d1a39bcc4610c4e57028ec9800101e370a31e313
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb_byte *staging = NULL;
2572 int staging_len = 0;
2573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2574
2575 type = ada_check_typedef (type);
2576
2577 if (obj == NULL)
2578 src = valaddr + offset;
2579 else
2580 src = value_contents (obj) + offset;
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592 staging = (gdb_byte *) malloc (staging_len);
2593 make_cleanup (xfree, staging);
2594
2595 ada_unpack_from_contents (src, bit_offset, bit_size,
2596 staging, staging_len,
2597 is_big_endian, has_negatives (type),
2598 is_scalar);
2599 type = resolve_dynamic_type (type, staging, 0);
2600 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 {
2602 /* This happens when the length of the object is dynamic,
2603 and is actually smaller than the space reserved for it.
2604 For instance, in an array of variant records, the bit_size
2605 we're given is the array stride, which is constant and
2606 normally equal to the maximum size of its element.
2607 But, in reality, each element only actually spans a portion
2608 of that stride. */
2609 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 }
2611 }
2612
2613 if (obj == NULL)
2614 {
2615 v = allocate_value (type);
2616 src = valaddr + offset;
2617 }
2618 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619 {
2620 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2621 gdb_byte *buf;
2622
2623 v = value_at (type, value_address (obj) + offset);
2624 buf = (gdb_byte *) alloca (src_len);
2625 read_memory (value_address (v), buf, src_len);
2626 src = buf;
2627 }
2628 else
2629 {
2630 v = allocate_value (type);
2631 src = value_contents (obj) + offset;
2632 }
2633
2634 if (obj != NULL)
2635 {
2636 long new_offset = offset;
2637
2638 set_value_component_location (v, obj);
2639 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640 set_value_bitsize (v, bit_size);
2641 if (value_bitpos (v) >= HOST_CHAR_BIT)
2642 {
2643 ++new_offset;
2644 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645 }
2646 set_value_offset (v, new_offset);
2647
2648 /* Also set the parent value. This is needed when trying to
2649 assign a new value (in inferior memory). */
2650 set_value_parent (v, obj);
2651 }
2652 else
2653 set_value_bitsize (v, bit_size);
2654 unpacked = value_contents_writeable (v);
2655
2656 if (bit_size == 0)
2657 {
2658 memset (unpacked, 0, TYPE_LENGTH (type));
2659 do_cleanups (old_chain);
2660 return v;
2661 }
2662
2663 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2664 {
2665 /* Small short-cut: If we've unpacked the data into a buffer
2666 of the same size as TYPE's length, then we can reuse that,
2667 instead of doing the unpacking again. */
2668 memcpy (unpacked, staging, staging_len);
2669 }
2670 else
2671 ada_unpack_from_contents (src, bit_offset, bit_size,
2672 unpacked, TYPE_LENGTH (type),
2673 is_big_endian, has_negatives (type), is_scalar);
2674
2675 do_cleanups (old_chain);
2676 return v;
2677 }
2678
2679 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2681 not overlap. */
2682 static void
2683 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2684 int src_offset, int n, int bits_big_endian_p)
2685 {
2686 unsigned int accum, mask;
2687 int accum_bits, chunk_size;
2688
2689 target += targ_offset / HOST_CHAR_BIT;
2690 targ_offset %= HOST_CHAR_BIT;
2691 source += src_offset / HOST_CHAR_BIT;
2692 src_offset %= HOST_CHAR_BIT;
2693 if (bits_big_endian_p)
2694 {
2695 accum = (unsigned char) *source;
2696 source += 1;
2697 accum_bits = HOST_CHAR_BIT - src_offset;
2698
2699 while (n > 0)
2700 {
2701 int unused_right;
2702
2703 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704 accum_bits += HOST_CHAR_BIT;
2705 source += 1;
2706 chunk_size = HOST_CHAR_BIT - targ_offset;
2707 if (chunk_size > n)
2708 chunk_size = n;
2709 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710 mask = ((1 << chunk_size) - 1) << unused_right;
2711 *target =
2712 (*target & ~mask)
2713 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714 n -= chunk_size;
2715 accum_bits -= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
2719 }
2720 else
2721 {
2722 accum = (unsigned char) *source >> src_offset;
2723 source += 1;
2724 accum_bits = HOST_CHAR_BIT - src_offset;
2725
2726 while (n > 0)
2727 {
2728 accum = accum + ((unsigned char) *source << accum_bits);
2729 accum_bits += HOST_CHAR_BIT;
2730 source += 1;
2731 chunk_size = HOST_CHAR_BIT - targ_offset;
2732 if (chunk_size > n)
2733 chunk_size = n;
2734 mask = ((1 << chunk_size) - 1) << targ_offset;
2735 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736 n -= chunk_size;
2737 accum_bits -= chunk_size;
2738 accum >>= chunk_size;
2739 target += 1;
2740 targ_offset = 0;
2741 }
2742 }
2743 }
2744
2745 /* Store the contents of FROMVAL into the location of TOVAL.
2746 Return a new value with the location of TOVAL and contents of
2747 FROMVAL. Handles assignment into packed fields that have
2748 floating-point or non-scalar types. */
2749
2750 static struct value *
2751 ada_value_assign (struct value *toval, struct value *fromval)
2752 {
2753 struct type *type = value_type (toval);
2754 int bits = value_bitsize (toval);
2755
2756 toval = ada_coerce_ref (toval);
2757 fromval = ada_coerce_ref (fromval);
2758
2759 if (ada_is_direct_array_type (value_type (toval)))
2760 toval = ada_coerce_to_simple_array (toval);
2761 if (ada_is_direct_array_type (value_type (fromval)))
2762 fromval = ada_coerce_to_simple_array (fromval);
2763
2764 if (!deprecated_value_modifiable (toval))
2765 error (_("Left operand of assignment is not a modifiable lvalue."));
2766
2767 if (VALUE_LVAL (toval) == lval_memory
2768 && bits > 0
2769 && (TYPE_CODE (type) == TYPE_CODE_FLT
2770 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2771 {
2772 int len = (value_bitpos (toval)
2773 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2774 int from_size;
2775 gdb_byte *buffer = (gdb_byte *) alloca (len);
2776 struct value *val;
2777 CORE_ADDR to_addr = value_address (toval);
2778
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 fromval = value_cast (type, fromval);
2781
2782 read_memory (to_addr, buffer, len);
2783 from_size = value_bitsize (fromval);
2784 if (from_size == 0)
2785 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2786 if (gdbarch_bits_big_endian (get_type_arch (type)))
2787 move_bits (buffer, value_bitpos (toval),
2788 value_contents (fromval), from_size - bits, bits, 1);
2789 else
2790 move_bits (buffer, value_bitpos (toval),
2791 value_contents (fromval), 0, bits, 0);
2792 write_memory_with_notification (to_addr, buffer, len);
2793
2794 val = value_copy (toval);
2795 memcpy (value_contents_raw (val), value_contents (fromval),
2796 TYPE_LENGTH (type));
2797 deprecated_set_value_type (val, type);
2798
2799 return val;
2800 }
2801
2802 return value_assign (toval, fromval);
2803 }
2804
2805
2806 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2809 COMPONENT, and not the inferior's memory. The current contents
2810 of COMPONENT are ignored.
2811
2812 Although not part of the initial design, this function also works
2813 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814 had a null address, and COMPONENT had an address which is equal to
2815 its offset inside CONTAINER. */
2816
2817 static void
2818 value_assign_to_component (struct value *container, struct value *component,
2819 struct value *val)
2820 {
2821 LONGEST offset_in_container =
2822 (LONGEST) (value_address (component) - value_address (container));
2823 int bit_offset_in_container =
2824 value_bitpos (component) - value_bitpos (container);
2825 int bits;
2826
2827 val = value_cast (value_type (component), val);
2828
2829 if (value_bitsize (component) == 0)
2830 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831 else
2832 bits = value_bitsize (component);
2833
2834 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2835 move_bits (value_contents_writeable (container) + offset_in_container,
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val),
2838 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2839 bits, 1);
2840 else
2841 move_bits (value_contents_writeable (container) + offset_in_container,
2842 value_bitpos (container) + bit_offset_in_container,
2843 value_contents (val), 0, bits, 0);
2844 }
2845
2846 /* The value of the element of array ARR at the ARITY indices given in IND.
2847 ARR may be either a simple array, GNAT array descriptor, or pointer
2848 thereto. */
2849
2850 struct value *
2851 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *elt;
2855 struct type *elt_type;
2856
2857 elt = ada_coerce_to_simple_array (arr);
2858
2859 elt_type = ada_check_typedef (value_type (elt));
2860 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2861 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862 return value_subscript_packed (elt, arity, ind);
2863
2864 for (k = 0; k < arity; k += 1)
2865 {
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867 error (_("too many subscripts (%d expected)"), k);
2868 elt = value_subscript (elt, pos_atr (ind[k]));
2869 }
2870 return elt;
2871 }
2872
2873 /* Assuming ARR is a pointer to a GDB array, the value of the element
2874 of *ARR at the ARITY indices given in IND.
2875 Does not read the entire array into memory.
2876
2877 Note: Unlike what one would expect, this function is used instead of
2878 ada_value_subscript for basically all non-packed array types. The reason
2879 for this is that a side effect of doing our own pointer arithmetics instead
2880 of relying on value_subscript is that there is no implicit typedef peeling.
2881 This is important for arrays of array accesses, where it allows us to
2882 preserve the fact that the array's element is an array access, where the
2883 access part os encoded in a typedef layer. */
2884
2885 static struct value *
2886 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2887 {
2888 int k;
2889 struct value *array_ind = ada_value_ind (arr);
2890 struct type *type
2891 = check_typedef (value_enclosing_type (array_ind));
2892
2893 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895 return value_subscript_packed (array_ind, arity, ind);
2896
2897 for (k = 0; k < arity; k += 1)
2898 {
2899 LONGEST lwb, upb;
2900 struct value *lwb_value;
2901
2902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2903 error (_("too many subscripts (%d expected)"), k);
2904 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2905 value_copy (arr));
2906 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2907 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2909 type = TYPE_TARGET_TYPE (type);
2910 }
2911
2912 return value_ind (arr);
2913 }
2914
2915 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2916 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2918 this array is LOW, as per Ada rules. */
2919 static struct value *
2920 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921 int low, int high)
2922 {
2923 struct type *type0 = ada_check_typedef (type);
2924 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2925 struct type *index_type
2926 = create_static_range_type (NULL, base_index_type, low, high);
2927 struct type *slice_type =
2928 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
2940
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2944 return value_at_lazy (slice_type, base);
2945 }
2946
2947
2948 static struct value *
2949 ada_value_slice (struct value *array, int low, int high)
2950 {
2951 struct type *type = ada_check_typedef (value_type (array));
2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2955 struct type *slice_type =
2956 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2957 LONGEST low_pos, high_pos;
2958
2959 if (!discrete_position (base_index_type, low, &low_pos)
2960 || !discrete_position (base_index_type, high, &high_pos))
2961 {
2962 warning (_("unable to get positions in slice, use bounds instead"));
2963 low_pos = low;
2964 high_pos = high;
2965 }
2966
2967 return value_cast (slice_type,
2968 value_slice (array, low, high_pos - low_pos + 1));
2969 }
2970
2971 /* If type is a record type in the form of a standard GNAT array
2972 descriptor, returns the number of dimensions for type. If arr is a
2973 simple array, returns the number of "array of"s that prefix its
2974 type designation. Otherwise, returns 0. */
2975
2976 int
2977 ada_array_arity (struct type *type)
2978 {
2979 int arity;
2980
2981 if (type == NULL)
2982 return 0;
2983
2984 type = desc_base_type (type);
2985
2986 arity = 0;
2987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2988 return desc_arity (desc_bounds_type (type));
2989 else
2990 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2991 {
2992 arity += 1;
2993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2994 }
2995
2996 return arity;
2997 }
2998
2999 /* If TYPE is a record type in the form of a standard GNAT array
3000 descriptor or a simple array type, returns the element type for
3001 TYPE after indexing by NINDICES indices, or by all indices if
3002 NINDICES is -1. Otherwise, returns NULL. */
3003
3004 struct type *
3005 ada_array_element_type (struct type *type, int nindices)
3006 {
3007 type = desc_base_type (type);
3008
3009 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3010 {
3011 int k;
3012 struct type *p_array_type;
3013
3014 p_array_type = desc_data_target_type (type);
3015
3016 k = ada_array_arity (type);
3017 if (k == 0)
3018 return NULL;
3019
3020 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3021 if (nindices >= 0 && k > nindices)
3022 k = nindices;
3023 while (k > 0 && p_array_type != NULL)
3024 {
3025 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3026 k -= 1;
3027 }
3028 return p_array_type;
3029 }
3030 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3033 {
3034 type = TYPE_TARGET_TYPE (type);
3035 nindices -= 1;
3036 }
3037 return type;
3038 }
3039
3040 return NULL;
3041 }
3042
3043 /* The type of nth index in arrays of given type (n numbering from 1).
3044 Does not examine memory. Throws an error if N is invalid or TYPE
3045 is not an array type. NAME is the name of the Ada attribute being
3046 evaluated ('range, 'first, 'last, or 'length); it is used in building
3047 the error message. */
3048
3049 static struct type *
3050 ada_index_type (struct type *type, int n, const char *name)
3051 {
3052 struct type *result_type;
3053
3054 type = desc_base_type (type);
3055
3056 if (n < 0 || n > ada_array_arity (type))
3057 error (_("invalid dimension number to '%s"), name);
3058
3059 if (ada_is_simple_array_type (type))
3060 {
3061 int i;
3062
3063 for (i = 1; i < n; i += 1)
3064 type = TYPE_TARGET_TYPE (type);
3065 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3066 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3068 perhaps stabsread.c would make more sense. */
3069 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070 result_type = NULL;
3071 }
3072 else
3073 {
3074 result_type = desc_index_type (desc_bounds_type (type), n);
3075 if (result_type == NULL)
3076 error (_("attempt to take bound of something that is not an array"));
3077 }
3078
3079 return result_type;
3080 }
3081
3082 /* Given that arr is an array type, returns the lower bound of the
3083 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3084 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3085 array-descriptor type. It works for other arrays with bounds supplied
3086 by run-time quantities other than discriminants. */
3087
3088 static LONGEST
3089 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3090 {
3091 struct type *type, *index_type_desc, *index_type;
3092 int i;
3093
3094 gdb_assert (which == 0 || which == 1);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 arr_type = decode_constrained_packed_array_type (arr_type);
3098
3099 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3100 return (LONGEST) - which;
3101
3102 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103 type = TYPE_TARGET_TYPE (arr_type);
3104 else
3105 type = arr_type;
3106
3107 if (TYPE_FIXED_INSTANCE (type))
3108 {
3109 /* The array has already been fixed, so we do not need to
3110 check the parallel ___XA type again. That encoding has
3111 already been applied, so ignore it now. */
3112 index_type_desc = NULL;
3113 }
3114 else
3115 {
3116 index_type_desc = ada_find_parallel_type (type, "___XA");
3117 ada_fixup_array_indexes_type (index_type_desc);
3118 }
3119
3120 if (index_type_desc != NULL)
3121 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 NULL);
3123 else
3124 {
3125 struct type *elt_type = check_typedef (type);
3126
3127 for (i = 1; i < n; i++)
3128 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129
3130 index_type = TYPE_INDEX_TYPE (elt_type);
3131 }
3132
3133 return
3134 (LONGEST) (which == 0
3135 ? ada_discrete_type_low_bound (index_type)
3136 : ada_discrete_type_high_bound (index_type));
3137 }
3138
3139 /* Given that arr is an array value, returns the lower bound of the
3140 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141 WHICH is 1. This routine will also work for arrays with bounds
3142 supplied by run-time quantities other than discriminants. */
3143
3144 static LONGEST
3145 ada_array_bound (struct value *arr, int n, int which)
3146 {
3147 struct type *arr_type;
3148
3149 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150 arr = value_ind (arr);
3151 arr_type = value_enclosing_type (arr);
3152
3153 if (ada_is_constrained_packed_array_type (arr_type))
3154 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3155 else if (ada_is_simple_array_type (arr_type))
3156 return ada_array_bound_from_type (arr_type, n, which);
3157 else
3158 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3159 }
3160
3161 /* Given that arr is an array value, returns the length of the
3162 nth index. This routine will also work for arrays with bounds
3163 supplied by run-time quantities other than discriminants.
3164 Does not work for arrays indexed by enumeration types with representation
3165 clauses at the moment. */
3166
3167 static LONGEST
3168 ada_array_length (struct value *arr, int n)
3169 {
3170 struct type *arr_type, *index_type;
3171 int low, high;
3172
3173 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174 arr = value_ind (arr);
3175 arr_type = value_enclosing_type (arr);
3176
3177 if (ada_is_constrained_packed_array_type (arr_type))
3178 return ada_array_length (decode_constrained_packed_array (arr), n);
3179
3180 if (ada_is_simple_array_type (arr_type))
3181 {
3182 low = ada_array_bound_from_type (arr_type, n, 0);
3183 high = ada_array_bound_from_type (arr_type, n, 1);
3184 }
3185 else
3186 {
3187 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189 }
3190
3191 arr_type = check_typedef (arr_type);
3192 index_type = TYPE_INDEX_TYPE (arr_type);
3193 if (index_type != NULL)
3194 {
3195 struct type *base_type;
3196 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 base_type = TYPE_TARGET_TYPE (index_type);
3198 else
3199 base_type = index_type;
3200
3201 low = pos_atr (value_from_longest (base_type, low));
3202 high = pos_atr (value_from_longest (base_type, high));
3203 }
3204 return high - low + 1;
3205 }
3206
3207 /* An empty array whose type is that of ARR_TYPE (an array type),
3208 with bounds LOW to LOW-1. */
3209
3210 static struct value *
3211 empty_array (struct type *arr_type, int low)
3212 {
3213 struct type *arr_type0 = ada_check_typedef (arr_type);
3214 struct type *index_type
3215 = create_static_range_type
3216 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3217 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3218
3219 return allocate_value (create_array_type (NULL, elt_type, index_type));
3220 }
3221 \f
3222
3223 /* Name resolution */
3224
3225 /* The "decoded" name for the user-definable Ada operator corresponding
3226 to OP. */
3227
3228 static const char *
3229 ada_decoded_op_name (enum exp_opcode op)
3230 {
3231 int i;
3232
3233 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3234 {
3235 if (ada_opname_table[i].op == op)
3236 return ada_opname_table[i].decoded;
3237 }
3238 error (_("Could not find operator name for opcode"));
3239 }
3240
3241
3242 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244 undefined namespace) and converts operators that are
3245 user-defined into appropriate function calls. If CONTEXT_TYPE is
3246 non-null, it provides a preferred result type [at the moment, only
3247 type void has any effect---causing procedures to be preferred over
3248 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3249 return type is preferred. May change (expand) *EXP. */
3250
3251 static void
3252 resolve (struct expression **expp, int void_context_p)
3253 {
3254 struct type *context_type = NULL;
3255 int pc = 0;
3256
3257 if (void_context_p)
3258 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259
3260 resolve_subexp (expp, &pc, 1, context_type);
3261 }
3262
3263 /* Resolve the operator of the subexpression beginning at
3264 position *POS of *EXPP. "Resolving" consists of replacing
3265 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266 with their resolutions, replacing built-in operators with
3267 function calls to user-defined operators, where appropriate, and,
3268 when DEPROCEDURE_P is non-zero, converting function-valued variables
3269 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3270 are as in ada_resolve, above. */
3271
3272 static struct value *
3273 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3274 struct type *context_type)
3275 {
3276 int pc = *pos;
3277 int i;
3278 struct expression *exp; /* Convenience: == *expp. */
3279 enum exp_opcode op = (*expp)->elts[pc].opcode;
3280 struct value **argvec; /* Vector of operand types (alloca'ed). */
3281 int nargs; /* Number of operands. */
3282 int oplen;
3283
3284 argvec = NULL;
3285 nargs = 0;
3286 exp = *expp;
3287
3288 /* Pass one: resolve operands, saving their types and updating *pos,
3289 if needed. */
3290 switch (op)
3291 {
3292 case OP_FUNCALL:
3293 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3294 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295 *pos += 7;
3296 else
3297 {
3298 *pos += 3;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 }
3301 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3302 break;
3303
3304 case UNOP_ADDR:
3305 *pos += 1;
3306 resolve_subexp (expp, pos, 0, NULL);
3307 break;
3308
3309 case UNOP_QUAL:
3310 *pos += 3;
3311 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3312 break;
3313
3314 case OP_ATR_MODULUS:
3315 case OP_ATR_SIZE:
3316 case OP_ATR_TAG:
3317 case OP_ATR_FIRST:
3318 case OP_ATR_LAST:
3319 case OP_ATR_LENGTH:
3320 case OP_ATR_POS:
3321 case OP_ATR_VAL:
3322 case OP_ATR_MIN:
3323 case OP_ATR_MAX:
3324 case TERNOP_IN_RANGE:
3325 case BINOP_IN_BOUNDS:
3326 case UNOP_IN_RANGE:
3327 case OP_AGGREGATE:
3328 case OP_OTHERS:
3329 case OP_CHOICES:
3330 case OP_POSITIONAL:
3331 case OP_DISCRETE_RANGE:
3332 case OP_NAME:
3333 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334 *pos += oplen;
3335 break;
3336
3337 case BINOP_ASSIGN:
3338 {
3339 struct value *arg1;
3340
3341 *pos += 1;
3342 arg1 = resolve_subexp (expp, pos, 0, NULL);
3343 if (arg1 == NULL)
3344 resolve_subexp (expp, pos, 1, NULL);
3345 else
3346 resolve_subexp (expp, pos, 1, value_type (arg1));
3347 break;
3348 }
3349
3350 case UNOP_CAST:
3351 *pos += 3;
3352 nargs = 1;
3353 break;
3354
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 case BINOP_REM:
3360 case BINOP_MOD:
3361 case BINOP_EXP:
3362 case BINOP_CONCAT:
3363 case BINOP_LOGICAL_AND:
3364 case BINOP_LOGICAL_OR:
3365 case BINOP_BITWISE_AND:
3366 case BINOP_BITWISE_IOR:
3367 case BINOP_BITWISE_XOR:
3368
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
3375
3376 case BINOP_REPEAT:
3377 case BINOP_SUBSCRIPT:
3378 case BINOP_COMMA:
3379 *pos += 1;
3380 nargs = 2;
3381 break;
3382
3383 case UNOP_NEG:
3384 case UNOP_PLUS:
3385 case UNOP_LOGICAL_NOT:
3386 case UNOP_ABS:
3387 case UNOP_IND:
3388 *pos += 1;
3389 nargs = 1;
3390 break;
3391
3392 case OP_LONG:
3393 case OP_DOUBLE:
3394 case OP_VAR_VALUE:
3395 *pos += 4;
3396 break;
3397
3398 case OP_TYPE:
3399 case OP_BOOL:
3400 case OP_LAST:
3401 case OP_INTERNALVAR:
3402 *pos += 3;
3403 break;
3404
3405 case UNOP_MEMVAL:
3406 *pos += 3;
3407 nargs = 1;
3408 break;
3409
3410 case OP_REGISTER:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 break;
3413
3414 case STRUCTOP_STRUCT:
3415 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 nargs = 1;
3417 break;
3418
3419 case TERNOP_SLICE:
3420 *pos += 1;
3421 nargs = 3;
3422 break;
3423
3424 case OP_STRING:
3425 break;
3426
3427 default:
3428 error (_("Unexpected operator during name resolution"));
3429 }
3430
3431 argvec = XALLOCAVEC (struct value *, nargs + 1);
3432 for (i = 0; i < nargs; i += 1)
3433 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434 argvec[i] = NULL;
3435 exp = *expp;
3436
3437 /* Pass two: perform any resolution on principal operator. */
3438 switch (op)
3439 {
3440 default:
3441 break;
3442
3443 case OP_VAR_VALUE:
3444 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3445 {
3446 struct block_symbol *candidates;
3447 int n_candidates;
3448
3449 n_candidates =
3450 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451 (exp->elts[pc + 2].symbol),
3452 exp->elts[pc + 1].block, VAR_DOMAIN,
3453 &candidates);
3454
3455 if (n_candidates > 1)
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 int j;
3461 for (j = 0; j < n_candidates; j += 1)
3462 switch (SYMBOL_CLASS (candidates[j].symbol))
3463 {
3464 case LOC_REGISTER:
3465 case LOC_ARG:
3466 case LOC_REF_ARG:
3467 case LOC_REGPARM_ADDR:
3468 case LOC_LOCAL:
3469 case LOC_COMPUTED:
3470 goto FoundNonType;
3471 default:
3472 break;
3473 }
3474 FoundNonType:
3475 if (j < n_candidates)
3476 {
3477 j = 0;
3478 while (j < n_candidates)
3479 {
3480 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3481 {
3482 candidates[j] = candidates[n_candidates - 1];
3483 n_candidates -= 1;
3484 }
3485 else
3486 j += 1;
3487 }
3488 }
3489 }
3490
3491 if (n_candidates == 0)
3492 error (_("No definition found for %s"),
3493 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494 else if (n_candidates == 1)
3495 i = 0;
3496 else if (deprocedure_p
3497 && !is_nonfunction (candidates, n_candidates))
3498 {
3499 i = ada_resolve_function
3500 (candidates, n_candidates, NULL, 0,
3501 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502 context_type);
3503 if (i < 0)
3504 error (_("Could not find a match for %s"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 }
3507 else
3508 {
3509 printf_filtered (_("Multiple matches for %s\n"),
3510 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511 user_select_syms (candidates, n_candidates, 1);
3512 i = 0;
3513 }
3514
3515 exp->elts[pc + 1].block = candidates[i].block;
3516 exp->elts[pc + 2].symbol = candidates[i].symbol;
3517 if (innermost_block == NULL
3518 || contained_in (candidates[i].block, innermost_block))
3519 innermost_block = candidates[i].block;
3520 }
3521
3522 if (deprocedure_p
3523 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524 == TYPE_CODE_FUNC))
3525 {
3526 replace_operator_with_call (expp, pc, 0, 0,
3527 exp->elts[pc + 2].symbol,
3528 exp->elts[pc + 1].block);
3529 exp = *expp;
3530 }
3531 break;
3532
3533 case OP_FUNCALL:
3534 {
3535 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3536 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3537 {
3538 struct block_symbol *candidates;
3539 int n_candidates;
3540
3541 n_candidates =
3542 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543 (exp->elts[pc + 5].symbol),
3544 exp->elts[pc + 4].block, VAR_DOMAIN,
3545 &candidates);
3546 if (n_candidates == 1)
3547 i = 0;
3548 else
3549 {
3550 i = ada_resolve_function
3551 (candidates, n_candidates,
3552 argvec, nargs,
3553 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554 context_type);
3555 if (i < 0)
3556 error (_("Could not find a match for %s"),
3557 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558 }
3559
3560 exp->elts[pc + 4].block = candidates[i].block;
3561 exp->elts[pc + 5].symbol = candidates[i].symbol;
3562 if (innermost_block == NULL
3563 || contained_in (candidates[i].block, innermost_block))
3564 innermost_block = candidates[i].block;
3565 }
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
3590 {
3591 struct block_symbol *candidates;
3592 int n_candidates;
3593
3594 n_candidates =
3595 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596 (struct block *) NULL, VAR_DOMAIN,
3597 &candidates);
3598 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3599 ada_decoded_op_name (op), NULL);
3600 if (i < 0)
3601 break;
3602
3603 replace_operator_with_call (expp, pc, nargs, 1,
3604 candidates[i].symbol,
3605 candidates[i].block);
3606 exp = *expp;
3607 }
3608 break;
3609
3610 case OP_TYPE:
3611 case OP_REGISTER:
3612 return NULL;
3613 }
3614
3615 *pos = pc;
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, char *annotation_suffix)
4044 {
4045 char *args;
4046 char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 set_value_address (val, addr);
4481 VALUE_LVAL (val) = lval_memory;
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return nonzero if wild matching should be used when searching for
4767 all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static int
4773 should_use_wild_match (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL);
4776 }
4777
4778 /* Return the result of a standard (literal, C-like) lookup of NAME in
4779 given DOMAIN, visible from lexical block BLOCK. */
4780
4781 static struct symbol *
4782 standard_lookup (const char *name, const struct block *block,
4783 domain_enum domain)
4784 {
4785 /* Initialize it just to avoid a GCC false warning. */
4786 struct block_symbol sym = {NULL, NULL};
4787
4788 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4789 return sym.symbol;
4790 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4791 cache_symbol (name, domain, sym.symbol, sym.block);
4792 return sym.symbol;
4793 }
4794
4795
4796 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4797 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4798 since they contend in overloading in the same way. */
4799 static int
4800 is_nonfunction (struct block_symbol syms[], int n)
4801 {
4802 int i;
4803
4804 for (i = 0; i < n; i += 1)
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4806 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4807 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4808 return 1;
4809
4810 return 0;
4811 }
4812
4813 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4814 struct types. Otherwise, they may not. */
4815
4816 static int
4817 equiv_types (struct type *type0, struct type *type1)
4818 {
4819 if (type0 == type1)
4820 return 1;
4821 if (type0 == NULL || type1 == NULL
4822 || TYPE_CODE (type0) != TYPE_CODE (type1))
4823 return 0;
4824 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4825 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4826 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4827 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4828 return 1;
4829
4830 return 0;
4831 }
4832
4833 /* True iff SYM0 represents the same entity as SYM1, or one that is
4834 no more defined than that of SYM1. */
4835
4836 static int
4837 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4838 {
4839 if (sym0 == sym1)
4840 return 1;
4841 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4842 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4843 return 0;
4844
4845 switch (SYMBOL_CLASS (sym0))
4846 {
4847 case LOC_UNDEF:
4848 return 1;
4849 case LOC_TYPEDEF:
4850 {
4851 struct type *type0 = SYMBOL_TYPE (sym0);
4852 struct type *type1 = SYMBOL_TYPE (sym1);
4853 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4854 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4855 int len0 = strlen (name0);
4856
4857 return
4858 TYPE_CODE (type0) == TYPE_CODE (type1)
4859 && (equiv_types (type0, type1)
4860 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4861 && startswith (name1 + len0, "___XV")));
4862 }
4863 case LOC_CONST:
4864 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4865 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4866 default:
4867 return 0;
4868 }
4869 }
4870
4871 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4872 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4873
4874 static void
4875 add_defn_to_vec (struct obstack *obstackp,
4876 struct symbol *sym,
4877 const struct block *block)
4878 {
4879 int i;
4880 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4881
4882 /* Do not try to complete stub types, as the debugger is probably
4883 already scanning all symbols matching a certain name at the
4884 time when this function is called. Trying to replace the stub
4885 type by its associated full type will cause us to restart a scan
4886 which may lead to an infinite recursion. Instead, the client
4887 collecting the matching symbols will end up collecting several
4888 matches, with at least one of them complete. It can then filter
4889 out the stub ones if needed. */
4890
4891 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4892 {
4893 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4894 return;
4895 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4896 {
4897 prevDefns[i].symbol = sym;
4898 prevDefns[i].block = block;
4899 return;
4900 }
4901 }
4902
4903 {
4904 struct block_symbol info;
4905
4906 info.symbol = sym;
4907 info.block = block;
4908 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4909 }
4910 }
4911
4912 /* Number of block_symbol structures currently collected in current vector in
4913 OBSTACKP. */
4914
4915 static int
4916 num_defns_collected (struct obstack *obstackp)
4917 {
4918 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4919 }
4920
4921 /* Vector of block_symbol structures currently collected in current vector in
4922 OBSTACKP. If FINISH, close off the vector and return its final address. */
4923
4924 static struct block_symbol *
4925 defns_collected (struct obstack *obstackp, int finish)
4926 {
4927 if (finish)
4928 return (struct block_symbol *) obstack_finish (obstackp);
4929 else
4930 return (struct block_symbol *) obstack_base (obstackp);
4931 }
4932
4933 /* Return a bound minimal symbol matching NAME according to Ada
4934 decoding rules. Returns an invalid symbol if there is no such
4935 minimal symbol. Names prefixed with "standard__" are handled
4936 specially: "standard__" is first stripped off, and only static and
4937 global symbols are searched. */
4938
4939 struct bound_minimal_symbol
4940 ada_lookup_simple_minsym (const char *name)
4941 {
4942 struct bound_minimal_symbol result;
4943 struct objfile *objfile;
4944 struct minimal_symbol *msymbol;
4945 const int wild_match_p = should_use_wild_match (name);
4946
4947 memset (&result, 0, sizeof (result));
4948
4949 /* Special case: If the user specifies a symbol name inside package
4950 Standard, do a non-wild matching of the symbol name without
4951 the "standard__" prefix. This was primarily introduced in order
4952 to allow the user to specifically access the standard exceptions
4953 using, for instance, Standard.Constraint_Error when Constraint_Error
4954 is ambiguous (due to the user defining its own Constraint_Error
4955 entity inside its program). */
4956 if (startswith (name, "standard__"))
4957 name += sizeof ("standard__") - 1;
4958
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
4968 }
4969
4970 return result;
4971 }
4972
4973 /* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4978
4979 static void
4980 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4981 const char *name, domain_enum domain,
4982 int wild_match_p)
4983 {
4984 }
4985
4986 /* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
4988
4989 static int
4990 is_nondebugging_type (struct type *type)
4991 {
4992 const char *name = ada_type_name (type);
4993
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995 }
4996
4997 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004 static int
5005 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006 {
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038 }
5039
5040 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060 static int
5061 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5062 {
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
5094 return 0;
5095
5096 return 1;
5097 }
5098
5099 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
5105
5106 static int
5107 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5108 {
5109 int i, j;
5110
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
5117 i = 0;
5118 while (i < nsyms)
5119 {
5120 int remove_p = 0;
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5135 remove_p = 1;
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5156 remove_p = 1;
5157 }
5158 }
5159
5160 if (remove_p)
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
5167 i += 1;
5168 }
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
5185 return nsyms;
5186 }
5187
5188 /* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
5192
5193 static char *
5194 xget_renaming_scope (struct type *renaming_type)
5195 {
5196 /* The renaming types adhere to the following convention:
5197 <scope>__<rename>___<XR extension>.
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
5200
5201 const char *name = type_name_no_tag (renaming_type);
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
5204 int scope_len;
5205 char *scope;
5206
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
5209
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
5213
5214 /* Make a copy of scope and return it. */
5215
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5218
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
5221
5222 return scope;
5223 }
5224
5225 /* Return nonzero if NAME corresponds to a package name. */
5226
5227 static int
5228 is_package_name (const char *name)
5229 {
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
5235
5236 char *fun_name;
5237
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
5242
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
5245
5246 /* Do a quick check that NAME does not contain "__", since library-level
5247 functions names cannot contain "__" in them. */
5248 if (strstr (name, "__") != NULL)
5249 return 0;
5250
5251 fun_name = xstrprintf ("_ada_%s", name);
5252
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254 }
5255
5256 /* Return nonzero if SYM corresponds to a renaming entity that is
5257 not visible from FUNCTION_NAME. */
5258
5259 static int
5260 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5261 {
5262 char *scope;
5263 struct cleanup *old_chain;
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5269 old_chain = make_cleanup (xfree, scope);
5270
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
5277
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
5280
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
5285 if (startswith (function_name, "_ada_"))
5286 function_name += 5;
5287
5288 {
5289 int is_invisible = !startswith (function_name, scope);
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
5294 }
5295
5296 /* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
5301
5302 Rationale:
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
5315
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
5332
5333 static int
5334 remove_irrelevant_renamings (struct block_symbol *syms,
5335 int nsyms, const struct block *current_block)
5336 {
5337 struct symbol *current_function;
5338 const char *current_function_name;
5339 int i;
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
5344 First, zero out such symbols, then compress. */
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
5348 struct symbol *sym = syms[i].symbol;
5349 const struct block *block = syms[i].block;
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5362
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5367 name_len) == 0
5368 && block == syms[j].block)
5369 syms[j].symbol = NULL;
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
5377 if (syms[j].symbol != NULL)
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
5387
5388 if (current_block == NULL)
5389 return nsyms;
5390
5391 current_function = block_linkage_function (current_block);
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5407 == ADA_OBJECT_RENAMING
5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5409 {
5410 int j;
5411
5412 for (j = i + 1; j < nsyms; j += 1)
5413 syms[j - 1] = syms[j];
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421 }
5422
5423 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433 static void
5434 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5435 const struct block *block, domain_enum domain,
5436 int wild_match_p)
5437 {
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
5443 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5444 wild_match_p);
5445
5446 /* If we found a non-function match, assume that's the one. */
5447 if (is_nonfunction (defns_collected (obstackp, 0),
5448 num_defns_collected (obstackp)))
5449 return;
5450
5451 block = BLOCK_SUPERBLOCK (block);
5452 }
5453
5454 /* If no luck so far, try to find NAME as a local symbol in some lexically
5455 enclosing subprogram. */
5456 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5457 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5458 }
5459
5460 /* An object of this type is used as the user_data argument when
5461 calling the map_matching_symbols method. */
5462
5463 struct match_data
5464 {
5465 struct objfile *objfile;
5466 struct obstack *obstackp;
5467 struct symbol *arg_sym;
5468 int found_sym;
5469 };
5470
5471 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5472 to a list of symbols. DATA0 is a pointer to a struct match_data *
5473 containing the obstack that collects the symbol list, the file that SYM
5474 must come from, a flag indicating whether a non-argument symbol has
5475 been found in the current block, and the last argument symbol
5476 passed in SYM within the current block (if any). When SYM is null,
5477 marking the end of a block, the argument symbol is added if no
5478 other has been found. */
5479
5480 static int
5481 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5482 {
5483 struct match_data *data = (struct match_data *) data0;
5484
5485 if (sym == NULL)
5486 {
5487 if (!data->found_sym && data->arg_sym != NULL)
5488 add_defn_to_vec (data->obstackp,
5489 fixup_symbol_section (data->arg_sym, data->objfile),
5490 block);
5491 data->found_sym = 0;
5492 data->arg_sym = NULL;
5493 }
5494 else
5495 {
5496 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5497 return 0;
5498 else if (SYMBOL_IS_ARGUMENT (sym))
5499 data->arg_sym = sym;
5500 else
5501 {
5502 data->found_sym = 1;
5503 add_defn_to_vec (data->obstackp,
5504 fixup_symbol_section (sym, data->objfile),
5505 block);
5506 }
5507 }
5508 return 0;
5509 }
5510
5511 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5512 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5513 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5514 function "wild_match" for more information). Return whether we found such
5515 symbols. */
5516
5517 static int
5518 ada_add_block_renamings (struct obstack *obstackp,
5519 const struct block *block,
5520 const char *name,
5521 domain_enum domain,
5522 int wild_match_p)
5523 {
5524 struct using_direct *renaming;
5525 int defns_mark = num_defns_collected (obstackp);
5526
5527 for (renaming = block_using (block);
5528 renaming != NULL;
5529 renaming = renaming->next)
5530 {
5531 const char *r_name;
5532 int name_match;
5533
5534 /* Avoid infinite recursions: skip this renaming if we are actually
5535 already traversing it.
