Remove declarations from m32c-tdep.c
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269
3270 argvec = NULL;
3271 nargs = 0;
3272 exp = expp->get ();
3273
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3275 if needed. */
3276 switch (op)
3277 {
3278 case OP_FUNCALL:
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3281 *pos += 7;
3282 else
3283 {
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 0, NULL);
3286 }
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3288 break;
3289
3290 case UNOP_ADDR:
3291 *pos += 1;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 break;
3294
3295 case UNOP_QUAL:
3296 *pos += 3;
3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3298 break;
3299
3300 case OP_ATR_MODULUS:
3301 case OP_ATR_SIZE:
3302 case OP_ATR_TAG:
3303 case OP_ATR_FIRST:
3304 case OP_ATR_LAST:
3305 case OP_ATR_LENGTH:
3306 case OP_ATR_POS:
3307 case OP_ATR_VAL:
3308 case OP_ATR_MIN:
3309 case OP_ATR_MAX:
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3312 case UNOP_IN_RANGE:
3313 case OP_AGGREGATE:
3314 case OP_OTHERS:
3315 case OP_CHOICES:
3316 case OP_POSITIONAL:
3317 case OP_DISCRETE_RANGE:
3318 case OP_NAME:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3320 *pos += oplen;
3321 break;
3322
3323 case BINOP_ASSIGN:
3324 {
3325 struct value *arg1;
3326
3327 *pos += 1;
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3329 if (arg1 == NULL)
3330 resolve_subexp (expp, pos, 1, NULL);
3331 else
3332 resolve_subexp (expp, pos, 1, value_type (arg1));
3333 break;
3334 }
3335
3336 case UNOP_CAST:
3337 *pos += 3;
3338 nargs = 1;
3339 break;
3340
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_EXP:
3348 case BINOP_CONCAT:
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
3354
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361
3362 case BINOP_REPEAT:
3363 case BINOP_SUBSCRIPT:
3364 case BINOP_COMMA:
3365 *pos += 1;
3366 nargs = 2;
3367 break;
3368
3369 case UNOP_NEG:
3370 case UNOP_PLUS:
3371 case UNOP_LOGICAL_NOT:
3372 case UNOP_ABS:
3373 case UNOP_IND:
3374 *pos += 1;
3375 nargs = 1;
3376 break;
3377
3378 case OP_LONG:
3379 case OP_FLOAT:
3380 case OP_VAR_VALUE:
3381 case OP_VAR_MSYM_VALUE:
3382 *pos += 4;
3383 break;
3384
3385 case OP_TYPE:
3386 case OP_BOOL:
3387 case OP_LAST:
3388 case OP_INTERNALVAR:
3389 *pos += 3;
3390 break;
3391
3392 case UNOP_MEMVAL:
3393 *pos += 3;
3394 nargs = 1;
3395 break;
3396
3397 case OP_REGISTER:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3399 break;
3400
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3403 nargs = 1;
3404 break;
3405
3406 case TERNOP_SLICE:
3407 *pos += 1;
3408 nargs = 3;
3409 break;
3410
3411 case OP_STRING:
3412 break;
3413
3414 default:
3415 error (_("Unexpected operator during name resolution"));
3416 }
3417
3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3421 argvec[i] = NULL;
3422 exp = expp->get ();
3423
3424 /* Pass two: perform any resolution on principal operator. */
3425 switch (op)
3426 {
3427 default:
3428 break;
3429
3430 case OP_VAR_VALUE:
3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3432 {
3433 std::vector<struct block_symbol> candidates;
3434 int n_candidates;
3435
3436 n_candidates =
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
3440 &candidates);
3441
3442 if (n_candidates > 1)
3443 {
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3446 out all types. */
3447 int j;
3448 for (j = 0; j < n_candidates; j += 1)
3449 switch (SYMBOL_CLASS (candidates[j].symbol))
3450 {
3451 case LOC_REGISTER:
3452 case LOC_ARG:
3453 case LOC_REF_ARG:
3454 case LOC_REGPARM_ADDR:
3455 case LOC_LOCAL:
3456 case LOC_COMPUTED:
3457 goto FoundNonType;
3458 default:
3459 break;
3460 }
3461 FoundNonType:
3462 if (j < n_candidates)
3463 {
3464 j = 0;
3465 while (j < n_candidates)
3466 {
3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3468 {
3469 candidates[j] = candidates[n_candidates - 1];
3470 n_candidates -= 1;
3471 }
3472 else
3473 j += 1;
3474 }
3475 }
3476 }
3477
3478 if (n_candidates == 0)
3479 error (_("No definition found for %s"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3482 i = 0;
3483 else if (deprocedure_p
3484 && !is_nonfunction (candidates.data (), n_candidates))
3485 {
3486 i = ada_resolve_function
3487 (candidates.data (), n_candidates, NULL, 0,
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3489 context_type);
3490 if (i < 0)
3491 error (_("Could not find a match for %s"),
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 }
3494 else
3495 {
3496 printf_filtered (_("Multiple matches for %s\n"),
3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 user_select_syms (candidates.data (), n_candidates, 1);
3499 i = 0;
3500 }
3501
3502 exp->elts[pc + 1].block = candidates[i].block;
3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
3504 innermost_block.update (candidates[i]);
3505 }
3506
3507 if (deprocedure_p
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3509 == TYPE_CODE_FUNC))
3510 {
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
3514 exp = expp->get ();
3515 }
3516 break;
3517
3518 case OP_FUNCALL:
3519 {
3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3522 {
3523 std::vector<struct block_symbol> candidates;
3524 int n_candidates;
3525
3526 n_candidates =
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
3530 &candidates);
3531
3532 if (n_candidates == 1)
3533 i = 0;
3534 else
3535 {
3536 i = ada_resolve_function
3537 (candidates.data (), n_candidates,
3538 argvec, nargs,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3540 context_type);
3541 if (i < 0)
3542 error (_("Could not find a match for %s"),
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3544 }
3545
3546 exp->elts[pc + 4].block = candidates[i].block;
3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
3548 innermost_block.update (candidates[i]);
3549 }
3550 }
3551 break;
3552 case BINOP_ADD:
3553 case BINOP_SUB:
3554 case BINOP_MUL:
3555 case BINOP_DIV:
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_CONCAT:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562 case BINOP_EQUAL:
3563 case BINOP_NOTEQUAL:
3564 case BINOP_LESS:
3565 case BINOP_GTR:
3566 case BINOP_LEQ:
3567 case BINOP_GEQ:
3568 case BINOP_EXP:
3569 case UNOP_NEG:
3570 case UNOP_PLUS:
3571 case UNOP_LOGICAL_NOT:
3572 case UNOP_ABS:
3573 if (possible_user_operator_p (op, argvec))
3574 {
3575 std::vector<struct block_symbol> candidates;
3576 int n_candidates;
3577
3578 n_candidates =
3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
3580 (struct block *) NULL, VAR_DOMAIN,
3581 &candidates);
3582
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
3585 if (i < 0)
3586 break;
3587
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
3591 exp = expp->get ();
3592 }
3593 break;
3594
3595 case OP_TYPE:
3596 case OP_REGISTER:
3597 return NULL;
3598 }
3599
3600 *pos = pc;
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3605 else
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, 0, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = expp->get ();
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 expp->reset (newexp);
4134 }
4135
4136 /* Type-class predicates */
4137
4138 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4139 or FLOAT). */
4140
4141 static int
4142 numeric_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_FLT:
4152 return 1;
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4156 default:
4157 return 0;
4158 }
4159 }
4160 }
4161
4162 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4163
4164 static int
4165 integer_type_p (struct type *type)
4166 {
4167 if (type == NULL)
4168 return 0;
4169 else
4170 {
4171 switch (TYPE_CODE (type))
4172 {
4173 case TYPE_CODE_INT:
4174 return 1;
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4178 default:
4179 return 0;
4180 }
4181 }
4182 }
4183
4184 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4185
4186 static int
4187 scalar_type_p (struct type *type)
4188 {
4189 if (type == NULL)
4190 return 0;
4191 else
4192 {
4193 switch (TYPE_CODE (type))
4194 {
4195 case TYPE_CODE_INT:
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4198 case TYPE_CODE_FLT:
4199 return 1;
4200 default:
4201 return 0;
4202 }
4203 }
4204 }
4205
4206 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4207
4208 static int
4209 discrete_type_p (struct type *type)
4210 {
4211 if (type == NULL)
4212 return 0;
4213 else
4214 {
4215 switch (TYPE_CODE (type))
4216 {
4217 case TYPE_CODE_INT:
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
4220 case TYPE_CODE_BOOL:
4221 return 1;
4222 default:
4223 return 0;
4224 }
4225 }
4226 }
4227
4228 /* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
4231
4232 static int
4233 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4234 {
4235 struct type *type0 =
4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4237 struct type *type1 =
4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4239
4240 if (type0 == NULL)
4241 return 0;
4242
4243 switch (op)
4244 {
4245 default:
4246 return 0;
4247
4248 case BINOP_ADD:
4249 case BINOP_SUB:
4250 case BINOP_MUL:
4251 case BINOP_DIV:
4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4253
4254 case BINOP_REM:
4255 case BINOP_MOD:
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
4260
4261 case BINOP_EQUAL:
4262 case BINOP_NOTEQUAL:
4263 case BINOP_LESS:
4264 case BINOP_GTR:
4265 case BINOP_LEQ:
4266 case BINOP_GEQ:
4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4268
4269 case BINOP_CONCAT:
4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4271
4272 case BINOP_EXP:
4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4274
4275 case UNOP_NEG:
4276 case UNOP_PLUS:
4277 case UNOP_LOGICAL_NOT:
4278 case UNOP_ABS:
4279 return (!numeric_type_p (type0));
4280
4281 }
4282 }
4283 \f
4284 /* Renaming */
4285
4286 /* NOTES:
4287
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4290 point.
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4297
4298 /* If SYM encodes a renaming,
4299
4300 <renaming> renames <renamed entity>,
4301
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4314
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4316
4317 enum ada_renaming_category
4318 ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4321 {
4322 enum ada_renaming_category kind;
4323 const char *info;
4324 const char *suffix;
4325
4326 if (sym == NULL)
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
4329 {
4330 default:
4331 return ADA_NOT_RENAMING;
4332 case LOC_TYPEDEF:
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4335 case LOC_LOCAL:
4336 case LOC_STATIC:
4337 case LOC_COMPUTED:
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4340 if (info == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (info[5])
4343 {
4344 case '_':
4345 kind = ADA_OBJECT_RENAMING;
4346 info += 6;
4347 break;
4348 case 'E':
4349 kind = ADA_EXCEPTION_RENAMING;
4350 info += 7;
4351 break;
4352 case 'P':
4353 kind = ADA_PACKAGE_RENAMING;
4354 info += 7;
4355 break;
4356 case 'S':
4357 kind = ADA_SUBPROGRAM_RENAMING;
4358 info += 7;
4359 break;
4360 default:
4361 return ADA_NOT_RENAMING;
4362 }
4363 }
4364
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4370 if (len != NULL)
4371 *len = strlen (info) - strlen (suffix);
4372 suffix += 5;
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4375 return kind;
4376 }
4377
4378 /* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382 static enum ada_renaming_category
4383 parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4386 {
4387 enum ada_renaming_category kind;
4388 const char *name;
4389 const char *info;
4390 const char *suffix;
4391
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
4395
4396 name = TYPE_NAME (type);
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399
4400 name = strstr (name, "___XR");
4401 if (name == NULL)
4402 return ADA_NOT_RENAMING;
4403 switch (name[5])
4404 {
4405 case '\0':
4406 case '_':
4407 kind = ADA_OBJECT_RENAMING;
4408 break;
4409 case 'E':
4410 kind = ADA_EXCEPTION_RENAMING;
4411 break;
4412 case 'P':
4413 kind = ADA_PACKAGE_RENAMING;
4414 break;
4415 case 'S':
4416 kind = ADA_SUBPROGRAM_RENAMING;
4417 break;
4418 default:
4419 return ADA_NOT_RENAMING;
4420 }
4421
4422 info = TYPE_FIELD_NAME (type, 0);
4423 if (info == NULL)
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4432 if (len != NULL)
4433 *len = suffix - info;
4434 return kind;
4435 }
4436
4437 /* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
4440
4441 static struct value *
4442 ada_read_renaming_var_value (struct symbol *renaming_sym,
4443 const struct block *block)
4444 {
4445 const char *sym_name;
4446
4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
4450 }
4451 \f
4452
4453 /* Evaluation: Function Calls */
4454
4455 /* Return an lvalue containing the value VAL. This is the identity on
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
4458
4459 static struct value *
4460 ensure_lval (struct value *val)
4461 {
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
4464 {
4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
4468
4469 VALUE_LVAL (val) = lval_memory;
4470 set_value_address (val, addr);
4471 write_memory (addr, value_contents (val), len);
4472 }
4473
4474 return val;
4475 }
4476
4477 /* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4480 values not residing in memory, updating it as needed. */
4481
4482 struct value *
4483 ada_convert_actual (struct value *actual, struct type *formal_type0)
4484 {
4485 struct type *actual_type = ada_check_typedef (value_type (actual));
4486 struct type *formal_type = ada_check_typedef (formal_type0);
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4493
4494 if (ada_is_array_descriptor_type (formal_target)
4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4496 return make_array_descriptor (formal_type, actual);
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4499 {
4500 struct value *result;
4501
4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4503 && ada_is_array_descriptor_type (actual_target))
4504 result = desc_data (actual);
4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4506 {
4507 if (VALUE_LVAL (actual) != lval_memory)
4508 {
4509 struct value *val;
4510
4511 actual_type = ada_check_typedef (value_type (actual));
4512 val = allocate_value (actual_type);
4513 memcpy ((char *) value_contents_raw (val),
4514 (char *) value_contents (actual),
4515 TYPE_LENGTH (actual_type));
4516 actual = ensure_lval (val);
4517 }
4518 result = value_addr (actual);
4519 }
4520 else
4521 return actual;
4522 return value_cast_pointers (formal_type, result, 0);
4523 }
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
4526 else if (ada_is_aligner_type (formal_type))
4527 {
4528 /* We need to turn this parameter into an aligner type
4529 as well. */
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4532
4533 value_assign_to_component (aligner, component, actual);
4534 return aligner;
4535 }
4536
4537 return actual;
4538 }
4539
4540 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4543 differs. */
4544
4545 static CORE_ADDR
4546 value_pointer (struct value *value, struct type *type)
4547 {
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
4550 gdb_byte *buf = (gdb_byte *) alloca (len);
4551 CORE_ADDR addr;
4552
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4556 return addr;
4557 }
4558
4559
4560 /* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
4565
4566 static struct value *
4567 make_array_descriptor (struct type *type, struct value *arr)
4568 {
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
4573 int i;
4574
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4576 i > 0; i -= 1)
4577 {
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
4586 }
4587
4588 bounds = ensure_lval (bounds);
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
4603
4604 descriptor = ensure_lval (descriptor);
4605
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4608 else
4609 return descriptor;
4610 }
4611 \f
4612 /* Symbol Cache Module */
4613
4614 /* Performance measurements made as of 2010-01-15 indicate that
4615 this cache does bring some noticeable improvements. Depending
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4618
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4623
4624 /* Initialize the contents of SYM_CACHE. */
4625
4626 static void
4627 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4628 {
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4631 }
4632
4633 /* Free the memory used by SYM_CACHE. */
4634
4635 static void
4636 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4637 {
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 xfree (sym_cache);
4640 }
4641
4642 /* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
4644
4645 static struct ada_symbol_cache *
4646 ada_get_symbol_cache (struct program_space *pspace)
4647 {
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4649
4650 if (pspace_data->sym_cache == NULL)
4651 {
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
4654 }
4655
4656 return pspace_data->sym_cache;
4657 }
4658
4659 /* Clear all entries from the symbol cache. */
4660
4661 static void
4662 ada_clear_symbol_cache (void)
4663 {
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4666
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
4669 }
4670
4671 /* Search our cache for an entry matching NAME and DOMAIN.
