. Such fields are always
5385 ada_is_wrapper_field (struct type
*type
, int field_num
)
5387 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5388 return (name
!= NULL
5389 && (strncmp (name
, "PARENT", 6) == 0
5390 || strcmp (name
, "REP") == 0
5391 || strncmp (name
, "_parent", 7) == 0
5392 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
5395 /* True iff field number FIELD_NUM of structure or union type TYPE
5396 is a variant wrapper. Assumes TYPE is a structure type with at least
5397 FIELD_NUM+1 fields. */
5400 ada_is_variant_part (struct type
*type
, int field_num
)
5402 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
5403 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
5404 || (is_dynamic_field (type
, field_num
)
5405 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
5406 == TYPE_CODE_UNION
)));
5409 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5410 whose discriminants are contained in the record type OUTER_TYPE,
5411 returns the type of the controlling discriminant for the variant. */
5414 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
5416 char *name
= ada_variant_discrim_name (var_type
);
5418 ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
5420 return builtin_type_int
;
5425 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5426 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5427 represents a 'when others' clause; otherwise 0. */
5430 ada_is_others_clause (struct type
*type
, int field_num
)
5432 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5433 return (name
!= NULL
&& name
[0] == 'O');
5436 /* Assuming that TYPE0 is the type of the variant part of a record,
5437 returns the name of the discriminant controlling the variant.
5438 The value is valid until the next call to ada_variant_discrim_name. */
5441 ada_variant_discrim_name (struct type
*type0
)
5443 static char *result
= NULL
;
5444 static size_t result_len
= 0;
5447 const char *discrim_end
;
5448 const char *discrim_start
;
5450 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
5451 type
= TYPE_TARGET_TYPE (type0
);
5455 name
= ada_type_name (type
);
5457 if (name
== NULL
|| name
[0] == '\000')
5460 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
5463 if (strncmp (discrim_end
, "___XVN", 6) == 0)
5466 if (discrim_end
== name
)
5469 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
5472 if (discrim_start
== name
+ 1)
5474 if ((discrim_start
> name
+ 3
5475 && strncmp (discrim_start
- 3, "___", 3) == 0)
5476 || discrim_start
[-1] == '.')
5480 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
5481 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
5482 result
[discrim_end
- discrim_start
] = '\0';
5486 /* Scan STR for a subtype-encoded number, beginning at position K.
5487 Put the position of the character just past the number scanned in
5488 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5489 Return 1 if there was a valid number at the given position, and 0
5490 otherwise. A "subtype-encoded" number consists of the absolute value
5491 in decimal, followed by the letter 'm' to indicate a negative number.
5492 Assumes 0m does not occur. */
5495 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
5499 if (!isdigit (str
[k
]))
5502 /* Do it the hard way so as not to make any assumption about
5503 the relationship of unsigned long (%lu scan format code) and
5506 while (isdigit (str
[k
]))
5508 RU
= RU
* 10 + (str
[k
] - '0');
5515 *R
= (-(LONGEST
) (RU
- 1)) - 1;
5521 /* NOTE on the above: Technically, C does not say what the results of
5522 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5523 number representable as a LONGEST (although either would probably work
5524 in most implementations). When RU>0, the locution in the then branch
5525 above is always equivalent to the negative of RU. */
5532 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5533 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5534 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5537 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
5539 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5552 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
5561 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
5562 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
5564 if (val
>= L
&& val
<= U
)
5576 /* FIXME: Lots of redundancy below. Try to consolidate. */
5578 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5579 ARG_TYPE, extract and return the value of one of its (non-static)
5580 fields. FIELDNO says which field. Differs from value_primitive_field
5581 only in that it can handle packed values of arbitrary type. */
5583 static struct value
*
5584 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
5585 struct type
*arg_type
)
5589 arg_type
= ada_check_typedef (arg_type
);
5590 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
5592 /* Handle packed fields. */
5594 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
5596 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
5597 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
5599 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
5600 offset
+ bit_pos
/ 8,
5601 bit_pos
% 8, bit_size
, type
);
5604 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
5607 /* Find field with name NAME in object of type TYPE. If found,
5608 set the following for each argument that is non-null:
5609 - *FIELD_TYPE_P to the field's type;
5610 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5611 an object of that type;
5612 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5613 - *BIT_SIZE_P to its size in bits if the field is packed, and
5615 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5616 fields up to but not including the desired field, or by the total
5617 number of fields if not found. A NULL value of NAME never
5618 matches; the function just counts visible fields in this case.
5620 Returns 1 if found, 0 otherwise. */
5623 find_struct_field (char *name
, struct type
*type
, int offset
,
5624 struct type
**field_type_p
,
5625 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
5630 type
= ada_check_typedef (type
);
5632 if (field_type_p
!= NULL
)
5633 *field_type_p
= NULL
;
5634 if (byte_offset_p
!= NULL
)
5636 if (bit_offset_p
!= NULL
)
5638 if (bit_size_p
!= NULL
)
5641 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5643 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
5644 int fld_offset
= offset
+ bit_pos
/ 8;
5645 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5647 if (t_field_name
== NULL
)
5650 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
5652 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
5653 if (field_type_p
!= NULL
)
5654 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
5655 if (byte_offset_p
!= NULL
)
5656 *byte_offset_p
= fld_offset
;
5657 if (bit_offset_p
!= NULL
)
5658 *bit_offset_p
= bit_pos
% 8;
5659 if (bit_size_p
!= NULL
)
5660 *bit_size_p
= bit_size
;
5663 else if (ada_is_wrapper_field (type
, i
))
5665 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
5666 field_type_p
, byte_offset_p
, bit_offset_p
,
5667 bit_size_p
, index_p
))
5670 else if (ada_is_variant_part (type
, i
))
5672 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5675 struct type
*field_type
5676 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5678 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
5680 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
5682 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5683 field_type_p
, byte_offset_p
,
5684 bit_offset_p
, bit_size_p
, index_p
))
5688 else if (index_p
!= NULL
)
5694 /* Number of user-visible fields in record type TYPE. */
5697 num_visible_fields (struct type
*type
)
5701 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
5705 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5706 and search in it assuming it has (class) type TYPE.
5707 If found, return value, else return NULL.
5709 Searches recursively through wrapper fields (e.g., '_parent'). */
5711 static struct value
*
5712 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
5716 type
= ada_check_typedef (type
);
5718 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5720 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5722 if (t_field_name
== NULL
)
5725 else if (field_name_match (t_field_name
, name
))
5726 return ada_value_primitive_field (arg
, offset
, i
, type
);
5728 else if (ada_is_wrapper_field (type
, i
))
5730 struct value
*v
= /* Do not let indent join lines here. */
5731 ada_search_struct_field (name
, arg
,
5732 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
5733 TYPE_FIELD_TYPE (type
, i
));
5738 else if (ada_is_variant_part (type
, i
))
5740 /* PNH: Do we ever get here? See find_struct_field. */
5742 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5743 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
5745 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
5747 struct value
*v
= ada_search_struct_field
/* Force line break. */
5749 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5750 TYPE_FIELD_TYPE (field_type
, j
));
5759 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
5760 int, struct type
*);
5763 /* Return field #INDEX in ARG, where the index is that returned by
5764 * find_struct_field through its INDEX_P argument. Adjust the address
5765 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5766 * If found, return value, else return NULL. */
5768 static struct value
*
5769 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
5772 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
5776 /* Auxiliary function for ada_index_struct_field. Like
5777 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5780 static struct value
*
5781 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
5785 type
= ada_check_typedef (type
);
5787 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5789 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
5791 else if (ada_is_wrapper_field (type
, i
))
5793 struct value
*v
= /* Do not let indent join lines here. */
5794 ada_index_struct_field_1 (index_p
, arg
,
5795 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
5796 TYPE_FIELD_TYPE (type
, i
));
5801 else if (ada_is_variant_part (type
, i
))
5803 /* PNH: Do we ever get here? See ada_search_struct_field,
5804 find_struct_field. */
5805 error (_("Cannot assign this kind of variant record"));
5807 else if (*index_p
== 0)
5808 return ada_value_primitive_field (arg
, offset
, i
, type
);
5815 /* Given ARG, a value of type (pointer or reference to a)*
5816 structure/union, extract the component named NAME from the ultimate
5817 target structure/union and return it as a value with its
5818 appropriate type. If ARG is a pointer or reference and the field
5819 is not packed, returns a reference to the field, otherwise the
5820 value of the field (an lvalue if ARG is an lvalue).
5822 The routine searches for NAME among all members of the structure itself
5823 and (recursively) among all members of any wrapper members
5826 If NO_ERR, then simply return NULL in case of error, rather than
5830 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
5832 struct type
*t
, *t1
;
5836 t1
= t
= ada_check_typedef (value_type (arg
));
5837 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
5839 t1
= TYPE_TARGET_TYPE (t
);
5842 t1
= ada_check_typedef (t1
);
5843 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
5845 arg
= coerce_ref (arg
);
5850 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
5852 t1
= TYPE_TARGET_TYPE (t
);
5855 t1
= ada_check_typedef (t1
);
5856 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
5858 arg
= value_ind (arg
);
5865 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
5869 v
= ada_search_struct_field (name
, arg
, 0, t
);
5872 int bit_offset
, bit_size
, byte_offset
;
5873 struct type
*field_type
;
5876 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
5877 address
= value_as_address (arg
);
5879 address
= unpack_pointer (t
, value_contents (arg
));
5881 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
);
5882 if (find_struct_field (name
, t1
, 0,
5883 &field_type
, &byte_offset
, &bit_offset
,
5888 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
5889 arg
= ada_coerce_ref (arg
);
5891 arg
= ada_value_ind (arg
);
5892 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
5893 bit_offset
, bit_size
,
5897 v
= value_from_pointer (lookup_reference_type (field_type
),
5898 address
+ byte_offset
);
5902 if (v
!= NULL
|| no_err
)
5905 error (_("There is no member named %s."), name
);
5911 error (_("Attempt to extract a component of a value that is not a record."));
5914 /* Given a type TYPE, look up the type of the component of type named NAME.
5915 If DISPP is non-null, add its byte displacement from the beginning of a
5916 structure (pointed to by a value) of type TYPE to *DISPP (does not
5917 work for packed fields).
5919 Matches any field whose name has NAME as a prefix, possibly
5922 TYPE can be either a struct or union. If REFOK, TYPE may also
5923 be a (pointer or reference)+ to a struct or union, and the
5924 ultimate target type will be searched.
5926 Looks recursively into variant clauses and parent types.
5928 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5929 TYPE is not a type of the right kind. */
5931 static struct type
*
5932 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
5933 int noerr
, int *dispp
)
5940 if (refok
&& type
!= NULL
)
5943 type
= ada_check_typedef (type
);
5944 if (TYPE_CODE (type
) != TYPE_CODE_PTR
5945 && TYPE_CODE (type
) != TYPE_CODE_REF
)
5947 type
= TYPE_TARGET_TYPE (type
);
5951 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
5952 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
5958 target_terminal_ours ();
5959 gdb_flush (gdb_stdout
);
5961 error (_("Type (null) is not a structure or union type"));
5964 /* XXX: type_sprint */
5965 fprintf_unfiltered (gdb_stderr
, _("Type "));
5966 type_print (type
, "", gdb_stderr
, -1);
5967 error (_(" is not a structure or union type"));
5972 type
= to_static_fixed_type (type
);
5974 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5976 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5980 if (t_field_name
== NULL
)
5983 else if (field_name_match (t_field_name
, name
))
5986 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
5987 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5990 else if (ada_is_wrapper_field (type
, i
))
5993 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
5998 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6003 else if (ada_is_variant_part (type
, i
))
6006 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6008 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
6011 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
, j
),
6016 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6027 target_terminal_ours ();
6028 gdb_flush (gdb_stdout
);
6031 /* XXX: type_sprint */
6032 fprintf_unfiltered (gdb_stderr
, _("Type "));
6033 type_print (type
, "", gdb_stderr
, -1);
6034 error (_(" has no component named <null>"));
6038 /* XXX: type_sprint */
6039 fprintf_unfiltered (gdb_stderr
, _("Type "));
6040 type_print (type
, "", gdb_stderr
, -1);
6041 error (_(" has no component named %s"), name
);
6048 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6049 within a value of type OUTER_TYPE that is stored in GDB at
6050 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6051 numbering from 0) is applicable. Returns -1 if none are. */
6054 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
6055 const gdb_byte
*outer_valaddr
)
6060 struct type
*discrim_type
;
6061 char *discrim_name
= ada_variant_discrim_name (var_type
);
6062 LONGEST discrim_val
;
6066 ada_lookup_struct_elt_type (outer_type
, discrim_name
, 1, 1, &disp
);
6067 if (discrim_type
== NULL
)
6069 discrim_val
= unpack_long (discrim_type
, outer_valaddr
+ disp
);
6072 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
6074 if (ada_is_others_clause (var_type
, i
))
6076 else if (ada_in_variant (discrim_val
, var_type
, i
))
6080 return others_clause
;
6085 /* Dynamic-Sized Records */
6087 /* Strategy: The type ostensibly attached to a value with dynamic size
6088 (i.e., a size that is not statically recorded in the debugging
6089 data) does not accurately reflect the size or layout of the value.
