1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 static void extract_string (CORE_ADDR addr
, char *buf
);
70 static void modify_general_field (char *, LONGEST
, int, int);
72 static struct type
*desc_base_type (struct type
*);
74 static struct type
*desc_bounds_type (struct type
*);
76 static struct value
*desc_bounds (struct value
*);
78 static int fat_pntr_bounds_bitpos (struct type
*);
80 static int fat_pntr_bounds_bitsize (struct type
*);
82 static struct type
*desc_data_target_type (struct type
*);
84 static struct value
*desc_data (struct value
*);
86 static int fat_pntr_data_bitpos (struct type
*);
88 static int fat_pntr_data_bitsize (struct type
*);
90 static struct value
*desc_one_bound (struct value
*, int, int);
92 static int desc_bound_bitpos (struct type
*, int, int);
94 static int desc_bound_bitsize (struct type
*, int, int);
96 static struct type
*desc_index_type (struct type
*, int);
98 static int desc_arity (struct type
*);
100 static int ada_type_match (struct type
*, struct type
*, int);
102 static int ada_args_match (struct symbol
*, struct value
**, int);
104 static struct value
*ensure_lval (struct value
*,
105 struct gdbarch
*, CORE_ADDR
*);
107 static struct value
*make_array_descriptor (struct type
*, struct value
*,
108 struct gdbarch
*, CORE_ADDR
*);
110 static void ada_add_block_symbols (struct obstack
*,
111 struct block
*, const char *,
112 domain_enum
, struct objfile
*, int);
114 static int is_nonfunction (struct ada_symbol_info
*, int);
116 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
119 static int num_defns_collected (struct obstack
*);
121 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
123 static struct partial_symbol
*ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
127 static struct value
*resolve_subexp (struct expression
**, int *, int,
130 static void replace_operator_with_call (struct expression
**, int, int, int,
131 struct symbol
*, struct block
*);
133 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
135 static char *ada_op_name (enum exp_opcode
);
137 static const char *ada_decoded_op_name (enum exp_opcode
);
139 static int numeric_type_p (struct type
*);
141 static int integer_type_p (struct type
*);
143 static int scalar_type_p (struct type
*);
145 static int discrete_type_p (struct type
*);
147 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
152 static struct symbol
*find_old_style_renaming_symbol (const char *,
155 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
158 static struct value
*evaluate_subexp_type (struct expression
*, int *);
160 static int is_dynamic_field (struct type
*, int);
162 static struct type
*to_fixed_variant_branch_type (struct type
*,
164 CORE_ADDR
, struct value
*);
166 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
168 static struct type
*to_fixed_range_type (char *, struct value
*,
171 static struct type
*to_static_fixed_type (struct type
*);
172 static struct type
*static_unwrap_type (struct type
*type
);
174 static struct value
*unwrap_value (struct value
*);
176 static struct type
*packed_array_type (struct type
*, long *);
178 static struct type
*decode_packed_array_type (struct type
*);
180 static struct value
*decode_packed_array (struct value
*);
182 static struct value
*value_subscript_packed (struct value
*, int,
185 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int);
187 static struct value
*coerce_unspec_val_to_type (struct value
*,
190 static struct value
*get_var_value (char *, char *);
192 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
194 static int equiv_types (struct type
*, struct type
*);
196 static int is_name_suffix (const char *);
198 static int wild_match (const char *, int, const char *);
200 static struct value
*ada_coerce_ref (struct value
*);
202 static LONGEST
pos_atr (struct value
*);
204 static struct value
*value_pos_atr (struct type
*, struct value
*);
206 static struct value
*value_val_atr (struct type
*, struct value
*);
208 static struct symbol
*standard_lookup (const char *, const struct block
*,
211 static struct value
*ada_search_struct_field (char *, struct value
*, int,
214 static struct value
*ada_value_primitive_field (struct value
*, int, int,
217 static int find_struct_field (char *, struct type
*, int,
218 struct type
**, int *, int *, int *, int *);
220 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
223 static struct value
*ada_to_fixed_value (struct value
*);
225 static int ada_resolve_function (struct ada_symbol_info
*, int,
226 struct value
**, int, const char *,
229 static struct value
*ada_coerce_to_simple_array (struct value
*);
231 static int ada_is_direct_array_type (struct type
*);
233 static void ada_language_arch_info (struct gdbarch
*,
234 struct language_arch_info
*);
236 static void check_size (const struct type
*);
238 static struct value
*ada_index_struct_field (int, struct value
*, int,
241 static struct value
*assign_aggregate (struct value
*, struct value
*,
242 struct expression
*, int *, enum noside
);
244 static void aggregate_assign_from_choices (struct value
*, struct value
*,
246 int *, LONGEST
*, int *,
247 int, LONGEST
, LONGEST
);
249 static void aggregate_assign_positional (struct value
*, struct value
*,
251 int *, LONGEST
*, int *, int,
255 static void aggregate_assign_others (struct value
*, struct value
*,
257 int *, LONGEST
*, int, LONGEST
, LONGEST
);
260 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
263 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
266 static void ada_forward_operator_length (struct expression
*, int, int *,
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit
;
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters
=
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
285 = "__gnat_ada_main_program_name";
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit
= 2;
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued
= 0;
294 static const char *known_runtime_file_name_patterns
[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 static const char *known_auxiliary_function_name_patterns
[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack
;
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
312 ada_unqualified_name (const char *decoded_name
)
314 const char *result
= strrchr (decoded_name
, '.');
317 result
++; /* Skip the dot... */
319 result
= decoded_name
;
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
328 add_angle_brackets (const char *str
)
330 static char *result
= NULL
;
333 result
= xstrprintf ("<%s>", str
);
338 ada_get_gdb_completer_word_break_characters (void)
340 return ada_completer_word_break_characters
;
343 /* Print an array element index using the Ada syntax. */
346 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
347 const struct value_print_options
*options
)
349 LA_VALUE_PRINT (index_value
, stream
, options
);
350 fprintf_filtered (stream
, " => ");
353 /* Read the string located at ADDR from the inferior and store the
357 extract_string (CORE_ADDR addr
, char *buf
)
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
365 target_read_memory (addr
+ char_index
* sizeof (char),
366 buf
+ char_index
* sizeof (char), sizeof (char));
369 while (buf
[char_index
- 1] != '\000');
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
377 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
379 if (*size
< min_size
)
382 if (*size
< min_size
)
384 vect
= xrealloc (vect
, *size
* element_size
);
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
393 field_name_match (const char *field_name
, const char *target
)
395 int len
= strlen (target
);
397 (strncmp (field_name
, target
, len
) == 0
398 && (field_name
[len
] == '\0'
399 || (strncmp (field_name
+ len
, "___", 3) == 0
400 && strcmp (field_name
+ strlen (field_name
) - 6,
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
414 ada_get_field_index (const struct type
*type
, const char *field_name
,
418 struct type
*struct_type
= check_typedef ((struct type
*) type
);
420 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name
, TYPE_NAME (struct_type
));
431 /* The length of the prefix of NAME prior to any "___" suffix. */
434 ada_name_prefix_len (const char *name
)
440 const char *p
= strstr (name
, "___");
442 return strlen (name
);
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
452 is_suffix (const char *str
, const char *suffix
)
458 len2
= strlen (suffix
);
459 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
465 static struct value
*
466 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
468 type
= ada_check_typedef (type
);
469 if (value_type (val
) == type
)
473 struct value
*result
;
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
479 result
= allocate_value (type
);
480 set_value_component_location (result
, val
);
481 set_value_bitsize (result
, value_bitsize (val
));
482 set_value_bitpos (result
, value_bitpos (val
));
483 set_value_address (result
, value_address (val
));
485 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
486 set_value_lazy (result
, 1);
488 memcpy (value_contents_raw (result
), value_contents (val
),
494 static const gdb_byte
*
495 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
500 return valaddr
+ offset
;
504 cond_offset_target (CORE_ADDR address
, long offset
)
509 return address
+ offset
;
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format
, ...) ATTR_FORMAT (printf
, 1, 2);
522 lim_warning (const char *format
, ...)
525 va_start (args
, format
);
527 warnings_issued
+= 1;
528 if (warnings_issued
<= warning_limit
)
529 vwarning (format
, args
);
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
539 check_size (const struct type
*type
)
541 if (TYPE_LENGTH (type
) > varsize_limit
)
542 error (_("object size is larger than varsize-limit"));
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
550 /* Maximum value of a SIZE-byte signed integer type. */
552 max_of_size (int size
)
554 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
555 return top_bit
| (top_bit
- 1);
558 /* Minimum value of a SIZE-byte signed integer type. */
560 min_of_size (int size
)
562 return -max_of_size (size
) - 1;
565 /* Maximum value of a SIZE-byte unsigned integer type. */
567 umax_of_size (int size
)
569 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
570 return top_bit
| (top_bit
- 1);
573 /* Maximum value of integral type T, as a signed quantity. */
575 max_of_type (struct type
*t
)
577 if (TYPE_UNSIGNED (t
))
578 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
580 return max_of_size (TYPE_LENGTH (t
));
583 /* Minimum value of integral type T, as a signed quantity. */
585 min_of_type (struct type
*t
)
587 if (TYPE_UNSIGNED (t
))
590 return min_of_size (TYPE_LENGTH (t
));
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
595 discrete_type_high_bound (struct type
*type
)
597 switch (TYPE_CODE (type
))
599 case TYPE_CODE_RANGE
:
600 return TYPE_HIGH_BOUND (type
);
602 return TYPE_FIELD_BITPOS (type
, TYPE_NFIELDS (type
) - 1);
607 return max_of_type (type
);
609 error (_("Unexpected type in discrete_type_high_bound."));
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 discrete_type_low_bound (struct type
*type
)
617 switch (TYPE_CODE (type
))
619 case TYPE_CODE_RANGE
:
620 return TYPE_LOW_BOUND (type
);
622 return TYPE_FIELD_BITPOS (type
, 0);
627 return min_of_type (type
);
629 error (_("Unexpected type in discrete_type_low_bound."));
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
637 base_type (struct type
*type
)
639 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
641 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
643 type
= TYPE_TARGET_TYPE (type
);
649 /* Language Selection */
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
654 MAIN_PST is not used. */
657 ada_update_initial_language (enum language lang
,
658 struct partial_symtab
*main_pst
)
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
661 (struct objfile
*) NULL
) != NULL
)
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
674 struct minimal_symbol
*msym
;
675 static char *main_program_name
= NULL
;
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
682 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
686 CORE_ADDR main_program_name_addr
;
689 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
690 if (main_program_name_addr
== 0)
691 error (_("Invalid address for Ada main program name."));
693 xfree (main_program_name
);
694 target_read_string (main_program_name_addr
, &main_program_name
,
699 return main_program_name
;
702 /* The main procedure doesn't seem to be in Ada. */
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 const struct ada_opname_map ada_opname_table
[] = {
712 {"Oadd", "\"+\"", BINOP_ADD
},
713 {"Osubtract", "\"-\"", BINOP_SUB
},
714 {"Omultiply", "\"*\"", BINOP_MUL
},
715 {"Odivide", "\"/\"", BINOP_DIV
},
716 {"Omod", "\"mod\"", BINOP_MOD
},
717 {"Orem", "\"rem\"", BINOP_REM
},
718 {"Oexpon", "\"**\"", BINOP_EXP
},
719 {"Olt", "\"<\"", BINOP_LESS
},
720 {"Ole", "\"<=\"", BINOP_LEQ
},
721 {"Ogt", "\">\"", BINOP_GTR
},
722 {"Oge", "\">=\"", BINOP_GEQ
},
723 {"Oeq", "\"=\"", BINOP_EQUAL
},
724 {"One", "\"/=\"", BINOP_NOTEQUAL
},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
728 {"Oconcat", "\"&\"", BINOP_CONCAT
},
729 {"Oabs", "\"abs\"", UNOP_ABS
},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
731 {"Oadd", "\"+\"", UNOP_PLUS
},
732 {"Osubtract", "\"-\"", UNOP_NEG
},
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
740 ada_encode (const char *decoded
)
742 static char *encoding_buffer
= NULL
;
743 static size_t encoding_buffer_size
= 0;
750 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
751 2 * strlen (decoded
) + 10);
754 for (p
= decoded
; *p
!= '\0'; p
+= 1)
758 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
763 const struct ada_opname_map
*mapping
;
765 for (mapping
= ada_opname_table
;
766 mapping
->encoded
!= NULL
767 && strncmp (mapping
->decoded
, p
,
768 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
770 if (mapping
->encoded
== NULL
)
771 error (_("invalid Ada operator name: %s"), p
);
772 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
773 k
+= strlen (mapping
->encoded
);
778 encoding_buffer
[k
] = *p
;
783 encoding_buffer
[k
] = '\0';
784 return encoding_buffer
;
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
792 ada_fold_name (const char *name
)
794 static char *fold_buffer
= NULL
;
795 static size_t fold_buffer_size
= 0;
797 int len
= strlen (name
);
798 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
802 strncpy (fold_buffer
, name
+ 1, len
- 2);
803 fold_buffer
[len
- 2] = '\000';
808 for (i
= 0; i
<= len
; i
+= 1)
809 fold_buffer
[i
] = tolower (name
[i
]);
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818 is_lower_alphanum (const char c
)
820 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
823 /* Remove either of these suffixes:
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
833 ada_remove_trailing_digits (const char *encoded
, int *len
)
835 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
838 while (i
> 0 && isdigit (encoded
[i
]))
840 if (i
>= 0 && encoded
[i
] == '.')
842 else if (i
>= 0 && encoded
[i
] == '$')
844 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
846 else if (i
>= 1 && strncmp (encoded
+ i
- 1, "__", 2) == 0)
851 /* Remove the suffix introduced by the compiler for protected object
855 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
857 /* Remove trailing N. */
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
868 && encoded
[*len
- 1] == 'N'
869 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
882 ada_decode (const char *encoded
)
889 static char *decoding_buffer
= NULL
;
890 static size_t decoding_buffer_size
= 0;
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded
, "_ada_", 5) == 0)
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded
[0] == '_' || encoded
[0] == '<')
904 len0
= strlen (encoded
);
906 ada_remove_trailing_digits (encoded
, &len0
);
907 ada_remove_po_subprogram_suffix (encoded
, &len0
);
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p
= strstr (encoded
, "___");
914 if (p
!= NULL
&& p
- encoded
< len0
- 3)
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
926 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
932 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
935 /* Make decoded big enough for possible expansion by operator name. */
937 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
938 decoded
= decoding_buffer
;
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
942 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
945 while ((i
>= 0 && isdigit (encoded
[i
]))
946 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
948 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
950 else if (encoded
[i
] == '$')
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
957 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
958 decoded
[j
] = encoded
[i
];
963 /* Is this a symbol function? */
964 if (at_start_name
&& encoded
[i
] == 'O')
967 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
969 int op_len
= strlen (ada_opname_table
[k
].encoded
);
970 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
972 && !isalnum (encoded
[i
+ op_len
]))
974 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
977 j
+= strlen (ada_opname_table
[k
].decoded
);
981 if (ada_opname_table
[k
].encoded
!= NULL
)
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
989 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
996 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
997 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
998 && isdigit (encoded
[i
+4]))
1002 while (k
< len0
&& isdigit (encoded
[k
]))
1003 k
++; /* Skip any extra digit. */
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1011 /* Remove _E{DIGITS}+[sb] */
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1024 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1025 && isdigit (encoded
[i
+2]))
1029 while (k
< len0
&& isdigit (encoded
[k
]))
1033 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1040 || (k
< len0
&& encoded
[k
] == '_'))
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1049 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr
= encoded
+ i
- 1;
1056 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1059 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1063 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1074 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1078 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1080 /* Replace '__' by '.'. */
1088 /* It's a character part of the decoded name, so just copy it
1090 decoded
[j
] = encoded
[i
];
1095 decoded
[j
] = '\000';
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1100 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1101 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1104 if (strcmp (decoded
, encoded
) == 0)
1110 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1111 decoded
= decoding_buffer
;
1112 if (encoded
[0] == '<')
1113 strcpy (decoded
, encoded
);
1115 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab
*decoded_names_store
;
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1139 ada_decode_symbol (const struct general_symbol_info
*gsymbol
)
1142 (char **) &gsymbol
->language_specific
.cplus_specific
.demangled_name
;
1143 if (*resultp
== NULL
)
1145 const char *decoded
= ada_decode (gsymbol
->name
);
1146 if (gsymbol
->obj_section
!= NULL
)
1148 struct objfile
*objf
= gsymbol
->obj_section
->objfile
;
1149 *resultp
= obsavestring (decoded
, strlen (decoded
),
1150 &objf
->objfile_obstack
);
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp
== NULL
)
1158 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1161 *slot
= xstrdup (decoded
);
1170 ada_la_decode (const char *encoded
, int options
)
1172 return xstrdup (ada_decode (encoded
));
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1183 ada_match_name (const char *sym_name
, const char *name
, int wild
)
1185 if (sym_name
== NULL
|| name
== NULL
)
1188 return wild_match (name
, strlen (name
), sym_name
);
1191 int len_name
= strlen (name
);
1192 return (strncmp (sym_name
, name
, len_name
) == 0
1193 && is_name_suffix (sym_name
+ len_name
))
1194 || (strncmp (sym_name
, "_ada_", 5) == 0
1195 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1196 && is_name_suffix (sym_name
+ len_name
+ 5));
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205 static char *bound_name
[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 /* Maximum number of array dimensions we are prepared to handle. */
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214 /* Like modify_field, but allows bitpos > wordlength. */
1217 modify_general_field (char *addr
, LONGEST fieldval
, int bitpos
, int bitsize
)
1219 modify_field (addr
+ bitpos
/ 8, fieldval
, bitpos
% 8, bitsize
);
1223 /* The desc_* routines return primitive portions of array descriptors
1226 /* The descriptor or array type, if any, indicated by TYPE; removes
1227 level of indirection, if needed. */
1229 static struct type
*
1230 desc_base_type (struct type
*type
)
1234 type
= ada_check_typedef (type
);
1236 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1237 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1238 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1243 /* True iff TYPE indicates a "thin" array pointer type. */
1246 is_thin_pntr (struct type
*type
)
1249 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1253 /* The descriptor type for thin pointer type TYPE. */
1255 static struct type
*
1256 thin_descriptor_type (struct type
*type
)
1258 struct type
*base_type
= desc_base_type (type
);
1259 if (base_type
== NULL
)
1261 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1265 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1266 if (alt_type
== NULL
)
1273 /* A pointer to the array data for thin-pointer value VAL. */
1275 static struct value
*
1276 thin_data_pntr (struct value
*val
)
1278 struct type
*type
= value_type (val
);
1279 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1280 data_type
= lookup_pointer_type (data_type
);
1282 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1283 return value_cast (data_type
, value_copy (val
));
1285 return value_from_longest (data_type
, value_address (val
));
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1291 is_thick_pntr (struct type
*type
)
1293 type
= desc_base_type (type
);
1294 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1301 static struct type
*
1302 desc_bounds_type (struct type
*type
)
1306 type
= desc_base_type (type
);
1310 else if (is_thin_pntr (type
))
1312 type
= thin_descriptor_type (type
);
1315 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1317 return ada_check_typedef (r
);
1319 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1321 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1331 static struct value
*
1332 desc_bounds (struct value
*arr
)
1334 struct type
*type
= ada_check_typedef (value_type (arr
));
1335 if (is_thin_pntr (type
))
1337 struct type
*bounds_type
=
1338 desc_bounds_type (thin_descriptor_type (type
));
1341 if (bounds_type
== NULL
)
1342 error (_("Bad GNAT array descriptor"));
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1348 addr
= value_as_long (arr
);
1350 addr
= value_address (arr
);
1353 value_from_longest (lookup_pointer_type (bounds_type
),
1354 addr
- TYPE_LENGTH (bounds_type
));
1357 else if (is_thick_pntr (type
))
1358 return value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1359 _("Bad GNAT array descriptor"));
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1368 fat_pntr_bounds_bitpos (struct type
*type
)
1370 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1377 fat_pntr_bounds_bitsize (struct type
*type
)
1379 type
= desc_base_type (type
);
1381 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type
, 1);
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a array-with-no-bounds type);
1389 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 static struct type
*
1393 desc_data_target_type (struct type
*type
)
1395 type
= desc_base_type (type
);
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type
))
1399 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1400 else if (is_thick_pntr (type
))
1402 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1405 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1406 return TYPE_TARGET_TYPE (data_type
);
1412 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 static struct value
*
1416 desc_data (struct value
*arr
)
1418 struct type
*type
= value_type (arr
);
1419 if (is_thin_pntr (type
))
1420 return thin_data_pntr (arr
);
1421 else if (is_thick_pntr (type
))
1422 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1423 _("Bad GNAT array descriptor"));
1429 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1430 position of the field containing the address of the data. */
1433 fat_pntr_data_bitpos (struct type
*type
)
1435 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1438 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1439 size of the field containing the address of the data. */
1442 fat_pntr_data_bitsize (struct type
*type
)
1444 type
= desc_base_type (type
);
1446 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1447 return TYPE_FIELD_BITSIZE (type
, 0);
1449 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1452 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1453 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1456 static struct value
*
1457 desc_one_bound (struct value
*bounds
, int i
, int which
)
1459 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1460 _("Bad GNAT array descriptor bounds"));
1463 /* If BOUNDS is an array-bounds structure type, return the bit position
1464 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1465 bound, if WHICH is 1. The first bound is I=1. */
1468 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1470 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1473 /* If BOUNDS is an array-bounds structure type, return the bit field size
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1475 bound, if WHICH is 1. The first bound is I=1. */
1478 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1480 type
= desc_base_type (type
);
1482 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1483 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1485 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1488 /* If TYPE is the type of an array-bounds structure, the type of its
1489 Ith bound (numbering from 1). Otherwise, NULL. */
1491 static struct type
*
1492 desc_index_type (struct type
*type
, int i
)
1494 type
= desc_base_type (type
);
1496 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1497 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1502 /* The number of index positions in the array-bounds type TYPE.
1503 Return 0 if TYPE is NULL. */
1506 desc_arity (struct type
*type
)
1508 type
= desc_base_type (type
);
1511 return TYPE_NFIELDS (type
) / 2;
1515 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1516 an array descriptor type (representing an unconstrained array
1520 ada_is_direct_array_type (struct type
*type
)
1524 type
= ada_check_typedef (type
);
1525 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1526 || ada_is_array_descriptor_type (type
));
1529 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1533 ada_is_array_type (struct type
*type
)
1536 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1537 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1538 type
= TYPE_TARGET_TYPE (type
);
1539 return ada_is_direct_array_type (type
);
1542 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1545 ada_is_simple_array_type (struct type
*type
)
1549 type
= ada_check_typedef (type
);
1550 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1551 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1552 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_ARRAY
));
1555 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558 ada_is_array_descriptor_type (struct type
*type
)
1560 struct type
*data_type
= desc_data_target_type (type
);
1564 type
= ada_check_typedef (type
);
1565 return (data_type
!= NULL
1566 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1567 && desc_arity (desc_bounds_type (type
)) > 0);
1570 /* Non-zero iff type is a partially mal-formed GNAT array
1571 descriptor. FIXME: This is to compensate for some problems with
1572 debugging output from GNAT. Re-examine periodically to see if it
1576 ada_is_bogus_array_descriptor (struct type
*type
)
1580 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1581 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1582 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1583 && !ada_is_array_descriptor_type (type
);
1587 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1588 (fat pointer) returns the type of the array data described---specifically,
1589 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1590 in from the descriptor; otherwise, they are left unspecified. If
1591 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1592 returns NULL. The result is simply the type of ARR if ARR is not
1595 ada_type_of_array (struct value
*arr
, int bounds
)
1597 if (ada_is_packed_array_type (value_type (arr
)))
1598 return decode_packed_array_type (value_type (arr
));
1600 if (!ada_is_array_descriptor_type (value_type (arr
)))
1601 return value_type (arr
);
1605 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1608 struct type
*elt_type
;
1610 struct value
*descriptor
;
1611 struct objfile
*objf
= TYPE_OBJFILE (value_type (arr
));
1613 elt_type
= ada_array_element_type (value_type (arr
), -1);
1614 arity
= ada_array_arity (value_type (arr
));
1616 if (elt_type
== NULL
|| arity
== 0)
1617 return ada_check_typedef (value_type (arr
));
1619 descriptor
= desc_bounds (arr
);
1620 if (value_as_long (descriptor
) == 0)
1624 struct type
*range_type
= alloc_type (objf
);
1625 struct type
*array_type
= alloc_type (objf
);
1626 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1627 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1630 create_range_type (range_type
, value_type (low
),
1631 longest_to_int (value_as_long (low
)),
1632 longest_to_int (value_as_long (high
)));
1633 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1636 return lookup_pointer_type (elt_type
);
1640 /* If ARR does not represent an array, returns ARR unchanged.