4672 Return it if found, or NULL otherwise. */
4673
4674 static struct cache_entry **
4675 find_entry (const char *name, domain_enum domain)
4676 {
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4681
4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4683 {
4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4685 return e;
4686 }
4687 return NULL;
4688 }
4689
4690 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4691 Return 1 if found, 0 otherwise.
4692
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
4695
4696 static int
4697 lookup_cached_symbol (const char *name, domain_enum domain,
4698 struct symbol **sym, const struct block **block)
4699 {
4700 struct cache_entry **e = find_entry (name, domain);
4701
4702 if (e == NULL)
4703 return 0;
4704 if (sym != NULL)
4705 *sym = (*e)->sym;
4706 if (block != NULL)
4707 *block = (*e)->block;
4708 return 1;
4709 }
4710
4711 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4712 in domain DOMAIN, save this result in our symbol cache. */
4713
4714 static void
4715 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4716 const struct block *block)
4717 {
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
4720 int h;
4721 char *copy;
4722 struct cache_entry *e;
4723
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4727 return;
4728
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4733 if (sym
4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4735 GLOBAL_BLOCK) != block
4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4737 STATIC_BLOCK) != block)
4738 return;
4739
4740 h = msymbol_hash (name) % HASH_SIZE;
4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
4744 e->name = copy
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4746 strcpy (copy, name);
4747 e->sym = sym;
4748 e->domain = domain;
4749 e->block = block;
4750 }
4751 \f
4752 /* Symbol Lookup */
4753
4754 /* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
4756
4757 LOOKUP_NAME is expected to be a symbol name after transformation
4758 for Ada lookups. */
4759
4760 static symbol_name_match_type
4761 name_match_type_from_name (const char *lookup_name)
4762 {
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
4766 }
4767
4768 /* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4770
4771 static struct symbol *
4772 standard_lookup (const char *name, const struct block *block,
4773 domain_enum domain)
4774 {
4775 /* Initialize it just to avoid a GCC false warning. */
4776 struct block_symbol sym = {NULL, NULL};
4777
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4779 return sym.symbol;
4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4782 return sym.symbol;
4783 }
4784
4785
4786 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4789 static int
4790 is_nonfunction (struct block_symbol syms[], int n)
4791 {
4792 int i;
4793
4794 for (i = 0; i < n; i += 1)
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4798 return 1;
4799
4800 return 0;
4801 }
4802
4803 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4804 struct types. Otherwise, they may not. */
4805
4806 static int
4807 equiv_types (struct type *type0, struct type *type1)
4808 {
4809 if (type0 == type1)
4810 return 1;
4811 if (type0 == NULL || type1 == NULL
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4813 return 0;
4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4818 return 1;
4819
4820 return 0;
4821 }
4822
4823 /* True iff SYM0 represents the same entity as SYM1, or one that is
4824 no more defined than that of SYM1. */
4825
4826 static int
4827 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4828 {
4829 if (sym0 == sym1)
4830 return 1;
4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4833 return 0;
4834
4835 switch (SYMBOL_CLASS (sym0))
4836 {
4837 case LOC_UNDEF:
4838 return 1;
4839 case LOC_TYPEDEF:
4840 {
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4845 int len0 = strlen (name0);
4846
4847 return
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4851 && startswith (name1 + len0, "___XV")));
4852 }
4853 case LOC_CONST:
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4856 default:
4857 return 0;
4858 }
4859 }
4860
4861 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4863
4864 static void
4865 add_defn_to_vec (struct obstack *obstackp,
4866 struct symbol *sym,
4867 const struct block *block)
4868 {
4869 int i;
4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4871
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4880
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4882 {
4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4884 return;
4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4886 {
4887 prevDefns[i].symbol = sym;
4888 prevDefns[i].block = block;
4889 return;
4890 }
4891 }
4892
4893 {
4894 struct block_symbol info;
4895
4896 info.symbol = sym;
4897 info.block = block;
4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4899 }
4900 }
4901
4902 /* Number of block_symbol structures currently collected in current vector in
4903 OBSTACKP. */
4904
4905 static int
4906 num_defns_collected (struct obstack *obstackp)
4907 {
4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4909 }
4910
4911 /* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4913
4914 static struct block_symbol *
4915 defns_collected (struct obstack *obstackp, int finish)
4916 {
4917 if (finish)
4918 return (struct block_symbol *) obstack_finish (obstackp);
4919 else
4920 return (struct block_symbol *) obstack_base (obstackp);
4921 }
4922
4923 /* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4928
4929 struct bound_minimal_symbol
4930 ada_lookup_simple_minsym (const char *name)
4931 {
4932 struct bound_minimal_symbol result;
4933 struct objfile *objfile;
4934 struct minimal_symbol *msymbol;
4935
4936 memset (&result, 0, sizeof (result));
4937
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4940
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4943
4944 ALL_MSYMBOLS (objfile, msymbol)
4945 {
4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4948 {
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4951 break;
4952 }
4953 }
4954
4955 return result;
4956 }
4957
4958 /* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4963
4964 static void
4965 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4966 const lookup_name_info &lookup_name,
4967 domain_enum domain)
4968 {
4969 }
4970
4971 /* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
4973
4974 static int
4975 is_nondebugging_type (struct type *type)
4976 {
4977 const char *name = ada_type_name (type);
4978
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4980 }
4981
4982 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4984
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4988
4989 static int
4990 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4991 {
4992 int i;
4993
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4998
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5002 return 0;
5003
5004 /* All enumerals should also have the same name (modulo any numerical
5005 suffix). */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 {
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5012
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5015 if (len_1 != len_2
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5018 len_1) != 0)
5019 return 0;
5020 }
5021
5022 return 1;
5023 }
5024
5025 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5029
5030 For instance, consider the following code:
5031
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5034
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5044
5045 static int
5046 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5047 {
5048 int i;
5049
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5056
5057 /* Quick check: All symbols should have an enum type. */
5058 for (i = 0; i < syms.size (); i++)
5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5060 return 0;
5061
5062 /* Quick check: They should all have the same value. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5065 return 0;
5066
5067 /* Quick check: They should all have the same number of enumerals. */
5068 for (i = 1; i < syms.size (); i++)
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5071 return 0;
5072
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
5076 for (i = 1; i < syms.size (); i++)
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
5079 return 0;
5080
5081 return 1;
5082 }
5083
5084 /* Remove any non-debugging symbols in SYMS that definitely
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
5090
5091 static int
5092 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5093 {
5094 int i, j;
5095
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
5099 if (syms->size () < 2)
5100 return syms->size ();
5101
5102 i = 0;
5103 while (i < syms->size ())
5104 {
5105 int remove_p = 0;
5106
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5109
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5112 {
5113 for (j = 0; j < syms->size (); j++)
5114 {
5115 if (j != i
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5120 remove_p = 1;
5121 }
5122 }
5123
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5126
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5130 {
5131 for (j = 0; j < syms->size (); j += 1)
5132 {
5133 if (i != j
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5141 remove_p = 1;
5142 }
5143 }
5144
5145 if (remove_p)
5146 syms->erase (syms->begin () + i);
5147
5148 i += 1;
5149 }
5150
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5153
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
5163 if (symbols_are_identical_enums (*syms))
5164 syms->resize (1);
5165
5166 return syms->size ();
5167 }
5168
5169 /* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
5172 defined. */
5173
5174 static std::string
5175 xget_renaming_scope (struct type *renaming_type)
5176 {
5177 /* The renaming types adhere to the following convention:
5178 <scope>__<rename>___<XR extension>.
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
5181
5182 const char *name = TYPE_NAME (renaming_type);
5183 const char *suffix = strstr (name, "___XR");
5184 const char *last;
5185
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
5188
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5191 break;
5192
5193 /* Make a copy of scope and return it. */
5194 return std::string (name, last);
5195 }
5196
5197 /* Return nonzero if NAME corresponds to a package name. */
5198
5199 static int
5200 is_package_name (const char *name)
5201 {
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
5207
5208 char *fun_name;
5209
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
5214
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5217
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name, "__") != NULL)
5221 return 0;
5222
5223 fun_name = xstrprintf ("_ada_%s", name);
5224
5225 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5226 }
5227
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5230
5231 static int
5232 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5233 {
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5238
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
5242
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5245
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
5250 if (startswith (function_name, "_ada_"))
5251 function_name += 5;
5252
5253 return !startswith (function_name, scope.c_str ());
5254 }
5255
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5261
5262 Rationale:
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5275
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5292
5293 static int
5294 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
5296 {
5297 struct symbol *current_function;
5298 const char *current_function_name;
5299 int i;
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming = 0;
5306 for (i = 0; i < syms->size (); i += 1)
5307 {
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = SYMBOL_LINKAGE_NAME (sym);
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5322
5323 is_new_style_renaming = 1;
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5327 name_len) == 0
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
5338 {
5339 (*syms)[k] = (*syms)[j];
5340 k += 1;
5341 }
5342 return k;
5343 }
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5347
5348 if (current_block == NULL)
5349 return syms->size ();
5350
5351 current_function = block_linkage_function (current_block);
5352 if (current_function == NULL)
5353 return syms->size ();
5354
5355 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5356 if (current_function_name == NULL)
5357 return syms->size ();
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
5364 while (i < syms->size ())
5365 {
5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
5371 else
5372 i += 1;
5373 }
5374
5375 return syms->size ();
5376 }
5377
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388 static void
5389 ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
5392 {
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5412 }
5413
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5416
5417 struct match_data
5418 {
5419 struct objfile *objfile;
5420 struct obstack *obstackp;
5421 struct symbol *arg_sym;
5422 int found_sym;
5423 };
5424
5425 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5426 to a list of symbols. DATA0 is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5433
5434 static int
5435 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5436 {
5437 struct match_data *data = (struct match_data *) data0;
5438
5439 if (sym == NULL)
5440 {
5441 if (!data->found_sym && data->arg_sym != NULL)
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (data->arg_sym, data->objfile),
5444 block);
5445 data->found_sym = 0;
5446 data->arg_sym = NULL;
5447 }
5448 else
5449 {
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5451 return 0;
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 data->arg_sym = sym;
5454 else
5455 {
5456 data->found_sym = 1;
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (sym, data->objfile),
5459 block);
5460 }
5461 }
5462 return 0;
5463 }
5464
5465 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5466 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5467 symbols to OBSTACKP. Return whether we found such symbols. */
5468
5469 static int
5470 ada_add_block_renamings (struct obstack *obstackp,
5471 const struct block *block,
5472 const lookup_name_info &lookup_name,
5473 domain_enum domain)
5474 {
5475 struct using_direct *renaming;
5476 int defns_mark = num_defns_collected (obstackp);
5477
5478 symbol_name_matcher_ftype *name_match
5479 = ada_get_symbol_name_matcher (lookup_name);
5480
5481 for (renaming = block_using (block);
5482 renaming != NULL;
5483 renaming = renaming->next)
5484 {
5485 const char *r_name;
5486
5487 /* Avoid infinite recursions: skip this renaming if we are actually
5488 already traversing it.
5489
5490 Currently, symbol lookup in Ada don't use the namespace machinery from
5491 C++/Fortran support: skip namespace imports that use them. */
5492 if (renaming->searched
5493 || (renaming->import_src != NULL
5494 && renaming->import_src[0] != '\0')
5495 || (renaming->import_dest != NULL
5496 && renaming->import_dest[0] != '\0'))
5497 continue;
5498 renaming->searched = 1;
5499
5500 /* TODO: here, we perform another name-based symbol lookup, which can
5501 pull its own multiple overloads. In theory, we should be able to do
5502 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5503 not a simple name. But in order to do this, we would need to enhance
5504 the DWARF reader to associate a symbol to this renaming, instead of a
5505 name. So, for now, we do something simpler: re-use the C++/Fortran
5506 namespace machinery. */
5507 r_name = (renaming->alias != NULL
5508 ? renaming->alias
5509 : renaming->declaration);
5510 if (name_match (r_name, lookup_name, NULL))
5511 {
5512 lookup_name_info decl_lookup_name (renaming->declaration,
5513 lookup_name.match_type ());
5514 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5515 1, NULL);
5516 }
5517 renaming->searched = 0;
5518 }
5519 return num_defns_collected (obstackp) != defns_mark;
5520 }
5521
5522 /* Implements compare_names, but only applying the comparision using
5523 the given CASING. */
5524
5525 static int
5526 compare_names_with_case (const char *string1, const char *string2,
5527 enum case_sensitivity casing)
5528 {
5529 while (*string1 != '\0' && *string2 != '\0')
5530 {
5531 char c1, c2;
5532
5533 if (isspace (*string1) || isspace (*string2))
5534 return strcmp_iw_ordered (string1, string2);
5535
5536 if (casing == case_sensitive_off)
5537 {
5538 c1 = tolower (*string1);
5539 c2 = tolower (*string2);
5540 }
5541 else
5542 {
5543 c1 = *string1;
5544 c2 = *string2;
5545 }
5546 if (c1 != c2)
5547 break;
5548
5549 string1 += 1;
5550 string2 += 1;
5551 }
5552
5553 switch (*string1)
5554 {
5555 case '(':
5556 return strcmp_iw_ordered (string1, string2);
5557 case '_':
5558 if (*string2 == '\0')
5559 {
5560 if (is_name_suffix (string1))
5561 return 0;
5562 else
5563 return 1;
5564 }
5565 /* FALLTHROUGH */
5566 default:
5567 if (*string2 == '(')
5568 return strcmp_iw_ordered (string1, string2);
5569 else
5570 {
5571 if (casing == case_sensitive_off)
5572 return tolower (*string1) - tolower (*string2);
5573 else
5574 return *string1 - *string2;
5575 }
5576 }
5577 }
5578
5579 /* Compare STRING1 to STRING2, with results as for strcmp.
5580 Compatible with strcmp_iw_ordered in that...
5581
5582 strcmp_iw_ordered (STRING1, STRING2) <= 0
5583
5584 ... implies...
5585
5586 compare_names (STRING1, STRING2) <= 0
5587
5588 (they may differ as to what symbols compare equal). */
5589
5590 static int
5591 compare_names (const char *string1, const char *string2)
5592 {
5593 int result;
5594
5595 /* Similar to what strcmp_iw_ordered does, we need to perform
5596 a case-insensitive comparison first, and only resort to
5597 a second, case-sensitive, comparison if the first one was
5598 not sufficient to differentiate the two strings. */
5599
5600 result = compare_names_with_case (string1, string2, case_sensitive_off);
5601 if (result == 0)
5602 result = compare_names_with_case (string1, string2, case_sensitive_on);
5603
5604 return result;
5605 }
5606
5607 /* Convenience function to get at the Ada encoded lookup name for
5608 LOOKUP_NAME, as a C string. */
5609
5610 static const char *
5611 ada_lookup_name (const lookup_name_info &lookup_name)
5612 {
5613 return lookup_name.ada ().lookup_name ().c_str ();
5614 }
5615
5616 /* Add to OBSTACKP all non-local symbols whose name and domain match
5617 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5618 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5619 symbols otherwise. */
5620
5621 static void
5622 add_nonlocal_symbols (struct obstack *obstackp,
5623 const lookup_name_info &lookup_name,
5624 domain_enum domain, int global)
5625 {
5626 struct objfile *objfile;
5627 struct compunit_symtab *cu;
5628 struct match_data data;
5629
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5632
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
5635 ALL_OBJFILES (objfile)
5636 {
5637 data.objfile = objfile;
5638
5639 if (is_wild_match)
5640 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5641 domain, global,
5642 aux_add_nonlocal_symbols, &data,
5643 symbol_name_match_type::WILD,
5644 NULL);
5645 else
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5647 domain, global,
5648 aux_add_nonlocal_symbols, &data,
5649 symbol_name_match_type::FULL,
5650 compare_names);
5651
5652 ALL_OBJFILE_COMPUNITS (objfile, cu)
5653 {
5654 const struct block *global_block
5655 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5656
5657 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5658 domain))
5659 data.found_sym = 1;
5660 }
5661 }
5662
5663 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5664 {
5665 const char *name = ada_lookup_name (lookup_name);
5666 std::string name1 = std::string ("<_ada_") + name + '>';
5667
5668 ALL_OBJFILES (objfile)
5669 {
5670 data.objfile = objfile;
5671 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5672 domain, global,
5673 aux_add_nonlocal_symbols,
5674 &data,
5675 symbol_name_match_type::FULL,
5676 compare_names);
5677 }
5678 }
5679 }
5680
5681 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5682 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5683 returning the number of matches. Add these to OBSTACKP.