6090 Our strategy is to convert these values to values with accurate,
6091 conventional types that are constructed on the fly. */
6093 /* There is a subtle and tricky problem here. In general, we cannot
6094 determine the size of dynamic records without its data. However,
6095 the 'struct value' data structure, which GDB uses to represent
6096 quantities in the inferior process (the target), requires the size
6097 of the type at the time of its allocation in order to reserve space
6098 for GDB's internal copy of the data. That's why the
6099 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6100 rather than struct value*s.
6102 However, GDB's internal history variables ($1, $2, etc.) are
6103 struct value*s containing internal copies of the data that are not, in
6104 general, the same as the data at their corresponding addresses in
6105 the target. Fortunately, the types we give to these values are all
6106 conventional, fixed-size types (as per the strategy described
6107 above), so that we don't usually have to perform the
6108 'to_fixed_xxx_type' conversions to look at their values.
6109 Unfortunately, there is one exception: if one of the internal
6110 history variables is an array whose elements are unconstrained
6111 records, then we will need to create distinct fixed types for each
6112 element selected. */
6114 /* The upshot of all of this is that many routines take a (type, host
6115 address, target address) triple as arguments to represent a value.
6116 The host address, if non-null, is supposed to contain an internal
6117 copy of the relevant data; otherwise, the program is to consult the
6118 target at the target address. */
6120 /* Assuming that VAL0 represents a pointer value, the result of
6121 dereferencing it. Differs from value_ind in its treatment of
6122 dynamic-sized types. */
6125 ada_value_ind (struct value
*val0
)
6127 struct value
*val
= unwrap_value (value_ind (val0
));
6128 return ada_to_fixed_value (val
);
6131 /* The value resulting from dereferencing any "reference to"
6132 qualifiers on VAL0. */
6134 static struct value
*
6135 ada_coerce_ref (struct value
*val0
)
6137 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
6139 struct value
*val
= val0
;
6140 val
= coerce_ref (val
);
6141 val
= unwrap_value (val
);
6142 return ada_to_fixed_value (val
);
6148 /* Return OFF rounded upward if necessary to a multiple of
6149 ALIGNMENT (a power of 2). */
6152 align_value (unsigned int off
, unsigned int alignment
)
6154 return (off
+ alignment
- 1) & ~(alignment
- 1);
6157 /* Return the bit alignment required for field #F of template type TYPE. */
6160 field_alignment (struct type
*type
, int f
)
6162 const char *name
= TYPE_FIELD_NAME (type
, f
);
6163 int len
= (name
== NULL
) ? 0 : strlen (name
);
6166 if (!isdigit (name
[len
- 1]))
6169 if (isdigit (name
[len
- 2]))
6170 align_offset
= len
- 2;
6172 align_offset
= len
- 1;
6174 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
6175 return TARGET_CHAR_BIT
;
6177 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
6180 /* Find a symbol named NAME. Ignores ambiguity. */
6183 ada_find_any_symbol (const char *name
)
6187 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
6188 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
6191 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
6195 /* Find a type named NAME. Ignores ambiguity. */
6198 ada_find_any_type (const char *name
)
6200 struct symbol
*sym
= ada_find_any_symbol (name
);
6203 return SYMBOL_TYPE (sym
);
6208 /* Given a symbol NAME and its associated BLOCK, search all symbols
6209 for its ___XR counterpart, which is the ``renaming'' symbol
6210 associated to NAME. Return this symbol if found, return
6214 ada_find_renaming_symbol (const char *name
, struct block
*block
)
6216 const struct symbol
*function_sym
= block_function (block
);
6219 if (function_sym
!= NULL
)
6221 /* If the symbol is defined inside a function, NAME is not fully
6222 qualified. This means we need to prepend the function name
6223 as well as adding the ``___XR'' suffix to build the name of
6224 the associated renaming symbol. */
6225 char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
6226 /* Function names sometimes contain suffixes used
6227 for instance to qualify nested subprograms. When building
6228 the XR type name, we need to make sure that this suffix is
6229 not included. So do not include any suffix in the function
6230 name length below. */
6231 const int function_name_len
= ada_name_prefix_len (function_name
);
6232 const int rename_len
= function_name_len
+ 2 /* "__" */
6233 + strlen (name
) + 6 /* "___XR\0" */ ;
6235 /* Strip the suffix if necessary. */
6236 function_name
[function_name_len
] = '\0';
6238 /* Library-level functions are a special case, as GNAT adds
6239 a ``_ada_'' prefix to the function name to avoid namespace
6240 pollution. However, the renaming symbol themselves do not
6241 have this prefix, so we need to skip this prefix if present. */
6242 if (function_name_len
> 5 /* "_ada_" */
6243 && strstr (function_name
, "_ada_") == function_name
)
6244 function_name
= function_name
+ 5;
6246 rename
= (char *) alloca (rename_len
* sizeof (char));
6247 sprintf (rename
, "%s__%s___XR", function_name
, name
);
6251 const int rename_len
= strlen (name
) + 6;
6252 rename
= (char *) alloca (rename_len
* sizeof (char));
6253 sprintf (rename
, "%s___XR", name
);
6256 return ada_find_any_symbol (rename
);
6259 /* Because of GNAT encoding conventions, several GDB symbols may match a
6260 given type name. If the type denoted by TYPE0 is to be preferred to
6261 that of TYPE1 for purposes of type printing, return non-zero;
6262 otherwise return 0. */
6265 ada_prefer_type (struct type
*type0
, struct type
*type1
)
6269 else if (type0
== NULL
)
6271 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
6273 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
6275 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
6277 else if (ada_is_packed_array_type (type0
))
6279 else if (ada_is_array_descriptor_type (type0
)
6280 && !ada_is_array_descriptor_type (type1
))
6282 else if (ada_renaming_type (type0
) != NULL
6283 && ada_renaming_type (type1
) == NULL
)
6288 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6289 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6292 ada_type_name (struct type
*type
)
6296 else if (TYPE_NAME (type
) != NULL
)
6297 return TYPE_NAME (type
);
6299 return TYPE_TAG_NAME (type
);
6302 /* Find a parallel type to TYPE whose name is formed by appending
6303 SUFFIX to the name of TYPE. */
6306 ada_find_parallel_type (struct type
*type
, const char *suffix
)
6309 static size_t name_len
= 0;
6311 char *typename
= ada_type_name (type
);
6313 if (typename
== NULL
)
6316 len
= strlen (typename
);
6318 GROW_VECT (name
, name_len
, len
+ strlen (suffix
) + 1);
6320 strcpy (name
, typename
);
6321 strcpy (name
+ len
, suffix
);
6323 return ada_find_any_type (name
);
6327 /* If TYPE is a variable-size record type, return the corresponding template
6328 type describing its fields. Otherwise, return NULL. */
6330 static struct type
*
6331 dynamic_template_type (struct type
*type
)
6333 type
= ada_check_typedef (type
);
6335 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
6336 || ada_type_name (type
) == NULL
)
6340 int len
= strlen (ada_type_name (type
));
6341 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
6344 return ada_find_parallel_type (type
, "___XVE");
6348 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6349 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6352 is_dynamic_field (struct type
*templ_type
, int field_num
)
6354 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
6356 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
6357 && strstr (name
, "___XVL") != NULL
;
6360 /* The index of the variant field of TYPE, or -1 if TYPE does not
6361 represent a variant record type. */
6364 variant_field_index (struct type
*type
)
6368 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6371 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
6373 if (ada_is_variant_part (type
, f
))
6379 /* A record type with no fields. */
6381 static struct type
*
6382 empty_record (struct objfile
*objfile
)
6384 struct type
*type
= alloc_type (objfile
);
6385 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
6386 TYPE_NFIELDS (type
) = 0;
6387 TYPE_FIELDS (type
) = NULL
;
6388 TYPE_NAME (type
) = "<empty>";
6389 TYPE_TAG_NAME (type
) = NULL
;
6390 TYPE_FLAGS (type
) = 0;
6391 TYPE_LENGTH (type
) = 0;
6395 /* An ordinary record type (with fixed-length fields) that describes
6396 the value of type TYPE at VALADDR or ADDRESS (see comments at
6397 the beginning of this section) VAL according to GNAT conventions.
6398 DVAL0 should describe the (portion of a) record that contains any
6399 necessary discriminants. It should be NULL if value_type (VAL) is
6400 an outer-level type (i.e., as opposed to a branch of a variant.) A
6401 variant field (unless unchecked) is replaced by a particular branch
6404 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6405 length are not statically known are discarded. As a consequence,