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1646 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1648 if (ada_is_array_descriptor_type (value_type (arr
)))
1650 struct type
*arrType
= ada_type_of_array (arr
, 1);
1651 if (arrType
== NULL
)
1653 return value_cast (arrType
, value_copy (desc_data (arr
)));
1655 else if (ada_is_packed_array_type (value_type (arr
)))
1656 return decode_packed_array (arr
);
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
1663 be ARR itself if it already is in the proper form). */
1665 static struct value
*
1666 ada_coerce_to_simple_array (struct value
*arr
)
1668 if (ada_is_array_descriptor_type (value_type (arr
)))
1670 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1672 error (_("Bounds unavailable for null array pointer."));
1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal
)));
1674 return value_ind (arrVal
);
1676 else if (ada_is_packed_array_type (value_type (arr
)))
1677 return decode_packed_array (arr
);
1682 /* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
1684 packing). For other types, is the identity. */
1687 ada_coerce_to_simple_array_type (struct type
*type
)
1689 if (ada_is_packed_array_type (type
))
1690 return decode_packed_array_type (type
);
1692 if (ada_is_array_descriptor_type (type
))
1693 return ada_check_typedef (desc_data_target_type (type
));
1698 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701 ada_is_packed_array_type (struct type
*type
)
1705 type
= desc_base_type (type
);
1706 type
= ada_check_typedef (type
);
1708 ada_type_name (type
) != NULL
1709 && strstr (ada_type_name (type
), "___XP") != NULL
;
1712 /* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 static struct type
*
1722 packed_array_type (struct type
*type
, long *elt_bits
)
1724 struct type
*new_elt_type
;
1725 struct type
*new_type
;
1726 LONGEST low_bound
, high_bound
;
1728 type
= ada_check_typedef (type
);
1729 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
1732 new_type
= alloc_type (TYPE_OBJFILE (type
));
1733 new_elt_type
= packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
1735 create_array_type (new_type
, new_elt_type
, TYPE_INDEX_TYPE (type
));
1736 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
1737 TYPE_NAME (new_type
) = ada_type_name (type
);
1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type
),
1740 &low_bound
, &high_bound
) < 0)
1741 low_bound
= high_bound
= 0;
1742 if (high_bound
< low_bound
)
1743 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
1746 *elt_bits
*= (high_bound
- low_bound
+ 1);
1747 TYPE_LENGTH (new_type
) =
1748 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
1751 TYPE_FIXED_INSTANCE (new_type
) = 1;
1755 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1757 static struct type
*
1758 decode_packed_array_type (struct type
*type
)
1761 struct block
**blocks
;
1762 char *raw_name
= ada_type_name (ada_check_typedef (type
));
1765 struct type
*shadow_type
;
1770 raw_name
= ada_type_name (desc_base_type (type
));
1775 name
= (char *) alloca (strlen (raw_name
) + 1);
1776 tail
= strstr (raw_name
, "___XP");
1777 type
= desc_base_type (type
);
1779 memcpy (name
, raw_name
, tail
- raw_name
);
1780 name
[tail
- raw_name
] = '\000';
1782 sym
= standard_lookup (name
, get_selected_block (0), VAR_DOMAIN
);
1783 if (sym
== NULL
|| SYMBOL_TYPE (sym
) == NULL
)
1785 lim_warning (_("could not find bounds information on packed array"));
1788 shadow_type
= SYMBOL_TYPE (sym
);
1789 CHECK_TYPEDEF (shadow_type
);
1791 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
1793 lim_warning (_("could not understand bounds information on packed array"));
1797 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
1800 (_("could not understand bit size information on packed array"));
1804 return packed_array_type (shadow_type
, &bits
);
1807 /* Given that ARR is a struct value *indicating a GNAT packed array,
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
1811 type length is set appropriately. */
1813 static struct value
*
1814 decode_packed_array (struct value
*arr
)
1818 arr
= ada_coerce_ref (arr
);
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
1826 if (TYPE_CODE (value_type (arr
)) == TYPE_CODE_PTR
)
1827 arr
= value_ind (arr
);
1829 type
= decode_packed_array_type (value_type (arr
));
1832 error (_("can't unpack array"));
1836 if (gdbarch_bits_big_endian (current_gdbarch
)
1837 && ada_is_modular_type (value_type (arr
)))
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size
, bit_pos
;
1846 mod
= ada_modulus (value_type (arr
)) - 1;
1853 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
1854 arr
= ada_value_primitive_packed_val (arr
, NULL
,
1855 bit_pos
/ HOST_CHAR_BIT
,
1856 bit_pos
% HOST_CHAR_BIT
,
1861 return coerce_unspec_val_to_type (arr
, type
);
1865 /* The value of the element of packed array ARR at the ARITY indices
1866 given in IND. ARR must be a simple array. */
1868 static struct value
*
1869 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
1872 int bits
, elt_off
, bit_off
;
1873 long elt_total_bit_offset
;
1874 struct type
*elt_type
;
1878 elt_total_bit_offset
= 0;
1879 elt_type
= ada_check_typedef (value_type (arr
));
1880 for (i
= 0; i
< arity
; i
+= 1)
1882 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
1883 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
1885 (_("attempt to do packed indexing of something other than a packed array"));
1888 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
1889 LONGEST lowerbound
, upperbound
;
1892 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
1894 lim_warning (_("don't know bounds of array"));
1895 lowerbound
= upperbound
= 0;
1898 idx
= pos_atr (ind
[i
]);
1899 if (idx
< lowerbound
|| idx
> upperbound
)
1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx
);
1901 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
1902 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
1903 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
1906 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
1907 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
1909 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
1914 /* Non-zero iff TYPE includes negative integer values. */
1917 has_negatives (struct type
*type
)
1919 switch (TYPE_CODE (type
))
1924 return !TYPE_UNSIGNED (type
);
1925 case TYPE_CODE_RANGE
:
1926 return TYPE_LOW_BOUND (type
) < 0;
1931 /* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
1942 long offset
, int bit_offset
, int bit_size
,
1946 int src
, /* Index into the source area */
1947 targ
, /* Index into the target area */
1948 srcBitsLeft
, /* Number of source bits left to move */
1949 nsrc
, ntarg
, /* Number of source and target bytes */
1950 unusedLS
, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize
; /* Number of meaningful bits in accum */
1953 unsigned char *bytes
; /* First byte containing data to unpack */
1954 unsigned char *unpacked
;
1955 unsigned long accum
; /* Staging area for bits being transferred */
1957 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
1960 int delta
= gdbarch_bits_big_endian (current_gdbarch
) ? -1 : 1;
1962 type
= ada_check_typedef (type
);
1966 v
= allocate_value (type
);
1967 bytes
= (unsigned char *) (valaddr
+ offset
);
1969 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
1972 value_address (obj
) + offset
);
1973 bytes
= (unsigned char *) alloca (len
);
1974 read_memory (value_address (v
), bytes
, len
);
1978 v
= allocate_value (type
);
1979 bytes
= (unsigned char *) value_contents (obj
) + offset
;
1985 set_value_component_location (v
, obj
);
1986 new_addr
= value_address (obj
) + offset
;
1987 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
1988 set_value_bitsize (v
, bit_size
);
1989 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
1992 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
1994 set_value_address (v
, new_addr
);
1997 set_value_bitsize (v
, bit_size
);
1998 unpacked
= (unsigned char *) value_contents (v
);
2000 srcBitsLeft
= bit_size
;
2002 ntarg
= TYPE_LENGTH (type
);
2006 memset (unpacked
, 0, TYPE_LENGTH (type
));
2009 else if (gdbarch_bits_big_endian (current_gdbarch
))
2012 if (has_negatives (type
)
2013 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2017 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2020 switch (TYPE_CODE (type
))
2022 case TYPE_CODE_ARRAY
:
2023 case TYPE_CODE_UNION
:
2024 case TYPE_CODE_STRUCT
:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2027 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2028 /* ... And are placed at the beginning (most-significant) bytes
2030 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2035 targ
= TYPE_LENGTH (type
) - 1;
2041 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2044 unusedLS
= bit_offset
;
2047 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2054 /* Mask for removing bits of the next source byte that are not
2055 part of the value. */
2056 unsigned int unusedMSMask
=
2057 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2059 /* Sign-extend bits for this byte. */
2060 unsigned int signMask
= sign
& ~unusedMSMask
;
2062 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2063 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2064 if (accumSize
>= HOST_CHAR_BIT
)
2066 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2067 accumSize
-= HOST_CHAR_BIT
;
2068 accum
>>= HOST_CHAR_BIT
;
2072 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2079 accum
|= sign
<< accumSize
;
2080 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2081 accumSize
-= HOST_CHAR_BIT
;
2082 accum
>>= HOST_CHAR_BIT
;
2090 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2095 int src_offset
, int n
)
2097 unsigned int accum
, mask
;
2098 int accum_bits
, chunk_size
;
2100 target
+= targ_offset
/ HOST_CHAR_BIT
;
2101 targ_offset
%= HOST_CHAR_BIT
;
2102 source
+= src_offset
/ HOST_CHAR_BIT
;
2103 src_offset
%= HOST_CHAR_BIT
;
2104 if (gdbarch_bits_big_endian (current_gdbarch
))
2106 accum
= (unsigned char) *source
;
2108 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2113 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2114 accum_bits
+= HOST_CHAR_BIT
;
2116 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2119 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2120 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2123 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2125 accum_bits
-= chunk_size
;
2132 accum
= (unsigned char) *source
>> src_offset
;
2134 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2138 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2139 accum_bits
+= HOST_CHAR_BIT
;
2141 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2144 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2145 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2147 accum_bits
-= chunk_size
;
2148 accum
>>= chunk_size
;
2155 /* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
2158 floating-point or non-scalar types. */
2160 static struct value
*
2161 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2163 struct type
*type
= value_type (toval
);
2164 int bits
= value_bitsize (toval
);
2166 toval
= ada_coerce_ref (toval
);
2167 fromval
= ada_coerce_ref (fromval
);
2169 if (ada_is_direct_array_type (value_type (toval
)))
2170 toval
= ada_coerce_to_simple_array (toval
);
2171 if (ada_is_direct_array_type (value_type (fromval
)))
2172 fromval
= ada_coerce_to_simple_array (fromval
);
2174 if (!deprecated_value_modifiable (toval
))
2175 error (_("Left operand of assignment is not a modifiable lvalue."));
2177 if (VALUE_LVAL (toval
) == lval_memory
2179 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2180 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2182 int len
= (value_bitpos (toval
)
2183 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2185 char *buffer
= (char *) alloca (len
);
2187 CORE_ADDR to_addr
= value_address (toval
);
2189 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2190 fromval
= value_cast (type
, fromval
);
2192 read_memory (to_addr
, buffer
, len
);
2193 from_size
= value_bitsize (fromval
);
2195 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2196 if (gdbarch_bits_big_endian (current_gdbarch
))
2197 move_bits (buffer
, value_bitpos (toval
),
2198 value_contents (fromval
), from_size
- bits
, bits
);
2200 move_bits (buffer
, value_bitpos (toval
), value_contents (fromval
),
2202 write_memory (to_addr
, buffer
, len
);
2203 if (deprecated_memory_changed_hook
)
2204 deprecated_memory_changed_hook (to_addr
, len
);
2206 val
= value_copy (toval
);
2207 memcpy (value_contents_raw (val
), value_contents (fromval
),
2208 TYPE_LENGTH (type
));
2209 deprecated_set_value_type (val
, type
);
2214 return value_assign (toval
, fromval
);
2218 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2224 value_assign_to_component (struct value
*container
, struct value
*component
,
2227 LONGEST offset_in_container
=
2228 (LONGEST
) (value_address (component
) - value_address (container
));
2229 int bit_offset_in_container
=
2230 value_bitpos (component
) - value_bitpos (container
);
2233 val
= value_cast (value_type (component
), val
);
2235 if (value_bitsize (component
) == 0)
2236 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2238 bits
= value_bitsize (component
);
2240 if (gdbarch_bits_big_endian (current_gdbarch
))
2241 move_bits (value_contents_writeable (container
) + offset_in_container
,
2242 value_bitpos (container
) + bit_offset_in_container
,
2243 value_contents (val
),
2244 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2247 move_bits (value_contents_writeable (container
) + offset_in_container
,
2248 value_bitpos (container
) + bit_offset_in_container
,
2249 value_contents (val
), 0, bits
);
2252 /* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
2257 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2261 struct type
*elt_type
;
2263 elt
= ada_coerce_to_simple_array (arr
);
2265 elt_type
= ada_check_typedef (value_type (elt
));
2266 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2267 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2268 return value_subscript_packed (elt
, arity
, ind
);
2270 for (k
= 0; k
< arity
; k
+= 1)
2272 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2273 error (_("too many subscripts (%d expected)"), k
);
2274 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2279 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
2281 IND. Does not read the entire array into memory. */
2283 static struct value
*
2284 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2289 for (k
= 0; k
< arity
; k
+= 1)
2293 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2294 error (_("too many subscripts (%d expected)"), k
);
2295 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2297 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2298 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
2299 type
= TYPE_TARGET_TYPE (type
);
2302 return value_ind (arr
);
2305 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2309 static struct value
*
2310 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2313 CORE_ADDR base
= value_as_address (array_ptr
)
2314 + ((low
- TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type
)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type
)));
2316 struct type
*index_type
=
2317 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
)),
2319 struct type
*slice_type
=
2320 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2321 return value_at_lazy (slice_type
, base
);
2325 static struct value
*
2326 ada_value_slice (struct value
*array
, int low
, int high
)
2328 struct type
*type
= value_type (array
);
2329 struct type
*index_type
=
2330 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2331 struct type
*slice_type
=
2332 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2333 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2336 /* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
2339 type designation. Otherwise, returns 0. */
2342 ada_array_arity (struct type
*type
)
2349 type
= desc_base_type (type
);
2352 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2353 return desc_arity (desc_bounds_type (type
));
2355 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2358 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2364 /* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
2367 NINDICES is -1. Otherwise, returns NULL. */
2370 ada_array_element_type (struct type
*type
, int nindices
)
2372 type
= desc_base_type (type
);
2374 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2377 struct type
*p_array_type
;
2379 p_array_type
= desc_data_target_type (type
);
2381 k
= ada_array_arity (type
);
2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2386 if (nindices
>= 0 && k
> nindices
)
2388 while (k
> 0 && p_array_type
!= NULL
)
2390 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2393 return p_array_type
;
2395 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2397 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2399 type
= TYPE_TARGET_TYPE (type
);
2408 /* The type of nth index in arrays of given type (n numbering from 1).
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
2414 static struct type
*
2415 ada_index_type (struct type
*type
, int n
, const char *name
)
2417 struct type
*result_type
;
2419 type
= desc_base_type (type
);
2421 if (n
< 0 || n
> ada_array_arity (type
))
2422 error (_("invalid dimension number to '%s"), name
);
2424 if (ada_is_simple_array_type (type
))
2428 for (i
= 1; i
< n
; i
+= 1)
2429 type
= TYPE_TARGET_TYPE (type
);
2430 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2433 perhaps stabsread.c would make more sense. */
2434 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2439 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2440 if (result_type
== NULL
)
2441 error (_("attempt to take bound of something that is not an array"));
2447 /* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
2454 ada_array_bound_from_type (struct type
* arr_type
, int n
, int which
)
2456 struct type
*type
, *elt_type
, *index_type_desc
, *index_type
;
2460 gdb_assert (which
== 0 || which
== 1);
2462 if (ada_is_packed_array_type (arr_type
))
2463 arr_type
= decode_packed_array_type (arr_type
);
2465 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2466 return (LONGEST
) - which
;
2468 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2469 type
= TYPE_TARGET_TYPE (arr_type
);
2474 for (i
= n
; i
> 1; i
--)
2475 elt_type
= TYPE_TARGET_TYPE (type
);
2477 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2478 if (index_type_desc
!= NULL
)
2479 index_type
= to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, n
- 1),
2480 NULL
, TYPE_INDEX_TYPE (elt_type
));
2482 index_type
= TYPE_INDEX_TYPE (elt_type
);
2484 switch (TYPE_CODE (index_type
))
2486 case TYPE_CODE_RANGE
:
2487 retval
= which
== 0 ? TYPE_LOW_BOUND (index_type
)
2488 : TYPE_HIGH_BOUND (index_type
);
2490 case TYPE_CODE_ENUM
:
2491 retval
= which
== 0 ? TYPE_FIELD_BITPOS (index_type
, 0)
2492 : TYPE_FIELD_BITPOS (index_type
,
2493 TYPE_NFIELDS (index_type
) - 1);
2496 internal_error (__FILE__
, __LINE__
, _("invalid type code of index type"));
2502 /* Given that arr is an array value, returns the lower bound of the
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
2505 supplied by run-time quantities other than discriminants. */
2508 ada_array_bound (struct value
*arr
, int n
, int which
)
2510 struct type
*arr_type
= value_type (arr
);
2512 if (ada_is_packed_array_type (arr_type
))
2513 return ada_array_bound (decode_packed_array (arr
), n
, which
);
2514 else if (ada_is_simple_array_type (arr_type
))
2515 return ada_array_bound_from_type (arr_type
, n
, which
);
2517 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
2520 /* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
2527 ada_array_length (struct value
*arr
, int n
)
2529 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2531 if (ada_is_packed_array_type (arr_type
))
2532 return ada_array_length (decode_packed_array (arr
), n
);
2534 if (ada_is_simple_array_type (arr_type
))
2535 return (ada_array_bound_from_type (arr_type
, n
, 1)
2536 - ada_array_bound_from_type (arr_type
, n
, 0) + 1);
2538 return (value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0)) + 1);
2542 /* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2545 static struct value
*
2546 empty_array (struct type
*arr_type
, int low
)
2548 struct type
*index_type
=
2549 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type
)),
2551 struct type
*elt_type
= ada_array_element_type (arr_type
, 1);
2552 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2556 /* Name resolution */
2558 /* The "decoded" name for the user-definable Ada operator corresponding
2562 ada_decoded_op_name (enum exp_opcode op
)
2566 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2568 if (ada_opname_table
[i
].op
== op
)
2569 return ada_opname_table
[i
].decoded
;
2571 error (_("Could not find operator name for opcode"));
2575 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2582 return type is preferred. May change (expand) *EXP. */
2585 resolve (struct expression
**expp
, int void_context_p
)
2587 struct type
*context_type
= NULL
;
2591 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
2593 resolve_subexp (expp
, &pc
, 1, context_type
);
2596 /* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
2605 static struct value
*
2606 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2607 struct type
*context_type
)
2611 struct expression
*exp
; /* Convenience: == *expp. */
2612 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2613 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2614 int nargs
; /* Number of operands. */
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2626 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2627 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2632 resolve_subexp (expp
, pos
, 0, NULL
);
2634 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2639 resolve_subexp (expp
, pos
, 0, NULL
);
2644 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
2647 case OP_ATR_MODULUS
:
2657 case TERNOP_IN_RANGE
:
2658 case BINOP_IN_BOUNDS
:
2664 case OP_DISCRETE_RANGE
:
2666 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
2675 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
2677 resolve_subexp (expp
, pos
, 1, NULL
);
2679 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
2696 case BINOP_LOGICAL_AND
:
2697 case BINOP_LOGICAL_OR
:
2698 case BINOP_BITWISE_AND
:
2699 case BINOP_BITWISE_IOR
:
2700 case BINOP_BITWISE_XOR
:
2703 case BINOP_NOTEQUAL
:
2710 case BINOP_SUBSCRIPT
:
2718 case UNOP_LOGICAL_NOT
:
2734 case OP_INTERNALVAR
:
2744 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2747 case STRUCTOP_STRUCT
:
2748 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2761 error (_("Unexpected operator during name resolution"));
2764 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
2765 for (i
= 0; i
< nargs
; i
+= 1)
2766 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
2770 /* Pass two: perform any resolution on principal operator. */
2777 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
2779 struct ada_symbol_info
*candidates
;
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp
->elts
[pc
+ 2].symbol
),
2785 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
2788 if (n_candidates
> 1)
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2794 for (j
= 0; j
< n_candidates
; j
+= 1)
2795 switch (SYMBOL_CLASS (candidates
[j
].sym
))
2800 case LOC_REGPARM_ADDR
:
2808 if (j
< n_candidates
)
2811 while (j
< n_candidates
)
2813 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
2815 candidates
[j
] = candidates
[n_candidates
- 1];
2824 if (n_candidates
== 0)
2825 error (_("No definition found for %s"),
2826 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2827 else if (n_candidates
== 1)
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates
, n_candidates
))
2832 i
= ada_resolve_function
2833 (candidates
, n_candidates
, NULL
, 0,
2834 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
2837 error (_("Could not find a match for %s"),
2838 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2842 printf_filtered (_("Multiple matches for %s\n"),
2843 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2844 user_select_syms (candidates
, n_candidates
, 1);
2848 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
2849 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
2850 if (innermost_block
== NULL
2851 || contained_in (candidates
[i
].block
, innermost_block
))
2852 innermost_block
= candidates
[i
].block
;
2856 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
2859 replace_operator_with_call (expp
, pc
, 0, 0,
2860 exp
->elts
[pc
+ 2].symbol
,
2861 exp
->elts
[pc
+ 1].block
);
2868 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2869 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2871 struct ada_symbol_info
*candidates
;
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp
->elts
[pc
+ 5].symbol
),
2877 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
2879 if (n_candidates
== 1)
2883 i
= ada_resolve_function
2884 (candidates
, n_candidates
,
2886 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
2889 error (_("Could not find a match for %s"),
2890 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
2893 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
2894 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
2895 if (innermost_block
== NULL
2896 || contained_in (candidates
[i
].block
, innermost_block
))
2897 innermost_block
= candidates
[i
].block
;
2908 case BINOP_BITWISE_AND
:
2909 case BINOP_BITWISE_IOR
:
2910 case BINOP_BITWISE_XOR
:
2912 case BINOP_NOTEQUAL
:
2920 case UNOP_LOGICAL_NOT
:
2922 if (possible_user_operator_p (op
, argvec
))
2924 struct ada_symbol_info
*candidates
;
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
2929 (struct block
*) NULL
, VAR_DOMAIN
,
2931 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
2932 ada_decoded_op_name (op
), NULL
);
2936 replace_operator_with_call (expp
, pc
, nargs
, 1,
2937 candidates
[i
].sym
, candidates
[i
].block
);
2948 return evaluate_subexp_type (exp
, pos
);
2951 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
2955 /* The term "match" here is rather loose. The match is heuristic and
2956 liberal. FIXME: TOO liberal, in fact. */
2959 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
2961 ftype
= ada_check_typedef (ftype
);
2962 atype
= ada_check_typedef (atype
);
2964 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
2965 ftype
= TYPE_TARGET_TYPE (ftype
);
2966 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
2967 atype
= TYPE_TARGET_TYPE (atype
);
2969 if (TYPE_CODE (ftype
) == TYPE_CODE_VOID
2970 || TYPE_CODE (atype
) == TYPE_CODE_VOID
)
2973 switch (TYPE_CODE (ftype
))
2978 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
2980 TYPE_TARGET_TYPE (atype
), 0);
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
2985 case TYPE_CODE_ENUM
:
2986 case TYPE_CODE_RANGE
:
2987 switch (TYPE_CODE (atype
))
2990 case TYPE_CODE_ENUM
:
2991 case TYPE_CODE_RANGE
:
2997 case TYPE_CODE_ARRAY
:
2998 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
2999 || ada_is_array_descriptor_type (atype
));
3001 case TYPE_CODE_STRUCT
:
3002 if (ada_is_array_descriptor_type (ftype
))
3003 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype
));
3006 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype
));
3009 case TYPE_CODE_UNION
:
3011 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3015 /* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
3018 argument function. */
3021 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3024 struct type
*func_type
= SYMBOL_TYPE (func
);
3026 if (SYMBOL_CLASS (func
) == LOC_CONST
3027 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3028 return (n_actuals
== 0);
3029 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3032 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3035 for (i
= 0; i
< n_actuals
; i
+= 1)
3037 if (actuals
[i
] == NULL
)
3041 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
, i
));
3042 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3044 if (!ada_type_match (ftype
, atype
, 1))
3051 /* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3057 return_match (struct type
*func_type
, struct type
*context_type
)
3059 struct type
*return_type
;
3061 if (func_type
== NULL
)
3064 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3065 return_type
= base_type (TYPE_TARGET_TYPE (func_type
));
3067 return_type
= base_type (func_type
);
3068 if (return_type
== NULL
)
3071 context_type
= base_type (context_type
);
3073 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3074 return context_type
== NULL
|| return_type
== context_type
;
3075 else if (context_type
== NULL
)
3076 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3078 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3082 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3083 function (if any) that matches the types of the NARGS arguments in
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
3095 ada_resolve_function (struct ada_symbol_info syms
[],
3096 int nsyms
, struct value
**args
, int nargs
,
3097 const char *name
, struct type
*context_type
)
3101 int m
; /* Number of hits */
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3109 for (k
= 0; k
< nsyms
; k
+= 1)
3111 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
3113 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
3114 && (fallback
|| return_match (type
, context_type
)))
3126 printf_filtered (_("Multiple matches for %s\n"), name
);
3127 user_select_syms (syms
, m
, 1);
3133 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3140 encoded_ordered_before (char *N0
, char *N1
)
3144 else if (N0
== NULL
)
3149 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3151 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3153 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3154 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3158 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3161 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3163 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3164 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3166 return (strcmp (N0
, N1
) < 0);
3170 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3174 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3177 for (i
= 1; i
< nsyms
; i
+= 1)
3179 struct ada_symbol_info sym
= syms
[i
];
3182 for (j
= i
- 1; j
>= 0; j
-= 1)
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3185 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3187 syms
[j
+ 1] = syms
[j
];
3193 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3198 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3199 to be re-integrated one of these days. */
3202 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3205 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3207 int first_choice
= (max_results
== 1) ? 1 : 2;
3208 const char *select_mode
= multiple_symbols_select_mode ();
3210 if (max_results
< 1)
3211 error (_("Request to select 0 symbols!"));
3215 if (select_mode
== multiple_symbols_cancel
)
3217 canceled because the command is ambiguous\n\
3218 See set/show multiple-symbol."));
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3226 printf_unfiltered (_("[0] cancel\n"));
3227 if (max_results
> 1)
3228 printf_unfiltered (_("[1] all\n"));
3230 sort_choices (syms
, nsyms
);
3232 for (i
= 0; i
< nsyms
; i
+= 1)
3234 if (syms
[i
].sym
== NULL
)
3237 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3239 struct symtab_and_line sal
=
3240 find_function_start_sal (syms
[i
].sym
, 1);
3241 if (sal
.symtab
== NULL
)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3244 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3248 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3249 sal
.symtab
->filename
, sal
.line
);
3255 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3256 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3258 struct symtab
*symtab
= syms
[i
].sym
->symtab
;
3260 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3263 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3264 symtab
->filename
, SYMBOL_LINE (syms
[i
].sym
));
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3268 printf_unfiltered (("[%d] "), i
+ first_choice
);
3269 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
3272 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3274 else if (symtab
!= NULL
)
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
3279 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3282 printf_unfiltered (is_enumeral
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
3286 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3290 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3293 for (i
= 0; i
< n_chosen
; i
+= 1)
3294 syms
[i
] = syms
[chosen
[i
]];
3299 /* Read and validate a set of numeric choices from the user in the
3300 range 0 .. N_CHOICES-1. Place the results in increasing
3301 order in CHOICES[0 .. N-1], and return N.
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3306 + A choice of 0 means to cancel the selection, throwing an error.
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3310 The user is not allowed to choose more than MAX_RESULTS values.