5684
5685 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5690
5691 Names prefixed with "standard__" are handled specially:
5692 "standard__" is first stripped off (by the lookup_name
5693 constructor), and only static and global symbols are searched.
5694
5695 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5696 to lookup global symbols. */
5697
5698 static void
5699 ada_add_all_symbols (struct obstack *obstackp,
5700 const struct block *block,
5701 const lookup_name_info &lookup_name,
5702 domain_enum domain,
5703 int full_search,
5704 int *made_global_lookup_p)
5705 {
5706 struct symbol *sym;
5707
5708 if (made_global_lookup_p)
5709 *made_global_lookup_p = 0;
5710
5711 /* Special case: If the user specifies a symbol name inside package
5712 Standard, do a non-wild matching of the symbol name without
5713 the "standard__" prefix. This was primarily introduced in order
5714 to allow the user to specifically access the standard exceptions
5715 using, for instance, Standard.Constraint_Error when Constraint_Error
5716 is ambiguous (due to the user defining its own Constraint_Error
5717 entity inside its program). */
5718 if (lookup_name.ada ().standard_p ())
5719 block = NULL;
5720
5721 /* Check the non-global symbols. If we have ANY match, then we're done. */
5722
5723 if (block != NULL)
5724 {
5725 if (full_search)
5726 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5727 else
5728 {
5729 /* In the !full_search case we're are being called by
5730 ada_iterate_over_symbols, and we don't want to search
5731 superblocks. */
5732 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5733 }
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
5736 }
5737
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
5742 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5743 domain, &sym, &block))
5744 {
5745 if (sym != NULL)
5746 add_defn_to_vec (obstackp, sym, block);
5747 return;
5748 }
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 1;
5752
5753 /* Search symbols from all global blocks. */
5754
5755 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5756
5757 /* Now add symbols from all per-file blocks if we've gotten no hits
5758 (not strictly correct, but perhaps better than an error). */
5759
5760 if (num_defns_collected (obstackp) == 0)
5761 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5762 }
5763
5764 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5765 is non-zero, enclosing scope and in global scopes, returning the number of
5766 matches.
5767 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5768 found and the blocks and symbol tables (if any) in which they were
5769 found.
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780 static int
5781 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5782 const struct block *block,
5783 domain_enum domain,
5784 std::vector<struct block_symbol> *results,
5785 int full_search)
5786 {
5787 int syms_from_global_search;
5788 int ndefns;
5789 auto_obstack obstack;
5790
5791 ada_add_all_symbols (&obstack, block, lookup_name,
5792 domain, full_search, &syms_from_global_search);
5793
5794 ndefns = num_defns_collected (&obstack);
5795
5796 struct block_symbol *base = defns_collected (&obstack, 1);
5797 for (int i = 0; i < ndefns; ++i)
5798 results->push_back (base[i]);
5799
5800 ndefns = remove_extra_symbols (results);
5801
5802 if (ndefns == 0 && full_search && syms_from_global_search)
5803 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5804
5805 if (ndefns == 1 && full_search && syms_from_global_search)
5806 cache_symbol (ada_lookup_name (lookup_name), domain,
5807 (*results)[0].symbol, (*results)[0].block);
5808
5809 ndefns = remove_irrelevant_renamings (results, block);
5810
5811 return ndefns;
5812 }
5813
5814 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5815 in global scopes, returning the number of matches, and filling *RESULTS
5816 with (SYM,BLOCK) tuples.
5817
5818 See ada_lookup_symbol_list_worker for further details. */
5819
5820 int
5821 ada_lookup_symbol_list (const char *name, const struct block *block,
5822 domain_enum domain,
5823 std::vector<struct block_symbol> *results)
5824 {
5825 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5826 lookup_name_info lookup_name (name, name_match_type);
5827
5828 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5829 }
5830
5831 /* Implementation of the la_iterate_over_symbols method. */
5832
5833 static void
5834 ada_iterate_over_symbols
5835 (const struct block *block, const lookup_name_info &name,
5836 domain_enum domain,
5837 gdb::function_view<symbol_found_callback_ftype> callback)
5838 {
5839 int ndefs, i;
5840 std::vector<struct block_symbol> results;
5841
5842 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5843
5844 for (i = 0; i < ndefs; ++i)
5845 {
5846 if (!callback (results[i].symbol))
5847 break;
5848 }
5849 }
5850
5851 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5852 to 1, but choosing the first symbol found if there are multiple
5853 choices.
5854
5855 The result is stored in *INFO, which must be non-NULL.
5856 If no match is found, INFO->SYM is set to NULL. */
5857
5858 void
5859 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5860 domain_enum domain,
5861 struct block_symbol *info)
5862 {
5863 /* Since we already have an encoded name, wrap it in '<>' to force a
5864 verbatim match. Otherwise, if the name happens to not look like
5865 an encoded name (because it doesn't include a "__"),
5866 ada_lookup_name_info would re-encode/fold it again, and that
5867 would e.g., incorrectly lowercase object renaming names like
5868 "R28b" -> "r28b". */
5869 std::string verbatim = std::string ("<") + name + '>';
5870
5871 gdb_assert (info != NULL);
5872 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5873 }
5874
5875 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5876 scope and in global scopes, or NULL if none. NAME is folded and
5877 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5878 choosing the first symbol if there are multiple choices.
5879 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5880
5881 struct block_symbol
5882 ada_lookup_symbol (const char *name, const struct block *block0,
5883 domain_enum domain, int *is_a_field_of_this)
5884 {
5885 if (is_a_field_of_this != NULL)
5886 *is_a_field_of_this = 0;
5887
5888 std::vector<struct block_symbol> candidates;
5889 int n_candidates;
5890
5891 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5892
5893 if (n_candidates == 0)
5894 return {};
5895
5896 block_symbol info = candidates[0];
5897 info.symbol = fixup_symbol_section (info.symbol, NULL);
5898 return info;
5899 }
5900
5901 static struct block_symbol
5902 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5903 const char *name,
5904 const struct block *block,
5905 const domain_enum domain)
5906 {
5907 struct block_symbol sym;
5908
5909 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5910 if (sym.symbol != NULL)
5911 return sym;
5912
5913 /* If we haven't found a match at this point, try the primitive
5914 types. In other languages, this search is performed before
5915 searching for global symbols in order to short-circuit that
5916 global-symbol search if it happens that the name corresponds
5917 to a primitive type. But we cannot do the same in Ada, because
5918 it is perfectly legitimate for a program to declare a type which
5919 has the same name as a standard type. If looking up a type in
5920 that situation, we have traditionally ignored the primitive type
5921 in favor of user-defined types. This is why, unlike most other
5922 languages, we search the primitive types this late and only after
5923 having searched the global symbols without success. */
5924
5925 if (domain == VAR_DOMAIN)
5926 {
5927 struct gdbarch *gdbarch;
5928
5929 if (block == NULL)
5930 gdbarch = target_gdbarch ();
5931 else
5932 gdbarch = block_gdbarch (block);
5933 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5934 if (sym.symbol != NULL)
5935 return sym;
5936 }
5937
5938 return (struct block_symbol) {NULL, NULL};
5939 }
5940
5941
5942 /* True iff STR is a possible encoded suffix of a normal Ada name
5943 that is to be ignored for matching purposes. Suffixes of parallel
5944 names (e.g., XVE) are not included here. Currently, the possible suffixes
5945 are given by any of the regular expressions:
5946
5947 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5948 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5949 TKB [subprogram suffix for task bodies]
5950 _E[0-9]+[bs]$ [protected object entry suffixes]
5951 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5952
5953 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5954 match is performed. This sequence is used to differentiate homonyms,
5955 is an optional part of a valid name suffix. */
5956
5957 static int
5958 is_name_suffix (const char *str)
5959 {
5960 int k;
5961 const char *matching;
5962 const int len = strlen (str);
5963
5964 /* Skip optional leading __[0-9]+. */
5965
5966 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5967 {
5968 str += 3;
5969 while (isdigit (str[0]))
5970 str += 1;
5971 }
5972
5973 /* [.$][0-9]+ */
5974
5975 if (str[0] == '.' || str[0] == '$')
5976 {
5977 matching = str + 1;
5978 while (isdigit (matching[0]))
5979 matching += 1;
5980 if (matching[0] == '\0')
5981 return 1;
5982 }
5983
5984 /* ___[0-9]+ */
5985
5986 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5987 {
5988 matching = str + 3;
5989 while (isdigit (matching[0]))
5990 matching += 1;
5991 if (matching[0] == '\0')
5992 return 1;
5993 }
5994
5995 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5996
5997 if (strcmp (str, "TKB") == 0)
5998 return 1;
5999
6000 #if 0
6001 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6002 with a N at the end. Unfortunately, the compiler uses the same
6003 convention for other internal types it creates. So treating
6004 all entity names that end with an "N" as a name suffix causes
6005 some regressions. For instance, consider the case of an enumerated
6006 type. To support the 'Image attribute, it creates an array whose
6007 name ends with N.
6008 Having a single character like this as a suffix carrying some
6009 information is a bit risky. Perhaps we should change the encoding
6010 to be something like "_N" instead. In the meantime, do not do
6011 the following check. */
6012 /* Protected Object Subprograms */
6013 if (len == 1 && str [0] == 'N')
6014 return 1;
6015 #endif
6016
6017 /* _E[0-9]+[bs]$ */
6018 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if ((matching[0] == 'b' || matching[0] == 's')
6024 && matching [1] == '\0')
6025 return 1;
6026 }
6027
6028 /* ??? We should not modify STR directly, as we are doing below. This
6029 is fine in this case, but may become problematic later if we find
6030 that this alternative did not work, and want to try matching
6031 another one from the begining of STR. Since we modified it, we
6032 won't be able to find the begining of the string anymore! */
6033 if (str[0] == 'X')
6034 {
6035 str += 1;
6036 while (str[0] != '_' && str[0] != '\0')
6037 {
6038 if (str[0] != 'n' && str[0] != 'b')
6039 return 0;
6040 str += 1;
6041 }
6042 }
6043
6044 if (str[0] == '\000')
6045 return 1;
6046
6047 if (str[0] == '_')
6048 {
6049 if (str[1] != '_' || str[2] == '\000')
6050 return 0;
6051 if (str[2] == '_')
6052 {
6053 if (strcmp (str + 3, "JM") == 0)
6054 return 1;
6055 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6056 the LJM suffix in favor of the JM one. But we will
6057 still accept LJM as a valid suffix for a reasonable
6058 amount of time, just to allow ourselves to debug programs
6059 compiled using an older version of GNAT. */
6060 if (strcmp (str + 3, "LJM") == 0)
6061 return 1;
6062 if (str[3] != 'X')
6063 return 0;
6064 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6065 || str[4] == 'U' || str[4] == 'P')
6066 return 1;
6067 if (str[4] == 'R' && str[5] != 'T')
6068 return 1;
6069 return 0;
6070 }
6071 if (!isdigit (str[2]))
6072 return 0;
6073 for (k = 3; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
6076 return 1;
6077 }
6078 if (str[0] == '$' && isdigit (str[1]))
6079 {
6080 for (k = 2; str[k] != '\0'; k += 1)
6081 if (!isdigit (str[k]) && str[k] != '_')
6082 return 0;
6083 return 1;
6084 }
6085 return 0;
6086 }
6087
6088 /* Return non-zero if the string starting at NAME and ending before
6089 NAME_END contains no capital letters. */
6090
6091 static int
6092 is_valid_name_for_wild_match (const char *name0)
6093 {
6094 const char *decoded_name = ada_decode (name0);
6095 int i;
6096
6097 /* If the decoded name starts with an angle bracket, it means that
6098 NAME0 does not follow the GNAT encoding format. It should then
6099 not be allowed as a possible wild match. */
6100 if (decoded_name[0] == '<')
6101 return 0;
6102
6103 for (i=0; decoded_name[i] != '\0'; i++)
6104 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6105 return 0;
6106
6107 return 1;
6108 }
6109
6110 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6111 that could start a simple name. Assumes that *NAMEP points into
6112 the string beginning at NAME0. */
6113
6114 static int
6115 advance_wild_match (const char **namep, const char *name0, int target0)
6116 {
6117 const char *name = *namep;
6118
6119 while (1)
6120 {
6121 int t0, t1;
6122
6123 t0 = *name;
6124 if (t0 == '_')
6125 {
6126 t1 = name[1];
6127 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6128 {
6129 name += 1;
6130 if (name == name0 + 5 && startswith (name0, "_ada"))
6131 break;
6132 else
6133 name += 1;
6134 }
6135 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6136 || name[2] == target0))
6137 {
6138 name += 2;
6139 break;
6140 }
6141 else
6142 return 0;
6143 }
6144 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6145 name += 1;
6146 else
6147 return 0;
6148 }
6149
6150 *namep = name;
6151 return 1;
6152 }
6153
6154 /* Return true iff NAME encodes a name of the form prefix.PATN.