6406 VALADDR, ADDRESS and DVAL0 are ignored.
6408 NOTE: Limitations: For now, we assume that dynamic fields and
6409 variants occupy whole numbers of bytes. However, they need not be
6413 ada_template_to_fixed_record_type_1 (struct type
*type
,
6414 const gdb_byte
*valaddr
,
6415 CORE_ADDR address
, struct value
*dval0
,
6416 int keep_dynamic_fields
)
6418 struct value
*mark
= value_mark ();
6421 int nfields
, bit_len
;
6424 int fld_bit_len
, bit_incr
;
6427 /* Compute the number of fields in this record type that are going
6428 to be processed: unless keep_dynamic_fields, this includes only
6429 fields whose position and length are static will be processed. */
6430 if (keep_dynamic_fields
)
6431 nfields
= TYPE_NFIELDS (type
);
6435 while (nfields
< TYPE_NFIELDS (type
)
6436 && !ada_is_variant_part (type
, nfields
)
6437 && !is_dynamic_field (type
, nfields
))
6441 rtype
= alloc_type (TYPE_OBJFILE (type
));
6442 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6443 INIT_CPLUS_SPECIFIC (rtype
);
6444 TYPE_NFIELDS (rtype
) = nfields
;
6445 TYPE_FIELDS (rtype
) = (struct field
*)
6446 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6447 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
6448 TYPE_NAME (rtype
) = ada_type_name (type
);
6449 TYPE_TAG_NAME (rtype
) = NULL
;
6450 TYPE_FLAGS (rtype
) |= TYPE_FLAG_FIXED_INSTANCE
;
6456 for (f
= 0; f
< nfields
; f
+= 1)
6458 off
= align_value (off
, field_alignment (type
, f
))
6459 + TYPE_FIELD_BITPOS (type
, f
);
6460 TYPE_FIELD_BITPOS (rtype
, f
) = off
;
6461 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
6463 if (ada_is_variant_part (type
, f
))
6466 fld_bit_len
= bit_incr
= 0;
6468 else if (is_dynamic_field (type
, f
))
6471 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6475 TYPE_FIELD_TYPE (rtype
, f
) =
6478 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
))),
6479 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
6480 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
6481 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6482 bit_incr
= fld_bit_len
=
6483 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
6487 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
6488 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6489 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
6490 bit_incr
= fld_bit_len
=
6491 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
6493 bit_incr
= fld_bit_len
=
6494 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, f
)) * TARGET_CHAR_BIT
;
6496 if (off
+ fld_bit_len
> bit_len
)
6497 bit_len
= off
+ fld_bit_len
;
6499 TYPE_LENGTH (rtype
) =
6500 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6503 /* We handle the variant part, if any, at the end because of certain
6504 odd cases in which it is re-ordered so as NOT the last field of
6505 the record. This can happen in the presence of representation
6507 if (variant_field
>= 0)
6509 struct type
*branch_type
;
6511 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
6514 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6519 to_fixed_variant_branch_type
6520 (TYPE_FIELD_TYPE (type
, variant_field
),
6521 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
6522 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
6523 if (branch_type
== NULL
)
6525 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
6526 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
6527 TYPE_NFIELDS (rtype
) -= 1;
6531 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
6532 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
6534 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
6536 if (off
+ fld_bit_len
> bit_len
)
6537 bit_len
= off
+ fld_bit_len
;
6538 TYPE_LENGTH (rtype
) =
6539 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6543 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6544 should contain the alignment of that record, which should be a strictly
6545 positive value. If null or negative, then something is wrong, most
6546 probably in the debug info. In that case, we don't round up the size
6547 of the resulting type. If this record is not part of another structure,
6548 the current RTYPE length might be good enough for our purposes. */
6549 if (TYPE_LENGTH (type
) <= 0)
6551 if (TYPE_NAME (rtype
))
6552 warning (_("Invalid type size for `%s' detected: %d."),
6553 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
6555 warning (_("Invalid type size for <unnamed> detected: %d."),
6556 TYPE_LENGTH (type
));
6560 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
6561 TYPE_LENGTH (type
));
6564 value_free_to_mark (mark
);
6565 if (TYPE_LENGTH (rtype
) > varsize_limit
)
6566 error (_("record type with dynamic size is larger than varsize-limit"));
6570 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6573 static struct type
*
6574 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
6575 CORE_ADDR address
, struct value
*dval0
)
6577 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
6581 /* An ordinary record type in which ___XVL-convention fields and
6582 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6583 static approximations, containing all possible fields. Uses
6584 no runtime values. Useless for use in values, but that's OK,
6585 since the results are used only for type determinations. Works on both
6586 structs and unions. Representation note: to save space, we memorize
6587 the result of this function in the TYPE_TARGET_TYPE of the
6590 static struct type
*
6591 template_to_static_fixed_type (struct type
*type0
)
6597 if (TYPE_TARGET_TYPE (type0
) != NULL
)
6598 return TYPE_TARGET_TYPE (type0
);
6600 nfields
= TYPE_NFIELDS (type0
);
6603 for (f
= 0; f
< nfields
; f
+= 1)
6605 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
6606 struct type
*new_type
;
6608 if (is_dynamic_field (type0
, f
))
6609 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
6611 new_type
= to_static_fixed_type (field_type
);
6612 if (type
== type0
&& new_type
!= field_type
)
6614 TYPE_TARGET_TYPE (type0
) = type
= alloc_type (TYPE_OBJFILE (type0
));
6615 TYPE_CODE (type
) = TYPE_CODE (type0
);
6616 INIT_CPLUS_SPECIFIC (type
);
6617 TYPE_NFIELDS (type
) = nfields
;
6618 TYPE_FIELDS (type
) = (struct field
*)
6619 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
6620 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
6621 sizeof (struct field
) * nfields
);
6622 TYPE_NAME (type
) = ada_type_name (type0
);
6623 TYPE_TAG_NAME (type
) = NULL
;
6624 TYPE_FLAGS (type
) |= TYPE_FLAG_FIXED_INSTANCE
;
6625 TYPE_LENGTH (type
) = 0;
6627 TYPE_FIELD_TYPE (type
, f
) = new_type
;
6628 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
6633 /* Given an object of type TYPE whose contents are at VALADDR and
6634 whose address in memory is ADDRESS, returns a revision of TYPE --
6635 a non-dynamic-sized record with a variant part -- in which
6636 the variant part is replaced with the appropriate branch. Looks
6637 for discriminant values in DVAL0, which can be NULL if the record
6638 contains the necessary discriminant values. */
6640 static struct type
*
6641 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
6642 CORE_ADDR address
, struct value
*dval0
)
6644 struct value
*mark
= value_mark ();
6647 struct type
*branch_type
;
6648 int nfields
= TYPE_NFIELDS (type
);
6649 int variant_field
= variant_field_index (type
);
6651 if (variant_field
== -1)
6655 dval
= value_from_contents_and_address (type
, valaddr
, address
);
6659 rtype
= alloc_type (TYPE_OBJFILE (type
));
6660 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6661 INIT_CPLUS_SPECIFIC (rtype
);
6662 TYPE_NFIELDS (rtype
) = nfields
;
6663 TYPE_FIELDS (rtype
) =
6664 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6665 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
6666 sizeof (struct field
) * nfields
);
6667 TYPE_NAME (rtype
) = ada_type_name (type
);
6668 TYPE_TAG_NAME (rtype
) = NULL
;
6669 TYPE_FLAGS (rtype
) |= TYPE_FLAG_FIXED_INSTANCE
;
6670 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
6672 branch_type
= to_fixed_variant_branch_type
6673 (TYPE_FIELD_TYPE (type
, variant_field
),
6674 cond_offset_host (valaddr
,
6675 TYPE_FIELD_BITPOS (type
, variant_field
)
6677 cond_offset_target (address
,
6678 TYPE_FIELD_BITPOS (type
, variant_field
)
6679 / TARGET_CHAR_BIT
), dval
);
6680 if (branch_type
== NULL
)
6683 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
6684 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
6685 TYPE_NFIELDS (rtype
) -= 1;
6689 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
6690 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
6691 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
6692 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
6694 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
6696 value_free_to_mark (mark
);
6700 /* An ordinary record type (with fixed-length fields) that describes
6701 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6702 beginning of this section]. Any necessary discriminants' values
6703 should be in DVAL, a record value; it may be NULL if the object
6704 at ADDR itself contains any necessary discriminant values.
6705 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6706 values from the record are needed. Except in the case that DVAL,
6707 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6708 unchecked) is replaced by a particular branch of the variant.
6710 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6711 is questionable and may be removed. It can arise during the
6712 processing of an unconstrained-array-of-record type where all the
6713 variant branches have exactly the same size. This is because in
6714 such cases, the compiler does not bother to use the XVS convention
6715 when encoding the record. I am currently dubious of this
6716 shortcut and suspect the compiler should be altered. FIXME. */
6718 static struct type
*
6719 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
6720 CORE_ADDR address
, struct value
*dval
)
6722 struct type
*templ_type
;
6724 if (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
)
6727 templ_type
= dynamic_template_type (type0
);
6729 if (templ_type
!= NULL
)
6730 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
6731 else if (variant_field_index (type0
) >= 0)
6733 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
6735 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
6740 TYPE_FLAGS (type0
) |= TYPE_FLAG_FIXED_INSTANCE
;
6746 /* An ordinary record type (with fixed-length fields) that describes
6747 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6748 union type. Any necessary discriminants' values should be in DVAL,
6749 a record value. That is, this routine selects the appropriate
6750 branch of the union at ADDR according to the discriminant value
6751 indicated in the union's type name. */
6753 static struct type
*
6754 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
6755 CORE_ADDR address
, struct value
*dval
)
6758 struct type
*templ_type
;
6759 struct type
*var_type
;
6761 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
6762 var_type
= TYPE_TARGET_TYPE (var_type0
);
6764 var_type
= var_type0
;
6766 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
6768 if (templ_type
!= NULL
)
6769 var_type
= templ_type
;
6772 ada_which_variant_applies (var_type
,
6773 value_type (dval
), value_contents (dval
));
6776 return empty_record (TYPE_OBJFILE (var_type
));
6777 else if (is_dynamic_field (var_type
, which
))
6778 return to_fixed_record_type
6779 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
6780 valaddr
, address
, dval
);
6781 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
6783 to_fixed_record_type
6784 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
6786 return TYPE_FIELD_TYPE (var_type
, which
);
6789 /* Assuming that TYPE0 is an array type describing the type of a value
6790 at ADDR, and that DVAL describes a record containing any
6791 discriminants used in TYPE0, returns a type for the value that
6792 contains no dynamic components (that is, no components whose sizes
6793 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6794 true, gives an error message if the resulting type's size is over
6797 static struct type
*
6798 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
6801 struct type
*index_type_desc
;
6802 struct type
*result
;
6804 if (ada_is_packed_array_type (type0
) /* revisit? */
6805 || (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
))
6808 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
6809 if (index_type_desc
== NULL
)
6811 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
6812 /* NOTE: elt_type---the fixed version of elt_type0---should never
6813 depend on the contents of the array in properly constructed
6815 /* Create a fixed version of the array element type.
6816 We're not providing the address of an element here,
6817 and thus the actual object value cannot be inspected to do
6818 the conversion. This should not be a problem, since arrays of
6819 unconstrained objects are not allowed. In particular, all
6820 the elements of an array of a tagged type should all be of
6821 the same type specified in the debugging info. No need to
6822 consult the object tag. */
6823 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
);
6825 if (elt_type0
== elt_type
)
6828 result
= create_array_type (alloc_type (TYPE_OBJFILE (type0
)),
6829 elt_type
, TYPE_INDEX_TYPE (type0
));
6834 struct type
*elt_type0
;
6837 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
6838 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
6840 /* NOTE: result---the fixed version of elt_type0---should never
6841 depend on the contents of the array in properly constructed
6843 /* Create a fixed version of the array element type.
6844 We're not providing the address of an element here,
6845 and thus the actual object value cannot be inspected to do
6846 the conversion. This should not be a problem, since arrays of
6847 unconstrained objects are not allowed. In particular, all
6848 the elements of an array of a tagged type should all be of
6849 the same type specified in the debugging info. No need to
6850 consult the object tag. */
6851 result
= ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
);
6852 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
6854 struct type
*range_type
=
6855 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, i
),
6856 dval
, TYPE_OBJFILE (type0
));
6857 result
= create_array_type (alloc_type (TYPE_OBJFILE (type0
)),
6858 result
, range_type
);
6860 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
6861 error (_("array type with dynamic size is larger than varsize-limit"));
6864 TYPE_FLAGS (result
) |= TYPE_FLAG_FIXED_INSTANCE
;
6869 /* A standard type (containing no dynamically sized components)
6870 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6871 DVAL describes a record containing any discriminants used in TYPE0,
6872 and may be NULL if there are none, or if the object of type TYPE at
6873 ADDRESS or in VALADDR contains these discriminants.
6875 In the case of tagged types, this function attempts to locate the object's
6876 tag and use it to compute the actual type. However, when ADDRESS is null,
6877 we cannot use it to determine the location of the tag, and therefore
6878 compute the tagged type's actual type. So we return the tagged type
6879 without consulting the tag. */
6882 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
6883 CORE_ADDR address
, struct value
*dval
)
6885 type
= ada_check_typedef (type
);
6886 switch (TYPE_CODE (type
))
6890 case TYPE_CODE_STRUCT
:
6892 struct type
*static_type
= to_static_fixed_type (type
);
6894 /* If STATIC_TYPE is a tagged type and we know the object's address,
6895 then we can determine its tag, and compute the object's actual
6898 if (address
!= 0 && ada_is_tagged_type (static_type
, 0))
6900 struct type
*real_type
=
6901 type_from_tag (value_tag_from_contents_and_address (static_type
,
6904 if (real_type
!= NULL
)
6907 return to_fixed_record_type (type
, valaddr
, address
, NULL
);
6909 case TYPE_CODE_ARRAY
:
6910 return to_fixed_array_type (type
, dval
, 1);
6911 case TYPE_CODE_UNION
:
6915 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
6919 /* A standard (static-sized) type corresponding as well as possible to
6920 TYPE0, but based on no runtime data. */
6922 static struct type
*
6923 to_static_fixed_type (struct type
*type0
)
6930 if (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
)
6933 type0
= ada_check_typedef (type0
);
6935 switch (TYPE_CODE (type0
))
6939 case TYPE_CODE_STRUCT
:
6940 type
= dynamic_template_type (type0
);
6942 return template_to_static_fixed_type (type
);
6944 return template_to_static_fixed_type (type0
);
6945 case TYPE_CODE_UNION
:
6946 type
= ada_find_parallel_type (type0
, "___XVU");
6948 return template_to_static_fixed_type (type
);
6950 return template_to_static_fixed_type (type0
);
6954 /* A static approximation of TYPE with all type wrappers removed. */
6956 static struct type
*
6957 static_unwrap_type (struct type
*type
)
6959 if (ada_is_aligner_type (type
))
6961 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
6962 if (ada_type_name (type1
) == NULL
)
6963 TYPE_NAME (type1
) = ada_type_name (type
);
6965 return static_unwrap_type (type1
);
6969 struct type
*raw_real_type
= ada_get_base_type (type
);
6970 if (raw_real_type
== type
)
6973 return to_static_fixed_type (raw_real_type
);
6977 /* In some cases, incomplete and private types require
6978 cross-references that are not resolved as records (for example,
6980 type FooP is access Foo;
6982 type Foo is array ...;
6983 ). In these cases, since there is no mechanism for producing
6984 cross-references to such types, we instead substitute for FooP a
6985 stub enumeration type that is nowhere resolved, and whose tag is
6986 the name of the actual type. Call these types "non-record stubs". */
6988 /* A type equivalent to TYPE that is not a non-record stub, if one
6989 exists, otherwise TYPE. */
6992 ada_check_typedef (struct type
*type
)
6994 CHECK_TYPEDEF (type
);
6995 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
6996 || !TYPE_STUB (type
)
6997 || TYPE_TAG_NAME (type
) == NULL
)
7001 char *name
= TYPE_TAG_NAME (type
);
7002 struct type
*type1
= ada_find_any_type (name
);
7003 return (type1
== NULL
) ? type
: type1
;
7007 /* A value representing the data at VALADDR/ADDRESS as described by
7008 type TYPE0, but with a standard (static-sized) type that correctly
7009 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7010 type, then return VAL0 [this feature is simply to avoid redundant
7011 creation of struct values]. */
7013 static struct value
*
7014 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
7017 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
);
7018 if (type
== type0
&& val0
!= NULL
)
7021 return value_from_contents_and_address (type
, 0, address
);
7024 /* A value representing VAL, but with a standard (static-sized) type
7025 that correctly describes it. Does not necessarily create a new
7028 static struct value
*
7029 ada_to_fixed_value (struct value
*val
)
7031 return ada_to_fixed_value_create (value_type (val
),
7032 VALUE_ADDRESS (val
) + value_offset (val
),
7036 /* A value representing VAL, but with a standard (static-sized) type
7037 chosen to approximate the real type of VAL as well as possible, but
7038 without consulting any runtime values. For Ada dynamic-sized
7039 types, therefore, the type of the result is likely to be inaccurate. */
7042 ada_to_static_fixed_value (struct value
*val
)
7045 to_static_fixed_type (static_unwrap_type (value_type (val
)));
7046 if (type
== value_type (val
))
7049 return coerce_unspec_val_to_type (val
, type
);
7055 /* Table mapping attribute numbers to names.