5536
5537 Currently, symbol lookup in Ada don't use the namespace machinery from
5538 C++/Fortran support: skip namespace imports that use them. */
5539 if (renaming->searched
5540 || (renaming->import_src != NULL
5541 && renaming->import_src[0] != '\0')
5542 || (renaming->import_dest != NULL
5543 && renaming->import_dest[0] != '\0'))
5544 continue;
5545 renaming->searched = 1;
5546
5547 /* TODO: here, we perform another name-based symbol lookup, which can
5548 pull its own multiple overloads. In theory, we should be able to do
5549 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5550 not a simple name. But in order to do this, we would need to enhance
5551 the DWARF reader to associate a symbol to this renaming, instead of a
5552 name. So, for now, we do something simpler: re-use the C++/Fortran
5553 namespace machinery. */
5554 r_name = (renaming->alias != NULL
5555 ? renaming->alias
5556 : renaming->declaration);
5557 name_match
5558 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5559 if (name_match == 0)
5560 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5561 1, NULL);
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565 }
5566
5567 /* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5569
5570 static int
5571 compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
5573 {
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
5576 char c1, c2;
5577
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
5592 break;
5593
5594 string1 += 1;
5595 string2 += 1;
5596 }
5597
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
5605 if (is_name_suffix (string1))
5606 return 0;
5607 else
5608 return 1;
5609 }
5610 /* FALLTHROUGH */
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
5621 }
5622 }
5623
5624 /* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635 static int
5636 compare_names (const char *string1, const char *string2)
5637 {
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650 }
5651
5652 /* Add to OBSTACKP all non-local symbols whose name and domain match
5653 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5654 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5655
5656 static void
5657 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5658 domain_enum domain, int global,
5659 int is_wild_match)
5660 {
5661 struct objfile *objfile;
5662 struct compunit_symtab *cu;
5663 struct match_data data;
5664
5665 memset (&data, 0, sizeof data);
5666 data.obstackp = obstackp;
5667
5668 ALL_OBJFILES (objfile)
5669 {
5670 data.objfile = objfile;
5671
5672 if (is_wild_match)
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 wild_match, NULL);
5676 else
5677 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5678 aux_add_nonlocal_symbols, &data,
5679 full_match, compare_names);
5680
5681 ALL_OBJFILE_COMPUNITS (objfile, cu)
5682 {
5683 const struct block *global_block
5684 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5685
5686 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 is_wild_match))
5688 data.found_sym = 1;
5689 }
5690 }
5691
5692 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5693 {
5694 ALL_OBJFILES (objfile)
5695 {
5696 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5697 strcpy (name1, "_ada_");
5698 strcpy (name1 + sizeof ("_ada_") - 1, name);
5699 data.objfile = objfile;
5700 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5701 global,
5702 aux_add_nonlocal_symbols,
5703 &data,
5704 full_match, compare_names);
5705 }
5706 }
5707 }
5708
5709 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5710 non-zero, enclosing scope and in global scopes, returning the number of
5711 matches. Add these to OBSTACKP.
5712
5713 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5714 symbol match within the nest of blocks whose innermost member is BLOCK,
5715 is the one match returned (no other matches in that or
5716 enclosing blocks is returned). If there are any matches in or
5717 surrounding BLOCK, then these alone are returned.
5718
5719 Names prefixed with "standard__" are handled specially: "standard__"
5720 is first stripped off, and only static and global symbols are searched.
5721
5722 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5723 to lookup global symbols. */
5724
5725 static void
5726 ada_add_all_symbols (struct obstack *obstackp,
5727 const struct block *block,
5728 const char *name,
5729 domain_enum domain,
5730 int full_search,
5731 int *made_global_lookup_p)
5732 {
5733 struct symbol *sym;
5734 const int wild_match_p = should_use_wild_match (name);
5735
5736 if (made_global_lookup_p)
5737 *made_global_lookup_p = 0;
5738
5739 /* Special case: If the user specifies a symbol name inside package
5740 Standard, do a non-wild matching of the symbol name without
5741 the "standard__" prefix. This was primarily introduced in order
5742 to allow the user to specifically access the standard exceptions
5743 using, for instance, Standard.Constraint_Error when Constraint_Error
5744 is ambiguous (due to the user defining its own Constraint_Error
5745 entity inside its program). */
5746 if (startswith (name, "standard__"))
5747 {
5748 block = NULL;
5749 name = name + sizeof ("standard__") - 1;
5750 }
5751
5752 /* Check the non-global symbols. If we have ANY match, then we're done. */
5753
5754 if (block != NULL)
5755 {
5756 if (full_search)
5757 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5758 else
5759 {
5760 /* In the !full_search case we're are being called by
5761 ada_iterate_over_symbols, and we don't want to search
5762 superblocks. */
5763 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5764 wild_match_p);
5765 }
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
5768 }
5769
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
5774 if (lookup_cached_symbol (name, domain, &sym, &block))
5775 {
5776 if (sym != NULL)
5777 add_defn_to_vec (obstackp, sym, block);
5778 return;
5779 }
5780
5781 if (made_global_lookup_p)
5782 *made_global_lookup_p = 1;
5783
5784 /* Search symbols from all global blocks. */
5785
5786 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5787
5788 /* Now add symbols from all per-file blocks if we've gotten no hits
5789 (not strictly correct, but perhaps better than an error). */
5790
5791 if (num_defns_collected (obstackp) == 0)
5792 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5793 }
5794
5795 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5796 non-zero, enclosing scope and in global scopes, returning the number of
5797 matches.
5798 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5799 indicating the symbols found and the blocks and symbol tables (if
5800 any) in which they were found. This vector is transient---good only to
5801 the next call of ada_lookup_symbol_list.
5802
5803 When full_search is non-zero, any non-function/non-enumeral
5804 symbol match within the nest of blocks whose innermost member is BLOCK,
5805 is the one match returned (no other matches in that or
5806 enclosing blocks is returned). If there are any matches in or
5807 surrounding BLOCK, then these alone are returned.
5808
5809 Names prefixed with "standard__" are handled specially: "standard__"
5810 is first stripped off, and only static and global symbols are searched. */
5811
5812 static int
5813 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5814 domain_enum domain,
5815 struct block_symbol **results,
5816 int full_search)
5817 {
5818 const int wild_match_p = should_use_wild_match (name);
5819 int syms_from_global_search;
5820 int ndefns;
5821
5822 obstack_free (&symbol_list_obstack, NULL);
5823 obstack_init (&symbol_list_obstack);
5824 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5825 full_search, &syms_from_global_search);
5826
5827 ndefns = num_defns_collected (&symbol_list_obstack);
5828 *results = defns_collected (&symbol_list_obstack, 1);
5829
5830 ndefns = remove_extra_symbols (*results, ndefns);
5831
5832 if (ndefns == 0 && full_search && syms_from_global_search)
5833 cache_symbol (name, domain, NULL, NULL);
5834
5835 if (ndefns == 1 && full_search && syms_from_global_search)
5836 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5837
5838 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5839 return ndefns;
5840 }
5841
5842 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5843 in global scopes, returning the number of matches, and setting *RESULTS
5844 to a vector of (SYM,BLOCK) tuples.
5845 See ada_lookup_symbol_list_worker for further details. */
5846
5847 int
5848 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5849 domain_enum domain, struct block_symbol **results)
5850 {
5851 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5852 }
5853
5854 /* Implementation of the la_iterate_over_symbols method. */
5855
5856 static void
5857 ada_iterate_over_symbols (const struct block *block,
5858 const char *name, domain_enum domain,
5859 symbol_found_callback_ftype *callback,
5860 void *data)
5861 {
5862 int ndefs, i;
5863 struct block_symbol *results;
5864
5865 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5866 for (i = 0; i < ndefs; ++i)
5867 {
5868 if (! (*callback) (results[i].symbol, data))
5869 break;
5870 }
5871 }
5872
5873 /* If NAME is the name of an entity, return a string that should
5874 be used to look that entity up in Ada units. This string should
5875 be deallocated after use using xfree.
5876
5877 NAME can have any form that the "break" or "print" commands might
5878 recognize. In other words, it does not have to be the "natural"
5879 name, or the "encoded" name. */
5880
5881 char *
5882 ada_name_for_lookup (const char *name)
5883 {
5884 char *canon;
5885 int nlen = strlen (name);
5886
5887 if (name[0] == '<' && name[nlen - 1] == '>')
5888 {
5889 canon = (char *) xmalloc (nlen - 1);
5890 memcpy (canon, name + 1, nlen - 2);
5891 canon[nlen - 2] = '\0';
5892 }
5893 else
5894 canon = xstrdup (ada_encode (ada_fold_name (name)));
5895 return canon;
5896 }
5897
5898 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
5904
5905 void
5906 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5907 domain_enum domain,
5908 struct block_symbol *info)
5909 {
5910 struct block_symbol *candidates;
5911 int n_candidates;
5912
5913 gdb_assert (info != NULL);
5914 memset (info, 0, sizeof (struct block_symbol));
5915
5916 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5917 if (n_candidates == 0)
5918 return;
5919
5920 *info = candidates[0];
5921 info->symbol = fixup_symbol_section (info->symbol, NULL);
5922 }
5923
5924 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5925 scope and in global scopes, or NULL if none. NAME is folded and
5926 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5927 choosing the first symbol if there are multiple choices.
5928 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5929
5930 struct block_symbol
5931 ada_lookup_symbol (const char *name, const struct block *block0,
5932 domain_enum domain, int *is_a_field_of_this)
5933 {
5934 struct block_symbol info;
5935
5936 if (is_a_field_of_this != NULL)
5937 *is_a_field_of_this = 0;
5938
5939 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5940 block0, domain, &info);
5941 return info;
5942 }
5943
5944 static struct block_symbol
5945 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5946 const char *name,
5947 const struct block *block,
5948 const domain_enum domain)
5949 {
5950 struct block_symbol sym;
5951
5952 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5953 if (sym.symbol != NULL)
5954 return sym;
5955
5956 /* If we haven't found a match at this point, try the primitive
5957 types. In other languages, this search is performed before
5958 searching for global symbols in order to short-circuit that
5959 global-symbol search if it happens that the name corresponds
5960 to a primitive type. But we cannot do the same in Ada, because
5961 it is perfectly legitimate for a program to declare a type which
5962 has the same name as a standard type. If looking up a type in
5963 that situation, we have traditionally ignored the primitive type
5964 in favor of user-defined types. This is why, unlike most other
5965 languages, we search the primitive types this late and only after
5966 having searched the global symbols without success. */
5967
5968 if (domain == VAR_DOMAIN)
5969 {
5970 struct gdbarch *gdbarch;
5971
5972 if (block == NULL)
5973 gdbarch = target_gdbarch ();
5974 else
5975 gdbarch = block_gdbarch (block);
5976 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5977 if (sym.symbol != NULL)
5978 return sym;
5979 }
5980
5981 return (struct block_symbol) {NULL, NULL};
5982 }
5983
5984
5985 /* True iff STR is a possible encoded suffix of a normal Ada name
5986 that is to be ignored for matching purposes. Suffixes of parallel
5987 names (e.g., XVE) are not included here. Currently, the possible suffixes
5988 are given by any of the regular expressions:
5989
5990 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5991 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5992 TKB [subprogram suffix for task bodies]
5993 _E[0-9]+[bs]$ [protected object entry suffixes]
5994 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5995
5996 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5997 match is performed. This sequence is used to differentiate homonyms,
5998 is an optional part of a valid name suffix. */
5999
6000 static int
6001 is_name_suffix (const char *str)
6002 {
6003 int k;
6004 const char *matching;
6005 const int len = strlen (str);
6006
6007 /* Skip optional leading __[0-9]+. */
6008
6009 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6010 {
6011 str += 3;
6012 while (isdigit (str[0]))
6013 str += 1;
6014 }
6015
6016 /* [.$][0-9]+ */
6017
6018 if (str[0] == '.' || str[0] == '$')
6019 {
6020 matching = str + 1;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* ___[0-9]+ */
6028
6029 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6030 {
6031 matching = str + 3;
6032 while (isdigit (matching[0]))
6033 matching += 1;
6034 if (matching[0] == '\0')
6035 return 1;
6036 }
6037
6038 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6039
6040 if (strcmp (str, "TKB") == 0)
6041 return 1;
6042
6043 #if 0
6044 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6045 with a N at the end. Unfortunately, the compiler uses the same
6046 convention for other internal types it creates. So treating
6047 all entity names that end with an "N" as a name suffix causes
6048 some regressions. For instance, consider the case of an enumerated
6049 type. To support the 'Image attribute, it creates an array whose
6050 name ends with N.
6051 Having a single character like this as a suffix carrying some
6052 information is a bit risky. Perhaps we should change the encoding
6053 to be something like "_N" instead. In the meantime, do not do
6054 the following check. */
6055 /* Protected Object Subprograms */
6056 if (len == 1 && str [0] == 'N')
6057 return 1;
6058 #endif
6059
6060 /* _E[0-9]+[bs]$ */
6061 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6062 {
6063 matching = str + 3;
6064 while (isdigit (matching[0]))
6065 matching += 1;
6066 if ((matching[0] == 'b' || matching[0] == 's')
6067 && matching [1] == '\0')
6068 return 1;
6069 }
6070
6071 /* ??? We should not modify STR directly, as we are doing below. This
6072 is fine in this case, but may become problematic later if we find
6073 that this alternative did not work, and want to try matching
6074 another one from the begining of STR. Since we modified it, we
6075 won't be able to find the begining of the string anymore! */
6076 if (str[0] == 'X')
6077 {
6078 str += 1;
6079 while (str[0] != '_' && str[0] != '\0')
6080 {
6081 if (str[0] != 'n' && str[0] != 'b')
6082 return 0;
6083 str += 1;
6084 }
6085 }
6086
6087 if (str[0] == '\000')
6088 return 1;
6089
6090 if (str[0] == '_')
6091 {
6092 if (str[1] != '_' || str[2] == '\000')
6093 return 0;
6094 if (str[2] == '_')
6095 {
6096 if (strcmp (str + 3, "JM") == 0)
6097 return 1;
6098 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6099 the LJM suffix in favor of the JM one. But we will
6100 still accept LJM as a valid suffix for a reasonable
6101 amount of time, just to allow ourselves to debug programs
6102 compiled using an older version of GNAT. */
6103 if (strcmp (str + 3, "LJM") == 0)
6104 return 1;
6105 if (str[3] != 'X')
6106 return 0;
6107 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6108 || str[4] == 'U' || str[4] == 'P')
6109 return 1;
6110 if (str[4] == 'R' && str[5] != 'T')
6111 return 1;
6112 return 0;
6113 }
6114 if (!isdigit (str[2]))
6115 return 0;
6116 for (k = 3; str[k] != '\0'; k += 1)
6117 if (!isdigit (str[k]) && str[k] != '_')
6118 return 0;
6119 return 1;
6120 }
6121 if (str[0] == '$' && isdigit (str[1]))
6122 {
6123 for (k = 2; str[k] != '\0'; k += 1)
6124 if (!isdigit (str[k]) && str[k] != '_')
6125 return 0;
6126 return 1;
6127 }
6128 return 0;
6129 }
6130
6131 /* Return non-zero if the string starting at NAME and ending before
6132 NAME_END contains no capital letters. */
6133
6134 static int
6135 is_valid_name_for_wild_match (const char *name0)
6136 {
6137 const char *decoded_name = ada_decode (name0);
6138 int i;
6139
6140 /* If the decoded name starts with an angle bracket, it means that
6141 NAME0 does not follow the GNAT encoding format. It should then
6142 not be allowed as a possible wild match. */
6143 if (decoded_name[0] == '<')
6144 return 0;
6145
6146 for (i=0; decoded_name[i] != '\0'; i++)
6147 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6148 return 0;
6149
6150 return 1;
6151 }
6152
6153 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6154 that could start a simple name. Assumes that *NAMEP points into
6155 the string beginning at NAME0. */
6156
6157 static int
6158 advance_wild_match (const char **namep, const char *name0, int target0)
6159 {
6160 const char *name = *namep;
6161
6162 while (1)
6163 {
6164 int t0, t1;
6165
6166 t0 = *name;
6167 if (t0 == '_')
6168 {
6169 t1 = name[1];
6170 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6171 {
6172 name += 1;
6173 if (name == name0 + 5 && startswith (name0, "_ada"))
6174 break;
6175 else
6176 name += 1;
6177 }
6178 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6179 || name[2] == target0))
6180 {
6181 name += 2;
6182 break;
6183 }
6184 else
6185 return 0;
6186 }
6187 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6188 name += 1;
6189 else
6190 return 0;
6191 }
6192
6193 *namep = name;
6194 return 1;
6195 }
6196
6197 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6198 informational suffixes of NAME (i.e., for which is_name_suffix is
6199 true). Assumes that PATN is a lower-cased Ada simple name. */
6200
6201 static int
6202 wild_match (const char *name, const char *patn)
6203 {
6204 const char *p;
6205 const char *name0 = name;
6206
6207 while (1)
6208 {
6209 const char *match = name;
6210
6211 if (*name == *patn)
6212 {
6213 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6214 if (*p != *name)
6215 break;
6216 if (*p == '\0' && is_name_suffix (name))
6217 return match != name0 && !is_valid_name_for_wild_match (name0);
6218
6219 if (name[-1] == '_')
6220 name -= 1;
6221 }
6222 if (!advance_wild_match (&name, name0, *patn))
6223 return 1;
6224 }
6225 }
6226
6227 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6228 informational suffix. */
6229
6230 static int
6231 full_match (const char *sym_name, const char *search_name)
6232 {
6233 return !match_name (sym_name, search_name, 0);
6234 }
6235
6236
6237 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6238 vector *defn_symbols, updating the list of symbols in OBSTACKP
6239 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6240 OBJFILE is the section containing BLOCK. */
6241
6242 static void
6243 ada_add_block_symbols (struct obstack *obstackp,
6244 const struct block *block, const char *name,
6245 domain_enum domain, struct objfile *objfile,
6246 int wild)
6247 {
6248 struct block_iterator iter;
6249 int name_len = strlen (name);
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
6258 if (wild)
6259 {
6260 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6261 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6262 {
6263 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6264 SYMBOL_DOMAIN (sym), domain)
6265 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6266 {
6267 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6268 continue;
6269 else if (SYMBOL_IS_ARGUMENT (sym))
6270 arg_sym = sym;
6271 else
6272 {
6273 found_sym = 1;
6274 add_defn_to_vec (obstackp,
6275 fixup_symbol_section (sym, objfile),
6276 block);
6277 }
6278 }
6279 }
6280 }
6281 else
6282 {
6283 for (sym = block_iter_match_first (block, name, full_match, &iter);
6284 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6285 {
6286 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6287 SYMBOL_DOMAIN (sym), domain))
6288 {
6289 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6290 {
6291 if (SYMBOL_IS_ARGUMENT (sym))
6292 arg_sym = sym;
6293 else
6294 {
6295 found_sym = 1;
6296 add_defn_to_vec (obstackp,
6297 fixup_symbol_section (sym, objfile),
6298 block);
6299 }
6300 }
6301 }
6302 }
6303 }
6304
6305 /* Handle renamings. */
6306
6307 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6308 found_sym = 1;
6309
6310 if (!found_sym && arg_sym != NULL)
6311 {
6312 add_defn_to_vec (obstackp,
6313 fixup_symbol_section (arg_sym, objfile),
6314 block);
6315 }
6316
6317 if (!wild)
6318 {
6319 arg_sym = NULL;
6320 found_sym = 0;
6321
6322 ALL_BLOCK_SYMBOLS (block, iter, sym)
6323 {
6324 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6325 SYMBOL_DOMAIN (sym), domain))
6326 {
6327 int cmp;
6328
6329 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6330 if (cmp == 0)
6331 {
6332 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6333 if (cmp == 0)
6334 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6335 name_len);
6336 }
6337
6338 if (cmp == 0
6339 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6340 {
6341 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6342 {
6343 if (SYMBOL_IS_ARGUMENT (sym))
6344 arg_sym = sym;
6345 else
6346 {
6347 found_sym = 1;
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (sym, objfile),
6350 block);
6351 }
6352 }
6353 }
6354 }
6355 }
6356
6357 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6358 They aren't parameters, right? */
6359 if (!found_sym && arg_sym != NULL)
6360 {
6361 add_defn_to_vec (obstackp,
6362 fixup_symbol_section (arg_sym, objfile),
6363 block);
6364 }
6365 }
6366 }
6367 \f
6368
6369 /* Symbol Completion */
6370
6371 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6372 name in a form that's appropriate for the completion. The result
6373 does not need to be deallocated, but is only good until the next call.
6374
6375 TEXT_LEN is equal to the length of TEXT.
6376 Perform a wild match if WILD_MATCH_P is set.
6377 ENCODED_P should be set if TEXT represents the start of a symbol name
6378 in its encoded form. */
6379
6380 static const char *
6381 symbol_completion_match (const char *sym_name,
6382 const char *text, int text_len,
6383 int wild_match_p, int encoded_p)
6384 {
6385 const int verbatim_match = (text[0] == '<');
6386 int match = 0;
6387
6388 if (verbatim_match)
6389 {
6390 /* Strip the leading angle bracket. */
6391 text = text + 1;
6392 text_len--;
6393 }
6394
6395 /* First, test against the fully qualified name of the symbol. */
6396
6397 if (strncmp (sym_name, text, text_len) == 0)
6398 match = 1;
6399
6400 if (match && !encoded_p)
6401 {
6402 /* One needed check before declaring a positive match is to verify
6403 that iff we are doing a verbatim match, the decoded version
6404 of the symbol name starts with '<'. Otherwise, this symbol name
6405 is not a suitable completion. */
6406 const char *sym_name_copy = sym_name;
6407 int has_angle_bracket;
6408
6409 sym_name = ada_decode (sym_name);
6410 has_angle_bracket = (sym_name[0] == '<');
6411 match = (has_angle_bracket == verbatim_match);
6412 sym_name = sym_name_copy;
6413 }
6414
6415 if (match && !verbatim_match)
6416 {
6417 /* When doing non-verbatim match, another check that needs to
6418 be done is to verify that the potentially matching symbol name
6419 does not include capital letters, because the ada-mode would
6420 not be able to understand these symbol names without the
6421 angle bracket notation. */
6422 const char *tmp;
6423
6424 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6425 if (*tmp != '\0')
6426 match = 0;
6427 }
6428
6429 /* Second: Try wild matching... */
6430
6431 if (!match && wild_match_p)
6432 {
6433 /* Since we are doing wild matching, this means that TEXT
6434 may represent an unqualified symbol name. We therefore must
6435 also compare TEXT against the unqualified name of the symbol. */
6436 sym_name = ada_unqualified_name (ada_decode (sym_name));
6437
6438 if (strncmp (sym_name, text, text_len) == 0)
6439 match = 1;
6440 }
6441
6442 /* Finally: If we found a mach, prepare the result to return. */
6443
6444 if (!match)
6445 return NULL;
6446
6447 if (verbatim_match)
6448 sym_name = add_angle_brackets (sym_name);
6449
6450 if (!encoded_p)
6451 sym_name = ada_decode (sym_name);
6452
6453 return sym_name;
6454 }
6455
6456 /* A companion function to ada_make_symbol_completion_list().
6457 Check if SYM_NAME represents a symbol which name would be suitable
6458 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6459 it is appended at the end of the given string vector SV.
6460
6461 ORIG_TEXT is the string original string from the user command
6462 that needs to be completed. WORD is the entire command on which
6463 completion should be performed. These two parameters are used to
6464 determine which part of the symbol name should be added to the
6465 completion vector.
6466 if WILD_MATCH_P is set, then wild matching is performed.
6467 ENCODED_P should be set if TEXT represents a symbol name in its
6468 encoded formed (in which case the completion should also be
6469 encoded). */
6470
6471 static void
6472 symbol_completion_add (VEC(char_ptr) **sv,
6473 const char *sym_name,
6474 const char *text, int text_len,
6475 const char *orig_text, const char *word,
6476 int wild_match_p, int encoded_p)
6477 {
6478 const char *match = symbol_completion_match (sym_name, text, text_len,
6479 wild_match_p, encoded_p);
6480 char *completion;
6481
6482 if (match == NULL)
6483 return;
6484
6485 /* We found a match, so add the appropriate completion to the given
6486 string vector. */
6487
6488 if (word == orig_text)
6489 {
6490 completion = (char *) xmalloc (strlen (match) + 5);
6491 strcpy (completion, match);
6492 }
6493 else if (word > orig_text)
6494 {
6495 /* Return some portion of sym_name. */
6496 completion = (char *) xmalloc (strlen (match) + 5);
6497 strcpy (completion, match + (word - orig_text));
6498 }
6499 else
6500 {
6501 /* Return some of ORIG_TEXT plus sym_name. */
6502 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6503 strncpy (completion, word, orig_text - word);
6504 completion[orig_text - word] = '\0';
6505 strcat (completion, match);
6506 }
6507
6508 VEC_safe_push (char_ptr, *sv, completion);
6509 }
6510
6511 /* An object of this type is passed as the user_data argument to the
6512 expand_symtabs_matching method. */
6513 struct add_partial_datum
6514 {
6515 VEC(char_ptr) **completions;
6516 const char *text;
6517 int text_len;
6518 const char *text0;
6519 const char *word;
6520 int wild_match;
6521 int encoded;
6522 };
6523
6524 /* A callback for expand_symtabs_matching. */
6525
6526 static int
6527 ada_complete_symbol_matcher (const char *name, void *user_data)
6528 {
6529 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6530
6531 return symbol_completion_match (name, data->text, data->text_len,
6532 data->wild_match, data->encoded) != NULL;
6533 }
6534
6535 /* Return a list of possible symbol names completing TEXT0. WORD is
6536 the entire command on which completion is made. */
6537
6538 static VEC (char_ptr) *
6539 ada_make_symbol_completion_list (const char *text0, const char *word,
6540 enum type_code code)
6541 {
6542 char *text;
6543 int text_len;
6544 int wild_match_p;
6545 int encoded_p;
6546 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6547 struct symbol *sym;
6548 struct compunit_symtab *s;
6549 struct minimal_symbol *msymbol;
6550 struct objfile *objfile;
6551 const struct block *b, *surrounding_static_block = 0;
6552 int i;
6553 struct block_iterator iter;
6554 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6555
6556 gdb_assert (code == TYPE_CODE_UNDEF);
6557
6558 if (text0[0] == '<')
6559 {
6560 text = xstrdup (text0);
6561 make_cleanup (xfree, text);
6562 text_len = strlen (text);
6563 wild_match_p = 0;
6564 encoded_p = 1;
6565 }
6566 else
6567 {
6568 text = xstrdup (ada_encode (text0));
6569 make_cleanup (xfree, text);
6570 text_len = strlen (text);
6571 for (i = 0; i < text_len; i++)
6572 text[i] = tolower (text[i]);
6573
6574 encoded_p = (strstr (text0, "__") != NULL);
6575 /* If the name contains a ".", then the user is entering a fully
6576 qualified entity name, and the match must not be done in wild
6577 mode. Similarly, if the user wants to complete what looks like
6578 an encoded name, the match must not be done in wild mode. */
6579 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6580 }
6581
6582 /* First, look at the partial symtab symbols. */
6583 {
6584 struct add_partial_datum data;
6585
6586 data.completions = &completions;
6587 data.text = text;
6588 data.text_len = text_len;
6589 data.text0 = text0;
6590 data.word = word;
6591 data.wild_match = wild_match_p;
6592 data.encoded = encoded_p;
6593 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6594 ALL_DOMAIN, &data);
6595 }
6596
6597 /* At this point scan through the misc symbol vectors and add each
6598 symbol you find to the list. Eventually we want to ignore
6599 anything that isn't a text symbol (everything else will be
6600 handled by the psymtab code above). */
6601
6602 ALL_MSYMBOLS (objfile, msymbol)
6603 {
6604 QUIT;
6605 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6606 text, text_len, text0, word, wild_match_p,
6607 encoded_p);
6608 }
6609
6610 /* Search upwards from currently selected frame (so that we can
6611 complete on local vars. */
6612
6613 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6614 {
6615 if (!BLOCK_SUPERBLOCK (b))
6616 surrounding_static_block = b; /* For elmin of dups */
6617
6618 ALL_BLOCK_SYMBOLS (b, iter, sym)
6619 {
6620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6621 text, text_len, text0, word,
6622 wild_match_p, encoded_p);
6623 }
6624 }
6625
6626 /* Go through the symtabs and check the externs and statics for
6627 symbols which match. */
6628
6629 ALL_COMPUNITS (objfile, s)
6630 {
6631 QUIT;
6632 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6633 ALL_BLOCK_SYMBOLS (b, iter, sym)
6634 {
6635 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6636 text, text_len, text0, word,
6637 wild_match_p, encoded_p);
6638 }
6639 }
6640
6641 ALL_COMPUNITS (objfile, s)
6642 {
6643 QUIT;
6644 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6645 /* Don't do this block twice. */
6646 if (b == surrounding_static_block)
6647 continue;
6648 ALL_BLOCK_SYMBOLS (b, iter, sym)
6649 {
6650 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6651 text, text_len, text0, word,
6652 wild_match_p, encoded_p);
6653 }
6654 }
6655
6656 do_cleanups (old_chain);
6657 return completions;
6658 }
6659
6660 /* Field Access */
6661
6662 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6663 for tagged types. */
6664
6665 static int
6666 ada_is_dispatch_table_ptr_type (struct type *type)
6667 {
6668 const char *name;
6669
6670 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6671 return 0;
6672
6673 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6674 if (name == NULL)
6675 return 0;
6676
6677 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6678 }
6679
6680 /* Return non-zero if TYPE is an interface tag. */
6681
6682 static int
6683 ada_is_interface_tag (struct type *type)
6684 {
6685 const char *name = TYPE_NAME (type);
6686
6687 if (name == NULL)
6688 return 0;
6689
6690 return (strcmp (name, "ada__tags__interface_tag") == 0);
6691 }
6692
6693 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6694 to be invisible to users. */
6695
6696 int
6697 ada_is_ignored_field (struct type *type, int field_num)
6698 {
6699 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6700 return 1;
6701
6702 /* Check the name of that field. */
6703 {
6704 const char *name = TYPE_FIELD_NAME (type, field_num);
6705
6706 /* Anonymous field names should not be printed.
6707 brobecker/2007-02-20: I don't think this can actually happen
6708 but we don't want to print the value of annonymous fields anyway. */
6709 if (name == NULL)
6710 return 1;
6711
6712 /* Normally, fields whose name start with an underscore ("_")
6713 are fields that have been internally generated by the compiler,
6714 and thus should not be printed. The "_parent" field is special,
6715 however: This is a field internally generated by the compiler
6716 for tagged types, and it contains the components inherited from
6717 the parent type. This field should not be printed as is, but
6718 should not be ignored either. */
6719 if (name[0] == '_' && !startswith (name, "_parent"))
6720 return 1;
6721 }
6722
6723 /* If this is the dispatch table of a tagged type or an interface tag,
6724 then ignore. */
6725 if (ada_is_tagged_type (type, 1)
6726 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6727 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6728 return 1;
6729
6730 /* Not a special field, so it should not be ignored. */
6731 return 0;
6732 }
6733
6734 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6735 pointer or reference type whose ultimate target has a tag field. */
6736
6737 int
6738 ada_is_tagged_type (struct type *type, int refok)
6739 {
6740 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6741 }
6742
6743 /* True iff TYPE represents the type of X'Tag */
6744
6745 int
6746 ada_is_tag_type (struct type *type)
6747 {
6748 type = ada_check_typedef (type);
6749
6750 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6751 return 0;
6752 else
6753 {
6754 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6755
6756 return (name != NULL
6757 && strcmp (name, "ada__tags__dispatch_table") == 0);
6758 }
6759 }
6760
6761 /* The type of the tag on VAL. */
6762
6763 struct type *
6764 ada_tag_type (struct value *val)
6765 {
6766 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6767 }
6768
6769 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6770 retired at Ada 05). */
6771
6772 static int
6773 is_ada95_tag (struct value *tag)
6774 {
6775 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6776 }
6777
6778 /* The value of the tag on VAL. */
6779
6780 struct value *
6781 ada_value_tag (struct value *val)
6782 {
6783 return ada_value_struct_elt (val, "_tag", 0);
6784 }
6785
6786 /* The value of the tag on the object of type TYPE whose contents are
6787 saved at VALADDR, if it is non-null, or is at memory address
6788 ADDRESS. */
6789
6790 static struct value *
6791 value_tag_from_contents_and_address (struct type *type,
6792 const gdb_byte *valaddr,
6793 CORE_ADDR address)
6794 {
6795 int tag_byte_offset;
6796 struct type *tag_type;
6797
6798 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6799 NULL, NULL, NULL))
6800 {
6801 const gdb_byte *valaddr1 = ((valaddr == NULL)
6802 ? NULL
6803 : valaddr + tag_byte_offset);
6804 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6805
6806 return value_from_contents_and_address (tag_type, valaddr1, address1);
6807 }
6808 return NULL;
6809 }
6810
6811 static struct type *
6812 type_from_tag (struct value *tag)
6813 {
6814 const char *type_name = ada_tag_name (tag);
6815
6816 if (type_name != NULL)
6817 return ada_find_any_type (ada_encode (type_name));
6818 return NULL;
6819 }
6820
6821 /* Given a value OBJ of a tagged type, return a value of this
6822 type at the base address of the object. The base address, as
6823 defined in Ada.Tags, it is the address of the primary tag of
6824 the object, and therefore where the field values of its full
6825 view can be fetched. */
6826
6827 struct value *
6828 ada_tag_value_at_base_address (struct value *obj)
6829 {
6830 struct value *val;
6831 LONGEST offset_to_top = 0;
6832 struct type *ptr_type, *obj_type;
6833 struct value *tag;
6834 CORE_ADDR base_address;
6835
6836 obj_type = value_type (obj);
6837
6838 /* It is the responsability of the caller to deref pointers. */
6839
6840 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6841 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6842 return obj;
6843
6844 tag = ada_value_tag (obj);
6845 if (!tag)
6846 return obj;
6847
6848 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6849
6850 if (is_ada95_tag (tag))
6851 return obj;
6852
6853 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6854 ptr_type = lookup_pointer_type (ptr_type);
6855 val = value_cast (ptr_type, tag);
6856 if (!val)
6857 return obj;
6858
6859 /* It is perfectly possible that an exception be raised while
6860 trying to determine the base address, just like for the tag;
6861 see ada_tag_name for more details. We do not print the error
6862 message for the same reason. */
6863
6864 TRY
6865 {
6866 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6867 }
6868
6869 CATCH (e, RETURN_MASK_ERROR)
6870 {
6871 return obj;
6872 }
6873 END_CATCH
6874
6875 /* If offset is null, nothing to do. */
6876
6877 if (offset_to_top == 0)
6878 return obj;
6879
6880 /* -1 is a special case in Ada.Tags; however, what should be done
6881 is not quite clear from the documentation. So do nothing for
6882 now. */
6883
6884 if (offset_to_top == -1)
6885 return obj;
6886
6887 base_address = value_address (obj) - offset_to_top;
6888 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6889
6890 /* Make sure that we have a proper tag at the new address.