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
3313 prompts (for use with the -f switch). */
3316 get_selections (int *choices
, int n_choices
, int max_results
,
3317 int is_all_choice
, char *annotation_suffix
)
3322 int first_choice
= is_all_choice
? 2 : 1;
3324 prompt
= getenv ("PS2");
3328 args
= command_line_input (prompt
, 0, annotation_suffix
);
3331 error_no_arg (_("one or more choice numbers"));
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
3342 while (isspace (*args
))
3344 if (*args
== '\0' && n_chosen
== 0)
3345 error_no_arg (_("one or more choice numbers"));
3346 else if (*args
== '\0')
3349 choice
= strtol (args
, &args2
, 10);
3350 if (args
== args2
|| choice
< 0
3351 || choice
> n_choices
+ first_choice
- 1)
3352 error (_("Argument must be choice number"));
3356 error (_("cancelled"));
3358 if (choice
< first_choice
)
3360 n_chosen
= n_choices
;
3361 for (j
= 0; j
< n_choices
; j
+= 1)
3365 choice
-= first_choice
;
3367 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3371 if (j
< 0 || choice
!= choices
[j
])
3374 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3375 choices
[k
+ 1] = choices
[k
];
3376 choices
[j
+ 1] = choice
;
3381 if (n_chosen
> max_results
)
3382 error (_("Select no more than %d of the above"), max_results
);
3387 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
3392 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3393 int oplen
, struct symbol
*sym
,
3394 struct block
*block
)
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3397 symbol, -oplen for operator being replaced). */
3398 struct expression
*newexp
= (struct expression
*)
3399 xmalloc (sizeof (struct expression
)
3400 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3401 struct expression
*exp
= *expp
;
3403 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3404 newexp
->language_defn
= exp
->language_defn
;
3405 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3406 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3407 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3409 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3410 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3412 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3413 newexp
->elts
[pc
+ 4].block
= block
;
3414 newexp
->elts
[pc
+ 5].symbol
= sym
;
3420 /* Type-class predicates */
3422 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3426 numeric_type_p (struct type
*type
)
3432 switch (TYPE_CODE (type
))
3437 case TYPE_CODE_RANGE
:
3438 return (type
== TYPE_TARGET_TYPE (type
)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3446 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3449 integer_type_p (struct type
*type
)
3455 switch (TYPE_CODE (type
))
3459 case TYPE_CODE_RANGE
:
3460 return (type
== TYPE_TARGET_TYPE (type
)
3461 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3468 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3471 scalar_type_p (struct type
*type
)
3477 switch (TYPE_CODE (type
))
3480 case TYPE_CODE_RANGE
:
3481 case TYPE_CODE_ENUM
:
3490 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3493 discrete_type_p (struct type
*type
)
3499 switch (TYPE_CODE (type
))
3502 case TYPE_CODE_RANGE
:
3503 case TYPE_CODE_ENUM
:
3511 /* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
3516 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3518 struct type
*type0
=
3519 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3520 struct type
*type1
=
3521 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3535 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3539 case BINOP_BITWISE_AND
:
3540 case BINOP_BITWISE_IOR
:
3541 case BINOP_BITWISE_XOR
:
3542 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3545 case BINOP_NOTEQUAL
:
3550 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3553 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
3556 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3560 case UNOP_LOGICAL_NOT
:
3562 return (!numeric_type_p (type0
));
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3581 /* If SYM encodes a renaming,
3583 <renaming> renames <renamed entity>,
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3600 enum ada_renaming_category
3601 ada_parse_renaming (struct symbol
*sym
,
3602 const char **renamed_entity
, int *len
,
3603 const char **renaming_expr
)
3605 enum ada_renaming_category kind
;
3610 return ADA_NOT_RENAMING
;
3611 switch (SYMBOL_CLASS (sym
))
3614 return ADA_NOT_RENAMING
;
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
3617 renamed_entity
, len
, renaming_expr
);
3621 case LOC_OPTIMIZED_OUT
:
3622 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
3624 return ADA_NOT_RENAMING
;
3628 kind
= ADA_OBJECT_RENAMING
;
3632 kind
= ADA_EXCEPTION_RENAMING
;
3636 kind
= ADA_PACKAGE_RENAMING
;
3640 kind
= ADA_SUBPROGRAM_RENAMING
;
3644 return ADA_NOT_RENAMING
;
3648 if (renamed_entity
!= NULL
)
3649 *renamed_entity
= info
;
3650 suffix
= strstr (info
, "___XE");
3651 if (suffix
== NULL
|| suffix
== info
)
3652 return ADA_NOT_RENAMING
;
3654 *len
= strlen (info
) - strlen (suffix
);
3656 if (renaming_expr
!= NULL
)
3657 *renaming_expr
= suffix
;
3661 /* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665 static enum ada_renaming_category
3666 parse_old_style_renaming (struct type
*type
,
3667 const char **renamed_entity
, int *len
,
3668 const char **renaming_expr
)
3670 enum ada_renaming_category kind
;
3675 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type
) != 1)
3677 return ADA_NOT_RENAMING
;
3679 name
= type_name_no_tag (type
);
3681 return ADA_NOT_RENAMING
;
3683 name
= strstr (name
, "___XR");
3685 return ADA_NOT_RENAMING
;
3690 kind
= ADA_OBJECT_RENAMING
;
3693 kind
= ADA_EXCEPTION_RENAMING
;
3696 kind
= ADA_PACKAGE_RENAMING
;
3699 kind
= ADA_SUBPROGRAM_RENAMING
;
3702 return ADA_NOT_RENAMING
;
3705 info
= TYPE_FIELD_NAME (type
, 0);
3707 return ADA_NOT_RENAMING
;
3708 if (renamed_entity
!= NULL
)
3709 *renamed_entity
= info
;
3710 suffix
= strstr (info
, "___XE");
3711 if (renaming_expr
!= NULL
)
3712 *renaming_expr
= suffix
+ 5;
3713 if (suffix
== NULL
|| suffix
== info
)
3714 return ADA_NOT_RENAMING
;
3716 *len
= suffix
- info
;
3722 /* Evaluation: Function Calls */
3724 /* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
3727 returning an lvalue whose value_address points to the copy. */
3729 static struct value
*
3730 ensure_lval (struct value
*val
, struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
3732 if (! VALUE_LVAL (val
))
3734 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3739 if (gdbarch_inner_than (gdbarch
, 1, 2))
3741 /* Stack grows downward. Align SP and value_address (val) after
3742 reserving sufficient space. */
3744 if (gdbarch_frame_align_p (gdbarch
))
3745 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3746 set_value_address (val
, *sp
);
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
3752 if (gdbarch_frame_align_p (gdbarch
))
3753 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3754 set_value_address (val
, *sp
);
3756 if (gdbarch_frame_align_p (gdbarch
))
3757 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3759 VALUE_LVAL (val
) = lval_memory
;
3761 write_memory (value_address (val
), value_contents_raw (val
), len
);
3767 /* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
3770 values not residing in memory, updating it as needed. */
3773 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
,
3774 struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
3776 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
3777 struct type
*formal_type
= ada_check_typedef (formal_type0
);
3778 struct type
*formal_target
=
3779 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
3781 struct type
*actual_target
=
3782 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
3785 if (ada_is_array_descriptor_type (formal_target
)
3786 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
3787 return make_array_descriptor (formal_type
, actual
, gdbarch
, sp
);
3788 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
3791 struct value
*result
;
3792 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
3793 && ada_is_array_descriptor_type (actual_target
))
3794 result
= desc_data (actual
);
3795 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
3797 if (VALUE_LVAL (actual
) != lval_memory
)
3800 actual_type
= ada_check_typedef (value_type (actual
));
3801 val
= allocate_value (actual_type
);
3802 memcpy ((char *) value_contents_raw (val
),
3803 (char *) value_contents (actual
),
3804 TYPE_LENGTH (actual_type
));
3805 actual
= ensure_lval (val
, gdbarch
, sp
);
3807 result
= value_addr (actual
);
3811 return value_cast_pointers (formal_type
, result
);
3813 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
3814 return ada_value_ind (actual
);
3820 /* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
3826 static struct value
*
3827 make_array_descriptor (struct type
*type
, struct value
*arr
,
3828 struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
3830 struct type
*bounds_type
= desc_bounds_type (type
);
3831 struct type
*desc_type
= desc_base_type (type
);
3832 struct value
*descriptor
= allocate_value (desc_type
);
3833 struct value
*bounds
= allocate_value (bounds_type
);
3836 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
))); i
> 0; i
-= 1)
3838 modify_general_field (value_contents_writeable (bounds
),
3839 ada_array_bound (arr
, i
, 0),
3840 desc_bound_bitpos (bounds_type
, i
, 0),
3841 desc_bound_bitsize (bounds_type
, i
, 0));
3842 modify_general_field (value_contents_writeable (bounds
),
3843 ada_array_bound (arr
, i
, 1),
3844 desc_bound_bitpos (bounds_type
, i
, 1),
3845 desc_bound_bitsize (bounds_type
, i
, 1));
3848 bounds
= ensure_lval (bounds
, gdbarch
, sp
);
3850 modify_general_field (value_contents_writeable (descriptor
),
3851 value_address (ensure_lval (arr
, gdbarch
, sp
)),
3852 fat_pntr_data_bitpos (desc_type
),
3853 fat_pntr_data_bitsize (desc_type
));
3855 modify_general_field (value_contents_writeable (descriptor
),
3856 value_address (bounds
),
3857 fat_pntr_bounds_bitpos (desc_type
),
3858 fat_pntr_bounds_bitsize (desc_type
));
3860 descriptor
= ensure_lval (descriptor
, gdbarch
, sp
);
3862 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
3863 return value_addr (descriptor
);
3868 /* Dummy definitions for an experimental caching module that is not
3869 * used in the public sources. */
3872 lookup_cached_symbol (const char *name
, domain_enum
namespace,
3873 struct symbol
**sym
, struct block
**block
)
3879 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
3880 struct block
*block
)
3886 /* Return the result of a standard (literal, C-like) lookup of NAME in
3887 given DOMAIN, visible from lexical block BLOCK. */
3889 static struct symbol
*
3890 standard_lookup (const char *name
, const struct block
*block
,
3895 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
))
3897 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
3898 cache_symbol (name
, domain
, sym
, block_found
);
3903 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3904 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3905 since they contend in overloading in the same way. */
3907 is_nonfunction (struct ada_symbol_info syms
[], int n
)
3911 for (i
= 0; i
< n
; i
+= 1)
3912 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
3913 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
3914 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
3920 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3921 struct types. Otherwise, they may not. */
3924 equiv_types (struct type
*type0
, struct type
*type1
)
3928 if (type0
== NULL
|| type1
== NULL
3929 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
3931 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
3932 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
3933 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
3934 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
3940 /* True iff SYM0 represents the same entity as SYM1, or one that is
3941 no more defined than that of SYM1. */
3944 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
3948 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
3949 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
3952 switch (SYMBOL_CLASS (sym0
))
3958 struct type
*type0
= SYMBOL_TYPE (sym0
);
3959 struct type
*type1
= SYMBOL_TYPE (sym1
);
3960 char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
3961 char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
3962 int len0
= strlen (name0
);
3964 TYPE_CODE (type0
) == TYPE_CODE (type1
)
3965 && (equiv_types (type0
, type1
)
3966 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
3967 && strncmp (name1
+ len0
, "___XV", 5) == 0));
3970 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
3971 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
3977 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3978 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3981 add_defn_to_vec (struct obstack
*obstackp
,
3983 struct block
*block
)
3987 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
3989 /* Do not try to complete stub types, as the debugger is probably
3990 already scanning all symbols matching a certain name at the
3991 time when this function is called. Trying to replace the stub
3992 type by its associated full type will cause us to restart a scan
3993 which may lead to an infinite recursion. Instead, the client
3994 collecting the matching symbols will end up collecting several
3995 matches, with at least one of them complete. It can then filter
3996 out the stub ones if needed. */
3998 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4000 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
4002 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
4004 prevDefns
[i
].sym
= sym
;
4005 prevDefns
[i
].block
= block
;
4011 struct ada_symbol_info info
;
4015 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
4019 /* Number of ada_symbol_info structures currently collected in
4020 current vector in *OBSTACKP. */
4023 num_defns_collected (struct obstack
*obstackp
)
4025 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
4028 /* Vector of ada_symbol_info structures currently collected in current
4029 vector in *OBSTACKP. If FINISH, close off the vector and return
4030 its final address. */
4032 static struct ada_symbol_info
*
4033 defns_collected (struct obstack
*obstackp
, int finish
)
4036 return obstack_finish (obstackp
);
4038 return (struct ada_symbol_info
*) obstack_base (obstackp
);
4041 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4042 Check the global symbols if GLOBAL, the static symbols if not.
4043 Do wild-card match if WILD. */
4045 static struct partial_symbol
*
4046 ada_lookup_partial_symbol (struct partial_symtab
*pst
, const char *name
,
4047 int global
, domain_enum
namespace, int wild
)
4049 struct partial_symbol
**start
;
4050 int name_len
= strlen (name
);
4051 int length
= (global
? pst
->n_global_syms
: pst
->n_static_syms
);
4060 pst
->objfile
->global_psymbols
.list
+ pst
->globals_offset
:
4061 pst
->objfile
->static_psymbols
.list
+ pst
->statics_offset
);
4065 for (i
= 0; i
< length
; i
+= 1)
4067 struct partial_symbol
*psym
= start
[i
];
4069 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym
),
4070 SYMBOL_DOMAIN (psym
), namespace)
4071 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (psym
)))
4085 int M
= (U
+ i
) >> 1;
4086 struct partial_symbol
*psym
= start
[M
];
4087 if (SYMBOL_LINKAGE_NAME (psym
)[0] < name
[0])
4089 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > name
[0])
4091 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), name
) < 0)
4102 struct partial_symbol
*psym
= start
[i
];
4104 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym
),
4105 SYMBOL_DOMAIN (psym
), namespace))
4107 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
), name_len
);
4115 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
4129 int M
= (U
+ i
) >> 1;
4130 struct partial_symbol
*psym
= start
[M
];
4131 if (SYMBOL_LINKAGE_NAME (psym
)[0] < '_')
4133 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > '_')
4135 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), "_ada_") < 0)
4146 struct partial_symbol
*psym
= start
[i
];
4148 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym
),
4149 SYMBOL_DOMAIN (psym
), namespace))
4153 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym
)[0];
4156 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym
), 5);
4158 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
) + 5,
4168 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
4178 /* Return a minimal symbol matching NAME according to Ada decoding
4179 rules. Returns NULL if there is no such minimal symbol. Names
4180 prefixed with "standard__" are handled specially: "standard__" is
4181 first stripped off, and only static and global symbols are searched. */
4183 struct minimal_symbol
*
4184 ada_lookup_simple_minsym (const char *name
)
4186 struct objfile
*objfile
;
4187 struct minimal_symbol
*msymbol
;
4190 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4192 name
+= sizeof ("standard__") - 1;
4196 wild_match
= (strstr (name
, "__") == NULL
);
4198 ALL_MSYMBOLS (objfile
, msymbol
)
4200 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
)
4201 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4208 /* For all subprograms that statically enclose the subprogram of the
4209 selected frame, add symbols matching identifier NAME in DOMAIN
4210 and their blocks to the list of data in OBSTACKP, as for
4211 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4215 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4216 const char *name
, domain_enum
namespace,
4221 /* True if TYPE is definitely an artificial type supplied to a symbol
4222 for which no debugging information was given in the symbol file. */
4225 is_nondebugging_type (struct type
*type
)
4227 char *name
= ada_type_name (type
);
4228 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4231 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4232 duplicate other symbols in the list (The only case I know of where
4233 this happens is when object files containing stabs-in-ecoff are
4234 linked with files containing ordinary ecoff debugging symbols (or no
4235 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4236 Returns the number of items in the modified list. */
4239 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4248 /* If two symbols have the same name and one of them is a stub type,
4249 the get rid of the stub. */
4251 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].sym
))
4252 && SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
)
4254 for (j
= 0; j
< nsyms
; j
++)
4257 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].sym
))
4258 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4259 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4260 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0)
4265 /* Two symbols with the same name, same class and same address
4266 should be identical. */
4268 else if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4269 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4270 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4272 for (j
= 0; j
< nsyms
; j
+= 1)
4275 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4276 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4277 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4278 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4279 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4280 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4287 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4288 syms
[j
- 1] = syms
[j
];
4297 /* Given a type that corresponds to a renaming entity, use the type name
4298 to extract the scope (package name or function name, fully qualified,
4299 and following the GNAT encoding convention) where this renaming has been
4300 defined. The string returned needs to be deallocated after use. */
4303 xget_renaming_scope (struct type
*renaming_type
)
4305 /* The renaming types adhere to the following convention:
4306 <scope>__<rename>___<XR extension>.
4307 So, to extract the scope, we search for the "___XR" extension,
4308 and then backtrack until we find the first "__". */
4310 const char *name
= type_name_no_tag (renaming_type
);
4311 char *suffix
= strstr (name
, "___XR");
4316 /* Now, backtrack a bit until we find the first "__". Start looking
4317 at suffix - 3, as the <rename> part is at least one character long. */
4319 for (last
= suffix
- 3; last
> name
; last
--)
4320 if (last
[0] == '_' && last
[1] == '_')
4323 /* Make a copy of scope and return it. */
4325 scope_len
= last
- name
;
4326 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4328 strncpy (scope
, name
, scope_len
);
4329 scope
[scope_len
] = '\0';
4334 /* Return nonzero if NAME corresponds to a package name. */
4337 is_package_name (const char *name
)
4339 /* Here, We take advantage of the fact that no symbols are generated
4340 for packages, while symbols are generated for each function.
4341 So the condition for NAME represent a package becomes equivalent
4342 to NAME not existing in our list of symbols. There is only one
4343 small complication with library-level functions (see below). */
4347 /* If it is a function that has not been defined at library level,
4348 then we should be able to look it up in the symbols. */
4349 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4352 /* Library-level function names start with "_ada_". See if function
4353 "_ada_" followed by NAME can be found. */
4355 /* Do a quick check that NAME does not contain "__", since library-level
4356 functions names cannot contain "__" in them. */
4357 if (strstr (name
, "__") != NULL
)
4360 fun_name
= xstrprintf ("_ada_%s", name
);
4362 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4365 /* Return nonzero if SYM corresponds to a renaming entity that is
4366 not visible from FUNCTION_NAME. */
4369 old_renaming_is_invisible (const struct symbol
*sym
, char *function_name
)
4373 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
4376 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4378 make_cleanup (xfree
, scope
);
4380 /* If the rename has been defined in a package, then it is visible. */
4381 if (is_package_name (scope
))
4384 /* Check that the rename is in the current function scope by checking
4385 that its name starts with SCOPE. */
4387 /* If the function name starts with "_ada_", it means that it is
4388 a library-level function. Strip this prefix before doing the
4389 comparison, as the encoding for the renaming does not contain
4391 if (strncmp (function_name
, "_ada_", 5) == 0)
4394 return (strncmp (function_name
, scope
, strlen (scope
)) != 0);
4397 /* Remove entries from SYMS that corresponds to a renaming entity that
4398 is not visible from the function associated with CURRENT_BLOCK or
4399 that is superfluous due to the presence of more specific renaming
4400 information. Places surviving symbols in the initial entries of
4401 SYMS and returns the number of surviving symbols.
4404 First, in cases where an object renaming is implemented as a
4405 reference variable, GNAT may produce both the actual reference
4406 variable and the renaming encoding. In this case, we discard the
4409 Second, GNAT emits a type following a specified encoding for each renaming
4410 entity. Unfortunately, STABS currently does not support the definition
4411 of types that are local to a given lexical block, so all renamings types
4412 are emitted at library level. As a consequence, if an application
4413 contains two renaming entities using the same name, and a user tries to
4414 print the value of one of these entities, the result of the ada symbol
4415 lookup will also contain the wrong renaming type.
4417 This function partially covers for this limitation by attempting to
4418 remove from the SYMS list renaming symbols that should be visible
4419 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4420 method with the current information available. The implementation
4421 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4423 - When the user tries to print a rename in a function while there
4424 is another rename entity defined in a package: Normally, the
4425 rename in the function has precedence over the rename in the
4426 package, so the latter should be removed from the list. This is
4427 currently not the case.
4429 - This function will incorrectly remove valid renames if
4430 the CURRENT_BLOCK corresponds to a function which symbol name
4431 has been changed by an "Export" pragma. As a consequence,
4432 the user will be unable to print such rename entities. */
4435 remove_irrelevant_renamings (struct ada_symbol_info
*syms
,
4436 int nsyms
, const struct block
*current_block
)
4438 struct symbol
*current_function
;
4439 char *current_function_name
;
4441 int is_new_style_renaming
;
4443 /* If there is both a renaming foo___XR... encoded as a variable and
4444 a simple variable foo in the same block, discard the latter.
4445 First, zero out such symbols, then compress. */
4446 is_new_style_renaming
= 0;
4447 for (i
= 0; i
< nsyms
; i
+= 1)
4449 struct symbol
*sym
= syms
[i
].sym
;
4450 struct block
*block
= syms
[i
].block
;
4454 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4456 name
= SYMBOL_LINKAGE_NAME (sym
);
4457 suffix
= strstr (name
, "___XR");
4461 int name_len
= suffix
- name
;
4463 is_new_style_renaming
= 1;
4464 for (j
= 0; j
< nsyms
; j
+= 1)
4465 if (i
!= j
&& syms
[j
].sym
!= NULL
4466 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
4468 && block
== syms
[j
].block
)
4472 if (is_new_style_renaming
)
4476 for (j
= k
= 0; j
< nsyms
; j
+= 1)
4477 if (syms
[j
].sym
!= NULL
)
4485 /* Extract the function name associated to CURRENT_BLOCK.
4486 Abort if unable to do so. */
4488 if (current_block
== NULL
)
4491 current_function
= block_linkage_function (current_block
);
4492 if (current_function
== NULL
)
4495 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4496 if (current_function_name
== NULL
)
4499 /* Check each of the symbols, and remove it from the list if it is
4500 a type corresponding to a renaming that is out of the scope of
4501 the current block. */
4506 if (ada_parse_renaming (syms
[i
].sym
, NULL
, NULL
, NULL
)
4507 == ADA_OBJECT_RENAMING
4508 && old_renaming_is_invisible (syms
[i
].sym
, current_function_name
))
4511 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4512 syms
[j
- 1] = syms
[j
];
4522 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4523 whose name and domain match NAME and DOMAIN respectively.
4524 If no match was found, then extend the search to "enclosing"
4525 routines (in other words, if we're inside a nested function,
4526 search the symbols defined inside the enclosing functions).
4528 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4531 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
4532 struct block
*block
, domain_enum domain
,
4535 int block_depth
= 0;
4537 while (block
!= NULL
)
4540 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
, wild_match
);
4542 /* If we found a non-function match, assume that's the one. */
4543 if (is_nonfunction (defns_collected (obstackp
, 0),
4544 num_defns_collected (obstackp
)))
4547 block
= BLOCK_SUPERBLOCK (block
);
4550 /* If no luck so far, try to find NAME as a local symbol in some lexically
4551 enclosing subprogram. */
4552 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
4553 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match
);
4556 /* Add to OBSTACKP all non-local symbols whose name and domain match
4557 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4558 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4561 ada_add_non_local_symbols (struct obstack
*obstackp
, const char *name
,
4562 domain_enum domain
, int global
,
4565 struct objfile
*objfile
;
4566 struct partial_symtab
*ps
;
4568 ALL_PSYMTABS (objfile
, ps
)
4572 || ada_lookup_partial_symbol (ps
, name
, global
, domain
, wild_match
))
4574 struct symtab
*s
= PSYMTAB_TO_SYMTAB (ps
);
4575 const int block_kind
= global
? GLOBAL_BLOCK
: STATIC_BLOCK
;
4577 if (s
== NULL
|| !s
->primary
)
4579 ada_add_block_symbols (obstackp
,
4580 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), block_kind
),
4581 name
, domain
, objfile
, wild_match
);
4586 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4587 scope and in global scopes, returning the number of matches. Sets
4588 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4589 indicating the symbols found and the blocks and symbol tables (if
4590 any) in which they were found. This vector are transient---good only to
4591 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4592 symbol match within the nest of blocks whose innermost member is BLOCK0,
4593 is the one match returned (no other matches in that or
4594 enclosing blocks is returned). If there are any matches in or
4595 surrounding BLOCK0, then these alone are returned. Otherwise, the
4596 search extends to global and file-scope (static) symbol tables.
4597 Names prefixed with "standard__" are handled specially: "standard__"
4598 is first stripped off, and only static and global symbols are searched. */
4601 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
4602 domain_enum
namespace,
4603 struct ada_symbol_info
**results
)
4606 struct block
*block
;
4612 obstack_free (&symbol_list_obstack
, NULL
);
4613 obstack_init (&symbol_list_obstack
);
4617 /* Search specified block and its superiors. */
4619 wild_match
= (strstr (name0
, "__") == NULL
);
4621 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
4622 needed, but adding const will
4623 have a cascade effect. */
4625 /* Special case: If the user specifies a symbol name inside package
4626 Standard, do a non-wild matching of the symbol name without
4627 the "standard__" prefix. This was primarily introduced in order
4628 to allow the user to specifically access the standard exceptions
4629 using, for instance, Standard.Constraint_Error when Constraint_Error
4630 is ambiguous (due to the user defining its own Constraint_Error
4631 entity inside its program). */
4632 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
4636 name
= name0
+ sizeof ("standard__") - 1;
4639 /* Check the non-global symbols. If we have ANY match, then we're done. */
4641 ada_add_local_symbols (&symbol_list_obstack
, name
, block
, namespace,
4643 if (num_defns_collected (&symbol_list_obstack
) > 0)
4646 /* No non-global symbols found. Check our cache to see if we have
4647 already performed this search before. If we have, then return
4651 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
))
4654 add_defn_to_vec (&symbol_list_obstack
, sym
, block
);
4658 /* Search symbols from all global blocks. */
4660 ada_add_non_local_symbols (&symbol_list_obstack
, name
, namespace, 1,
4663 /* Now add symbols from all per-file blocks if we've gotten no hits
4664 (not strictly correct, but perhaps better than an error). */
4666 if (num_defns_collected (&symbol_list_obstack
) == 0)
4667 ada_add_non_local_symbols (&symbol_list_obstack
, name
, namespace, 0,
4671 ndefns
= num_defns_collected (&symbol_list_obstack
);
4672 *results
= defns_collected (&symbol_list_obstack
, 1);
4674 ndefns
= remove_extra_symbols (*results
, ndefns
);
4677 cache_symbol (name0
, namespace, NULL
, NULL
);
4679 if (ndefns
== 1 && cacheIfUnique
)
4680 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
);
4682 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block0
);
4688 ada_lookup_encoded_symbol (const char *name
, const struct block
*block0
,
4689 domain_enum
namespace, struct block
**block_found
)
4691 struct ada_symbol_info
*candidates
;
4694 n_candidates
= ada_lookup_symbol_list (name
, block0
, namespace, &candidates
);
4696 if (n_candidates
== 0)
4699 if (block_found
!= NULL
)
4700 *block_found
= candidates
[0].block
;
4702 return fixup_symbol_section (candidates
[0].sym
, NULL
);
4705 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4706 scope and in global scopes, or NULL if none. NAME is folded and
4707 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4708 choosing the first symbol if there are multiple choices.
4709 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4710 table in which the symbol was found (in both cases, these
4711 assignments occur only if the pointers are non-null). */
4713 ada_lookup_symbol (const char *name
, const struct block
*block0
,
4714 domain_enum
namespace, int *is_a_field_of_this
)
4716 if (is_a_field_of_this
!= NULL
)
4717 *is_a_field_of_this
= 0;
4720 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
4721 block0
, namespace, NULL
);
4724 static struct symbol
*
4725 ada_lookup_symbol_nonlocal (const char *name
,
4726 const char *linkage_name
,
4727 const struct block
*block
,
4728 const domain_enum domain
)
4730 if (linkage_name
== NULL
)
4731 linkage_name
= name
;
4732 return ada_lookup_symbol (linkage_name
, block_static_block (block
), domain
,
4737 /* True iff STR is a possible encoded suffix of a normal Ada name
4738 that is to be ignored for matching purposes. Suffixes of parallel
4739 names (e.g., XVE) are not included here. Currently, the possible suffixes
4740 are given by any of the regular expressions:
4742 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4743 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4744 _E[0-9]+[bs]$ [protected object entry suffixes]
4745 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4747 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4748 match is performed. This sequence is used to differentiate homonyms,
4749 is an optional part of a valid name suffix. */
4752 is_name_suffix (const char *str
)
4755 const char *matching
;
4756 const int len
= strlen (str
);
4758 /* Skip optional leading __[0-9]+. */
4760 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
4763 while (isdigit (str
[0]))
4769 if (str
[0] == '.' || str
[0] == '$')
4772 while (isdigit (matching
[0]))
4774 if (matching
[0] == '\0')
4780 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
4783 while (isdigit (matching
[0]))
4785 if (matching
[0] == '\0')
4790 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4791 with a N at the end. Unfortunately, the compiler uses the same
4792 convention for other internal types it creates. So treating
4793 all entity names that end with an "N" as a name suffix causes
4794 some regressions. For instance, consider the case of an enumerated
4795 type. To support the 'Image attribute, it creates an array whose
4797 Having a single character like this as a suffix carrying some
4798 information is a bit risky. Perhaps we should change the encoding
4799 to be something like "_N" instead. In the meantime, do not do
4800 the following check. */
4801 /* Protected Object Subprograms */
4802 if (len
== 1 && str
[0] == 'N')
4807 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
4810 while (isdigit (matching
[0]))
4812 if ((matching
[0] == 'b' || matching
[0] == 's')
4813 && matching
[1] == '\0')
4817 /* ??? We should not modify STR directly, as we are doing below. This
4818 is fine in this case, but may become problematic later if we find
4819 that this alternative did not work, and want to try matching
4820 another one from the begining of STR. Since we modified it, we
4821 won't be able to find the begining of the string anymore! */
4825 while (str
[0] != '_' && str
[0] != '\0')
4827 if (str
[0] != 'n' && str
[0] != 'b')
4833 if (str
[0] == '\000')
4838 if (str
[1] != '_' || str
[2] == '\000')
4842 if (strcmp (str
+ 3, "JM") == 0)
4844 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4845 the LJM suffix in favor of the JM one. But we will
4846 still accept LJM as a valid suffix for a reasonable
4847 amount of time, just to allow ourselves to debug programs
4848 compiled using an older version of GNAT. */
4849 if (strcmp (str
+ 3, "LJM") == 0)
4853 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
4854 || str
[4] == 'U' || str
[4] == 'P')
4856 if (str
[4] == 'R' && str
[5] != 'T')
4860 if (!isdigit (str
[2]))
4862 for (k
= 3; str
[k
] != '\0'; k
+= 1)
4863 if (!isdigit (str
[k
]) && str
[k
] != '_')
4867 if (str
[0] == '$' && isdigit (str
[1]))
4869 for (k
= 2; str
[k
] != '\0'; k
+= 1)
4870 if (!isdigit (str
[k
]) && str
[k
] != '_')
4877 /* Return non-zero if the string starting at NAME and ending before
4878 NAME_END contains no capital letters. */
4881 is_valid_name_for_wild_match (const char *name0
)
4883 const char *decoded_name
= ada_decode (name0
);
4886 /* If the decoded name starts with an angle bracket, it means that
4887 NAME0 does not follow the GNAT encoding format. It should then
4888 not be allowed as a possible wild match. */
4889 if (decoded_name
[0] == '<')
4892 for (i
=0; decoded_name
[i
] != '\0'; i
++)
4893 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
4899 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4900 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4901 informational suffixes of NAME (i.e., for which is_name_suffix is
4905 wild_match (const char *patn0
, int patn_len
, const char *name0
)
4912 match
= strstr (start
, patn0
);
4917 || (match
> name0
+ 1 && match
[-1] == '_' && match
[-2] == '_')
4918 || (match
== name0
+ 5 && strncmp ("_ada_", name0
, 5) == 0))
4919 && is_name_suffix (match
+ patn_len
))
4920 return (match
== name0
|| is_valid_name_for_wild_match (name0
));
4925 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4926 vector *defn_symbols, updating the list of symbols in OBSTACKP
4927 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4928 OBJFILE is the section containing BLOCK.
4929 SYMTAB is recorded with each symbol added. */
4932 ada_add_block_symbols (struct obstack
*obstackp
,
4933 struct block
*block
, const char *name
,
4934 domain_enum domain
, struct objfile
*objfile
,
4937 struct dict_iterator iter
;
4938 int name_len
= strlen (name
);
4939 /* A matching argument symbol, if any. */
4940 struct symbol
*arg_sym
;
4941 /* Set true when we find a matching non-argument symbol. */
4950 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
4952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
4953 SYMBOL_DOMAIN (sym
), domain
)
4954 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (sym
)))
4956 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
4958 else if (SYMBOL_IS_ARGUMENT (sym
))
4963 add_defn_to_vec (obstackp
,
4964 fixup_symbol_section (sym
, objfile
),
4972 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
4974 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
4975 SYMBOL_DOMAIN (sym
), domain
))
4977 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
), name_len
);
4979 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
))
4981 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
4983 if (SYMBOL_IS_ARGUMENT (sym
))
4988 add_defn_to_vec (obstackp
,
4989 fixup_symbol_section (sym
, objfile
),
4998 if (!found_sym
&& arg_sym
!= NULL
)
5000 add_defn_to_vec (obstackp
,
5001 fixup_symbol_section (arg_sym
, objfile
),
5010 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5013 SYMBOL_DOMAIN (sym
), domain
))
5017 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
5020 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
5022 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
5027 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
5029 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5031 if (SYMBOL_IS_ARGUMENT (sym
))
5036 add_defn_to_vec (obstackp
,
5037 fixup_symbol_section (sym
, objfile
),
5045 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5046 They aren't parameters, right? */
5047 if (!found_sym
&& arg_sym
!= NULL
)
5049 add_defn_to_vec (obstackp
,
5050 fixup_symbol_section (arg_sym
, objfile
),
5057 /* Symbol Completion */
5059 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5060 name in a form that's appropriate for the completion. The result
5061 does not need to be deallocated, but is only good until the next call.