6155 Ignores any informational suffixes of NAME (i.e., for which
6156 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6157 simple name. */
6158
6159 static bool
6160 wild_match (const char *name, const char *patn)
6161 {
6162 const char *p;
6163 const char *name0 = name;
6164
6165 while (1)
6166 {
6167 const char *match = name;
6168
6169 if (*name == *patn)
6170 {
6171 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6172 if (*p != *name)
6173 break;
6174 if (*p == '\0' && is_name_suffix (name))
6175 return match == name0 || is_valid_name_for_wild_match (name0);
6176
6177 if (name[-1] == '_')
6178 name -= 1;
6179 }
6180 if (!advance_wild_match (&name, name0, *patn))
6181 return false;
6182 }
6183 }
6184
6185 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6186 any trailing suffixes that encode debugging information or leading
6187 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6188 information that is ignored). */
6189
6190 static bool
6191 full_match (const char *sym_name, const char *search_name)
6192 {
6193 size_t search_name_len = strlen (search_name);
6194
6195 if (strncmp (sym_name, search_name, search_name_len) == 0
6196 && is_name_suffix (sym_name + search_name_len))
6197 return true;
6198
6199 if (startswith (sym_name, "_ada_")
6200 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6201 && is_name_suffix (sym_name + search_name_len + 5))
6202 return true;
6203
6204 return false;
6205 }
6206
6207 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6208 *defn_symbols, updating the list of symbols in OBSTACKP (if
6209 necessary). OBJFILE is the section containing BLOCK. */
6210
6211 static void
6212 ada_add_block_symbols (struct obstack *obstackp,
6213 const struct block *block,
6214 const lookup_name_info &lookup_name,
6215 domain_enum domain, struct objfile *objfile)
6216 {
6217 struct block_iterator iter;
6218 /* A matching argument symbol, if any. */
6219 struct symbol *arg_sym;
6220 /* Set true when we find a matching non-argument symbol. */
6221 int found_sym;
6222 struct symbol *sym;
6223
6224 arg_sym = NULL;
6225 found_sym = 0;
6226 for (sym = block_iter_match_first (block, lookup_name, &iter);
6227 sym != NULL;
6228 sym = block_iter_match_next (lookup_name, &iter))
6229 {
6230 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6231 SYMBOL_DOMAIN (sym), domain))
6232 {
6233 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6234 {
6235 if (SYMBOL_IS_ARGUMENT (sym))
6236 arg_sym = sym;
6237 else
6238 {
6239 found_sym = 1;
6240 add_defn_to_vec (obstackp,
6241 fixup_symbol_section (sym, objfile),
6242 block);
6243 }
6244 }
6245 }
6246 }
6247
6248 /* Handle renamings. */
6249
6250 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6251 found_sym = 1;
6252
6253 if (!found_sym && arg_sym != NULL)
6254 {
6255 add_defn_to_vec (obstackp,
6256 fixup_symbol_section (arg_sym, objfile),
6257 block);
6258 }
6259
6260 if (!lookup_name.ada ().wild_match_p ())
6261 {
6262 arg_sym = NULL;
6263 found_sym = 0;
6264 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6265 const char *name = ada_lookup_name.c_str ();
6266 size_t name_len = ada_lookup_name.size ();
6267
6268 ALL_BLOCK_SYMBOLS (block, iter, sym)
6269 {
6270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6271 SYMBOL_DOMAIN (sym), domain))
6272 {
6273 int cmp;
6274
6275 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6276 if (cmp == 0)
6277 {
6278 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6279 if (cmp == 0)
6280 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6281 name_len);
6282 }
6283
6284 if (cmp == 0
6285 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6286 {
6287 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6288 {
6289 if (SYMBOL_IS_ARGUMENT (sym))
6290 arg_sym = sym;
6291 else
6292 {
6293 found_sym = 1;
6294 add_defn_to_vec (obstackp,
6295 fixup_symbol_section (sym, objfile),
6296 block);
6297 }
6298 }
6299 }
6300 }
6301 }
6302
6303 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6304 They aren't parameters, right? */
6305 if (!found_sym && arg_sym != NULL)
6306 {
6307 add_defn_to_vec (obstackp,
6308 fixup_symbol_section (arg_sym, objfile),
6309 block);
6310 }
6311 }
6312 }
6313 \f
6314
6315 /* Symbol Completion */
6316
6317 /* See symtab.h. */
6318
6319 bool
6320 ada_lookup_name_info::matches
6321 (const char *sym_name,
6322 symbol_name_match_type match_type,
6323 completion_match_result *comp_match_res) const
6324 {
6325 bool match = false;
6326 const char *text = m_encoded_name.c_str ();
6327 size_t text_len = m_encoded_name.size ();
6328
6329 /* First, test against the fully qualified name of the symbol. */
6330
6331 if (strncmp (sym_name, text, text_len) == 0)
6332 match = true;
6333
6334 if (match && !m_encoded_p)
6335 {
6336 /* One needed check before declaring a positive match is to verify
6337 that iff we are doing a verbatim match, the decoded version
6338 of the symbol name starts with '<'. Otherwise, this symbol name
6339 is not a suitable completion. */
6340 const char *sym_name_copy = sym_name;
6341 bool has_angle_bracket;
6342
6343 sym_name = ada_decode (sym_name);
6344 has_angle_bracket = (sym_name[0] == '<');
6345 match = (has_angle_bracket == m_verbatim_p);
6346 sym_name = sym_name_copy;
6347 }
6348
6349 if (match && !m_verbatim_p)
6350 {
6351 /* When doing non-verbatim match, another check that needs to
6352 be done is to verify that the potentially matching symbol name
6353 does not include capital letters, because the ada-mode would
6354 not be able to understand these symbol names without the
6355 angle bracket notation. */
6356 const char *tmp;
6357
6358 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6359 if (*tmp != '\0')
6360 match = false;
6361 }
6362
6363 /* Second: Try wild matching... */
6364
6365 if (!match && m_wild_match_p)
6366 {
6367 /* Since we are doing wild matching, this means that TEXT
6368 may represent an unqualified symbol name. We therefore must
6369 also compare TEXT against the unqualified name of the symbol. */
6370 sym_name = ada_unqualified_name (ada_decode (sym_name));
6371
6372 if (strncmp (sym_name, text, text_len) == 0)
6373 match = true;
6374 }
6375
6376 /* Finally: If we found a match, prepare the result to return. */
6377
6378 if (!match)
6379 return false;
6380
6381 if (comp_match_res != NULL)
6382 {
6383 std::string &match_str = comp_match_res->match.storage ();
6384
6385 if (!m_encoded_p)
6386 match_str = ada_decode (sym_name);
6387 else
6388 {
6389 if (m_verbatim_p)
6390 match_str = add_angle_brackets (sym_name);
6391 else
6392 match_str = sym_name;
6393
6394 }
6395
6396 comp_match_res->set_match (match_str.c_str ());
6397 }
6398
6399 return true;
6400 }
6401
6402 /* Add the list of possible symbol names completing TEXT to TRACKER.
6403 WORD is the entire command on which completion is made. */
6404
6405 static void
6406 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6407 complete_symbol_mode mode,
6408 symbol_name_match_type name_match_type,
6409 const char *text, const char *word,
6410 enum type_code code)
6411 {
6412 struct symbol *sym;
6413 struct compunit_symtab *s;
6414 struct minimal_symbol *msymbol;
6415 struct objfile *objfile;
6416 const struct block *b, *surrounding_static_block = 0;
6417 struct block_iterator iter;
6418
6419 gdb_assert (code == TYPE_CODE_UNDEF);
6420
6421 lookup_name_info lookup_name (text, name_match_type, true);
6422
6423 /* First, look at the partial symtab symbols. */
6424 expand_symtabs_matching (NULL,
6425 lookup_name,
6426 NULL,
6427 NULL,
6428 ALL_DOMAIN);
6429
6430 /* At this point scan through the misc symbol vectors and add each
6431 symbol you find to the list. Eventually we want to ignore
6432 anything that isn't a text symbol (everything else will be
6433 handled by the psymtab code above). */
6434
6435 ALL_MSYMBOLS (objfile, msymbol)
6436 {
6437 QUIT;
6438
6439 if (completion_skip_symbol (mode, msymbol))
6440 continue;
6441
6442 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6443
6444 /* Ada minimal symbols won't have their language set to Ada. If
6445 we let completion_list_add_name compare using the
6446 default/C-like matcher, then when completing e.g., symbols in a
6447 package named "pck", we'd match internal Ada symbols like
6448 "pckS", which are invalid in an Ada expression, unless you wrap
6449 them in '<' '>' to request a verbatim match.
6450
6451 Unfortunately, some Ada encoded names successfully demangle as
6452 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6453 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6454 with the wrong language set. Paper over that issue here. */
6455 if (symbol_language == language_auto
6456 || symbol_language == language_cplus)
6457 symbol_language = language_ada;
6458
6459 completion_list_add_name (tracker,
6460 symbol_language,
6461 MSYMBOL_LINKAGE_NAME (msymbol),
6462 lookup_name, text, word);
6463 }
6464
6465 /* Search upwards from currently selected frame (so that we can
6466 complete on local vars. */
6467
6468 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6469 {
6470 if (!BLOCK_SUPERBLOCK (b))
6471 surrounding_static_block = b; /* For elmin of dups */
6472
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6474 {
6475 if (completion_skip_symbol (mode, sym))
6476 continue;
6477
6478 completion_list_add_name (tracker,
6479 SYMBOL_LANGUAGE (sym),
6480 SYMBOL_LINKAGE_NAME (sym),
6481 lookup_name, text, word);
6482 }
6483 }
6484
6485 /* Go through the symtabs and check the externs and statics for
6486 symbols which match. */
6487
6488 ALL_COMPUNITS (objfile, s)
6489 {
6490 QUIT;
6491 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6492 ALL_BLOCK_SYMBOLS (b, iter, sym)
6493 {
6494 if (completion_skip_symbol (mode, sym))
6495 continue;
6496
6497 completion_list_add_name (tracker,
6498 SYMBOL_LANGUAGE (sym),
6499 SYMBOL_LINKAGE_NAME (sym),
6500 lookup_name, text, word);
6501 }
6502 }
6503
6504 ALL_COMPUNITS (objfile, s)
6505 {
6506 QUIT;
6507 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6508 /* Don't do this block twice. */
6509 if (b == surrounding_static_block)
6510 continue;
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
6519 lookup_name, text, word);
6520 }
6521 }
6522 }
6523
6524 /* Field Access */
6525
6526 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6527 for tagged types. */
6528
6529 static int
6530 ada_is_dispatch_table_ptr_type (struct type *type)
6531 {
6532 const char *name;
6533
6534 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6535 return 0;
6536
6537 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6538 if (name == NULL)
6539 return 0;
6540
6541 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6542 }
6543
6544 /* Return non-zero if TYPE is an interface tag. */
6545
6546 static int
6547 ada_is_interface_tag (struct type *type)
6548 {
6549 const char *name = TYPE_NAME (type);
6550
6551 if (name == NULL)
6552 return 0;
6553
6554 return (strcmp (name, "ada__tags__interface_tag") == 0);
6555 }
6556
6557 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6558 to be invisible to users. */
6559
6560 int
6561 ada_is_ignored_field (struct type *type, int field_num)
6562 {
6563 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6564 return 1;
6565
6566 /* Check the name of that field. */
6567 {
6568 const char *name = TYPE_FIELD_NAME (type, field_num);
6569
6570 /* Anonymous field names should not be printed.
6571 brobecker/2007-02-20: I don't think this can actually happen
6572 but we don't want to print the value of annonymous fields anyway. */
6573 if (name == NULL)
6574 return 1;
6575
6576 /* Normally, fields whose name start with an underscore ("_")
6577 are fields that have been internally generated by the compiler,
6578 and thus should not be printed. The "_parent" field is special,
6579 however: This is a field internally generated by the compiler
6580 for tagged types, and it contains the components inherited from
6581 the parent type. This field should not be printed as is, but
6582 should not be ignored either. */
6583 if (name[0] == '_' && !startswith (name, "_parent"))
6584 return 1;
6585 }
6586
6587 /* If this is the dispatch table of a tagged type or an interface tag,
6588 then ignore. */
6589 if (ada_is_tagged_type (type, 1)
6590 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6591 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6592 return 1;
6593
6594 /* Not a special field, so it should not be ignored. */
6595 return 0;
6596 }
6597
6598 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6599 pointer or reference type whose ultimate target has a tag field. */
6600
6601 int
6602 ada_is_tagged_type (struct type *type, int refok)
6603 {
6604 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6605 }
6606
6607 /* True iff TYPE represents the type of X'Tag */
6608
6609 int
6610 ada_is_tag_type (struct type *type)
6611 {
6612 type = ada_check_typedef (type);
6613
6614 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6615 return 0;
6616 else
6617 {
6618 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6619
6620 return (name != NULL
6621 && strcmp (name, "ada__tags__dispatch_table") == 0);
6622 }
6623 }
6624
6625 /* The type of the tag on VAL. */
6626
6627 struct type *
6628 ada_tag_type (struct value *val)
6629 {
6630 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6631 }
6632
6633 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6634 retired at Ada 05). */
6635
6636 static int
6637 is_ada95_tag (struct value *tag)
6638 {
6639 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6640 }
6641
6642 /* The value of the tag on VAL. */
6643
6644 struct value *
6645 ada_value_tag (struct value *val)
6646 {
6647 return ada_value_struct_elt (val, "_tag", 0);
6648 }
6649
6650 /* The value of the tag on the object of type TYPE whose contents are
6651 saved at VALADDR, if it is non-null, or is at memory address
6652 ADDRESS. */
6653
6654 static struct value *
6655 value_tag_from_contents_and_address (struct type *type,
6656 const gdb_byte *valaddr,
6657 CORE_ADDR address)
6658 {
6659 int tag_byte_offset;
6660 struct type *tag_type;
6661
6662 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6663 NULL, NULL, NULL))
6664 {
6665 const gdb_byte *valaddr1 = ((valaddr == NULL)
6666 ? NULL
6667 : valaddr + tag_byte_offset);
6668 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6669
6670 return value_from_contents_and_address (tag_type, valaddr1, address1);
6671 }
6672 return NULL;
6673 }
6674
6675 static struct type *
6676 type_from_tag (struct value *tag)
6677 {
6678 const char *type_name = ada_tag_name (tag);
6679
6680 if (type_name != NULL)
6681 return ada_find_any_type (ada_encode (type_name));
6682 return NULL;
6683 }
6684
6685 /* Given a value OBJ of a tagged type, return a value of this
6686 type at the base address of the object. The base address, as
6687 defined in Ada.Tags, it is the address of the primary tag of
6688 the object, and therefore where the field values of its full
6689 view can be fetched. */
6690
6691 struct value *
6692 ada_tag_value_at_base_address (struct value *obj)
6693 {
6694 struct value *val;
6695 LONGEST offset_to_top = 0;
6696 struct type *ptr_type, *obj_type;
6697 struct value *tag;
6698 CORE_ADDR base_address;
6699
6700 obj_type = value_type (obj);
6701
6702 /* It is the responsability of the caller to deref pointers. */
6703
6704 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6705 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6706 return obj;
6707
6708 tag = ada_value_tag (obj);
6709 if (!tag)
6710 return obj;
6711
6712 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6713
6714 if (is_ada95_tag (tag))
6715 return obj;
6716
6717 ptr_type = language_lookup_primitive_type
6718 (language_def (language_ada), target_gdbarch(), "storage_offset");
6719 ptr_type = lookup_pointer_type (ptr_type);
6720 val = value_cast (ptr_type, tag);
6721 if (!val)
6722 return obj;
6723
6724 /* It is perfectly possible that an exception be raised while
6725 trying to determine the base address, just like for the tag;
6726 see ada_tag_name for more details. We do not print the error
6727 message for the same reason. */
6728
6729 TRY
6730 {
6731 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6732 }
6733
6734 CATCH (e, RETURN_MASK_ERROR)
6735 {
6736 return obj;
6737 }
6738 END_CATCH
6739
6740 /* If offset is null, nothing to do. */
6741
6742 if (offset_to_top == 0)
6743 return obj;
6744
6745 /* -1 is a special case in Ada.Tags; however, what should be done
6746 is not quite clear from the documentation. So do nothing for
6747 now. */
6748
6749 if (offset_to_top == -1)
6750 return obj;
6751
6752 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6753 from the base address. This was however incompatible with
6754 C++ dispatch table: C++ uses a *negative* value to *add*
6755 to the base address. Ada's convention has therefore been
6756 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6757 use the same convention. Here, we support both cases by
6758 checking the sign of OFFSET_TO_TOP. */
6759
6760 if (offset_to_top > 0)
6761 offset_to_top = -offset_to_top;
6762
6763 base_address = value_address (obj) + offset_to_top;
6764 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6765
6766 /* Make sure that we have a proper tag at the new address.
6767 Otherwise, offset_to_top is bogus (which can happen when
6768 the object is not initialized yet). */
6769
6770 if (!tag)
6771 return obj;
6772
6773 obj_type = type_from_tag (tag);
6774
6775 if (!obj_type)
6776 return obj;
6777
6778 return value_from_contents_and_address (obj_type, NULL, base_address);
6779 }
6780
6781 /* Return the "ada__tags__type_specific_data" type. */
6782
6783 static struct type *
6784 ada_get_tsd_type (struct inferior *inf)
6785 {
6786 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6787
6788 if (data->tsd_type == 0)
6789 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6790 return data->tsd_type;
6791 }
6792
6793 /* Return the TSD (type-specific data) associated to the given TAG.
6794 TAG is assumed to be the tag of a tagged-type entity.
6795
6796 May return NULL if we are unable to get the TSD. */
6797
6798 static struct value *
6799 ada_get_tsd_from_tag (struct value *tag)
6800 {
6801 struct value *val;
6802 struct type *type;
6803
6804 /* First option: The TSD is simply stored as a field of our TAG.
6805 Only older versions of GNAT would use this format, but we have
6806 to test it first, because there are no visible markers for
6807 the current approach except the absence of that field. */
6808
6809 val = ada_value_struct_elt (tag, "tsd", 1);
6810 if (val)
6811 return val;
6812
6813 /* Try the second representation for the dispatch table (in which
6814 there is no explicit 'tsd' field in the referent of the tag pointer,
6815 and instead the tsd pointer is stored just before the dispatch
6816 table. */
6817
6818 type = ada_get_tsd_type (current_inferior());
6819 if (type == NULL)
6820 return NULL;
6821 type = lookup_pointer_type (lookup_pointer_type (type));
6822 val = value_cast (type, tag);
6823 if (val == NULL)
6824 return NULL;
6825 return value_ind (value_ptradd (val, -1));
6826 }
6827
6828 /* Given the TSD of a tag (type-specific data), return a string
6829 containing the name of the associated type.
6830
6831 The returned value is good until the next call. May return NULL
6832 if we are unable to determine the tag name. */
6833
6834 static char *
6835 ada_tag_name_from_tsd (struct value *tsd)
6836 {
6837 static char name[1024];
6838 char *p;
6839 struct value *val;
6840
6841 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6842 if (val == NULL)
6843 return NULL;
6844 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6845 for (p = name; *p != '\0'; p += 1)
6846 if (isalpha (*p))
6847 *p = tolower (*p);
6848 return name;
6849 }
6850
6851 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6852 a C string.