6891 Otherwise, offset_to_top is bogus (which can happen when
6892 the object is not initialized yet). */
6893
6894 if (!tag)
6895 return obj;
6896
6897 obj_type = type_from_tag (tag);
6898
6899 if (!obj_type)
6900 return obj;
6901
6902 return value_from_contents_and_address (obj_type, NULL, base_address);
6903 }
6904
6905 /* Return the "ada__tags__type_specific_data" type. */
6906
6907 static struct type *
6908 ada_get_tsd_type (struct inferior *inf)
6909 {
6910 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6911
6912 if (data->tsd_type == 0)
6913 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6914 return data->tsd_type;
6915 }
6916
6917 /* Return the TSD (type-specific data) associated to the given TAG.
6918 TAG is assumed to be the tag of a tagged-type entity.
6919
6920 May return NULL if we are unable to get the TSD. */
6921
6922 static struct value *
6923 ada_get_tsd_from_tag (struct value *tag)
6924 {
6925 struct value *val;
6926 struct type *type;
6927
6928 /* First option: The TSD is simply stored as a field of our TAG.
6929 Only older versions of GNAT would use this format, but we have
6930 to test it first, because there are no visible markers for
6931 the current approach except the absence of that field. */
6932
6933 val = ada_value_struct_elt (tag, "tsd", 1);
6934 if (val)
6935 return val;
6936
6937 /* Try the second representation for the dispatch table (in which
6938 there is no explicit 'tsd' field in the referent of the tag pointer,
6939 and instead the tsd pointer is stored just before the dispatch
6940 table. */
6941
6942 type = ada_get_tsd_type (current_inferior());
6943 if (type == NULL)
6944 return NULL;
6945 type = lookup_pointer_type (lookup_pointer_type (type));
6946 val = value_cast (type, tag);
6947 if (val == NULL)
6948 return NULL;
6949 return value_ind (value_ptradd (val, -1));
6950 }
6951
6952 /* Given the TSD of a tag (type-specific data), return a string
6953 containing the name of the associated type.
6954
6955 The returned value is good until the next call. May return NULL
6956 if we are unable to determine the tag name. */
6957
6958 static char *
6959 ada_tag_name_from_tsd (struct value *tsd)
6960 {
6961 static char name[1024];
6962 char *p;
6963 struct value *val;
6964
6965 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6966 if (val == NULL)
6967 return NULL;
6968 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6969 for (p = name; *p != '\0'; p += 1)
6970 if (isalpha (*p))
6971 *p = tolower (*p);
6972 return name;
6973 }
6974
6975 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6976 a C string.
6977
6978 Return NULL if the TAG is not an Ada tag, or if we were unable to
6979 determine the name of that tag. The result is good until the next
6980 call. */
6981
6982 const char *
6983 ada_tag_name (struct value *tag)
6984 {
6985 char *name = NULL;
6986
6987 if (!ada_is_tag_type (value_type (tag)))
6988 return NULL;
6989
6990 /* It is perfectly possible that an exception be raised while trying
6991 to determine the TAG's name, even under normal circumstances:
6992 The associated variable may be uninitialized or corrupted, for
6993 instance. We do not let any exception propagate past this point.
6994 instead we return NULL.
6995
6996 We also do not print the error message either (which often is very
6997 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6998 the caller print a more meaningful message if necessary. */
6999 TRY
7000 {
7001 struct value *tsd = ada_get_tsd_from_tag (tag);
7002
7003 if (tsd != NULL)
7004 name = ada_tag_name_from_tsd (tsd);
7005 }
7006 CATCH (e, RETURN_MASK_ERROR)
7007 {
7008 }
7009 END_CATCH
7010
7011 return name;
7012 }
7013
7014 /* The parent type of TYPE, or NULL if none. */
7015
7016 struct type *
7017 ada_parent_type (struct type *type)
7018 {
7019 int i;
7020
7021 type = ada_check_typedef (type);
7022
7023 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7024 return NULL;
7025
7026 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7027 if (ada_is_parent_field (type, i))
7028 {
7029 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7030
7031 /* If the _parent field is a pointer, then dereference it. */
7032 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7033 parent_type = TYPE_TARGET_TYPE (parent_type);
7034 /* If there is a parallel XVS type, get the actual base type. */
7035 parent_type = ada_get_base_type (parent_type);
7036
7037 return ada_check_typedef (parent_type);
7038 }
7039
7040 return NULL;
7041 }
7042
7043 /* True iff field number FIELD_NUM of structure type TYPE contains the
7044 parent-type (inherited) fields of a derived type. Assumes TYPE is
7045 a structure type with at least FIELD_NUM+1 fields. */
7046
7047 int
7048 ada_is_parent_field (struct type *type, int field_num)
7049 {
7050 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7051
7052 return (name != NULL
7053 && (startswith (name, "PARENT")
7054 || startswith (name, "_parent")));
7055 }
7056
7057 /* True iff field number FIELD_NUM of structure type TYPE is a
7058 transparent wrapper field (which should be silently traversed when doing
7059 field selection and flattened when printing). Assumes TYPE is a
7060 structure type with at least FIELD_NUM+1 fields. Such fields are always
7061 structures. */
7062
7063 int
7064 ada_is_wrapper_field (struct type *type, int field_num)
7065 {
7066 const char *name = TYPE_FIELD_NAME (type, field_num);
7067
7068 if (name != NULL && strcmp (name, "RETVAL") == 0)
7069 {
7070 /* This happens in functions with "out" or "in out" parameters
7071 which are passed by copy. For such functions, GNAT describes
7072 the function's return type as being a struct where the return
7073 value is in a field called RETVAL, and where the other "out"
7074 or "in out" parameters are fields of that struct. This is not
7075 a wrapper. */
7076 return 0;
7077 }
7078
7079 return (name != NULL
7080 && (startswith (name, "PARENT")
7081 || strcmp (name, "REP") == 0
7082 || startswith (name, "_parent")
7083 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7084 }
7085
7086 /* True iff field number FIELD_NUM of structure or union type TYPE
7087 is a variant wrapper. Assumes TYPE is a structure type with at least
7088 FIELD_NUM+1 fields. */
7089
7090 int
7091 ada_is_variant_part (struct type *type, int field_num)
7092 {
7093 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7094
7095 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7096 || (is_dynamic_field (type, field_num)
7097 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7098 == TYPE_CODE_UNION)));
7099 }
7100
7101 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7102 whose discriminants are contained in the record type OUTER_TYPE,
7103 returns the type of the controlling discriminant for the variant.
7104 May return NULL if the type could not be found. */
7105
7106 struct type *
7107 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7108 {
7109 char *name = ada_variant_discrim_name (var_type);
7110
7111 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7112 }
7113
7114 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7115 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7116 represents a 'when others' clause; otherwise 0. */
7117
7118 int
7119 ada_is_others_clause (struct type *type, int field_num)
7120 {
7121 const char *name = TYPE_FIELD_NAME (type, field_num);
7122
7123 return (name != NULL && name[0] == 'O');
7124 }
7125
7126 /* Assuming that TYPE0 is the type of the variant part of a record,
7127 returns the name of the discriminant controlling the variant.
7128 The value is valid until the next call to ada_variant_discrim_name. */
7129
7130 char *
7131 ada_variant_discrim_name (struct type *type0)
7132 {
7133 static char *result = NULL;
7134 static size_t result_len = 0;
7135 struct type *type;
7136 const char *name;
7137 const char *discrim_end;
7138 const char *discrim_start;
7139
7140 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7141 type = TYPE_TARGET_TYPE (type0);
7142 else
7143 type = type0;
7144
7145 name = ada_type_name (type);
7146
7147 if (name == NULL || name[0] == '\000')
7148 return "";
7149
7150 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7151 discrim_end -= 1)
7152 {
7153 if (startswith (discrim_end, "___XVN"))
7154 break;
7155 }
7156 if (discrim_end == name)
7157 return "";
7158
7159 for (discrim_start = discrim_end; discrim_start != name + 3;
7160 discrim_start -= 1)
7161 {
7162 if (discrim_start == name + 1)
7163 return "";
7164 if ((discrim_start > name + 3
7165 && startswith (discrim_start - 3, "___"))
7166 || discrim_start[-1] == '.')
7167 break;
7168 }
7169
7170 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7171 strncpy (result, discrim_start, discrim_end - discrim_start);
7172 result[discrim_end - discrim_start] = '\0';
7173 return result;
7174 }
7175
7176 /* Scan STR for a subtype-encoded number, beginning at position K.
7177 Put the position of the character just past the number scanned in
7178 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7179 Return 1 if there was a valid number at the given position, and 0
7180 otherwise. A "subtype-encoded" number consists of the absolute value
7181 in decimal, followed by the letter 'm' to indicate a negative number.
7182 Assumes 0m does not occur. */
7183
7184 int
7185 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7186 {
7187 ULONGEST RU;
7188
7189 if (!isdigit (str[k]))
7190 return 0;
7191
7192 /* Do it the hard way so as not to make any assumption about
7193 the relationship of unsigned long (%lu scan format code) and
7194 LONGEST. */
7195 RU = 0;
7196 while (isdigit (str[k]))
7197 {
7198 RU = RU * 10 + (str[k] - '0');
7199 k += 1;
7200 }
7201
7202 if (str[k] == 'm')
7203 {
7204 if (R != NULL)
7205 *R = (-(LONGEST) (RU - 1)) - 1;
7206 k += 1;
7207 }
7208 else if (R != NULL)
7209 *R = (LONGEST) RU;
7210
7211 /* NOTE on the above: Technically, C does not say what the results of
7212 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7213 number representable as a LONGEST (although either would probably work
7214 in most implementations). When RU>0, the locution in the then branch
7215 above is always equivalent to the negative of RU. */
7216
7217 if (new_k != NULL)
7218 *new_k = k;
7219 return 1;
7220 }
7221
7222 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7223 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7224 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7225
7226 int
7227 ada_in_variant (LONGEST val, struct type *type, int field_num)
7228 {
7229 const char *name = TYPE_FIELD_NAME (type, field_num);
7230 int p;
7231
7232 p = 0;
7233 while (1)
7234 {
7235 switch (name[p])
7236 {
7237 case '\0':
7238 return 0;
7239 case 'S':
7240 {
7241 LONGEST W;
7242
7243 if (!ada_scan_number (name, p + 1, &W, &p))
7244 return 0;
7245 if (val == W)
7246 return 1;
7247 break;
7248 }
7249 case 'R':
7250 {
7251 LONGEST L, U;
7252
7253 if (!ada_scan_number (name, p + 1, &L, &p)
7254 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7255 return 0;
7256 if (val >= L && val <= U)
7257 return 1;
7258 break;
7259 }
7260 case 'O':
7261 return 1;
7262 default:
7263 return 0;
7264 }
7265 }
7266 }
7267
7268 /* FIXME: Lots of redundancy below. Try to consolidate. */
7269
7270 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7271 ARG_TYPE, extract and return the value of one of its (non-static)
7272 fields. FIELDNO says which field. Differs from value_primitive_field
7273 only in that it can handle packed values of arbitrary type. */
7274
7275 static struct value *
7276 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7277 struct type *arg_type)
7278 {
7279 struct type *type;
7280
7281 arg_type = ada_check_typedef (arg_type);
7282 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7283
7284 /* Handle packed fields. */
7285
7286 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7287 {
7288 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7289 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7290
7291 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7292 offset + bit_pos / 8,
7293 bit_pos % 8, bit_size, type);
7294 }
7295 else
7296 return value_primitive_field (arg1, offset, fieldno, arg_type);
7297 }
7298
7299 /* Find field with name NAME in object of type TYPE. If found,
7300 set the following for each argument that is non-null:
7301 - *FIELD_TYPE_P to the field's type;
7302 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7303 an object of that type;
7304 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7305 - *BIT_SIZE_P to its size in bits if the field is packed, and
7306 0 otherwise;
7307 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7308 fields up to but not including the desired field, or by the total
7309 number of fields if not found. A NULL value of NAME never
7310 matches; the function just counts visible fields in this case.
7311
7312 Returns 1 if found, 0 otherwise. */
7313
7314 static int
7315 find_struct_field (const char *name, struct type *type, int offset,
7316 struct type **field_type_p,
7317 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7318 int *index_p)
7319 {
7320 int i;
7321
7322 type = ada_check_typedef (type);
7323
7324 if (field_type_p != NULL)
7325 *field_type_p = NULL;
7326 if (byte_offset_p != NULL)
7327 *byte_offset_p = 0;
7328 if (bit_offset_p != NULL)
7329 *bit_offset_p = 0;
7330 if (bit_size_p != NULL)
7331 *bit_size_p = 0;
7332
7333 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7334 {
7335 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7336 int fld_offset = offset + bit_pos / 8;
7337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7338
7339 if (t_field_name == NULL)
7340 continue;
7341
7342 else if (name != NULL && field_name_match (t_field_name, name))
7343 {
7344 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7345
7346 if (field_type_p != NULL)
7347 *field_type_p = TYPE_FIELD_TYPE (type, i);
7348 if (byte_offset_p != NULL)
7349 *byte_offset_p = fld_offset;
7350 if (bit_offset_p != NULL)
7351 *bit_offset_p = bit_pos % 8;
7352 if (bit_size_p != NULL)
7353 *bit_size_p = bit_size;
7354 return 1;
7355 }
7356 else if (ada_is_wrapper_field (type, i))
7357 {
7358 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7359 field_type_p, byte_offset_p, bit_offset_p,
7360 bit_size_p, index_p))
7361 return 1;
7362 }
7363 else if (ada_is_variant_part (type, i))
7364 {
7365 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7366 fixed type?? */
7367 int j;
7368 struct type *field_type
7369 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7370
7371 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7372 {
7373 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7374 fld_offset
7375 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7376 field_type_p, byte_offset_p,
7377 bit_offset_p, bit_size_p, index_p))
7378 return 1;
7379 }
7380 }
7381 else if (index_p != NULL)
7382 *index_p += 1;
7383 }
7384 return 0;
7385 }
7386
7387 /* Number of user-visible fields in record type TYPE. */
7388
7389 static int
7390 num_visible_fields (struct type *type)
7391 {
7392 int n;
7393
7394 n = 0;
7395 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7396 return n;
7397 }
7398
7399 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7400 and search in it assuming it has (class) type TYPE.
7401 If found, return value, else return NULL.
7402
7403 Searches recursively through wrapper fields (e.g., '_parent'). */
7404
7405 static struct value *
7406 ada_search_struct_field (const char *name, struct value *arg, int offset,
7407 struct type *type)
7408 {
7409 int i;
7410
7411 type = ada_check_typedef (type);
7412 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7413 {
7414 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7415
7416 if (t_field_name == NULL)
7417 continue;
7418
7419 else if (field_name_match (t_field_name, name))
7420 return ada_value_primitive_field (arg, offset, i, type);
7421
7422 else if (ada_is_wrapper_field (type, i))
7423 {
7424 struct value *v = /* Do not let indent join lines here. */
7425 ada_search_struct_field (name, arg,
7426 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7427 TYPE_FIELD_TYPE (type, i));
7428
7429 if (v != NULL)
7430 return v;
7431 }
7432
7433 else if (ada_is_variant_part (type, i))
7434 {
7435 /* PNH: Do we ever get here? See find_struct_field. */
7436 int j;
7437 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7438 i));
7439 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7440
7441 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7442 {
7443 struct value *v = ada_search_struct_field /* Force line
7444 break. */
7445 (name, arg,
7446 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7447 TYPE_FIELD_TYPE (field_type, j));
7448
7449 if (v != NULL)
7450 return v;
7451 }
7452 }
7453 }
7454 return NULL;
7455 }
7456
7457 static struct value *ada_index_struct_field_1 (int *, struct value *,
7458 int, struct type *);
7459
7460
7461 /* Return field #INDEX in ARG, where the index is that returned by
7462 * find_struct_field through its INDEX_P argument. Adjust the address
7463 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7464 * If found, return value, else return NULL. */
7465
7466 static struct value *
7467 ada_index_struct_field (int index, struct value *arg, int offset,
7468 struct type *type)
7469 {
7470 return ada_index_struct_field_1 (&index, arg, offset, type);
7471 }
7472
7473
7474 /* Auxiliary function for ada_index_struct_field. Like
7475 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7476 * *INDEX_P. */
7477
7478 static struct value *
7479 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7480 struct type *type)
7481 {
7482 int i;
7483 type = ada_check_typedef (type);
7484
7485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7486 {
7487 if (TYPE_FIELD_NAME (type, i) == NULL)
7488 continue;
7489 else if (ada_is_wrapper_field (type, i))
7490 {
7491 struct value *v = /* Do not let indent join lines here. */
7492 ada_index_struct_field_1 (index_p, arg,
7493 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7494 TYPE_FIELD_TYPE (type, i));
7495
7496 if (v != NULL)
7497 return v;
7498 }
7499
7500 else if (ada_is_variant_part (type, i))
7501 {
7502 /* PNH: Do we ever get here? See ada_search_struct_field,
7503 find_struct_field. */
7504 error (_("Cannot assign this kind of variant record"));
7505 }
7506 else if (*index_p == 0)
7507 return ada_value_primitive_field (arg, offset, i, type);
7508 else
7509 *index_p -= 1;
7510 }
7511 return NULL;
7512 }
7513
7514 /* Given ARG, a value of type (pointer or reference to a)*
7515 structure/union, extract the component named NAME from the ultimate
7516 target structure/union and return it as a value with its
7517 appropriate type.
7518
7519 The routine searches for NAME among all members of the structure itself
7520 and (recursively) among all members of any wrapper members
7521 (e.g., '_parent').
7522
7523 If NO_ERR, then simply return NULL in case of error, rather than
7524 calling error. */
7525
7526 struct value *
7527 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7528 {
7529 struct type *t, *t1;
7530 struct value *v;
7531
7532 v = NULL;
7533 t1 = t = ada_check_typedef (value_type (arg));
7534 if (TYPE_CODE (t) == TYPE_CODE_REF)
7535 {
7536 t1 = TYPE_TARGET_TYPE (t);
7537 if (t1 == NULL)
7538 goto BadValue;
7539 t1 = ada_check_typedef (t1);
7540 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7541 {
7542 arg = coerce_ref (arg);
7543 t = t1;
7544 }
7545 }
7546
7547 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7548 {
7549 t1 = TYPE_TARGET_TYPE (t);
7550 if (t1 == NULL)
7551 goto BadValue;
7552 t1 = ada_check_typedef (t1);
7553 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7554 {
7555 arg = value_ind (arg);
7556 t = t1;
7557 }
7558 else
7559 break;
7560 }
7561
7562 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7563 goto BadValue;
7564
7565 if (t1 == t)
7566 v = ada_search_struct_field (name, arg, 0, t);
7567 else
7568 {
7569 int bit_offset, bit_size, byte_offset;
7570 struct type *field_type;
7571 CORE_ADDR address;
7572
7573 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7574 address = value_address (ada_value_ind (arg));
7575 else
7576 address = value_address (ada_coerce_ref (arg));
7577
7578 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7579 if (find_struct_field (name, t1, 0,
7580 &field_type, &byte_offset, &bit_offset,
7581 &bit_size, NULL))
7582 {
7583 if (bit_size != 0)
7584 {
7585 if (TYPE_CODE (t) == TYPE_CODE_REF)
7586 arg = ada_coerce_ref (arg);
7587 else
7588 arg = ada_value_ind (arg);
7589 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7590 bit_offset, bit_size,
7591 field_type);
7592 }
7593 else
7594 v = value_at_lazy (field_type, address + byte_offset);
7595 }
7596 }
7597
7598 if (v != NULL || no_err)
7599 return v;
7600 else
7601 error (_("There is no member named %s."), name);
7602
7603 BadValue:
7604 if (no_err)
7605 return NULL;
7606 else
7607 error (_("Attempt to extract a component of "
7608 "a value that is not a record."));
7609 }
7610
7611 /* Return a string representation of type TYPE. Caller must free
7612 result. */
7613
7614 static char *
7615 type_as_string (struct type *type)
7616 {
7617 struct ui_file *tmp_stream = mem_fileopen ();
7618 struct cleanup *old_chain;
7619 char *str;
7620
7621 tmp_stream = mem_fileopen ();
7622 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7623
7624 type_print (type, "", tmp_stream, -1);
7625 str = ui_file_xstrdup (tmp_stream, NULL);
7626
7627 do_cleanups (old_chain);
7628 return str;
7629 }
7630
7631 /* Return a string representation of type TYPE, and install a cleanup
7632 that releases it. */
7633
7634 static char *
7635 type_as_string_and_cleanup (struct type *type)
7636 {
7637 char *str;
7638
7639 str = type_as_string (type);
7640 make_cleanup (xfree, str);
7641 return str;
7642 }
7643
7644 /* Given a type TYPE, look up the type of the component of type named NAME.
7645 If DISPP is non-null, add its byte displacement from the beginning of a
7646 structure (pointed to by a value) of type TYPE to *DISPP (does not
7647 work for packed fields).
7648
7649 Matches any field whose name has NAME as a prefix, possibly
7650 followed by "___".
7651
7652 TYPE can be either a struct or union. If REFOK, TYPE may also
7653 be a (pointer or reference)+ to a struct or union, and the
7654 ultimate target type will be searched.
7655
7656 Looks recursively into variant clauses and parent types.
7657
7658 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7659 TYPE is not a type of the right kind. */
7660
7661 static struct type *
7662 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7663 int noerr, int *dispp)
7664 {
7665 int i;
7666
7667 if (name == NULL)
7668 goto BadName;
7669
7670 if (refok && type != NULL)
7671 while (1)
7672 {
7673 type = ada_check_typedef (type);
7674 if (TYPE_CODE (type) != TYPE_CODE_PTR
7675 && TYPE_CODE (type) != TYPE_CODE_REF)
7676 break;
7677 type = TYPE_TARGET_TYPE (type);
7678 }
7679
7680 if (type == NULL
7681 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7682 && TYPE_CODE (type) != TYPE_CODE_UNION))
7683 {
7684 const char *type_str;
7685
7686 if (noerr)
7687 return NULL;
7688
7689 type_str = (type != NULL
7690 ? type_as_string_and_cleanup (type)
7691 : _("(null)"));
7692 error (_("Type %s is not a structure or union type"), type_str);
7693 }
7694
7695 type = to_static_fixed_type (type);
7696
7697 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7698 {
7699 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7700 struct type *t;
7701 int disp;
7702
7703 if (t_field_name == NULL)
7704 continue;
7705
7706 else if (field_name_match (t_field_name, name))
7707 {
7708 if (dispp != NULL)
7709 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7710 return TYPE_FIELD_TYPE (type, i);
7711 }
7712
7713 else if (ada_is_wrapper_field (type, i))
7714 {
7715 disp = 0;
7716 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7717 0, 1, &disp);
7718 if (t != NULL)
7719 {
7720 if (dispp != NULL)
7721 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7722 return t;
7723 }
7724 }
7725
7726 else if (ada_is_variant_part (type, i))
7727 {
7728 int j;
7729 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7730 i));
7731
7732 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7733 {
7734 /* FIXME pnh 2008/01/26: We check for a field that is
7735 NOT wrapped in a struct, since the compiler sometimes
7736 generates these for unchecked variant types. Revisit
7737 if the compiler changes this practice. */
7738 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7739 disp = 0;
7740 if (v_field_name != NULL
7741 && field_name_match (v_field_name, name))
7742 t = TYPE_FIELD_TYPE (field_type, j);
7743 else
7744 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7745 j),
7746 name, 0, 1, &disp);
7747
7748 if (t != NULL)
7749 {
7750 if (dispp != NULL)
7751 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7752 return t;
7753 }
7754 }
7755 }
7756
7757 }
7758
7759 BadName:
7760 if (!noerr)
7761 {
7762 const char *name_str = name != NULL ? name : _("<null>");
7763
7764 error (_("Type %s has no component named %s"),
7765 type_as_string_and_cleanup (type), name_str);
7766 }
7767
7768 return NULL;
7769 }
7770
7771 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7772 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7773 represents an unchecked union (that is, the variant part of a
7774 record that is named in an Unchecked_Union pragma). */
7775
7776 static int
7777 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7778 {
7779 char *discrim_name = ada_variant_discrim_name (var_type);
7780
7781 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7782 == NULL);
7783 }
7784
7785
7786 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7787 within a value of type OUTER_TYPE that is stored in GDB at
7788 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7789 numbering from 0) is applicable. Returns -1 if none are. */
7790
7791 int
7792 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7793 const gdb_byte *outer_valaddr)
7794 {
7795 int others_clause;
7796 int i;
7797 char *discrim_name = ada_variant_discrim_name (var_type);
7798 struct value *outer;
7799 struct value *discrim;
7800 LONGEST discrim_val;
7801
7802 /* Using plain value_from_contents_and_address here causes problems
7803 because we will end up trying to resolve a type that is currently
7804 being constructed. */
7805 outer = value_from_contents_and_address_unresolved (outer_type,
7806 outer_valaddr, 0);
7807 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7808 if (discrim == NULL)
7809 return -1;
7810 discrim_val = value_as_long (discrim);
7811
7812 others_clause = -1;
7813 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7814 {
7815 if (ada_is_others_clause (var_type, i))
7816 others_clause = i;
7817 else if (ada_in_variant (discrim_val, var_type, i))
7818 return i;
7819 }
7820
7821 return others_clause;
7822 }
7823 \f
7824
7825
7826 /* Dynamic-Sized Records */
7827
7828 /* Strategy: The type ostensibly attached to a value with dynamic size
7829 (i.e., a size that is not statically recorded in the debugging
7830 data) does not accurately reflect the size or layout of the value.
7831 Our strategy is to convert these values to values with accurate,
7832 conventional types that are constructed on the fly. */
7833
7834 /* There is a subtle and tricky problem here. In general, we cannot
7835 determine the size of dynamic records without its data. However,
7836 the 'struct value' data structure, which GDB uses to represent
7837 quantities in the inferior process (the target), requires the size
7838 of the type at the time of its allocation in order to reserve space
7839 for GDB's internal copy of the data. That's why the
7840 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7841 rather than struct value*s.
7842
7843 However, GDB's internal history variables ($1, $2, etc.) are
7844 struct value*s containing internal copies of the data that are not, in
7845 general, the same as the data at their corresponding addresses in
7846 the target. Fortunately, the types we give to these values are all
7847 conventional, fixed-size types (as per the strategy described
7848 above), so that we don't usually have to perform the
7849 'to_fixed_xxx_type' conversions to look at their values.
7850 Unfortunately, there is one exception: if one of the internal
7851 history variables is an array whose elements are unconstrained
7852 records, then we will need to create distinct fixed types for each
7853 element selected. */
7854
7855 /* The upshot of all of this is that many routines take a (type, host
7856 address, target address) triple as arguments to represent a value.
7857 The host address, if non-null, is supposed to contain an internal
7858 copy of the relevant data; otherwise, the program is to consult the
7859 target at the target address. */
7860
7861 /* Assuming that VAL0 represents a pointer value, the result of
7862 dereferencing it. Differs from value_ind in its treatment of
7863 dynamic-sized types. */
7864
7865 struct value *
7866 ada_value_ind (struct value *val0)
7867 {
7868 struct value *val = value_ind (val0);
7869
7870 if (ada_is_tagged_type (value_type (val), 0))
7871 val = ada_tag_value_at_base_address (val);
7872
7873 return ada_to_fixed_value (val);
7874 }
7875
7876 /* The value resulting from dereferencing any "reference to"
7877 qualifiers on VAL0. */
7878
7879 static struct value *
7880 ada_coerce_ref (struct value *val0)
7881 {
7882 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7883 {
7884 struct value *val = val0;
7885
7886 val = coerce_ref (val);
7887
7888 if (ada_is_tagged_type (value_type (val), 0))
7889 val = ada_tag_value_at_base_address (val);
7890
7891 return ada_to_fixed_value (val);
7892 }
7893 else
7894 return val0;
7895 }
7896
7897 /* Return OFF rounded upward if necessary to a multiple of
7898 ALIGNMENT (a power of 2). */
7899
7900 static unsigned int
7901 align_value (unsigned int off, unsigned int alignment)
7902 {
7903 return (off + alignment - 1) & ~(alignment - 1);
7904 }
7905
7906 /* Return the bit alignment required for field #F of template type TYPE. */
7907
7908 static unsigned int
7909 field_alignment (struct type *type, int f)
7910 {
7911 const char *name = TYPE_FIELD_NAME (type, f);
7912 int len;
7913 int align_offset;
7914
7915 /* The field name should never be null, unless the debugging information
7916 is somehow malformed. In this case, we assume the field does not
7917 require any alignment. */
7918 if (name == NULL)
7919 return 1;
7920
7921 len = strlen (name);
7922
7923 if (!isdigit (name[len - 1]))
7924 return 1;
7925
7926 if (isdigit (name[len - 2]))
7927 align_offset = len - 2;
7928 else
7929 align_offset = len - 1;
7930
7931 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7932 return TARGET_CHAR_BIT;
7933
7934 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7935 }
7936
7937 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7938
7939 static struct symbol *
7940 ada_find_any_type_symbol (const char *name)
7941 {
7942 struct symbol *sym;
7943
7944 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7945 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7946 return sym;
7947
7948 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7949 return sym;
7950 }
7951
7952 /* Find a type named NAME. Ignores ambiguity. This routine will look
7953 solely for types defined by debug info, it will not search the GDB
7954 primitive types. */
7955
7956 static struct type *
7957 ada_find_any_type (const char *name)
7958 {
7959 struct symbol *sym = ada_find_any_type_symbol (name);
7960
7961 if (sym != NULL)
7962 return SYMBOL_TYPE (sym);
7963
7964 return NULL;
7965 }
7966
7967 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7968 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7969 symbol, in which case it is returned. Otherwise, this looks for
7970 symbols whose name is that of NAME_SYM suffixed with "___XR".
7971 Return symbol if found, and NULL otherwise. */
7972
7973 struct symbol *
7974 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7975 {
7976 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7977 struct symbol *sym;
7978
7979 if (strstr (name, "___XR") != NULL)
7980 return name_sym;
7981
7982 sym = find_old_style_renaming_symbol (name, block);
7983
7984 if (sym != NULL)
7985 return sym;
7986
7987 /* Not right yet. FIXME pnh 7/20/2007. */
7988 sym = ada_find_any_type_symbol (name);
7989 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7990 return sym;
7991 else
7992 return NULL;
7993 }
7994
7995 static struct symbol *
7996 find_old_style_renaming_symbol (const char *name, const struct block *block)
7997 {
7998 const struct symbol *function_sym = block_linkage_function (block);
7999 char *rename;
8000
8001 if (function_sym != NULL)
8002 {
8003 /* If the symbol is defined inside a function, NAME is not fully
8004 qualified. This means we need to prepend the function name
8005 as well as adding the ``___XR'' suffix to build the name of
8006 the associated renaming symbol. */
8007 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8008 /* Function names sometimes contain suffixes used
8009 for instance to qualify nested subprograms. When building
8010 the XR type name, we need to make sure that this suffix is
8011 not included. So do not include any suffix in the function
8012 name length below. */
8013 int function_name_len = ada_name_prefix_len (function_name);
8014 const int rename_len = function_name_len + 2 /* "__" */
8015 + strlen (name) + 6 /* "___XR\0" */ ;
8016
8017 /* Strip the suffix if necessary. */
8018 ada_remove_trailing_digits (function_name, &function_name_len);
8019 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8020 ada_remove_Xbn_suffix (function_name, &function_name_len);
8021
8022 /* Library-level functions are a special case, as GNAT adds
8023 a ``_ada_'' prefix to the function name to avoid namespace
8024 pollution. However, the renaming symbols themselves do not
8025 have this prefix, so we need to skip this prefix if present. */
8026 if (function_name_len > 5 /* "_ada_" */
8027 && strstr (function_name, "_ada_") == function_name)
8028 {
8029 function_name += 5;
8030 function_name_len -= 5;
8031 }
8032
8033 rename = (char *) alloca (rename_len * sizeof (char));
8034 strncpy (rename, function_name, function_name_len);
8035 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8036 "__%s___XR", name);
8037 }
8038 else
8039 {
8040 const int rename_len = strlen (name) + 6;
8041
8042 rename = (char *) alloca (rename_len * sizeof (char));
8043 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8044 }
8045
8046 return ada_find_any_type_symbol (rename);
8047 }
8048
8049 /* Because of GNAT encoding conventions, several GDB symbols may match a
8050 given type name. If the type denoted by TYPE0 is to be preferred to
8051 that of TYPE1 for purposes of type printing, return non-zero;
8052 otherwise return 0. */
8053
8054 int
8055 ada_prefer_type (struct type *type0, struct type *type1)
8056 {
8057 if (type1 == NULL)
8058 return 1;
8059 else if (type0 == NULL)
8060 return 0;
8061 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8062 return 1;
8063 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8064 return 0;
8065 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8066 return 1;
8067 else if (ada_is_constrained_packed_array_type (type0))
8068 return 1;
8069 else if (ada_is_array_descriptor_type (type0)
8070 && !ada_is_array_descriptor_type (type1))
8071 return 1;
8072 else
8073 {
8074 const char *type0_name = type_name_no_tag (type0);
8075 const char *type1_name = type_name_no_tag (type1);
8076
8077 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8078 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8079 return 1;
8080 }
8081 return 0;
8082 }
8083
8084 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8085 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8086
8087 const char *
8088 ada_type_name (struct type *type)
8089 {
8090 if (type == NULL)
8091 return NULL;
8092 else if (TYPE_NAME (type) != NULL)
8093 return TYPE_NAME (type);
8094 else
8095 return TYPE_TAG_NAME (type);
8096 }
8097
8098 /* Search the list of "descriptive" types associated to TYPE for a type
8099 whose name is NAME. */
8100
8101 static struct type *
8102 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8103 {
8104 struct type *result, *tmp;
8105
8106 if (ada_ignore_descriptive_types_p)
8107 return NULL;
8108
8109 /* If there no descriptive-type info, then there is no parallel type
8110 to be found. */
8111 if (!HAVE_GNAT_AUX_INFO (type))
8112 return NULL;
8113
8114 result = TYPE_DESCRIPTIVE_TYPE (type);
8115 while (result != NULL)
8116 {
8117 const char *result_name = ada_type_name (result);
8118
8119 if (result_name == NULL)
8120 {
8121 warning (_("unexpected null name on descriptive type"));
8122 return NULL;
8123 }
8124
8125 /* If the names match, stop. */
8126 if (strcmp (result_name, name) == 0)
8127 break;
8128
8129 /* Otherwise, look at the next item on the list, if any. */
8130 if (HAVE_GNAT_AUX_INFO (result))
8131 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8132 else
8133 tmp = NULL;
8134
8135 /* If not found either, try after having resolved the typedef. */
8136 if (tmp != NULL)
8137 result = tmp;
8138 else
8139 {
8140 result = check_typedef (result);
8141 if (HAVE_GNAT_AUX_INFO (result))
8142 result = TYPE_DESCRIPTIVE_TYPE (result);
8143 else
8144 result = NULL;
8145 }
8146 }
8147
8148 /* If we didn't find a match, see whether this is a packed array. With
8149 older compilers, the descriptive type information is either absent or
8150 irrelevant when it comes to packed arrays so the above lookup fails.