5063 TEXT_LEN is equal to the length of TEXT.
5064 Perform a wild match if WILD_MATCH is set.
5065 ENCODED should be set if TEXT represents the start of a symbol name
5066 in its encoded form. */
5069 symbol_completion_match (const char *sym_name
,
5070 const char *text
, int text_len
,
5071 int wild_match
, int encoded
)
5074 const int verbatim_match
= (text
[0] == '<');
5079 /* Strip the leading angle bracket. */
5084 /* First, test against the fully qualified name of the symbol. */
5086 if (strncmp (sym_name
, text
, text_len
) == 0)
5089 if (match
&& !encoded
)
5091 /* One needed check before declaring a positive match is to verify
5092 that iff we are doing a verbatim match, the decoded version
5093 of the symbol name starts with '<'. Otherwise, this symbol name
5094 is not a suitable completion. */
5095 const char *sym_name_copy
= sym_name
;
5096 int has_angle_bracket
;
5098 sym_name
= ada_decode (sym_name
);
5099 has_angle_bracket
= (sym_name
[0] == '<');
5100 match
= (has_angle_bracket
== verbatim_match
);
5101 sym_name
= sym_name_copy
;
5104 if (match
&& !verbatim_match
)
5106 /* When doing non-verbatim match, another check that needs to
5107 be done is to verify that the potentially matching symbol name
5108 does not include capital letters, because the ada-mode would
5109 not be able to understand these symbol names without the
5110 angle bracket notation. */
5113 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
5118 /* Second: Try wild matching... */
5120 if (!match
&& wild_match
)
5122 /* Since we are doing wild matching, this means that TEXT
5123 may represent an unqualified symbol name. We therefore must
5124 also compare TEXT against the unqualified name of the symbol. */
5125 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
5127 if (strncmp (sym_name
, text
, text_len
) == 0)
5131 /* Finally: If we found a mach, prepare the result to return. */
5137 sym_name
= add_angle_brackets (sym_name
);
5140 sym_name
= ada_decode (sym_name
);
5145 typedef char *char_ptr
;
5146 DEF_VEC_P (char_ptr
);
5148 /* A companion function to ada_make_symbol_completion_list().
5149 Check if SYM_NAME represents a symbol which name would be suitable
5150 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5151 it is appended at the end of the given string vector SV.
5153 ORIG_TEXT is the string original string from the user command
5154 that needs to be completed. WORD is the entire command on which
5155 completion should be performed. These two parameters are used to
5156 determine which part of the symbol name should be added to the
5158 if WILD_MATCH is set, then wild matching is performed.
5159 ENCODED should be set if TEXT represents a symbol name in its
5160 encoded formed (in which case the completion should also be
5164 symbol_completion_add (VEC(char_ptr
) **sv
,
5165 const char *sym_name
,
5166 const char *text
, int text_len
,
5167 const char *orig_text
, const char *word
,
5168 int wild_match
, int encoded
)
5170 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
5171 wild_match
, encoded
);
5177 /* We found a match, so add the appropriate completion to the given
5180 if (word
== orig_text
)
5182 completion
= xmalloc (strlen (match
) + 5);
5183 strcpy (completion
, match
);
5185 else if (word
> orig_text
)
5187 /* Return some portion of sym_name. */
5188 completion
= xmalloc (strlen (match
) + 5);
5189 strcpy (completion
, match
+ (word
- orig_text
));
5193 /* Return some of ORIG_TEXT plus sym_name. */
5194 completion
= xmalloc (strlen (match
) + (orig_text
- word
) + 5);
5195 strncpy (completion
, word
, orig_text
- word
);
5196 completion
[orig_text
- word
] = '\0';
5197 strcat (completion
, match
);
5200 VEC_safe_push (char_ptr
, *sv
, completion
);
5203 /* Return a list of possible symbol names completing TEXT0. The list
5204 is NULL terminated. WORD is the entire command on which completion
5208 ada_make_symbol_completion_list (char *text0
, char *word
)
5214 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
5217 struct partial_symtab
*ps
;
5218 struct minimal_symbol
*msymbol
;
5219 struct objfile
*objfile
;
5220 struct block
*b
, *surrounding_static_block
= 0;
5222 struct dict_iterator iter
;
5224 if (text0
[0] == '<')
5226 text
= xstrdup (text0
);
5227 make_cleanup (xfree
, text
);
5228 text_len
= strlen (text
);
5234 text
= xstrdup (ada_encode (text0
));
5235 make_cleanup (xfree
, text
);
5236 text_len
= strlen (text
);
5237 for (i
= 0; i
< text_len
; i
++)
5238 text
[i
] = tolower (text
[i
]);
5240 encoded
= (strstr (text0
, "__") != NULL
);
5241 /* If the name contains a ".", then the user is entering a fully
5242 qualified entity name, and the match must not be done in wild
5243 mode. Similarly, if the user wants to complete what looks like
5244 an encoded name, the match must not be done in wild mode. */
5245 wild_match
= (strchr (text0
, '.') == NULL
&& !encoded
);
5248 /* First, look at the partial symtab symbols. */
5249 ALL_PSYMTABS (objfile
, ps
)
5251 struct partial_symbol
**psym
;
5253 /* If the psymtab's been read in we'll get it when we search
5254 through the blockvector. */
5258 for (psym
= objfile
->global_psymbols
.list
+ ps
->globals_offset
;
5259 psym
< (objfile
->global_psymbols
.list
+ ps
->globals_offset
5260 + ps
->n_global_syms
); psym
++)
5263 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (*psym
),
5264 text
, text_len
, text0
, word
,
5265 wild_match
, encoded
);
5268 for (psym
= objfile
->static_psymbols
.list
+ ps
->statics_offset
;
5269 psym
< (objfile
->static_psymbols
.list
+ ps
->statics_offset
5270 + ps
->n_static_syms
); psym
++)
5273 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (*psym
),
5274 text
, text_len
, text0
, word
,
5275 wild_match
, encoded
);
5279 /* At this point scan through the misc symbol vectors and add each
5280 symbol you find to the list. Eventually we want to ignore
5281 anything that isn't a text symbol (everything else will be
5282 handled by the psymtab code above). */
5284 ALL_MSYMBOLS (objfile
, msymbol
)
5287 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (msymbol
),
5288 text
, text_len
, text0
, word
, wild_match
, encoded
);
5291 /* Search upwards from currently selected frame (so that we can
5292 complete on local vars. */
5294 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
5296 if (!BLOCK_SUPERBLOCK (b
))
5297 surrounding_static_block
= b
; /* For elmin of dups */
5299 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5301 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5302 text
, text_len
, text0
, word
,
5303 wild_match
, encoded
);
5307 /* Go through the symtabs and check the externs and statics for
5308 symbols which match. */
5310 ALL_SYMTABS (objfile
, s
)
5313 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
5314 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5316 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5317 text
, text_len
, text0
, word
,
5318 wild_match
, encoded
);
5322 ALL_SYMTABS (objfile
, s
)
5325 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
5326 /* Don't do this block twice. */
5327 if (b
== surrounding_static_block
)
5329 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5331 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5332 text
, text_len
, text0
, word
,
5333 wild_match
, encoded
);
5337 /* Append the closing NULL entry. */
5338 VEC_safe_push (char_ptr
, completions
, NULL
);
5340 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5341 return the copy. It's unfortunate that we have to make a copy
5342 of an array that we're about to destroy, but there is nothing much
5343 we can do about it. Fortunately, it's typically not a very large
5346 const size_t completions_size
=
5347 VEC_length (char_ptr
, completions
) * sizeof (char *);
5348 char **result
= malloc (completions_size
);
5350 memcpy (result
, VEC_address (char_ptr
, completions
), completions_size
);
5352 VEC_free (char_ptr
, completions
);
5359 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5360 for tagged types. */
5363 ada_is_dispatch_table_ptr_type (struct type
*type
)
5367 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
5370 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
5374 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
5377 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5378 to be invisible to users. */
5381 ada_is_ignored_field (struct type
*type
, int field_num
)
5383 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
5386 /* Check the name of that field. */
5388 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5390 /* Anonymous field names should not be printed.
5391 brobecker/2007-02-20: I don't think this can actually happen
5392 but we don't want to print the value of annonymous fields anyway. */
5396 /* A field named "_parent" is internally generated by GNAT for
5397 tagged types, and should not be printed either. */
5398 if (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0)
5402 /* If this is the dispatch table of a tagged type, then ignore. */
5403 if (ada_is_tagged_type (type
, 1)
5404 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
)))
5407 /* Not a special field, so it should not be ignored. */
5411 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5412 pointer or reference type whose ultimate target has a tag field. */
5415 ada_is_tagged_type (struct type
*type
, int refok
)
5417 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
5420 /* True iff TYPE represents the type of X'Tag */
5423 ada_is_tag_type (struct type
*type
)
5425 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
5429 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
5430 return (name
!= NULL
5431 && strcmp (name
, "ada__tags__dispatch_table") == 0);
5435 /* The type of the tag on VAL. */
5438 ada_tag_type (struct value
*val
)
5440 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
5443 /* The value of the tag on VAL. */
5446 ada_value_tag (struct value
*val
)
5448 return ada_value_struct_elt (val
, "_tag", 0);
5451 /* The value of the tag on the object of type TYPE whose contents are
5452 saved at VALADDR, if it is non-null, or is at memory address
5455 static struct value
*
5456 value_tag_from_contents_and_address (struct type
*type
,
5457 const gdb_byte
*valaddr
,
5460 int tag_byte_offset
, dummy1
, dummy2
;
5461 struct type
*tag_type
;
5462 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
5465 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
5467 : valaddr
+ tag_byte_offset
);
5468 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
5470 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
5475 static struct type
*
5476 type_from_tag (struct value
*tag
)
5478 const char *type_name
= ada_tag_name (tag
);
5479 if (type_name
!= NULL
)
5480 return ada_find_any_type (ada_encode (type_name
));
5491 static int ada_tag_name_1 (void *);
5492 static int ada_tag_name_2 (struct tag_args
*);
5494 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5495 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5496 The value stored in ARGS->name is valid until the next call to
5500 ada_tag_name_1 (void *args0
)
5502 struct tag_args
*args
= (struct tag_args
*) args0
;
5503 static char name
[1024];
5507 val
= ada_value_struct_elt (args
->tag
, "tsd", 1);
5509 return ada_tag_name_2 (args
);
5510 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5513 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5514 for (p
= name
; *p
!= '\0'; p
+= 1)
5521 /* Utility function for ada_tag_name_1 that tries the second
5522 representation for the dispatch table (in which there is no
5523 explicit 'tsd' field in the referent of the tag pointer, and instead
5524 the tsd pointer is stored just before the dispatch table. */
5527 ada_tag_name_2 (struct tag_args
*args
)
5529 struct type
*info_type
;
5530 static char name
[1024];
5532 struct value
*val
, *valp
;
5535 info_type
= ada_find_any_type ("ada__tags__type_specific_data");
5536 if (info_type
== NULL
)
5538 info_type
= lookup_pointer_type (lookup_pointer_type (info_type
));
5539 valp
= value_cast (info_type
, args
->tag
);
5542 val
= value_ind (value_ptradd (valp
, -1));
5545 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5548 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5549 for (p
= name
; *p
!= '\0'; p
+= 1)
5556 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5560 ada_tag_name (struct value
*tag
)
5562 struct tag_args args
;
5563 if (!ada_is_tag_type (value_type (tag
)))
5567 catch_errors (ada_tag_name_1
, &args
, NULL
, RETURN_MASK_ALL
);
5571 /* The parent type of TYPE, or NULL if none. */
5574 ada_parent_type (struct type
*type
)
5578 type
= ada_check_typedef (type
);
5580 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
5583 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5584 if (ada_is_parent_field (type
, i
))
5586 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
5588 /* If the _parent field is a pointer, then dereference it. */
5589 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
5590 parent_type
= TYPE_TARGET_TYPE (parent_type
);
5591 /* If there is a parallel XVS type, get the actual base type. */
5592 parent_type
= ada_get_base_type (parent_type
);
5594 return ada_check_typedef (parent_type
);
5600 /* True iff field number FIELD_NUM of structure type TYPE contains the
5601 parent-type (inherited) fields of a derived type. Assumes TYPE is
5602 a structure type with at least FIELD_NUM+1 fields. */
5605 ada_is_parent_field (struct type
*type
, int field_num
)
5607 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
5608 return (name
!= NULL
5609 && (strncmp (name
, "PARENT", 6) == 0
5610 || strncmp (name
, "_parent", 7) == 0));
5613 /* True iff field number FIELD_NUM of structure type TYPE is a
5614 transparent wrapper field (which should be silently traversed when doing
5615 field selection and flattened when printing). Assumes TYPE is a
5616 structure type with at least FIELD_NUM+1 fields. Such fields are always
5620 ada_is_wrapper_field (struct type
*type
, int field_num
)
5622 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5623 return (name
!= NULL
5624 && (strncmp (name
, "PARENT", 6) == 0
5625 || strcmp (name
, "REP") == 0
5626 || strncmp (name
, "_parent", 7) == 0
5627 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
5630 /* True iff field number FIELD_NUM of structure or union type TYPE
5631 is a variant wrapper. Assumes TYPE is a structure type with at least
5632 FIELD_NUM+1 fields. */
5635 ada_is_variant_part (struct type
*type
, int field_num
)
5637 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
5638 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
5639 || (is_dynamic_field (type
, field_num
)
5640 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
5641 == TYPE_CODE_UNION
)));
5644 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5645 whose discriminants are contained in the record type OUTER_TYPE,
5646 returns the type of the controlling discriminant for the variant.
5647 May return NULL if the type could not be found. */
5650 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
5652 char *name
= ada_variant_discrim_name (var_type
);
5653 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
5656 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5657 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5658 represents a 'when others' clause; otherwise 0. */
5661 ada_is_others_clause (struct type
*type
, int field_num
)
5663 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5664 return (name
!= NULL
&& name
[0] == 'O');
5667 /* Assuming that TYPE0 is the type of the variant part of a record,
5668 returns the name of the discriminant controlling the variant.
5669 The value is valid until the next call to ada_variant_discrim_name. */
5672 ada_variant_discrim_name (struct type
*type0
)
5674 static char *result
= NULL
;
5675 static size_t result_len
= 0;
5678 const char *discrim_end
;
5679 const char *discrim_start
;
5681 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
5682 type
= TYPE_TARGET_TYPE (type0
);
5686 name
= ada_type_name (type
);
5688 if (name
== NULL
|| name
[0] == '\000')
5691 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
5694 if (strncmp (discrim_end
, "___XVN", 6) == 0)
5697 if (discrim_end
== name
)
5700 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
5703 if (discrim_start
== name
+ 1)
5705 if ((discrim_start
> name
+ 3
5706 && strncmp (discrim_start
- 3, "___", 3) == 0)
5707 || discrim_start
[-1] == '.')
5711 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
5712 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
5713 result
[discrim_end
- discrim_start
] = '\0';
5717 /* Scan STR for a subtype-encoded number, beginning at position K.
5718 Put the position of the character just past the number scanned in
5719 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5720 Return 1 if there was a valid number at the given position, and 0
5721 otherwise. A "subtype-encoded" number consists of the absolute value
5722 in decimal, followed by the letter 'm' to indicate a negative number.
5723 Assumes 0m does not occur. */
5726 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
5730 if (!isdigit (str
[k
]))
5733 /* Do it the hard way so as not to make any assumption about
5734 the relationship of unsigned long (%lu scan format code) and
5737 while (isdigit (str
[k
]))
5739 RU
= RU
* 10 + (str
[k
] - '0');
5746 *R
= (-(LONGEST
) (RU
- 1)) - 1;
5752 /* NOTE on the above: Technically, C does not say what the results of
5753 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5754 number representable as a LONGEST (although either would probably work
5755 in most implementations). When RU>0, the locution in the then branch
5756 above is always equivalent to the negative of RU. */
5763 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5764 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5765 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5768 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
5770 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5783 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
5792 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
5793 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
5795 if (val
>= L
&& val
<= U
)
5807 /* FIXME: Lots of redundancy below. Try to consolidate. */
5809 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5810 ARG_TYPE, extract and return the value of one of its (non-static)
5811 fields. FIELDNO says which field. Differs from value_primitive_field
5812 only in that it can handle packed values of arbitrary type. */
5814 static struct value
*
5815 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
5816 struct type
*arg_type
)
5820 arg_type
= ada_check_typedef (arg_type
);
5821 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
5823 /* Handle packed fields. */
5825 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
5827 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
5828 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
5830 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
5831 offset
+ bit_pos
/ 8,
5832 bit_pos
% 8, bit_size
, type
);
5835 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
5838 /* Find field with name NAME in object of type TYPE. If found,
5839 set the following for each argument that is non-null:
5840 - *FIELD_TYPE_P to the field's type;
5841 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5842 an object of that type;
5843 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5844 - *BIT_SIZE_P to its size in bits if the field is packed, and
5846 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5847 fields up to but not including the desired field, or by the total
5848 number of fields if not found. A NULL value of NAME never
5849 matches; the function just counts visible fields in this case.
5851 Returns 1 if found, 0 otherwise. */
5854 find_struct_field (char *name
, struct type
*type
, int offset
,
5855 struct type
**field_type_p
,
5856 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
5861 type
= ada_check_typedef (type
);
5863 if (field_type_p
!= NULL
)
5864 *field_type_p
= NULL
;
5865 if (byte_offset_p
!= NULL
)
5867 if (bit_offset_p
!= NULL
)
5869 if (bit_size_p
!= NULL
)
5872 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5874 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
5875 int fld_offset
= offset
+ bit_pos
/ 8;
5876 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5878 if (t_field_name
== NULL
)
5881 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
5883 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
5884 if (field_type_p
!= NULL
)
5885 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
5886 if (byte_offset_p
!= NULL
)
5887 *byte_offset_p
= fld_offset
;
5888 if (bit_offset_p
!= NULL
)
5889 *bit_offset_p
= bit_pos
% 8;
5890 if (bit_size_p
!= NULL
)
5891 *bit_size_p
= bit_size
;
5894 else if (ada_is_wrapper_field (type
, i
))
5896 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
5897 field_type_p
, byte_offset_p
, bit_offset_p
,
5898 bit_size_p
, index_p
))
5901 else if (ada_is_variant_part (type
, i
))
5903 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5906 struct type
*field_type
5907 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5909 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
5911 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
5913 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5914 field_type_p
, byte_offset_p
,
5915 bit_offset_p
, bit_size_p
, index_p
))
5919 else if (index_p
!= NULL
)
5925 /* Number of user-visible fields in record type TYPE. */
5928 num_visible_fields (struct type
*type
)
5932 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
5936 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5937 and search in it assuming it has (class) type TYPE.
5938 If found, return value, else return NULL.
5940 Searches recursively through wrapper fields (e.g., '_parent'). */
5942 static struct value
*
5943 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
5947 type
= ada_check_typedef (type
);
5949 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5951 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5953 if (t_field_name
== NULL
)
5956 else if (field_name_match (t_field_name
, name
))
5957 return ada_value_primitive_field (arg
, offset
, i
, type
);
5959 else if (ada_is_wrapper_field (type
, i
))
5961 struct value
*v
= /* Do not let indent join lines here. */
5962 ada_search_struct_field (name
, arg
,
5963 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
5964 TYPE_FIELD_TYPE (type
, i
));
5969 else if (ada_is_variant_part (type
, i
))
5971 /* PNH: Do we ever get here? See find_struct_field. */
5973 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5974 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
5976 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
5978 struct value
*v
= ada_search_struct_field
/* Force line break. */
5980 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5981 TYPE_FIELD_TYPE (field_type
, j
));
5990 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
5991 int, struct type
*);
5994 /* Return field #INDEX in ARG, where the index is that returned by
5995 * find_struct_field through its INDEX_P argument. Adjust the address
5996 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5997 * If found, return value, else return NULL. */
5999 static struct value
*
6000 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
6003 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
6007 /* Auxiliary function for ada_index_struct_field. Like
6008 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6011 static struct value
*
6012 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
6016 type
= ada_check_typedef (type
);
6018 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6020 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
6022 else if (ada_is_wrapper_field (type
, i
))
6024 struct value
*v
= /* Do not let indent join lines here. */
6025 ada_index_struct_field_1 (index_p
, arg
,
6026 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6027 TYPE_FIELD_TYPE (type
, i
));
6032 else if (ada_is_variant_part (type
, i
))
6034 /* PNH: Do we ever get here? See ada_search_struct_field,
6035 find_struct_field. */
6036 error (_("Cannot assign this kind of variant record"));
6038 else if (*index_p
== 0)
6039 return ada_value_primitive_field (arg
, offset
, i
, type
);
6046 /* Given ARG, a value of type (pointer or reference to a)*
6047 structure/union, extract the component named NAME from the ultimate
6048 target structure/union and return it as a value with its
6051 The routine searches for NAME among all members of the structure itself
6052 and (recursively) among all members of any wrapper members
6055 If NO_ERR, then simply return NULL in case of error, rather than
6059 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
6061 struct type
*t
, *t1
;
6065 t1
= t
= ada_check_typedef (value_type (arg
));
6066 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6068 t1
= TYPE_TARGET_TYPE (t
);
6071 t1
= ada_check_typedef (t1
);
6072 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6074 arg
= coerce_ref (arg
);
6079 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6081 t1
= TYPE_TARGET_TYPE (t
);
6084 t1
= ada_check_typedef (t1
);
6085 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6087 arg
= value_ind (arg
);
6094 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
6098 v
= ada_search_struct_field (name
, arg
, 0, t
);
6101 int bit_offset
, bit_size
, byte_offset
;
6102 struct type
*field_type
;
6105 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6106 address
= value_as_address (arg
);
6108 address
= unpack_pointer (t
, value_contents (arg
));
6110 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
6111 if (find_struct_field (name
, t1
, 0,
6112 &field_type
, &byte_offset
, &bit_offset
,
6117 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6118 arg
= ada_coerce_ref (arg
);
6120 arg
= ada_value_ind (arg
);
6121 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
6122 bit_offset
, bit_size
,
6126 v
= value_at_lazy (field_type
, address
+ byte_offset
);
6130 if (v
!= NULL
|| no_err
)
6133 error (_("There is no member named %s."), name
);
6139 error (_("Attempt to extract a component of a value that is not a record."));
6142 /* Given a type TYPE, look up the type of the component of type named NAME.
6143 If DISPP is non-null, add its byte displacement from the beginning of a
6144 structure (pointed to by a value) of type TYPE to *DISPP (does not
6145 work for packed fields).
6147 Matches any field whose name has NAME as a prefix, possibly
6150 TYPE can be either a struct or union. If REFOK, TYPE may also
6151 be a (pointer or reference)+ to a struct or union, and the
6152 ultimate target type will be searched.
6154 Looks recursively into variant clauses and parent types.
6156 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6157 TYPE is not a type of the right kind. */
6159 static struct type
*
6160 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
6161 int noerr
, int *dispp
)
6168 if (refok
&& type
!= NULL
)
6171 type
= ada_check_typedef (type
);
6172 if (TYPE_CODE (type
) != TYPE_CODE_PTR
6173 && TYPE_CODE (type
) != TYPE_CODE_REF
)
6175 type
= TYPE_TARGET_TYPE (type
);
6179 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
6180 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
6186 target_terminal_ours ();
6187 gdb_flush (gdb_stdout
);
6189 error (_("Type (null) is not a structure or union type"));
6192 /* XXX: type_sprint */
6193 fprintf_unfiltered (gdb_stderr
, _("Type "));
6194 type_print (type
, "", gdb_stderr
, -1);
6195 error (_(" is not a structure or union type"));
6200 type
= to_static_fixed_type (type
);
6202 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6204 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6208 if (t_field_name
== NULL
)
6211 else if (field_name_match (t_field_name
, name
))
6214 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
6215 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6218 else if (ada_is_wrapper_field (type
, i
))
6221 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
6226 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6231 else if (ada_is_variant_part (type
, i
))
6234 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6236 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
6238 /* FIXME pnh 2008/01/26: We check for a field that is
6239 NOT wrapped in a struct, since the compiler sometimes
6240 generates these for unchecked variant types. Revisit
6241 if the compiler changes this practice. */
6242 char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
6244 if (v_field_name
!= NULL
6245 && field_name_match (v_field_name
, name
))
6246 t
= ada_check_typedef (TYPE_FIELD_TYPE (field_type
, j
));
6248 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
, j
),
6254 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6265 target_terminal_ours ();
6266 gdb_flush (gdb_stdout
);
6269 /* XXX: type_sprint */
6270 fprintf_unfiltered (gdb_stderr
, _("Type "));
6271 type_print (type
, "", gdb_stderr
, -1);
6272 error (_(" has no component named <null>"));
6276 /* XXX: type_sprint */
6277 fprintf_unfiltered (gdb_stderr
, _("Type "));
6278 type_print (type
, "", gdb_stderr
, -1);
6279 error (_(" has no component named %s"), name
);
6286 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6287 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6288 represents an unchecked union (that is, the variant part of a
6289 record that is named in an Unchecked_Union pragma). */
6292 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
6294 char *discrim_name
= ada_variant_discrim_name (var_type
);
6295 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
6300 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6301 within a value of type OUTER_TYPE that is stored in GDB at
6302 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6303 numbering from 0) is applicable. Returns -1 if none are. */
6306 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
6307 const gdb_byte
*outer_valaddr
)
6311 char *discrim_name
= ada_variant_discrim_name (var_type
);
6312 struct value
*outer
;
6313 struct value
*discrim
;
6314 LONGEST discrim_val
;
6316 outer
= value_from_contents_and_address (outer_type
, outer_valaddr
, 0);
6317 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
6318 if (discrim
== NULL
)
6320 discrim_val
= value_as_long (discrim
);
6323 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
6325 if (ada_is_others_clause (var_type
, i
))
6327 else if (ada_in_variant (discrim_val
, var_type
, i
))
6331 return others_clause
;
6336 /* Dynamic-Sized Records */
6338 /* Strategy: The type ostensibly attached to a value with dynamic size
6339 (i.e., a size that is not statically recorded in the debugging
6340 data) does not accurately reflect the size or layout of the value.
6341 Our strategy is to convert these values to values with accurate,
6342 conventional types that are constructed on the fly. */
6344 /* There is a subtle and tricky problem here. In general, we cannot
6345 determine the size of dynamic records without its data. However,
6346 the 'struct value' data structure, which GDB uses to represent
6347 quantities in the inferior process (the target), requires the size
6348 of the type at the time of its allocation in order to reserve space
6349 for GDB's internal copy of the data. That's why the
6350 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6351 rather than struct value*s.
6353 However, GDB's internal history variables ($1, $2, etc.) are
6354 struct value*s containing internal copies of the data that are not, in
6355 general, the same as the data at their corresponding addresses in
6356 the target. Fortunately, the types we give to these values are all
6357 conventional, fixed-size types (as per the strategy described
6358 above), so that we don't usually have to perform the
6359 'to_fixed_xxx_type' conversions to look at their values.
6360 Unfortunately, there is one exception: if one of the internal
6361 history variables is an array whose elements are unconstrained
6362 records, then we will need to create distinct fixed types for each
6363 element selected. */
6365 /* The upshot of all of this is that many routines take a (type, host
6366 address, target address) triple as arguments to represent a value.