6853
6854 Return NULL if the TAG is not an Ada tag, or if we were unable to
6855 determine the name of that tag. The result is good until the next
6856 call. */
6857
6858 const char *
6859 ada_tag_name (struct value *tag)
6860 {
6861 char *name = NULL;
6862
6863 if (!ada_is_tag_type (value_type (tag)))
6864 return NULL;
6865
6866 /* It is perfectly possible that an exception be raised while trying
6867 to determine the TAG's name, even under normal circumstances:
6868 The associated variable may be uninitialized or corrupted, for
6869 instance. We do not let any exception propagate past this point.
6870 instead we return NULL.
6871
6872 We also do not print the error message either (which often is very
6873 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6874 the caller print a more meaningful message if necessary. */
6875 TRY
6876 {
6877 struct value *tsd = ada_get_tsd_from_tag (tag);
6878
6879 if (tsd != NULL)
6880 name = ada_tag_name_from_tsd (tsd);
6881 }
6882 CATCH (e, RETURN_MASK_ERROR)
6883 {
6884 }
6885 END_CATCH
6886
6887 return name;
6888 }
6889
6890 /* The parent type of TYPE, or NULL if none. */
6891
6892 struct type *
6893 ada_parent_type (struct type *type)
6894 {
6895 int i;
6896
6897 type = ada_check_typedef (type);
6898
6899 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6900 return NULL;
6901
6902 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6903 if (ada_is_parent_field (type, i))
6904 {
6905 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6906
6907 /* If the _parent field is a pointer, then dereference it. */
6908 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6909 parent_type = TYPE_TARGET_TYPE (parent_type);
6910 /* If there is a parallel XVS type, get the actual base type. */
6911 parent_type = ada_get_base_type (parent_type);
6912
6913 return ada_check_typedef (parent_type);
6914 }
6915
6916 return NULL;
6917 }
6918
6919 /* True iff field number FIELD_NUM of structure type TYPE contains the
6920 parent-type (inherited) fields of a derived type. Assumes TYPE is
6921 a structure type with at least FIELD_NUM+1 fields. */
6922
6923 int
6924 ada_is_parent_field (struct type *type, int field_num)
6925 {
6926 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6927
6928 return (name != NULL
6929 && (startswith (name, "PARENT")
6930 || startswith (name, "_parent")));
6931 }
6932
6933 /* True iff field number FIELD_NUM of structure type TYPE is a
6934 transparent wrapper field (which should be silently traversed when doing
6935 field selection and flattened when printing). Assumes TYPE is a
6936 structure type with at least FIELD_NUM+1 fields. Such fields are always
6937 structures. */
6938
6939 int
6940 ada_is_wrapper_field (struct type *type, int field_num)
6941 {
6942 const char *name = TYPE_FIELD_NAME (type, field_num);
6943
6944 if (name != NULL && strcmp (name, "RETVAL") == 0)
6945 {
6946 /* This happens in functions with "out" or "in out" parameters
6947 which are passed by copy. For such functions, GNAT describes
6948 the function's return type as being a struct where the return
6949 value is in a field called RETVAL, and where the other "out"
6950 or "in out" parameters are fields of that struct. This is not
6951 a wrapper. */
6952 return 0;
6953 }
6954
6955 return (name != NULL
6956 && (startswith (name, "PARENT")
6957 || strcmp (name, "REP") == 0
6958 || startswith (name, "_parent")
6959 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6960 }
6961
6962 /* True iff field number FIELD_NUM of structure or union type TYPE
6963 is a variant wrapper. Assumes TYPE is a structure type with at least
6964 FIELD_NUM+1 fields. */
6965
6966 int
6967 ada_is_variant_part (struct type *type, int field_num)
6968 {
6969 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6970
6971 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6972 || (is_dynamic_field (type, field_num)
6973 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6974 == TYPE_CODE_UNION)));
6975 }
6976
6977 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6978 whose discriminants are contained in the record type OUTER_TYPE,
6979 returns the type of the controlling discriminant for the variant.
6980 May return NULL if the type could not be found. */
6981
6982 struct type *
6983 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6984 {
6985 const char *name = ada_variant_discrim_name (var_type);
6986
6987 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6988 }
6989
6990 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6991 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6992 represents a 'when others' clause; otherwise 0. */
6993
6994 int
6995 ada_is_others_clause (struct type *type, int field_num)
6996 {
6997 const char *name = TYPE_FIELD_NAME (type, field_num);
6998
6999 return (name != NULL && name[0] == 'O');
7000 }
7001
7002 /* Assuming that TYPE0 is the type of the variant part of a record,
7003 returns the name of the discriminant controlling the variant.
7004 The value is valid until the next call to ada_variant_discrim_name. */
7005
7006 const char *
7007 ada_variant_discrim_name (struct type *type0)
7008 {
7009 static char *result = NULL;
7010 static size_t result_len = 0;
7011 struct type *type;
7012 const char *name;
7013 const char *discrim_end;
7014 const char *discrim_start;
7015
7016 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7017 type = TYPE_TARGET_TYPE (type0);
7018 else
7019 type = type0;
7020
7021 name = ada_type_name (type);
7022
7023 if (name == NULL || name[0] == '\000')
7024 return "";
7025
7026 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7027 discrim_end -= 1)
7028 {
7029 if (startswith (discrim_end, "___XVN"))
7030 break;
7031 }
7032 if (discrim_end == name)
7033 return "";
7034
7035 for (discrim_start = discrim_end; discrim_start != name + 3;
7036 discrim_start -= 1)
7037 {
7038 if (discrim_start == name + 1)
7039 return "";
7040 if ((discrim_start > name + 3
7041 && startswith (discrim_start - 3, "___"))
7042 || discrim_start[-1] == '.')
7043 break;
7044 }
7045
7046 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7047 strncpy (result, discrim_start, discrim_end - discrim_start);
7048 result[discrim_end - discrim_start] = '\0';
7049 return result;
7050 }
7051
7052 /* Scan STR for a subtype-encoded number, beginning at position K.
7053 Put the position of the character just past the number scanned in
7054 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7055 Return 1 if there was a valid number at the given position, and 0
7056 otherwise. A "subtype-encoded" number consists of the absolute value
7057 in decimal, followed by the letter 'm' to indicate a negative number.
7058 Assumes 0m does not occur. */
7059
7060 int
7061 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7062 {
7063 ULONGEST RU;
7064
7065 if (!isdigit (str[k]))
7066 return 0;
7067
7068 /* Do it the hard way so as not to make any assumption about
7069 the relationship of unsigned long (%lu scan format code) and
7070 LONGEST. */
7071 RU = 0;
7072 while (isdigit (str[k]))
7073 {
7074 RU = RU * 10 + (str[k] - '0');
7075 k += 1;
7076 }
7077
7078 if (str[k] == 'm')
7079 {
7080 if (R != NULL)
7081 *R = (-(LONGEST) (RU - 1)) - 1;
7082 k += 1;
7083 }
7084 else if (R != NULL)
7085 *R = (LONGEST) RU;
7086
7087 /* NOTE on the above: Technically, C does not say what the results of
7088 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7089 number representable as a LONGEST (although either would probably work
7090 in most implementations). When RU>0, the locution in the then branch
7091 above is always equivalent to the negative of RU. */
7092
7093 if (new_k != NULL)
7094 *new_k = k;
7095 return 1;
7096 }
7097
7098 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7099 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7100 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7101
7102 int
7103 ada_in_variant (LONGEST val, struct type *type, int field_num)
7104 {
7105 const char *name = TYPE_FIELD_NAME (type, field_num);
7106 int p;
7107
7108 p = 0;
7109 while (1)
7110 {
7111 switch (name[p])
7112 {
7113 case '\0':
7114 return 0;
7115 case 'S':
7116 {
7117 LONGEST W;
7118
7119 if (!ada_scan_number (name, p + 1, &W, &p))
7120 return 0;
7121 if (val == W)
7122 return 1;
7123 break;
7124 }
7125 case 'R':
7126 {
7127 LONGEST L, U;
7128
7129 if (!ada_scan_number (name, p + 1, &L, &p)
7130 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7131 return 0;
7132 if (val >= L && val <= U)
7133 return 1;
7134 break;
7135 }
7136 case 'O':
7137 return 1;
7138 default:
7139 return 0;
7140 }
7141 }
7142 }
7143
7144 /* FIXME: Lots of redundancy below. Try to consolidate. */
7145
7146 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7147 ARG_TYPE, extract and return the value of one of its (non-static)
7148 fields. FIELDNO says which field. Differs from value_primitive_field
7149 only in that it can handle packed values of arbitrary type. */
7150
7151 static struct value *
7152 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7153 struct type *arg_type)
7154 {
7155 struct type *type;
7156
7157 arg_type = ada_check_typedef (arg_type);
7158 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7159
7160 /* Handle packed fields. */
7161
7162 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7163 {
7164 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7165 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7166
7167 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7168 offset + bit_pos / 8,
7169 bit_pos % 8, bit_size, type);
7170 }
7171 else
7172 return value_primitive_field (arg1, offset, fieldno, arg_type);
7173 }
7174
7175 /* Find field with name NAME in object of type TYPE. If found,
7176 set the following for each argument that is non-null:
7177 - *FIELD_TYPE_P to the field's type;
7178 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7179 an object of that type;
7180 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7181 - *BIT_SIZE_P to its size in bits if the field is packed, and
7182 0 otherwise;
7183 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7184 fields up to but not including the desired field, or by the total
7185 number of fields if not found. A NULL value of NAME never
7186 matches; the function just counts visible fields in this case.
7187
7188 Notice that we need to handle when a tagged record hierarchy
7189 has some components with the same name, like in this scenario:
7190
7191 type Top_T is tagged record
7192 N : Integer := 1;
7193 U : Integer := 974;
7194 A : Integer := 48;
7195 end record;
7196
7197 type Middle_T is new Top.Top_T with record
7198 N : Character := 'a';
7199 C : Integer := 3;
7200 end record;
7201
7202 type Bottom_T is new Middle.Middle_T with record
7203 N : Float := 4.0;
7204 C : Character := '5';
7205 X : Integer := 6;
7206 A : Character := 'J';
7207 end record;
7208
7209 Let's say we now have a variable declared and initialized as follow:
7210
7211 TC : Top_A := new Bottom_T;
7212
7213 And then we use this variable to call this function
7214
7215 procedure Assign (Obj: in out Top_T; TV : Integer);
7216
7217 as follow:
7218
7219 Assign (Top_T (B), 12);
7220
7221 Now, we're in the debugger, and we're inside that procedure
7222 then and we want to print the value of obj.c:
7223
7224 Usually, the tagged record or one of the parent type owns the
7225 component to print and there's no issue but in this particular
7226 case, what does it mean to ask for Obj.C? Since the actual
7227 type for object is type Bottom_T, it could mean two things: type
7228 component C from the Middle_T view, but also component C from
7229 Bottom_T. So in that "undefined" case, when the component is
7230 not found in the non-resolved type (which includes all the
7231 components of the parent type), then resolve it and see if we
7232 get better luck once expanded.
7233
7234 In the case of homonyms in the derived tagged type, we don't
7235 guaranty anything, and pick the one that's easiest for us
7236 to program.
7237
7238 Returns 1 if found, 0 otherwise. */
7239
7240 static int
7241 find_struct_field (const char *name, struct type *type, int offset,
7242 struct type **field_type_p,
7243 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7244 int *index_p)
7245 {
7246 int i;
7247 int parent_offset = -1;
7248
7249 type = ada_check_typedef (type);
7250
7251 if (field_type_p != NULL)
7252 *field_type_p = NULL;
7253 if (byte_offset_p != NULL)
7254 *byte_offset_p = 0;
7255 if (bit_offset_p != NULL)
7256 *bit_offset_p = 0;
7257 if (bit_size_p != NULL)
7258 *bit_size_p = 0;
7259
7260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7261 {
7262 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7263 int fld_offset = offset + bit_pos / 8;
7264 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7265
7266 if (t_field_name == NULL)
7267 continue;
7268
7269 else if (ada_is_parent_field (type, i))
7270 {
7271 /* This is a field pointing us to the parent type of a tagged
7272 type. As hinted in this function's documentation, we give
7273 preference to fields in the current record first, so what
7274 we do here is just record the index of this field before
7275 we skip it. If it turns out we couldn't find our field
7276 in the current record, then we'll get back to it and search
7277 inside it whether the field might exist in the parent. */
7278
7279 parent_offset = i;
7280 continue;
7281 }
7282
7283 else if (name != NULL && field_name_match (t_field_name, name))
7284 {
7285 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7286
7287 if (field_type_p != NULL)
7288 *field_type_p = TYPE_FIELD_TYPE (type, i);
7289 if (byte_offset_p != NULL)
7290 *byte_offset_p = fld_offset;
7291 if (bit_offset_p != NULL)
7292 *bit_offset_p = bit_pos % 8;
7293 if (bit_size_p != NULL)
7294 *bit_size_p = bit_size;
7295 return 1;
7296 }
7297 else if (ada_is_wrapper_field (type, i))
7298 {
7299 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7300 field_type_p, byte_offset_p, bit_offset_p,
7301 bit_size_p, index_p))
7302 return 1;
7303 }
7304 else if (ada_is_variant_part (type, i))
7305 {
7306 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7307 fixed type?? */
7308 int j;
7309 struct type *field_type
7310 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7311
7312 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7313 {
7314 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7315 fld_offset
7316 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7317 field_type_p, byte_offset_p,
7318 bit_offset_p, bit_size_p, index_p))
7319 return 1;
7320 }
7321 }
7322 else if (index_p != NULL)
7323 *index_p += 1;
7324 }
7325
7326 /* Field not found so far. If this is a tagged type which
7327 has a parent, try finding that field in the parent now. */
7328
7329 if (parent_offset != -1)
7330 {
7331 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7332 int fld_offset = offset + bit_pos / 8;
7333
7334 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7335 fld_offset, field_type_p, byte_offset_p,
7336 bit_offset_p, bit_size_p, index_p))
7337 return 1;
7338 }
7339
7340 return 0;
7341 }
7342
7343 /* Number of user-visible fields in record type TYPE. */
7344
7345 static int
7346 num_visible_fields (struct type *type)
7347 {
7348 int n;
7349
7350 n = 0;
7351 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7352 return n;
7353 }
7354
7355 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7356 and search in it assuming it has (class) type TYPE.