8151 Fall back to using a parallel lookup by name in this case. */
8152 if (result == NULL && ada_is_constrained_packed_array_type (type))
8153 return ada_find_any_type (name);
8154
8155 return result;
8156 }
8157
8158 /* Find a parallel type to TYPE with the specified NAME, using the
8159 descriptive type taken from the debugging information, if available,
8160 and otherwise using the (slower) name-based method. */
8161
8162 static struct type *
8163 ada_find_parallel_type_with_name (struct type *type, const char *name)
8164 {
8165 struct type *result = NULL;
8166
8167 if (HAVE_GNAT_AUX_INFO (type))
8168 result = find_parallel_type_by_descriptive_type (type, name);
8169 else
8170 result = ada_find_any_type (name);
8171
8172 return result;
8173 }
8174
8175 /* Same as above, but specify the name of the parallel type by appending
8176 SUFFIX to the name of TYPE. */
8177
8178 struct type *
8179 ada_find_parallel_type (struct type *type, const char *suffix)
8180 {
8181 char *name;
8182 const char *type_name = ada_type_name (type);
8183 int len;
8184
8185 if (type_name == NULL)
8186 return NULL;
8187
8188 len = strlen (type_name);
8189
8190 name = (char *) alloca (len + strlen (suffix) + 1);
8191
8192 strcpy (name, type_name);
8193 strcpy (name + len, suffix);
8194
8195 return ada_find_parallel_type_with_name (type, name);
8196 }
8197
8198 /* If TYPE is a variable-size record type, return the corresponding template
8199 type describing its fields. Otherwise, return NULL. */
8200
8201 static struct type *
8202 dynamic_template_type (struct type *type)
8203 {
8204 type = ada_check_typedef (type);
8205
8206 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8207 || ada_type_name (type) == NULL)
8208 return NULL;
8209 else
8210 {
8211 int len = strlen (ada_type_name (type));
8212
8213 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8214 return type;
8215 else
8216 return ada_find_parallel_type (type, "___XVE");
8217 }
8218 }
8219
8220 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8221 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8222
8223 static int
8224 is_dynamic_field (struct type *templ_type, int field_num)
8225 {
8226 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8227
8228 return name != NULL
8229 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8230 && strstr (name, "___XVL") != NULL;
8231 }
8232
8233 /* The index of the variant field of TYPE, or -1 if TYPE does not
8234 represent a variant record type. */
8235
8236 static int
8237 variant_field_index (struct type *type)
8238 {
8239 int f;
8240
8241 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8242 return -1;
8243
8244 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8245 {
8246 if (ada_is_variant_part (type, f))
8247 return f;
8248 }
8249 return -1;
8250 }
8251
8252 /* A record type with no fields. */
8253
8254 static struct type *
8255 empty_record (struct type *templ)
8256 {
8257 struct type *type = alloc_type_copy (templ);
8258
8259 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8260 TYPE_NFIELDS (type) = 0;
8261 TYPE_FIELDS (type) = NULL;
8262 INIT_CPLUS_SPECIFIC (type);
8263 TYPE_NAME (type) = "<empty>";
8264 TYPE_TAG_NAME (type) = NULL;
8265 TYPE_LENGTH (type) = 0;
8266 return type;
8267 }
8268
8269 /* An ordinary record type (with fixed-length fields) that describes
8270 the value of type TYPE at VALADDR or ADDRESS (see comments at
8271 the beginning of this section) VAL according to GNAT conventions.
8272 DVAL0 should describe the (portion of a) record that contains any
8273 necessary discriminants. It should be NULL if value_type (VAL) is
8274 an outer-level type (i.e., as opposed to a branch of a variant.) A
8275 variant field (unless unchecked) is replaced by a particular branch
8276 of the variant.
8277
8278 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8279 length are not statically known are discarded. As a consequence,
8280 VALADDR, ADDRESS and DVAL0 are ignored.
8281
8282 NOTE: Limitations: For now, we assume that dynamic fields and
8283 variants occupy whole numbers of bytes. However, they need not be
8284 byte-aligned. */
8285
8286 struct type *
8287 ada_template_to_fixed_record_type_1 (struct type *type,
8288 const gdb_byte *valaddr,
8289 CORE_ADDR address, struct value *dval0,
8290 int keep_dynamic_fields)
8291 {
8292 struct value *mark = value_mark ();
8293 struct value *dval;
8294 struct type *rtype;
8295 int nfields, bit_len;
8296 int variant_field;
8297 long off;
8298 int fld_bit_len;
8299 int f;
8300
8301 /* Compute the number of fields in this record type that are going
8302 to be processed: unless keep_dynamic_fields, this includes only
8303 fields whose position and length are static will be processed. */
8304 if (keep_dynamic_fields)
8305 nfields = TYPE_NFIELDS (type);
8306 else
8307 {
8308 nfields = 0;
8309 while (nfields < TYPE_NFIELDS (type)
8310 && !ada_is_variant_part (type, nfields)
8311 && !is_dynamic_field (type, nfields))
8312 nfields++;
8313 }
8314
8315 rtype = alloc_type_copy (type);
8316 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8317 INIT_CPLUS_SPECIFIC (rtype);
8318 TYPE_NFIELDS (rtype) = nfields;
8319 TYPE_FIELDS (rtype) = (struct field *)
8320 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8321 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8322 TYPE_NAME (rtype) = ada_type_name (type);
8323 TYPE_TAG_NAME (rtype) = NULL;
8324 TYPE_FIXED_INSTANCE (rtype) = 1;
8325
8326 off = 0;
8327 bit_len = 0;
8328 variant_field = -1;
8329
8330 for (f = 0; f < nfields; f += 1)
8331 {
8332 off = align_value (off, field_alignment (type, f))
8333 + TYPE_FIELD_BITPOS (type, f);
8334 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8335 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8336
8337 if (ada_is_variant_part (type, f))
8338 {
8339 variant_field = f;
8340 fld_bit_len = 0;
8341 }
8342 else if (is_dynamic_field (type, f))
8343 {
8344 const gdb_byte *field_valaddr = valaddr;
8345 CORE_ADDR field_address = address;
8346 struct type *field_type =
8347 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8348
8349 if (dval0 == NULL)
8350 {
8351 /* rtype's length is computed based on the run-time
8352 value of discriminants. If the discriminants are not
8353 initialized, the type size may be completely bogus and
8354 GDB may fail to allocate a value for it. So check the
8355 size first before creating the value. */
8356 ada_ensure_varsize_limit (rtype);
8357 /* Using plain value_from_contents_and_address here
8358 causes problems because we will end up trying to
8359 resolve a type that is currently being
8360 constructed. */
8361 dval = value_from_contents_and_address_unresolved (rtype,
8362 valaddr,
8363 address);
8364 rtype = value_type (dval);
8365 }
8366 else
8367 dval = dval0;
8368
8369 /* If the type referenced by this field is an aligner type, we need
8370 to unwrap that aligner type, because its size might not be set.
8371 Keeping the aligner type would cause us to compute the wrong
8372 size for this field, impacting the offset of the all the fields
8373 that follow this one. */
8374 if (ada_is_aligner_type (field_type))
8375 {
8376 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8377
8378 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8379 field_address = cond_offset_target (field_address, field_offset);
8380 field_type = ada_aligned_type (field_type);
8381 }
8382
8383 field_valaddr = cond_offset_host (field_valaddr,
8384 off / TARGET_CHAR_BIT);
8385 field_address = cond_offset_target (field_address,
8386 off / TARGET_CHAR_BIT);
8387
8388 /* Get the fixed type of the field. Note that, in this case,
8389 we do not want to get the real type out of the tag: if
8390 the current field is the parent part of a tagged record,
8391 we will get the tag of the object. Clearly wrong: the real
8392 type of the parent is not the real type of the child. We
8393 would end up in an infinite loop. */
8394 field_type = ada_get_base_type (field_type);
8395 field_type = ada_to_fixed_type (field_type, field_valaddr,
8396 field_address, dval, 0);
8397 /* If the field size is already larger than the maximum
8398 object size, then the record itself will necessarily
8399 be larger than the maximum object size. We need to make
8400 this check now, because the size might be so ridiculously
8401 large (due to an uninitialized variable in the inferior)
8402 that it would cause an overflow when adding it to the
8403 record size. */
8404 ada_ensure_varsize_limit (field_type);
8405
8406 TYPE_FIELD_TYPE (rtype, f) = field_type;
8407 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8408 /* The multiplication can potentially overflow. But because
8409 the field length has been size-checked just above, and
8410 assuming that the maximum size is a reasonable value,
8411 an overflow should not happen in practice. So rather than
8412 adding overflow recovery code to this already complex code,
8413 we just assume that it's not going to happen. */
8414 fld_bit_len =
8415 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8416 }
8417 else
8418 {
8419 /* Note: If this field's type is a typedef, it is important
8420 to preserve the typedef layer.
8421
8422 Otherwise, we might be transforming a typedef to a fat
8423 pointer (encoding a pointer to an unconstrained array),
8424 into a basic fat pointer (encoding an unconstrained
8425 array). As both types are implemented using the same
8426 structure, the typedef is the only clue which allows us
8427 to distinguish between the two options. Stripping it
8428 would prevent us from printing this field appropriately. */
8429 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8430 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8431 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8432 fld_bit_len =
8433 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8434 else
8435 {
8436 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8437
8438 /* We need to be careful of typedefs when computing
8439 the length of our field. If this is a typedef,
8440 get the length of the target type, not the length
8441 of the typedef. */
8442 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8443 field_type = ada_typedef_target_type (field_type);
8444
8445 fld_bit_len =
8446 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8447 }
8448 }
8449 if (off + fld_bit_len > bit_len)
8450 bit_len = off + fld_bit_len;
8451 off += fld_bit_len;
8452 TYPE_LENGTH (rtype) =
8453 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8454 }
8455
8456 /* We handle the variant part, if any, at the end because of certain
8457 odd cases in which it is re-ordered so as NOT to be the last field of
8458 the record. This can happen in the presence of representation
8459 clauses. */
8460 if (variant_field >= 0)
8461 {
8462 struct type *branch_type;
8463
8464 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8465
8466 if (dval0 == NULL)
8467 {
8468 /* Using plain value_from_contents_and_address here causes
8469 problems because we will end up trying to resolve a type
8470 that is currently being constructed. */
8471 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8472 address);
8473 rtype = value_type (dval);
8474 }
8475 else
8476 dval = dval0;
8477
8478 branch_type =
8479 to_fixed_variant_branch_type
8480 (TYPE_FIELD_TYPE (type, variant_field),
8481 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8482 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8483 if (branch_type == NULL)
8484 {
8485 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8486 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8487 TYPE_NFIELDS (rtype) -= 1;
8488 }
8489 else
8490 {
8491 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8492 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8493 fld_bit_len =
8494 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8495 TARGET_CHAR_BIT;
8496 if (off + fld_bit_len > bit_len)
8497 bit_len = off + fld_bit_len;
8498 TYPE_LENGTH (rtype) =
8499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8500 }
8501 }
8502
8503 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8504 should contain the alignment of that record, which should be a strictly
8505 positive value. If null or negative, then something is wrong, most
8506 probably in the debug info. In that case, we don't round up the size
8507 of the resulting type. If this record is not part of another structure,
8508 the current RTYPE length might be good enough for our purposes. */
8509 if (TYPE_LENGTH (type) <= 0)
8510 {
8511 if (TYPE_NAME (rtype))
8512 warning (_("Invalid type size for `%s' detected: %d."),
8513 TYPE_NAME (rtype), TYPE_LENGTH (type));
8514 else
8515 warning (_("Invalid type size for <unnamed> detected: %d."),
8516 TYPE_LENGTH (type));
8517 }
8518 else
8519 {
8520 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8521 TYPE_LENGTH (type));
8522 }
8523
8524 value_free_to_mark (mark);
8525 if (TYPE_LENGTH (rtype) > varsize_limit)
8526 error (_("record type with dynamic size is larger than varsize-limit"));
8527 return rtype;
8528 }
8529
8530 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8531 of 1. */
8532
8533 static struct type *
8534 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8535 CORE_ADDR address, struct value *dval0)
8536 {
8537 return ada_template_to_fixed_record_type_1 (type, valaddr,
8538 address, dval0, 1);
8539 }
8540
8541 /* An ordinary record type in which ___XVL-convention fields and
8542 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8543 static approximations, containing all possible fields. Uses
8544 no runtime values. Useless for use in values, but that's OK,
8545 since the results are used only for type determinations. Works on both
8546 structs and unions. Representation note: to save space, we memorize
8547 the result of this function in the TYPE_TARGET_TYPE of the
8548 template type. */
8549
8550 static struct type *
8551 template_to_static_fixed_type (struct type *type0)
8552 {
8553 struct type *type;
8554 int nfields;
8555 int f;
8556
8557 /* No need no do anything if the input type is already fixed. */
8558 if (TYPE_FIXED_INSTANCE (type0))
8559 return type0;
8560
8561 /* Likewise if we already have computed the static approximation. */
8562 if (TYPE_TARGET_TYPE (type0) != NULL)
8563 return TYPE_TARGET_TYPE (type0);
8564
8565 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8566 type = type0;
8567 nfields = TYPE_NFIELDS (type0);
8568
8569 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8570 recompute all over next time. */
8571 TYPE_TARGET_TYPE (type0) = type;
8572
8573 for (f = 0; f < nfields; f += 1)
8574 {
8575 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8576 struct type *new_type;
8577
8578 if (is_dynamic_field (type0, f))
8579 {
8580 field_type = ada_check_typedef (field_type);
8581 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8582 }
8583 else
8584 new_type = static_unwrap_type (field_type);
8585
8586 if (new_type != field_type)
8587 {
8588 /* Clone TYPE0 only the first time we get a new field type. */
8589 if (type == type0)
8590 {
8591 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8592 TYPE_CODE (type) = TYPE_CODE (type0);
8593 INIT_CPLUS_SPECIFIC (type);
8594 TYPE_NFIELDS (type) = nfields;
8595 TYPE_FIELDS (type) = (struct field *)
8596 TYPE_ALLOC (type, nfields * sizeof (struct field));
8597 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8598 sizeof (struct field) * nfields);
8599 TYPE_NAME (type) = ada_type_name (type0);
8600 TYPE_TAG_NAME (type) = NULL;
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
8607 }
8608
8609 return type;
8610 }
8611
8612 /* Given an object of type TYPE whose contents are at VALADDR and
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
8619 static struct type *
8620 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8621 CORE_ADDR address, struct value *dval0)
8622 {
8623 struct value *mark = value_mark ();
8624 struct value *dval;
8625 struct type *rtype;
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
8628 int variant_field = variant_field_index (type);
8629
8630 if (variant_field == -1)
8631 return type;
8632
8633 if (dval0 == NULL)
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
8638 else
8639 dval = dval0;
8640
8641 rtype = alloc_type_copy (type);
8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8643 INIT_CPLUS_SPECIFIC (rtype);
8644 TYPE_NFIELDS (rtype) = nfields;
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8648 sizeof (struct field) * nfields);
8649 TYPE_NAME (rtype) = ada_type_name (type);
8650 TYPE_TAG_NAME (rtype) = NULL;
8651 TYPE_FIXED_INSTANCE (rtype) = 1;
8652 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8653
8654 branch_type = to_fixed_variant_branch_type
8655 (TYPE_FIELD_TYPE (type, variant_field),
8656 cond_offset_host (valaddr,
8657 TYPE_FIELD_BITPOS (type, variant_field)
8658 / TARGET_CHAR_BIT),
8659 cond_offset_target (address,
8660 TYPE_FIELD_BITPOS (type, variant_field)
8661 / TARGET_CHAR_BIT), dval);
8662 if (branch_type == NULL)
8663 {
8664 int f;
8665
8666 for (f = variant_field + 1; f < nfields; f += 1)
8667 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8668 TYPE_NFIELDS (rtype) -= 1;
8669 }
8670 else
8671 {
8672 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8673 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8674 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8675 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8676 }
8677 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8678
8679 value_free_to_mark (mark);
8680 return rtype;
8681 }
8682
8683 /* An ordinary record type (with fixed-length fields) that describes
8684 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8685 beginning of this section]. Any necessary discriminants' values
8686 should be in DVAL, a record value; it may be NULL if the object
8687 at ADDR itself contains any necessary discriminant values.
8688 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8689 values from the record are needed. Except in the case that DVAL,
8690 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8691 unchecked) is replaced by a particular branch of the variant.
8692
8693 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8694 is questionable and may be removed. It can arise during the
8695 processing of an unconstrained-array-of-record type where all the
8696 variant branches have exactly the same size. This is because in
8697 such cases, the compiler does not bother to use the XVS convention
8698 when encoding the record. I am currently dubious of this
8699 shortcut and suspect the compiler should be altered. FIXME. */
8700
8701 static struct type *
8702 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8703 CORE_ADDR address, struct value *dval)
8704 {
8705 struct type *templ_type;
8706
8707 if (TYPE_FIXED_INSTANCE (type0))
8708 return type0;
8709
8710 templ_type = dynamic_template_type (type0);
8711
8712 if (templ_type != NULL)
8713 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8714 else if (variant_field_index (type0) >= 0)
8715 {
8716 if (dval == NULL && valaddr == NULL && address == 0)
8717 return type0;
8718 return to_record_with_fixed_variant_part (type0, valaddr, address,
8719 dval);
8720 }
8721 else
8722 {
8723 TYPE_FIXED_INSTANCE (type0) = 1;
8724 return type0;
8725 }
8726
8727 }
8728
8729 /* An ordinary record type (with fixed-length fields) that describes
8730 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8731 union type. Any necessary discriminants' values should be in DVAL,
8732 a record value. That is, this routine selects the appropriate
8733 branch of the union at ADDR according to the discriminant value
8734 indicated in the union's type name. Returns VAR_TYPE0 itself if
8735 it represents a variant subject to a pragma Unchecked_Union. */
8736
8737 static struct type *
8738 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8739 CORE_ADDR address, struct value *dval)
8740 {
8741 int which;
8742 struct type *templ_type;
8743 struct type *var_type;
8744
8745 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8746 var_type = TYPE_TARGET_TYPE (var_type0);
8747 else
8748 var_type = var_type0;
8749
8750 templ_type = ada_find_parallel_type (var_type, "___XVU");
8751
8752 if (templ_type != NULL)
8753 var_type = templ_type;
8754
8755 if (is_unchecked_variant (var_type, value_type (dval)))
8756 return var_type0;
8757 which =
8758 ada_which_variant_applies (var_type,
8759 value_type (dval), value_contents (dval));
8760
8761 if (which < 0)
8762 return empty_record (var_type);
8763 else if (is_dynamic_field (var_type, which))
8764 return to_fixed_record_type
8765 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8766 valaddr, address, dval);
8767 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8768 return
8769 to_fixed_record_type
8770 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8771 else
8772 return TYPE_FIELD_TYPE (var_type, which);
8773 }
8774
8775 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8776 ENCODING_TYPE, a type following the GNAT conventions for discrete
8777 type encodings, only carries redundant information. */
8778
8779 static int
8780 ada_is_redundant_range_encoding (struct type *range_type,
8781 struct type *encoding_type)
8782 {
8783 struct type *fixed_range_type;
8784 const char *bounds_str;
8785 int n;
8786 LONGEST lo, hi;
8787
8788 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8789
8790 if (TYPE_CODE (get_base_type (range_type))
8791 != TYPE_CODE (get_base_type (encoding_type)))
8792 {
8793 /* The compiler probably used a simple base type to describe
8794 the range type instead of the range's actual base type,
8795 expecting us to get the real base type from the encoding
8796 anyway. In this situation, the encoding cannot be ignored
8797 as redundant. */
8798 return 0;
8799 }
8800
8801 if (is_dynamic_type (range_type))
8802 return 0;
8803
8804 if (TYPE_NAME (encoding_type) == NULL)
8805 return 0;
8806
8807 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8808 if (bounds_str == NULL)
8809 return 0;
8810
8811 n = 8; /* Skip "___XDLU_". */
8812 if (!ada_scan_number (bounds_str, n, &lo, &n))
8813 return 0;
8814 if (TYPE_LOW_BOUND (range_type) != lo)
8815 return 0;
8816
8817 n += 2; /* Skip the "__" separator between the two bounds. */
8818 if (!ada_scan_number (bounds_str, n, &hi, &n))
8819 return 0;
8820 if (TYPE_HIGH_BOUND (range_type) != hi)
8821 return 0;
8822
8823 return 1;
8824 }
8825
8826 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8827 a type following the GNAT encoding for describing array type
8828 indices, only carries redundant information. */
8829
8830 static int
8831 ada_is_redundant_index_type_desc (struct type *array_type,
8832 struct type *desc_type)
8833 {
8834 struct type *this_layer = check_typedef (array_type);
8835 int i;
8836
8837 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8838 {
8839 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8840 TYPE_FIELD_TYPE (desc_type, i)))
8841 return 0;
8842 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8843 }
8844
8845 return 1;
8846 }
8847
8848 /* Assuming that TYPE0 is an array type describing the type of a value
8849 at ADDR, and that DVAL describes a record containing any
8850 discriminants used in TYPE0, returns a type for the value that
8851 contains no dynamic components (that is, no components whose sizes
8852 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8853 true, gives an error message if the resulting type's size is over
8854 varsize_limit. */
8855
8856 static struct type *
8857 to_fixed_array_type (struct type *type0, struct value *dval,
8858 int ignore_too_big)
8859 {
8860 struct type *index_type_desc;
8861 struct type *result;
8862 int constrained_packed_array_p;
8863 static const char *xa_suffix = "___XA";
8864
8865 type0 = ada_check_typedef (type0);
8866 if (TYPE_FIXED_INSTANCE (type0))
8867 return type0;
8868
8869 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8870 if (constrained_packed_array_p)
8871 type0 = decode_constrained_packed_array_type (type0);
8872
8873 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8874
8875 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8876 encoding suffixed with 'P' may still be generated. If so,
8877 it should be used to find the XA type. */
8878
8879 if (index_type_desc == NULL)
8880 {
8881 const char *type_name = ada_type_name (type0);
8882
8883 if (type_name != NULL)
8884 {
8885 const int len = strlen (type_name);
8886 char *name = (char *) alloca (len + strlen (xa_suffix));
8887
8888 if (type_name[len - 1] == 'P')
8889 {
8890 strcpy (name, type_name);
8891 strcpy (name + len - 1, xa_suffix);
8892 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8893 }
8894 }
8895 }
8896
8897 ada_fixup_array_indexes_type (index_type_desc);
8898 if (index_type_desc != NULL
8899 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8900 {
8901 /* Ignore this ___XA parallel type, as it does not bring any
8902 useful information. This allows us to avoid creating fixed
8903 versions of the array's index types, which would be identical
8904 to the original ones. This, in turn, can also help avoid
8905 the creation of fixed versions of the array itself. */
8906 index_type_desc = NULL;
8907 }
8908
8909 if (index_type_desc == NULL)
8910 {
8911 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8912
8913 /* NOTE: elt_type---the fixed version of elt_type0---should never
8914 depend on the contents of the array in properly constructed
8915 debugging data. */
8916 /* Create a fixed version of the array element type.
8917 We're not providing the address of an element here,
8918 and thus the actual object value cannot be inspected to do
8919 the conversion. This should not be a problem, since arrays of
8920 unconstrained objects are not allowed. In particular, all
8921 the elements of an array of a tagged type should all be of
8922 the same type specified in the debugging info. No need to
8923 consult the object tag. */
8924 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8925
8926 /* Make sure we always create a new array type when dealing with
8927 packed array types, since we're going to fix-up the array
8928 type length and element bitsize a little further down. */
8929 if (elt_type0 == elt_type && !constrained_packed_array_p)
8930 result = type0;
8931 else
8932 result = create_array_type (alloc_type_copy (type0),
8933 elt_type, TYPE_INDEX_TYPE (type0));
8934 }
8935 else
8936 {
8937 int i;
8938 struct type *elt_type0;
8939
8940 elt_type0 = type0;
8941 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8942 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8943
8944 /* NOTE: result---the fixed version of elt_type0---should never
8945 depend on the contents of the array in properly constructed
8946 debugging data. */
8947 /* Create a fixed version of the array element type.
8948 We're not providing the address of an element here,
8949 and thus the actual object value cannot be inspected to do
8950 the conversion. This should not be a problem, since arrays of
8951 unconstrained objects are not allowed. In particular, all
8952 the elements of an array of a tagged type should all be of
8953 the same type specified in the debugging info. No need to
8954 consult the object tag. */
8955 result =
8956 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8957
8958 elt_type0 = type0;
8959 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8960 {
8961 struct type *range_type =
8962 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8963
8964 result = create_array_type (alloc_type_copy (elt_type0),
8965 result, range_type);
8966 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8967 }
8968 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8969 error (_("array type with dynamic size is larger than varsize-limit"));
8970 }
8971
8972 /* We want to preserve the type name. This can be useful when
8973 trying to get the type name of a value that has already been
8974 printed (for instance, if the user did "print VAR; whatis $". */
8975 TYPE_NAME (result) = TYPE_NAME (type0);
8976
8977 if (constrained_packed_array_p)
8978 {
8979 /* So far, the resulting type has been created as if the original
8980 type was a regular (non-packed) array type. As a result, the
8981 bitsize of the array elements needs to be set again, and the array
8982 length needs to be recomputed based on that bitsize. */
8983 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8984 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8985
8986 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8987 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8988 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8989 TYPE_LENGTH (result)++;
8990 }
8991
8992 TYPE_FIXED_INSTANCE (result) = 1;
8993 return result;
8994 }
8995
8996
8997 /* A standard type (containing no dynamically sized components)
8998 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8999 DVAL describes a record containing any discriminants used in TYPE0,
9000 and may be NULL if there are none, or if the object of type TYPE at
9001 ADDRESS or in VALADDR contains these discriminants.
9002
9003 If CHECK_TAG is not null, in the case of tagged types, this function
9004 attempts to locate the object's tag and use it to compute the actual
9005 type. However, when ADDRESS is null, we cannot use it to determine the
9006 location of the tag, and therefore compute the tagged type's actual type.
9007 So we return the tagged type without consulting the tag. */
9008
9009 static struct type *
9010 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9011 CORE_ADDR address, struct value *dval, int check_tag)
9012 {
9013 type = ada_check_typedef (type);
9014 switch (TYPE_CODE (type))
9015 {
9016 default:
9017 return type;
9018 case TYPE_CODE_STRUCT:
9019 {
9020 struct type *static_type = to_static_fixed_type (type);
9021 struct type *fixed_record_type =
9022 to_fixed_record_type (type, valaddr, address, NULL);
9023
9024 /* If STATIC_TYPE is a tagged type and we know the object's address,
9025 then we can determine its tag, and compute the object's actual
9026 type from there. Note that we have to use the fixed record
9027 type (the parent part of the record may have dynamic fields
9028 and the way the location of _tag is expressed may depend on
9029 them). */
9030
9031 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9032 {
9033 struct value *tag =
9034 value_tag_from_contents_and_address
9035 (fixed_record_type,
9036 valaddr,
9037 address);
9038 struct type *real_type = type_from_tag (tag);
9039 struct value *obj =
9040 value_from_contents_and_address (fixed_record_type,
9041 valaddr,
9042 address);
9043 fixed_record_type = value_type (obj);
9044 if (real_type != NULL)
9045 return to_fixed_record_type
9046 (real_type, NULL,
9047 value_address (ada_tag_value_at_base_address (obj)), NULL);
9048 }
9049
9050 /* Check to see if there is a parallel ___XVZ variable.
9051 If there is, then it provides the actual size of our type. */
9052 else if (ada_type_name (fixed_record_type) != NULL)
9053 {
9054 const char *name = ada_type_name (fixed_record_type);
9055 char *xvz_name
9056 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9057 int xvz_found = 0;
9058 LONGEST size;
9059
9060 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9061 size = get_int_var_value (xvz_name, &xvz_found);
9062 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9063 {
9064 fixed_record_type = copy_type (fixed_record_type);
9065 TYPE_LENGTH (fixed_record_type) = size;
9066
9067 /* The FIXED_RECORD_TYPE may have be a stub. We have
9068 observed this when the debugging info is STABS, and
9069 apparently it is something that is hard to fix.
9070
9071 In practice, we don't need the actual type definition
9072 at all, because the presence of the XVZ variable allows us
9073 to assume that there must be a XVS type as well, which we
9074 should be able to use later, when we need the actual type
9075 definition.
9076
9077 In the meantime, pretend that the "fixed" type we are
9078 returning is NOT a stub, because this can cause trouble
9079 when using this type to create new types targeting it.
9080 Indeed, the associated creation routines often check
9081 whether the target type is a stub and will try to replace
9082 it, thus using a type with the wrong size. This, in turn,
9083 might cause the new type to have the wrong size too.
9084 Consider the case of an array, for instance, where the size
9085 of the array is computed from the number of elements in
9086 our array multiplied by the size of its element. */
9087 TYPE_STUB (fixed_record_type) = 0;
9088 }
9089 }
9090 return fixed_record_type;
9091 }
9092 case TYPE_CODE_ARRAY:
9093 return to_fixed_array_type (type, dval, 1);
9094 case TYPE_CODE_UNION:
9095 if (dval == NULL)
9096 return type;
9097 else
9098 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9099 }
9100 }
9101
9102 /* The same as ada_to_fixed_type_1, except that it preserves the type
9103 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9104
9105 The typedef layer needs be preserved in order to differentiate between
9106 arrays and array pointers when both types are implemented using the same
9107 fat pointer. In the array pointer case, the pointer is encoded as
9108 a typedef of the pointer type. For instance, considering:
9109
9110 type String_Access is access String;
9111 S1 : String_Access := null;
9112
9113 To the debugger, S1 is defined as a typedef of type String. But
9114 to the user, it is a pointer. So if the user tries to print S1,
9115 we should not dereference the array, but print the array address
9116 instead.
9117
9118 If we didn't preserve the typedef layer, we would lose the fact that
9119 the type is to be presented as a pointer (needs de-reference before
9120 being printed). And we would also use the source-level type name. */
9121
9122 struct type *
9123 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9124 CORE_ADDR address, struct value *dval, int check_tag)
9125
9126 {
9127 struct type *fixed_type =
9128 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9129
9130 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9131 then preserve the typedef layer.
9132
9133 Implementation note: We can only check the main-type portion of
9134 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9135 from TYPE now returns a type that has the same instance flags
9136 as TYPE. For instance, if TYPE is a "typedef const", and its
9137 target type is a "struct", then the typedef elimination will return
9138 a "const" version of the target type. See check_typedef for more
9139 details about how the typedef layer elimination is done.
9140
9141 brobecker/2010-11-19: It seems to me that the only case where it is
9142 useful to preserve the typedef layer is when dealing with fat pointers.
9143 Perhaps, we could add a check for that and preserve the typedef layer
9144 only in that situation. But this seems unecessary so far, probably
9145 because we call check_typedef/ada_check_typedef pretty much everywhere.
9146 */
9147 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9148 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9149 == TYPE_MAIN_TYPE (fixed_type)))
9150 return type;
9151
9152 return fixed_type;
9153 }
9154
9155 /* A standard (static-sized) type corresponding as well as possible to
9156 TYPE0, but based on no runtime data. */
9157
9158 static struct type *
9159 to_static_fixed_type (struct type *type0)
9160 {
9161 struct type *type;
9162
9163 if (type0 == NULL)
9164 return NULL;
9165
9166 if (TYPE_FIXED_INSTANCE (type0))
9167 return type0;
9168
9169 type0 = ada_check_typedef (type0);
9170
9171 switch (TYPE_CODE (type0))
9172 {
9173 default:
9174 return type0;
9175 case TYPE_CODE_STRUCT:
9176 type = dynamic_template_type (type0);
9177 if (type != NULL)
9178 return template_to_static_fixed_type (type);
9179 else
9180 return template_to_static_fixed_type (type0);
9181 case TYPE_CODE_UNION:
9182 type = ada_find_parallel_type (type0, "___XVU");
9183 if (type != NULL)
9184 return template_to_static_fixed_type (type);
9185 else
9186 return template_to_static_fixed_type (type0);
9187 }
9188 }
9189
9190 /* A static approximation of TYPE with all type wrappers removed. */
9191
9192 static struct type *
9193 static_unwrap_type (struct type *type)
9194 {
9195 if (ada_is_aligner_type (type))
9196 {
9197 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9198 if (ada_type_name (type1) == NULL)
9199 TYPE_NAME (type1) = ada_type_name (type);
9200
9201 return static_unwrap_type (type1);
9202 }
9203 else
9204 {
9205 struct type *raw_real_type = ada_get_base_type (type);
9206
9207 if (raw_real_type == type)
9208 return type;
9209 else
9210 return to_static_fixed_type (raw_real_type);
9211 }
9212 }
9213
9214 /* In some cases, incomplete and private types require
9215 cross-references that are not resolved as records (for example,
9216 type Foo;
9217 type FooP is access Foo;
9218 V: FooP;
9219 type Foo is array ...;
9220 ). In these cases, since there is no mechanism for producing
9221 cross-references to such types, we instead substitute for FooP a
9222 stub enumeration type that is nowhere resolved, and whose tag is
9223 the name of the actual type. Call these types "non-record stubs". */
9224
9225 /* A type equivalent to TYPE that is not a non-record stub, if one
9226 exists, otherwise TYPE. */
9227
9228 struct type *
9229 ada_check_typedef (struct type *type)
9230 {
9231 if (type == NULL)
9232 return NULL;
9233
9234 /* If our type is a typedef type of a fat pointer, then we're done.
9235 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9236 what allows us to distinguish between fat pointers that represent
9237 array types, and fat pointers that represent array access types
9238 (in both cases, the compiler implements them as fat pointers). */
9239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9240 && is_thick_pntr (ada_typedef_target_type (type)))
9241 return type;
9242
9243 type = check_typedef (type);
9244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9245 || !TYPE_STUB (type)
9246 || TYPE_TAG_NAME (type) == NULL)
9247 return type;
9248 else
9249 {
9250 const char *name = TYPE_TAG_NAME (type);
9251 struct type *type1 = ada_find_any_type (name);
9252
9253 if (type1 == NULL)
9254 return type;
9255
9256 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9257 stubs pointing to arrays, as we don't create symbols for array
9258 types, only for the typedef-to-array types). If that's the case,
9259 strip the typedef layer. */
9260 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9261 type1 = ada_check_typedef (type1);
9262
9263 return type1;
9264 }
9265 }
9266
9267 /* A value representing the data at VALADDR/ADDRESS as described by
9268 type TYPE0, but with a standard (static-sized) type that correctly
9269 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9270 type, then return VAL0 [this feature is simply to avoid redundant
9271 creation of struct values]. */
9272
9273 static struct value *
9274 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9275 struct value *val0)
9276 {
9277 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9278
9279 if (type == type0 && val0 != NULL)
9280 return val0;
9281 else
9282 return value_from_contents_and_address (type, 0, address);
9283 }
9284
9285 /* A value representing VAL, but with a standard (static-sized) type
9286 that correctly describes it. Does not necessarily create a new
9287 value. */
9288
9289 struct value *
9290 ada_to_fixed_value (struct value *val)
9291 {
9292 val = unwrap_value (val);
9293 val = ada_to_fixed_value_create (value_type (val),
9294 value_address (val),
9295 val);
9296 return val;
9297 }
9298 \f
9299
9300 /* Attributes */
9301
9302 /* Table mapping attribute numbers to names.
9303 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9304
9305 static const char *attribute_names[] = {
9306 "<?>",
9307
9308 "first",
9309 "last",
9310 "length",
9311 "image",
9312 "max",
9313 "min",
9314 "modulus",
9315 "pos",
9316 "size",
9317 "tag",
9318 "val",
9319 0
9320 };
9321
9322 const char *
9323 ada_attribute_name (enum exp_opcode n)
9324 {
9325 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9326 return attribute_names[n - OP_ATR_FIRST + 1];
9327 else
9328 return attribute_names[0];
9329 }
9330
9331 /* Evaluate the 'POS attribute applied to ARG. */
9332
9333 static LONGEST
9334 pos_atr (struct value *arg)
9335 {
9336 struct value *val = coerce_ref (arg);
9337 struct type *type = value_type (val);
9338 LONGEST result;
9339
9340 if (!discrete_type_p (type))
9341 error (_("'POS only defined on discrete types"));
9342
9343 if (!discrete_position (type, value_as_long (val), &result))
9344 error (_("enumeration value is invalid: can't find 'POS"));
9345
9346 return result;
9347 }
9348
9349 static struct value *
9350 value_pos_atr (struct type *type, struct value *arg)
9351 {
9352 return value_from_longest (type, pos_atr (arg));
9353 }
9354
9355 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9356
9357 static struct value *
9358 value_val_atr (struct type *type, struct value *arg)
9359 {
9360 if (!discrete_type_p (type))
9361 error (_("'VAL only defined on discrete types"));
9362 if (!integer_type_p (value_type (arg)))
9363 error (_("'VAL requires integral argument"));
9364
9365 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9366 {
9367 long pos = value_as_long (arg);
9368
9369 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9370 error (_("argument to 'VAL out of range"));
9371 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9372 }
9373 else
9374 return value_from_longest (type, value_as_long (arg));
9375 }
9376 \f
9377
9378 /* Evaluation */
9379
9380 /* True if TYPE appears to be an Ada character type.