6367 The host address, if non-null, is supposed to contain an internal
6368 copy of the relevant data; otherwise, the program is to consult the
6369 target at the target address. */
6371 /* Assuming that VAL0 represents a pointer value, the result of
6372 dereferencing it. Differs from value_ind in its treatment of
6373 dynamic-sized types. */
6376 ada_value_ind (struct value
*val0
)
6378 struct value
*val
= unwrap_value (value_ind (val0
));
6379 return ada_to_fixed_value (val
);
6382 /* The value resulting from dereferencing any "reference to"
6383 qualifiers on VAL0. */
6385 static struct value
*
6386 ada_coerce_ref (struct value
*val0
)
6388 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
6390 struct value
*val
= val0
;
6391 val
= coerce_ref (val
);
6392 val
= unwrap_value (val
);
6393 return ada_to_fixed_value (val
);
6399 /* Return OFF rounded upward if necessary to a multiple of
6400 ALIGNMENT (a power of 2). */
6403 align_value (unsigned int off
, unsigned int alignment
)
6405 return (off
+ alignment
- 1) & ~(alignment
- 1);
6408 /* Return the bit alignment required for field #F of template type TYPE. */
6411 field_alignment (struct type
*type
, int f
)
6413 const char *name
= TYPE_FIELD_NAME (type
, f
);
6417 /* The field name should never be null, unless the debugging information
6418 is somehow malformed. In this case, we assume the field does not
6419 require any alignment. */
6423 len
= strlen (name
);
6425 if (!isdigit (name
[len
- 1]))
6428 if (isdigit (name
[len
- 2]))
6429 align_offset
= len
- 2;
6431 align_offset
= len
- 1;
6433 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
6434 return TARGET_CHAR_BIT
;
6436 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
6439 /* Find a symbol named NAME. Ignores ambiguity. */
6442 ada_find_any_symbol (const char *name
)
6446 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
6447 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
6450 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
6454 /* Find a type named NAME. Ignores ambiguity. This routine will look
6455 solely for types defined by debug info, it will not search the GDB
6459 ada_find_any_type (const char *name
)
6461 struct symbol
*sym
= ada_find_any_symbol (name
);
6464 return SYMBOL_TYPE (sym
);
6469 /* Given NAME and an associated BLOCK, search all symbols for
6470 NAME suffixed with "___XR", which is the ``renaming'' symbol
6471 associated to NAME. Return this symbol if found, return
6475 ada_find_renaming_symbol (const char *name
, struct block
*block
)
6479 sym
= find_old_style_renaming_symbol (name
, block
);
6484 /* Not right yet. FIXME pnh 7/20/2007. */
6485 sym
= ada_find_any_symbol (name
);
6486 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
6492 static struct symbol
*
6493 find_old_style_renaming_symbol (const char *name
, struct block
*block
)
6495 const struct symbol
*function_sym
= block_linkage_function (block
);
6498 if (function_sym
!= NULL
)
6500 /* If the symbol is defined inside a function, NAME is not fully
6501 qualified. This means we need to prepend the function name
6502 as well as adding the ``___XR'' suffix to build the name of
6503 the associated renaming symbol. */
6504 char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
6505 /* Function names sometimes contain suffixes used
6506 for instance to qualify nested subprograms. When building
6507 the XR type name, we need to make sure that this suffix is
6508 not included. So do not include any suffix in the function
6509 name length below. */
6510 const int function_name_len
= ada_name_prefix_len (function_name
);
6511 const int rename_len
= function_name_len
+ 2 /* "__" */
6512 + strlen (name
) + 6 /* "___XR\0" */ ;
6514 /* Strip the suffix if necessary. */
6515 function_name
[function_name_len
] = '\0';
6517 /* Library-level functions are a special case, as GNAT adds
6518 a ``_ada_'' prefix to the function name to avoid namespace
6519 pollution. However, the renaming symbols themselves do not
6520 have this prefix, so we need to skip this prefix if present. */
6521 if (function_name_len
> 5 /* "_ada_" */
6522 && strstr (function_name
, "_ada_") == function_name
)
6523 function_name
= function_name
+ 5;
6525 rename
= (char *) alloca (rename_len
* sizeof (char));
6526 xsnprintf (rename
, rename_len
* sizeof (char), "%s__%s___XR",
6527 function_name
, name
);
6531 const int rename_len
= strlen (name
) + 6;
6532 rename
= (char *) alloca (rename_len
* sizeof (char));
6533 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
6536 return ada_find_any_symbol (rename
);
6539 /* Because of GNAT encoding conventions, several GDB symbols may match a
6540 given type name. If the type denoted by TYPE0 is to be preferred to
6541 that of TYPE1 for purposes of type printing, return non-zero;
6542 otherwise return 0. */
6545 ada_prefer_type (struct type
*type0
, struct type
*type1
)
6549 else if (type0
== NULL
)
6551 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
6553 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
6555 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
6557 else if (ada_is_packed_array_type (type0
))
6559 else if (ada_is_array_descriptor_type (type0
)
6560 && !ada_is_array_descriptor_type (type1
))
6564 const char *type0_name
= type_name_no_tag (type0
);
6565 const char *type1_name
= type_name_no_tag (type1
);
6567 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
6568 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
6574 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6575 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6578 ada_type_name (struct type
*type
)
6582 else if (TYPE_NAME (type
) != NULL
)
6583 return TYPE_NAME (type
);
6585 return TYPE_TAG_NAME (type
);
6588 /* Find a parallel type to TYPE whose name is formed by appending
6589 SUFFIX to the name of TYPE. */
6592 ada_find_parallel_type (struct type
*type
, const char *suffix
)
6595 static size_t name_len
= 0;
6597 char *typename
= ada_type_name (type
);
6599 if (typename
== NULL
)
6602 len
= strlen (typename
);
6604 GROW_VECT (name
, name_len
, len
+ strlen (suffix
) + 1);
6606 strcpy (name
, typename
);
6607 strcpy (name
+ len
, suffix
);
6609 return ada_find_any_type (name
);
6613 /* If TYPE is a variable-size record type, return the corresponding template
6614 type describing its fields. Otherwise, return NULL. */
6616 static struct type
*
6617 dynamic_template_type (struct type
*type
)
6619 type
= ada_check_typedef (type
);
6621 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
6622 || ada_type_name (type
) == NULL
)
6626 int len
= strlen (ada_type_name (type
));
6627 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
6630 return ada_find_parallel_type (type
, "___XVE");
6634 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6635 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6638 is_dynamic_field (struct type
*templ_type
, int field_num
)
6640 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
6642 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
6643 && strstr (name
, "___XVL") != NULL
;
6646 /* The index of the variant field of TYPE, or -1 if TYPE does not
6647 represent a variant record type. */
6650 variant_field_index (struct type
*type
)
6654 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6657 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
6659 if (ada_is_variant_part (type
, f
))
6665 /* A record type with no fields. */
6667 static struct type
*
6668 empty_record (struct objfile
*objfile
)
6670 struct type
*type
= alloc_type (objfile
);
6671 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
6672 TYPE_NFIELDS (type
) = 0;
6673 TYPE_FIELDS (type
) = NULL
;
6674 INIT_CPLUS_SPECIFIC (type
);
6675 TYPE_NAME (type
) = "<empty>";
6676 TYPE_TAG_NAME (type
) = NULL
;
6677 TYPE_LENGTH (type
) = 0;
6681 /* An ordinary record type (with fixed-length fields) that describes
6682 the value of type TYPE at VALADDR or ADDRESS (see comments at
6683 the beginning of this section) VAL according to GNAT conventions.
6684 DVAL0 should describe the (portion of a) record that contains any
6685 necessary discriminants. It should be NULL if value_type (VAL) is
6686 an outer-level type (i.e., as opposed to a branch of a variant.) A
6687 variant field (unless unchecked) is replaced by a particular branch
6690 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6691 length are not statically known are discarded. As a consequence,
6692 VALADDR, ADDRESS and DVAL0 are ignored.
6694 NOTE: Limitations: For now, we assume that dynamic fields and
6695 variants occupy whole numbers of bytes. However, they need not be
6699 ada_template_to_fixed_record_type_1 (struct type
*type
,
6700 const gdb_byte
*valaddr
,
6701 CORE_ADDR address
, struct value
*dval0
,
6702 int keep_dynamic_fields
)
6704 struct value
*mark
= value_mark ();
6707 int nfields
, bit_len
;
6710 int fld_bit_len
, bit_incr
;
6713 /* Compute the number of fields in this record type that are going
6714 to be processed: unless keep_dynamic_fields, this includes only
6715 fields whose position and length are static will be processed. */
6716 if (keep_dynamic_fields
)
6717 nfields
= TYPE_NFIELDS (type
);
6721 while (nfields
< TYPE_NFIELDS (type
)
6722 && !ada_is_variant_part (type
, nfields
)
6723 && !is_dynamic_field (type
, nfields
))
6727 rtype
= alloc_type (TYPE_OBJFILE (type
));
6728 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6729 INIT_CPLUS_SPECIFIC (rtype
);
6730 TYPE_NFIELDS (rtype
) = nfields
;
6731 TYPE_FIELDS (rtype
) = (struct field
*)
6732 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6733 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
6734 TYPE_NAME (rtype
) = ada_type_name (type
);
6735 TYPE_TAG_NAME (rtype
) = NULL
;
6736 TYPE_FIXED_INSTANCE (rtype
) = 1;
6742 for (f
= 0; f
< nfields
; f
+= 1)
6744 off
= align_value (off
, field_alignment (type
, f
))
6745 + TYPE_FIELD_BITPOS (type
, f
);
6746 TYPE_FIELD_BITPOS (rtype
, f
) = off
;
6747 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
6749 if (ada_is_variant_part (type
, f
))
6752 fld_bit_len
= bit_incr
= 0;
6754 else if (is_dynamic_field (type
, f
))
6756 const gdb_byte
*field_valaddr
= valaddr
;
6757 CORE_ADDR field_address
= address
;
6758 struct type
*field_type
=
6759 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
6763 /* rtype's length is computed based on the run-time
6764 value of discriminants. If the discriminants are not
6765 initialized, the type size may be completely bogus and
6766 GDB may fail to allocate a value for it. So check the
6767 size first before creating the value. */
6769 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6774 /* If the type referenced by this field is an aligner type, we need
6775 to unwrap that aligner type, because its size might not be set.
6776 Keeping the aligner type would cause us to compute the wrong
6777 size for this field, impacting the offset of the all the fields
6778 that follow this one. */
6779 if (ada_is_aligner_type (field_type
))
6781 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
6783 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
6784 field_address
= cond_offset_target (field_address
, field_offset
);
6785 field_type
= ada_aligned_type (field_type
);
6788 field_valaddr
= cond_offset_host (field_valaddr
,
6789 off
/ TARGET_CHAR_BIT
);
6790 field_address
= cond_offset_target (field_address
,
6791 off
/ TARGET_CHAR_BIT
);
6793 /* Get the fixed type of the field. Note that, in this case,
6794 we do not want to get the real type out of the tag: if
6795 the current field is the parent part of a tagged record,
6796 we will get the tag of the object. Clearly wrong: the real
6797 type of the parent is not the real type of the child. We
6798 would end up in an infinite loop. */
6799 field_type
= ada_get_base_type (field_type
);
6800 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
6801 field_address
, dval
, 0);
6803 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
6804 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6805 bit_incr
= fld_bit_len
=
6806 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
6810 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
6811 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6812 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
6813 bit_incr
= fld_bit_len
=
6814 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
6816 bit_incr
= fld_bit_len
=
6817 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, f
)) * TARGET_CHAR_BIT
;
6819 if (off
+ fld_bit_len
> bit_len
)
6820 bit_len
= off
+ fld_bit_len
;
6822 TYPE_LENGTH (rtype
) =
6823 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6826 /* We handle the variant part, if any, at the end because of certain
6827 odd cases in which it is re-ordered so as NOT to be the last field of
6828 the record. This can happen in the presence of representation
6830 if (variant_field
>= 0)
6832 struct type
*branch_type
;
6834 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
6837 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6842 to_fixed_variant_branch_type
6843 (TYPE_FIELD_TYPE (type
, variant_field
),
6844 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
6845 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
6846 if (branch_type
== NULL
)
6848 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
6849 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
6850 TYPE_NFIELDS (rtype
) -= 1;
6854 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
6855 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
6857 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
6859 if (off
+ fld_bit_len
> bit_len
)
6860 bit_len
= off
+ fld_bit_len
;
6861 TYPE_LENGTH (rtype
) =
6862 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6866 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6867 should contain the alignment of that record, which should be a strictly
6868 positive value. If null or negative, then something is wrong, most
6869 probably in the debug info. In that case, we don't round up the size
6870 of the resulting type. If this record is not part of another structure,
6871 the current RTYPE length might be good enough for our purposes. */
6872 if (TYPE_LENGTH (type
) <= 0)
6874 if (TYPE_NAME (rtype
))
6875 warning (_("Invalid type size for `%s' detected: %d."),
6876 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
6878 warning (_("Invalid type size for <unnamed> detected: %d."),
6879 TYPE_LENGTH (type
));
6883 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
6884 TYPE_LENGTH (type
));
6887 value_free_to_mark (mark
);
6888 if (TYPE_LENGTH (rtype
) > varsize_limit
)
6889 error (_("record type with dynamic size is larger than varsize-limit"));
6893 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6896 static struct type
*
6897 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
6898 CORE_ADDR address
, struct value
*dval0
)
6900 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
6904 /* An ordinary record type in which ___XVL-convention fields and
6905 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6906 static approximations, containing all possible fields. Uses
6907 no runtime values. Useless for use in values, but that's OK,
6908 since the results are used only for type determinations. Works on both
6909 structs and unions. Representation note: to save space, we memorize
6910 the result of this function in the TYPE_TARGET_TYPE of the
6913 static struct type
*
6914 template_to_static_fixed_type (struct type
*type0
)
6920 if (TYPE_TARGET_TYPE (type0
) != NULL
)
6921 return TYPE_TARGET_TYPE (type0
);
6923 nfields
= TYPE_NFIELDS (type0
);
6926 for (f
= 0; f
< nfields
; f
+= 1)
6928 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
6929 struct type
*new_type
;
6931 if (is_dynamic_field (type0
, f
))
6932 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
6934 new_type
= static_unwrap_type (field_type
);
6935 if (type
== type0
&& new_type
!= field_type
)
6937 TYPE_TARGET_TYPE (type0
) = type
= alloc_type (TYPE_OBJFILE (type0
));
6938 TYPE_CODE (type
) = TYPE_CODE (type0
);
6939 INIT_CPLUS_SPECIFIC (type
);
6940 TYPE_NFIELDS (type
) = nfields
;
6941 TYPE_FIELDS (type
) = (struct field
*)
6942 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
6943 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
6944 sizeof (struct field
) * nfields
);
6945 TYPE_NAME (type
) = ada_type_name (type0
);
6946 TYPE_TAG_NAME (type
) = NULL
;
6947 TYPE_FIXED_INSTANCE (type
) = 1;
6948 TYPE_LENGTH (type
) = 0;
6950 TYPE_FIELD_TYPE (type
, f
) = new_type
;
6951 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
6956 /* Given an object of type TYPE whose contents are at VALADDR and
6957 whose address in memory is ADDRESS, returns a revision of TYPE,
6958 which should be a non-dynamic-sized record, in which the variant
6959 part, if any, is replaced with the appropriate branch. Looks
6960 for discriminant values in DVAL0, which can be NULL if the record
6961 contains the necessary discriminant values. */
6963 static struct type
*
6964 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
6965 CORE_ADDR address
, struct value
*dval0
)
6967 struct value
*mark
= value_mark ();
6970 struct type
*branch_type
;
6971 int nfields
= TYPE_NFIELDS (type
);
6972 int variant_field
= variant_field_index (type
);
6974 if (variant_field
== -1)
6978 dval
= value_from_contents_and_address (type
, valaddr
, address
);
6982 rtype
= alloc_type (TYPE_OBJFILE (type
));
6983 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6984 INIT_CPLUS_SPECIFIC (rtype
);
6985 TYPE_NFIELDS (rtype
) = nfields
;
6986 TYPE_FIELDS (rtype
) =
6987 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6988 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
6989 sizeof (struct field
) * nfields
);
6990 TYPE_NAME (rtype
) = ada_type_name (type
);
6991 TYPE_TAG_NAME (rtype
) = NULL
;
6992 TYPE_FIXED_INSTANCE (rtype
) = 1;
6993 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
6995 branch_type
= to_fixed_variant_branch_type
6996 (TYPE_FIELD_TYPE (type
, variant_field
),
6997 cond_offset_host (valaddr
,
6998 TYPE_FIELD_BITPOS (type
, variant_field
)
7000 cond_offset_target (address
,
7001 TYPE_FIELD_BITPOS (type
, variant_field
)
7002 / TARGET_CHAR_BIT
), dval
);
7003 if (branch_type
== NULL
)
7006 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
7007 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7008 TYPE_NFIELDS (rtype
) -= 1;
7012 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7013 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7014 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
7015 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
7017 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
7019 value_free_to_mark (mark
);
7023 /* An ordinary record type (with fixed-length fields) that describes
7024 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7025 beginning of this section]. Any necessary discriminants' values
7026 should be in DVAL, a record value; it may be NULL if the object
7027 at ADDR itself contains any necessary discriminant values.
7028 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7029 values from the record are needed. Except in the case that DVAL,
7030 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7031 unchecked) is replaced by a particular branch of the variant.
7033 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7034 is questionable and may be removed. It can arise during the
7035 processing of an unconstrained-array-of-record type where all the
7036 variant branches have exactly the same size. This is because in
7037 such cases, the compiler does not bother to use the XVS convention
7038 when encoding the record. I am currently dubious of this
7039 shortcut and suspect the compiler should be altered. FIXME. */
7041 static struct type
*
7042 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
7043 CORE_ADDR address
, struct value
*dval
)
7045 struct type
*templ_type
;
7047 if (TYPE_FIXED_INSTANCE (type0
))
7050 templ_type
= dynamic_template_type (type0
);
7052 if (templ_type
!= NULL
)
7053 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
7054 else if (variant_field_index (type0
) >= 0)
7056 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
7058 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
7063 TYPE_FIXED_INSTANCE (type0
) = 1;
7069 /* An ordinary record type (with fixed-length fields) that describes
7070 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7071 union type. Any necessary discriminants' values should be in DVAL,
7072 a record value. That is, this routine selects the appropriate
7073 branch of the union at ADDR according to the discriminant value
7074 indicated in the union's type name. Returns VAR_TYPE0 itself if
7075 it represents a variant subject to a pragma Unchecked_Union. */
7077 static struct type
*
7078 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
7079 CORE_ADDR address
, struct value
*dval
)
7082 struct type
*templ_type
;
7083 struct type
*var_type
;
7085 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
7086 var_type
= TYPE_TARGET_TYPE (var_type0
);
7088 var_type
= var_type0
;
7090 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
7092 if (templ_type
!= NULL
)
7093 var_type
= templ_type
;
7095 if (is_unchecked_variant (var_type
, value_type (dval
)))
7098 ada_which_variant_applies (var_type
,
7099 value_type (dval
), value_contents (dval
));
7102 return empty_record (TYPE_OBJFILE (var_type
));
7103 else if (is_dynamic_field (var_type
, which
))
7104 return to_fixed_record_type
7105 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
7106 valaddr
, address
, dval
);
7107 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
7109 to_fixed_record_type
7110 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
7112 return TYPE_FIELD_TYPE (var_type
, which
);
7115 /* Assuming that TYPE0 is an array type describing the type of a value
7116 at ADDR, and that DVAL describes a record containing any
7117 discriminants used in TYPE0, returns a type for the value that
7118 contains no dynamic components (that is, no components whose sizes
7119 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7120 true, gives an error message if the resulting type's size is over
7123 static struct type
*
7124 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
7127 struct type
*index_type_desc
;
7128 struct type
*result
;
7131 if (TYPE_FIXED_INSTANCE (type0
))
7134 packed_array_p
= ada_is_packed_array_type (type0
);
7136 type0
= decode_packed_array_type (type0
);
7138 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
7139 if (index_type_desc
== NULL
)
7141 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
7142 /* NOTE: elt_type---the fixed version of elt_type0---should never
7143 depend on the contents of the array in properly constructed
7145 /* Create a fixed version of the array element type.
7146 We're not providing the address of an element here,
7147 and thus the actual object value cannot be inspected to do
7148 the conversion. This should not be a problem, since arrays of
7149 unconstrained objects are not allowed. In particular, all
7150 the elements of an array of a tagged type should all be of
7151 the same type specified in the debugging info. No need to
7152 consult the object tag. */
7153 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
7155 /* Make sure we always create a new array type when dealing with
7156 packed array types, since we're going to fix-up the array
7157 type length and element bitsize a little further down. */
7158 if (elt_type0
== elt_type
&& !packed_array_p
)
7161 result
= create_array_type (alloc_type (TYPE_OBJFILE (type0
)),
7162 elt_type
, TYPE_INDEX_TYPE (type0
));
7167 struct type
*elt_type0
;
7170 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
7171 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7173 /* NOTE: result---the fixed version of elt_type0---should never
7174 depend on the contents of the array in properly constructed
7176 /* Create a fixed version of the array element type.
7177 We're not providing the address of an element here,
7178 and thus the actual object value cannot be inspected to do
7179 the conversion. This should not be a problem, since arrays of
7180 unconstrained objects are not allowed. In particular, all
7181 the elements of an array of a tagged type should all be of
7182 the same type specified in the debugging info. No need to
7183 consult the object tag. */
7185 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
7188 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
7190 struct type
*range_type
=
7191 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, i
),
7192 dval
, TYPE_INDEX_TYPE (elt_type0
));
7193 result
= create_array_type (alloc_type (TYPE_OBJFILE (elt_type0
)),
7194 result
, range_type
);
7195 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7197 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
7198 error (_("array type with dynamic size is larger than varsize-limit"));
7203 /* So far, the resulting type has been created as if the original
7204 type was a regular (non-packed) array type. As a result, the
7205 bitsize of the array elements needs to be set again, and the array
7206 length needs to be recomputed based on that bitsize. */
7207 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
7208 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
7210 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
7211 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
7212 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
7213 TYPE_LENGTH (result
)++;
7216 TYPE_FIXED_INSTANCE (result
) = 1;
7221 /* A standard type (containing no dynamically sized components)
7222 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7223 DVAL describes a record containing any discriminants used in TYPE0,
7224 and may be NULL if there are none, or if the object of type TYPE at
7225 ADDRESS or in VALADDR contains these discriminants.
7227 If CHECK_TAG is not null, in the case of tagged types, this function
7228 attempts to locate the object's tag and use it to compute the actual
7229 type. However, when ADDRESS is null, we cannot use it to determine the
7230 location of the tag, and therefore compute the tagged type's actual type.
7231 So we return the tagged type without consulting the tag. */
7233 static struct type
*
7234 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
7235 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7237 type
= ada_check_typedef (type
);
7238 switch (TYPE_CODE (type
))
7242 case TYPE_CODE_STRUCT
:
7244 struct type
*static_type
= to_static_fixed_type (type
);
7245 struct type
*fixed_record_type
=
7246 to_fixed_record_type (type
, valaddr
, address
, NULL
);
7247 /* If STATIC_TYPE is a tagged type and we know the object's address,
7248 then we can determine its tag, and compute the object's actual
7249 type from there. Note that we have to use the fixed record
7250 type (the parent part of the record may have dynamic fields
7251 and the way the location of _tag is expressed may depend on
7254 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
7256 struct type
*real_type
=
7257 type_from_tag (value_tag_from_contents_and_address
7261 if (real_type
!= NULL
)
7262 return to_fixed_record_type (real_type
, valaddr
, address
, NULL
);
7265 /* Check to see if there is a parallel ___XVZ variable.
7266 If there is, then it provides the actual size of our type. */
7267 else if (ada_type_name (fixed_record_type
) != NULL
)
7269 char *name
= ada_type_name (fixed_record_type
);
7270 char *xvz_name
= alloca (strlen (name
) + 7 /* "___XVZ\0" */);
7274 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
7275 size
= get_int_var_value (xvz_name
, &xvz_found
);
7276 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
7278 fixed_record_type
= copy_type (fixed_record_type
);
7279 TYPE_LENGTH (fixed_record_type
) = size
;
7281 /* The FIXED_RECORD_TYPE may have be a stub. We have
7282 observed this when the debugging info is STABS, and
7283 apparently it is something that is hard to fix.
7285 In practice, we don't need the actual type definition
7286 at all, because the presence of the XVZ variable allows us
7287 to assume that there must be a XVS type as well, which we
7288 should be able to use later, when we need the actual type
7291 In the meantime, pretend that the "fixed" type we are
7292 returning is NOT a stub, because this can cause trouble
7293 when using this type to create new types targeting it.
7294 Indeed, the associated creation routines often check
7295 whether the target type is a stub and will try to replace
7296 it, thus using a type with the wrong size. This, in turn,
7297 might cause the new type to have the wrong size too.
7298 Consider the case of an array, for instance, where the size
7299 of the array is computed from the number of elements in
7300 our array multiplied by the size of its element. */
7301 TYPE_STUB (fixed_record_type
) = 0;
7304 return fixed_record_type
;
7306 case TYPE_CODE_ARRAY
:
7307 return to_fixed_array_type (type
, dval
, 1);
7308 case TYPE_CODE_UNION
:
7312 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
7316 /* The same as ada_to_fixed_type_1, except that it preserves the type
7317 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7318 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7321 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
7322 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7325 struct type
*fixed_type
=
7326 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
7328 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
7329 && TYPE_TARGET_TYPE (type
) == fixed_type
)
7335 /* A standard (static-sized) type corresponding as well as possible to
7336 TYPE0, but based on no runtime data. */
7338 static struct type
*
7339 to_static_fixed_type (struct type
*type0
)
7346 if (TYPE_FIXED_INSTANCE (type0
))
7349 type0
= ada_check_typedef (type0
);
7351 switch (TYPE_CODE (type0
))
7355 case TYPE_CODE_STRUCT
:
7356 type
= dynamic_template_type (type0
);
7358 return template_to_static_fixed_type (type
);
7360 return template_to_static_fixed_type (type0
);
7361 case TYPE_CODE_UNION
:
7362 type
= ada_find_parallel_type (type0
, "___XVU");
7364 return template_to_static_fixed_type (type
);
7366 return template_to_static_fixed_type (type0
);
7370 /* A static approximation of TYPE with all type wrappers removed. */
7372 static struct type
*
7373 static_unwrap_type (struct type
*type
)
7375 if (ada_is_aligner_type (type
))
7377 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
7378 if (ada_type_name (type1
) == NULL
)
7379 TYPE_NAME (type1
) = ada_type_name (type
);
7381 return static_unwrap_type (type1
);
7385 struct type
*raw_real_type
= ada_get_base_type (type
);
7386 if (raw_real_type
== type
)
7389 return to_static_fixed_type (raw_real_type
);
7393 /* In some cases, incomplete and private types require
7394 cross-references that are not resolved as records (for example,
7396 type FooP is access Foo;
7398 type Foo is array ...;
7399 ). In these cases, since there is no mechanism for producing
7400 cross-references to such types, we instead substitute for FooP a
7401 stub enumeration type that is nowhere resolved, and whose tag is
7402 the name of the actual type. Call these types "non-record stubs". */
7404 /* A type equivalent to TYPE that is not a non-record stub, if one
7405 exists, otherwise TYPE. */
7408 ada_check_typedef (struct type
*type
)
7413 CHECK_TYPEDEF (type
);
7414 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
7415 || !TYPE_STUB (type
)
7416 || TYPE_TAG_NAME (type
) == NULL
)
7420 char *name
= TYPE_TAG_NAME (type
);
7421 struct type
*type1
= ada_find_any_type (name
);
7422 return (type1
== NULL
) ? type
: type1
;
7426 /* A value representing the data at VALADDR/ADDRESS as described by
7427 type TYPE0, but with a standard (static-sized) type that correctly
7428 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7429 type, then return VAL0 [this feature is simply to avoid redundant
7430 creation of struct values]. */
7432 static struct value
*
7433 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
7436 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
7437 if (type
== type0
&& val0
!= NULL
)
7440 return value_from_contents_and_address (type
, 0, address
);
7443 /* A value representing VAL, but with a standard (static-sized) type
7444 that correctly describes it. Does not necessarily create a new
7447 static struct value
*
7448 ada_to_fixed_value (struct value
*val
)
7450 return ada_to_fixed_value_create (value_type (val
),
7451 value_address (val
),
7455 /* A value representing VAL, but with a standard (static-sized) type
7456 chosen to approximate the real type of VAL as well as possible, but
7457 without consulting any runtime values. For Ada dynamic-sized
7458 types, therefore, the type of the result is likely to be inaccurate. */
7460 static struct value
*
7461 ada_to_static_fixed_value (struct value
*val
)
7464 to_static_fixed_type (static_unwrap_type (value_type (val
)));
7465 if (type
== value_type (val
))
7468 return coerce_unspec_val_to_type (val
, type
);
7474 /* Table mapping attribute numbers to names.
7475 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7477 static const char *attribute_names
[] = {
7495 ada_attribute_name (enum exp_opcode n
)
7497 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
7498 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
7500 return attribute_names
[0];
7503 /* Evaluate the 'POS attribute applied to ARG. */
7506 pos_atr (struct value
*arg
)
7508 struct value
*val
= coerce_ref (arg
);
7509 struct type
*type
= value_type (val
);
7511 if (!discrete_type_p (type
))
7512 error (_("'POS only defined on discrete types"));
7514 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7517 LONGEST v
= value_as_long (val
);
7519 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7521 if (v
== TYPE_FIELD_BITPOS (type
, i
))
7524 error (_("enumeration value is invalid: can't find 'POS"));
7527 return value_as_long (val
);
7530 static struct value
*
7531 value_pos_atr (struct type
*type
, struct value
*arg
)
7533 return value_from_longest (type
, pos_atr (arg
));
7536 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7538 static struct value
*
7539 value_val_atr (struct type
*type
, struct value
*arg
)
7541 if (!discrete_type_p (type
))
7542 error (_("'VAL only defined on discrete types"));
7543 if (!integer_type_p (value_type (arg
)))
7544 error (_("'VAL requires integral argument"));
7546 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7548 long pos
= value_as_long (arg
);
7549 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
7550 error (_("argument to 'VAL out of range"));
7551 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, pos
));
7554 return value_from_longest (type
, value_as_long (arg
));
7560 /* True if TYPE appears to be an Ada character type.