7056 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7058 static const char *attribute_names
[] = {
7076 ada_attribute_name (enum exp_opcode n
)
7078 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
7079 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
7081 return attribute_names
[0];
7084 /* Evaluate the 'POS attribute applied to ARG. */
7087 pos_atr (struct value
*arg
)
7089 struct type
*type
= value_type (arg
);
7091 if (!discrete_type_p (type
))
7092 error (_("'POS only defined on discrete types"));
7094 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7097 LONGEST v
= value_as_long (arg
);
7099 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7101 if (v
== TYPE_FIELD_BITPOS (type
, i
))
7104 error (_("enumeration value is invalid: can't find 'POS"));
7107 return value_as_long (arg
);
7110 static struct value
*
7111 value_pos_atr (struct value
*arg
)
7113 return value_from_longest (builtin_type_int
, pos_atr (arg
));
7116 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7118 static struct value
*
7119 value_val_atr (struct type
*type
, struct value
*arg
)
7121 if (!discrete_type_p (type
))
7122 error (_("'VAL only defined on discrete types"));
7123 if (!integer_type_p (value_type (arg
)))
7124 error (_("'VAL requires integral argument"));
7126 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7128 long pos
= value_as_long (arg
);
7129 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
7130 error (_("argument to 'VAL out of range"));
7131 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, pos
));
7134 return value_from_longest (type
, value_as_long (arg
));
7140 /* True if TYPE appears to be an Ada character type.
7141 [At the moment, this is true only for Character and Wide_Character;
7142 It is a heuristic test that could stand improvement]. */
7145 ada_is_character_type (struct type
*type
)
7147 const char *name
= ada_type_name (type
);
7150 && (TYPE_CODE (type
) == TYPE_CODE_CHAR
7151 || TYPE_CODE (type
) == TYPE_CODE_INT
7152 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
7153 && (strcmp (name
, "character") == 0
7154 || strcmp (name
, "wide_character") == 0
7155 || strcmp (name
, "unsigned char") == 0);
7158 /* True if TYPE appears to be an Ada string type. */
7161 ada_is_string_type (struct type
*type
)
7163 type
= ada_check_typedef (type
);
7165 && TYPE_CODE (type
) != TYPE_CODE_PTR
7166 && (ada_is_simple_array_type (type
)
7167 || ada_is_array_descriptor_type (type
))
7168 && ada_array_arity (type
) == 1)
7170 struct type
*elttype
= ada_array_element_type (type
, 1);
7172 return ada_is_character_type (elttype
);
7179 /* True if TYPE is a struct type introduced by the compiler to force the
7180 alignment of a value. Such types have a single field with a
7181 distinctive name. */
7184 ada_is_aligner_type (struct type
*type
)
7186 type
= ada_check_typedef (type
);
7188 /* If we can find a parallel XVS type, then the XVS type should
7189 be used instead of this type. And hence, this is not an aligner
7191 if (ada_find_parallel_type (type
, "___XVS") != NULL
)
7194 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
7195 && TYPE_NFIELDS (type
) == 1
7196 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
7199 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7200 the parallel type. */
7203 ada_get_base_type (struct type
*raw_type
)
7205 struct type
*real_type_namer
;
7206 struct type
*raw_real_type
;
7208 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
7211 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
7212 if (real_type_namer
== NULL
7213 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
7214 || TYPE_NFIELDS (real_type_namer
) != 1)
7217 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
7218 if (raw_real_type
== NULL
)
7221 return raw_real_type
;
7224 /* The type of value designated by TYPE, with all aligners removed. */
7227 ada_aligned_type (struct type
*type
)
7229 if (ada_is_aligner_type (type
))
7230 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
7232 return ada_get_base_type (type
);
7236 /* The address of the aligned value in an object at address VALADDR
7237 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7240 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
7242 if (ada_is_aligner_type (type
))
7243 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
7245 TYPE_FIELD_BITPOS (type
,
7246 0) / TARGET_CHAR_BIT
);
7253 /* The printed representation of an enumeration literal with encoded
7254 name NAME. The value is good to the next call of ada_enum_name. */
7256 ada_enum_name (const char *name
)
7258 static char *result
;
7259 static size_t result_len
= 0;
7262 /* First, unqualify the enumeration name:
7263 1. Search for the last '.' character. If we find one, then skip
7264 all the preceeding characters, the unqualified name starts
7265 right after that dot.
7266 2. Otherwise, we may be debugging on a target where the compiler
7267 translates dots into "__". Search forward for double underscores,
7268 but stop searching when we hit an overloading suffix, which is
7269 of the form "__" followed by digits. */
7271 tmp
= strrchr (name
, '.');
7276 while ((tmp
= strstr (name
, "__")) != NULL
)
7278 if (isdigit (tmp
[2]))
7288 if (name
[1] == 'U' || name
[1] == 'W')
7290 if (sscanf (name
+ 2, "%x", &v
) != 1)
7296 GROW_VECT (result
, result_len
, 16);
7297 if (isascii (v
) && isprint (v
))
7298 sprintf (result
, "'%c'", v
);
7299 else if (name
[1] == 'U')
7300 sprintf (result
, "[\"%02x\"]", v
);
7302 sprintf (result
, "[\"%04x\"]", v
);
7308 tmp
= strstr (name
, "__");
7310 tmp
= strstr (name
, "$");
7313 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
7314 strncpy (result
, name
, tmp
- name
);
7315 result
[tmp
- name
] = '\0';
7323 static struct value
*
7324 evaluate_subexp (struct type
*expect_type
, struct expression
*exp
, int *pos
,
7327 return (*exp
->language_defn
->la_exp_desc
->evaluate_exp
)
7328 (expect_type
, exp
, pos
, noside
);
7331 /* Evaluate the subexpression of EXP starting at *POS as for
7332 evaluate_type, updating *POS to point just past the evaluated
7335 static struct value
*
7336 evaluate_subexp_type (struct expression
*exp
, int *pos
)
7338 return (*exp
->language_defn
->la_exp_desc
->evaluate_exp
)
7339 (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
7342 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7345 static struct value
*
7346 unwrap_value (struct value
*val
)
7348 struct type
*type
= ada_check_typedef (value_type (val
));
7349 if (ada_is_aligner_type (type
))
7351 struct value
*v
= value_struct_elt (&val
, NULL
, "F",
7352 NULL
, "internal structure");
7353 struct type
*val_type
= ada_check_typedef (value_type (v
));
7354 if (ada_type_name (val_type
) == NULL
)
7355 TYPE_NAME (val_type
) = ada_type_name (type
);
7357 return unwrap_value (v
);
7361 struct type
*raw_real_type
=
7362 ada_check_typedef (ada_get_base_type (type
));
7364 if (type
== raw_real_type
)
7368 coerce_unspec_val_to_type
7369 (val
, ada_to_fixed_type (raw_real_type
, 0,
7370 VALUE_ADDRESS (val
) + value_offset (val
),
7375 static struct value
*
7376 cast_to_fixed (struct type
*type
, struct value
*arg
)
7380 if (type
== value_type (arg
))
7382 else if (ada_is_fixed_point_type (value_type (arg
)))
7383 val
= ada_float_to_fixed (type
,
7384 ada_fixed_to_float (value_type (arg
),
7385 value_as_long (arg
)));
7389 value_as_double (value_cast (builtin_type_double
, value_copy (arg
)));
7390 val
= ada_float_to_fixed (type
, argd
);
7393 return value_from_longest (type
, val
);
7396 static struct value
*
7397 cast_from_fixed_to_double (struct value
*arg
)
7399 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
7400 value_as_long (arg
));
7401 return value_from_double (builtin_type_double
, val
);
7404 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7405 return the converted value. */
7407 static struct value
*
7408 coerce_for_assign (struct type
*type
, struct value
*val
)
7410 struct type
*type2
= value_type (val
);
7414 type2
= ada_check_typedef (type2
);
7415 type
= ada_check_typedef (type
);
7417 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
7418 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7420 val
= ada_value_ind (val
);
7421 type2
= value_type (val
);
7424 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
7425 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7427 if (TYPE_LENGTH (type2
) != TYPE_LENGTH (type
)
7428 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
7429 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2
)))
7430 error (_("Incompatible types in assignment"));
7431 deprecated_set_value_type (val
, type
);
7436 static struct value
*
7437 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
7440 struct type
*type1
, *type2
;
7443 arg1
= coerce_ref (arg1
);
7444 arg2
= coerce_ref (arg2
);
7445 type1
= base_type (ada_check_typedef (value_type (arg1
)));
7446 type2
= base_type (ada_check_typedef (value_type (arg2
)));
7448 if (TYPE_CODE (type1
) != TYPE_CODE_INT
7449 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
7450 return value_binop (arg1
, arg2
, op
);
7459 return value_binop (arg1
, arg2
, op
);
7462 v2
= value_as_long (arg2
);
7464 error (_("second operand of %s must not be zero."), op_string (op
));
7466 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
7467 return value_binop (arg1
, arg2
, op
);
7469 v1
= value_as_long (arg1
);
7474 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
7475 v
+= v
> 0 ? -1 : 1;
7483 /* Should not reach this point. */
7487 val
= allocate_value (type1
);
7488 store_unsigned_integer (value_contents_raw (val
),
7489 TYPE_LENGTH (value_type (val
)), v
);
7494 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
7496 if (ada_is_direct_array_type (value_type (arg1
))
7497 || ada_is_direct_array_type (value_type (arg2
)))
7499 arg1
= ada_coerce_to_simple_array (arg1
);
7500 arg2
= ada_coerce_to_simple_array (arg2
);
7501 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
7502 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
7503 error (_("Attempt to compare array with non-array"));
7504 /* FIXME: The following works only for types whose
7505 representations use all bits (no padding or undefined bits)
7506 and do not have user-defined equality. */
7508 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
7509 && memcmp (value_contents (arg1
), value_contents (arg2
),
7510 TYPE_LENGTH (value_type (arg1
))) == 0;
7512 return value_equal (arg1
, arg2
);
7515 /* Total number of component associations in the aggregate starting at
7516 index PC in EXP. Assumes that index PC is the start of an
7520 num_component_specs (struct expression
*exp
, int pc
)
7523 m
= exp
->elts
[pc
+ 1].longconst
;
7526 for (i
= 0; i
< m
; i
+= 1)
7528 switch (exp
->elts
[pc
].opcode
)
7534 n
+= exp
->elts
[pc
+ 1].longconst
;
7537 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
7542 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7543 component of LHS (a simple array or a record), updating *POS past
7544 the expression, assuming that LHS is contained in CONTAINER. Does
7545 not modify the inferior's memory, nor does it modify LHS (unless
7546 LHS == CONTAINER). */
7549 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
7550 struct expression
*exp
, int *pos
)
7552 struct value
*mark
= value_mark ();
7554 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
7556 struct value
*index_val
= value_from_longest (builtin_type_int
, index
);
7557 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
7561 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
7562 elt
= ada_to_fixed_value (unwrap_value (elt
));
7565 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
7566 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
7568 value_assign_to_component (container
, elt
,
7569 ada_evaluate_subexp (NULL
, exp
, pos
,
7572 value_free_to_mark (mark
);
7575 /* Assuming that LHS represents an lvalue having a record or array
7576 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7577 of that aggregate's value to LHS, advancing *POS past the
7578 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7579 lvalue containing LHS (possibly LHS itself). Does not modify
7580 the inferior's memory, nor does it modify the contents of
7581 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7583 static struct value
*
7584 assign_aggregate (struct value
*container
,
7585 struct value
*lhs
, struct expression
*exp
,
7586 int *pos
, enum noside noside
)
7588 struct type
*lhs_type
;
7589 int n
= exp
->elts
[*pos
+1].longconst
;
7590 LONGEST low_index
, high_index
;
7593 int max_indices
, num_indices
;
7594 int is_array_aggregate
;
7596 struct value
*mark
= value_mark ();
7599 if (noside
!= EVAL_NORMAL
)
7602 for (i
= 0; i
< n
; i
+= 1)
7603 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
7607 container
= ada_coerce_ref (container
);
7608 if (ada_is_direct_array_type (value_type (container
)))
7609 container
= ada_coerce_to_simple_array (container
);
7610 lhs
= ada_coerce_ref (lhs
);
7611 if (!deprecated_value_modifiable (lhs
))
7612 error (_("Left operand of assignment is not a modifiable lvalue."));
7614 lhs_type
= value_type (lhs
);
7615 if (ada_is_direct_array_type (lhs_type
))
7617 lhs
= ada_coerce_to_simple_array (lhs
);
7618 lhs_type
= value_type (lhs
);
7619 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
7620 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
7621 is_array_aggregate
= 1;
7623 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
7626 high_index
= num_visible_fields (lhs_type
) - 1;
7627 is_array_aggregate
= 0;
7630 error (_("Left-hand side must be array or record."));