9381 [At the moment, this is true only for Character and Wide_Character;
9382 It is a heuristic test that could stand improvement]. */
9383
9384 int
9385 ada_is_character_type (struct type *type)
9386 {
9387 const char *name;
9388
9389 /* If the type code says it's a character, then assume it really is,
9390 and don't check any further. */
9391 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9392 return 1;
9393
9394 /* Otherwise, assume it's a character type iff it is a discrete type
9395 with a known character type name. */
9396 name = ada_type_name (type);
9397 return (name != NULL
9398 && (TYPE_CODE (type) == TYPE_CODE_INT
9399 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9400 && (strcmp (name, "character") == 0
9401 || strcmp (name, "wide_character") == 0
9402 || strcmp (name, "wide_wide_character") == 0
9403 || strcmp (name, "unsigned char") == 0));
9404 }
9405
9406 /* True if TYPE appears to be an Ada string type. */
9407
9408 int
9409 ada_is_string_type (struct type *type)
9410 {
9411 type = ada_check_typedef (type);
9412 if (type != NULL
9413 && TYPE_CODE (type) != TYPE_CODE_PTR
9414 && (ada_is_simple_array_type (type)
9415 || ada_is_array_descriptor_type (type))
9416 && ada_array_arity (type) == 1)
9417 {
9418 struct type *elttype = ada_array_element_type (type, 1);
9419
9420 return ada_is_character_type (elttype);
9421 }
9422 else
9423 return 0;
9424 }
9425
9426 /* The compiler sometimes provides a parallel XVS type for a given
9427 PAD type. Normally, it is safe to follow the PAD type directly,
9428 but older versions of the compiler have a bug that causes the offset
9429 of its "F" field to be wrong. Following that field in that case
9430 would lead to incorrect results, but this can be worked around
9431 by ignoring the PAD type and using the associated XVS type instead.
9432
9433 Set to True if the debugger should trust the contents of PAD types.
9434 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9435 static int trust_pad_over_xvs = 1;
9436
9437 /* True if TYPE is a struct type introduced by the compiler to force the
9438 alignment of a value. Such types have a single field with a
9439 distinctive name. */
9440
9441 int
9442 ada_is_aligner_type (struct type *type)
9443 {
9444 type = ada_check_typedef (type);
9445
9446 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9447 return 0;
9448
9449 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9450 && TYPE_NFIELDS (type) == 1
9451 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9452 }
9453
9454 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9455 the parallel type. */
9456
9457 struct type *
9458 ada_get_base_type (struct type *raw_type)
9459 {
9460 struct type *real_type_namer;
9461 struct type *raw_real_type;
9462
9463 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9464 return raw_type;
9465
9466 if (ada_is_aligner_type (raw_type))
9467 /* The encoding specifies that we should always use the aligner type.
9468 So, even if this aligner type has an associated XVS type, we should
9469 simply ignore it.
9470
9471 According to the compiler gurus, an XVS type parallel to an aligner
9472 type may exist because of a stabs limitation. In stabs, aligner
9473 types are empty because the field has a variable-sized type, and
9474 thus cannot actually be used as an aligner type. As a result,
9475 we need the associated parallel XVS type to decode the type.
9476 Since the policy in the compiler is to not change the internal
9477 representation based on the debugging info format, we sometimes
9478 end up having a redundant XVS type parallel to the aligner type. */
9479 return raw_type;
9480
9481 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9482 if (real_type_namer == NULL
9483 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9484 || TYPE_NFIELDS (real_type_namer) != 1)
9485 return raw_type;
9486
9487 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9488 {
9489 /* This is an older encoding form where the base type needs to be
9490 looked up by name. We prefer the newer enconding because it is
9491 more efficient. */
9492 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9493 if (raw_real_type == NULL)
9494 return raw_type;
9495 else
9496 return raw_real_type;
9497 }
9498
9499 /* The field in our XVS type is a reference to the base type. */
9500 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9501 }
9502
9503 /* The type of value designated by TYPE, with all aligners removed. */
9504
9505 struct type *
9506 ada_aligned_type (struct type *type)
9507 {
9508 if (ada_is_aligner_type (type))
9509 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9510 else
9511 return ada_get_base_type (type);
9512 }
9513
9514
9515 /* The address of the aligned value in an object at address VALADDR
9516 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9517
9518 const gdb_byte *
9519 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9520 {
9521 if (ada_is_aligner_type (type))
9522 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9523 valaddr +
9524 TYPE_FIELD_BITPOS (type,
9525 0) / TARGET_CHAR_BIT);
9526 else
9527 return valaddr;
9528 }
9529
9530
9531
9532 /* The printed representation of an enumeration literal with encoded
9533 name NAME. The value is good to the next call of ada_enum_name. */
9534 const char *
9535 ada_enum_name (const char *name)
9536 {
9537 static char *result;
9538 static size_t result_len = 0;
9539 const char *tmp;
9540
9541 /* First, unqualify the enumeration name:
9542 1. Search for the last '.' character. If we find one, then skip
9543 all the preceding characters, the unqualified name starts
9544 right after that dot.
9545 2. Otherwise, we may be debugging on a target where the compiler
9546 translates dots into "__". Search forward for double underscores,
9547 but stop searching when we hit an overloading suffix, which is
9548 of the form "__" followed by digits. */
9549
9550 tmp = strrchr (name, '.');
9551 if (tmp != NULL)
9552 name = tmp + 1;
9553 else
9554 {
9555 while ((tmp = strstr (name, "__")) != NULL)
9556 {
9557 if (isdigit (tmp[2]))
9558 break;
9559 else
9560 name = tmp + 2;
9561 }
9562 }
9563
9564 if (name[0] == 'Q')
9565 {
9566 int v;
9567
9568 if (name[1] == 'U' || name[1] == 'W')
9569 {
9570 if (sscanf (name + 2, "%x", &v) != 1)
9571 return name;
9572 }
9573 else
9574 return name;
9575
9576 GROW_VECT (result, result_len, 16);
9577 if (isascii (v) && isprint (v))
9578 xsnprintf (result, result_len, "'%c'", v);
9579 else if (name[1] == 'U')
9580 xsnprintf (result, result_len, "[\"%02x\"]", v);
9581 else
9582 xsnprintf (result, result_len, "[\"%04x\"]", v);
9583
9584 return result;
9585 }
9586 else
9587 {
9588 tmp = strstr (name, "__");
9589 if (tmp == NULL)
9590 tmp = strstr (name, "$");
9591 if (tmp != NULL)
9592 {
9593 GROW_VECT (result, result_len, tmp - name + 1);
9594 strncpy (result, name, tmp - name);
9595 result[tmp - name] = '\0';
9596 return result;
9597 }
9598
9599 return name;
9600 }
9601 }
9602
9603 /* Evaluate the subexpression of EXP starting at *POS as for
9604 evaluate_type, updating *POS to point just past the evaluated
9605 expression. */
9606
9607 static struct value *
9608 evaluate_subexp_type (struct expression *exp, int *pos)
9609 {
9610 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9611 }
9612
9613 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9614 value it wraps. */
9615
9616 static struct value *
9617 unwrap_value (struct value *val)
9618 {
9619 struct type *type = ada_check_typedef (value_type (val));
9620
9621 if (ada_is_aligner_type (type))
9622 {
9623 struct value *v = ada_value_struct_elt (val, "F", 0);
9624 struct type *val_type = ada_check_typedef (value_type (v));
9625
9626 if (ada_type_name (val_type) == NULL)
9627 TYPE_NAME (val_type) = ada_type_name (type);
9628
9629 return unwrap_value (v);
9630 }
9631 else
9632 {
9633 struct type *raw_real_type =
9634 ada_check_typedef (ada_get_base_type (type));
9635
9636 /* If there is no parallel XVS or XVE type, then the value is
9637 already unwrapped. Return it without further modification. */
9638 if ((type == raw_real_type)
9639 && ada_find_parallel_type (type, "___XVE") == NULL)
9640 return val;
9641
9642 return
9643 coerce_unspec_val_to_type
9644 (val, ada_to_fixed_type (raw_real_type, 0,
9645 value_address (val),
9646 NULL, 1));
9647 }
9648 }
9649
9650 static struct value *
9651 cast_to_fixed (struct type *type, struct value *arg)
9652 {
9653 LONGEST val;
9654
9655 if (type == value_type (arg))
9656 return arg;
9657 else if (ada_is_fixed_point_type (value_type (arg)))
9658 val = ada_float_to_fixed (type,
9659 ada_fixed_to_float (value_type (arg),
9660 value_as_long (arg)));
9661 else
9662 {
9663 DOUBLEST argd = value_as_double (arg);
9664
9665 val = ada_float_to_fixed (type, argd);
9666 }
9667
9668 return value_from_longest (type, val);
9669 }
9670
9671 static struct value *
9672 cast_from_fixed (struct type *type, struct value *arg)
9673 {
9674 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9675 value_as_long (arg));
9676
9677 return value_from_double (type, val);
9678 }
9679
9680 /* Given two array types T1 and T2, return nonzero iff both arrays
9681 contain the same number of elements. */
9682
9683 static int
9684 ada_same_array_size_p (struct type *t1, struct type *t2)
9685 {
9686 LONGEST lo1, hi1, lo2, hi2;
9687
9688 /* Get the array bounds in order to verify that the size of
9689 the two arrays match. */
9690 if (!get_array_bounds (t1, &lo1, &hi1)
9691 || !get_array_bounds (t2, &lo2, &hi2))
9692 error (_("unable to determine array bounds"));
9693
9694 /* To make things easier for size comparison, normalize a bit
9695 the case of empty arrays by making sure that the difference
9696 between upper bound and lower bound is always -1. */
9697 if (lo1 > hi1)
9698 hi1 = lo1 - 1;
9699 if (lo2 > hi2)
9700 hi2 = lo2 - 1;
9701
9702 return (hi1 - lo1 == hi2 - lo2);
9703 }
9704
9705 /* Assuming that VAL is an array of integrals, and TYPE represents
9706 an array with the same number of elements, but with wider integral
9707 elements, return an array "casted" to TYPE. In practice, this
9708 means that the returned array is built by casting each element
9709 of the original array into TYPE's (wider) element type. */
9710
9711 static struct value *
9712 ada_promote_array_of_integrals (struct type *type, struct value *val)
9713 {
9714 struct type *elt_type = TYPE_TARGET_TYPE (type);
9715 LONGEST lo, hi;
9716 struct value *res;
9717 LONGEST i;
9718
9719 /* Verify that both val and type are arrays of scalars, and
9720 that the size of val's elements is smaller than the size
9721 of type's element. */
9722 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9723 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9724 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9725 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9726 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9727 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9728
9729 if (!get_array_bounds (type, &lo, &hi))
9730 error (_("unable to determine array bounds"));
9731
9732 res = allocate_value (type);
9733
9734 /* Promote each array element. */
9735 for (i = 0; i < hi - lo + 1; i++)
9736 {
9737 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9738
9739 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9740 value_contents_all (elt), TYPE_LENGTH (elt_type));
9741 }
9742
9743 return res;
9744 }
9745
9746 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9747 return the converted value. */
9748
9749 static struct value *
9750 coerce_for_assign (struct type *type, struct value *val)
9751 {
9752 struct type *type2 = value_type (val);
9753
9754 if (type == type2)
9755 return val;
9756
9757 type2 = ada_check_typedef (type2);
9758 type = ada_check_typedef (type);
9759
9760 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9761 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9762 {
9763 val = ada_value_ind (val);
9764 type2 = value_type (val);
9765 }
9766
9767 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9768 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769 {
9770 if (!ada_same_array_size_p (type, type2))
9771 error (_("cannot assign arrays of different length"));
9772
9773 if (is_integral_type (TYPE_TARGET_TYPE (type))
9774 && is_integral_type (TYPE_TARGET_TYPE (type2))
9775 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9776 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9777 {
9778 /* Allow implicit promotion of the array elements to
9779 a wider type. */
9780 return ada_promote_array_of_integrals (type, val);
9781 }
9782
9783 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9784 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9785 error (_("Incompatible types in assignment"));
9786 deprecated_set_value_type (val, type);
9787 }
9788 return val;
9789 }
9790
9791 static struct value *
9792 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9793 {
9794 struct value *val;
9795 struct type *type1, *type2;
9796 LONGEST v, v1, v2;
9797
9798 arg1 = coerce_ref (arg1);
9799 arg2 = coerce_ref (arg2);
9800 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9801 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9802
9803 if (TYPE_CODE (type1) != TYPE_CODE_INT
9804 || TYPE_CODE (type2) != TYPE_CODE_INT)
9805 return value_binop (arg1, arg2, op);
9806
9807 switch (op)
9808 {
9809 case BINOP_MOD:
9810 case BINOP_DIV:
9811 case BINOP_REM:
9812 break;
9813 default:
9814 return value_binop (arg1, arg2, op);
9815 }
9816
9817 v2 = value_as_long (arg2);
9818 if (v2 == 0)
9819 error (_("second operand of %s must not be zero."), op_string (op));
9820
9821 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9822 return value_binop (arg1, arg2, op);
9823
9824 v1 = value_as_long (arg1);
9825 switch (op)
9826 {
9827 case BINOP_DIV:
9828 v = v1 / v2;
9829 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9830 v += v > 0 ? -1 : 1;
9831 break;
9832 case BINOP_REM:
9833 v = v1 % v2;
9834 if (v * v1 < 0)
9835 v -= v2;
9836 break;
9837 default:
9838 /* Should not reach this point. */
9839 v = 0;
9840 }
9841
9842 val = allocate_value (type1);
9843 store_unsigned_integer (value_contents_raw (val),
9844 TYPE_LENGTH (value_type (val)),
9845 gdbarch_byte_order (get_type_arch (type1)), v);
9846 return val;
9847 }
9848
9849 static int
9850 ada_value_equal (struct value *arg1, struct value *arg2)
9851 {
9852 if (ada_is_direct_array_type (value_type (arg1))
9853 || ada_is_direct_array_type (value_type (arg2)))
9854 {
9855 /* Automatically dereference any array reference before
9856 we attempt to perform the comparison. */
9857 arg1 = ada_coerce_ref (arg1);
9858 arg2 = ada_coerce_ref (arg2);
9859
9860 arg1 = ada_coerce_to_simple_array (arg1);
9861 arg2 = ada_coerce_to_simple_array (arg2);
9862 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9863 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9864 error (_("Attempt to compare array with non-array"));
9865 /* FIXME: The following works only for types whose
9866 representations use all bits (no padding or undefined bits)
9867 and do not have user-defined equality. */
9868 return
9869 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9870 && memcmp (value_contents (arg1), value_contents (arg2),
9871 TYPE_LENGTH (value_type (arg1))) == 0;
9872 }
9873 return value_equal (arg1, arg2);
9874 }
9875
9876 /* Total number of component associations in the aggregate starting at
9877 index PC in EXP. Assumes that index PC is the start of an
9878 OP_AGGREGATE. */
9879
9880 static int
9881 num_component_specs (struct expression *exp, int pc)
9882 {
9883 int n, m, i;
9884
9885 m = exp->elts[pc + 1].longconst;
9886 pc += 3;
9887 n = 0;
9888 for (i = 0; i < m; i += 1)
9889 {
9890 switch (exp->elts[pc].opcode)
9891 {
9892 default:
9893 n += 1;
9894 break;
9895 case OP_CHOICES:
9896 n += exp->elts[pc + 1].longconst;
9897 break;
9898 }
9899 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9900 }
9901 return n;
9902 }
9903
9904 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9905 component of LHS (a simple array or a record), updating *POS past
9906 the expression, assuming that LHS is contained in CONTAINER. Does
9907 not modify the inferior's memory, nor does it modify LHS (unless
9908 LHS == CONTAINER). */
9909
9910 static void
9911 assign_component (struct value *container, struct value *lhs, LONGEST index,
9912 struct expression *exp, int *pos)
9913 {
9914 struct value *mark = value_mark ();
9915 struct value *elt;
9916
9917 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9918 {
9919 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9920 struct value *index_val = value_from_longest (index_type, index);
9921
9922 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9923 }
9924 else
9925 {
9926 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9927 elt = ada_to_fixed_value (elt);
9928 }
9929
9930 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9931 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9932 else
9933 value_assign_to_component (container, elt,
9934 ada_evaluate_subexp (NULL, exp, pos,
9935 EVAL_NORMAL));
9936
9937 value_free_to_mark (mark);
9938 }
9939
9940 /* Assuming that LHS represents an lvalue having a record or array
9941 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9942 of that aggregate's value to LHS, advancing *POS past the
9943 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9944 lvalue containing LHS (possibly LHS itself). Does not modify
9945 the inferior's memory, nor does it modify the contents of
9946 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9947
9948 static struct value *
9949 assign_aggregate (struct value *container,
9950 struct value *lhs, struct expression *exp,
9951 int *pos, enum noside noside)
9952 {
9953 struct type *lhs_type;
9954 int n = exp->elts[*pos+1].longconst;
9955 LONGEST low_index, high_index;
9956 int num_specs;
9957 LONGEST *indices;
9958 int max_indices, num_indices;
9959 int i;
9960
9961 *pos += 3;
9962 if (noside != EVAL_NORMAL)
9963 {
9964 for (i = 0; i < n; i += 1)
9965 ada_evaluate_subexp (NULL, exp, pos, noside);
9966 return container;
9967 }
9968
9969 container = ada_coerce_ref (container);
9970 if (ada_is_direct_array_type (value_type (container)))
9971 container = ada_coerce_to_simple_array (container);
9972 lhs = ada_coerce_ref (lhs);
9973 if (!deprecated_value_modifiable (lhs))
9974 error (_("Left operand of assignment is not a modifiable lvalue."));
9975
9976 lhs_type = value_type (lhs);
9977 if (ada_is_direct_array_type (lhs_type))
9978 {
9979 lhs = ada_coerce_to_simple_array (lhs);
9980 lhs_type = value_type (lhs);
9981 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9982 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9983 }
9984 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9985 {
9986 low_index = 0;
9987 high_index = num_visible_fields (lhs_type) - 1;
9988 }
9989 else
9990 error (_("Left-hand side must be array or record."));
9991
9992 num_specs = num_component_specs (exp, *pos - 3);
9993 max_indices = 4 * num_specs + 4;
9994 indices = XALLOCAVEC (LONGEST, max_indices);
9995 indices[0] = indices[1] = low_index - 1;
9996 indices[2] = indices[3] = high_index + 1;
9997 num_indices = 4;
9998
9999 for (i = 0; i < n; i += 1)
10000 {
10001 switch (exp->elts[*pos].opcode)
10002 {
10003 case OP_CHOICES:
10004 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10005 &num_indices, max_indices,
10006 low_index, high_index);
10007 break;
10008 case OP_POSITIONAL:
10009 aggregate_assign_positional (container, lhs, exp, pos, indices,
10010 &num_indices, max_indices,
10011 low_index, high_index);
10012 break;
10013 case OP_OTHERS:
10014 if (i != n-1)
10015 error (_("Misplaced 'others' clause"));
10016 aggregate_assign_others (container, lhs, exp, pos, indices,
10017 num_indices, low_index, high_index);
10018 break;
10019 default:
10020 error (_("Internal error: bad aggregate clause"));
10021 }
10022 }
10023
10024 return container;
10025 }
10026
10027 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10028 construct at *POS, updating *POS past the construct, given that
10029 the positions are relative to lower bound LOW, where HIGH is the
10030 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10031 updating *NUM_INDICES as needed. CONTAINER is as for
10032 assign_aggregate. */
10033 static void
10034 aggregate_assign_positional (struct value *container,
10035 struct value *lhs, struct expression *exp,
10036 int *pos, LONGEST *indices, int *num_indices,
10037 int max_indices, LONGEST low, LONGEST high)
10038 {
10039 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10040
10041 if (ind - 1 == high)
10042 warning (_("Extra components in aggregate ignored."));
10043 if (ind <= high)
10044 {
10045 add_component_interval (ind, ind, indices, num_indices, max_indices);
10046 *pos += 3;
10047 assign_component (container, lhs, ind, exp, pos);
10048 }
10049 else
10050 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10051 }
10052
10053 /* Assign into the components of LHS indexed by the OP_CHOICES
10054 construct at *POS, updating *POS past the construct, given that
10055 the allowable indices are LOW..HIGH. Record the indices assigned
10056 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10057 needed. CONTAINER is as for assign_aggregate. */
10058 static void
10059 aggregate_assign_from_choices (struct value *container,
10060 struct value *lhs, struct expression *exp,
10061 int *pos, LONGEST *indices, int *num_indices,
10062 int max_indices, LONGEST low, LONGEST high)
10063 {
10064 int j;
10065 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10066 int choice_pos, expr_pc;
10067 int is_array = ada_is_direct_array_type (value_type (lhs));
10068
10069 choice_pos = *pos += 3;
10070
10071 for (j = 0; j < n_choices; j += 1)
10072 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10073 expr_pc = *pos;
10074 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10075
10076 for (j = 0; j < n_choices; j += 1)
10077 {
10078 LONGEST lower, upper;
10079 enum exp_opcode op = exp->elts[choice_pos].opcode;
10080
10081 if (op == OP_DISCRETE_RANGE)
10082 {
10083 choice_pos += 1;
10084 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10085 EVAL_NORMAL));
10086 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10087 EVAL_NORMAL));
10088 }
10089 else if (is_array)
10090 {
10091 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10092 EVAL_NORMAL));
10093 upper = lower;
10094 }
10095 else
10096 {
10097 int ind;
10098 const char *name;
10099
10100 switch (op)
10101 {
10102 case OP_NAME:
10103 name = &exp->elts[choice_pos + 2].string;
10104 break;
10105 case OP_VAR_VALUE:
10106 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10107 break;
10108 default:
10109 error (_("Invalid record component association."));
10110 }
10111 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10112 ind = 0;
10113 if (! find_struct_field (name, value_type (lhs), 0,
10114 NULL, NULL, NULL, NULL, &ind))
10115 error (_("Unknown component name: %s."), name);
10116 lower = upper = ind;
10117 }
10118
10119 if (lower <= upper && (lower < low || upper > high))
10120 error (_("Index in component association out of bounds."));
10121
10122 add_component_interval (lower, upper, indices, num_indices,
10123 max_indices);
10124 while (lower <= upper)
10125 {
10126 int pos1;
10127
10128 pos1 = expr_pc;
10129 assign_component (container, lhs, lower, exp, &pos1);
10130 lower += 1;
10131 }
10132 }
10133 }
10134
10135 /* Assign the value of the expression in the OP_OTHERS construct in
10136 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10137 have not been previously assigned. The index intervals already assigned
10138 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10139 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10140 static void
10141 aggregate_assign_others (struct value *container,
10142 struct value *lhs, struct expression *exp,
10143 int *pos, LONGEST *indices, int num_indices,
10144 LONGEST low, LONGEST high)
10145 {
10146 int i;
10147 int expr_pc = *pos + 1;
10148
10149 for (i = 0; i < num_indices - 2; i += 2)
10150 {
10151 LONGEST ind;
10152
10153 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10154 {
10155 int localpos;
10156
10157 localpos = expr_pc;
10158 assign_component (container, lhs, ind, exp, &localpos);
10159 }
10160 }
10161 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10162 }
10163
10164 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10165 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10166 modifying *SIZE as needed. It is an error if *SIZE exceeds
10167 MAX_SIZE. The resulting intervals do not overlap. */
10168 static void
10169 add_component_interval (LONGEST low, LONGEST high,
10170 LONGEST* indices, int *size, int max_size)
10171 {
10172 int i, j;
10173
10174 for (i = 0; i < *size; i += 2) {
10175 if (high >= indices[i] && low <= indices[i + 1])
10176 {
10177 int kh;
10178
10179 for (kh = i + 2; kh < *size; kh += 2)
10180 if (high < indices[kh])
10181 break;
10182 if (low < indices[i])
10183 indices[i] = low;
10184 indices[i + 1] = indices[kh - 1];
10185 if (high > indices[i + 1])
10186 indices[i + 1] = high;
10187 memcpy (indices + i + 2, indices + kh, *size - kh);
10188 *size -= kh - i - 2;
10189 return;
10190 }
10191 else if (high < indices[i])
10192 break;
10193 }
10194
10195 if (*size == max_size)
10196 error (_("Internal error: miscounted aggregate components."));
10197 *size += 2;
10198 for (j = *size-1; j >= i+2; j -= 1)
10199 indices[j] = indices[j - 2];
10200 indices[i] = low;
10201 indices[i + 1] = high;
10202 }
10203
10204 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10205 is different. */
10206
10207 static struct value *
10208 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10209 {
10210 if (type == ada_check_typedef (value_type (arg2)))
10211 return arg2;
10212
10213 if (ada_is_fixed_point_type (type))
10214 return (cast_to_fixed (type, arg2));
10215
10216 if (ada_is_fixed_point_type (value_type (arg2)))
10217 return cast_from_fixed (type, arg2);
10218
10219 return value_cast (type, arg2);
10220 }
10221
10222 /* Evaluating Ada expressions, and printing their result.
10223 ------------------------------------------------------
10224
10225 1. Introduction:
10226 ----------------
10227
10228 We usually evaluate an Ada expression in order to print its value.
10229 We also evaluate an expression in order to print its type, which
10230 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10231 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10232 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10233 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10234 similar.
10235
10236 Evaluating expressions is a little more complicated for Ada entities
10237 than it is for entities in languages such as C. The main reason for
10238 this is that Ada provides types whose definition might be dynamic.
10239 One example of such types is variant records. Or another example
10240 would be an array whose bounds can only be known at run time.
10241
10242 The following description is a general guide as to what should be
10243 done (and what should NOT be done) in order to evaluate an expression
10244 involving such types, and when. This does not cover how the semantic
10245 information is encoded by GNAT as this is covered separatly. For the
10246 document used as the reference for the GNAT encoding, see exp_dbug.ads
10247 in the GNAT sources.
10248
10249 Ideally, we should embed each part of this description next to its
10250 associated code. Unfortunately, the amount of code is so vast right
10251 now that it's hard to see whether the code handling a particular
10252 situation might be duplicated or not. One day, when the code is
10253 cleaned up, this guide might become redundant with the comments
10254 inserted in the code, and we might want to remove it.
10255
10256 2. ``Fixing'' an Entity, the Simple Case:
10257 -----------------------------------------
10258
10259 When evaluating Ada expressions, the tricky issue is that they may
10260 reference entities whose type contents and size are not statically
10261 known. Consider for instance a variant record:
10262
10263 type Rec (Empty : Boolean := True) is record
10264 case Empty is
10265 when True => null;
10266 when False => Value : Integer;
10267 end case;
10268 end record;
10269 Yes : Rec := (Empty => False, Value => 1);
10270 No : Rec := (empty => True);
10271
10272 The size and contents of that record depends on the value of the
10273 descriminant (Rec.Empty). At this point, neither the debugging
10274 information nor the associated type structure in GDB are able to
10275 express such dynamic types. So what the debugger does is to create
10276 "fixed" versions of the type that applies to the specific object.
10277 We also informally refer to this opperation as "fixing" an object,
10278 which means creating its associated fixed type.
10279
10280 Example: when printing the value of variable "Yes" above, its fixed
10281 type would look like this:
10282
10283 type Rec is record
10284 Empty : Boolean;
10285 Value : Integer;
10286 end record;
10287
10288 On the other hand, if we printed the value of "No", its fixed type
10289 would become:
10290
10291 type Rec is record
10292 Empty : Boolean;
10293 end record;
10294
10295 Things become a little more complicated when trying to fix an entity
10296 with a dynamic type that directly contains another dynamic type,
10297 such as an array of variant records, for instance. There are
10298 two possible cases: Arrays, and records.
10299
10300 3. ``Fixing'' Arrays:
10301 ---------------------
10302
10303 The type structure in GDB describes an array in terms of its bounds,
10304 and the type of its elements. By design, all elements in the array
10305 have the same type and we cannot represent an array of variant elements
10306 using the current type structure in GDB. When fixing an array,
10307 we cannot fix the array element, as we would potentially need one
10308 fixed type per element of the array. As a result, the best we can do
10309 when fixing an array is to produce an array whose bounds and size
10310 are correct (allowing us to read it from memory), but without having
10311 touched its element type. Fixing each element will be done later,
10312 when (if) necessary.
10313
10314 Arrays are a little simpler to handle than records, because the same
10315 amount of memory is allocated for each element of the array, even if
10316 the amount of space actually used by each element differs from element
10317 to element. Consider for instance the following array of type Rec:
10318
10319 type Rec_Array is array (1 .. 2) of Rec;
10320
10321 The actual amount of memory occupied by each element might be different
10322 from element to element, depending on the value of their discriminant.
10323 But the amount of space reserved for each element in the array remains
10324 fixed regardless. So we simply need to compute that size using
10325 the debugging information available, from which we can then determine
10326 the array size (we multiply the number of elements of the array by
10327 the size of each element).
10328
10329 The simplest case is when we have an array of a constrained element
10330 type. For instance, consider the following type declarations:
10331
10332 type Bounded_String (Max_Size : Integer) is
10333 Length : Integer;
10334 Buffer : String (1 .. Max_Size);
10335 end record;
10336 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10337
10338 In this case, the compiler describes the array as an array of
10339 variable-size elements (identified by its XVS suffix) for which
10340 the size can be read in the parallel XVZ variable.
10341
10342 In the case of an array of an unconstrained element type, the compiler
10343 wraps the array element inside a private PAD type. This type should not
10344 be shown to the user, and must be "unwrap"'ed before printing. Note
10345 that we also use the adjective "aligner" in our code to designate
10346 these wrapper types.
10347
10348 In some cases, the size allocated for each element is statically
10349 known. In that case, the PAD type already has the correct size,
10350 and the array element should remain unfixed.
10351
10352 But there are cases when this size is not statically known.
10353 For instance, assuming that "Five" is an integer variable:
10354
10355 type Dynamic is array (1 .. Five) of Integer;
10356 type Wrapper (Has_Length : Boolean := False) is record
10357 Data : Dynamic;
10358 case Has_Length is
10359 when True => Length : Integer;
10360 when False => null;
10361 end case;
10362 end record;
10363 type Wrapper_Array is array (1 .. 2) of Wrapper;
10364
10365 Hello : Wrapper_Array := (others => (Has_Length => True,
10366 Data => (others => 17),
10367 Length => 1));
10368
10369
10370 The debugging info would describe variable Hello as being an
10371 array of a PAD type. The size of that PAD type is not statically
10372 known, but can be determined using a parallel XVZ variable.
10373 In that case, a copy of the PAD type with the correct size should
10374 be used for the fixed array.
10375
10376 3. ``Fixing'' record type objects:
10377 ----------------------------------
10378
10379 Things are slightly different from arrays in the case of dynamic
10380 record types. In this case, in order to compute the associated
10381 fixed type, we need to determine the size and offset of each of
10382 its components. This, in turn, requires us to compute the fixed
10383 type of each of these components.
10384
10385 Consider for instance the example:
10386
10387 type Bounded_String (Max_Size : Natural) is record
10388 Str : String (1 .. Max_Size);
10389 Length : Natural;
10390 end record;
10391 My_String : Bounded_String (Max_Size => 10);
10392
10393 In that case, the position of field "Length" depends on the size
10394 of field Str, which itself depends on the value of the Max_Size
10395 discriminant. In order to fix the type of variable My_String,
10396 we need to fix the type of field Str. Therefore, fixing a variant
10397 record requires us to fix each of its components.
10398
10399 However, if a component does not have a dynamic size, the component
10400 should not be fixed. In particular, fields that use a PAD type
10401 should not fixed. Here is an example where this might happen
10402 (assuming type Rec above):
10403
10404 type Container (Big : Boolean) is record
10405 First : Rec;
10406 After : Integer;
10407 case Big is
10408 when True => Another : Integer;
10409 when False => null;
10410 end case;
10411 end record;
10412 My_Container : Container := (Big => False,
10413 First => (Empty => True),
10414 After => 42);
10415
10416 In that example, the compiler creates a PAD type for component First,
10417 whose size is constant, and then positions the component After just
10418 right after it. The offset of component After is therefore constant
10419 in this case.
10420
10421 The debugger computes the position of each field based on an algorithm
10422 that uses, among other things, the actual position and size of the field
10423 preceding it. Let's now imagine that the user is trying to print
10424 the value of My_Container. If the type fixing was recursive, we would
10425 end up computing the offset of field After based on the size of the
10426 fixed version of field First. And since in our example First has
10427 only one actual field, the size of the fixed type is actually smaller
10428 than the amount of space allocated to that field, and thus we would
10429 compute the wrong offset of field After.
10430
10431 To make things more complicated, we need to watch out for dynamic
10432 components of variant records (identified by the ___XVL suffix in
10433 the component name). Even if the target type is a PAD type, the size
10434 of that type might not be statically known. So the PAD type needs
10435 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10436 we might end up with the wrong size for our component. This can be
10437 observed with the following type declarations:
10438
10439 type Octal is new Integer range 0 .. 7;
10440 type Octal_Array is array (Positive range <>) of Octal;
10441 pragma Pack (Octal_Array);
10442
10443 type Octal_Buffer (Size : Positive) is record
10444 Buffer : Octal_Array (1 .. Size);
10445 Length : Integer;
10446 end record;
10447
10448 In that case, Buffer is a PAD type whose size is unset and needs
10449 to be computed by fixing the unwrapped type.
10450
10451 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10452 ----------------------------------------------------------
10453
10454 Lastly, when should the sub-elements of an entity that remained unfixed
10455 thus far, be actually fixed?
10456
10457 The answer is: Only when referencing that element. For instance
10458 when selecting one component of a record, this specific component
10459 should be fixed at that point in time. Or when printing the value
10460 of a record, each component should be fixed before its value gets
10461 printed. Similarly for arrays, the element of the array should be
10462 fixed when printing each element of the array, or when extracting
10463 one element out of that array. On the other hand, fixing should
10464 not be performed on the elements when taking a slice of an array!
10465
10466 Note that one of the side-effects of miscomputing the offset and
10467 size of each field is that we end up also miscomputing the size
10468 of the containing type. This can have adverse results when computing
10469 the value of an entity. GDB fetches the value of an entity based
10470 on the size of its type, and thus a wrong size causes GDB to fetch
10471 the wrong amount of memory. In the case where the computed size is
10472 too small, GDB fetches too little data to print the value of our
10473 entiry. Results in this case as unpredicatble, as we usually read
10474 past the buffer containing the data =:-o. */
10475
10476 /* Implement the evaluate_exp routine in the exp_descriptor structure
10477 for the Ada language. */
10478
10479 static struct value *
10480 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10481 int *pos, enum noside noside)
10482 {
10483 enum exp_opcode op;
10484 int tem;
10485 int pc;
10486 int preeval_pos;
10487 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10488 struct type *type;
10489 int nargs, oplen;
10490 struct value **argvec;
10491
10492 pc = *pos;
10493 *pos += 1;
10494 op = exp->elts[pc].opcode;
10495
10496 switch (op)
10497 {
10498 default:
10499 *pos -= 1;
10500 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10501
10502 if (noside == EVAL_NORMAL)
10503 arg1 = unwrap_value (arg1);
10504
10505 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10506 then we need to perform the conversion manually, because
10507 evaluate_subexp_standard doesn't do it. This conversion is
10508 necessary in Ada because the different kinds of float/fixed
10509 types in Ada have different representations.
10510
10511 Similarly, we need to perform the conversion from OP_LONG
10512 ourselves. */
10513 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10514 arg1 = ada_value_cast (expect_type, arg1, noside);
10515
10516 return arg1;
10517
10518 case OP_STRING:
10519 {
10520 struct value *result;
10521
10522 *pos -= 1;
10523 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10524 /* The result type will have code OP_STRING, bashed there from
10525 OP_ARRAY. Bash it back. */
10526 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10527 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10528 return result;
10529 }
10530
10531 case UNOP_CAST:
10532 (*pos) += 2;
10533 type = exp->elts[pc + 1].type;
10534 arg1 = evaluate_subexp (type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
10537 arg1 = ada_value_cast (type, arg1, noside);
10538 return arg1;
10539
10540 case UNOP_QUAL:
10541 (*pos) += 2;
10542 type = exp->elts[pc + 1].type;
10543 return ada_evaluate_subexp (type, exp, pos, noside);
10544
10545 case BINOP_ASSIGN:
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10548 {
10549 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10550 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10551 return arg1;
10552 return ada_value_assign (arg1, arg1);
10553 }
10554 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10555 except if the lhs of our assignment is a convenience variable.