7357 If found, return value, else return NULL.
7358
7359 Searches recursively through wrapper fields (e.g., '_parent').
7360
7361 In the case of homonyms in the tagged types, please refer to the
7362 long explanation in find_struct_field's function documentation. */
7363
7364 static struct value *
7365 ada_search_struct_field (const char *name, struct value *arg, int offset,
7366 struct type *type)
7367 {
7368 int i;
7369 int parent_offset = -1;
7370
7371 type = ada_check_typedef (type);
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 {
7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7375
7376 if (t_field_name == NULL)
7377 continue;
7378
7379 else if (ada_is_parent_field (type, i))
7380 {
7381 /* This is a field pointing us to the parent type of a tagged
7382 type. As hinted in this function's documentation, we give
7383 preference to fields in the current record first, so what
7384 we do here is just record the index of this field before
7385 we skip it. If it turns out we couldn't find our field
7386 in the current record, then we'll get back to it and search
7387 inside it whether the field might exist in the parent. */
7388
7389 parent_offset = i;
7390 continue;
7391 }
7392
7393 else if (field_name_match (t_field_name, name))
7394 return ada_value_primitive_field (arg, offset, i, type);
7395
7396 else if (ada_is_wrapper_field (type, i))
7397 {
7398 struct value *v = /* Do not let indent join lines here. */
7399 ada_search_struct_field (name, arg,
7400 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7401 TYPE_FIELD_TYPE (type, i));
7402
7403 if (v != NULL)
7404 return v;
7405 }
7406
7407 else if (ada_is_variant_part (type, i))
7408 {
7409 /* PNH: Do we ever get here? See find_struct_field. */
7410 int j;
7411 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7412 i));
7413 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7414
7415 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7416 {
7417 struct value *v = ada_search_struct_field /* Force line
7418 break. */
7419 (name, arg,
7420 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7421 TYPE_FIELD_TYPE (field_type, j));
7422
7423 if (v != NULL)
7424 return v;
7425 }
7426 }
7427 }
7428
7429 /* Field not found so far. If this is a tagged type which
7430 has a parent, try finding that field in the parent now. */
7431
7432 if (parent_offset != -1)
7433 {
7434 struct value *v = ada_search_struct_field (
7435 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7436 TYPE_FIELD_TYPE (type, parent_offset));
7437
7438 if (v != NULL)
7439 return v;
7440 }
7441
7442 return NULL;
7443 }
7444
7445 static struct value *ada_index_struct_field_1 (int *, struct value *,
7446 int, struct type *);
7447
7448
7449 /* Return field #INDEX in ARG, where the index is that returned by
7450 * find_struct_field through its INDEX_P argument. Adjust the address
7451 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7452 * If found, return value, else return NULL. */
7453
7454 static struct value *
7455 ada_index_struct_field (int index, struct value *arg, int offset,
7456 struct type *type)
7457 {
7458 return ada_index_struct_field_1 (&index, arg, offset, type);
7459 }
7460
7461
7462 /* Auxiliary function for ada_index_struct_field. Like
7463 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7464 * *INDEX_P. */
7465
7466 static struct value *
7467 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7468 struct type *type)
7469 {
7470 int i;
7471 type = ada_check_typedef (type);
7472
7473 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7474 {
7475 if (TYPE_FIELD_NAME (type, i) == NULL)
7476 continue;
7477 else if (ada_is_wrapper_field (type, i))
7478 {
7479 struct value *v = /* Do not let indent join lines here. */
7480 ada_index_struct_field_1 (index_p, arg,
7481 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7482 TYPE_FIELD_TYPE (type, i));
7483
7484 if (v != NULL)
7485 return v;
7486 }
7487
7488 else if (ada_is_variant_part (type, i))
7489 {
7490 /* PNH: Do we ever get here? See ada_search_struct_field,
7491 find_struct_field. */
7492 error (_("Cannot assign this kind of variant record"));
7493 }
7494 else if (*index_p == 0)
7495 return ada_value_primitive_field (arg, offset, i, type);
7496 else
7497 *index_p -= 1;
7498 }
7499 return NULL;
7500 }
7501
7502 /* Given ARG, a value of type (pointer or reference to a)*
7503 structure/union, extract the component named NAME from the ultimate
7504 target structure/union and return it as a value with its
7505 appropriate type.
7506
7507 The routine searches for NAME among all members of the structure itself
7508 and (recursively) among all members of any wrapper members
7509 (e.g., '_parent').
7510
7511 If NO_ERR, then simply return NULL in case of error, rather than
7512 calling error. */
7513
7514 struct value *
7515 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7516 {
7517 struct type *t, *t1;
7518 struct value *v;
7519
7520 v = NULL;
7521 t1 = t = ada_check_typedef (value_type (arg));
7522 if (TYPE_CODE (t) == TYPE_CODE_REF)
7523 {
7524 t1 = TYPE_TARGET_TYPE (t);
7525 if (t1 == NULL)
7526 goto BadValue;
7527 t1 = ada_check_typedef (t1);
7528 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7529 {
7530 arg = coerce_ref (arg);
7531 t = t1;
7532 }
7533 }
7534
7535 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7536 {
7537 t1 = TYPE_TARGET_TYPE (t);
7538 if (t1 == NULL)
7539 goto BadValue;
7540 t1 = ada_check_typedef (t1);
7541 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7542 {
7543 arg = value_ind (arg);
7544 t = t1;
7545 }
7546 else
7547 break;
7548 }
7549
7550 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7551 goto BadValue;
7552
7553 if (t1 == t)
7554 v = ada_search_struct_field (name, arg, 0, t);
7555 else
7556 {
7557 int bit_offset, bit_size, byte_offset;
7558 struct type *field_type;
7559 CORE_ADDR address;
7560
7561 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7562 address = value_address (ada_value_ind (arg));
7563 else
7564 address = value_address (ada_coerce_ref (arg));
7565
7566 /* Check to see if this is a tagged type. We also need to handle
7567 the case where the type is a reference to a tagged type, but
7568 we have to be careful to exclude pointers to tagged types.
7569 The latter should be shown as usual (as a pointer), whereas
7570 a reference should mostly be transparent to the user. */
7571
7572 if (ada_is_tagged_type (t1, 0)
7573 || (TYPE_CODE (t1) == TYPE_CODE_REF
7574 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7575 {
7576 /* We first try to find the searched field in the current type.
7577 If not found then let's look in the fixed type. */
7578
7579 if (!find_struct_field (name, t1, 0,
7580 &field_type, &byte_offset, &bit_offset,
7581 &bit_size, NULL))
7582 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7583 address, NULL, 1);
7584 }
7585 else
7586 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7587 address, NULL, 1);
7588
7589 if (find_struct_field (name, t1, 0,
7590 &field_type, &byte_offset, &bit_offset,
7591 &bit_size, NULL))
7592 {
7593 if (bit_size != 0)
7594 {
7595 if (TYPE_CODE (t) == TYPE_CODE_REF)
7596 arg = ada_coerce_ref (arg);
7597 else
7598 arg = ada_value_ind (arg);
7599 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7600 bit_offset, bit_size,
7601 field_type);
7602 }
7603 else
7604 v = value_at_lazy (field_type, address + byte_offset);
7605 }
7606 }
7607
7608 if (v != NULL || no_err)
7609 return v;
7610 else
7611 error (_("There is no member named %s."), name);
7612
7613 BadValue:
7614 if (no_err)
7615 return NULL;
7616 else
7617 error (_("Attempt to extract a component of "
7618 "a value that is not a record."));
7619 }
7620
7621 /* Return a string representation of type TYPE. */
7622
7623 static std::string
7624 type_as_string (struct type *type)
7625 {
7626 string_file tmp_stream;
7627
7628 type_print (type, "", &tmp_stream, -1);
7629
7630 return std::move (tmp_stream.string ());
7631 }
7632
7633 /* Given a type TYPE, look up the type of the component of type named NAME.
7634 If DISPP is non-null, add its byte displacement from the beginning of a
7635 structure (pointed to by a value) of type TYPE to *DISPP (does not
7636 work for packed fields).
7637
7638 Matches any field whose name has NAME as a prefix, possibly
7639 followed by "___".
7640
7641 TYPE can be either a struct or union. If REFOK, TYPE may also
7642 be a (pointer or reference)+ to a struct or union, and the
7643 ultimate target type will be searched.
7644
7645 Looks recursively into variant clauses and parent types.
7646
7647 In the case of homonyms in the tagged types, please refer to the
7648 long explanation in find_struct_field's function documentation.
7649
7650 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7651 TYPE is not a type of the right kind. */
7652
7653 static struct type *
7654 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7655 int noerr)
7656 {
7657 int i;
7658 int parent_offset = -1;
7659
7660 if (name == NULL)
7661 goto BadName;
7662
7663 if (refok && type != NULL)
7664 while (1)
7665 {
7666 type = ada_check_typedef (type);
7667 if (TYPE_CODE (type) != TYPE_CODE_PTR
7668 && TYPE_CODE (type) != TYPE_CODE_REF)
7669 break;
7670 type = TYPE_TARGET_TYPE (type);
7671 }
7672
7673 if (type == NULL
7674 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7675 && TYPE_CODE (type) != TYPE_CODE_UNION))
7676 {
7677 if (noerr)
7678 return NULL;
7679
7680 error (_("Type %s is not a structure or union type"),
7681 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7682 }
7683
7684 type = to_static_fixed_type (type);
7685
7686 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7687 {
7688 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7689 struct type *t;
7690
7691 if (t_field_name == NULL)
7692 continue;
7693
7694 else if (ada_is_parent_field (type, i))
7695 {
7696 /* This is a field pointing us to the parent type of a tagged
7697 type. As hinted in this function's documentation, we give
7698 preference to fields in the current record first, so what
7699 we do here is just record the index of this field before
7700 we skip it. If it turns out we couldn't find our field
7701 in the current record, then we'll get back to it and search
7702 inside it whether the field might exist in the parent. */
7703
7704 parent_offset = i;
7705 continue;
7706 }
7707
7708 else if (field_name_match (t_field_name, name))
7709 return TYPE_FIELD_TYPE (type, i);
7710
7711 else if (ada_is_wrapper_field (type, i))
7712 {
7713 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7714 0, 1);
7715 if (t != NULL)
7716 return t;
7717 }
7718
7719 else if (ada_is_variant_part (type, i))
7720 {
7721 int j;
7722 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7723 i));
7724
7725 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7726 {
7727 /* FIXME pnh 2008/01/26: We check for a field that is
7728 NOT wrapped in a struct, since the compiler sometimes
7729 generates these for unchecked variant types. Revisit
7730 if the compiler changes this practice. */
7731 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7732
7733 if (v_field_name != NULL
7734 && field_name_match (v_field_name, name))
7735 t = TYPE_FIELD_TYPE (field_type, j);
7736 else
7737 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7738 j),
7739 name, 0, 1);
7740
7741 if (t != NULL)
7742 return t;
7743 }
7744 }
7745
7746 }
7747
7748 /* Field not found so far. If this is a tagged type which
7749 has a parent, try finding that field in the parent now. */
7750
7751 if (parent_offset != -1)
7752 {
7753 struct type *t;
7754
7755 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7756 name, 0, 1);
7757 if (t != NULL)
7758 return t;
7759 }
7760
7761 BadName:
7762 if (!noerr)
7763 {
7764 const char *name_str = name != NULL ? name : _("<null>");
7765
7766 error (_("Type %s has no component named %s"),
7767 type_as_string (type).c_str (), name_str);
7768 }
7769
7770 return NULL;
7771 }
7772
7773 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7774 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7775 represents an unchecked union (that is, the variant part of a
7776 record that is named in an Unchecked_Union pragma). */
7777
7778 static int
7779 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7780 {
7781 const char *discrim_name = ada_variant_discrim_name (var_type);
7782
7783 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7784 }
7785
7786
7787 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7788 within a value of type OUTER_TYPE that is stored in GDB at
7789 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7790 numbering from 0) is applicable. Returns -1 if none are. */
7791
7792 int
7793 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7794 const gdb_byte *outer_valaddr)
7795 {
7796 int others_clause;
7797 int i;
7798 const char *discrim_name = ada_variant_discrim_name (var_type);
7799 struct value *outer;
7800 struct value *discrim;
7801 LONGEST discrim_val;
7802
7803 /* Using plain value_from_contents_and_address here causes problems
7804 because we will end up trying to resolve a type that is currently
7805 being constructed. */
7806 outer = value_from_contents_and_address_unresolved (outer_type,
7807 outer_valaddr, 0);
7808 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7809 if (discrim == NULL)
7810 return -1;
7811 discrim_val = value_as_long (discrim);
7812
7813 others_clause = -1;
7814 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7815 {
7816 if (ada_is_others_clause (var_type, i))
7817 others_clause = i;
7818 else if (ada_in_variant (discrim_val, var_type, i))
7819 return i;
7820 }
7821
7822 return others_clause;
7823 }
7824 \f
7825
7826
7827 /* Dynamic-Sized Records */
7828
7829 /* Strategy: The type ostensibly attached to a value with dynamic size
7830 (i.e., a size that is not statically recorded in the debugging
7831 data) does not accurately reflect the size or layout of the value.
7832 Our strategy is to convert these values to values with accurate,
7833 conventional types that are constructed on the fly. */
7834
7835 /* There is a subtle and tricky problem here. In general, we cannot
7836 determine the size of dynamic records without its data. However,
7837 the 'struct value' data structure, which GDB uses to represent
7838 quantities in the inferior process (the target), requires the size
7839 of the type at the time of its allocation in order to reserve space
7840 for GDB's internal copy of the data. That's why the
7841 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7842 rather than struct value*s.
7843
7844 However, GDB's internal history variables ($1, $2, etc.) are
7845 struct value*s containing internal copies of the data that are not, in
7846 general, the same as the data at their corresponding addresses in
7847 the target. Fortunately, the types we give to these values are all
7848 conventional, fixed-size types (as per the strategy described
7849 above), so that we don't usually have to perform the
7850 'to_fixed_xxx_type' conversions to look at their values.
7851 Unfortunately, there is one exception: if one of the internal
7852 history variables is an array whose elements are unconstrained
7853 records, then we will need to create distinct fixed types for each
7854 element selected. */
7855
7856 /* The upshot of all of this is that many routines take a (type, host
7857 address, target address) triple as arguments to represent a value.
7858 The host address, if non-null, is supposed to contain an internal
7859 copy of the relevant data; otherwise, the program is to consult the
7860 target at the target address. */
7861
7862 /* Assuming that VAL0 represents a pointer value, the result of
7863 dereferencing it. Differs from value_ind in its treatment of
7864 dynamic-sized types. */
7865
7866 struct value *
7867 ada_value_ind (struct value *val0)
7868 {
7869 struct value *val = value_ind (val0);
7870
7871 if (ada_is_tagged_type (value_type (val), 0))
7872 val = ada_tag_value_at_base_address (val);
7873
7874 return ada_to_fixed_value (val);
7875 }
7876
7877 /* The value resulting from dereferencing any "reference to"
7878 qualifiers on VAL0. */
7879
7880 static struct value *
7881 ada_coerce_ref (struct value *val0)
7882 {
7883 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7884 {
7885 struct value *val = val0;
7886
7887 val = coerce_ref (val);
7888
7889 if (ada_is_tagged_type (value_type (val), 0))
7890 val = ada_tag_value_at_base_address (val);
7891
7892 return ada_to_fixed_value (val);
7893 }
7894 else
7895 return val0;
7896 }
7897
7898 /* Return OFF rounded upward if necessary to a multiple of
7899 ALIGNMENT (a power of 2). */
7900
7901 static unsigned int
7902 align_value (unsigned int off, unsigned int alignment)
7903 {
7904 return (off + alignment - 1) & ~(alignment - 1);
7905 }
7906
7907 /* Return the bit alignment required for field #F of template type TYPE. */
7908
7909 static unsigned int
7910 field_alignment (struct type *type, int f)
7911 {
7912 const char *name = TYPE_FIELD_NAME (type, f);
7913 int len;
7914 int align_offset;
7915
7916 /* The field name should never be null, unless the debugging information
7917 is somehow malformed. In this case, we assume the field does not
7918 require any alignment. */
7919 if (name == NULL)
7920 return 1;
7921
7922 len = strlen (name);
7923
7924 if (!isdigit (name[len - 1]))
7925 return 1;
7926
7927 if (isdigit (name[len - 2]))
7928 align_offset = len - 2;
7929 else
7930 align_offset = len - 1;
7931
7932 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7933 return TARGET_CHAR_BIT;
7934
7935 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7936 }
7937
7938 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7939
7940 static struct symbol *
7941 ada_find_any_type_symbol (const char *name)
7942 {
7943 struct symbol *sym;
7944
7945 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7946 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7947 return sym;
7948
7949 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7950 return sym;
7951 }
7952
7953 /* Find a type named NAME. Ignores ambiguity. This routine will look
7954 solely for types defined by debug info, it will not search the GDB
7955 primitive types. */
7956
7957 static struct type *
7958 ada_find_any_type (const char *name)
7959 {
7960 struct symbol *sym = ada_find_any_type_symbol (name);
7961
7962 if (sym != NULL)
7963 return SYMBOL_TYPE (sym);
7964
7965 return NULL;
7966 }
7967
7968 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7969 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7970 symbol, in which case it is returned. Otherwise, this looks for
7971 symbols whose name is that of NAME_SYM suffixed with "___XR".