7632 num_specs
= num_component_specs (exp
, *pos
- 3);
7633 max_indices
= 4 * num_specs
+ 4;
7634 indices
= alloca (max_indices
* sizeof (indices
[0]));
7635 indices
[0] = indices
[1] = low_index
- 1;
7636 indices
[2] = indices
[3] = high_index
+ 1;
7639 for (i
= 0; i
< n
; i
+= 1)
7641 switch (exp
->elts
[*pos
].opcode
)
7644 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
7645 &num_indices
, max_indices
,
7646 low_index
, high_index
);
7649 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
7650 &num_indices
, max_indices
,
7651 low_index
, high_index
);
7655 error (_("Misplaced 'others' clause"));
7656 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
7657 num_indices
, low_index
, high_index
);
7660 error (_("Internal error: bad aggregate clause"));
7667 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7668 construct at *POS, updating *POS past the construct, given that
7669 the positions are relative to lower bound LOW, where HIGH is the
7670 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7671 updating *NUM_INDICES as needed. CONTAINER is as for
7672 assign_aggregate. */
7674 aggregate_assign_positional (struct value
*container
,
7675 struct value
*lhs
, struct expression
*exp
,
7676 int *pos
, LONGEST
*indices
, int *num_indices
,
7677 int max_indices
, LONGEST low
, LONGEST high
)
7679 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
7681 if (ind
- 1 == high
)
7682 warning (_("Extra components in aggregate ignored."));
7685 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
7687 assign_component (container
, lhs
, ind
, exp
, pos
);
7690 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
7693 /* Assign into the components of LHS indexed by the OP_CHOICES
7694 construct at *POS, updating *POS past the construct, given that
7695 the allowable indices are LOW..HIGH. Record the indices assigned
7696 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7697 needed. CONTAINER is as for assign_aggregate. */
7699 aggregate_assign_from_choices (struct value
*container
,
7700 struct value
*lhs
, struct expression
*exp
,
7701 int *pos
, LONGEST
*indices
, int *num_indices
,
7702 int max_indices
, LONGEST low
, LONGEST high
)
7705 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
7706 int choice_pos
, expr_pc
;
7707 int is_array
= ada_is_direct_array_type (value_type (lhs
));
7709 choice_pos
= *pos
+= 3;
7711 for (j
= 0; j
< n_choices
; j
+= 1)
7712 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
7714 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
7716 for (j
= 0; j
< n_choices
; j
+= 1)
7718 LONGEST lower
, upper
;
7719 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
7720 if (op
== OP_DISCRETE_RANGE
)
7723 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
7725 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
7730 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
7741 name
= &exp
->elts
[choice_pos
+ 2].string
;
7744 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
7747 error (_("Invalid record component association."));
7749 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
7751 if (! find_struct_field (name
, value_type (lhs
), 0,
7752 NULL
, NULL
, NULL
, NULL
, &ind
))
7753 error (_("Unknown component name: %s."), name
);
7754 lower
= upper
= ind
;
7757 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
7758 error (_("Index in component association out of bounds."));
7760 add_component_interval (lower
, upper
, indices
, num_indices
,
7762 while (lower
<= upper
)
7766 assign_component (container
, lhs
, lower
, exp
, &pos1
);
7772 /* Assign the value of the expression in the OP_OTHERS construct in
7773 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7774 have not been previously assigned. The index intervals already assigned
7775 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7776 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7778 aggregate_assign_others (struct value
*container
,
7779 struct value
*lhs
, struct expression
*exp
,
7780 int *pos
, LONGEST
*indices
, int num_indices
,
7781 LONGEST low
, LONGEST high
)
7784 int expr_pc
= *pos
+1;
7786 for (i
= 0; i
< num_indices
- 2; i
+= 2)
7789 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
7793 assign_component (container
, lhs
, ind
, exp
, &pos
);
7796 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
7799 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7800 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7801 modifying *SIZE as needed. It is an error if *SIZE exceeds
7802 MAX_SIZE. The resulting intervals do not overlap. */
7804 add_component_interval (LONGEST low
, LONGEST high
,
7805 LONGEST
* indices
, int *size
, int max_size
)
7808 for (i
= 0; i
< *size
; i
+= 2) {
7809 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
7812 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
7813 if (high
< indices
[kh
])
7815 if (low
< indices
[i
])
7817 indices
[i
+ 1] = indices
[kh
- 1];
7818 if (high
> indices
[i
+ 1])
7819 indices
[i
+ 1] = high
;
7820 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
7821 *size
-= kh
- i
- 2;
7824 else if (high
< indices
[i
])
7828 if (*size
== max_size
)
7829 error (_("Internal error: miscounted aggregate components."));
7831 for (j
= *size
-1; j
>= i
+2; j
-= 1)
7832 indices
[j
] = indices
[j
- 2];
7834 indices
[i
+ 1] = high
;
7837 static struct value
*
7838 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
7839 int *pos
, enum noside noside
)
7842 int tem
, tem2
, tem3
;
7844 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
7847 struct value
**argvec
;
7851 op
= exp
->elts
[pc
].opcode
;
7858 unwrap_value (evaluate_subexp_standard
7859 (expect_type
, exp
, pos
, noside
));
7863 struct value
*result
;
7865 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
7866 /* The result type will have code OP_STRING, bashed there from
7867 OP_ARRAY. Bash it back. */
7868 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
7869 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
7875 type
= exp
->elts
[pc
+ 1].type
;
7876 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
7877 if (noside
== EVAL_SKIP
)
7879 if (type
!= ada_check_typedef (value_type (arg1
)))
7881 if (ada_is_fixed_point_type (type
))
7882 arg1
= cast_to_fixed (type
, arg1
);
7883 else if (ada_is_fixed_point_type (value_type (arg1
)))
7884 arg1
= value_cast (type
, cast_from_fixed_to_double (arg1
));
7885 else if (VALUE_LVAL (arg1
) == lval_memory
)
7887 /* This is in case of the really obscure (and undocumented,
7888 but apparently expected) case of (Foo) Bar.all, where Bar
7889 is an integer constant and Foo is a dynamic-sized type.
7890 If we don't do this, ARG1 will simply be relabeled with
7892 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7893 return value_zero (to_static_fixed_type (type
), not_lval
);
7895 ada_to_fixed_value_create
7896 (type
, VALUE_ADDRESS (arg1
) + value_offset (arg1
), 0);
7899 arg1
= value_cast (type
, arg1
);
7905 type
= exp
->elts
[pc
+ 1].type
;
7906 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
7909 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7910 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
7912 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
7913 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
7915 return ada_value_assign (arg1
, arg1
);
7917 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
7918 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
7920 if (ada_is_fixed_point_type (value_type (arg1
)))
7921 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
7922 else if (ada_is_fixed_point_type (value_type (arg2
)))
7924 (_("Fixed-point values must be assigned to fixed-point variables"));
7926 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
7927 return ada_value_assign (arg1
, arg2
);
7930 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7931 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7932 if (noside
== EVAL_SKIP
)
7934 if ((ada_is_fixed_point_type (value_type (arg1
))
7935 || ada_is_fixed_point_type (value_type (arg2
)))
7936 && value_type (arg1
) != value_type (arg2
))
7937 error (_("Operands of fixed-point addition must have the same type"));
7938 return value_cast (value_type (arg1
), value_add (arg1
, arg2
));
7941 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7942 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7943 if (noside
== EVAL_SKIP
)
7945 if ((ada_is_fixed_point_type (value_type (arg1
))
7946 || ada_is_fixed_point_type (value_type (arg2
)))
7947 && value_type (arg1
) != value_type (arg2
))
7948 error (_("Operands of fixed-point subtraction must have the same type"));
7949 return value_cast (value_type (arg1
), value_sub (arg1
, arg2
));
7953 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7954 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7955 if (noside
== EVAL_SKIP
)
7957 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
7958 && (op
== BINOP_DIV
|| op
== BINOP_REM
|| op
== BINOP_MOD
))
7959 return value_zero (value_type (arg1
), not_lval
);
7962 if (ada_is_fixed_point_type (value_type (arg1
)))
7963 arg1
= cast_from_fixed_to_double (arg1
);
7964 if (ada_is_fixed_point_type (value_type (arg2
)))
7965 arg2
= cast_from_fixed_to_double (arg2
);
7966 return ada_value_binop (arg1
, arg2
, op
);
7971 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7972 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7973 if (noside
== EVAL_SKIP
)
7975 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
7976 && (op
== BINOP_DIV
|| op
== BINOP_REM
|| op
== BINOP_MOD
))
7977 return value_zero (value_type (arg1
), not_lval
);
7979 return ada_value_binop (arg1
, arg2
, op
);
7982 case BINOP_NOTEQUAL
:
7983 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7984 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
7985 if (noside
== EVAL_SKIP
)
7987 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7990 tem
= ada_value_equal (arg1
, arg2
);
7991 if (op
== BINOP_NOTEQUAL
)
7993 return value_from_longest (LA_BOOL_TYPE
, (LONGEST
) tem
);
7996 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7997 if (noside
== EVAL_SKIP
)
7999 else if (ada_is_fixed_point_type (value_type (arg1
)))
8000 return value_cast (value_type (arg1
), value_neg (arg1
));
8002 return value_neg (arg1
);
8006 if (noside
== EVAL_SKIP
)
8011 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
8012 /* Only encountered when an unresolved symbol occurs in a
8013 context other than a function call, in which case, it is
8015 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8016 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
8017 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8021 (to_static_fixed_type
8022 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
8028 unwrap_value (evaluate_subexp_standard
8029 (expect_type
, exp
, pos
, noside
));
8030 return ada_to_fixed_value (arg1
);
8036 /* Allocate arg vector, including space for the function to be
8037 called in argvec[0] and a terminating NULL. */
8038 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
8040 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
8042 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
8043 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
8044 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8045 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
8048 for (tem
= 0; tem
<= nargs
; tem
+= 1)
8049 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8052 if (noside
== EVAL_SKIP
)
8056 if (ada_is_packed_array_type (desc_base_type (value_type (argvec
[0]))))
8057 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
8058 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
8059 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
8060 && VALUE_LVAL (argvec
[0]) == lval_memory
))
8061 argvec
[0] = value_addr (argvec
[0]);
8063 type
= ada_check_typedef (value_type (argvec
[0]));
8064 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
8066 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
8068 case TYPE_CODE_FUNC
:
8069 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
8071 case TYPE_CODE_ARRAY
:
8073 case TYPE_CODE_STRUCT
:
8074 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
8075 argvec
[0] = ada_value_ind (argvec
[0]);
8076 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
8079 error (_("cannot subscript or call something of type `%s'"),
8080 ada_type_name (value_type (argvec
[0])));
8085 switch (TYPE_CODE (type
))
8087 case TYPE_CODE_FUNC
:
8088 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8089 return allocate_value (TYPE_TARGET_TYPE (type
));
8090 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
8091 case TYPE_CODE_STRUCT
:
8095 arity
= ada_array_arity (type
);
8096 type
= ada_array_element_type (type
, nargs
);
8098 error (_("cannot subscript or call a record"));
8100 error (_("wrong number of subscripts; expecting %d"), arity
);
8101 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8102 return allocate_value (ada_aligned_type (type
));
8104 unwrap_value (ada_value_subscript
8105 (argvec
[0], nargs
, argvec
+ 1));
8107 case TYPE_CODE_ARRAY
:
8108 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8110 type
= ada_array_element_type (type
, nargs
);
8112 error (_("element type of array unknown"));
8114 return allocate_value (ada_aligned_type (type
));
8117 unwrap_value (ada_value_subscript
8118 (ada_coerce_to_simple_array (argvec
[0]),
8119 nargs
, argvec
+ 1));
8120 case TYPE_CODE_PTR
: /* Pointer to array */
8121 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
8122 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8124 type
= ada_array_element_type (type