10556 In the case of assigning to a convenience variable, the lhs
10557 should be exactly the result of the evaluation of the rhs. */
10558 type = value_type (arg1);
10559 if (VALUE_LVAL (arg1) == lval_internalvar)
10560 type = NULL;
10561 arg2 = evaluate_subexp (type, exp, pos, noside);
10562 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10563 return arg1;
10564 if (ada_is_fixed_point_type (value_type (arg1)))
10565 arg2 = cast_to_fixed (value_type (arg1), arg2);
10566 else if (ada_is_fixed_point_type (value_type (arg2)))
10567 error
10568 (_("Fixed-point values must be assigned to fixed-point variables"));
10569 else
10570 arg2 = coerce_for_assign (value_type (arg1), arg2);
10571 return ada_value_assign (arg1, arg2);
10572
10573 case BINOP_ADD:
10574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10576 if (noside == EVAL_SKIP)
10577 goto nosideret;
10578 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg1),
10581 value_as_long (arg1) + value_as_long (arg2)));
10582 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10583 return (value_from_longest
10584 (value_type (arg2),
10585 value_as_long (arg1) + value_as_long (arg2)));
10586 if ((ada_is_fixed_point_type (value_type (arg1))
10587 || ada_is_fixed_point_type (value_type (arg2)))
10588 && value_type (arg1) != value_type (arg2))
10589 error (_("Operands of fixed-point addition must have the same type"));
10590 /* Do the addition, and cast the result to the type of the first
10591 argument. We cannot cast the result to a reference type, so if
10592 ARG1 is a reference type, find its underlying type. */
10593 type = value_type (arg1);
10594 while (TYPE_CODE (type) == TYPE_CODE_REF)
10595 type = TYPE_TARGET_TYPE (type);
10596 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10597 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10598
10599 case BINOP_SUB:
10600 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10601 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10602 if (noside == EVAL_SKIP)
10603 goto nosideret;
10604 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10605 return (value_from_longest
10606 (value_type (arg1),
10607 value_as_long (arg1) - value_as_long (arg2)));
10608 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10609 return (value_from_longest
10610 (value_type (arg2),
10611 value_as_long (arg1) - value_as_long (arg2)));
10612 if ((ada_is_fixed_point_type (value_type (arg1))
10613 || ada_is_fixed_point_type (value_type (arg2)))
10614 && value_type (arg1) != value_type (arg2))
10615 error (_("Operands of fixed-point subtraction "
10616 "must have the same type"));
10617 /* Do the substraction, and cast the result to the type of the first
10618 argument. We cannot cast the result to a reference type, so if
10619 ARG1 is a reference type, find its underlying type. */
10620 type = value_type (arg1);
10621 while (TYPE_CODE (type) == TYPE_CODE_REF)
10622 type = TYPE_TARGET_TYPE (type);
10623 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10624 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10625
10626 case BINOP_MUL:
10627 case BINOP_DIV:
10628 case BINOP_REM:
10629 case BINOP_MOD:
10630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10631 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10632 if (noside == EVAL_SKIP)
10633 goto nosideret;
10634 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10635 {
10636 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10637 return value_zero (value_type (arg1), not_lval);
10638 }
10639 else
10640 {
10641 type = builtin_type (exp->gdbarch)->builtin_double;
10642 if (ada_is_fixed_point_type (value_type (arg1)))
10643 arg1 = cast_from_fixed (type, arg1);
10644 if (ada_is_fixed_point_type (value_type (arg2)))
10645 arg2 = cast_from_fixed (type, arg2);
10646 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10647 return ada_value_binop (arg1, arg2, op);
10648 }
10649
10650 case BINOP_EQUAL:
10651 case BINOP_NOTEQUAL:
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10654 if (noside == EVAL_SKIP)
10655 goto nosideret;
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 tem = 0;
10658 else
10659 {
10660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10661 tem = ada_value_equal (arg1, arg2);
10662 }
10663 if (op == BINOP_NOTEQUAL)
10664 tem = !tem;
10665 type = language_bool_type (exp->language_defn, exp->gdbarch);
10666 return value_from_longest (type, (LONGEST) tem);
10667
10668 case UNOP_NEG:
10669 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672 else if (ada_is_fixed_point_type (value_type (arg1)))
10673 return value_cast (value_type (arg1), value_neg (arg1));
10674 else
10675 {
10676 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10677 return value_neg (arg1);
10678 }
10679
10680 case BINOP_LOGICAL_AND:
10681 case BINOP_LOGICAL_OR:
10682 case UNOP_LOGICAL_NOT:
10683 {
10684 struct value *val;
10685
10686 *pos -= 1;
10687 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10688 type = language_bool_type (exp->language_defn, exp->gdbarch);
10689 return value_cast (type, val);
10690 }
10691
10692 case BINOP_BITWISE_AND:
10693 case BINOP_BITWISE_IOR:
10694 case BINOP_BITWISE_XOR:
10695 {
10696 struct value *val;
10697
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10699 *pos = pc;
10700 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10701
10702 return value_cast (value_type (arg1), val);
10703 }
10704
10705 case OP_VAR_VALUE:
10706 *pos -= 1;
10707
10708 if (noside == EVAL_SKIP)
10709 {
10710 *pos += 4;
10711 goto nosideret;
10712 }
10713
10714 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10715 /* Only encountered when an unresolved symbol occurs in a
10716 context other than a function call, in which case, it is
10717 invalid. */
10718 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10719 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10720
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 {
10723 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10724 /* Check to see if this is a tagged type. We also need to handle
10725 the case where the type is a reference to a tagged type, but
10726 we have to be careful to exclude pointers to tagged types.
10727 The latter should be shown as usual (as a pointer), whereas
10728 a reference should mostly be transparent to the user. */
10729 if (ada_is_tagged_type (type, 0)
10730 || (TYPE_CODE (type) == TYPE_CODE_REF
10731 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10732 {
10733 /* Tagged types are a little special in the fact that the real
10734 type is dynamic and can only be determined by inspecting the
10735 object's tag. This means that we need to get the object's
10736 value first (EVAL_NORMAL) and then extract the actual object
10737 type from its tag.
10738
10739 Note that we cannot skip the final step where we extract
10740 the object type from its tag, because the EVAL_NORMAL phase
10741 results in dynamic components being resolved into fixed ones.
10742 This can cause problems when trying to print the type
10743 description of tagged types whose parent has a dynamic size:
10744 We use the type name of the "_parent" component in order
10745 to print the name of the ancestor type in the type description.
10746 If that component had a dynamic size, the resolution into
10747 a fixed type would result in the loss of that type name,
10748 thus preventing us from printing the name of the ancestor
10749 type in the type description. */
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10751
10752 if (TYPE_CODE (type) != TYPE_CODE_REF)
10753 {
10754 struct type *actual_type;
10755
10756 actual_type = type_from_tag (ada_value_tag (arg1));
10757 if (actual_type == NULL)
10758 /* If, for some reason, we were unable to determine
10759 the actual type from the tag, then use the static
10760 approximation that we just computed as a fallback.
10761 This can happen if the debugging information is
10762 incomplete, for instance. */
10763 actual_type = type;
10764 return value_zero (actual_type, not_lval);
10765 }
10766 else
10767 {
10768 /* In the case of a ref, ada_coerce_ref takes care
10769 of determining the actual type. But the evaluation
10770 should return a ref as it should be valid to ask
10771 for its address; so rebuild a ref after coerce. */
10772 arg1 = ada_coerce_ref (arg1);
10773 return value_ref (arg1);
10774 }
10775 }
10776
10777 /* Records and unions for which GNAT encodings have been
10778 generated need to be statically fixed as well.
10779 Otherwise, non-static fixing produces a type where
10780 all dynamic properties are removed, which prevents "ptype"
10781 from being able to completely describe the type.
10782 For instance, a case statement in a variant record would be
10783 replaced by the relevant components based on the actual
10784 value of the discriminants. */
10785 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10786 && dynamic_template_type (type) != NULL)
10787 || (TYPE_CODE (type) == TYPE_CODE_UNION
10788 && ada_find_parallel_type (type, "___XVU") != NULL))
10789 {
10790 *pos += 4;
10791 return value_zero (to_static_fixed_type (type), not_lval);
10792 }
10793 }
10794
10795 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10796 return ada_to_fixed_value (arg1);
10797
10798 case OP_FUNCALL:
10799 (*pos) += 2;
10800
10801 /* Allocate arg vector, including space for the function to be
10802 called in argvec[0] and a terminating NULL. */
10803 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10804 argvec = XALLOCAVEC (struct value *, nargs + 2);
10805
10806 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10807 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10809 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10810 else
10811 {
10812 for (tem = 0; tem <= nargs; tem += 1)
10813 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10814 argvec[tem] = 0;
10815
10816 if (noside == EVAL_SKIP)
10817 goto nosideret;
10818 }
10819
10820 if (ada_is_constrained_packed_array_type
10821 (desc_base_type (value_type (argvec[0]))))
10822 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10823 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10824 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10825 /* This is a packed array that has already been fixed, and
10826 therefore already coerced to a simple array. Nothing further
10827 to do. */
10828 ;
10829 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10830 {
10831 /* Make sure we dereference references so that all the code below
10832 feels like it's really handling the referenced value. Wrapping
10833 types (for alignment) may be there, so make sure we strip them as
10834 well. */
10835 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10836 }
10837 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10838 && VALUE_LVAL (argvec[0]) == lval_memory)
10839 argvec[0] = value_addr (argvec[0]);
10840
10841 type = ada_check_typedef (value_type (argvec[0]));
10842
10843 /* Ada allows us to implicitly dereference arrays when subscripting
10844 them. So, if this is an array typedef (encoding use for array
10845 access types encoded as fat pointers), strip it now. */
10846 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10847 type = ada_typedef_target_type (type);
10848
10849 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10850 {
10851 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10852 {
10853 case TYPE_CODE_FUNC:
10854 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10855 break;
10856 case TYPE_CODE_ARRAY:
10857 break;
10858 case TYPE_CODE_STRUCT:
10859 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10860 argvec[0] = ada_value_ind (argvec[0]);
10861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10862 break;
10863 default:
10864 error (_("cannot subscript or call something of type `%s'"),
10865 ada_type_name (value_type (argvec[0])));
10866 break;
10867 }
10868 }
10869
10870 switch (TYPE_CODE (type))
10871 {
10872 case TYPE_CODE_FUNC:
10873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10874 {
10875 struct type *rtype = TYPE_TARGET_TYPE (type);
10876
10877 if (TYPE_GNU_IFUNC (type))
10878 return allocate_value (TYPE_TARGET_TYPE (rtype));
10879 return allocate_value (rtype);
10880 }
10881 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10882 case TYPE_CODE_INTERNAL_FUNCTION:
10883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10884 /* We don't know anything about what the internal
10885 function might return, but we have to return
10886 something. */
10887 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10888 not_lval);
10889 else
10890 return call_internal_function (exp->gdbarch, exp->language_defn,
10891 argvec[0], nargs, argvec + 1);
10892
10893 case TYPE_CODE_STRUCT:
10894 {
10895 int arity;
10896
10897 arity = ada_array_arity (type);
10898 type = ada_array_element_type (type, nargs);
10899 if (type == NULL)
10900 error (_("cannot subscript or call a record"));
10901 if (arity != nargs)
10902 error (_("wrong number of subscripts; expecting %d"), arity);
10903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return value_zero (ada_aligned_type (type), lval_memory);
10905 return
10906 unwrap_value (ada_value_subscript
10907 (argvec[0], nargs, argvec + 1));
10908 }
10909 case TYPE_CODE_ARRAY:
10910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 {
10912 type = ada_array_element_type (type, nargs);
10913 if (type == NULL)
10914 error (_("element type of array unknown"));
10915 else
10916 return value_zero (ada_aligned_type (type), lval_memory);
10917 }
10918 return
10919 unwrap_value (ada_value_subscript
10920 (ada_coerce_to_simple_array (argvec[0]),
10921 nargs, argvec + 1));
10922 case TYPE_CODE_PTR: /* Pointer to array */
10923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10924 {
10925 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10926 type = ada_array_element_type (type, nargs);
10927 if (type == NULL)
10928 error (_("element type of array unknown"));
10929 else
10930 return value_zero (ada_aligned_type (type), lval_memory);
10931 }
10932 return
10933 unwrap_value (ada_value_ptr_subscript (argvec[0],
10934 nargs, argvec + 1));
10935
10936 default:
10937 error (_("Attempt to index or call something other than an "
10938 "array or function"));
10939 }
10940
10941 case TERNOP_SLICE:
10942 {
10943 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10944 struct value *low_bound_val =
10945 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946 struct value *high_bound_val =
10947 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948 LONGEST low_bound;
10949 LONGEST high_bound;
10950
10951 low_bound_val = coerce_ref (low_bound_val);
10952 high_bound_val = coerce_ref (high_bound_val);
10953 low_bound = value_as_long (low_bound_val);
10954 high_bound = value_as_long (high_bound_val);
10955
10956 if (noside == EVAL_SKIP)
10957 goto nosideret;
10958
10959 /* If this is a reference to an aligner type, then remove all
10960 the aligners. */
10961 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10962 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10963 TYPE_TARGET_TYPE (value_type (array)) =
10964 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10965
10966 if (ada_is_constrained_packed_array_type (value_type (array)))
10967 error (_("cannot slice a packed array"));
10968
10969 /* If this is a reference to an array or an array lvalue,
10970 convert to a pointer. */
10971 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10972 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10973 && VALUE_LVAL (array) == lval_memory))
10974 array = value_addr (array);
10975
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS
10977 && ada_is_array_descriptor_type (ada_check_typedef
10978 (value_type (array))))
10979 return empty_array (ada_type_of_array (array, 0), low_bound);
10980
10981 array = ada_coerce_to_simple_array_ptr (array);
10982
10983 /* If we have more than one level of pointer indirection,
10984 dereference the value until we get only one level. */
10985 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10986 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10987 == TYPE_CODE_PTR))
10988 array = value_ind (array);
10989
10990 /* Make sure we really do have an array type before going further,
10991 to avoid a SEGV when trying to get the index type or the target
10992 type later down the road if the debug info generated by
10993 the compiler is incorrect or incomplete. */
10994 if (!ada_is_simple_array_type (value_type (array)))
10995 error (_("cannot take slice of non-array"));
10996
10997 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10998 == TYPE_CODE_PTR)
10999 {
11000 struct type *type0 = ada_check_typedef (value_type (array));
11001
11002 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11003 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11004 else
11005 {
11006 struct type *arr_type0 =
11007 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11008
11009 return ada_value_slice_from_ptr (array, arr_type0,
11010 longest_to_int (low_bound),
11011 longest_to_int (high_bound));
11012 }
11013 }
11014 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11015 return array;
11016 else if (high_bound < low_bound)
11017 return empty_array (value_type (array), low_bound);
11018 else
11019 return ada_value_slice (array, longest_to_int (low_bound),
11020 longest_to_int (high_bound));
11021 }
11022
11023 case UNOP_IN_RANGE:
11024 (*pos) += 2;
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 type = check_typedef (exp->elts[pc + 1].type);
11027
11028 if (noside == EVAL_SKIP)
11029 goto nosideret;
11030
11031 switch (TYPE_CODE (type))
11032 {
11033 default:
11034 lim_warning (_("Membership test incompletely implemented; "
11035 "always returns true"));
11036 type = language_bool_type (exp->language_defn, exp->gdbarch);
11037 return value_from_longest (type, (LONGEST) 1);
11038
11039 case TYPE_CODE_RANGE:
11040 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11041 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11043 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11044 type = language_bool_type (exp->language_defn, exp->gdbarch);
11045 return
11046 value_from_longest (type,
11047 (value_less (arg1, arg3)
11048 || value_equal (arg1, arg3))
11049 && (value_less (arg2, arg1)
11050 || value_equal (arg2, arg1)));
11051 }
11052
11053 case BINOP_IN_BOUNDS:
11054 (*pos) += 2;
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11057
11058 if (noside == EVAL_SKIP)
11059 goto nosideret;
11060
11061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11062 {
11063 type = language_bool_type (exp->language_defn, exp->gdbarch);
11064 return value_zero (type, not_lval);
11065 }
11066
11067 tem = longest_to_int (exp->elts[pc + 1].longconst);
11068
11069 type = ada_index_type (value_type (arg2), tem, "range");
11070 if (!type)
11071 type = value_type (arg1);
11072
11073 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11074 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11075
11076 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11077 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11078 type = language_bool_type (exp->language_defn, exp->gdbarch);
11079 return
11080 value_from_longest (type,
11081 (value_less (arg1, arg3)
11082 || value_equal (arg1, arg3))
11083 && (value_less (arg2, arg1)
11084 || value_equal (arg2, arg1)));
11085
11086 case TERNOP_IN_RANGE:
11087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11088 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11089 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11090
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093
11094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11096 type = language_bool_type (exp->language_defn, exp->gdbarch);
11097 return
11098 value_from_longest (type,
11099 (value_less (arg1, arg3)
11100 || value_equal (arg1, arg3))
11101 && (value_less (arg2, arg1)
11102 || value_equal (arg2, arg1)));
11103
11104 case OP_ATR_FIRST:
11105 case OP_ATR_LAST:
11106 case OP_ATR_LENGTH:
11107 {
11108 struct type *type_arg;
11109
11110 if (exp->elts[*pos].opcode == OP_TYPE)
11111 {
11112 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11113 arg1 = NULL;
11114 type_arg = check_typedef (exp->elts[pc + 2].type);
11115 }
11116 else
11117 {
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 type_arg = NULL;
11120 }
11121
11122 if (exp->elts[*pos].opcode != OP_LONG)
11123 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11124 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11125 *pos += 4;
11126
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129
11130 if (type_arg == NULL)
11131 {
11132 arg1 = ada_coerce_ref (arg1);
11133
11134 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11135 arg1 = ada_coerce_to_simple_array (arg1);
11136
11137 if (op == OP_ATR_LENGTH)
11138 type = builtin_type (exp->gdbarch)->builtin_int;
11139 else
11140 {
11141 type = ada_index_type (value_type (arg1), tem,
11142 ada_attribute_name (op));
11143 if (type == NULL)
11144 type = builtin_type (exp->gdbarch)->builtin_int;
11145 }
11146
11147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11148 return allocate_value (type);
11149
11150 switch (op)
11151 {
11152 default: /* Should never happen. */
11153 error (_("unexpected attribute encountered"));
11154 case OP_ATR_FIRST:
11155 return value_from_longest
11156 (type, ada_array_bound (arg1, tem, 0));
11157 case OP_ATR_LAST:
11158 return value_from_longest
11159 (type, ada_array_bound (arg1, tem, 1));
11160 case OP_ATR_LENGTH:
11161 return value_from_longest
11162 (type, ada_array_length (arg1, tem));
11163 }
11164 }
11165 else if (discrete_type_p (type_arg))
11166 {
11167 struct type *range_type;
11168 const char *name = ada_type_name (type_arg);
11169
11170 range_type = NULL;
11171 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11172 range_type = to_fixed_range_type (type_arg, NULL);
11173 if (range_type == NULL)
11174 range_type = type_arg;
11175 switch (op)
11176 {
11177 default:
11178 error (_("unexpected attribute encountered"));
11179 case OP_ATR_FIRST:
11180 return value_from_longest
11181 (range_type, ada_discrete_type_low_bound (range_type));
11182 case OP_ATR_LAST:
11183 return value_from_longest
11184 (range_type, ada_discrete_type_high_bound (range_type));
11185 case OP_ATR_LENGTH:
11186 error (_("the 'length attribute applies only to array types"));
11187 }
11188 }
11189 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11190 error (_("unimplemented type attribute"));
11191 else
11192 {
11193 LONGEST low, high;
11194
11195 if (ada_is_constrained_packed_array_type (type_arg))
11196 type_arg = decode_constrained_packed_array_type (type_arg);
11197
11198 if (op == OP_ATR_LENGTH)
11199 type = builtin_type (exp->gdbarch)->builtin_int;
11200 else
11201 {
11202 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11203 if (type == NULL)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 }
11206
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 return allocate_value (type);
11209
11210 switch (op)
11211 {
11212 default:
11213 error (_("unexpected attribute encountered"));
11214 case OP_ATR_FIRST:
11215 low = ada_array_bound_from_type (type_arg, tem, 0);
11216 return value_from_longest (type, low);
11217 case OP_ATR_LAST:
11218 high = ada_array_bound_from_type (type_arg, tem, 1);
11219 return value_from_longest (type, high);
11220 case OP_ATR_LENGTH:
11221 low = ada_array_bound_from_type (type_arg, tem, 0);
11222 high = ada_array_bound_from_type (type_arg, tem, 1);
11223 return value_from_longest (type, high - low + 1);
11224 }
11225 }
11226 }
11227
11228 case OP_ATR_TAG:
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
11232
11233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11234 return value_zero (ada_tag_type (arg1), not_lval);
11235
11236 return ada_value_tag (arg1);
11237
11238 case OP_ATR_MIN:
11239 case OP_ATR_MAX:
11240 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11246 return value_zero (value_type (arg1), not_lval);
11247 else
11248 {
11249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11250 return value_binop (arg1, arg2,
11251 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11252 }
11253
11254 case OP_ATR_MODULUS:
11255 {
11256 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11257
11258 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
11261
11262 if (!ada_is_modular_type (type_arg))
11263 error (_("'modulus must be applied to modular type"));
11264
11265 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11266 ada_modulus (type_arg));
11267 }
11268
11269
11270 case OP_ATR_POS:
11271 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
11274 goto nosideret;
11275 type = builtin_type (exp->gdbarch)->builtin_int;
11276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11277 return value_zero (type, not_lval);
11278 else
11279 return value_pos_atr (type, arg1);
11280
11281 case OP_ATR_SIZE:
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 type = value_type (arg1);
11284
11285 /* If the argument is a reference, then dereference its type, since
11286 the user is really asking for the size of the actual object,
11287 not the size of the pointer. */
11288 if (TYPE_CODE (type) == TYPE_CODE_REF)
11289 type = TYPE_TARGET_TYPE (type);
11290
11291 if (noside == EVAL_SKIP)
11292 goto nosideret;
11293 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11294 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11295 else
11296 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11297 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11298
11299 case OP_ATR_VAL:
11300 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11302 type = exp->elts[pc + 2].type;
11303 if (noside == EVAL_SKIP)
11304 goto nosideret;
11305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11306 return value_zero (type, not_lval);
11307 else
11308 return value_val_atr (type, arg1);
11309
11310 case BINOP_EXP:
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11313 if (noside == EVAL_SKIP)
11314 goto nosideret;
11315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11316 return value_zero (value_type (arg1), not_lval);
11317 else
11318 {
11319 /* For integer exponentiation operations,
11320 only promote the first argument. */
11321 if (is_integral_type (value_type (arg2)))
11322 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11323 else
11324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11325
11326 return value_binop (arg1, arg2, op);
11327 }
11328
11329 case UNOP_PLUS:
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
11332 goto nosideret;
11333 else
11334 return arg1;
11335
11336 case UNOP_ABS:
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
11339 goto nosideret;
11340 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11341 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11342 return value_neg (arg1);
11343 else
11344 return arg1;
11345
11346 case UNOP_IND:
11347 preeval_pos = *pos;
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 if (noside == EVAL_SKIP)
11350 goto nosideret;
11351 type = ada_check_typedef (value_type (arg1));
11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 {
11354 if (ada_is_array_descriptor_type (type))
11355 /* GDB allows dereferencing GNAT array descriptors. */
11356 {
11357 struct type *arrType = ada_type_of_array (arg1, 0);
11358
11359 if (arrType == NULL)
11360 error (_("Attempt to dereference null array pointer."));
11361 return value_at_lazy (arrType, 0);
11362 }
11363 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11364 || TYPE_CODE (type) == TYPE_CODE_REF
11365 /* In C you can dereference an array to get the 1st elt. */
11366 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11367 {
11368 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11369 only be determined by inspecting the object's tag.
11370 This means that we need to evaluate completely the
11371 expression in order to get its type. */
11372
11373 if ((TYPE_CODE (type) == TYPE_CODE_REF
11374 || TYPE_CODE (type) == TYPE_CODE_PTR)
11375 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11376 {
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11378 EVAL_NORMAL);
11379 type = value_type (ada_value_ind (arg1));
11380 }
11381 else
11382 {
11383 type = to_static_fixed_type
11384 (ada_aligned_type
11385 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11386 }
11387 ada_ensure_varsize_limit (type);
11388 return value_zero (type, lval_memory);
11389 }
11390 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11391 {
11392 /* GDB allows dereferencing an int. */
11393 if (expect_type == NULL)
11394 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11395 lval_memory);
11396 else
11397 {
11398 expect_type =
11399 to_static_fixed_type (ada_aligned_type (expect_type));
11400 return value_zero (expect_type, lval_memory);
11401 }
11402 }
11403 else
11404 error (_("Attempt to take contents of a non-pointer value."));
11405 }
11406 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11407 type = ada_check_typedef (value_type (arg1));
11408
11409 if (TYPE_CODE (type) == TYPE_CODE_INT)
11410 /* GDB allows dereferencing an int. If we were given
11411 the expect_type, then use that as the target type.
11412 Otherwise, assume that the target type is an int. */
11413 {
11414 if (expect_type != NULL)
11415 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11416 arg1));
11417 else
11418 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11419 (CORE_ADDR) value_as_address (arg1));
11420 }
11421
11422 if (ada_is_array_descriptor_type (type))
11423 /* GDB allows dereferencing GNAT array descriptors. */
11424 return ada_coerce_to_simple_array (arg1);
11425 else
11426 return ada_value_ind (arg1);
11427
11428 case STRUCTOP_STRUCT:
11429 tem = longest_to_int (exp->elts[pc + 1].longconst);
11430 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11431 preeval_pos = *pos;
11432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11433 if (noside == EVAL_SKIP)
11434 goto nosideret;
11435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11436 {
11437 struct type *type1 = value_type (arg1);
11438
11439 if (ada_is_tagged_type (type1, 1))
11440 {
11441 type = ada_lookup_struct_elt_type (type1,
11442 &exp->elts[pc + 2].string,
11443 1, 1, NULL);
11444
11445 /* If the field is not found, check if it exists in the
11446 extension of this object's type. This means that we
11447 need to evaluate completely the expression. */
11448
11449 if (type == NULL)
11450 {
11451 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11452 EVAL_NORMAL);
11453 arg1 = ada_value_struct_elt (arg1,
11454 &exp->elts[pc + 2].string,
11455 0);
11456 arg1 = unwrap_value (arg1);
11457 type = value_type (ada_to_fixed_value (arg1));
11458 }
11459 }
11460 else
11461 type =
11462 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11463 0, NULL);
11464
11465 return value_zero (ada_aligned_type (type), lval_memory);
11466 }
11467 else
11468 {
11469 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11470 arg1 = unwrap_value (arg1);
11471 return ada_to_fixed_value (arg1);
11472 }
11473
11474 case OP_TYPE:
11475 /* The value is not supposed to be used. This is here to make it
11476 easier to accommodate expressions that contain types. */
11477 (*pos) += 2;
11478 if (noside == EVAL_SKIP)
11479 goto nosideret;
11480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11481 return allocate_value (exp->elts[pc + 1].type);
11482 else
11483 error (_("Attempt to use a type name as an expression"));
11484
11485 case OP_AGGREGATE:
11486 case OP_CHOICES:
11487 case OP_OTHERS:
11488 case OP_DISCRETE_RANGE:
11489 case OP_POSITIONAL:
11490 case OP_NAME:
11491 if (noside == EVAL_NORMAL)
11492 switch (op)
11493 {
11494 case OP_NAME:
11495 error (_("Undefined name, ambiguous name, or renaming used in "
11496 "component association: %s."), &exp->elts[pc+2].string);
11497 case OP_AGGREGATE:
11498 error (_("Aggregates only allowed on the right of an assignment"));
11499 default:
11500 internal_error (__FILE__, __LINE__,
11501 _("aggregate apparently mangled"));
11502 }
11503
11504 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11505 *pos += oplen - 1;
11506 for (tem = 0; tem < nargs; tem += 1)
11507 ada_evaluate_subexp (NULL, exp, pos, noside);
11508 goto nosideret;
11509 }
11510
11511 nosideret:
11512 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11513 }
11514 \f
11515
11516 /* Fixed point */
11517
11518 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11519 type name that encodes the 'small and 'delta information.
11520 Otherwise, return NULL. */
11521
11522 static const char *
11523 fixed_type_info (struct type *type)
11524 {
11525 const char *name = ada_type_name (type);
11526 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11527
11528 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11529 {
11530 const char *tail = strstr (name, "___XF_");
11531
11532 if (tail == NULL)
11533 return NULL;
11534 else
11535 return tail + 5;
11536 }
11537 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11538 return fixed_type_info (TYPE_TARGET_TYPE (type));
11539 else
11540 return NULL;
11541 }
11542
11543 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11544
11545 int
11546 ada_is_fixed_point_type (struct type *type)
11547 {
11548 return fixed_type_info (type) != NULL;
11549 }
11550
11551 /* Return non-zero iff TYPE represents a System.Address type. */
11552
11553 int
11554 ada_is_system_address_type (struct type *type)
11555 {
11556 return (TYPE_NAME (type)
11557 && strcmp (TYPE_NAME (type), "system__address") == 0);
11558 }
11559
11560 /* Assuming that TYPE is the representation of an Ada fixed-point
11561 type, return its delta, or -1 if the type is malformed and the
11562 delta cannot be determined. */
11563
11564 DOUBLEST
11565 ada_delta (struct type *type)
11566 {
11567 const char *encoding = fixed_type_info (type);
11568 DOUBLEST num, den;
11569
11570 /* Strictly speaking, num and den are encoded as integer. However,
11571 they may not fit into a long, and they will have to be converted
11572 to DOUBLEST anyway. So scan them as DOUBLEST. */
11573 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11574 &num, &den) < 2)
11575 return -1.0;
11576 else
11577 return num / den;
11578 }
11579
11580 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11581 factor ('SMALL value) associated with the type. */
11582
11583 static DOUBLEST
11584 scaling_factor (struct type *type)
11585 {
11586 const char *encoding = fixed_type_info (type);
11587 DOUBLEST num0, den0, num1, den1;
11588 int n;
11589
11590 /* Strictly speaking, num's and den's are encoded as integer. However,
11591 they may not fit into a long, and they will have to be converted
11592 to DOUBLEST anyway. So scan them as DOUBLEST. */
11593 n = sscanf (encoding,
11594 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11595 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11596 &num0, &den0, &num1, &den1);
11597
11598 if (n < 2)
11599 return 1.0;
11600 else if (n == 4)
11601 return num1 / den1;
11602 else
11603 return num0 / den0;
11604 }
11605
11606
11607 /* Assuming that X is the representation of a value of fixed-point
11608 type TYPE, return its floating-point equivalent. */
11609
11610 DOUBLEST
11611 ada_fixed_to_float (struct type *type, LONGEST x)
11612 {
11613 return (DOUBLEST) x *scaling_factor (type);
11614 }
11615
11616 /* The representation of a fixed-point value of type TYPE
11617 corresponding to the value X. */
11618
11619 LONGEST
11620 ada_float_to_fixed (struct type *type, DOUBLEST x)
11621 {
11622 return (LONGEST) (x / scaling_factor (type) + 0.5);
11623 }
11624
11625 \f
11626
11627 /* Range types */
11628
11629 /* Scan STR beginning at position K for a discriminant name, and
11630 return the value of that discriminant field of DVAL in *PX. If
11631 PNEW_K is not null, put the position of the character beyond the
11632 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11633 not alter *PX and *PNEW_K if unsuccessful. */
11634
11635 static int
11636 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11637 int *pnew_k)
11638 {
11639 static char *bound_buffer = NULL;
11640 static size_t bound_buffer_len = 0;
11641 const char *pstart, *pend, *bound;
11642 struct value *bound_val;
11643
11644 if (dval == NULL || str == NULL || str[k] == '\0')
11645 return 0;
11646
11647 pstart = str + k;
11648 pend = strstr (pstart, "__");
11649 if (pend == NULL)
11650 {
11651 bound = pstart;
11652 k += strlen (bound);
11653 }
11654 else
11655 {
11656 int len = pend - pstart;
11657
11658 /* Strip __ and beyond. */
11659 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11660 strncpy (bound_buffer, pstart, len);
11661 bound_buffer[len] = '\0';
11662
11663 bound = bound_buffer;
11664 k = pend - str;
11665 }
11666
11667 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11668 if (bound_val == NULL)
11669 return 0;
11670
11671 *px = value_as_long (bound_val);
11672 if (pnew_k != NULL)
11673 *pnew_k = k;
11674 return 1;
11675 }
11676
11677 /* Value of variable named NAME in the current environment. If
11678 no such variable found, then if ERR_MSG is null, returns 0, and
11679 otherwise causes an error with message ERR_MSG. */
11680
11681 static struct value *
11682 get_var_value (char *name, char *err_msg)
11683 {
11684 struct block_symbol *syms;
11685 int nsyms;
11686
11687 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11688 &syms);
11689
11690 if (nsyms != 1)
11691 {
11692 if (err_msg == NULL)
11693 return 0;
11694 else
11695 error (("%s"), err_msg);
11696 }
11697
11698 return value_of_variable (syms[0].symbol, syms[0].block);
11699 }
11700
11701 /* Value of integer variable named NAME in the current environment. If
11702 no such variable found, returns 0, and sets *FLAG to 0. If
11703 successful, sets *FLAG to 1. */
11704
11705 LONGEST
11706 get_int_var_value (char *name, int *flag)
11707 {
11708 struct value *var_val = get_var_value (name, 0);
11709
11710 if (var_val == 0)
11711 {
11712 if (flag != NULL)
11713 *flag = 0;
11714 return 0;
11715 }
11716 else
11717 {
11718 if (flag != NULL)
11719 *flag = 1;
11720 return value_as_long (var_val);
11721 }
11722 }
11723
11724
11725 /* Return a range type whose base type is that of the range type named
11726 NAME in the current environment, and whose bounds are calculated
11727 from NAME according to the GNAT range encoding conventions.
11728 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11729 corresponding range type from debug information; fall back to using it
11730 if symbol lookup fails. If a new type must be created, allocate it
11731 like ORIG_TYPE was. The bounds information, in general, is encoded
11732 in NAME, the base type given in the named range type. */
11733
11734 static struct type *
11735 to_fixed_range_type (struct type *raw_type, struct value *dval)
11736 {
11737 const char *name;
11738 struct type *base_type;
11739 const char *subtype_info;
11740
11741 gdb_assert (raw_type != NULL);
11742 gdb_assert (TYPE_NAME (raw_type) != NULL);
11743
11744 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11745 base_type = TYPE_TARGET_TYPE (raw_type);
11746 else
11747 base_type = raw_type;
11748
11749 name = TYPE_NAME (raw_type);
11750 subtype_info = strstr (name, "___XD");
11751 if (subtype_info == NULL)
11752 {
11753 LONGEST L = ada_discrete_type_low_bound (raw_type);
11754 LONGEST U = ada_discrete_type_high_bound (raw_type);
11755
11756 if (L < INT_MIN || U > INT_MAX)
11757 return raw_type;
11758 else
11759 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11760 L, U);
11761 }
11762 else
11763 {
11764 static char *name_buf = NULL;
11765 static size_t name_len = 0;
11766 int prefix_len = subtype_info - name;
11767 LONGEST L, U;
11768 struct type *type;
11769 const char *bounds_str;
11770 int n;
11771
11772 GROW_VECT (name_buf, name_len, prefix_len + 5);
11773 strncpy (name_buf, name, prefix_len);
11774 name_buf[prefix_len] = '\0';
11775
11776 subtype_info += 5;
11777 bounds_str = strchr (subtype_info, '_');
11778 n = 1;
11779
11780 if (*subtype_info == 'L')
11781 {
11782 if (!ada_scan_number (bounds_str, n, &L, &n)
11783 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11784 return raw_type;
11785 if (bounds_str[n] == '_')
11786 n += 2;
11787 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11788 n += 1;
11789 subtype_info += 1;
11790 }
11791 else
11792 {
11793 int ok;
11794
11795 strcpy (name_buf + prefix_len, "___L");
11796 L = get_int_var_value (name_buf, &ok);
11797 if (!ok)
11798 {
11799 lim_warning (_("Unknown lower bound, using 1."));
11800 L = 1;
11801 }
11802 }
11803
11804 if (*subtype_info == 'U')
11805 {
11806 if (!ada_scan_number (bounds_str, n, &U, &n)
11807 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11808 return raw_type;
11809 }
11810 else
11811 {
11812 int ok;
11813
11814 strcpy (name_buf + prefix_len, "___U");
11815 U = get_int_var_value (name_buf, &ok);
11816 if (!ok)
11817 {
11818 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11819 U = L;
11820 }
11821 }
11822
11823 type = create_static_range_type (alloc_type_copy (raw_type),
11824 base_type, L, U);
11825 TYPE_NAME (type) = name;
11826 return type;
11827 }
11828 }
11829
11830 /* True iff NAME is the name of a range type. */
11831
11832 int
11833 ada_is_range_type_name (const char *name)
11834 {
11835 return (name != NULL && strstr (name, "___XD"));
11836 }
11837 \f
11838
11839 /* Modular types */
11840
11841 /* True iff TYPE is an Ada modular type. */
11842
11843 int
11844 ada_is_modular_type (struct type *type)
11845 {
11846 struct type *subranged_type = get_base_type (type);
11847
11848 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11849 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11850 && TYPE_UNSIGNED (subranged_type));
11851 }
11852
11853 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11854
11855 ULONGEST
11856 ada_modulus (struct type *type)
11857 {
11858 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11859 }
11860 \f
11861
11862 /* Ada exception catchpoint support:
11863 ---------------------------------
11864
11865 We support 3 kinds of exception catchpoints:
11866 . catchpoints on Ada exceptions
11867 . catchpoints on unhandled Ada exceptions
11868 . catchpoints on failed assertions
11869
11870 Exceptions raised during failed assertions, or unhandled exceptions
11871 could perfectly be caught with the general catchpoint on Ada exceptions.
11872 However, we can easily differentiate these two special cases, and having
11873 the option to distinguish these two cases from the rest can be useful
11874 to zero-in on certain situations.