7972 Return symbol if found, and NULL otherwise. */
7973
7974 struct symbol *
7975 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7976 {
7977 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7978 struct symbol *sym;
7979
7980 if (strstr (name, "___XR") != NULL)
7981 return name_sym;
7982
7983 sym = find_old_style_renaming_symbol (name, block);
7984
7985 if (sym != NULL)
7986 return sym;
7987
7988 /* Not right yet. FIXME pnh 7/20/2007. */
7989 sym = ada_find_any_type_symbol (name);
7990 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7991 return sym;
7992 else
7993 return NULL;
7994 }
7995
7996 static struct symbol *
7997 find_old_style_renaming_symbol (const char *name, const struct block *block)
7998 {
7999 const struct symbol *function_sym = block_linkage_function (block);
8000 char *rename;
8001
8002 if (function_sym != NULL)
8003 {
8004 /* If the symbol is defined inside a function, NAME is not fully
8005 qualified. This means we need to prepend the function name
8006 as well as adding the ``___XR'' suffix to build the name of
8007 the associated renaming symbol. */
8008 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8009 /* Function names sometimes contain suffixes used
8010 for instance to qualify nested subprograms. When building
8011 the XR type name, we need to make sure that this suffix is
8012 not included. So do not include any suffix in the function
8013 name length below. */
8014 int function_name_len = ada_name_prefix_len (function_name);
8015 const int rename_len = function_name_len + 2 /* "__" */
8016 + strlen (name) + 6 /* "___XR\0" */ ;
8017
8018 /* Strip the suffix if necessary. */
8019 ada_remove_trailing_digits (function_name, &function_name_len);
8020 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8021 ada_remove_Xbn_suffix (function_name, &function_name_len);
8022
8023 /* Library-level functions are a special case, as GNAT adds
8024 a ``_ada_'' prefix to the function name to avoid namespace
8025 pollution. However, the renaming symbols themselves do not
8026 have this prefix, so we need to skip this prefix if present. */
8027 if (function_name_len > 5 /* "_ada_" */
8028 && strstr (function_name, "_ada_") == function_name)
8029 {
8030 function_name += 5;
8031 function_name_len -= 5;
8032 }
8033
8034 rename = (char *) alloca (rename_len * sizeof (char));
8035 strncpy (rename, function_name, function_name_len);
8036 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8037 "__%s___XR", name);
8038 }
8039 else
8040 {
8041 const int rename_len = strlen (name) + 6;
8042
8043 rename = (char *) alloca (rename_len * sizeof (char));
8044 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8045 }
8046
8047 return ada_find_any_type_symbol (rename);
8048 }
8049
8050 /* Because of GNAT encoding conventions, several GDB symbols may match a
8051 given type name. If the type denoted by TYPE0 is to be preferred to
8052 that of TYPE1 for purposes of type printing, return non-zero;
8053 otherwise return 0. */
8054
8055 int
8056 ada_prefer_type (struct type *type0, struct type *type1)
8057 {
8058 if (type1 == NULL)
8059 return 1;
8060 else if (type0 == NULL)
8061 return 0;
8062 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8063 return 1;
8064 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8065 return 0;
8066 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8067 return 1;
8068 else if (ada_is_constrained_packed_array_type (type0))
8069 return 1;
8070 else if (ada_is_array_descriptor_type (type0)
8071 && !ada_is_array_descriptor_type (type1))
8072 return 1;
8073 else
8074 {
8075 const char *type0_name = TYPE_NAME (type0);
8076 const char *type1_name = TYPE_NAME (type1);
8077
8078 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8079 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8080 return 1;
8081 }
8082 return 0;
8083 }
8084
8085 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8086 null. */
8087
8088 const char *
8089 ada_type_name (struct type *type)
8090 {
8091 if (type == NULL)
8092 return NULL;
8093 return TYPE_NAME (type);
8094 }
8095
8096 /* Search the list of "descriptive" types associated to TYPE for a type
8097 whose name is NAME. */
8098
8099 static struct type *
8100 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8101 {
8102 struct type *result, *tmp;
8103
8104 if (ada_ignore_descriptive_types_p)
8105 return NULL;
8106
8107 /* If there no descriptive-type info, then there is no parallel type
8108 to be found. */
8109 if (!HAVE_GNAT_AUX_INFO (type))
8110 return NULL;
8111
8112 result = TYPE_DESCRIPTIVE_TYPE (type);
8113 while (result != NULL)
8114 {
8115 const char *result_name = ada_type_name (result);
8116
8117 if (result_name == NULL)
8118 {
8119 warning (_("unexpected null name on descriptive type"));
8120 return NULL;
8121 }
8122
8123 /* If the names match, stop. */
8124 if (strcmp (result_name, name) == 0)
8125 break;
8126
8127 /* Otherwise, look at the next item on the list, if any. */
8128 if (HAVE_GNAT_AUX_INFO (result))
8129 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8130 else
8131 tmp = NULL;
8132
8133 /* If not found either, try after having resolved the typedef. */
8134 if (tmp != NULL)
8135 result = tmp;
8136 else
8137 {
8138 result = check_typedef (result);
8139 if (HAVE_GNAT_AUX_INFO (result))
8140 result = TYPE_DESCRIPTIVE_TYPE (result);
8141 else
8142 result = NULL;
8143 }
8144 }
8145
8146 /* If we didn't find a match, see whether this is a packed array. With
8147 older compilers, the descriptive type information is either absent or
8148 irrelevant when it comes to packed arrays so the above lookup fails.
8149 Fall back to using a parallel lookup by name in this case. */
8150 if (result == NULL && ada_is_constrained_packed_array_type (type))
8151 return ada_find_any_type (name);
8152
8153 return result;
8154 }
8155
8156 /* Find a parallel type to TYPE with the specified NAME, using the
8157 descriptive type taken from the debugging information, if available,
8158 and otherwise using the (slower) name-based method. */
8159
8160 static struct type *
8161 ada_find_parallel_type_with_name (struct type *type, const char *name)
8162 {
8163 struct type *result = NULL;
8164
8165 if (HAVE_GNAT_AUX_INFO (type))
8166 result = find_parallel_type_by_descriptive_type (type, name);
8167 else
8168 result = ada_find_any_type (name);
8169
8170 return result;
8171 }
8172
8173 /* Same as above, but specify the name of the parallel type by appending
8174 SUFFIX to the name of TYPE. */
8175
8176 struct type *
8177 ada_find_parallel_type (struct type *type, const char *suffix)
8178 {
8179 char *name;
8180 const char *type_name = ada_type_name (type);
8181 int len;
8182
8183 if (type_name == NULL)
8184 return NULL;
8185
8186 len = strlen (type_name);
8187
8188 name = (char *) alloca (len + strlen (suffix) + 1);
8189
8190 strcpy (name, type_name);
8191 strcpy (name + len, suffix);
8192
8193 return ada_find_parallel_type_with_name (type, name);
8194 }
8195
8196 /* If TYPE is a variable-size record type, return the corresponding template
8197 type describing its fields. Otherwise, return NULL. */
8198
8199 static struct type *
8200 dynamic_template_type (struct type *type)
8201 {
8202 type = ada_check_typedef (type);
8203
8204 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8205 || ada_type_name (type) == NULL)
8206 return NULL;
8207 else
8208 {
8209 int len = strlen (ada_type_name (type));
8210
8211 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8212 return type;
8213 else
8214 return ada_find_parallel_type (type, "___XVE");
8215 }
8216 }
8217
8218 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8219 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8220
8221 static int
8222 is_dynamic_field (struct type *templ_type, int field_num)
8223 {
8224 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8225
8226 return name != NULL
8227 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8228 && strstr (name, "___XVL") != NULL;
8229 }
8230
8231 /* The index of the variant field of TYPE, or -1 if TYPE does not
8232 represent a variant record type. */
8233
8234 static int
8235 variant_field_index (struct type *type)
8236 {
8237 int f;
8238
8239 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8240 return -1;
8241
8242 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8243 {
8244 if (ada_is_variant_part (type, f))
8245 return f;
8246 }
8247 return -1;
8248 }
8249
8250 /* A record type with no fields. */
8251
8252 static struct type *
8253 empty_record (struct type *templ)
8254 {
8255 struct type *type = alloc_type_copy (templ);
8256
8257 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8258 TYPE_NFIELDS (type) = 0;
8259 TYPE_FIELDS (type) = NULL;
8260 INIT_CPLUS_SPECIFIC (type);
8261 TYPE_NAME (type) = "<empty>";
8262 TYPE_LENGTH (type) = 0;
8263 return type;
8264 }
8265
8266 /* An ordinary record type (with fixed-length fields) that describes
8267 the value of type TYPE at VALADDR or ADDRESS (see comments at
8268 the beginning of this section) VAL according to GNAT conventions.
8269 DVAL0 should describe the (portion of a) record that contains any
8270 necessary discriminants. It should be NULL if value_type (VAL) is
8271 an outer-level type (i.e., as opposed to a branch of a variant.) A
8272 variant field (unless unchecked) is replaced by a particular branch
8273 of the variant.
8274
8275 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8276 length are not statically known are discarded. As a consequence,
8277 VALADDR, ADDRESS and DVAL0 are ignored.
8278
8279 NOTE: Limitations: For now, we assume that dynamic fields and
8280 variants occupy whole numbers of bytes. However, they need not be
8281 byte-aligned. */
8282
8283 struct type *
8284 ada_template_to_fixed_record_type_1 (struct type *type,
8285 const gdb_byte *valaddr,
8286 CORE_ADDR address, struct value *dval0,
8287 int keep_dynamic_fields)
8288 {
8289 struct value *mark = value_mark ();
8290 struct value *dval;
8291 struct type *rtype;
8292 int nfields, bit_len;
8293 int variant_field;
8294 long off;
8295 int fld_bit_len;
8296 int f;
8297
8298 /* Compute the number of fields in this record type that are going
8299 to be processed: unless keep_dynamic_fields, this includes only
8300 fields whose position and length are static will be processed. */
8301 if (keep_dynamic_fields)
8302 nfields = TYPE_NFIELDS (type);
8303 else
8304 {
8305 nfields = 0;
8306 while (nfields < TYPE_NFIELDS (type)
8307 && !ada_is_variant_part (type, nfields)
8308 && !is_dynamic_field (type, nfields))
8309 nfields++;
8310 }
8311
8312 rtype = alloc_type_copy (type);
8313 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8314 INIT_CPLUS_SPECIFIC (rtype);
8315 TYPE_NFIELDS (rtype) = nfields;
8316 TYPE_FIELDS (rtype) = (struct field *)
8317 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8318 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8319 TYPE_NAME (rtype) = ada_type_name (type);
8320 TYPE_FIXED_INSTANCE (rtype) = 1;
8321
8322 off = 0;
8323 bit_len = 0;
8324 variant_field = -1;
8325
8326 for (f = 0; f < nfields; f += 1)
8327 {
8328 off = align_value (off, field_alignment (type, f))
8329 + TYPE_FIELD_BITPOS (type, f);
8330 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8331 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8332
8333 if (ada_is_variant_part (type, f))
8334 {
8335 variant_field = f;
8336 fld_bit_len = 0;
8337 }
8338 else if (is_dynamic_field (type, f))
8339 {
8340 const gdb_byte *field_valaddr = valaddr;
8341 CORE_ADDR field_address = address;
8342 struct type *field_type =
8343 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8344
8345 if (dval0 == NULL)
8346 {
8347 /* rtype's length is computed based on the run-time
8348 value of discriminants. If the discriminants are not
8349 initialized, the type size may be completely bogus and
8350 GDB may fail to allocate a value for it. So check the
8351 size first before creating the value. */
8352 ada_ensure_varsize_limit (rtype);
8353 /* Using plain value_from_contents_and_address here
8354 causes problems because we will end up trying to
8355 resolve a type that is currently being
8356 constructed. */
8357 dval = value_from_contents_and_address_unresolved (rtype,
8358 valaddr,
8359 address);
8360 rtype = value_type (dval);
8361 }
8362 else
8363 dval = dval0;
8364
8365 /* If the type referenced by this field is an aligner type, we need
8366 to unwrap that aligner type, because its size might not be set.
8367 Keeping the aligner type would cause us to compute the wrong
8368 size for this field, impacting the offset of the all the fields
8369 that follow this one. */
8370 if (ada_is_aligner_type (field_type))
8371 {
8372 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8373
8374 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8375 field_address = cond_offset_target (field_address, field_offset);
8376 field_type = ada_aligned_type (field_type);
8377 }
8378
8379 field_valaddr = cond_offset_host (field_valaddr,
8380 off / TARGET_CHAR_BIT);
8381 field_address = cond_offset_target (field_address,
8382 off / TARGET_CHAR_BIT);
8383
8384 /* Get the fixed type of the field. Note that, in this case,
8385 we do not want to get the real type out of the tag: if
8386 the current field is the parent part of a tagged record,
8387 we will get the tag of the object. Clearly wrong: the real
8388 type of the parent is not the real type of the child. We
8389 would end up in an infinite loop. */
8390 field_type = ada_get_base_type (field_type);
8391 field_type = ada_to_fixed_type (field_type, field_valaddr,
8392 field_address, dval, 0);
8393 /* If the field size is already larger than the maximum
8394 object size, then the record itself will necessarily
8395 be larger than the maximum object size. We need to make
8396 this check now, because the size might be so ridiculously
8397 large (due to an uninitialized variable in the inferior)
8398 that it would cause an overflow when adding it to the
8399 record size. */
8400 ada_ensure_varsize_limit (field_type);
8401
8402 TYPE_FIELD_TYPE (rtype, f) = field_type;
8403 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8404 /* The multiplication can potentially overflow. But because
8405 the field length has been size-checked just above, and
8406 assuming that the maximum size is a reasonable value,
8407 an overflow should not happen in practice. So rather than
8408 adding overflow recovery code to this already complex code,
8409 we just assume that it's not going to happen. */
8410 fld_bit_len =
8411 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8412 }
8413 else
8414 {
8415 /* Note: If this field's type is a typedef, it is important
8416 to preserve the typedef layer.