7561 [At the moment, this is true only for Character and Wide_Character;
7562 It is a heuristic test that could stand improvement]. */
7565 ada_is_character_type (struct type
*type
)
7569 /* If the type code says it's a character, then assume it really is,
7570 and don't check any further. */
7571 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
7574 /* Otherwise, assume it's a character type iff it is a discrete type
7575 with a known character type name. */
7576 name
= ada_type_name (type
);
7577 return (name
!= NULL
7578 && (TYPE_CODE (type
) == TYPE_CODE_INT
7579 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
7580 && (strcmp (name
, "character") == 0
7581 || strcmp (name
, "wide_character") == 0
7582 || strcmp (name
, "wide_wide_character") == 0
7583 || strcmp (name
, "unsigned char") == 0));
7586 /* True if TYPE appears to be an Ada string type. */
7589 ada_is_string_type (struct type
*type
)
7591 type
= ada_check_typedef (type
);
7593 && TYPE_CODE (type
) != TYPE_CODE_PTR
7594 && (ada_is_simple_array_type (type
)
7595 || ada_is_array_descriptor_type (type
))
7596 && ada_array_arity (type
) == 1)
7598 struct type
*elttype
= ada_array_element_type (type
, 1);
7600 return ada_is_character_type (elttype
);
7607 /* True if TYPE is a struct type introduced by the compiler to force the
7608 alignment of a value. Such types have a single field with a
7609 distinctive name. */
7612 ada_is_aligner_type (struct type
*type
)
7614 type
= ada_check_typedef (type
);
7616 /* If we can find a parallel XVS type, then the XVS type should
7617 be used instead of this type. And hence, this is not an aligner
7619 if (ada_find_parallel_type (type
, "___XVS") != NULL
)
7622 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
7623 && TYPE_NFIELDS (type
) == 1
7624 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
7627 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7628 the parallel type. */
7631 ada_get_base_type (struct type
*raw_type
)
7633 struct type
*real_type_namer
;
7634 struct type
*raw_real_type
;
7636 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
7639 if (ada_is_aligner_type (raw_type
))
7640 /* The encoding specifies that we should always use the aligner type.
7641 So, even if this aligner type has an associated XVS type, we should
7644 According to the compiler gurus, an XVS type parallel to an aligner
7645 type may exist because of a stabs limitation. In stabs, aligner
7646 types are empty because the field has a variable-sized type, and
7647 thus cannot actually be used as an aligner type. As a result,
7648 we need the associated parallel XVS type to decode the type.
7649 Since the policy in the compiler is to not change the internal
7650 representation based on the debugging info format, we sometimes
7651 end up having a redundant XVS type parallel to the aligner type. */
7654 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
7655 if (real_type_namer
== NULL
7656 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
7657 || TYPE_NFIELDS (real_type_namer
) != 1)
7660 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
7661 if (raw_real_type
== NULL
)
7664 return raw_real_type
;
7667 /* The type of value designated by TYPE, with all aligners removed. */
7670 ada_aligned_type (struct type
*type
)
7672 if (ada_is_aligner_type (type
))
7673 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
7675 return ada_get_base_type (type
);
7679 /* The address of the aligned value in an object at address VALADDR
7680 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7683 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
7685 if (ada_is_aligner_type (type
))
7686 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
7688 TYPE_FIELD_BITPOS (type
,
7689 0) / TARGET_CHAR_BIT
);
7696 /* The printed representation of an enumeration literal with encoded
7697 name NAME. The value is good to the next call of ada_enum_name. */
7699 ada_enum_name (const char *name
)
7701 static char *result
;
7702 static size_t result_len
= 0;
7705 /* First, unqualify the enumeration name:
7706 1. Search for the last '.' character. If we find one, then skip
7707 all the preceeding characters, the unqualified name starts
7708 right after that dot.
7709 2. Otherwise, we may be debugging on a target where the compiler
7710 translates dots into "__". Search forward for double underscores,
7711 but stop searching when we hit an overloading suffix, which is
7712 of the form "__" followed by digits. */
7714 tmp
= strrchr (name
, '.');
7719 while ((tmp
= strstr (name
, "__")) != NULL
)
7721 if (isdigit (tmp
[2]))
7731 if (name
[1] == 'U' || name
[1] == 'W')
7733 if (sscanf (name
+ 2, "%x", &v
) != 1)
7739 GROW_VECT (result
, result_len
, 16);
7740 if (isascii (v
) && isprint (v
))
7741 xsnprintf (result
, result_len
, "'%c'", v
);
7742 else if (name
[1] == 'U')
7743 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
7745 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
7751 tmp
= strstr (name
, "__");
7753 tmp
= strstr (name
, "$");
7756 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
7757 strncpy (result
, name
, tmp
- name
);
7758 result
[tmp
- name
] = '\0';
7766 /* Evaluate the subexpression of EXP starting at *POS as for
7767 evaluate_type, updating *POS to point just past the evaluated
7770 static struct value
*
7771 evaluate_subexp_type (struct expression
*exp
, int *pos
)
7773 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
7776 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7779 static struct value
*
7780 unwrap_value (struct value
*val
)
7782 struct type
*type
= ada_check_typedef (value_type (val
));
7783 if (ada_is_aligner_type (type
))
7785 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
7786 struct type
*val_type
= ada_check_typedef (value_type (v
));
7787 if (ada_type_name (val_type
) == NULL
)
7788 TYPE_NAME (val_type
) = ada_type_name (type
);
7790 return unwrap_value (v
);
7794 struct type
*raw_real_type
=
7795 ada_check_typedef (ada_get_base_type (type
));
7797 if (type
== raw_real_type
)
7801 coerce_unspec_val_to_type
7802 (val
, ada_to_fixed_type (raw_real_type
, 0,
7803 value_address (val
),
7808 static struct value
*
7809 cast_to_fixed (struct type
*type
, struct value
*arg
)
7813 if (type
== value_type (arg
))
7815 else if (ada_is_fixed_point_type (value_type (arg
)))
7816 val
= ada_float_to_fixed (type
,
7817 ada_fixed_to_float (value_type (arg
),
7818 value_as_long (arg
)));
7821 DOUBLEST argd
= value_as_double (arg
);
7822 val
= ada_float_to_fixed (type
, argd
);
7825 return value_from_longest (type
, val
);
7828 static struct value
*
7829 cast_from_fixed (struct type
*type
, struct value
*arg
)
7831 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
7832 value_as_long (arg
));
7833 return value_from_double (type
, val
);
7836 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7837 return the converted value. */
7839 static struct value
*
7840 coerce_for_assign (struct type
*type
, struct value
*val
)
7842 struct type
*type2
= value_type (val
);
7846 type2
= ada_check_typedef (type2
);
7847 type
= ada_check_typedef (type
);
7849 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
7850 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7852 val
= ada_value_ind (val
);
7853 type2
= value_type (val
);
7856 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
7857 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7859 if (TYPE_LENGTH (type2
) != TYPE_LENGTH (type
)
7860 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
7861 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2
)))
7862 error (_("Incompatible types in assignment"));
7863 deprecated_set_value_type (val
, type
);
7868 static struct value
*
7869 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
7872 struct type
*type1
, *type2
;
7875 arg1
= coerce_ref (arg1
);
7876 arg2
= coerce_ref (arg2
);
7877 type1
= base_type (ada_check_typedef (value_type (arg1
)));
7878 type2
= base_type (ada_check_typedef (value_type (arg2
)));
7880 if (TYPE_CODE (type1
) != TYPE_CODE_INT
7881 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
7882 return value_binop (arg1
, arg2
, op
);
7891 return value_binop (arg1
, arg2
, op
);
7894 v2
= value_as_long (arg2
);
7896 error (_("second operand of %s must not be zero."), op_string (op
));
7898 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
7899 return value_binop (arg1
, arg2
, op
);
7901 v1
= value_as_long (arg1
);
7906 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
7907 v
+= v
> 0 ? -1 : 1;
7915 /* Should not reach this point. */
7919 val
= allocate_value (type1
);
7920 store_unsigned_integer (value_contents_raw (val
),
7921 TYPE_LENGTH (value_type (val
)), v
);
7926 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
7928 if (ada_is_direct_array_type (value_type (arg1
))
7929 || ada_is_direct_array_type (value_type (arg2
)))
7931 /* Automatically dereference any array reference before
7932 we attempt to perform the comparison. */
7933 arg1
= ada_coerce_ref (arg1
);
7934 arg2
= ada_coerce_ref (arg2
);
7936 arg1
= ada_coerce_to_simple_array (arg1
);
7937 arg2
= ada_coerce_to_simple_array (arg2
);
7938 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
7939 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
7940 error (_("Attempt to compare array with non-array"));
7941 /* FIXME: The following works only for types whose
7942 representations use all bits (no padding or undefined bits)
7943 and do not have user-defined equality. */
7945 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
7946 && memcmp (value_contents (arg1
), value_contents (arg2
),
7947 TYPE_LENGTH (value_type (arg1
))) == 0;
7949 return value_equal (arg1
, arg2
);
7952 /* Total number of component associations in the aggregate starting at
7953 index PC in EXP. Assumes that index PC is the start of an
7957 num_component_specs (struct expression
*exp
, int pc
)
7960 m
= exp
->elts
[pc
+ 1].longconst
;
7963 for (i
= 0; i
< m
; i
+= 1)
7965 switch (exp
->elts
[pc
].opcode
)
7971 n
+= exp
->elts
[pc
+ 1].longconst
;
7974 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
7979 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7980 component of LHS (a simple array or a record), updating *POS past
7981 the expression, assuming that LHS is contained in CONTAINER. Does
7982 not modify the inferior's memory, nor does it modify LHS (unless
7983 LHS == CONTAINER). */
7986 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
7987 struct expression
*exp
, int *pos
)
7989 struct value
*mark
= value_mark ();
7991 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
7993 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
7994 struct value
*index_val
= value_from_longest (index_type
, index
);
7995 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
7999 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
8000 elt
= ada_to_fixed_value (unwrap_value (elt
));
8003 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
8004 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
8006 value_assign_to_component (container
, elt
,
8007 ada_evaluate_subexp (NULL
, exp
, pos
,
8010 value_free_to_mark (mark
);
8013 /* Assuming that LHS represents an lvalue having a record or array
8014 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8015 of that aggregate's value to LHS, advancing *POS past the
8016 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8017 lvalue containing LHS (possibly LHS itself). Does not modify
8018 the inferior's memory, nor does it modify the contents of
8019 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8021 static struct value
*
8022 assign_aggregate (struct value
*container
,
8023 struct value
*lhs
, struct expression
*exp
,
8024 int *pos
, enum noside noside
)
8026 struct type
*lhs_type
;
8027 int n
= exp
->elts
[*pos
+1].longconst
;
8028 LONGEST low_index
, high_index
;
8031 int max_indices
, num_indices
;
8032 int is_array_aggregate
;
8034 struct value
*mark
= value_mark ();
8037 if (noside
!= EVAL_NORMAL
)
8040 for (i
= 0; i
< n
; i
+= 1)
8041 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
8045 container
= ada_coerce_ref (container
);
8046 if (ada_is_direct_array_type (value_type (container
)))
8047 container
= ada_coerce_to_simple_array (container
);
8048 lhs
= ada_coerce_ref (lhs
);
8049 if (!deprecated_value_modifiable (lhs
))
8050 error (_("Left operand of assignment is not a modifiable lvalue."));
8052 lhs_type
= value_type (lhs
);
8053 if (ada_is_direct_array_type (lhs_type
))
8055 lhs
= ada_coerce_to_simple_array (lhs
);
8056 lhs_type
= value_type (lhs
);
8057 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
8058 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
8059 is_array_aggregate
= 1;
8061 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
8064 high_index
= num_visible_fields (lhs_type
) - 1;
8065 is_array_aggregate
= 0;
8068 error (_("Left-hand side must be array or record."));
8070 num_specs
= num_component_specs (exp
, *pos
- 3);
8071 max_indices
= 4 * num_specs
+ 4;
8072 indices
= alloca (max_indices
* sizeof (indices
[0]));
8073 indices
[0] = indices
[1] = low_index
- 1;
8074 indices
[2] = indices
[3] = high_index
+ 1;
8077 for (i
= 0; i
< n
; i
+= 1)
8079 switch (exp
->elts
[*pos
].opcode
)
8082 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
8083 &num_indices
, max_indices
,
8084 low_index
, high_index
);
8087 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
8088 &num_indices
, max_indices
,
8089 low_index
, high_index
);
8093 error (_("Misplaced 'others' clause"));
8094 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
8095 num_indices
, low_index
, high_index
);
8098 error (_("Internal error: bad aggregate clause"));
8105 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8106 construct at *POS, updating *POS past the construct, given that
8107 the positions are relative to lower bound LOW, where HIGH is the
8108 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8109 updating *NUM_INDICES as needed. CONTAINER is as for
8110 assign_aggregate. */
8112 aggregate_assign_positional (struct value
*container
,
8113 struct value
*lhs
, struct expression
*exp
,
8114 int *pos
, LONGEST
*indices
, int *num_indices
,
8115 int max_indices
, LONGEST low
, LONGEST high
)
8117 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
8119 if (ind
- 1 == high
)
8120 warning (_("Extra components in aggregate ignored."));
8123 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
8125 assign_component (container
, lhs
, ind
, exp
, pos
);
8128 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8131 /* Assign into the components of LHS indexed by the OP_CHOICES
8132 construct at *POS, updating *POS past the construct, given that
8133 the allowable indices are LOW..HIGH. Record the indices assigned
8134 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8135 needed. CONTAINER is as for assign_aggregate. */
8137 aggregate_assign_from_choices (struct value
*container
,
8138 struct value
*lhs
, struct expression
*exp
,
8139 int *pos
, LONGEST
*indices
, int *num_indices
,
8140 int max_indices
, LONGEST low
, LONGEST high
)
8143 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
8144 int choice_pos
, expr_pc
;
8145 int is_array
= ada_is_direct_array_type (value_type (lhs
));
8147 choice_pos
= *pos
+= 3;
8149 for (j
= 0; j
< n_choices
; j
+= 1)
8150 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8152 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8154 for (j
= 0; j
< n_choices
; j
+= 1)
8156 LONGEST lower
, upper
;
8157 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
8158 if (op
== OP_DISCRETE_RANGE
)
8161 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8163 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8168 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
8179 name
= &exp
->elts
[choice_pos
+ 2].string
;
8182 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
8185 error (_("Invalid record component association."));
8187 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
8189 if (! find_struct_field (name
, value_type (lhs
), 0,
8190 NULL
, NULL
, NULL
, NULL
, &ind
))
8191 error (_("Unknown component name: %s."), name
);
8192 lower
= upper
= ind
;
8195 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
8196 error (_("Index in component association out of bounds."));
8198 add_component_interval (lower
, upper
, indices
, num_indices
,
8200 while (lower
<= upper
)
8204 assign_component (container
, lhs
, lower
, exp
, &pos1
);
8210 /* Assign the value of the expression in the OP_OTHERS construct in
8211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8212 have not been previously assigned. The index intervals already assigned
8213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8214 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8216 aggregate_assign_others (struct value
*container
,
8217 struct value
*lhs
, struct expression
*exp
,
8218 int *pos
, LONGEST
*indices
, int num_indices
,
8219 LONGEST low
, LONGEST high
)
8222 int expr_pc
= *pos
+1;
8224 for (i
= 0; i
< num_indices
- 2; i
+= 2)
8227 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
8231 assign_component (container
, lhs
, ind
, exp
, &pos
);
8234 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8237 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8238 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8239 modifying *SIZE as needed. It is an error if *SIZE exceeds
8240 MAX_SIZE. The resulting intervals do not overlap. */
8242 add_component_interval (LONGEST low
, LONGEST high
,
8243 LONGEST
* indices
, int *size
, int max_size
)
8246 for (i
= 0; i
< *size
; i
+= 2) {
8247 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
8250 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
8251 if (high
< indices
[kh
])
8253 if (low
< indices
[i
])
8255 indices
[i
+ 1] = indices
[kh
- 1];
8256 if (high
> indices
[i
+ 1])
8257 indices
[i
+ 1] = high
;
8258 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
8259 *size
-= kh
- i
- 2;
8262 else if (high
< indices
[i
])
8266 if (*size
== max_size
)
8267 error (_("Internal error: miscounted aggregate components."));
8269 for (j
= *size
-1; j
>= i
+2; j
-= 1)
8270 indices
[j
] = indices
[j
- 2];
8272 indices
[i
+ 1] = high
;
8275 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8278 static struct value
*
8279 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
8281 if (type
== ada_check_typedef (value_type (arg2
)))
8284 if (ada_is_fixed_point_type (type
))
8285 return (cast_to_fixed (type
, arg2
));
8287 if (ada_is_fixed_point_type (value_type (arg2
)))
8288 return cast_from_fixed (type
, arg2
);
8290 return value_cast (type
, arg2
);
8293 /* Evaluating Ada expressions, and printing their result.
8294 ------------------------------------------------------
8296 We usually evaluate an Ada expression in order to print its value.
8297 We also evaluate an expression in order to print its type, which
8298 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8299 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8300 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8301 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8304 Evaluating expressions is a little more complicated for Ada entities
8305 than it is for entities in languages such as C. The main reason for
8306 this is that Ada provides types whose definition might be dynamic.
8307 One example of such types is variant records. Or another example
8308 would be an array whose bounds can only be known at run time.
8310 The following description is a general guide as to what should be
8311 done (and what should NOT be done) in order to evaluate an expression
8312 involving such types, and when. This does not cover how the semantic
8313 information is encoded by GNAT as this is covered separatly. For the
8314 document used as the reference for the GNAT encoding, see exp_dbug.ads
8315 in the GNAT sources.
8317 Ideally, we should embed each part of this description next to its
8318 associated code. Unfortunately, the amount of code is so vast right
8319 now that it's hard to see whether the code handling a particular
8320 situation might be duplicated or not. One day, when the code is
8321 cleaned up, this guide might become redundant with the comments
8322 inserted in the code, and we might want to remove it.
8324 When evaluating Ada expressions, the tricky issue is that they may
8325 reference entities whose type contents and size are not statically
8326 known. Consider for instance a variant record:
8328 type Rec (Empty : Boolean := True) is record
8331 when False => Value : Integer;
8334 Yes : Rec := (Empty => False, Value => 1);
8335 No : Rec := (empty => True);
8337 The size and contents of that record depends on the value of the
8338 descriminant (Rec.Empty). At this point, neither the debugging
8339 information nor the associated type structure in GDB are able to
8340 express such dynamic types. So what the debugger does is to create
8341 "fixed" versions of the type that applies to the specific object.
8342 We also informally refer to this opperation as "fixing" an object,
8343 which means creating its associated fixed type.
8345 Example: when printing the value of variable "Yes" above, its fixed
8346 type would look like this:
8353 On the other hand, if we printed the value of "No", its fixed type
8360 Things become a little more complicated when trying to fix an entity
8361 with a dynamic type that directly contains another dynamic type,
8362 such as an array of variant records, for instance. There are
8363 two possible cases: Arrays, and records.
8365 Arrays are a little simpler to handle, because the same amount of
8366 memory is allocated for each element of the array, even if the amount
8367 of space used by each element changes from element to element.
8368 Consider for instance the following array of type Rec:
8370 type Rec_Array is array (1 .. 2) of Rec;
8372 The type structure in GDB describes an array in terms of its
8373 bounds, and the type of its elements. By design, all elements
8374 in the array have the same type. So we cannot use a fixed type
8375 for the array elements in this case, since the fixed type depends
8376 on the actual value of each element.
8378 Fortunately, what happens in practice is that each element of
8379 the array has the same size, which is the maximum size that
8380 might be needed in order to hold an object of the element type.
8381 And the compiler shows it in the debugging information by wrapping
8382 the array element inside a private PAD type. This type should not
8383 be shown to the user, and must be "unwrap"'ed before printing. Note
8384 that we also use the adjective "aligner" in our code to designate
8385 these wrapper types.
8387 These wrapper types should have a constant size, which is the size
8388 of each element of the array. In the case when the size is statically
8389 known, the PAD type will already have the right size, and the array
8390 element type should remain unfixed. But there are cases when
8391 this size is not statically known. For instance, assuming that
8392 "Five" is an integer variable:
8394 type Dynamic is array (1 .. Five) of Integer;
8395 type Wrapper (Has_Length : Boolean := False) is record
8398 when True => Length : Integer;
8402 type Wrapper_Array is array (1 .. 2) of Wrapper;
8404 Hello : Wrapper_Array := (others => (Has_Length => True,
8405 Data => (others => 17),
8409 The debugging info would describe variable Hello as being an
8410 array of a PAD type. The size of that PAD type is not statically
8411 known, but can be determined using a parallel XVZ variable.
8412 In that case, a copy of the PAD type with the correct size should
8413 be used for the fixed array.
8415 However, things are slightly different in the case of dynamic
8416 record types. In this case, in order to compute the associated
8417 fixed type, we need to determine the size and offset of each of
8418 its components. This, in turn, requires us to compute the fixed
8419 type of each of these components.
8421 Consider for instance the example:
8423 type Bounded_String (Max_Size : Natural) is record
8424 Str : String (1 .. Max_Size);
8427 My_String : Bounded_String (Max_Size => 10);
8429 In that case, the position of field "Length" depends on the size
8430 of field Str, which itself depends on the value of the Max_Size
8431 discriminant. In order to fix the type of variable My_String,
8432 we need to fix the type of field Str. Therefore, fixing a variant
8433 record requires us to fix each of its components.
8435 However, if a component does not have a dynamic size, the component
8436 should not be fixed. In particular, fields that use a PAD type
8437 should not fixed. Here is an example where this might happen
8438 (assuming type Rec above):
8440 type Container (Big : Boolean) is record
8444 when True => Another : Integer;
8448 My_Container : Container := (Big => False,
8449 First => (Empty => True),
8452 In that example, the compiler creates a PAD type for component First,
8453 whose size is constant, and then positions the component After just
8454 right after it. The offset of component After is therefore constant
8457 The debugger computes the position of each field based on an algorithm
8458 that uses, among other things, the actual position and size of the field
8459 preceding it. Let's now imagine that the user is trying to print the
8460 value of My_Container. If the type fixing was recursive, we would
8461 end up computing the offset of field After based on the size of the
8462 fixed version of field First. And since in our example First has
8463 only one actual field, the size of the fixed type is actually smaller
8464 than the amount of space allocated to that field, and thus we would
8465 compute the wrong offset of field After.
8467 Unfortunately, we need to watch out for dynamic components of variant
8468 records (identified by the ___XVL suffix in the component name).
8469 Even if the target type is a PAD type, the size of that type might
8470 not be statically known. So the PAD type needs to be unwrapped and
8471 the resulting type needs to be fixed. Otherwise, we might end up
8472 with the wrong size for our component. This can be observed with
8473 the following type declarations:
8475 type Octal is new Integer range 0 .. 7;
8476 type Octal_Array is array (Positive range <>) of Octal;
8477 pragma Pack (Octal_Array);
8479 type Octal_Buffer (Size : Positive) is record
8480 Buffer : Octal_Array (1 .. Size);
8484 In that case, Buffer is a PAD type whose size is unset and needs
8485 to be computed by fixing the unwrapped type.
8487 Lastly, when should the sub-elements of a type that remained unfixed
8488 thus far, be actually fixed?
8490 The answer is: Only when referencing that element. For instance
8491 when selecting one component of a record, this specific component
8492 should be fixed at that point in time. Or when printing the value
8493 of a record, each component should be fixed before its value gets
8494 printed. Similarly for arrays, the element of the array should be
8495 fixed when printing each element of the array, or when extracting
8496 one element out of that array. On the other hand, fixing should
8497 not be performed on the elements when taking a slice of an array!
8499 Note that one of the side-effects of miscomputing the offset and
8500 size of each field is that we end up also miscomputing the size
8501 of the containing type. This can have adverse results when computing
8502 the value of an entity. GDB fetches the value of an entity based
8503 on the size of its type, and thus a wrong size causes GDB to fetch
8504 the wrong amount of memory. In the case where the computed size is
8505 too small, GDB fetches too little data to print the value of our
8506 entiry. Results in this case as unpredicatble, as we usually read
8507 past the buffer containing the data =:-o. */
8509 /* Implement the evaluate_exp routine in the exp_descriptor structure
8510 for the Ada language. */
8512 static struct value
*
8513 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
8514 int *pos
, enum noside noside
)
8517 int tem
, tem2
, tem3
;
8519 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
8522 struct value
**argvec
;
8526 op
= exp
->elts
[pc
].opcode
;
8532 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8533 arg1
= unwrap_value (arg1
);
8535 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8536 then we need to perform the conversion manually, because
8537 evaluate_subexp_standard doesn't do it. This conversion is
8538 necessary in Ada because the different kinds of float/fixed
8539 types in Ada have different representations.
8541 Similarly, we need to perform the conversion from OP_LONG
8543 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
8544 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
8550 struct value
*result
;
8552 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8553 /* The result type will have code OP_STRING, bashed there from
8554 OP_ARRAY. Bash it back. */
8555 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
8556 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
8562 type
= exp
->elts
[pc
+ 1].type
;
8563 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
8564 if (noside
== EVAL_SKIP
)
8566 arg1
= ada_value_cast (type
, arg1
, noside
);
8571 type
= exp
->elts
[pc
+ 1].type
;
8572 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
8575 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8576 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
8578 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
8579 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8581 return ada_value_assign (arg1
, arg1
);
8583 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8584 except if the lhs of our assignment is a convenience variable.
8585 In the case of assigning to a convenience variable, the lhs
8586 should be exactly the result of the evaluation of the rhs. */
8587 type
= value_type (arg1
);
8588 if (VALUE_LVAL (arg1
) == lval_internalvar
)
8590 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
8591 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8593 if (ada_is_fixed_point_type (value_type (arg1
)))
8594 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
8595 else if (ada_is_fixed_point_type (value_type (arg2
)))
8597 (_("Fixed-point values must be assigned to fixed-point variables"));
8599 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
8600 return ada_value_assign (arg1
, arg2
);
8603 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8604 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8605 if (noside
== EVAL_SKIP
)
8607 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
8608 return (value_from_longest
8610 value_as_long (arg1
) + value_as_long (arg2
)));
8611 if ((ada_is_fixed_point_type (value_type (arg1
))
8612 || ada_is_fixed_point_type (value_type (arg2
)))
8613 && value_type (arg1
) != value_type (arg2
))
8614 error (_("Operands of fixed-point addition must have the same type"));
8615 /* Do the addition, and cast the result to the type of the first
8616 argument. We cannot cast the result to a reference type, so if
8617 ARG1 is a reference type, find its underlying type. */
8618 type
= value_type (arg1
);
8619 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
8620 type
= TYPE_TARGET_TYPE (type
);
8621 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8622 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
8625 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8626 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8627 if (noside
== EVAL_SKIP
)
8629 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
8630 return (value_from_longest
8632 value_as_long (arg1
) - value_as_long (arg2
)));
8633 if ((ada_is_fixed_point_type (value_type (arg1
))
8634 || ada_is_fixed_point_type (value_type (arg2
)))
8635 && value_type (arg1
) != value_type (arg2
))
8636 error (_("Operands of fixed-point subtraction must have the same type"));
8637 /* Do the substraction, and cast the result to the type of the first
8638 argument. We cannot cast the result to a reference type, so if
8639 ARG1 is a reference type, find its underlying type. */
8640 type
= value_type (arg1
);
8641 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
8642 type
= TYPE_TARGET_TYPE (type
);
8643 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8644 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
8650 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8651 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8652 if (noside
== EVAL_SKIP
)
8654 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8656 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8657 return value_zero (value_type (arg1
), not_lval
);
8661 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
8662 if (ada_is_fixed_point_type (value_type (arg1
)))
8663 arg1
= cast_from_fixed (type
, arg1
);
8664 if (ada_is_fixed_point_type (value_type (arg2
)))
8665 arg2
= cast_from_fixed (type
, arg2
);
8666 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8667 return ada_value_binop (arg1
, arg2
, op
);
8671 case BINOP_NOTEQUAL
:
8672 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8673 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
8674 if (noside
== EVAL_SKIP
)
8676 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8680 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8681 tem
= ada_value_equal (arg1
, arg2
);
8683 if (op
== BINOP_NOTEQUAL
)
8685 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
8686 return value_from_longest (type
, (LONGEST
) tem
);
8689 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8690 if (noside
== EVAL_SKIP
)
8692 else if (ada_is_fixed_point_type (value_type (arg1
)))
8693 return value_cast (value_type (arg1
), value_neg (arg1
));
8696 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
8697 return value_neg (arg1
);
8700 case BINOP_LOGICAL_AND
:
8701 case BINOP_LOGICAL_OR
:
8702 case UNOP_LOGICAL_NOT
:
8707 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8708 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
8709 return value_cast (type
, val
);
8712 case BINOP_BITWISE_AND
:
8713 case BINOP_BITWISE_IOR
:
8714 case BINOP_BITWISE_XOR
:
8718 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
8720 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8722 return value_cast (value_type (arg1
), val
);
8728 if (noside
== EVAL_SKIP
)
8733 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
8734 /* Only encountered when an unresolved symbol occurs in a
8735 context other than a function call, in which case, it is
8737 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8738 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
8739 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8741 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
8742 if (ada_is_tagged_type (type
, 0))
8744 /* Tagged types are a little special in the fact that the real
8745 type is dynamic and can only be determined by inspecting the
8746 object's tag. This means that we need to get the object's
8747 value first (EVAL_NORMAL) and then extract the actual object
8750 Note that we cannot skip the final step where we extract
8751 the object type from its tag, because the EVAL_NORMAL phase
8752 results in dynamic components being resolved into fixed ones.
8753 This can cause problems when trying to print the type
8754 description of tagged types whose parent has a dynamic size:
8755 We use the type name of the "_parent" component in order
8756 to print the name of the ancestor type in the type description.