11875
11876 Exception catchpoints are a specialized form of breakpoint,
11877 since they rely on inserting breakpoints inside known routines
11878 of the GNAT runtime. The implementation therefore uses a standard
11879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11880 of breakpoint_ops.
11881
11882 Support in the runtime for exception catchpoints have been changed
11883 a few times already, and these changes affect the implementation
11884 of these catchpoints. In order to be able to support several
11885 variants of the runtime, we use a sniffer that will determine
11886 the runtime variant used by the program being debugged. */
11887
11888 /* Ada's standard exceptions.
11889
11890 The Ada 83 standard also defined Numeric_Error. But there so many
11891 situations where it was unclear from the Ada 83 Reference Manual
11892 (RM) whether Constraint_Error or Numeric_Error should be raised,
11893 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11894 Interpretation saying that anytime the RM says that Numeric_Error
11895 should be raised, the implementation may raise Constraint_Error.
11896 Ada 95 went one step further and pretty much removed Numeric_Error
11897 from the list of standard exceptions (it made it a renaming of
11898 Constraint_Error, to help preserve compatibility when compiling
11899 an Ada83 compiler). As such, we do not include Numeric_Error from
11900 this list of standard exceptions. */
11901
11902 static char *standard_exc[] = {
11903 "constraint_error",
11904 "program_error",
11905 "storage_error",
11906 "tasking_error"
11907 };
11908
11909 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11910
11911 /* A structure that describes how to support exception catchpoints
11912 for a given executable. */
11913
11914 struct exception_support_info
11915 {
11916 /* The name of the symbol to break on in order to insert
11917 a catchpoint on exceptions. */
11918 const char *catch_exception_sym;
11919
11920 /* The name of the symbol to break on in order to insert
11921 a catchpoint on unhandled exceptions. */
11922 const char *catch_exception_unhandled_sym;
11923
11924 /* The name of the symbol to break on in order to insert
11925 a catchpoint on failed assertions. */
11926 const char *catch_assert_sym;
11927
11928 /* Assuming that the inferior just triggered an unhandled exception
11929 catchpoint, this function is responsible for returning the address
11930 in inferior memory where the name of that exception is stored.
11931 Return zero if the address could not be computed. */
11932 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11933 };
11934
11935 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11936 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11937
11938 /* The following exception support info structure describes how to
11939 implement exception catchpoints with the latest version of the
11940 Ada runtime (as of 2007-03-06). */
11941
11942 static const struct exception_support_info default_exception_support_info =
11943 {
11944 "__gnat_debug_raise_exception", /* catch_exception_sym */
11945 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11946 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11947 ada_unhandled_exception_name_addr
11948 };
11949
11950 /* The following exception support info structure describes how to
11951 implement exception catchpoints with a slightly older version
11952 of the Ada runtime. */
11953
11954 static const struct exception_support_info exception_support_info_fallback =
11955 {
11956 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11957 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11958 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11959 ada_unhandled_exception_name_addr_from_raise
11960 };
11961
11962 /* Return nonzero if we can detect the exception support routines
11963 described in EINFO.
11964
11965 This function errors out if an abnormal situation is detected
11966 (for instance, if we find the exception support routines, but
11967 that support is found to be incomplete). */
11968
11969 static int
11970 ada_has_this_exception_support (const struct exception_support_info *einfo)
11971 {
11972 struct symbol *sym;
11973
11974 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11975 that should be compiled with debugging information. As a result, we
11976 expect to find that symbol in the symtabs. */
11977
11978 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11979 if (sym == NULL)
11980 {
11981 /* Perhaps we did not find our symbol because the Ada runtime was
11982 compiled without debugging info, or simply stripped of it.
11983 It happens on some GNU/Linux distributions for instance, where
11984 users have to install a separate debug package in order to get
11985 the runtime's debugging info. In that situation, let the user
11986 know why we cannot insert an Ada exception catchpoint.
11987
11988 Note: Just for the purpose of inserting our Ada exception
11989 catchpoint, we could rely purely on the associated minimal symbol.
11990 But we would be operating in degraded mode anyway, since we are
11991 still lacking the debugging info needed later on to extract
11992 the name of the exception being raised (this name is printed in
11993 the catchpoint message, and is also used when trying to catch
11994 a specific exception). We do not handle this case for now. */
11995 struct bound_minimal_symbol msym
11996 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11997
11998 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11999 error (_("Your Ada runtime appears to be missing some debugging "
12000 "information.\nCannot insert Ada exception catchpoint "
12001 "in this configuration."));
12002
12003 return 0;
12004 }
12005
12006 /* Make sure that the symbol we found corresponds to a function. */
12007
12008 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12009 error (_("Symbol \"%s\" is not a function (class = %d)"),
12010 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12011
12012 return 1;
12013 }
12014
12015 /* Inspect the Ada runtime and determine which exception info structure
12016 should be used to provide support for exception catchpoints.
12017
12018 This function will always set the per-inferior exception_info,
12019 or raise an error. */
12020
12021 static void
12022 ada_exception_support_info_sniffer (void)
12023 {
12024 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12025
12026 /* If the exception info is already known, then no need to recompute it. */
12027 if (data->exception_info != NULL)
12028 return;
12029
12030 /* Check the latest (default) exception support info. */
12031 if (ada_has_this_exception_support (&default_exception_support_info))
12032 {
12033 data->exception_info = &default_exception_support_info;
12034 return;
12035 }
12036
12037 /* Try our fallback exception suport info. */
12038 if (ada_has_this_exception_support (&exception_support_info_fallback))
12039 {
12040 data->exception_info = &exception_support_info_fallback;
12041 return;
12042 }
12043
12044 /* Sometimes, it is normal for us to not be able to find the routine
12045 we are looking for. This happens when the program is linked with
12046 the shared version of the GNAT runtime, and the program has not been
12047 started yet. Inform the user of these two possible causes if
12048 applicable. */
12049
12050 if (ada_update_initial_language (language_unknown) != language_ada)
12051 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12052
12053 /* If the symbol does not exist, then check that the program is
12054 already started, to make sure that shared libraries have been
12055 loaded. If it is not started, this may mean that the symbol is
12056 in a shared library. */
12057
12058 if (ptid_get_pid (inferior_ptid) == 0)
12059 error (_("Unable to insert catchpoint. Try to start the program first."));
12060
12061 /* At this point, we know that we are debugging an Ada program and
12062 that the inferior has been started, but we still are not able to
12063 find the run-time symbols. That can mean that we are in
12064 configurable run time mode, or that a-except as been optimized
12065 out by the linker... In any case, at this point it is not worth
12066 supporting this feature. */
12067
12068 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12069 }
12070
12071 /* True iff FRAME is very likely to be that of a function that is
12072 part of the runtime system. This is all very heuristic, but is
12073 intended to be used as advice as to what frames are uninteresting
12074 to most users. */
12075
12076 static int
12077 is_known_support_routine (struct frame_info *frame)
12078 {
12079 struct symtab_and_line sal;
12080 char *func_name;
12081 enum language func_lang;
12082 int i;
12083 const char *fullname;
12084
12085 /* If this code does not have any debugging information (no symtab),
12086 This cannot be any user code. */
12087
12088 find_frame_sal (frame, &sal);
12089 if (sal.symtab == NULL)
12090 return 1;
12091
12092 /* If there is a symtab, but the associated source file cannot be
12093 located, then assume this is not user code: Selecting a frame
12094 for which we cannot display the code would not be very helpful
12095 for the user. This should also take care of case such as VxWorks
12096 where the kernel has some debugging info provided for a few units. */
12097
12098 fullname = symtab_to_fullname (sal.symtab);
12099 if (access (fullname, R_OK) != 0)
12100 return 1;
12101
12102 /* Check the unit filename againt the Ada runtime file naming.
12103 We also check the name of the objfile against the name of some
12104 known system libraries that sometimes come with debugging info
12105 too. */
12106
12107 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12108 {
12109 re_comp (known_runtime_file_name_patterns[i]);
12110 if (re_exec (lbasename (sal.symtab->filename)))
12111 return 1;
12112 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12113 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12114 return 1;
12115 }
12116
12117 /* Check whether the function is a GNAT-generated entity. */
12118
12119 find_frame_funname (frame, &func_name, &func_lang, NULL);
12120 if (func_name == NULL)
12121 return 1;
12122
12123 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12124 {
12125 re_comp (known_auxiliary_function_name_patterns[i]);
12126 if (re_exec (func_name))
12127 {
12128 xfree (func_name);
12129 return 1;
12130 }
12131 }
12132
12133 xfree (func_name);
12134 return 0;
12135 }
12136
12137 /* Find the first frame that contains debugging information and that is not
12138 part of the Ada run-time, starting from FI and moving upward. */
12139
12140 void
12141 ada_find_printable_frame (struct frame_info *fi)
12142 {
12143 for (; fi != NULL; fi = get_prev_frame (fi))
12144 {
12145 if (!is_known_support_routine (fi))
12146 {
12147 select_frame (fi);
12148 break;
12149 }
12150 }
12151
12152 }
12153
12154 /* Assuming that the inferior just triggered an unhandled exception
12155 catchpoint, return the address in inferior memory where the name
12156 of the exception is stored.
12157
12158 Return zero if the address could not be computed. */
12159
12160 static CORE_ADDR
12161 ada_unhandled_exception_name_addr (void)
12162 {
12163 return parse_and_eval_address ("e.full_name");
12164 }
12165
12166 /* Same as ada_unhandled_exception_name_addr, except that this function
12167 should be used when the inferior uses an older version of the runtime,
12168 where the exception name needs to be extracted from a specific frame
12169 several frames up in the callstack. */
12170
12171 static CORE_ADDR
12172 ada_unhandled_exception_name_addr_from_raise (void)
12173 {
12174 int frame_level;
12175 struct frame_info *fi;
12176 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12177 struct cleanup *old_chain;
12178
12179 /* To determine the name of this exception, we need to select
12180 the frame corresponding to RAISE_SYM_NAME. This frame is
12181 at least 3 levels up, so we simply skip the first 3 frames
12182 without checking the name of their associated function. */
12183 fi = get_current_frame ();
12184 for (frame_level = 0; frame_level < 3; frame_level += 1)
12185 if (fi != NULL)
12186 fi = get_prev_frame (fi);
12187
12188 old_chain = make_cleanup (null_cleanup, NULL);
12189 while (fi != NULL)
12190 {
12191 char *func_name;
12192 enum language func_lang;
12193
12194 find_frame_funname (fi, &func_name, &func_lang, NULL);
12195 if (func_name != NULL)
12196 {
12197 make_cleanup (xfree, func_name);
12198
12199 if (strcmp (func_name,
12200 data->exception_info->catch_exception_sym) == 0)
12201 break; /* We found the frame we were looking for... */
12202 fi = get_prev_frame (fi);
12203 }
12204 }
12205 do_cleanups (old_chain);
12206
12207 if (fi == NULL)
12208 return 0;
12209
12210 select_frame (fi);
12211 return parse_and_eval_address ("id.full_name");
12212 }
12213
12214 /* Assuming the inferior just triggered an Ada exception catchpoint
12215 (of any type), return the address in inferior memory where the name
12216 of the exception is stored, if applicable.
12217
12218 Assumes the selected frame is the current frame.
12219
12220 Return zero if the address could not be computed, or if not relevant. */
12221
12222 static CORE_ADDR
12223 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12224 struct breakpoint *b)
12225 {
12226 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12227
12228 switch (ex)
12229 {
12230 case ada_catch_exception:
12231 return (parse_and_eval_address ("e.full_name"));
12232 break;
12233
12234 case ada_catch_exception_unhandled:
12235 return data->exception_info->unhandled_exception_name_addr ();
12236 break;
12237
12238 case ada_catch_assert:
12239 return 0; /* Exception name is not relevant in this case. */
12240 break;
12241
12242 default:
12243 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12244 break;
12245 }
12246
12247 return 0; /* Should never be reached. */
12248 }
12249
12250 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12251 any error that ada_exception_name_addr_1 might cause to be thrown.
12252 When an error is intercepted, a warning with the error message is printed,
12253 and zero is returned. */
12254
12255 static CORE_ADDR
12256 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12257 struct breakpoint *b)
12258 {
12259 CORE_ADDR result = 0;
12260
12261 TRY
12262 {
12263 result = ada_exception_name_addr_1 (ex, b);
12264 }
12265
12266 CATCH (e, RETURN_MASK_ERROR)
12267 {
12268 warning (_("failed to get exception name: %s"), e.message);
12269 return 0;
12270 }
12271 END_CATCH
12272
12273 return result;
12274 }
12275
12276 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12277
12278 /* Ada catchpoints.
12279
12280 In the case of catchpoints on Ada exceptions, the catchpoint will
12281 stop the target on every exception the program throws. When a user
12282 specifies the name of a specific exception, we translate this
12283 request into a condition expression (in text form), and then parse
12284 it into an expression stored in each of the catchpoint's locations.
12285 We then use this condition to check whether the exception that was
12286 raised is the one the user is interested in. If not, then the
12287 target is resumed again. We store the name of the requested
12288 exception, in order to be able to re-set the condition expression
12289 when symbols change. */
12290
12291 /* An instance of this type is used to represent an Ada catchpoint
12292 breakpoint location. It includes a "struct bp_location" as a kind
12293 of base class; users downcast to "struct bp_location *" when
12294 needed. */
12295
12296 struct ada_catchpoint_location
12297 {
12298 /* The base class. */
12299 struct bp_location base;
12300
12301 /* The condition that checks whether the exception that was raised
12302 is the specific exception the user specified on catchpoint
12303 creation. */
12304 expression_up excep_cond_expr;
12305 };
12306
12307 /* Implement the DTOR method in the bp_location_ops structure for all
12308 Ada exception catchpoint kinds. */
12309
12310 static void
12311 ada_catchpoint_location_dtor (struct bp_location *bl)
12312 {
12313 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12314
12315 al->excep_cond_expr.reset ();
12316 }
12317
12318 /* The vtable to be used in Ada catchpoint locations. */
12319
12320 static const struct bp_location_ops ada_catchpoint_location_ops =
12321 {
12322 ada_catchpoint_location_dtor
12323 };
12324
12325 /* An instance of this type is used to represent an Ada catchpoint.
12326 It includes a "struct breakpoint" as a kind of base class; users
12327 downcast to "struct breakpoint *" when needed. */
12328
12329 struct ada_catchpoint
12330 {
12331 /* The base class. */
12332 struct breakpoint base;
12333
12334 /* The name of the specific exception the user specified. */
12335 char *excep_string;
12336 };
12337
12338 /* Parse the exception condition string in the context of each of the
12339 catchpoint's locations, and store them for later evaluation. */
12340
12341 static void
12342 create_excep_cond_exprs (struct ada_catchpoint *c)
12343 {
12344 struct cleanup *old_chain;
12345 struct bp_location *bl;
12346 char *cond_string;
12347
12348 /* Nothing to do if there's no specific exception to catch. */
12349 if (c->excep_string == NULL)
12350 return;
12351
12352 /* Same if there are no locations... */
12353 if (c->base.loc == NULL)
12354 return;
12355
12356 /* Compute the condition expression in text form, from the specific
12357 expection we want to catch. */
12358 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12359 old_chain = make_cleanup (xfree, cond_string);
12360
12361 /* Iterate over all the catchpoint's locations, and parse an
12362 expression for each. */
12363 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12364 {
12365 struct ada_catchpoint_location *ada_loc
12366 = (struct ada_catchpoint_location *) bl;
12367 expression_up exp;
12368
12369 if (!bl->shlib_disabled)
12370 {
12371 const char *s;
12372
12373 s = cond_string;
12374 TRY
12375 {
12376 exp = gdb::move (parse_exp_1 (&s, bl->address,
12377 block_for_pc (bl->address),
12378 0));
12379 }
12380 CATCH (e, RETURN_MASK_ERROR)
12381 {
12382 warning (_("failed to reevaluate internal exception condition "
12383 "for catchpoint %d: %s"),
12384 c->base.number, e.message);
12385 }
12386 END_CATCH
12387 }
12388
12389 ada_loc->excep_cond_expr = gdb::move (exp);
12390 }
12391
12392 do_cleanups (old_chain);
12393 }
12394
12395 /* Implement the DTOR method in the breakpoint_ops structure for all
12396 exception catchpoint kinds. */
12397
12398 static void
12399 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12400 {
12401 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12402
12403 xfree (c->excep_string);
12404
12405 bkpt_breakpoint_ops.dtor (b);
12406 }
12407
12408 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12409 structure for all exception catchpoint kinds. */
12410
12411 static struct bp_location *
12412 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12413 struct breakpoint *self)
12414 {
12415 struct ada_catchpoint_location *loc;
12416
12417 loc = new ada_catchpoint_location ();
12418 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12419 loc->excep_cond_expr = NULL;
12420 return &loc->base;
12421 }
12422
12423 /* Implement the RE_SET method in the breakpoint_ops structure for all
12424 exception catchpoint kinds. */
12425
12426 static void
12427 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12428 {
12429 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12430
12431 /* Call the base class's method. This updates the catchpoint's
12432 locations. */
12433 bkpt_breakpoint_ops.re_set (b);
12434
12435 /* Reparse the exception conditional expressions. One for each
12436 location. */
12437 create_excep_cond_exprs (c);
12438 }
12439
12440 /* Returns true if we should stop for this breakpoint hit. If the
12441 user specified a specific exception, we only want to cause a stop
12442 if the program thrown that exception. */
12443
12444 static int
12445 should_stop_exception (const struct bp_location *bl)
12446 {
12447 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12448 const struct ada_catchpoint_location *ada_loc
12449 = (const struct ada_catchpoint_location *) bl;
12450 int stop;
12451
12452 /* With no specific exception, should always stop. */
12453 if (c->excep_string == NULL)
12454 return 1;
12455
12456 if (ada_loc->excep_cond_expr == NULL)
12457 {
12458 /* We will have a NULL expression if back when we were creating
12459 the expressions, this location's had failed to parse. */
12460 return 1;
12461 }
12462
12463 stop = 1;
12464 TRY
12465 {
12466 struct value *mark;
12467
12468 mark = value_mark ();
12469 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12470 value_free_to_mark (mark);
12471 }
12472 CATCH (ex, RETURN_MASK_ALL)
12473 {
12474 exception_fprintf (gdb_stderr, ex,
12475 _("Error in testing exception condition:\n"));
12476 }
12477 END_CATCH
12478
12479 return stop;
12480 }
12481
12482 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12483 for all exception catchpoint kinds. */
12484
12485 static void
12486 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12487 {
12488 bs->stop = should_stop_exception (bs->bp_location_at);
12489 }
12490
12491 /* Implement the PRINT_IT method in the breakpoint_ops structure
12492 for all exception catchpoint kinds. */
12493
12494 static enum print_stop_action
12495 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12496 {
12497 struct ui_out *uiout = current_uiout;
12498 struct breakpoint *b = bs->breakpoint_at;
12499
12500 annotate_catchpoint (b->number);
12501
12502 if (ui_out_is_mi_like_p (uiout))
12503 {
12504 ui_out_field_string (uiout, "reason",
12505 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12506 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12507 }
12508
12509 ui_out_text (uiout,
12510 b->disposition == disp_del ? "\nTemporary catchpoint "
12511 : "\nCatchpoint ");
12512 ui_out_field_int (uiout, "bkptno", b->number);
12513 ui_out_text (uiout, ", ");
12514
12515 /* ada_exception_name_addr relies on the selected frame being the
12516 current frame. Need to do this here because this function may be
12517 called more than once when printing a stop, and below, we'll
12518 select the first frame past the Ada run-time (see
12519 ada_find_printable_frame). */
12520 select_frame (get_current_frame ());
12521
12522 switch (ex)
12523 {
12524 case ada_catch_exception:
12525 case ada_catch_exception_unhandled:
12526 {
12527 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12528 char exception_name[256];
12529
12530 if (addr != 0)
12531 {
12532 read_memory (addr, (gdb_byte *) exception_name,
12533 sizeof (exception_name) - 1);
12534 exception_name [sizeof (exception_name) - 1] = '\0';
12535 }
12536 else
12537 {
12538 /* For some reason, we were unable to read the exception
12539 name. This could happen if the Runtime was compiled
12540 without debugging info, for instance. In that case,
12541 just replace the exception name by the generic string
12542 "exception" - it will read as "an exception" in the
12543 notification we are about to print. */
12544 memcpy (exception_name, "exception", sizeof ("exception"));
12545 }
12546 /* In the case of unhandled exception breakpoints, we print
12547 the exception name as "unhandled EXCEPTION_NAME", to make
12548 it clearer to the user which kind of catchpoint just got
12549 hit. We used ui_out_text to make sure that this extra
12550 info does not pollute the exception name in the MI case. */
12551 if (ex == ada_catch_exception_unhandled)
12552 ui_out_text (uiout, "unhandled ");
12553 ui_out_field_string (uiout, "exception-name", exception_name);
12554 }
12555 break;
12556 case ada_catch_assert:
12557 /* In this case, the name of the exception is not really
12558 important. Just print "failed assertion" to make it clearer
12559 that his program just hit an assertion-failure catchpoint.
12560 We used ui_out_text because this info does not belong in
12561 the MI output. */
12562 ui_out_text (uiout, "failed assertion");
12563 break;
12564 }
12565 ui_out_text (uiout, " at ");
12566 ada_find_printable_frame (get_current_frame ());
12567
12568 return PRINT_SRC_AND_LOC;
12569 }
12570
12571 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12573
12574 static void
12575 print_one_exception (enum ada_exception_catchpoint_kind ex,
12576 struct breakpoint *b, struct bp_location **last_loc)
12577 {
12578 struct ui_out *uiout = current_uiout;
12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12580 struct value_print_options opts;
12581
12582 get_user_print_options (&opts);
12583 if (opts.addressprint)
12584 {
12585 annotate_field (4);
12586 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12587 }
12588
12589 annotate_field (5);
12590 *last_loc = b->loc;
12591 switch (ex)
12592 {
12593 case ada_catch_exception:
12594 if (c->excep_string != NULL)
12595 {
12596 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12597
12598 ui_out_field_string (uiout, "what", msg);
12599 xfree (msg);
12600 }
12601 else
12602 ui_out_field_string (uiout, "what", "all Ada exceptions");
12603
12604 break;
12605
12606 case ada_catch_exception_unhandled:
12607 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12608 break;
12609
12610 case ada_catch_assert:
12611 ui_out_field_string (uiout, "what", "failed Ada assertions");
12612 break;
12613
12614 default:
12615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12616 break;
12617 }
12618 }
12619
12620 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623 static void
12624 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12625 struct breakpoint *b)
12626 {
12627 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12628 struct ui_out *uiout = current_uiout;
12629
12630 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12631 : _("Catchpoint "));
12632 ui_out_field_int (uiout, "bkptno", b->number);
12633 ui_out_text (uiout, ": ");
12634
12635 switch (ex)
12636 {
12637 case ada_catch_exception:
12638 if (c->excep_string != NULL)
12639 {
12640 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12641 struct cleanup *old_chain = make_cleanup (xfree, info);
12642
12643 ui_out_text (uiout, info);
12644 do_cleanups (old_chain);
12645 }
12646 else
12647 ui_out_text (uiout, _("all Ada exceptions"));
12648 break;
12649
12650 case ada_catch_exception_unhandled:
12651 ui_out_text (uiout, _("unhandled Ada exceptions"));
12652 break;
12653
12654 case ada_catch_assert:
12655 ui_out_text (uiout, _("failed Ada assertions"));
12656 break;
12657
12658 default:
12659 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12660 break;
12661 }
12662 }
12663
12664 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12665 for all exception catchpoint kinds. */
12666
12667 static void
12668 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12669 struct breakpoint *b, struct ui_file *fp)
12670 {
12671 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12672
12673 switch (ex)
12674 {
12675 case ada_catch_exception:
12676 fprintf_filtered (fp, "catch exception");
12677 if (c->excep_string != NULL)
12678 fprintf_filtered (fp, " %s", c->excep_string);
12679 break;
12680
12681 case ada_catch_exception_unhandled:
12682 fprintf_filtered (fp, "catch exception unhandled");
12683 break;
12684
12685 case ada_catch_assert:
12686 fprintf_filtered (fp, "catch assert");
12687 break;
12688
12689 default:
12690 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12691 }
12692 print_recreate_thread (b, fp);
12693 }
12694
12695 /* Virtual table for "catch exception" breakpoints. */
12696
12697 static void
12698 dtor_catch_exception (struct breakpoint *b)
12699 {
12700 dtor_exception (ada_catch_exception, b);
12701 }
12702
12703 static struct bp_location *
12704 allocate_location_catch_exception (struct breakpoint *self)
12705 {
12706 return allocate_location_exception (ada_catch_exception, self);
12707 }
12708
12709 static void
12710 re_set_catch_exception (struct breakpoint *b)
12711 {
12712 re_set_exception (ada_catch_exception, b);
12713 }
12714
12715 static void
12716 check_status_catch_exception (bpstat bs)
12717 {
12718 check_status_exception (ada_catch_exception, bs);
12719 }
12720
12721 static enum print_stop_action
12722 print_it_catch_exception (bpstat bs)
12723 {
12724 return print_it_exception (ada_catch_exception, bs);
12725 }
12726
12727 static void
12728 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12729 {
12730 print_one_exception (ada_catch_exception, b, last_loc);
12731 }
12732
12733 static void
12734 print_mention_catch_exception (struct breakpoint *b)
12735 {
12736 print_mention_exception (ada_catch_exception, b);
12737 }
12738
12739 static void
12740 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12741 {
12742 print_recreate_exception (ada_catch_exception, b, fp);
12743 }
12744
12745 static struct breakpoint_ops catch_exception_breakpoint_ops;
12746
12747 /* Virtual table for "catch exception unhandled" breakpoints. */
12748
12749 static void
12750 dtor_catch_exception_unhandled (struct breakpoint *b)
12751 {
12752 dtor_exception (ada_catch_exception_unhandled, b);
12753 }
12754
12755 static struct bp_location *
12756 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12757 {
12758 return allocate_location_exception (ada_catch_exception_unhandled, self);
12759 }
12760
12761 static void
12762 re_set_catch_exception_unhandled (struct breakpoint *b)
12763 {
12764 re_set_exception (ada_catch_exception_unhandled, b);
12765 }
12766
12767 static void
12768 check_status_catch_exception_unhandled (bpstat bs)
12769 {
12770 check_status_exception (ada_catch_exception_unhandled, bs);
12771 }
12772
12773 static enum print_stop_action
12774 print_it_catch_exception_unhandled (bpstat bs)
12775 {
12776 return print_it_exception (ada_catch_exception_unhandled, bs);
12777 }
12778
12779 static void
12780 print_one_catch_exception_unhandled (struct breakpoint *b,
12781 struct bp_location **last_loc)
12782 {
12783 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12784 }
12785
12786 static void
12787 print_mention_catch_exception_unhandled (struct breakpoint *b)
12788 {
12789 print_mention_exception (ada_catch_exception_unhandled, b);
12790 }
12791
12792 static void
12793 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12794 struct ui_file *fp)
12795 {
12796 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12797 }
12798
12799 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12800
12801 /* Virtual table for "catch assert" breakpoints. */
12802
12803 static void
12804 dtor_catch_assert (struct breakpoint *b)
12805 {
12806 dtor_exception (ada_catch_assert, b);
12807 }
12808
12809 static struct bp_location *
12810 allocate_location_catch_assert (struct breakpoint *self)
12811 {
12812 return allocate_location_exception (ada_catch_assert, self);
12813 }
12814
12815 static void
12816 re_set_catch_assert (struct breakpoint *b)
12817 {
12818 re_set_exception (ada_catch_assert, b);
12819 }
12820
12821 static void
12822 check_status_catch_assert (bpstat bs)
12823 {
12824 check_status_exception (ada_catch_assert, bs);
12825 }
12826
12827 static enum print_stop_action
12828 print_it_catch_assert (bpstat bs)
12829 {
12830 return print_it_exception (ada_catch_assert, bs);
12831 }
12832
12833 static void
12834 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12835 {
12836 print_one_exception (ada_catch_assert, b, last_loc);
12837 }
12838
12839 static void
12840 print_mention_catch_assert (struct breakpoint *b)
12841 {
12842 print_mention_exception (ada_catch_assert, b);
12843 }
12844
12845 static void
12846 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12847 {
12848 print_recreate_exception (ada_catch_assert, b, fp);
12849 }
12850
12851 static struct breakpoint_ops catch_assert_breakpoint_ops;
12852
12853 /* Return a newly allocated copy of the first space-separated token
12854 in ARGSP, and then adjust ARGSP to point immediately after that
12855 token.
12856
12857 Return NULL if ARGPS does not contain any more tokens. */
12858
12859 static char *
12860 ada_get_next_arg (char **argsp)
12861 {
12862 char *args = *argsp;
12863 char *end;
12864 char *result;
12865
12866 args = skip_spaces (args);
12867 if (args[0] == '\0')
12868 return NULL; /* No more arguments. */
12869
12870 /* Find the end of the current argument. */
12871
12872 end = skip_to_space (args);
12873
12874 /* Adjust ARGSP to point to the start of the next argument. */
12875
12876 *argsp = end;
12877
12878 /* Make a copy of the current argument and return it. */
12879
12880 result = (char *) xmalloc (end - args + 1);
12881 strncpy (result, args, end - args);
12882 result[end - args] = '\0';
12883
12884 return result;
12885 }
12886
12887 /* Split the arguments specified in a "catch exception" command.
12888 Set EX to the appropriate catchpoint type.
12889 Set EXCEP_STRING to the name of the specific exception if
12890 specified by the user.
12891 If a condition is found at the end of the arguments, the condition
12892 expression is stored in COND_STRING (memory must be deallocated
12893 after use). Otherwise COND_STRING is set to NULL. */
12894
12895 static void
12896 catch_ada_exception_command_split (char *args,
12897 enum ada_exception_catchpoint_kind *ex,
12898 char **excep_string,
12899 char **cond_string)
12900 {
12901 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12902 char *exception_name;
12903 char *cond = NULL;
12904
12905 exception_name = ada_get_next_arg (&args);
12906 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12907 {
12908 /* This is not an exception name; this is the start of a condition
12909 expression for a catchpoint on all exceptions. So, "un-get"
12910 this token, and set exception_name to NULL. */
12911 xfree (exception_name);
12912 exception_name = NULL;
12913 args -= 2;
12914 }
12915 make_cleanup (xfree, exception_name);
12916
12917 /* Check to see if we have a condition. */
12918
12919 args = skip_spaces (args);
12920 if (startswith (args, "if")
12921 && (isspace (args[2]) || args[2] == '\0'))
12922 {
12923 args += 2;
12924 args = skip_spaces (args);
12925
12926 if (args[0] == '\0')
12927 error (_("Condition missing after `if' keyword"));
12928 cond = xstrdup (args);
12929 make_cleanup (xfree, cond);
12930
12931 args += strlen (args);
12932 }
12933
12934 /* Check that we do not have any more arguments. Anything else
12935 is unexpected. */
12936
12937 if (args[0] != '\0')
12938 error (_("Junk at end of expression"));
12939
12940 discard_cleanups (old_chain);
12941
12942 if (exception_name == NULL)
12943 {
12944 /* Catch all exceptions. */
12945 *ex = ada_catch_exception;
12946 *excep_string = NULL;
12947 }
12948 else if (strcmp (exception_name, "unhandled") == 0)
12949 {
12950 /* Catch unhandled exceptions. */
12951 *ex = ada_catch_exception_unhandled;
12952 *excep_string = NULL;
12953 }
12954 else
12955 {
12956 /* Catch a specific exception. */
12957 *ex = ada_catch_exception;
12958 *excep_string = exception_name;
12959 }
12960 *cond_string = cond;
12961 }
12962
12963 /* Return the name of the symbol on which we should break in order to
12964 implement a catchpoint of the EX kind. */
12965
12966 static const char *
12967 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12968 {
12969 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12970
12971 gdb_assert (data->exception_info != NULL);
12972
12973 switch (ex)
12974 {
12975 case ada_catch_exception:
12976 return (data->exception_info->catch_exception_sym);
12977 break;
12978 case ada_catch_exception_unhandled:
12979 return (data->exception_info->catch_exception_unhandled_sym);
12980 break;
12981 case ada_catch_assert:
12982 return (data->exception_info->catch_assert_sym);
12983 break;
12984 default:
12985 internal_error (__FILE__, __LINE__,
12986 _("unexpected catchpoint kind (%d)"), ex);
12987 }
12988 }
12989
12990 /* Return the breakpoint ops "virtual table" used for catchpoints
12991 of the EX kind. */
12992
12993 static const struct breakpoint_ops *
12994 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12995 {
12996 switch (ex)
12997 {
12998 case ada_catch_exception:
12999 return (&catch_exception_breakpoint_ops);
13000 break;
13001 case ada_catch_exception_unhandled:
13002 return (&catch_exception_unhandled_breakpoint_ops);
13003 break;
13004 case ada_catch_assert:
13005 return (&catch_assert_breakpoint_ops);
13006 break;
13007 default:
13008 internal_error (__FILE__, __LINE__,
13009 _("unexpected catchpoint kind (%d)"), ex);
13010 }
13011 }
13012
13013 /* Return the condition that will be used to match the current exception
13014 being raised with the exception that the user wants to catch. This
13015 assumes that this condition is used when the inferior just triggered
13016 an exception catchpoint.
13017
13018 The string returned is a newly allocated string that needs to be
13019 deallocated later. */
13020
13021 static char *
13022 ada_exception_catchpoint_cond_string (const char *excep_string)
13023 {
13024 int i;
13025
13026 /* The standard exceptions are a special case. They are defined in
13027 runtime units that have been compiled without debugging info; if
13028 EXCEP_STRING is the not-fully-qualified name of a standard
13029 exception (e.g. "constraint_error") then, during the evaluation
13030 of the condition expression, the symbol lookup on this name would
13031 *not* return this standard exception. The catchpoint condition
13032 may then be set only on user-defined exceptions which have the
13033 same not-fully-qualified name (e.g. my_package.constraint_error).
13034
13035 To avoid this unexcepted behavior, these standard exceptions are
13036 systematically prefixed by "standard". This means that "catch
13037 exception constraint_error" is rewritten into "catch exception
13038 standard.constraint_error".
13039
13040 If an exception named contraint_error is defined in another package of
13041 the inferior program, then the only way to specify this exception as a
13042 breakpoint condition is to use its fully-qualified named:
13043 e.g. my_package.constraint_error. */
13044
13045 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13046 {
13047 if (strcmp (standard_exc [i], excep_string) == 0)
13048 {
13049 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13050 excep_string);
13051 }
13052 }
13053 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13054 }
13055
13056 /* Return the symtab_and_line that should be used to insert an exception
13057 catchpoint of the TYPE kind.
13058
13059 EXCEP_STRING should contain the name of a specific exception that
13060 the catchpoint should catch, or NULL otherwise.
13061
13062 ADDR_STRING returns the name of the function where the real
13063 breakpoint that implements the catchpoints is set, depending on the
13064 type of catchpoint we need to create. */
13065
13066 static struct symtab_and_line
13067 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13068 char **addr_string, const struct breakpoint_ops **ops)
13069 {
13070 const char *sym_name;
13071 struct symbol *sym;
13072
13073 /* First, find out which exception support info to use. */
13074 ada_exception_support_info_sniffer ();
13075
13076 /* Then lookup the function on which we will break in order to catch
13077 the Ada exceptions requested by the user. */
13078 sym_name = ada_exception_sym_name (ex);
13079 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13080
13081 /* We can assume that SYM is not NULL at this stage. If the symbol
13082 did not exist, ada_exception_support_info_sniffer would have
13083 raised an exception.
13084
13085 Also, ada_exception_support_info_sniffer should have already
13086 verified that SYM is a function symbol. */
13087 gdb_assert (sym != NULL);
13088 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13089
13090 /* Set ADDR_STRING. */
13091 *addr_string = xstrdup (sym_name);
13092
13093 /* Set OPS. */
13094 *ops = ada_exception_breakpoint_ops (ex);
13095
13096 return find_function_start_sal (sym, 1);
13097 }
13098
13099 /* Create an Ada exception catchpoint.
13100
13101 EX_KIND is the kind of exception catchpoint to be created.
13102
13103 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13104 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13105 of the exception to which this catchpoint applies. When not NULL,
13106 the string must be allocated on the heap, and its deallocation
13107 is no longer the responsibility of the caller.
13108
13109 COND_STRING, if not NULL, is the catchpoint condition. This string
13110 must be allocated on the heap, and its deallocation is no longer
13111 the responsibility of the caller.
13112
13113 TEMPFLAG, if nonzero, means that the underlying breakpoint
13114 should be temporary.