, nargs
);
8126 error (_("element type of array unknown"));
8128 return allocate_value (ada_aligned_type (type
));
8131 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
8132 nargs
, argvec
+ 1));
8135 error (_("Attempt to index or call something other than an "
8136 "array or function"));
8141 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8142 struct value
*low_bound_val
=
8143 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8144 struct value
*high_bound_val
=
8145 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8148 low_bound_val
= coerce_ref (low_bound_val
);
8149 high_bound_val
= coerce_ref (high_bound_val
);
8150 low_bound
= pos_atr (low_bound_val
);
8151 high_bound
= pos_atr (high_bound_val
);
8153 if (noside
== EVAL_SKIP
)
8156 /* If this is a reference to an aligner type, then remove all
8158 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
8159 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
8160 TYPE_TARGET_TYPE (value_type (array
)) =
8161 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
8163 if (ada_is_packed_array_type (value_type (array
)))
8164 error (_("cannot slice a packed array"));
8166 /* If this is a reference to an array or an array lvalue,
8167 convert to a pointer. */
8168 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
8169 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
8170 && VALUE_LVAL (array
) == lval_memory
))
8171 array
= value_addr (array
);
8173 if (noside
== EVAL_AVOID_SIDE_EFFECTS
8174 && ada_is_array_descriptor_type (ada_check_typedef
8175 (value_type (array
))))
8176 return empty_array (ada_type_of_array (array
, 0), low_bound
);
8178 array
= ada_coerce_to_simple_array_ptr (array
);
8180 /* If we have more than one level of pointer indirection,
8181 dereference the value until we get only one level. */
8182 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
8183 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
8185 array
= value_ind (array
);
8187 /* Make sure we really do have an array type before going further,
8188 to avoid a SEGV when trying to get the index type or the target
8189 type later down the road if the debug info generated by
8190 the compiler is incorrect or incomplete. */
8191 if (!ada_is_simple_array_type (value_type (array
)))
8192 error (_("cannot take slice of non-array"));
8194 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
)
8196 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8197 return empty_array (TYPE_TARGET_TYPE (value_type (array
)),
8201 struct type
*arr_type0
=
8202 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array
)),
8204 return ada_value_slice_ptr (array
, arr_type0
,
8205 longest_to_int (low_bound
),
8206 longest_to_int (high_bound
));
8209 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8211 else if (high_bound
< low_bound
)
8212 return empty_array (value_type (array
), low_bound
);
8214 return ada_value_slice (array
, longest_to_int (low_bound
),
8215 longest_to_int (high_bound
));
8220 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8221 type
= exp
->elts
[pc
+ 1].type
;
8223 if (noside
== EVAL_SKIP
)
8226 switch (TYPE_CODE (type
))
8229 lim_warning (_("Membership test incompletely implemented; "
8230 "always returns true"));
8231 return value_from_longest (builtin_type_int
, (LONGEST
) 1);
8233 case TYPE_CODE_RANGE
:
8234 arg2
= value_from_longest (builtin_type_int
, TYPE_LOW_BOUND (type
));
8235 arg3
= value_from_longest (builtin_type_int
,
8236 TYPE_HIGH_BOUND (type
));
8238 value_from_longest (builtin_type_int
,
8239 (value_less (arg1
, arg3
)
8240 || value_equal (arg1
, arg3
))
8241 && (value_less (arg2
, arg1
)
8242 || value_equal (arg2
, arg1
)));
8245 case BINOP_IN_BOUNDS
:
8247 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8248 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8250 if (noside
== EVAL_SKIP
)
8253 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8254 return value_zero (builtin_type_int
, not_lval
);
8256 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
8258 if (tem
< 1 || tem
> ada_array_arity (value_type (arg2
)))
8259 error (_("invalid dimension number to 'range"));
8261 arg3
= ada_array_bound (arg2
, tem
, 1);
8262 arg2
= ada_array_bound (arg2
, tem
, 0);
8265 value_from_longest (builtin_type_int
,
8266 (value_less (arg1
, arg3
)
8267 || value_equal (arg1
, arg3
))
8268 && (value_less (arg2
, arg1
)
8269 || value_equal (arg2
, arg1
)));
8271 case TERNOP_IN_RANGE
:
8272 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8273 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8274 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8276 if (noside
== EVAL_SKIP
)
8280 value_from_longest (builtin_type_int
,
8281 (value_less (arg1
, arg3
)
8282 || value_equal (arg1
, arg3
))
8283 && (value_less (arg2
, arg1
)
8284 || value_equal (arg2
, arg1
)));
8290 struct type
*type_arg
;
8291 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
8293 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
8295 type_arg
= exp
->elts
[pc
+ 2].type
;
8299 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8303 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
8304 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
8305 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
8308 if (noside
== EVAL_SKIP
)
8311 if (type_arg
== NULL
)
8313 arg1
= ada_coerce_ref (arg1
);
8315 if (ada_is_packed_array_type (value_type (arg1
)))
8316 arg1
= ada_coerce_to_simple_array (arg1
);
8318 if (tem
< 1 || tem
> ada_array_arity (value_type (arg1
)))
8319 error (_("invalid dimension number to '%s"),
8320 ada_attribute_name (op
));
8322 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8324 type
= ada_index_type (value_type (arg1
), tem
);
8327 (_("attempt to take bound of something that is not an array"));
8328 return allocate_value (type
);
8333 default: /* Should never happen. */
8334 error (_("unexpected attribute encountered"));
8336 return ada_array_bound (arg1
, tem
, 0);
8338 return ada_array_bound (arg1
, tem
, 1);
8340 return ada_array_length (arg1
, tem
);
8343 else if (discrete_type_p (type_arg
))
8345 struct type
*range_type
;
8346 char *name
= ada_type_name (type_arg
);
8348 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
8350 to_fixed_range_type (name
, NULL
, TYPE_OBJFILE (type_arg
));
8351 if (range_type
== NULL
)
8352 range_type
= type_arg
;
8356 error (_("unexpected attribute encountered"));
8358 return discrete_type_low_bound (range_type
);
8360 return discrete_type_high_bound (range_type
);
8362 error (_("the 'length attribute applies only to array types"));
8365 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
8366 error (_("unimplemented type attribute"));
8371 if (ada_is_packed_array_type (type_arg
))
8372 type_arg
= decode_packed_array_type (type_arg
);
8374 if (tem
< 1 || tem
> ada_array_arity (type_arg
))
8375 error (_("invalid dimension number to '%s"),
8376 ada_attribute_name (op
));
8378 type
= ada_index_type (type_arg
, tem
);
8381 (_("attempt to take bound of something that is not an array"));
8382 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8383 return allocate_value (type
);
8388 error (_("unexpected attribute encountered"));
8390 low
= ada_array_bound_from_type (type_arg
, tem
, 0, &type
);
8391 return value_from_longest (type
, low
);
8393 high
= ada_array_bound_from_type (type_arg
, tem
, 1, &type
);
8394 return value_from_longest (type
, high
);
8396 low
= ada_array_bound_from_type (type_arg
, tem
, 0, &type
);
8397 high
= ada_array_bound_from_type (type_arg
, tem
, 1, NULL
);
8398 return value_from_longest (type
, high
- low
+ 1);
8404 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8405 if (noside
== EVAL_SKIP
)
8408 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8409 return value_zero (ada_tag_type (arg1
), not_lval
);
8411 return ada_value_tag (arg1
);
8415 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
8416 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8417 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8418 if (noside
== EVAL_SKIP
)
8420 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8421 return value_zero (value_type (arg1
), not_lval
);
8423 return value_binop (arg1
, arg2
,
8424 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
8426 case OP_ATR_MODULUS
:
8428 struct type
*type_arg
= exp
->elts
[pc
+ 2].type
;
8429 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
8431 if (noside
== EVAL_SKIP
)
8434 if (!ada_is_modular_type (type_arg
))
8435 error (_("'modulus must be applied to modular type"));
8437 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
8438 ada_modulus (type_arg
));
8443 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
8444 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8445 if (noside
== EVAL_SKIP
)
8447 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8448 return value_zero (builtin_type_int
, not_lval
);
8450 return value_pos_atr (arg1
);
8453 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8454 if (noside
== EVAL_SKIP
)
8456 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8457 return value_zero (builtin_type_int
, not_lval
);
8459 return value_from_longest (builtin_type_int
,
8461 * TYPE_LENGTH (value_type (arg1
)));
8464 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
8465 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8466 type
= exp
->elts
[pc
+ 2].type
;
8467 if (noside
== EVAL_SKIP
)
8469 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8470 return value_zero (type
, not_lval
);
8472 return value_val_atr (type
, arg1
);
8475 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8476 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8477 if (noside
== EVAL_SKIP
)
8479 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8480 return value_zero (value_type (arg1
), not_lval
);
8482 return value_binop (arg1
, arg2
, op
);
8485 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8486 if (noside
== EVAL_SKIP
)
8492 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8493 if (noside
== EVAL_SKIP
)
8495 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
8496 return value_neg (arg1
);
8501 if (expect_type
&& TYPE_CODE (expect_type
) == TYPE_CODE_PTR
)
8502 expect_type
= TYPE_TARGET_TYPE (ada_check_typedef (expect_type
));
8503 arg1
= evaluate_subexp (expect_type
, exp
, pos
, noside
);
8504 if (noside
== EVAL_SKIP
)
8506 type
= ada_check_typedef (value_type (arg1
));
8507 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8509 if (ada_is_array_descriptor_type (type
))
8510 /* GDB allows dereferencing GNAT array descriptors. */
8512 struct type
*arrType
= ada_type_of_array (arg1
, 0);
8513 if (arrType
== NULL
)
8514 error (_("Attempt to dereference null array pointer."));
8515 return value_at_lazy (arrType
, 0);
8517 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
8518 || TYPE_CODE (type
) == TYPE_CODE_REF
8519 /* In C you can dereference an array to get the 1st elt. */
8520 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8522 type
= to_static_fixed_type
8524 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
8526 return value_zero (type
, lval_memory
);
8528 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
8529 /* GDB allows dereferencing an int. */
8530 return value_zero (builtin_type_int
, lval_memory
);
8532 error (_("Attempt to take contents of a non-pointer value."));
8534 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
8535 type
= ada_check_typedef (value_type (arg1
));
8537 if (ada_is_array_descriptor_type (type
))
8538 /* GDB allows dereferencing GNAT array descriptors. */
8539 return ada_coerce_to_simple_array (arg1
);
8541 return ada_value_ind (arg1
);
8543 case STRUCTOP_STRUCT
:
8544 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
8545 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
8546 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8547 if (noside
== EVAL_SKIP
)
8549 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8551 struct type
*type1
= value_type (arg1
);
8552 if (ada_is_tagged_type (type1
, 1))
8554 type
= ada_lookup_struct_elt_type (type1
,
8555 &exp
->elts
[pc
+ 2].string
,
8558 /* In this case, we assume that the field COULD exist
8559 in some extension of the type. Return an object of
8560 "type" void, which will match any formal
8561 (see ada_type_match). */
8562 return value_zero (builtin_type_void
, lval_memory
);
8566 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
8569 return value_zero (ada_aligned_type (type
), lval_memory
);
8573 ada_to_fixed_value (unwrap_value
8574 (ada_value_struct_elt
8575 (arg1
, &exp
->elts
[pc
+ 2].string
, 0)));
8577 /* The value is not supposed to be used. This is here to make it
8578 easier to accommodate expressions that contain types. */
8580 if (noside
== EVAL_SKIP
)
8582 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8583 return allocate_value (builtin_type_void
);
8585 error (_("Attempt to use a type name as an expression"));
8590 case OP_DISCRETE_RANGE
:
8593 if (noside
== EVAL_NORMAL
)
8597 error (_("Undefined name, ambiguous name, or renaming used in "
8598 "component association: %s."), &exp
->elts
[pc
+2].string
);
8600 error (_("Aggregates only allowed on the right of an assignment"));
8602 internal_error (__FILE__
, __LINE__
, _("aggregate apparently mangled"));
8605 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
8607 for (tem
= 0; tem
< nargs
; tem
+= 1)
8608 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
8613 return value_from_longest (builtin_type_long
, (LONGEST
) 1);
8619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8620 type name that encodes the 'small and 'delta information.