8757 If that component had a dynamic size, the resolution into
8758 a fixed type would result in the loss of that type name,
8759 thus preventing us from printing the name of the ancestor
8760 type in the type description. */
8761 struct type
*actual_type
;
8763 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
8764 actual_type
= type_from_tag (ada_value_tag (arg1
));
8765 if (actual_type
== NULL
)
8766 /* If, for some reason, we were unable to determine
8767 the actual type from the tag, then use the static
8768 approximation that we just computed as a fallback.
8769 This can happen if the debugging information is
8770 incomplete, for instance. */
8773 return value_zero (actual_type
, not_lval
);
8778 (to_static_fixed_type
8779 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
8784 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8785 arg1
= unwrap_value (arg1
);
8786 return ada_to_fixed_value (arg1
);
8792 /* Allocate arg vector, including space for the function to be
8793 called in argvec[0] and a terminating NULL. */
8794 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
8796 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
8798 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
8799 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
8800 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8801 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
8804 for (tem
= 0; tem
<= nargs
; tem
+= 1)
8805 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8808 if (noside
== EVAL_SKIP
)
8812 if (ada_is_packed_array_type (desc_base_type (value_type (argvec
[0]))))
8813 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
8814 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
8815 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
8816 /* This is a packed array that has already been fixed, and
8817 therefore already coerced to a simple array. Nothing further
8820 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
8821 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
8822 && VALUE_LVAL (argvec
[0]) == lval_memory
))
8823 argvec
[0] = value_addr (argvec
[0]);
8825 type
= ada_check_typedef (value_type (argvec
[0]));
8826 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
8828 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
8830 case TYPE_CODE_FUNC
:
8831 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
8833 case TYPE_CODE_ARRAY
:
8835 case TYPE_CODE_STRUCT
:
8836 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
8837 argvec
[0] = ada_value_ind (argvec
[0]);
8838 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
8841 error (_("cannot subscript or call something of type `%s'"),
8842 ada_type_name (value_type (argvec
[0])));
8847 switch (TYPE_CODE (type
))
8849 case TYPE_CODE_FUNC
:
8850 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8851 return allocate_value (TYPE_TARGET_TYPE (type
));
8852 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
8853 case TYPE_CODE_STRUCT
:
8857 arity
= ada_array_arity (type
);
8858 type
= ada_array_element_type (type
, nargs
);
8860 error (_("cannot subscript or call a record"));
8862 error (_("wrong number of subscripts; expecting %d"), arity
);
8863 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8864 return value_zero (ada_aligned_type (type
), lval_memory
);
8866 unwrap_value (ada_value_subscript
8867 (argvec
[0], nargs
, argvec
+ 1));
8869 case TYPE_CODE_ARRAY
:
8870 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8872 type
= ada_array_element_type (type
, nargs
);
8874 error (_("element type of array unknown"));
8876 return value_zero (ada_aligned_type (type
), lval_memory
);
8879 unwrap_value (ada_value_subscript
8880 (ada_coerce_to_simple_array (argvec
[0]),
8881 nargs
, argvec
+ 1));
8882 case TYPE_CODE_PTR
: /* Pointer to array */
8883 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
8884 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8886 type
= ada_array_element_type (type
, nargs
);
8888 error (_("element type of array unknown"));
8890 return value_zero (ada_aligned_type (type
), lval_memory
);
8893 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
8894 nargs
, argvec
+ 1));
8897 error (_("Attempt to index or call something other than an "
8898 "array or function"));
8903 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8904 struct value
*low_bound_val
=
8905 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8906 struct value
*high_bound_val
=
8907 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8910 low_bound_val
= coerce_ref (low_bound_val
);
8911 high_bound_val
= coerce_ref (high_bound_val
);
8912 low_bound
= pos_atr (low_bound_val
);
8913 high_bound
= pos_atr (high_bound_val
);
8915 if (noside
== EVAL_SKIP
)
8918 /* If this is a reference to an aligner type, then remove all
8920 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
8921 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
8922 TYPE_TARGET_TYPE (value_type (array
)) =
8923 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
8925 if (ada_is_packed_array_type (value_type (array
)))
8926 error (_("cannot slice a packed array"));
8928 /* If this is a reference to an array or an array lvalue,
8929 convert to a pointer. */
8930 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
8931 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
8932 && VALUE_LVAL (array
) == lval_memory
))
8933 array
= value_addr (array
);
8935 if (noside
== EVAL_AVOID_SIDE_EFFECTS
8936 && ada_is_array_descriptor_type (ada_check_typedef
8937 (value_type (array
))))
8938 return empty_array (ada_type_of_array (array
, 0), low_bound
);
8940 array
= ada_coerce_to_simple_array_ptr (array
);
8942 /* If we have more than one level of pointer indirection,
8943 dereference the value until we get only one level. */
8944 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
8945 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
8947 array
= value_ind (array
);
8949 /* Make sure we really do have an array type before going further,
8950 to avoid a SEGV when trying to get the index type or the target
8951 type later down the road if the debug info generated by
8952 the compiler is incorrect or incomplete. */
8953 if (!ada_is_simple_array_type (value_type (array
)))
8954 error (_("cannot take slice of non-array"));
8956 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
)
8958 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8959 return empty_array (TYPE_TARGET_TYPE (value_type (array
)),
8963 struct type
*arr_type0
=
8964 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array
)),
8966 return ada_value_slice_from_ptr (array
, arr_type0
,
8967 longest_to_int (low_bound
),
8968 longest_to_int (high_bound
));
8971 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8973 else if (high_bound
< low_bound
)
8974 return empty_array (value_type (array
), low_bound
);
8976 return ada_value_slice (array
, longest_to_int (low_bound
),
8977 longest_to_int (high_bound
));
8982 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8983 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
8985 if (noside
== EVAL_SKIP
)
8988 switch (TYPE_CODE (type
))
8991 lim_warning (_("Membership test incompletely implemented; "
8992 "always returns true"));
8993 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
8994 return value_from_longest (type
, (LONGEST
) 1);
8996 case TYPE_CODE_RANGE
:
8997 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
8998 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
8999 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9000 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9001 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9003 value_from_longest (type
,
9004 (value_less (arg1
, arg3
)
9005 || value_equal (arg1
, arg3
))
9006 && (value_less (arg2
, arg1
)
9007 || value_equal (arg2
, arg1
)));
9010 case BINOP_IN_BOUNDS
:
9012 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9013 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9015 if (noside
== EVAL_SKIP
)
9018 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9020 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9021 return value_zero (type
, not_lval
);
9024 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9026 type
= ada_index_type (value_type (arg2
), tem
, "range");
9028 type
= value_type (arg1
);
9030 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
9031 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
9033 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9034 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9035 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9037 value_from_longest (type
,
9038 (value_less (arg1
, arg3
)
9039 || value_equal (arg1
, arg3
))
9040 && (value_less (arg2
, arg1
)
9041 || value_equal (arg2
, arg1
)));
9043 case TERNOP_IN_RANGE
:
9044 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9045 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9046 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9048 if (noside
== EVAL_SKIP
)
9051 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9052 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9053 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9055 value_from_longest (type
,
9056 (value_less (arg1
, arg3
)
9057 || value_equal (arg1
, arg3
))
9058 && (value_less (arg2
, arg1
)
9059 || value_equal (arg2
, arg1
)));
9065 struct type
*type_arg
;
9066 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
9068 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9070 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9074 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9078 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
9079 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
9080 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
9083 if (noside
== EVAL_SKIP
)
9086 if (type_arg
== NULL
)
9088 arg1
= ada_coerce_ref (arg1
);
9090 if (ada_is_packed_array_type (value_type (arg1
)))
9091 arg1
= ada_coerce_to_simple_array (arg1
);
9093 type
= ada_index_type (value_type (arg1
), tem
,
9094 ada_attribute_name (op
));
9096 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9098 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9099 return allocate_value (type
);
9103 default: /* Should never happen. */
9104 error (_("unexpected attribute encountered"));
9106 return value_from_longest
9107 (type
, ada_array_bound (arg1
, tem
, 0));
9109 return value_from_longest
9110 (type
, ada_array_bound (arg1
, tem
, 1));
9112 return value_from_longest
9113 (type
, ada_array_length (arg1
, tem
));
9116 else if (discrete_type_p (type_arg
))
9118 struct type
*range_type
;
9119 char *name
= ada_type_name (type_arg
);
9121 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
9122 range_type
= to_fixed_range_type (name
, NULL
, type_arg
);
9123 if (range_type
== NULL
)
9124 range_type
= type_arg
;
9128 error (_("unexpected attribute encountered"));
9130 return value_from_longest
9131 (range_type
, discrete_type_low_bound (range_type
));
9133 return value_from_longest
9134 (range_type
, discrete_type_high_bound (range_type
));
9136 error (_("the 'length attribute applies only to array types"));
9139 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
9140 error (_("unimplemented type attribute"));
9145 if (ada_is_packed_array_type (type_arg
))
9146 type_arg
= decode_packed_array_type (type_arg
);
9148 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
9150 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9152 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9153 return allocate_value (type
);
9158 error (_("unexpected attribute encountered"));
9160 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9161 return value_from_longest (type
, low
);
9163 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9164 return value_from_longest (type
, high
);
9166 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9167 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9168 return value_from_longest (type
, high
- low
+ 1);
9174 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9175 if (noside
== EVAL_SKIP
)
9178 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9179 return value_zero (ada_tag_type (arg1
), not_lval
);
9181 return ada_value_tag (arg1
);
9185 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9186 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9187 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9188 if (noside
== EVAL_SKIP
)
9190 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9191 return value_zero (value_type (arg1
), not_lval
);
9194 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9195 return value_binop (arg1
, arg2
,
9196 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
9199 case OP_ATR_MODULUS
:
9201 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9202 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9204 if (noside
== EVAL_SKIP
)
9207 if (!ada_is_modular_type (type_arg
))
9208 error (_("'modulus must be applied to modular type"));
9210 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
9211 ada_modulus (type_arg
));
9216 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9217 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9218 if (noside
== EVAL_SKIP
)
9220 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9221 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9222 return value_zero (type
, not_lval
);
9224 return value_pos_atr (type
, arg1
);
9227 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9228 type
= value_type (arg1
);
9230 /* If the argument is a reference, then dereference its type, since
9231 the user is really asking for the size of the actual object,
9232 not the size of the pointer. */
9233 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
9234 type
= TYPE_TARGET_TYPE (type
);
9236 if (noside
== EVAL_SKIP
)
9238 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9239 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
9241 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
9242 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
9245 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9246 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9247 type
= exp
->elts
[pc
+ 2].type
;
9248 if (noside
== EVAL_SKIP
)
9250 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9251 return value_zero (type
, not_lval
);
9253 return value_val_atr (type
, arg1
);
9256 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9257 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9258 if (noside
== EVAL_SKIP
)
9260 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9261 return value_zero (value_type (arg1
), not_lval
);
9264 /* For integer exponentiation operations,
9265 only promote the first argument. */
9266 if (is_integral_type (value_type (arg2
)))
9267 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9269 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9271 return value_binop (arg1
, arg2
, op
);
9275 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9276 if (noside
== EVAL_SKIP
)
9282 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9283 if (noside
== EVAL_SKIP
)
9285 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9286 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
9287 return value_neg (arg1
);
9292 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9293 if (noside
== EVAL_SKIP
)
9295 type
= ada_check_typedef (value_type (arg1
));
9296 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9298 if (ada_is_array_descriptor_type (type
))
9299 /* GDB allows dereferencing GNAT array descriptors. */
9301 struct type
*arrType
= ada_type_of_array (arg1
, 0);
9302 if (arrType
== NULL
)
9303 error (_("Attempt to dereference null array pointer."));
9304 return value_at_lazy (arrType
, 0);
9306 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
9307 || TYPE_CODE (type
) == TYPE_CODE_REF
9308 /* In C you can dereference an array to get the 1st elt. */
9309 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9311 type
= to_static_fixed_type
9313 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
9315 return value_zero (type
, lval_memory
);
9317 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9319 /* GDB allows dereferencing an int. */
9320 if (expect_type
== NULL
)
9321 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
9326 to_static_fixed_type (ada_aligned_type (expect_type
));
9327 return value_zero (expect_type
, lval_memory
);
9331 error (_("Attempt to take contents of a non-pointer value."));
9333 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
9334 type
= ada_check_typedef (value_type (arg1
));
9336 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9337 /* GDB allows dereferencing an int. If we were given
9338 the expect_type, then use that as the target type.
9339 Otherwise, assume that the target type is an int. */
9341 if (expect_type
!= NULL
)
9342 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
9345 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
9346 (CORE_ADDR
) value_as_address (arg1
));
9349 if (ada_is_array_descriptor_type (type
))
9350 /* GDB allows dereferencing GNAT array descriptors. */
9351 return ada_coerce_to_simple_array (arg1
);
9353 return ada_value_ind (arg1
);
9355 case STRUCTOP_STRUCT
:
9356 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9357 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
9358 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9359 if (noside
== EVAL_SKIP
)
9361 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9363 struct type
*type1
= value_type (arg1
);
9364 if (ada_is_tagged_type (type1
, 1))
9366 type
= ada_lookup_struct_elt_type (type1
,
9367 &exp
->elts
[pc
+ 2].string
,
9370 /* In this case, we assume that the field COULD exist
9371 in some extension of the type. Return an object of
9372 "type" void, which will match any formal
9373 (see ada_type_match). */
9374 return value_zero (builtin_type (exp
->gdbarch
)->builtin_void
,
9379 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
9382 return value_zero (ada_aligned_type (type
), lval_memory
);
9385 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
9386 arg1
= unwrap_value (arg1
);
9387 return ada_to_fixed_value (arg1
);
9390 /* The value is not supposed to be used. This is here to make it
9391 easier to accommodate expressions that contain types. */
9393 if (noside
== EVAL_SKIP
)
9395 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9396 return allocate_value (exp
->elts
[pc
+ 1].type
);
9398 error (_("Attempt to use a type name as an expression"));
9403 case OP_DISCRETE_RANGE
:
9406 if (noside
== EVAL_NORMAL
)
9410 error (_("Undefined name, ambiguous name, or renaming used in "
9411 "component association: %s."), &exp
->elts
[pc
+2].string
);
9413 error (_("Aggregates only allowed on the right of an assignment"));
9415 internal_error (__FILE__
, __LINE__
, _("aggregate apparently mangled"));
9418 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
9420 for (tem
= 0; tem
< nargs
; tem
+= 1)
9421 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9426 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
9432 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9433 type name that encodes the 'small and 'delta information.
9434 Otherwise, return NULL. */
9437 fixed_type_info (struct type
*type
)
9439 const char *name
= ada_type_name (type
);
9440 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
9442 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
9444 const char *tail
= strstr (name
, "___XF_");
9450 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
9451 return fixed_type_info (TYPE_TARGET_TYPE (type
));
9456 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9459 ada_is_fixed_point_type (struct type
*type
)
9461 return fixed_type_info (type
) != NULL
;
9464 /* Return non-zero iff TYPE represents a System.Address type. */
9467 ada_is_system_address_type (struct type
*type
)
9469 return (TYPE_NAME (type
)
9470 && strcmp (TYPE_NAME (type
), "system__address") == 0);
9473 /* Assuming that TYPE is the representation of an Ada fixed-point
9474 type, return its delta, or -1 if the type is malformed and the
9475 delta cannot be determined. */
9478 ada_delta (struct type
*type
)
9480 const char *encoding
= fixed_type_info (type
);
9483 /* Strictly speaking, num and den are encoded as integer. However,
9484 they may not fit into a long, and they will have to be converted
9485 to DOUBLEST anyway. So scan them as DOUBLEST. */
9486 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
9493 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9494 factor ('SMALL value) associated with the type. */
9497 scaling_factor (struct type
*type
)
9499 const char *encoding
= fixed_type_info (type
);
9500 DOUBLEST num0
, den0
, num1
, den1
;
9503 /* Strictly speaking, num's and den's are encoded as integer. However,
9504 they may not fit into a long, and they will have to be converted
9505 to DOUBLEST anyway. So scan them as DOUBLEST. */
9506 n
= sscanf (encoding
,
9507 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
9508 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
9509 &num0
, &den0
, &num1
, &den1
);
9520 /* Assuming that X is the representation of a value of fixed-point
9521 type TYPE, return its floating-point equivalent. */
9524 ada_fixed_to_float (struct type
*type
, LONGEST x
)
9526 return (DOUBLEST
) x
*scaling_factor (type
);
9529 /* The representation of a fixed-point value of type TYPE
9530 corresponding to the value X. */
9533 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
9535 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
9539 /* VAX floating formats */
9541 /* Non-zero iff TYPE represents one of the special VAX floating-point
9545 ada_is_vax_floating_type (struct type
*type
)
9548 (ada_type_name (type
) == NULL
) ? 0 : strlen (ada_type_name (type
));
9551 && (TYPE_CODE (type
) == TYPE_CODE_INT
9552 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
9553 && strncmp (ada_type_name (type
) + name_len
- 6, "___XF", 5) == 0;
9556 /* The type of special VAX floating-point type this is, assuming
9557 ada_is_vax_floating_point. */
9560 ada_vax_float_type_suffix (struct type
*type
)
9562 return ada_type_name (type
)[strlen (ada_type_name (type
)) - 1];
9565 /* A value representing the special debugging function that outputs
9566 VAX floating-point values of the type represented by TYPE. Assumes
9567 ada_is_vax_floating_type (TYPE). */
9570 ada_vax_float_print_function (struct type
*type
)
9572 switch (ada_vax_float_type_suffix (type
))
9575 return get_var_value ("DEBUG_STRING_F", 0);
9577 return get_var_value ("DEBUG_STRING_D", 0);
9579 return get_var_value ("DEBUG_STRING_G", 0);
9581 error (_("invalid VAX floating-point type"));
9588 /* Scan STR beginning at position K for a discriminant name, and
9589 return the value of that discriminant field of DVAL in *PX. If
9590 PNEW_K is not null, put the position of the character beyond the
9591 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9592 not alter *PX and *PNEW_K if unsuccessful. */
9595 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
9598 static char *bound_buffer
= NULL
;
9599 static size_t bound_buffer_len
= 0;
9602 struct value
*bound_val
;
9604 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
9607 pend
= strstr (str
+ k
, "__");
9611 k
+= strlen (bound
);
9615 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
9616 bound
= bound_buffer
;
9617 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
9618 bound
[pend
- (str
+ k
)] = '\0';
9622 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
9623 if (bound_val
== NULL
)
9626 *px
= value_as_long (bound_val
);
9632 /* Value of variable named NAME in the current environment. If
9633 no such variable found, then if ERR_MSG is null, returns 0, and
9634 otherwise causes an error with message ERR_MSG. */
9636 static struct value
*
9637 get_var_value (char *name
, char *err_msg
)
9639 struct ada_symbol_info
*syms
;
9642 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
9647 if (err_msg
== NULL
)
9650 error (("%s"), err_msg
);
9653 return value_of_variable (syms
[0].sym
, syms
[0].block
);
9656 /* Value of integer variable named NAME in the current environment. If
9657 no such variable found, returns 0, and sets *FLAG to 0. If
9658 successful, sets *FLAG to 1. */
9661 get_int_var_value (char *name
, int *flag
)
9663 struct value
*var_val
= get_var_value (name
, 0);
9675 return value_as_long (var_val
);
9680 /* Return a range type whose base type is that of the range type named
9681 NAME in the current environment, and whose bounds are calculated
9682 from NAME according to the GNAT range encoding conventions.
9683 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9684 corresponding range type from debug information; fall back to using it
9685 if symbol lookup fails. If a new type must be created, allocate it
9686 like ORIG_TYPE was. The bounds information, in general, is encoded
9687 in NAME, the base type given in the named range type. */
9689 static struct type
*
9690 to_fixed_range_type (char *name
, struct value
*dval
, struct type
*orig_type
)
9692 struct type
*raw_type
= ada_find_any_type (name
);
9693 struct type
*base_type
;
9696 /* Fall back to the original type if symbol lookup failed. */
9697 if (raw_type
== NULL
)
9698 raw_type
= orig_type
;
9700 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
9701 base_type
= TYPE_TARGET_TYPE (raw_type
);
9703 base_type
= raw_type
;
9705 subtype_info
= strstr (name
, "___XD");
9706 if (subtype_info
== NULL
)
9708 LONGEST L
= discrete_type_low_bound (raw_type
);
9709 LONGEST U
= discrete_type_high_bound (raw_type
);
9710 if (L
< INT_MIN
|| U
> INT_MAX
)
9713 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type
)),
9715 discrete_type_low_bound (raw_type
),
9716 discrete_type_high_bound (raw_type
));
9720 static char *name_buf
= NULL
;
9721 static size_t name_len
= 0;
9722 int prefix_len
= subtype_info
- name
;
9728 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
9729 strncpy (name_buf
, name
, prefix_len
);
9730 name_buf
[prefix_len
] = '\0';
9733 bounds_str
= strchr (subtype_info
, '_');
9736 if (*subtype_info
== 'L')
9738 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
9739 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
9741 if (bounds_str
[n
] == '_')
9743 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
9750 strcpy (name_buf
+ prefix_len
, "___L");
9751 L
= get_int_var_value (name_buf
, &ok
);
9754 lim_warning (_("Unknown lower bound, using 1."));
9759 if (*subtype_info
== 'U')
9761 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
9762 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
9768 strcpy (name_buf
+ prefix_len
, "___U");
9769 U
= get_int_var_value (name_buf
, &ok
);
9772 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
9777 type
= create_range_type (alloc_type (TYPE_OBJFILE (orig_type
)),
9779 TYPE_NAME (type
) = name
;
9784 /* True iff NAME is the name of a range type. */
9787 ada_is_range_type_name (const char *name
)
9789 return (name
!= NULL
&& strstr (name
, "___XD"));
9795 /* True iff TYPE is an Ada modular type. */
9798 ada_is_modular_type (struct type
*type
)
9800 struct type
*subranged_type
= base_type (type
);
9802 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
9803 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
9804 && TYPE_UNSIGNED (subranged_type
));
9807 /* Try to determine the lower and upper bounds of the given modular type
9808 using the type name only. Return non-zero and set L and U as the lower
9809 and upper bounds (respectively) if successful. */
9812 ada_modulus_from_name (struct type
*type
, ULONGEST
*modulus
)
9814 char *name
= ada_type_name (type
);
9822 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9823 we are looking for static bounds, which means an __XDLU suffix.
9824 Moreover, we know that the lower bound of modular types is always
9825 zero, so the actual suffix should start with "__XDLU_0__", and
9826 then be followed by the upper bound value. */
9827 suffix
= strstr (name
, "__XDLU_0__");
9831 if (!ada_scan_number (suffix
, k
, &U
, NULL
))
9834 *modulus
= (ULONGEST
) U
+ 1;
9838 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9841 ada_modulus (struct type
*type
)
9845 /* Normally, the modulus of a modular type is equal to the value of
9846 its upper bound + 1. However, the upper bound is currently stored
9847 as an int, which is not always big enough to hold the actual bound
9848 value. To workaround this, try to take advantage of the encoding
9849 that GNAT uses with with discrete types. To avoid some unnecessary
9850 parsing, we do this only when the size of TYPE is greater than
9851 the size of the field holding the bound. */
9852 if (TYPE_LENGTH (type
) > sizeof (TYPE_HIGH_BOUND (type
))
9853 && ada_modulus_from_name (type
, &modulus
))
9856 return (ULONGEST
) (unsigned int) TYPE_HIGH_BOUND (type
) + 1;
9860 /* Ada exception catchpoint support:
9861 ---------------------------------
9863 We support 3 kinds of exception catchpoints:
9864 . catchpoints on Ada exceptions
9865 . catchpoints on unhandled Ada exceptions
9866 . catchpoints on failed assertions
9868 Exceptions raised during failed assertions, or unhandled exceptions
9869 could perfectly be caught with the general catchpoint on Ada exceptions.
9870 However, we can easily differentiate these two special cases, and having
9871 the option to distinguish these two cases from the rest can be useful
9872 to zero-in on certain situations.
9874 Exception catchpoints are a specialized form of breakpoint,
9875 since they rely on inserting breakpoints inside known routines
9876 of the GNAT runtime. The implementation therefore uses a standard
9877 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9880 Support in the runtime for exception catchpoints have been changed
9881 a few times already, and these changes affect the implementation
9882 of these catchpoints. In order to be able to support several
9883 variants of the runtime, we use a sniffer that will determine
9884 the runtime variant used by the program being debugged.
9886 At this time, we do not support the use of conditions on Ada exception
9887 catchpoints. The COND and COND_STRING fields are therefore set
9888 to NULL (most of the time, see below).
9890 Conditions where EXP_STRING, COND, and COND_STRING are used:
9892 When a user specifies the name of a specific exception in the case
9893 of catchpoints on Ada exceptions, we store the name of that exception
9894 in the EXP_STRING. We then translate this request into an actual
9895 condition stored in COND_STRING, and then parse it into an expression
9898 /* The different types of catchpoints that we introduced for catching
9901 enum exception_catchpoint_kind
9904 ex_catch_exception_unhandled
,
9908 /* Ada's standard exceptions. */
9910 static char *standard_exc
[] = {
9917 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
9919 /* A structure that describes how to support exception catchpoints
9920 for a given executable. */
9922 struct exception_support_info
9924 /* The name of the symbol to break on in order to insert
9925 a catchpoint on exceptions. */
9926 const char *catch_exception_sym
;
9928 /* The name of the symbol to break on in order to insert
9929 a catchpoint on unhandled exceptions. */
9930 const char *catch_exception_unhandled_sym
;
9932 /* The name of the symbol to break on in order to insert
9933 a catchpoint on failed assertions. */
9934 const char *catch_assert_sym
;
9936 /* Assuming that the inferior just triggered an unhandled exception
9937 catchpoint, this function is responsible for returning the address
9938 in inferior memory where the name of that exception is stored.
9939 Return zero if the address could not be computed. */
9940 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
9943 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
9944 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
9946 /* The following exception support info structure describes how to
9947 implement exception catchpoints with the latest version of the
9948 Ada runtime (as of 2007-03-06). */
9950 static const struct exception_support_info default_exception_support_info
=
9952 "__gnat_debug_raise_exception", /* catch_exception_sym */
9953 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9954 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9955 ada_unhandled_exception_name_addr
9958 /* The following exception support info structure describes how to
9959 implement exception catchpoints with a slightly older version
9960 of the Ada runtime. */
9962 static const struct exception_support_info exception_support_info_fallback
=
9964 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9965 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9966 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9967 ada_unhandled_exception_name_addr_from_raise
9970 /* For each executable, we sniff which exception info structure to use
9971 and cache it in the following global variable. */
9973 static const struct exception_support_info
*exception_info
= NULL
;
9975 /* Inspect the Ada runtime and determine which exception info structure
9976 should be used to provide support for exception catchpoints.
9978 This function will always set exception_info, or raise an error. */
9981 ada_exception_support_info_sniffer (void)
9985 /* If the exception info is already known, then no need to recompute it. */
9986 if (exception_info
!= NULL
)
9989 /* Check the latest (default) exception support info. */
9990 sym
= standard_lookup (default_exception_support_info
.catch_exception_sym
,
9994 exception_info
= &default_exception_support_info
;
9998 /* Try our fallback exception suport info. */
9999 sym
= standard_lookup (exception_support_info_fallback
.catch_exception_sym
,
10003 exception_info
= &exception_support_info_fallback
;
10007 /* Sometimes, it is normal for us to not be able to find the routine
10008 we are looking for. This happens when the program is linked with
10009 the shared version of the GNAT runtime, and the program has not been
10010 started yet. Inform the user of these two possible causes if
10013 if (ada_update_initial_language (language_unknown
, NULL
) != language_ada
)
10014 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10016 /* If the symbol does not exist, then check that the program is
10017 already started, to make sure that shared libraries have been
10018 loaded. If it is not started, this may mean that the symbol is
10019 in a shared library. */
10021 if (ptid_get_pid (inferior_ptid
) == 0)
10022 error (_("Unable to insert catchpoint. Try to start the program first."));
10024 /* At this point, we know that we are debugging an Ada program and
10025 that the inferior has been started, but we still are not able to
10026 find the run-time symbols. That can mean that we are in
10027 configurable run time mode, or that a-except as been optimized
10028 out by the linker... In any case, at this point it is not worth
10029 supporting this feature. */
10031 error (_("Cannot insert catchpoints in this configuration."));
10034 /* An observer of "executable_changed" events.
10035 Its role is to clear certain cached values that need to be recomputed
10036 each time a new executable is loaded by GDB. */
10039 ada_executable_changed_observer (void)
10041 /* If the executable changed, then it is possible that the Ada runtime
10042 is different. So we need to invalidate the exception support info
10044 exception_info
= NULL
;
10047 /* Return the name of the function at PC, NULL if could not find it.