13115
13116 FROM_TTY is the usual argument passed to all commands implementations. */
13117
13118 void
13119 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13120 enum ada_exception_catchpoint_kind ex_kind,
13121 char *excep_string,
13122 char *cond_string,
13123 int tempflag,
13124 int disabled,
13125 int from_tty)
13126 {
13127 struct ada_catchpoint *c;
13128 char *addr_string = NULL;
13129 const struct breakpoint_ops *ops = NULL;
13130 struct symtab_and_line sal
13131 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13132
13133 c = new ada_catchpoint ();
13134 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13135 ops, tempflag, disabled, from_tty);
13136 c->excep_string = excep_string;
13137 create_excep_cond_exprs (c);
13138 if (cond_string != NULL)
13139 set_breakpoint_condition (&c->base, cond_string, from_tty);
13140 install_breakpoint (0, &c->base, 1);
13141 }
13142
13143 /* Implement the "catch exception" command. */
13144
13145 static void
13146 catch_ada_exception_command (char *arg, int from_tty,
13147 struct cmd_list_element *command)
13148 {
13149 struct gdbarch *gdbarch = get_current_arch ();
13150 int tempflag;
13151 enum ada_exception_catchpoint_kind ex_kind;
13152 char *excep_string = NULL;
13153 char *cond_string = NULL;
13154
13155 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13156
13157 if (!arg)
13158 arg = "";
13159 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13160 &cond_string);
13161 create_ada_exception_catchpoint (gdbarch, ex_kind,
13162 excep_string, cond_string,
13163 tempflag, 1 /* enabled */,
13164 from_tty);
13165 }
13166
13167 /* Split the arguments specified in a "catch assert" command.
13168
13169 ARGS contains the command's arguments (or the empty string if
13170 no arguments were passed).
13171
13172 If ARGS contains a condition, set COND_STRING to that condition
13173 (the memory needs to be deallocated after use). */
13174
13175 static void
13176 catch_ada_assert_command_split (char *args, char **cond_string)
13177 {
13178 args = skip_spaces (args);
13179
13180 /* Check whether a condition was provided. */
13181 if (startswith (args, "if")
13182 && (isspace (args[2]) || args[2] == '\0'))
13183 {
13184 args += 2;
13185 args = skip_spaces (args);
13186 if (args[0] == '\0')
13187 error (_("condition missing after `if' keyword"));
13188 *cond_string = xstrdup (args);
13189 }
13190
13191 /* Otherwise, there should be no other argument at the end of
13192 the command. */
13193 else if (args[0] != '\0')
13194 error (_("Junk at end of arguments."));
13195 }
13196
13197 /* Implement the "catch assert" command. */
13198
13199 static void
13200 catch_assert_command (char *arg, int from_tty,
13201 struct cmd_list_element *command)
13202 {
13203 struct gdbarch *gdbarch = get_current_arch ();
13204 int tempflag;
13205 char *cond_string = NULL;
13206
13207 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13208
13209 if (!arg)
13210 arg = "";
13211 catch_ada_assert_command_split (arg, &cond_string);
13212 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13213 NULL, cond_string,
13214 tempflag, 1 /* enabled */,
13215 from_tty);
13216 }
13217
13218 /* Return non-zero if the symbol SYM is an Ada exception object. */
13219
13220 static int
13221 ada_is_exception_sym (struct symbol *sym)
13222 {
13223 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13224
13225 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13226 && SYMBOL_CLASS (sym) != LOC_BLOCK
13227 && SYMBOL_CLASS (sym) != LOC_CONST
13228 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13229 && type_name != NULL && strcmp (type_name, "exception") == 0);
13230 }
13231
13232 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13233 Ada exception object. This matches all exceptions except the ones
13234 defined by the Ada language. */
13235
13236 static int
13237 ada_is_non_standard_exception_sym (struct symbol *sym)
13238 {
13239 int i;
13240
13241 if (!ada_is_exception_sym (sym))
13242 return 0;
13243
13244 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13245 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13246 return 0; /* A standard exception. */
13247
13248 /* Numeric_Error is also a standard exception, so exclude it.
13249 See the STANDARD_EXC description for more details as to why
13250 this exception is not listed in that array. */
13251 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13252 return 0;
13253
13254 return 1;
13255 }
13256
13257 /* A helper function for qsort, comparing two struct ada_exc_info
13258 objects.
13259
13260 The comparison is determined first by exception name, and then
13261 by exception address. */
13262
13263 static int
13264 compare_ada_exception_info (const void *a, const void *b)
13265 {
13266 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13267 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13268 int result;
13269
13270 result = strcmp (exc_a->name, exc_b->name);
13271 if (result != 0)
13272 return result;
13273
13274 if (exc_a->addr < exc_b->addr)
13275 return -1;
13276 if (exc_a->addr > exc_b->addr)
13277 return 1;
13278
13279 return 0;
13280 }
13281
13282 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13283 routine, but keeping the first SKIP elements untouched.
13284
13285 All duplicates are also removed. */
13286
13287 static void
13288 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13289 int skip)
13290 {
13291 struct ada_exc_info *to_sort
13292 = VEC_address (ada_exc_info, *exceptions) + skip;
13293 int to_sort_len
13294 = VEC_length (ada_exc_info, *exceptions) - skip;
13295 int i, j;
13296
13297 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13298 compare_ada_exception_info);
13299
13300 for (i = 1, j = 1; i < to_sort_len; i++)
13301 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13302 to_sort[j++] = to_sort[i];
13303 to_sort_len = j;
13304 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13305 }
13306
13307 /* A function intended as the "name_matcher" callback in the struct
13308 quick_symbol_functions' expand_symtabs_matching method.
13309
13310 SEARCH_NAME is the symbol's search name.
13311
13312 If USER_DATA is not NULL, it is a pointer to a regext_t object
13313 used to match the symbol (by natural name). Otherwise, when USER_DATA
13314 is null, no filtering is performed, and all symbols are a positive
13315 match. */
13316
13317 static int
13318 ada_exc_search_name_matches (const char *search_name, void *user_data)
13319 {
13320 regex_t *preg = (regex_t *) user_data;
13321
13322 if (preg == NULL)
13323 return 1;
13324
13325 /* In Ada, the symbol "search name" is a linkage name, whereas
13326 the regular expression used to do the matching refers to
13327 the natural name. So match against the decoded name. */
13328 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13329 }
13330
13331 /* Add all exceptions defined by the Ada standard whose name match
13332 a regular expression.
13333
13334 If PREG is not NULL, then this regexp_t object is used to
13335 perform the symbol name matching. Otherwise, no name-based
13336 filtering is performed.
13337
13338 EXCEPTIONS is a vector of exceptions to which matching exceptions
13339 gets pushed. */
13340
13341 static void
13342 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13343 {
13344 int i;
13345
13346 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13347 {
13348 if (preg == NULL
13349 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13350 {
13351 struct bound_minimal_symbol msymbol
13352 = ada_lookup_simple_minsym (standard_exc[i]);
13353
13354 if (msymbol.minsym != NULL)
13355 {
13356 struct ada_exc_info info
13357 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13358
13359 VEC_safe_push (ada_exc_info, *exceptions, &info);
13360 }
13361 }
13362 }
13363 }
13364
13365 /* Add all Ada exceptions defined locally and accessible from the given
13366 FRAME.
13367
13368 If PREG is not NULL, then this regexp_t object is used to
13369 perform the symbol name matching. Otherwise, no name-based
13370 filtering is performed.
13371
13372 EXCEPTIONS is a vector of exceptions to which matching exceptions
13373 gets pushed. */
13374
13375 static void
13376 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13377 VEC(ada_exc_info) **exceptions)
13378 {
13379 const struct block *block = get_frame_block (frame, 0);
13380
13381 while (block != 0)
13382 {
13383 struct block_iterator iter;
13384 struct symbol *sym;
13385
13386 ALL_BLOCK_SYMBOLS (block, iter, sym)
13387 {
13388 switch (SYMBOL_CLASS (sym))
13389 {
13390 case LOC_TYPEDEF:
13391 case LOC_BLOCK:
13392 case LOC_CONST:
13393 break;
13394 default:
13395 if (ada_is_exception_sym (sym))
13396 {
13397 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13398 SYMBOL_VALUE_ADDRESS (sym)};
13399
13400 VEC_safe_push (ada_exc_info, *exceptions, &info);
13401 }
13402 }
13403 }
13404 if (BLOCK_FUNCTION (block) != NULL)
13405 break;
13406 block = BLOCK_SUPERBLOCK (block);
13407 }
13408 }
13409
13410 /* Add all exceptions defined globally whose name name match
13411 a regular expression, excluding standard exceptions.
13412
13413 The reason we exclude standard exceptions is that they need
13414 to be handled separately: Standard exceptions are defined inside
13415 a runtime unit which is normally not compiled with debugging info,
13416 and thus usually do not show up in our symbol search. However,
13417 if the unit was in fact built with debugging info, we need to
13418 exclude them because they would duplicate the entry we found
13419 during the special loop that specifically searches for those
13420 standard exceptions.
13421
13422 If PREG is not NULL, then this regexp_t object is used to
13423 perform the symbol name matching. Otherwise, no name-based
13424 filtering is performed.
13425
13426 EXCEPTIONS is a vector of exceptions to which matching exceptions
13427 gets pushed. */
13428
13429 static void
13430 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13431 {
13432 struct objfile *objfile;
13433 struct compunit_symtab *s;
13434
13435 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13436 VARIABLES_DOMAIN, preg);
13437
13438 ALL_COMPUNITS (objfile, s)
13439 {
13440 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13441 int i;
13442
13443 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13444 {
13445 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13446 struct block_iterator iter;
13447 struct symbol *sym;
13448
13449 ALL_BLOCK_SYMBOLS (b, iter, sym)
13450 if (ada_is_non_standard_exception_sym (sym)
13451 && (preg == NULL
13452 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13453 0, NULL, 0) == 0))
13454 {
13455 struct ada_exc_info info
13456 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13457
13458 VEC_safe_push (ada_exc_info, *exceptions, &info);
13459 }
13460 }
13461 }
13462 }
13463
13464 /* Implements ada_exceptions_list with the regular expression passed
13465 as a regex_t, rather than a string.
13466
13467 If not NULL, PREG is used to filter out exceptions whose names
13468 do not match. Otherwise, all exceptions are listed. */
13469
13470 static VEC(ada_exc_info) *
13471 ada_exceptions_list_1 (regex_t *preg)
13472 {
13473 VEC(ada_exc_info) *result = NULL;
13474 struct cleanup *old_chain
13475 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13476 int prev_len;
13477
13478 /* First, list the known standard exceptions. These exceptions
13479 need to be handled separately, as they are usually defined in
13480 runtime units that have been compiled without debugging info. */
13481
13482 ada_add_standard_exceptions (preg, &result);
13483
13484 /* Next, find all exceptions whose scope is local and accessible
13485 from the currently selected frame. */
13486
13487 if (has_stack_frames ())
13488 {
13489 prev_len = VEC_length (ada_exc_info, result);
13490 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13491 &result);
13492 if (VEC_length (ada_exc_info, result) > prev_len)
13493 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13494 }
13495
13496 /* Add all exceptions whose scope is global. */
13497
13498 prev_len = VEC_length (ada_exc_info, result);
13499 ada_add_global_exceptions (preg, &result);
13500 if (VEC_length (ada_exc_info, result) > prev_len)
13501 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13502
13503 discard_cleanups (old_chain);
13504 return result;
13505 }
13506
13507 /* Return a vector of ada_exc_info.
13508
13509 If REGEXP is NULL, all exceptions are included in the result.
13510 Otherwise, it should contain a valid regular expression,
13511 and only the exceptions whose names match that regular expression
13512 are included in the result.
13513
13514 The exceptions are sorted in the following order:
13515 - Standard exceptions (defined by the Ada language), in
13516 alphabetical order;
13517 - Exceptions only visible from the current frame, in
13518 alphabetical order;
13519 - Exceptions whose scope is global, in alphabetical order. */
13520
13521 VEC(ada_exc_info) *
13522 ada_exceptions_list (const char *regexp)
13523 {
13524 VEC(ada_exc_info) *result = NULL;
13525 struct cleanup *old_chain = NULL;
13526 regex_t reg;
13527
13528 if (regexp != NULL)
13529 old_chain = compile_rx_or_error (&reg, regexp,
13530 _("invalid regular expression"));
13531
13532 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13533
13534 if (old_chain != NULL)
13535 do_cleanups (old_chain);
13536 return result;
13537 }
13538
13539 /* Implement the "info exceptions" command. */
13540
13541 static void
13542 info_exceptions_command (char *regexp, int from_tty)
13543 {
13544 VEC(ada_exc_info) *exceptions;
13545 struct cleanup *cleanup;
13546 struct gdbarch *gdbarch = get_current_arch ();
13547 int ix;
13548 struct ada_exc_info *info;
13549
13550 exceptions = ada_exceptions_list (regexp);
13551 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13552
13553 if (regexp != NULL)
13554 printf_filtered
13555 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13556 else
13557 printf_filtered (_("All defined Ada exceptions:\n"));
13558
13559 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13560 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13561
13562 do_cleanups (cleanup);
13563 }
13564
13565 /* Operators */
13566 /* Information about operators given special treatment in functions
13567 below. */
13568 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13569
13570 #define ADA_OPERATORS \
13571 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13572 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13573 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13574 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13575 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13576 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13577 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13578 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13579 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13580 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13581 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13582 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13583 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13584 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13585 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13586 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13587 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13588 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13589 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13590
13591 static void
13592 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13593 int *argsp)
13594 {
13595 switch (exp->elts[pc - 1].opcode)
13596 {
13597 default:
13598 operator_length_standard (exp, pc, oplenp, argsp);
13599 break;
13600
13601 #define OP_DEFN(op, len, args, binop) \
13602 case op: *oplenp = len; *argsp = args; break;
13603 ADA_OPERATORS;
13604 #undef OP_DEFN
13605
13606 case OP_AGGREGATE:
13607 *oplenp = 3;
13608 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13609 break;
13610
13611 case OP_CHOICES:
13612 *oplenp = 3;
13613 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13614 break;
13615 }
13616 }
13617
13618 /* Implementation of the exp_descriptor method operator_check. */
13619
13620 static int
13621 ada_operator_check (struct expression *exp, int pos,
13622 int (*objfile_func) (struct objfile *objfile, void *data),
13623 void *data)
13624 {
13625 const union exp_element *const elts = exp->elts;
13626 struct type *type = NULL;
13627
13628 switch (elts[pos].opcode)
13629 {
13630 case UNOP_IN_RANGE:
13631 case UNOP_QUAL:
13632 type = elts[pos + 1].type;
13633 break;
13634
13635 default:
13636 return operator_check_standard (exp, pos, objfile_func, data);
13637 }
13638
13639 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13640
13641 if (type && TYPE_OBJFILE (type)
13642 && (*objfile_func) (TYPE_OBJFILE (type), data))
13643 return 1;
13644
13645 return 0;
13646 }
13647
13648 static char *
13649 ada_op_name (enum exp_opcode opcode)
13650 {
13651 switch (opcode)
13652 {
13653 default:
13654 return op_name_standard (opcode);
13655
13656 #define OP_DEFN(op, len, args, binop) case op: return #op;
13657 ADA_OPERATORS;
13658 #undef OP_DEFN
13659
13660 case OP_AGGREGATE:
13661 return "OP_AGGREGATE";
13662 case OP_CHOICES:
13663 return "OP_CHOICES";
13664 case OP_NAME:
13665 return "OP_NAME";
13666 }
13667 }
13668
13669 /* As for operator_length, but assumes PC is pointing at the first
13670 element of the operator, and gives meaningful results only for the
13671 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13672
13673 static void
13674 ada_forward_operator_length (struct expression *exp, int pc,
13675 int *oplenp, int *argsp)
13676 {
13677 switch (exp->elts[pc].opcode)
13678 {
13679 default:
13680 *oplenp = *argsp = 0;
13681 break;
13682
13683 #define OP_DEFN(op, len, args, binop) \
13684 case op: *oplenp = len; *argsp = args; break;
13685 ADA_OPERATORS;
13686 #undef OP_DEFN
13687
13688 case OP_AGGREGATE:
13689 *oplenp = 3;
13690 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13691 break;
13692
13693 case OP_CHOICES:
13694 *oplenp = 3;
13695 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13696 break;
13697
13698 case OP_STRING:
13699 case OP_NAME:
13700 {
13701 int len = longest_to_int (exp->elts[pc + 1].longconst);
13702
13703 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13704 *argsp = 0;
13705 break;
13706 }
13707 }
13708 }
13709
13710 static int
13711 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13712 {
13713 enum exp_opcode op = exp->elts[elt].opcode;
13714 int oplen, nargs;
13715 int pc = elt;
13716 int i;
13717
13718 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13719
13720 switch (op)
13721 {
13722 /* Ada attributes ('Foo). */
13723 case OP_ATR_FIRST:
13724 case OP_ATR_LAST:
13725 case OP_ATR_LENGTH:
13726 case OP_ATR_IMAGE:
13727 case OP_ATR_MAX:
13728 case OP_ATR_MIN:
13729 case OP_ATR_MODULUS:
13730 case OP_ATR_POS:
13731 case OP_ATR_SIZE:
13732 case OP_ATR_TAG:
13733 case OP_ATR_VAL:
13734 break;
13735
13736 case UNOP_IN_RANGE:
13737 case UNOP_QUAL:
13738 /* XXX: gdb_sprint_host_address, type_sprint */
13739 fprintf_filtered (stream, _("Type @"));
13740 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13741 fprintf_filtered (stream, " (");
13742 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13743 fprintf_filtered (stream, ")");
13744 break;
13745 case BINOP_IN_BOUNDS:
13746 fprintf_filtered (stream, " (%d)",
13747 longest_to_int (exp->elts[pc + 2].longconst));
13748 break;
13749 case TERNOP_IN_RANGE:
13750 break;
13751
13752 case OP_AGGREGATE:
13753 case OP_OTHERS:
13754 case OP_DISCRETE_RANGE:
13755 case OP_POSITIONAL:
13756 case OP_CHOICES:
13757 break;
13758
13759 case OP_NAME:
13760 case OP_STRING:
13761 {
13762 char *name = &exp->elts[elt + 2].string;
13763 int len = longest_to_int (exp->elts[elt + 1].longconst);
13764
13765 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13766 break;
13767 }
13768
13769 default:
13770 return dump_subexp_body_standard (exp, stream, elt);
13771 }
13772
13773 elt += oplen;
13774 for (i = 0; i < nargs; i += 1)
13775 elt = dump_subexp (exp, stream, elt);
13776
13777 return elt;
13778 }
13779
13780 /* The Ada extension of print_subexp (q.v.). */
13781
13782 static void
13783 ada_print_subexp (struct expression *exp, int *pos,
13784 struct ui_file *stream, enum precedence prec)
13785 {
13786 int oplen, nargs, i;
13787 int pc = *pos;
13788 enum exp_opcode op = exp->elts[pc].opcode;
13789
13790 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13791
13792 *pos += oplen;
13793 switch (op)
13794 {
13795 default:
13796 *pos -= oplen;
13797 print_subexp_standard (exp, pos, stream, prec);
13798 return;
13799
13800 case OP_VAR_VALUE:
13801 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13802 return;
13803
13804 case BINOP_IN_BOUNDS:
13805 /* XXX: sprint_subexp */
13806 print_subexp (exp, pos, stream, PREC_SUFFIX);
13807 fputs_filtered (" in ", stream);
13808 print_subexp (exp, pos, stream, PREC_SUFFIX);
13809 fputs_filtered ("'range", stream);
13810 if (exp->elts[pc + 1].longconst > 1)
13811 fprintf_filtered (stream, "(%ld)",
13812 (long) exp->elts[pc + 1].longconst);
13813 return;
13814
13815 case TERNOP_IN_RANGE:
13816 if (prec >= PREC_EQUAL)
13817 fputs_filtered ("(", stream);
13818 /* XXX: sprint_subexp */
13819 print_subexp (exp, pos, stream, PREC_SUFFIX);
13820 fputs_filtered (" in ", stream);
13821 print_subexp (exp, pos, stream, PREC_EQUAL);
13822 fputs_filtered (" .. ", stream);
13823 print_subexp (exp, pos, stream, PREC_EQUAL);
13824 if (prec >= PREC_EQUAL)
13825 fputs_filtered (")", stream);
13826 return;
13827
13828 case OP_ATR_FIRST:
13829 case OP_ATR_LAST:
13830 case OP_ATR_LENGTH:
13831 case OP_ATR_IMAGE:
13832 case OP_ATR_MAX:
13833 case OP_ATR_MIN:
13834 case OP_ATR_MODULUS:
13835 case OP_ATR_POS:
13836 case OP_ATR_SIZE:
13837 case OP_ATR_TAG:
13838 case OP_ATR_VAL:
13839 if (exp->elts[*pos].opcode == OP_TYPE)
13840 {
13841 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13842 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13843 &type_print_raw_options);
13844 *pos += 3;
13845 }
13846 else
13847 print_subexp (exp, pos, stream, PREC_SUFFIX);
13848 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13849 if (nargs > 1)
13850 {
13851 int tem;
13852
13853 for (tem = 1; tem < nargs; tem += 1)
13854 {
13855 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13856 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13857 }
13858 fputs_filtered (")", stream);
13859 }
13860 return;
13861
13862 case UNOP_QUAL:
13863 type_print (exp->elts[pc + 1].type, "", stream, 0);
13864 fputs_filtered ("'(", stream);
13865 print_subexp (exp, pos, stream, PREC_PREFIX);
13866 fputs_filtered (")", stream);
13867 return;
13868
13869 case UNOP_IN_RANGE:
13870 /* XXX: sprint_subexp */
13871 print_subexp (exp, pos, stream, PREC_SUFFIX);
13872 fputs_filtered (" in ", stream);
13873 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13874 &type_print_raw_options);
13875 return;
13876
13877 case OP_DISCRETE_RANGE:
13878 print_subexp (exp, pos, stream, PREC_SUFFIX);
13879 fputs_filtered ("..", stream);
13880 print_subexp (exp, pos, stream, PREC_SUFFIX);
13881 return;
13882
13883 case OP_OTHERS:
13884 fputs_filtered ("others => ", stream);
13885 print_subexp (exp, pos, stream, PREC_SUFFIX);
13886 return;
13887
13888 case OP_CHOICES:
13889 for (i = 0; i < nargs-1; i += 1)
13890 {
13891 if (i > 0)
13892 fputs_filtered ("|", stream);
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 }
13895 fputs_filtered (" => ", stream);
13896 print_subexp (exp, pos, stream, PREC_SUFFIX);
13897 return;
13898
13899 case OP_POSITIONAL:
13900 print_subexp (exp, pos, stream, PREC_SUFFIX);
13901 return;
13902
13903 case OP_AGGREGATE:
13904 fputs_filtered ("(", stream);
13905 for (i = 0; i < nargs; i += 1)
13906 {
13907 if (i > 0)
13908 fputs_filtered (", ", stream);
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 }
13911 fputs_filtered (")", stream);
13912 return;
13913 }
13914 }
13915
13916 /* Table mapping opcodes into strings for printing operators
13917 and precedences of the operators. */
13918
13919 static const struct op_print ada_op_print_tab[] = {
13920 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13921 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13922 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13923 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13924 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13925 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13926 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13927 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13928 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13929 {">=", BINOP_GEQ, PREC_ORDER, 0},
13930 {">", BINOP_GTR, PREC_ORDER, 0},
13931 {"<", BINOP_LESS, PREC_ORDER, 0},
13932 {">>", BINOP_RSH, PREC_SHIFT, 0},
13933 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13934 {"+", BINOP_ADD, PREC_ADD, 0},
13935 {"-", BINOP_SUB, PREC_ADD, 0},
13936 {"&", BINOP_CONCAT, PREC_ADD, 0},
13937 {"*", BINOP_MUL, PREC_MUL, 0},
13938 {"/", BINOP_DIV, PREC_MUL, 0},
13939 {"rem", BINOP_REM, PREC_MUL, 0},
13940 {"mod", BINOP_MOD, PREC_MUL, 0},
13941 {"**", BINOP_EXP, PREC_REPEAT, 0},
13942 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13943 {"-", UNOP_NEG, PREC_PREFIX, 0},
13944 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13945 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13946 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13947 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13948 {".all", UNOP_IND, PREC_SUFFIX, 1},
13949 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13950 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13951 {NULL, OP_NULL, PREC_SUFFIX, 0}
13952 };
13953 \f
13954 enum ada_primitive_types {
13955 ada_primitive_type_int,
13956 ada_primitive_type_long,
13957 ada_primitive_type_short,
13958 ada_primitive_type_char,
13959 ada_primitive_type_float,
13960 ada_primitive_type_double,
13961 ada_primitive_type_void,
13962 ada_primitive_type_long_long,
13963 ada_primitive_type_long_double,
13964 ada_primitive_type_natural,
13965 ada_primitive_type_positive,
13966 ada_primitive_type_system_address,
13967 nr_ada_primitive_types
13968 };
13969
13970 static void
13971 ada_language_arch_info (struct gdbarch *gdbarch,
13972 struct language_arch_info *lai)
13973 {
13974 const struct builtin_type *builtin = builtin_type (gdbarch);
13975
13976 lai->primitive_type_vector
13977 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13978 struct type *);
13979
13980 lai->primitive_type_vector [ada_primitive_type_int]
13981 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13982 0, "integer");
13983 lai->primitive_type_vector [ada_primitive_type_long]
13984 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13985 0, "long_integer");
13986 lai->primitive_type_vector [ada_primitive_type_short]
13987 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13988 0, "short_integer");
13989 lai->string_char_type
13990 = lai->primitive_type_vector [ada_primitive_type_char]
13991 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13992 lai->primitive_type_vector [ada_primitive_type_float]
13993 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13994 "float", gdbarch_float_format (gdbarch));
13995 lai->primitive_type_vector [ada_primitive_type_double]
13996 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13997 "long_float", gdbarch_double_format (gdbarch));
13998 lai->primitive_type_vector [ada_primitive_type_long_long]
13999 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14000 0, "long_long_integer");
14001 lai->primitive_type_vector [ada_primitive_type_long_double]
14002 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14003 "long_long_float", gdbarch_long_double_format (gdbarch));
14004 lai->primitive_type_vector [ada_primitive_type_natural]
14005 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14006 0, "natural");
14007 lai->primitive_type_vector [ada_primitive_type_positive]
14008 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14009 0, "positive");
14010 lai->primitive_type_vector [ada_primitive_type_void]
14011 = builtin->builtin_void;
14012
14013 lai->primitive_type_vector [ada_primitive_type_system_address]
14014 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
14015 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14016 = "system__address";
14017
14018 lai->bool_type_symbol = NULL;
14019 lai->bool_type_default = builtin->builtin_bool;
14020 }
14021 \f
14022 /* Language vector */
14023
14024 /* Not really used, but needed in the ada_language_defn. */
14025
14026 static void
14027 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14028 {
14029 ada_emit_char (c, type, stream, quoter, 1);
14030 }
14031
14032 static int
14033 parse (struct parser_state *ps)
14034 {
14035 warnings_issued = 0;
14036 return ada_parse (ps);
14037 }
14038
14039 static const struct exp_descriptor ada_exp_descriptor = {
14040 ada_print_subexp,
14041 ada_operator_length,
14042 ada_operator_check,
14043 ada_op_name,
14044 ada_dump_subexp_body,
14045 ada_evaluate_subexp
14046 };
14047
14048 /* Implement the "la_get_symbol_name_cmp" language_defn method
14049 for Ada. */
14050
14051 static symbol_name_cmp_ftype
14052 ada_get_symbol_name_cmp (const char *lookup_name)
14053 {
14054 if (should_use_wild_match (lookup_name))
14055 return wild_match;
14056 else
14057 return compare_names;
14058 }
14059
14060 /* Implement the "la_read_var_value" language_defn method for Ada. */
14061
14062 static struct value *
14063 ada_read_var_value (struct symbol *var, const struct block *var_block,
14064 struct frame_info *frame)
14065 {
14066 const struct block *frame_block = NULL;
14067 struct symbol *renaming_sym = NULL;
14068
14069 /* The only case where default_read_var_value is not sufficient
14070 is when VAR is a renaming... */
14071 if (frame)
14072 frame_block = get_frame_block (frame, NULL);
14073 if (frame_block)
14074 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14075 if (renaming_sym != NULL)
14076 return ada_read_renaming_var_value (renaming_sym, frame_block);
14077
14078 /* This is a typical case where we expect the default_read_var_value
14079 function to work. */
14080 return default_read_var_value (var, var_block, frame);
14081 }
14082
14083 static const char *ada_extensions[] =
14084 {
14085 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14086 };
14087
14088 const struct language_defn ada_language_defn = {
14089 "ada", /* Language name */
14090 "Ada",
14091 language_ada,
14092 range_check_off,
14093 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14094 that's not quite what this means. */
14095 array_row_major,
14096 macro_expansion_no,
14097 ada_extensions,
14098 &ada_exp_descriptor,
14099 parse,
14100 ada_yyerror,
14101 resolve,
14102 ada_printchar, /* Print a character constant */
14103 ada_printstr, /* Function to print string constant */
14104 emit_char, /* Function to print single char (not used) */
14105 ada_print_type, /* Print a type using appropriate syntax */
14106 ada_print_typedef, /* Print a typedef using appropriate syntax */
14107 ada_val_print, /* Print a value using appropriate syntax */
14108 ada_value_print, /* Print a top-level value */
14109 ada_read_var_value, /* la_read_var_value */
14110 NULL, /* Language specific skip_trampoline */
14111 NULL, /* name_of_this */
14112 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14113 basic_lookup_transparent_type, /* lookup_transparent_type */
14114 ada_la_decode, /* Language specific symbol demangler */
14115 ada_sniff_from_mangled_name,
14116 NULL, /* Language specific
14117 class_name_from_physname */
14118 ada_op_print_tab, /* expression operators for printing */
14119 0, /* c-style arrays */
14120 1, /* String lower bound */
14121 ada_get_gdb_completer_word_break_characters,
14122 ada_make_symbol_completion_list,
14123 ada_language_arch_info,
14124 ada_print_array_index,
14125 default_pass_by_reference,
14126 c_get_string,
14127 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14128 ada_iterate_over_symbols,
14129 &ada_varobj_ops,
14130 NULL,
14131 NULL,
14132 LANG_MAGIC
14133 };
14134
14135 /* Provide a prototype to silence -Wmissing-prototypes. */
14136 extern initialize_file_ftype _initialize_ada_language;
14137
14138 /* Command-list for the "set/show ada" prefix command. */
14139 static struct cmd_list_element *set_ada_list;
14140 static struct cmd_list_element *show_ada_list;
14141
14142 /* Implement the "set ada" prefix command. */
14143
14144 static void
14145 set_ada_command (char *arg, int from_tty)
14146 {
14147 printf_unfiltered (_(\
14148 "\"set ada\" must be followed by the name of a setting.\n"));
14149 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14150 }
14151
14152 /* Implement the "show ada" prefix command. */
14153
14154 static void
14155 show_ada_command (char *args, int from_tty)
14156 {
14157 cmd_show_list (show_ada_list, from_tty, "");
14158 }
14159
14160 static void
14161 initialize_ada_catchpoint_ops (void)
14162 {
14163 struct breakpoint_ops *ops;
14164
14165 initialize_breakpoint_ops ();
14166
14167 ops = &catch_exception_breakpoint_ops;
14168 *ops = bkpt_breakpoint_ops;
14169 ops->dtor = dtor_catch_exception;
14170 ops->allocate_location = allocate_location_catch_exception;
14171 ops->re_set = re_set_catch_exception;
14172 ops->check_status = check_status_catch_exception;
14173 ops->print_it = print_it_catch_exception;
14174 ops->print_one = print_one_catch_exception;
14175 ops->print_mention = print_mention_catch_exception;
14176 ops->print_recreate = print_recreate_catch_exception;
14177
14178 ops = &catch_exception_unhandled_breakpoint_ops;
14179 *ops = bkpt_breakpoint_ops;
14180 ops->dtor = dtor_catch_exception_unhandled;
14181 ops->allocate_location = allocate_location_catch_exception_unhandled;
14182 ops->re_set = re_set_catch_exception_unhandled;
14183 ops->check_status = check_status_catch_exception_unhandled;
14184 ops->print_it = print_it_catch_exception_unhandled;
14185 ops->print_one = print_one_catch_exception_unhandled;
14186 ops->print_mention = print_mention_catch_exception_unhandled;
14187 ops->print_recreate = print_recreate_catch_exception_unhandled;
14188
14189 ops = &catch_assert_breakpoint_ops;
14190 *ops = bkpt_breakpoint_ops;
14191 ops->dtor = dtor_catch_assert;
14192 ops->allocate_location = allocate_location_catch_assert;
14193 ops->re_set = re_set_catch_assert;
14194 ops->check_status = check_status_catch_assert;
14195 ops->print_it = print_it_catch_assert;
14196 ops->print_one = print_one_catch_assert;
14197 ops->print_mention = print_mention_catch_assert;
14198 ops->print_recreate = print_recreate_catch_assert;
14199 }
14200
14201 /* This module's 'new_objfile' observer. */
14202
14203 static void
14204 ada_new_objfile_observer (struct objfile *objfile)
14205 {
14206 ada_clear_symbol_cache ();
14207 }
14208
14209 /* This module's 'free_objfile' observer. */
14210
14211 static void
14212 ada_free_objfile_observer (struct objfile *objfile)
14213 {
14214 ada_clear_symbol_cache ();
14215 }
14216
14217 void
14218 _initialize_ada_language (void)
14219 {
14220 add_language (&ada_language_defn);
14221
14222 initialize_ada_catchpoint_ops ();
14223
14224 add_prefix_cmd ("ada", no_class, set_ada_command,
14225 _("Prefix command for changing Ada-specfic settings"),
14226 &set_ada_list, "set ada ", 0, &setlist);
14227
14228 add_prefix_cmd ("ada", no_class, show_ada_command,
14229 _("Generic command for showing Ada-specific settings."),
14230 &show_ada_list, "show ada ", 0, &showlist);
14231
14232 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14233 &trust_pad_over_xvs, _("\
14234 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14235 Show whether an optimization trusting PAD types over XVS types is activated"),
14236 _("\
14237 This is related to the encoding used by the GNAT compiler. The debugger\n\
14238 should normally trust the contents of PAD types, but certain older versions\n\
14239 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14240 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14241 work around this bug. It is always safe to turn this option \"off\", but\n\
14242 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14243 this option to \"off\" unless necessary."),
14244 NULL, NULL, &set_ada_list, &show_ada_list);
14245
14246 add_setshow_boolean_cmd ("print-signatures", class_vars,
14247 &print_signatures, _("\
14248 Enable or disable the output of formal and return types for functions in the \
14249 overloads selection menu"), _("\
14250 Show whether the output of formal and return types for functions in the \
14251 overloads selection menu is activated"),
14252 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14253
14254 add_catch_command ("exception", _("\
14255 Catch Ada exceptions, when raised.\n\
14256 With an argument, catch only exceptions with the given name."),
14257 catch_ada_exception_command,
14258 NULL,
14259 CATCH_PERMANENT,
14260 CATCH_TEMPORARY);
14261 add_catch_command ("assert", _("\
14262 Catch failed Ada assertions, when raised.\n\
14263 With an argument, catch only exceptions with the given name."),
14264 catch_assert_command,
14265 NULL,
14266 CATCH_PERMANENT,
14267 CATCH_TEMPORARY);
14268
14269 varsize_limit = 65536;
14270
14271 add_info ("exceptions", info_exceptions_command,
14272 _("\
14273 List all Ada exception names.\n\
14274 If a regular expression is passed as an argument, only those matching\n\
14275 the regular expression are listed."));
14276
14277 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14278 _("Set Ada maintenance-related variables."),
14279 &maint_set_ada_cmdlist, "maintenance set ada ",
14280 0/*allow-unknown*/, &maintenance_set_cmdlist);
14281
14282 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14283 _("Show Ada maintenance-related variables"),
14284 &maint_show_ada_cmdlist, "maintenance show ada ",
14285 0/*allow-unknown*/, &maintenance_show_cmdlist);
14286
14287 add_setshow_boolean_cmd
14288 ("ignore-descriptive-types", class_maintenance,
14289 &ada_ignore_descriptive_types_p,
14290 _("Set whether descriptive types generated by GNAT should be ignored."),
14291 _("Show whether descriptive types generated by GNAT should be ignored."),
14292 _("\
14293 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14294 DWARF attribute."),
14295 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14296
14297 obstack_init (&symbol_list_obstack);
14298
14299 decoded_names_store = htab_create_alloc
14300 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14301 NULL, xcalloc, xfree);
14302
14303 /* The ada-lang observers. */
14304 observer_attach_new_objfile (ada_new_objfile_observer);
14305 observer_attach_free_objfile (ada_free_objfile_observer);
14306 observer_attach_inferior_exit (ada_inferior_exit);
14307
14308 /* Setup various context-specific data. */
14309 ada_inferior_data
14310 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14311 ada_pspace_data_handle
14312 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14313 }
This page took 0.377003 seconds and 4 git commands to generate.