8621 Otherwise, return NULL. */
8624 fixed_type_info (struct type
*type
)
8626 const char *name
= ada_type_name (type
);
8627 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
8629 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
8631 const char *tail
= strstr (name
, "___XF_");
8637 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
8638 return fixed_type_info (TYPE_TARGET_TYPE (type
));
8643 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8646 ada_is_fixed_point_type (struct type
*type
)
8648 return fixed_type_info (type
) != NULL
;
8651 /* Return non-zero iff TYPE represents a System.Address type. */
8654 ada_is_system_address_type (struct type
*type
)
8656 return (TYPE_NAME (type
)
8657 && strcmp (TYPE_NAME (type
), "system__address") == 0);
8660 /* Assuming that TYPE is the representation of an Ada fixed-point
8661 type, return its delta, or -1 if the type is malformed and the
8662 delta cannot be determined. */
8665 ada_delta (struct type
*type
)
8667 const char *encoding
= fixed_type_info (type
);
8670 if (sscanf (encoding
, "_%ld_%ld", &num
, &den
) < 2)
8673 return (DOUBLEST
) num
/ (DOUBLEST
) den
;
8676 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8677 factor ('SMALL value) associated with the type. */
8680 scaling_factor (struct type
*type
)
8682 const char *encoding
= fixed_type_info (type
);
8683 unsigned long num0
, den0
, num1
, den1
;
8686 n
= sscanf (encoding
, "_%lu_%lu_%lu_%lu", &num0
, &den0
, &num1
, &den1
);
8691 return (DOUBLEST
) num1
/ (DOUBLEST
) den1
;
8693 return (DOUBLEST
) num0
/ (DOUBLEST
) den0
;
8697 /* Assuming that X is the representation of a value of fixed-point
8698 type TYPE, return its floating-point equivalent. */
8701 ada_fixed_to_float (struct type
*type
, LONGEST x
)
8703 return (DOUBLEST
) x
*scaling_factor (type
);
8706 /* The representation of a fixed-point value of type TYPE
8707 corresponding to the value X. */
8710 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
8712 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
8716 /* VAX floating formats */
8718 /* Non-zero iff TYPE represents one of the special VAX floating-point
8722 ada_is_vax_floating_type (struct type
*type
)
8725 (ada_type_name (type
) == NULL
) ? 0 : strlen (ada_type_name (type
));
8728 && (TYPE_CODE (type
) == TYPE_CODE_INT
8729 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
8730 && strncmp (ada_type_name (type
) + name_len
- 6, "___XF", 5) == 0;
8733 /* The type of special VAX floating-point type this is, assuming
8734 ada_is_vax_floating_point. */
8737 ada_vax_float_type_suffix (struct type
*type
)
8739 return ada_type_name (type
)[strlen (ada_type_name (type
)) - 1];
8742 /* A value representing the special debugging function that outputs
8743 VAX floating-point values of the type represented by TYPE. Assumes
8744 ada_is_vax_floating_type (TYPE). */
8747 ada_vax_float_print_function (struct type
*type
)
8749 switch (ada_vax_float_type_suffix (type
))
8752 return get_var_value ("DEBUG_STRING_F", 0);
8754 return get_var_value ("DEBUG_STRING_D", 0);
8756 return get_var_value ("DEBUG_STRING_G", 0);
8758 error (_("invalid VAX floating-point type"));
8765 /* Scan STR beginning at position K for a discriminant name, and
8766 return the value of that discriminant field of DVAL in *PX. If
8767 PNEW_K is not null, put the position of the character beyond the
8768 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8769 not alter *PX and *PNEW_K if unsuccessful. */
8772 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
8775 static char *bound_buffer
= NULL
;
8776 static size_t bound_buffer_len
= 0;
8779 struct value
*bound_val
;
8781 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
8784 pend
= strstr (str
+ k
, "__");
8788 k
+= strlen (bound
);
8792 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
8793 bound
= bound_buffer
;
8794 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
8795 bound
[pend
- (str
+ k
)] = '\0';
8799 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
8800 if (bound_val
== NULL
)
8803 *px
= value_as_long (bound_val
);
8809 /* Value of variable named NAME in the current environment. If
8810 no such variable found, then if ERR_MSG is null, returns 0, and
8811 otherwise causes an error with message ERR_MSG. */
8813 static struct value
*
8814 get_var_value (char *name
, char *err_msg
)
8816 struct ada_symbol_info
*syms
;
8819 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
8824 if (err_msg
== NULL
)
8827 error (("%s"), err_msg
);
8830 return value_of_variable (syms
[0].sym
, syms
[0].block
);
8833 /* Value of integer variable named NAME in the current environment. If
8834 no such variable found, returns 0, and sets *FLAG to 0. If
8835 successful, sets *FLAG to 1. */
8838 get_int_var_value (char *name
, int *flag
)
8840 struct value
*var_val
= get_var_value (name
, 0);
8852 return value_as_long (var_val
);
8857 /* Return a range type whose base type is that of the range type named
8858 NAME in the current environment, and whose bounds are calculated
8859 from NAME according to the GNAT range encoding conventions.
8860 Extract discriminant values, if needed, from DVAL. If a new type
8861 must be created, allocate in OBJFILE's space. The bounds
8862 information, in general, is encoded in NAME, the base type given in
8863 the named range type. */
8865 static struct type
*
8866 to_fixed_range_type (char *name
, struct value
*dval
, struct objfile
*objfile
)
8868 struct type
*raw_type
= ada_find_any_type (name
);
8869 struct type
*base_type
;
8872 if (raw_type
== NULL
)
8873 base_type
= builtin_type_int
;
8874 else if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
8875 base_type
= TYPE_TARGET_TYPE (raw_type
);
8877 base_type
= raw_type
;
8879 subtype_info
= strstr (name
, "___XD");
8880 if (subtype_info
== NULL
)
8884 static char *name_buf
= NULL
;
8885 static size_t name_len
= 0;
8886 int prefix_len
= subtype_info
- name
;
8892 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
8893 strncpy (name_buf
, name
, prefix_len
);
8894 name_buf
[prefix_len
] = '\0';
8897 bounds_str
= strchr (subtype_info
, '_');
8900 if (*subtype_info
== 'L')
8902 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
8903 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
8905 if (bounds_str
[n
] == '_')
8907 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
8914 strcpy (name_buf
+ prefix_len
, "___L");
8915 L
= get_int_var_value (name_buf
, &ok
);
8918 lim_warning (_("Unknown lower bound, using 1."));
8923 if (*subtype_info
== 'U')
8925 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
8926 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
8932 strcpy (name_buf
+ prefix_len
, "___U");
8933 U
= get_int_var_value (name_buf
, &ok
);
8936 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
8941 if (objfile
== NULL
)
8942 objfile
= TYPE_OBJFILE (base_type
);
8943 type
= create_range_type (alloc_type (objfile
), base_type
, L
, U
);
8944 TYPE_NAME (type
) = name
;
8949 /* True iff NAME is the name of a range type. */
8952 ada_is_range_type_name (const char *name
)
8954 return (name
!= NULL
&& strstr (name
, "___XD"));
8960 /* True iff TYPE is an Ada modular type. */
8963 ada_is_modular_type (struct type
*type
)
8965 struct type
*subranged_type
= base_type (type
);
8967 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
8968 && TYPE_CODE (subranged_type
) != TYPE_CODE_ENUM
8969 && TYPE_UNSIGNED (subranged_type
));
8972 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8975 ada_modulus (struct type
* type
)
8977 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
8981 /* Information about operators given special treatment in functions
8983 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8985 #define ADA_OPERATORS \
8986 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8987 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8988 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8989 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8990 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8991 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8992 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8993 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8994 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8995 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8996 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8997 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8998 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8999 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9000 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9001 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9002 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9003 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9004 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9007 ada_operator_length (struct expression
*exp
, int pc
, int *oplenp
, int *argsp
)
9009 switch (exp
->elts
[pc
- 1].opcode
)
9012 operator_length_standard (exp
, pc
, oplenp
, argsp
);
9015 #define OP_DEFN(op, len, args, binop) \
9016 case op: *oplenp = len; *argsp = args; break;
9022 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
9027 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
9033 ada_op_name (enum exp_opcode opcode
)
9038 return op_name_standard (opcode
);
9040 #define OP_DEFN(op, len, args, binop) case op: return #op;
9045 return "OP_AGGREGATE";
9047 return "OP_CHOICES";
9053 /* As for operator_length, but assumes PC is pointing at the first
9054 element of the operator, and gives meaningful results only for the
9055 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9058 ada_forward_operator_length (struct expression
*exp
, int pc
,
9059 int *oplenp
, int *argsp
)
9061 switch (exp
->elts
[pc
].opcode
)
9064 *oplenp
= *argsp
= 0;
9067 #define OP_DEFN(op, len, args, binop) \
9068 case op: *oplenp = len; *argsp = args; break;
9074 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9079 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
9085 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9086 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
9094 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
9096 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
9101 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
9105 /* Ada attributes ('Foo). */
9112 case OP_ATR_MODULUS
:
9121 /* XXX: gdb_sprint_host_address, type_sprint */
9122 fprintf_filtered (stream
, _("Type @"));
9123 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
9124 fprintf_filtered (stream
, " (");
9125 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
9126 fprintf_filtered (stream
, ")");
9128 case BINOP_IN_BOUNDS
:
9129 fprintf_filtered (stream
, " (%d)",
9130 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
9132 case TERNOP_IN_RANGE
:
9137 case OP_DISCRETE_RANGE
:
9145 char *name
= &exp
->elts
[elt
+ 2].string
;
9146 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
9147 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
9152 return dump_subexp_body_standard (exp
, stream
, elt
);
9156 for (i
= 0; i
< nargs
; i
+= 1)
9157 elt
= dump_subexp (exp
, stream
, elt
);
9162 /* The Ada extension of print_subexp (q.v.). */
9165 ada_print_subexp (struct expression
*exp
, int *pos
,
9166 struct ui_file
*stream
, enum precedence prec
)
9168 int oplen
, nargs
, i
;
9170 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
9172 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
9179 print_subexp_standard (exp
, pos
, stream
, prec
);
9183 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
9186 case BINOP_IN_BOUNDS
:
9187 /* XXX: sprint_subexp */
9188 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9189 fputs_filtered (" in ", stream
);
9190 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9191 fputs_filtered ("'range", stream
);
9192 if (exp
->elts
[pc
+ 1].longconst
> 1)
9193 fprintf_filtered (stream
, "(%ld)",
9194 (long) exp
->elts
[pc
+ 1].longconst
);
9197 case TERNOP_IN_RANGE
:
9198 if (prec
>= PREC_EQUAL
)
9199 fputs_filtered ("(", stream
);
9200 /* XXX: sprint_subexp */
9201 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9202 fputs_filtered (" in ", stream
);
9203 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
9204 fputs_filtered (" .. ", stream
);
9205 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
9206 if (prec
>= PREC_EQUAL
)
9207 fputs_filtered (")", stream
);
9216 case OP_ATR_MODULUS
:
9221 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
9223 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
9224 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0);
9228 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9229 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
9233 for (tem
= 1; tem
< nargs
; tem
+= 1)
9235 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