10048 This function only checks the debugging information, not the symbol
10052 function_name_from_pc (CORE_ADDR pc
)
10056 if (!find_pc_partial_function (pc
, &func_name
, NULL
, NULL
))
10062 /* True iff FRAME is very likely to be that of a function that is
10063 part of the runtime system. This is all very heuristic, but is
10064 intended to be used as advice as to what frames are uninteresting
10068 is_known_support_routine (struct frame_info
*frame
)
10070 struct symtab_and_line sal
;
10074 /* If this code does not have any debugging information (no symtab),
10075 This cannot be any user code. */
10077 find_frame_sal (frame
, &sal
);
10078 if (sal
.symtab
== NULL
)
10081 /* If there is a symtab, but the associated source file cannot be
10082 located, then assume this is not user code: Selecting a frame
10083 for which we cannot display the code would not be very helpful
10084 for the user. This should also take care of case such as VxWorks
10085 where the kernel has some debugging info provided for a few units. */
10087 if (symtab_to_fullname (sal
.symtab
) == NULL
)
10090 /* Check the unit filename againt the Ada runtime file naming.
10091 We also check the name of the objfile against the name of some
10092 known system libraries that sometimes come with debugging info
10095 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
10097 re_comp (known_runtime_file_name_patterns
[i
]);
10098 if (re_exec (sal
.symtab
->filename
))
10100 if (sal
.symtab
->objfile
!= NULL
10101 && re_exec (sal
.symtab
->objfile
->name
))
10105 /* Check whether the function is a GNAT-generated entity. */
10107 func_name
= function_name_from_pc (get_frame_address_in_block (frame
));
10108 if (func_name
== NULL
)
10111 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
10113 re_comp (known_auxiliary_function_name_patterns
[i
]);
10114 if (re_exec (func_name
))
10121 /* Find the first frame that contains debugging information and that is not
10122 part of the Ada run-time, starting from FI and moving upward. */
10125 ada_find_printable_frame (struct frame_info
*fi
)
10127 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
10129 if (!is_known_support_routine (fi
))
10138 /* Assuming that the inferior just triggered an unhandled exception
10139 catchpoint, return the address in inferior memory where the name
10140 of the exception is stored.
10142 Return zero if the address could not be computed. */
10145 ada_unhandled_exception_name_addr (void)
10147 return parse_and_eval_address ("e.full_name");
10150 /* Same as ada_unhandled_exception_name_addr, except that this function
10151 should be used when the inferior uses an older version of the runtime,
10152 where the exception name needs to be extracted from a specific frame
10153 several frames up in the callstack. */
10156 ada_unhandled_exception_name_addr_from_raise (void)
10159 struct frame_info
*fi
;
10161 /* To determine the name of this exception, we need to select
10162 the frame corresponding to RAISE_SYM_NAME. This frame is
10163 at least 3 levels up, so we simply skip the first 3 frames
10164 without checking the name of their associated function. */
10165 fi
= get_current_frame ();
10166 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
10168 fi
= get_prev_frame (fi
);
10172 const char *func_name
=
10173 function_name_from_pc (get_frame_address_in_block (fi
));
10174 if (func_name
!= NULL
10175 && strcmp (func_name
, exception_info
->catch_exception_sym
) == 0)
10176 break; /* We found the frame we were looking for... */
10177 fi
= get_prev_frame (fi
);
10184 return parse_and_eval_address ("id.full_name");
10187 /* Assuming the inferior just triggered an Ada exception catchpoint
10188 (of any type), return the address in inferior memory where the name
10189 of the exception is stored, if applicable.
10191 Return zero if the address could not be computed, or if not relevant. */
10194 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex
,
10195 struct breakpoint
*b
)
10199 case ex_catch_exception
:
10200 return (parse_and_eval_address ("e.full_name"));
10203 case ex_catch_exception_unhandled
:
10204 return exception_info
->unhandled_exception_name_addr ();
10207 case ex_catch_assert
:
10208 return 0; /* Exception name is not relevant in this case. */
10212 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10216 return 0; /* Should never be reached. */
10219 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10220 any error that ada_exception_name_addr_1 might cause to be thrown.
10221 When an error is intercepted, a warning with the error message is printed,
10222 and zero is returned. */
10225 ada_exception_name_addr (enum exception_catchpoint_kind ex
,
10226 struct breakpoint
*b
)
10228 struct gdb_exception e
;
10229 CORE_ADDR result
= 0;
10231 TRY_CATCH (e
, RETURN_MASK_ERROR
)
10233 result
= ada_exception_name_addr_1 (ex
, b
);
10238 warning (_("failed to get exception name: %s"), e
.message
);
10245 /* Implement the PRINT_IT method in the breakpoint_ops structure
10246 for all exception catchpoint kinds. */
10248 static enum print_stop_action
10249 print_it_exception (enum exception_catchpoint_kind ex
, struct breakpoint
*b
)
10251 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
10252 char exception_name
[256];
10256 read_memory (addr
, exception_name
, sizeof (exception_name
) - 1);
10257 exception_name
[sizeof (exception_name
) - 1] = '\0';
10260 ada_find_printable_frame (get_current_frame ());
10262 annotate_catchpoint (b
->number
);
10265 case ex_catch_exception
:
10267 printf_filtered (_("\nCatchpoint %d, %s at "),
10268 b
->number
, exception_name
);
10270 printf_filtered (_("\nCatchpoint %d, exception at "), b
->number
);
10272 case ex_catch_exception_unhandled
:
10274 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10275 b
->number
, exception_name
);
10277 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10280 case ex_catch_assert
:
10281 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10286 return PRINT_SRC_AND_LOC
;
10289 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10290 for all exception catchpoint kinds. */
10293 print_one_exception (enum exception_catchpoint_kind ex
,
10294 struct breakpoint
*b
, CORE_ADDR
*last_addr
)
10296 struct value_print_options opts
;
10298 get_user_print_options (&opts
);
10299 if (opts
.addressprint
)
10301 annotate_field (4);
10302 ui_out_field_core_addr (uiout
, "addr", b
->loc
->address
);
10305 annotate_field (5);
10306 *last_addr
= b
->loc
->address
;
10309 case ex_catch_exception
:
10310 if (b
->exp_string
!= NULL
)
10312 char *msg
= xstrprintf (_("`%s' Ada exception"), b
->exp_string
);
10314 ui_out_field_string (uiout
, "what", msg
);
10318 ui_out_field_string (uiout
, "what", "all Ada exceptions");
10322 case ex_catch_exception_unhandled
:
10323 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
10326 case ex_catch_assert
:
10327 ui_out_field_string (uiout
, "what", "failed Ada assertions");
10331 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10336 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10337 for all exception catchpoint kinds. */
10340 print_mention_exception (enum exception_catchpoint_kind ex
,
10341 struct breakpoint
*b
)
10345 case ex_catch_exception
:
10346 if (b
->exp_string
!= NULL
)
10347 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10348 b
->number
, b
->exp_string
);
10350 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b
->number
);
10354 case ex_catch_exception_unhandled
:
10355 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10359 case ex_catch_assert
:
10360 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b
->number
);
10364 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10369 /* Virtual table for "catch exception" breakpoints. */
10371 static enum print_stop_action
10372 print_it_catch_exception (struct breakpoint
*b
)
10374 return print_it_exception (ex_catch_exception
, b
);
10378 print_one_catch_exception (struct breakpoint
*b
, CORE_ADDR
*last_addr
)
10380 print_one_exception (ex_catch_exception
, b
, last_addr
);
10384 print_mention_catch_exception (struct breakpoint
*b
)
10386 print_mention_exception (ex_catch_exception
, b
);
10389 static struct breakpoint_ops catch_exception_breakpoint_ops
=
10393 NULL
, /* breakpoint_hit */
10394 print_it_catch_exception
,
10395 print_one_catch_exception
,
10396 print_mention_catch_exception
10399 /* Virtual table for "catch exception unhandled" breakpoints. */
10401 static enum print_stop_action
10402 print_it_catch_exception_unhandled (struct breakpoint
*b
)
10404 return print_it_exception (ex_catch_exception_unhandled
, b
);
10408 print_one_catch_exception_unhandled (struct breakpoint
*b
, CORE_ADDR
*last_addr
)
10410 print_one_exception (ex_catch_exception_unhandled
, b
, last_addr
);
10414 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
10416 print_mention_exception (ex_catch_exception_unhandled
, b
);
10419 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
= {
10422 NULL
, /* breakpoint_hit */
10423 print_it_catch_exception_unhandled
,
10424 print_one_catch_exception_unhandled
,
10425 print_mention_catch_exception_unhandled
10428 /* Virtual table for "catch assert" breakpoints. */
10430 static enum print_stop_action
10431 print_it_catch_assert (struct breakpoint
*b
)
10433 return print_it_exception (ex_catch_assert
, b
);
10437 print_one_catch_assert (struct breakpoint
*b
, CORE_ADDR
*last_addr
)
10439 print_one_exception (ex_catch_assert
, b
, last_addr
);
10443 print_mention_catch_assert (struct breakpoint
*b
)
10445 print_mention_exception (ex_catch_assert
, b
);
10448 static struct breakpoint_ops catch_assert_breakpoint_ops
= {
10451 NULL
, /* breakpoint_hit */
10452 print_it_catch_assert
,
10453 print_one_catch_assert
,
10454 print_mention_catch_assert
10457 /* Return non-zero if B is an Ada exception catchpoint. */
10460 ada_exception_catchpoint_p (struct breakpoint
*b
)
10462 return (b
->ops
== &catch_exception_breakpoint_ops
10463 || b
->ops
== &catch_exception_unhandled_breakpoint_ops
10464 || b
->ops
== &catch_assert_breakpoint_ops
);
10467 /* Return a newly allocated copy of the first space-separated token
10468 in ARGSP, and then adjust ARGSP to point immediately after that
10471 Return NULL if ARGPS does not contain any more tokens. */
10474 ada_get_next_arg (char **argsp
)
10476 char *args
= *argsp
;
10480 /* Skip any leading white space. */
10482 while (isspace (*args
))
10485 if (args
[0] == '\0')
10486 return NULL
; /* No more arguments. */
10488 /* Find the end of the current argument. */
10491 while (*end
!= '\0' && !isspace (*end
))
10494 /* Adjust ARGSP to point to the start of the next argument. */
10498 /* Make a copy of the current argument and return it. */
10500 result
= xmalloc (end
- args
+ 1);
10501 strncpy (result
, args
, end
- args
);
10502 result
[end
- args
] = '\0';
10507 /* Split the arguments specified in a "catch exception" command.
10508 Set EX to the appropriate catchpoint type.
10509 Set EXP_STRING to the name of the specific exception if
10510 specified by the user. */
10513 catch_ada_exception_command_split (char *args
,
10514 enum exception_catchpoint_kind
*ex
,
10517 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
10518 char *exception_name
;
10520 exception_name
= ada_get_next_arg (&args
);
10521 make_cleanup (xfree
, exception_name
);
10523 /* Check that we do not have any more arguments. Anything else
10526 while (isspace (*args
))
10529 if (args
[0] != '\0')
10530 error (_("Junk at end of expression"));
10532 discard_cleanups (old_chain
);
10534 if (exception_name
== NULL
)
10536 /* Catch all exceptions. */
10537 *ex
= ex_catch_exception
;
10538 *exp_string
= NULL
;
10540 else if (strcmp (exception_name
, "unhandled") == 0)
10542 /* Catch unhandled exceptions. */
10543 *ex
= ex_catch_exception_unhandled
;
10544 *exp_string
= NULL
;
10548 /* Catch a specific exception. */
10549 *ex
= ex_catch_exception
;
10550 *exp_string
= exception_name
;
10554 /* Return the name of the symbol on which we should break in order to
10555 implement a catchpoint of the EX kind. */
10557 static const char *
10558 ada_exception_sym_name (enum exception_catchpoint_kind ex
)
10560 gdb_assert (exception_info
!= NULL
);
10564 case ex_catch_exception
:
10565 return (exception_info
->catch_exception_sym
);
10567 case ex_catch_exception_unhandled
:
10568 return (exception_info
->catch_exception_unhandled_sym
);
10570 case ex_catch_assert
:
10571 return (exception_info
->catch_assert_sym
);
10574 internal_error (__FILE__
, __LINE__
,
10575 _("unexpected catchpoint kind (%d)"), ex
);
10579 /* Return the breakpoint ops "virtual table" used for catchpoints
10582 static struct breakpoint_ops
*
10583 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex
)
10587 case ex_catch_exception
:
10588 return (&catch_exception_breakpoint_ops
);
10590 case ex_catch_exception_unhandled
:
10591 return (&catch_exception_unhandled_breakpoint_ops
);
10593 case ex_catch_assert
:
10594 return (&catch_assert_breakpoint_ops
);
10597 internal_error (__FILE__
, __LINE__
,
10598 _("unexpected catchpoint kind (%d)"), ex
);
10602 /* Return the condition that will be used to match the current exception
10603 being raised with the exception that the user wants to catch. This
10604 assumes that this condition is used when the inferior just triggered
10605 an exception catchpoint.
10607 The string returned is a newly allocated string that needs to be
10608 deallocated later. */
10611 ada_exception_catchpoint_cond_string (const char *exp_string
)
10615 /* The standard exceptions are a special case. They are defined in
10616 runtime units that have been compiled without debugging info; if
10617 EXP_STRING is the not-fully-qualified name of a standard
10618 exception (e.g. "constraint_error") then, during the evaluation
10619 of the condition expression, the symbol lookup on this name would
10620 *not* return this standard exception. The catchpoint condition
10621 may then be set only on user-defined exceptions which have the
10622 same not-fully-qualified name (e.g. my_package.constraint_error).
10624 To avoid this unexcepted behavior, these standard exceptions are
10625 systematically prefixed by "standard". This means that "catch
10626 exception constraint_error" is rewritten into "catch exception
10627 standard.constraint_error".
10629 If an exception named contraint_error is defined in another package of
10630 the inferior program, then the only way to specify this exception as a
10631 breakpoint condition is to use its fully-qualified named:
10632 e.g. my_package.constraint_error. */
10634 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
10636 if (strcmp (standard_exc
[i
], exp_string
) == 0)
10638 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10642 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string
);
10645 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10647 static struct expression
*
10648 ada_parse_catchpoint_condition (char *cond_string
,
10649 struct symtab_and_line sal
)
10651 return (parse_exp_1 (&cond_string
, block_for_pc (sal
.pc
), 0));
10654 /* Return the symtab_and_line that should be used to insert an exception
10655 catchpoint of the TYPE kind.
10657 EX_STRING should contain the name of a specific exception
10658 that the catchpoint should catch, or NULL otherwise.
10660 The idea behind all the remaining parameters is that their names match
10661 the name of certain fields in the breakpoint structure that are used to
10662 handle exception catchpoints. This function returns the value to which
10663 these fields should be set, depending on the type of catchpoint we need
10666 If COND and COND_STRING are both non-NULL, any value they might
10667 hold will be free'ed, and then replaced by newly allocated ones.
10668 These parameters are left untouched otherwise. */
10670 static struct symtab_and_line
10671 ada_exception_sal (enum exception_catchpoint_kind ex
, char *exp_string
,
10672 char **addr_string
, char **cond_string
,
10673 struct expression
**cond
, struct breakpoint_ops
**ops
)
10675 const char *sym_name
;
10676 struct symbol
*sym
;
10677 struct symtab_and_line sal
;
10679 /* First, find out which exception support info to use. */
10680 ada_exception_support_info_sniffer ();
10682 /* Then lookup the function on which we will break in order to catch
10683 the Ada exceptions requested by the user. */
10685 sym_name
= ada_exception_sym_name (ex
);
10686 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
10688 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10689 that should be compiled with debugging information. As a result, we
10690 expect to find that symbol in the symtabs. If we don't find it, then
10691 the target most likely does not support Ada exceptions, or we cannot
10692 insert exception breakpoints yet, because the GNAT runtime hasn't been
10695 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10696 in such a way that no debugging information is produced for the symbol
10697 we are looking for. In this case, we could search the minimal symbols
10698 as a fall-back mechanism. This would still be operating in degraded
10699 mode, however, as we would still be missing the debugging information
10700 that is needed in order to extract the name of the exception being
10701 raised (this name is printed in the catchpoint message, and is also
10702 used when trying to catch a specific exception). We do not handle
10703 this case for now. */
10706 error (_("Unable to break on '%s' in this configuration."), sym_name
);
10708 /* Make sure that the symbol we found corresponds to a function. */
10709 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
10710 error (_("Symbol \"%s\" is not a function (class = %d)"),
10711 sym_name
, SYMBOL_CLASS (sym
));
10713 sal
= find_function_start_sal (sym
, 1);
10715 /* Set ADDR_STRING. */
10717 *addr_string
= xstrdup (sym_name
);
10719 /* Set the COND and COND_STRING (if not NULL). */
10721 if (cond_string
!= NULL
&& cond
!= NULL
)
10723 if (*cond_string
!= NULL
)
10725 xfree (*cond_string
);
10726 *cond_string
= NULL
;
10733 if (exp_string
!= NULL
)
10735 *cond_string
= ada_exception_catchpoint_cond_string (exp_string
);
10736 *cond
= ada_parse_catchpoint_condition (*cond_string
, sal
);
10741 *ops
= ada_exception_breakpoint_ops (ex
);
10746 /* Parse the arguments (ARGS) of the "catch exception" command.
10748 Set TYPE to the appropriate exception catchpoint type.
10749 If the user asked the catchpoint to catch only a specific
10750 exception, then save the exception name in ADDR_STRING.
10752 See ada_exception_sal for a description of all the remaining
10753 function arguments of this function. */
10755 struct symtab_and_line
10756 ada_decode_exception_location (char *args
, char **addr_string
,
10757 char **exp_string
, char **cond_string
,
10758 struct expression
**cond
,
10759 struct breakpoint_ops
**ops
)
10761 enum exception_catchpoint_kind ex
;
10763 catch_ada_exception_command_split (args
, &ex
, exp_string
);
10764 return ada_exception_sal (ex
, *exp_string
, addr_string
, cond_string
,
10768 struct symtab_and_line
10769 ada_decode_assert_location (char *args
, char **addr_string
,
10770 struct breakpoint_ops
**ops
)
10772 /* Check that no argument where provided at the end of the command. */
10776 while (isspace (*args
))
10779 error (_("Junk at end of arguments."));
10782 return ada_exception_sal (ex_catch_assert
, NULL
, addr_string
, NULL
, NULL
,
10787 /* Information about operators given special treatment in functions
10789 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10791 #define ADA_OPERATORS \
10792 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10793 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10794 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10795 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10797 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10800 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10801 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10802 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10805 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10806 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10807 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10808 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10809 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10810 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10813 ada_operator_length (struct expression
*exp
, int pc
, int *oplenp
, int *argsp
)
10815 switch (exp
->elts
[pc
- 1].opcode
)
10818 operator_length_standard (exp
, pc
, oplenp
, argsp
);
10821 #define OP_DEFN(op, len, args, binop) \
10822 case op: *oplenp = len; *argsp = args; break;
10828 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
10833 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
10839 ada_op_name (enum exp_opcode opcode
)
10844 return op_name_standard (opcode
);
10846 #define OP_DEFN(op, len, args, binop) case op: return #op;
10851 return "OP_AGGREGATE";
10853 return "OP_CHOICES";
10859 /* As for operator_length, but assumes PC is pointing at the first
10860 element of the operator, and gives meaningful results only for the
10861 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10864 ada_forward_operator_length (struct expression
*exp
, int pc
,
10865 int *oplenp
, int *argsp
)
10867 switch (exp
->elts
[pc
].opcode
)
10870 *oplenp
= *argsp
= 0;
10873 #define OP_DEFN(op, len, args, binop) \
10874 case op: *oplenp = len; *argsp = args; break;
10880 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10885 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
10891 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10892 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
10900 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
10902 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
10907 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
10911 /* Ada attributes ('Foo). */
10914 case OP_ATR_LENGTH
:
10918 case OP_ATR_MODULUS
:
10925 case UNOP_IN_RANGE
:
10927 /* XXX: gdb_sprint_host_address, type_sprint */
10928 fprintf_filtered (stream
, _("Type @"));
10929 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
10930 fprintf_filtered (stream
, " (");
10931 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
10932 fprintf_filtered (stream
, ")");
10934 case BINOP_IN_BOUNDS
:
10935 fprintf_filtered (stream
, " (%d)",
10936 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
10938 case TERNOP_IN_RANGE
:
10943 case OP_DISCRETE_RANGE
:
10944 case OP_POSITIONAL
:
10951 char *name
= &exp
->elts
[elt
+ 2].string
;
10952 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
10953 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
10958 return dump_subexp_body_standard (exp
, stream
, elt
);
10962 for (i
= 0; i
< nargs
; i
+= 1)
10963 elt
= dump_subexp (exp
, stream
, elt
);
10968 /* The Ada extension of print_subexp (q.v.). */
10971 ada_print_subexp (struct expression
*exp
, int *pos
,
10972 struct ui_file
*stream
, enum precedence prec
)
10974 int oplen
, nargs
, i
;
10976 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
10978 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
10985 print_subexp_standard (exp
, pos
, stream
, prec
);
10989 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
10992 case BINOP_IN_BOUNDS
:
10993 /* XXX: sprint_subexp */
10994 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
10995 fputs_filtered (" in ", stream
);
10996 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
10997 fputs_filtered ("'range", stream
);
10998 if (exp
->elts
[pc
+ 1].longconst
> 1)
10999 fprintf_filtered (stream
, "(%ld)",
11000 (long) exp
->elts
[pc
+ 1].longconst
);
11003 case TERNOP_IN_RANGE
:
11004 if (prec
>= PREC_EQUAL
)
11005 fputs_filtered ("(", stream
);
11006 /* XXX: sprint_subexp */
11007 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11008 fputs_filtered (" in ", stream
);
11009 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11010 fputs_filtered (" .. ", stream
);
11011 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11012 if (prec
>= PREC_EQUAL
)
11013 fputs_filtered (")", stream
);
11018 case OP_ATR_LENGTH
:
11022 case OP_ATR_MODULUS
:
11027 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11029 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
11030 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0);
11034 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11035 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
11039 for (tem
= 1; tem
< nargs
; tem
+= 1)
11041 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
11042 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
11044 fputs_filtered (")", stream
);
11049 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
11050 fputs_filtered ("'(", stream
);
11051 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
11052 fputs_filtered (")", stream
);
11055 case UNOP_IN_RANGE
:
11056 /* XXX: sprint_subexp */
11057 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11058 fputs_filtered (" in ", stream
);
11059 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0);
11062 case OP_DISCRETE_RANGE
:
11063 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11064 fputs_filtered ("..", stream
);
11065 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11069 fputs_filtered ("others => ", stream
);
11070 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11074 for (i
= 0; i
< nargs
-1; i
+= 1)
11077 fputs_filtered ("|", stream
);
11078 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11080 fputs_filtered (" => ", stream
);
11081 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11084 case OP_POSITIONAL
:
11085 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11089 fputs_filtered ("(", stream
);
11090 for (i
= 0; i
< nargs
; i
+= 1)
11093 fputs_filtered (", ", stream
);
11094 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11096 fputs_filtered (")", stream
);
11101 /* Table mapping opcodes into strings for printing operators
11102 and precedences of the operators. */
11104 static const struct op_print ada_op_print_tab
[] = {
11105 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
11106 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
11107 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
11108 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
11109 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
11110 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
11111 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
11112 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
11113 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
11114 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
11115 {">", BINOP_GTR
, PREC_ORDER
, 0},
11116 {"<", BINOP_LESS
, PREC_ORDER
, 0},
11117 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
11118 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
11119 {"+", BINOP_ADD
, PREC_ADD
, 0},
11120 {"-", BINOP_SUB
, PREC_ADD
, 0},
11121 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
11122 {"*", BINOP_MUL
, PREC_MUL
, 0},
11123 {"/", BINOP_DIV
, PREC_MUL
, 0},
11124 {"rem", BINOP_REM
, PREC_MUL
, 0},
11125 {"mod", BINOP_MOD
, PREC_MUL
, 0},
11126 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
11127 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
11128 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
11129 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
11130 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
11131 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
11132 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
11133 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
11134 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
11135 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
11139 enum ada_primitive_types
{
11140 ada_primitive_type_int
,
11141 ada_primitive_type_long
,
11142 ada_primitive_type_short
,
11143 ada_primitive_type_char
,
11144 ada_primitive_type_float
,
11145 ada_primitive_type_double
,
11146 ada_primitive_type_void
,
11147 ada_primitive_type_long_long
,
11148 ada_primitive_type_long_double
,
11149 ada_primitive_type_natural
,
11150 ada_primitive_type_positive
,
11151 ada_primitive_type_system_address
,
11152 nr_ada_primitive_types
11156 ada_language_arch_info (struct gdbarch
*gdbarch
,
11157 struct language_arch_info
*lai
)
11159 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
11160 lai
->primitive_type_vector
11161 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
11163 lai
->primitive_type_vector
[ada_primitive_type_int
] =
11164 init_type (TYPE_CODE_INT
,
11165 gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
,
11166 0, "integer", (struct objfile
*) NULL
);
11167 lai
->primitive_type_vector
[ada_primitive_type_long
] =
11168 init_type (TYPE_CODE_INT
,
11169 gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
11170 0, "long_integer", (struct objfile
*) NULL
);
11171 lai
->primitive_type_vector
[ada_primitive_type_short
] =
11172 init_type (TYPE_CODE_INT
,
11173 gdbarch_short_bit (gdbarch
) / TARGET_CHAR_BIT
,
11174 0, "short_integer", (struct objfile
*) NULL
);
11175 lai
->string_char_type
=
11176 lai
->primitive_type_vector
[ada_primitive_type_char
] =
11177 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
11178 0, "character", (struct objfile
*) NULL
);
11179 lai
->primitive_type_vector
[ada_primitive_type_float
] =
11180 init_float_type (gdbarch_float_bit (gdbarch
),
11182 lai
->primitive_type_vector
[ada_primitive_type_double
] =
11183 init_float_type (gdbarch_double_bit (gdbarch
),
11184 "long_float", NULL
);
11185 lai
->primitive_type_vector
[ada_primitive_type_long_long
] =
11186 init_type (TYPE_CODE_INT
,
11187 gdbarch_long_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
11188 0, "long_long_integer", (struct objfile
*) NULL
);
11189 lai
->primitive_type_vector
[ada_primitive_type_long_double
] =
11190 init_float_type (gdbarch_double_bit (gdbarch
),
11191 "long_long_float", NULL
);
11192 lai
->primitive_type_vector
[ada_primitive_type_natural
] =
11193 init_type (TYPE_CODE_INT
,
11194 gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
,
11195 0, "natural", (struct objfile
*) NULL
);
11196 lai
->primitive_type_vector
[ada_primitive_type_positive
] =
11197 init_type (TYPE_CODE_INT
,
11198 gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
,
11199 0, "positive", (struct objfile
*) NULL
);
11200 lai
->primitive_type_vector
[ada_primitive_type_void
] = builtin
->builtin_void
;
11202 lai
->primitive_type_vector
[ada_primitive_type_system_address
] =
11203 lookup_pointer_type (init_type (TYPE_CODE_VOID
, 1, 0, "void",
11204 (struct objfile
*) NULL
));
11205 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
11206 = "system__address";
11208 lai
->bool_type_symbol
= NULL
;
11209 lai
->bool_type_default
= builtin
->builtin_bool
;
11212 /* Language vector */
11214 /* Not really used, but needed in the ada_language_defn. */
11217 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
11219 ada_emit_char (c
, type
, stream
, quoter
, 1);
11225 warnings_issued
= 0;
11226 return ada_parse ();
11229 static const struct exp_descriptor ada_exp_descriptor
= {
11231 ada_operator_length
,
11233 ada_dump_subexp_body
,
11234 ada_evaluate_subexp
11237 const struct language_defn ada_language_defn
= {
11238 "ada", /* Language name */
11242 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
11243 that's not quite what this means. */
11245 macro_expansion_no
,
11246 &ada_exp_descriptor
,
11250 ada_printchar
, /* Print a character constant */
11251 ada_printstr
, /* Function to print string constant */
11252 emit_char
, /* Function to print single char (not used) */
11253 ada_print_type
, /* Print a type using appropriate syntax */
11254 default_print_typedef
, /* Print a typedef using appropriate syntax */
11255 ada_val_print
, /* Print a value using appropriate syntax */
11256 ada_value_print
, /* Print a top-level value */
11257 NULL
, /* Language specific skip_trampoline */
11258 NULL
, /* name_of_this */
11259 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
11260 basic_lookup_transparent_type
, /* lookup_transparent_type */
11261 ada_la_decode
, /* Language specific symbol demangler */
11262 NULL
, /* Language specific class_name_from_physname */
11263 ada_op_print_tab
, /* expression operators for printing */
11264 0, /* c-style arrays */
11265 1, /* String lower bound */
11266 ada_get_gdb_completer_word_break_characters
,
11267 ada_make_symbol_completion_list
,
11268 ada_language_arch_info
,
11269 ada_print_array_index
,
11270 default_pass_by_reference
,
11275 /* Provide a prototype to silence -Wmissing-prototypes. */
11276 extern initialize_file_ftype _initialize_ada_language
;
11279 _initialize_ada_language (void)
11281 add_language (&ada_language_defn
);
11283 varsize_limit
= 65536;
11285 obstack_init (&symbol_list_obstack
);
11287 decoded_names_store
= htab_create_alloc
11288 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
11289 NULL
, xcalloc
, xfree
);
11291 observer_attach_executable_changed (ada_executable_changed_observer
);