9236 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
9238 fputs_filtered (")", stream
);
9243 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
9244 fputs_filtered ("'(", stream
);
9245 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
9246 fputs_filtered (")", stream
);
9250 /* XXX: sprint_subexp */
9251 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9252 fputs_filtered (" in ", stream
);
9253 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0);
9256 case OP_DISCRETE_RANGE
:
9257 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9258 fputs_filtered ("..", stream
);
9259 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9263 fputs_filtered ("others => ", stream
);
9264 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9268 for (i
= 0; i
< nargs
-1; i
+= 1)
9271 fputs_filtered ("|", stream
);
9272 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9274 fputs_filtered (" => ", stream
);
9275 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9279 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9283 fputs_filtered ("(", stream
);
9284 for (i
= 0; i
< nargs
; i
+= 1)
9287 fputs_filtered (", ", stream
);
9288 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
9290 fputs_filtered (")", stream
);
9295 /* Table mapping opcodes into strings for printing operators
9296 and precedences of the operators. */
9298 static const struct op_print ada_op_print_tab
[] = {
9299 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
9300 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
9301 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
9302 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
9303 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
9304 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
9305 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
9306 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
9307 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
9308 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
9309 {">", BINOP_GTR
, PREC_ORDER
, 0},
9310 {"<", BINOP_LESS
, PREC_ORDER
, 0},
9311 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
9312 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
9313 {"+", BINOP_ADD
, PREC_ADD
, 0},
9314 {"-", BINOP_SUB
, PREC_ADD
, 0},
9315 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
9316 {"*", BINOP_MUL
, PREC_MUL
, 0},
9317 {"/", BINOP_DIV
, PREC_MUL
, 0},
9318 {"rem", BINOP_REM
, PREC_MUL
, 0},
9319 {"mod", BINOP_MOD
, PREC_MUL
, 0},
9320 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
9321 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
9322 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
9323 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
9324 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
9325 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
9326 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
9327 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
9328 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
9329 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
9333 /* Fundamental Ada Types */
9335 /* Create a fundamental Ada type using default reasonable for the current
9338 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
9339 define fundamental types such as "int" or "double". Others (stabs or
9340 DWARF version 2, etc) do define fundamental types. For the formats which
9341 don't provide fundamental types, gdb can create such types using this
9344 FIXME: Some compilers distinguish explicitly signed integral types
9345 (signed short, signed int, signed long) from "regular" integral types
9346 (short, int, long) in the debugging information. There is some dis-
9347 agreement as to how useful this feature is. In particular, gcc does
9348 not support this. Also, only some debugging formats allow the
9349 distinction to be passed on to a debugger. For now, we always just
9350 use "short", "int", or "long" as the type name, for both the implicit
9351 and explicitly signed types. This also makes life easier for the
9352 gdb test suite since we don't have to account for the differences
9353 in output depending upon what the compiler and debugging format
9354 support. We will probably have to re-examine the issue when gdb
9355 starts taking it's fundamental type information directly from the
9356 debugging information supplied by the compiler. fnf@cygnus.com */
9358 static struct type
*
9359 ada_create_fundamental_type (struct objfile
*objfile
, int typeid)
9361 struct type
*type
= NULL
;
9366 /* FIXME: For now, if we are asked to produce a type not in this
9367 language, create the equivalent of a C integer type with the
9368 name "<?type?>". When all the dust settles from the type
9369 reconstruction work, this should probably become an error. */
9370 type
= init_type (TYPE_CODE_INT
,
9371 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9372 0, "<?type?>", objfile
);
9373 warning (_("internal error: no Ada fundamental type %d"), typeid);
9376 type
= init_type (TYPE_CODE_VOID
,
9377 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
9378 0, "void", objfile
);
9381 type
= init_type (TYPE_CODE_INT
,
9382 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
9383 0, "character", objfile
);
9385 case FT_SIGNED_CHAR
:
9386 type
= init_type (TYPE_CODE_INT
,
9387 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
9388 0, "signed char", objfile
);
9390 case FT_UNSIGNED_CHAR
:
9391 type
= init_type (TYPE_CODE_INT
,
9392 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
9393 TYPE_FLAG_UNSIGNED
, "unsigned char", objfile
);
9396 type
= init_type (TYPE_CODE_INT
,
9397 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
9398 0, "short_integer", objfile
);
9400 case FT_SIGNED_SHORT
:
9401 type
= init_type (TYPE_CODE_INT
,
9402 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
9403 0, "short_integer", objfile
);
9405 case FT_UNSIGNED_SHORT
:
9406 type
= init_type (TYPE_CODE_INT
,
9407 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
9408 TYPE_FLAG_UNSIGNED
, "unsigned short", objfile
);
9411 type
= init_type (TYPE_CODE_INT
,
9412 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9413 0, "integer", objfile
);
9415 case FT_SIGNED_INTEGER
:
9416 type
= init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/
9418 0, "integer", objfile
); /* FIXME -fnf */
9420 case FT_UNSIGNED_INTEGER
:
9421 type
= init_type (TYPE_CODE_INT
,
9422 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9423 TYPE_FLAG_UNSIGNED
, "unsigned int", objfile
);
9426 type
= init_type (TYPE_CODE_INT
,
9427 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
9428 0, "long_integer", objfile
);
9430 case FT_SIGNED_LONG
:
9431 type
= init_type (TYPE_CODE_INT
,
9432 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
9433 0, "long_integer", objfile
);
9435 case FT_UNSIGNED_LONG
:
9436 type
= init_type (TYPE_CODE_INT
,
9437 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
9438 TYPE_FLAG_UNSIGNED
, "unsigned long", objfile
);
9441 type
= init_type (TYPE_CODE_INT
,
9442 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
9443 0, "long_long_integer", objfile
);
9445 case FT_SIGNED_LONG_LONG
:
9446 type
= init_type (TYPE_CODE_INT
,
9447 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
9448 0, "long_long_integer", objfile
);
9450 case FT_UNSIGNED_LONG_LONG
:
9451 type
= init_type (TYPE_CODE_INT
,
9452 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
9453 TYPE_FLAG_UNSIGNED
, "unsigned long long", objfile
);
9456 type
= init_type (TYPE_CODE_FLT
,
9457 TARGET_FLOAT_BIT
/ TARGET_CHAR_BIT
,
9458 0, "float", objfile
);
9460 case FT_DBL_PREC_FLOAT
:
9461 type
= init_type (TYPE_CODE_FLT
,
9462 TARGET_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
9463 0, "long_float", objfile
);
9465 case FT_EXT_PREC_FLOAT
:
9466 type
= init_type (TYPE_CODE_FLT
,
9467 TARGET_LONG_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
9468 0, "long_long_float", objfile
);
9474 enum ada_primitive_types
{
9475 ada_primitive_type_int
,
9476 ada_primitive_type_long
,
9477 ada_primitive_type_short
,
9478 ada_primitive_type_char
,
9479 ada_primitive_type_float
,
9480 ada_primitive_type_double
,
9481 ada_primitive_type_void
,
9482 ada_primitive_type_long_long
,
9483 ada_primitive_type_long_double
,
9484 ada_primitive_type_natural
,
9485 ada_primitive_type_positive
,
9486 ada_primitive_type_system_address
,
9487 nr_ada_primitive_types
9491 ada_language_arch_info (struct gdbarch
*current_gdbarch
,
9492 struct language_arch_info
*lai
)
9494 const struct builtin_type
*builtin
= builtin_type (current_gdbarch
);
9495 lai
->primitive_type_vector
9496 = GDBARCH_OBSTACK_CALLOC (current_gdbarch
, nr_ada_primitive_types
+ 1,
9498 lai
->primitive_type_vector
[ada_primitive_type_int
] =
9499 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9500 0, "integer", (struct objfile
*) NULL
);
9501 lai
->primitive_type_vector
[ada_primitive_type_long
] =
9502 init_type (TYPE_CODE_INT
, TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
9503 0, "long_integer", (struct objfile
*) NULL
);
9504 lai
->primitive_type_vector
[ada_primitive_type_short
] =
9505 init_type (TYPE_CODE_INT
, TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
9506 0, "short_integer", (struct objfile
*) NULL
);
9507 lai
->string_char_type
=
9508 lai
->primitive_type_vector
[ada_primitive_type_char
] =
9509 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
9510 0, "character", (struct objfile
*) NULL
);
9511 lai
->primitive_type_vector
[ada_primitive_type_float
] =
9512 init_type (TYPE_CODE_FLT
, TARGET_FLOAT_BIT
/ TARGET_CHAR_BIT
,
9513 0, "float", (struct objfile
*) NULL
);
9514 lai
->primitive_type_vector
[ada_primitive_type_double
] =
9515 init_type (TYPE_CODE_FLT
, TARGET_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
9516 0, "long_float", (struct objfile
*) NULL
);
9517 lai
->primitive_type_vector
[ada_primitive_type_long_long
] =
9518 init_type (TYPE_CODE_INT
, TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
9519 0, "long_long_integer", (struct objfile
*) NULL
);
9520 lai
->primitive_type_vector
[ada_primitive_type_long_double
] =
9521 init_type (TYPE_CODE_FLT
, TARGET_LONG_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
9522 0, "long_long_float", (struct objfile
*) NULL
);
9523 lai
->primitive_type_vector
[ada_primitive_type_natural
] =
9524 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9525 0, "natural", (struct objfile
*) NULL
);
9526 lai
->primitive_type_vector
[ada_primitive_type_positive
] =
9527 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
9528 0, "positive", (struct objfile
*) NULL
);
9529 lai
->primitive_type_vector
[ada_primitive_type_void
] = builtin
->builtin_void
;
9531 lai
->primitive_type_vector
[ada_primitive_type_system_address
] =
9532 lookup_pointer_type (init_type (TYPE_CODE_VOID
, 1, 0, "void",
9533 (struct objfile
*) NULL
));
9534 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
9535 = "system__address";
9538 /* Language vector */
9540 /* Not really used, but needed in the ada_language_defn. */
9543 emit_char (int c
, struct ui_file
*stream
, int quoter
)
9545 ada_emit_char (c
, stream
, quoter
, 1);
9551 warnings_issued
= 0;
9552 return ada_parse ();
9555 static const struct exp_descriptor ada_exp_descriptor
= {
9557 ada_operator_length
,
9559 ada_dump_subexp_body
,
9563 const struct language_defn ada_language_defn
= {
9564 "ada", /* Language name */
9569 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
9570 that's not quite what this means. */
9572 &ada_exp_descriptor
,
9576 ada_printchar
, /* Print a character constant */
9577 ada_printstr
, /* Function to print string constant */
9578 emit_char
, /* Function to print single char (not used) */
9579 ada_create_fundamental_type
, /* Create fundamental type in this language */
9580 ada_print_type
, /* Print a type using appropriate syntax */
9581 ada_val_print
, /* Print a value using appropriate syntax */
9582 ada_value_print
, /* Print a top-level value */
9583 NULL
, /* Language specific skip_trampoline */
9584 NULL
, /* value_of_this */
9585 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
9586 basic_lookup_transparent_type
, /* lookup_transparent_type */
9587 ada_la_decode
, /* Language specific symbol demangler */
9588 NULL
, /* Language specific class_name_from_physname */
9589 ada_op_print_tab
, /* expression operators for printing */
9590 0, /* c-style arrays */
9591 1, /* String lower bound */
9593 ada_get_gdb_completer_word_break_characters
,
9594 ada_language_arch_info
,
9595 ada_print_array_index
,
9600 _initialize_ada_language (void)
9602 add_language (&ada_language_defn
);
9604 varsize_limit
= 65536;
9606 obstack_init (&symbol_list_obstack
);
9608 decoded_names_store
= htab_create_alloc
9609 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
9610 NULL
, xcalloc
, xfree
);