8417
8418 Otherwise, we might be transforming a typedef to a fat
8419 pointer (encoding a pointer to an unconstrained array),
8420 into a basic fat pointer (encoding an unconstrained
8421 array). As both types are implemented using the same
8422 structure, the typedef is the only clue which allows us
8423 to distinguish between the two options. Stripping it
8424 would prevent us from printing this field appropriately. */
8425 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8426 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8427 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8428 fld_bit_len =
8429 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8430 else
8431 {
8432 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8433
8434 /* We need to be careful of typedefs when computing
8435 the length of our field. If this is a typedef,
8436 get the length of the target type, not the length
8437 of the typedef. */
8438 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8439 field_type = ada_typedef_target_type (field_type);
8440
8441 fld_bit_len =
8442 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8443 }
8444 }
8445 if (off + fld_bit_len > bit_len)
8446 bit_len = off + fld_bit_len;
8447 off += fld_bit_len;
8448 TYPE_LENGTH (rtype) =
8449 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8450 }
8451
8452 /* We handle the variant part, if any, at the end because of certain
8453 odd cases in which it is re-ordered so as NOT to be the last field of
8454 the record. This can happen in the presence of representation
8455 clauses. */
8456 if (variant_field >= 0)
8457 {
8458 struct type *branch_type;
8459
8460 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8461
8462 if (dval0 == NULL)
8463 {
8464 /* Using plain value_from_contents_and_address here causes
8465 problems because we will end up trying to resolve a type
8466 that is currently being constructed. */
8467 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8468 address);
8469 rtype = value_type (dval);
8470 }
8471 else
8472 dval = dval0;
8473
8474 branch_type =
8475 to_fixed_variant_branch_type
8476 (TYPE_FIELD_TYPE (type, variant_field),
8477 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8478 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8479 if (branch_type == NULL)
8480 {
8481 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8482 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8483 TYPE_NFIELDS (rtype) -= 1;
8484 }
8485 else
8486 {
8487 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8488 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8489 fld_bit_len =
8490 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8491 TARGET_CHAR_BIT;
8492 if (off + fld_bit_len > bit_len)
8493 bit_len = off + fld_bit_len;
8494 TYPE_LENGTH (rtype) =
8495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8496 }
8497 }
8498
8499 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8500 should contain the alignment of that record, which should be a strictly
8501 positive value. If null or negative, then something is wrong, most
8502 probably in the debug info. In that case, we don't round up the size
8503 of the resulting type. If this record is not part of another structure,
8504 the current RTYPE length might be good enough for our purposes. */
8505 if (TYPE_LENGTH (type) <= 0)
8506 {
8507 if (TYPE_NAME (rtype))
8508 warning (_("Invalid type size for `%s' detected: %d."),
8509 TYPE_NAME (rtype), TYPE_LENGTH (type));
8510 else
8511 warning (_("Invalid type size for <unnamed> detected: %d."),
8512 TYPE_LENGTH (type));
8513 }
8514 else
8515 {
8516 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8517 TYPE_LENGTH (type));
8518 }
8519
8520 value_free_to_mark (mark);
8521 if (TYPE_LENGTH (rtype) > varsize_limit)
8522 error (_("record type with dynamic size is larger than varsize-limit"));
8523 return rtype;
8524 }
8525
8526 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8527 of 1. */
8528
8529 static struct type *
8530 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8531 CORE_ADDR address, struct value *dval0)
8532 {
8533 return ada_template_to_fixed_record_type_1 (type, valaddr,
8534 address, dval0, 1);
8535 }
8536
8537 /* An ordinary record type in which ___XVL-convention fields and
8538 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8539 static approximations, containing all possible fields. Uses
8540 no runtime values. Useless for use in values, but that's OK,
8541 since the results are used only for type determinations. Works on both
8542 structs and unions. Representation note: to save space, we memorize
8543 the result of this function in the TYPE_TARGET_TYPE of the
8544 template type. */
8545
8546 static struct type *
8547 template_to_static_fixed_type (struct type *type0)
8548 {
8549 struct type *type;
8550 int nfields;
8551 int f;
8552
8553 /* No need no do anything if the input type is already fixed. */
8554 if (TYPE_FIXED_INSTANCE (type0))
8555 return type0;
8556
8557 /* Likewise if we already have computed the static approximation. */
8558 if (TYPE_TARGET_TYPE (type0) != NULL)
8559 return TYPE_TARGET_TYPE (type0);
8560
8561 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8562 type = type0;
8563 nfields = TYPE_NFIELDS (type0);
8564
8565 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8566 recompute all over next time. */
8567 TYPE_TARGET_TYPE (type0) = type;
8568
8569 for (f = 0; f < nfields; f += 1)
8570 {
8571 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8572 struct type *new_type;
8573
8574 if (is_dynamic_field (type0, f))
8575 {
8576 field_type = ada_check_typedef (field_type);
8577 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8578 }
8579 else
8580 new_type = static_unwrap_type (field_type);
8581
8582 if (new_type != field_type)
8583 {
8584 /* Clone TYPE0 only the first time we get a new field type. */
8585 if (type == type0)
8586 {
8587 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8588 TYPE_CODE (type) = TYPE_CODE (type0);
8589 INIT_CPLUS_SPECIFIC (type);
8590 TYPE_NFIELDS (type) = nfields;
8591 TYPE_FIELDS (type) = (struct field *)
8592 TYPE_ALLOC (type, nfields * sizeof (struct field));
8593 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8594 sizeof (struct field) * nfields);
8595 TYPE_NAME (type) = ada_type_name (type0);
8596 TYPE_FIXED_INSTANCE (type) = 1;
8597 TYPE_LENGTH (type) = 0;
8598 }
8599 TYPE_FIELD_TYPE (type, f) = new_type;
8600 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8601 }
8602 }
8603
8604 return type;
8605 }
8606
8607 /* Given an object of type TYPE whose contents are at VALADDR and
8608 whose address in memory is ADDRESS, returns a revision of TYPE,
8609 which should be a non-dynamic-sized record, in which the variant
8610 part, if any, is replaced with the appropriate branch. Looks
8611 for discriminant values in DVAL0, which can be NULL if the record
8612 contains the necessary discriminant values. */
8613
8614 static struct type *
8615 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8616 CORE_ADDR address, struct value *dval0)
8617 {
8618 struct value *mark = value_mark ();
8619 struct value *dval;
8620 struct type *rtype;
8621 struct type *branch_type;
8622 int nfields = TYPE_NFIELDS (type);
8623 int variant_field = variant_field_index (type);
8624
8625 if (variant_field == -1)
8626 return type;
8627
8628 if (dval0 == NULL)
8629 {
8630 dval = value_from_contents_and_address (type, valaddr, address);
8631 type = value_type (dval);
8632 }
8633 else
8634 dval = dval0;
8635
8636 rtype = alloc_type_copy (type);
8637 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8638 INIT_CPLUS_SPECIFIC (rtype);
8639 TYPE_NFIELDS (rtype) = nfields;
8640 TYPE_FIELDS (rtype) =
8641 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8642 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8643 sizeof (struct field) * nfields);
8644 TYPE_NAME (rtype) = ada_type_name (type);
8645 TYPE_FIXED_INSTANCE (rtype) = 1;
8646 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8647
8648 branch_type = to_fixed_variant_branch_type
8649 (TYPE_FIELD_TYPE (type, variant_field),
8650 cond_offset_host (valaddr,
8651 TYPE_FIELD_BITPOS (type, variant_field)
8652 / TARGET_CHAR_BIT),
8653 cond_offset_target (address,
8654 TYPE_FIELD_BITPOS (type, variant_field)
8655 / TARGET_CHAR_BIT), dval);
8656 if (branch_type == NULL)
8657 {
8658 int f;
8659
8660 for (f = variant_field + 1; f < nfields; f += 1)
8661 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8662 TYPE_NFIELDS (rtype) -= 1;
8663 }
8664 else
8665 {
8666 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8667 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8668 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8669 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8670 }
8671 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8672
8673 value_free_to_mark (mark);
8674 return rtype;
8675 }
8676
8677 /* An ordinary record type (with fixed-length fields) that describes
8678 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8679 beginning of this section]. Any necessary discriminants' values
8680 should be in DVAL, a record value; it may be NULL if the object
8681 at ADDR itself contains any necessary discriminant values.
8682 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8683 values from the record are needed. Except in the case that DVAL,
8684 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8685 unchecked) is replaced by a particular branch of the variant.
8686
8687 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8688 is questionable and may be removed. It can arise during the
8689 processing of an unconstrained-array-of-record type where all the
8690 variant branches have exactly the same size. This is because in
8691 such cases, the compiler does not bother to use the XVS convention
8692 when encoding the record. I am currently dubious of this
8693 shortcut and suspect the compiler should be altered. FIXME. */
8694
8695 static struct type *
8696 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8697 CORE_ADDR address, struct value *dval)
8698 {
8699 struct type *templ_type;
8700
8701 if (TYPE_FIXED_INSTANCE (type0))
8702 return type0;
8703
8704 templ_type = dynamic_template_type (type0);
8705
8706 if (templ_type != NULL)
8707 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8708 else if (variant_field_index (type0) >= 0)
8709 {
8710 if (dval == NULL && valaddr == NULL && address == 0)
8711 return type0;
8712 return to_record_with_fixed_variant_part (type0, valaddr, address,
8713 dval);
8714 }
8715 else
8716 {
8717 TYPE_FIXED_INSTANCE (type0) = 1;
8718 return type0;
8719 }
8720
8721 }
8722
8723 /* An ordinary record type (with fixed-length fields) that describes
8724 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8725 union type. Any necessary discriminants' values should be in DVAL,
8726 a record value. That is, this routine selects the appropriate
8727 branch of the union at ADDR according to the discriminant value
8728 indicated in the union's type name. Returns VAR_TYPE0 itself if
8729 it represents a variant subject to a pragma Unchecked_Union. */
8730
8731 static struct type *
8732 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8733 CORE_ADDR address, struct value *dval)
8734 {
8735 int which;
8736 struct type *templ_type;
8737 struct type *var_type;
8738
8739 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8740 var_type = TYPE_TARGET_TYPE (var_type0);
8741 else
8742 var_type = var_type0;
8743
8744 templ_type = ada_find_parallel_type (var_type, "___XVU");
8745
8746 if (templ_type != NULL)
8747 var_type = templ_type;
8748
8749 if (is_unchecked_variant (var_type, value_type (dval)))
8750 return var_type0;
8751 which =
8752 ada_which_variant_applies (var_type,
8753 value_type (dval), value_contents (dval));
8754
8755 if (which < 0)
8756 return empty_record (var_type);
8757 else if (is_dynamic_field (var_type, which))
8758 return to_fixed_record_type
8759 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8760 valaddr, address, dval);
8761 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8762 return
8763 to_fixed_record_type
8764 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8765 else
8766 return TYPE_FIELD_TYPE (var_type, which);
8767 }
8768
8769 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8770 ENCODING_TYPE, a type following the GNAT conventions for discrete
8771 type encodings, only carries redundant information. */
8772
8773 static int
8774 ada_is_redundant_range_encoding (struct type *range_type,
8775 struct type *encoding_type)
8776 {
8777 const char *bounds_str;
8778 int n;
8779 LONGEST lo, hi;
8780
8781 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8782
8783 if (TYPE_CODE (get_base_type (range_type))
8784 != TYPE_CODE (get_base_type (encoding_type)))
8785 {
8786 /* The compiler probably used a simple base type to describe
8787 the range type instead of the range's actual base type,
8788 expecting us to get the real base type from the encoding
8789 anyway. In this situation, the encoding cannot be ignored
8790 as redundant. */
8791 return 0;
8792 }
8793
8794 if (is_dynamic_type (range_type))
8795 return 0;
8796
8797 if (TYPE_NAME (encoding_type) == NULL)
8798 return 0;
8799
8800 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8801 if (bounds_str == NULL)
8802 return 0;
8803
8804 n = 8; /* Skip "___XDLU_". */
8805 if (!ada_scan_number (bounds_str, n, &lo, &n))
8806 return 0;
8807 if (TYPE_LOW_BOUND (range_type) != lo)
8808 return 0;
8809
8810 n += 2; /* Skip the "__" separator between the two bounds. */
8811 if (!ada_scan_number (bounds_str, n, &hi, &n))
8812 return 0;
8813 if (TYPE_HIGH_BOUND (range_type) != hi)
8814 return 0;
8815
8816 return 1;
8817 }
8818
8819 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8820 a type following the GNAT encoding for describing array type
8821 indices, only carries redundant information. */
8822
8823 static int
8824 ada_is_redundant_index_type_desc (struct type *array_type,
8825 struct type *desc_type)
8826 {
8827 struct type *this_layer = check_typedef (array_type);
8828 int i;
8829
8830 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8831 {
8832 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8833 TYPE_FIELD_TYPE (desc_type, i)))
8834 return 0;
8835 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8836 }
8837
8838 return 1;
8839 }
8840
8841 /* Assuming that TYPE0 is an array type describing the type of a value
8842 at ADDR, and that DVAL describes a record containing any
8843 discriminants used in TYPE0, returns a type for the value that
8844 contains no dynamic components (that is, no components whose sizes
8845 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8846 true, gives an error message if the resulting type's size is over
8847 varsize_limit. */
8848
8849 static struct type *
8850 to_fixed_array_type (struct type *type0, struct value *dval,
8851 int ignore_too_big)
8852 {
8853 struct type *index_type_desc;
8854 struct type *result;
8855 int constrained_packed_array_p;
8856 static const char *xa_suffix = "___XA";
8857
8858 type0 = ada_check_typedef (type0);
8859 if (TYPE_FIXED_INSTANCE (type0))
8860 return type0;
8861
8862 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8863 if (constrained_packed_array_p)
8864 type0 = decode_constrained_packed_array_type (type0);
8865
8866 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8867
8868 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8869 encoding suffixed with 'P' may still be generated. If so,
8870 it should be used to find the XA type. */
8871
8872 if (index_type_desc == NULL)
8873 {
8874 const char *type_name = ada_type_name (type0);
8875
8876 if (type_name != NULL)
8877 {
8878 const int len = strlen (type_name);
8879 char *name = (char *) alloca (len + strlen (xa_suffix));
8880
8881 if (type_name[len - 1] == 'P')
8882 {
8883 strcpy (name, type_name);
8884 strcpy (name + len - 1, xa_suffix);
8885 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8886 }
8887 }
8888 }
8889
8890 ada_fixup_array_indexes_type (index_type_desc);
8891 if (index_type_desc != NULL
8892 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8893 {
8894 /* Ignore this ___XA parallel type, as it does not bring any
8895 useful information. This allows us to avoid creating fixed
8896 versions of the array's index types, which would be identical
8897 to the original ones. This, in turn, can also help avoid
8898 the creation of fixed versions of the array itself. */
8899 index_type_desc = NULL;
8900 }
8901
8902 if (index_type_desc == NULL)
8903 {
8904 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8905
8906 /* NOTE: elt_type---the fixed version of elt_type0---should never
8907 depend on the contents of the array in properly constructed
8908 debugging data. */
8909 /* Create a fixed version of the array element type.
8910 We're not providing the address of an element here,
8911 and thus the actual object value cannot be inspected to do
8912 the conversion. This should not be a problem, since arrays of
8913 unconstrained objects are not allowed. In particular, all
8914 the elements of an array of a tagged type should all be of
8915 the same type specified in the debugging info. No need to
8916 consult the object tag. */
8917 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8918
8919 /* Make sure we always create a new array type when dealing with
8920 packed array types, since we're going to fix-up the array
8921 type length and element bitsize a little further down. */
8922 if (elt_type0 == elt_type && !constrained_packed_array_p)
8923 result = type0;
8924 else
8925 result = create_array_type (alloc_type_copy (type0),
8926 elt_type, TYPE_INDEX_TYPE (type0));
8927 }
8928 else
8929 {
8930 int i;
8931 struct type *elt_type0;
8932
8933 elt_type0 = type0;
8934 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8935 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8936
8937 /* NOTE: result---the fixed version of elt_type0---should never
8938 depend on the contents of the array in properly constructed
8939 debugging data. */
8940 /* Create a fixed version of the array element type.
8941 We're not providing the address of an element here,
8942 and thus the actual object value cannot be inspected to do
8943 the conversion. This should not be a problem, since arrays of
8944 unconstrained objects are not allowed. In particular, all
8945 the elements of an array of a tagged type should all be of
8946 the same type specified in the debugging info. No need to
8947 consult the object tag. */
8948 result =
8949 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8950
8951 elt_type0 = type0;
8952 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8953 {
8954 struct type *range_type =
8955 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8956
8957 result = create_array_type (alloc_type_copy (elt_type0),
8958 result, range_type);
8959 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8960 }
8961 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8962 error (_("array type with dynamic size is larger than varsize-limit"));
8963 }
8964
8965 /* We want to preserve the type name. This can be useful when
8966 trying to get the type name of a value that has already been
8967 printed (for instance, if the user did "print VAR; whatis $". */
8968 TYPE_NAME (result) = TYPE_NAME (type0);
8969
8970 if (constrained_packed_array_p)
8971 {
8972 /* So far, the resulting type has been created as if the original
8973 type was a regular (non-packed) array type. As a result, the
8974 bitsize of the array elements needs to be set again, and the array
8975 length needs to be recomputed based on that bitsize. */
8976 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8977 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8978
8979 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8980 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8981 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8982 TYPE_LENGTH (result)++;
8983 }
8984
8985 TYPE_FIXED_INSTANCE (result) = 1;
8986 return result;
8987 }
8988
8989
8990 /* A standard type (containing no dynamically sized components)
8991 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8992 DVAL describes a record containing any discriminants used in TYPE0,
8993 and may be NULL if there are none, or if the object of type TYPE at
8994 ADDRESS or in VALADDR contains these discriminants.
8995
8996 If CHECK_TAG is not null, in the case of tagged types, this function
8997 attempts to locate the object's tag and use it to compute the actual
8998 type. However, when ADDRESS is null, we cannot use it to determine the
8999 location of the tag, and therefore compute the tagged type's actual type.
9000 So we return the tagged type without consulting the tag. */
9001
9002 static struct type *
9003 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9004 CORE_ADDR address, struct value *dval, int check_tag)
9005 {
9006 type = ada_check_typedef (type);
9007 switch (TYPE_CODE (type))
9008 {
9009 default:
9010 return type;
9011 case TYPE_CODE_STRUCT:
9012 {
9013 struct type *static_type = to_static_fixed_type (type);
9014 struct type *fixed_record_type =
9015 to_fixed_record_type (type, valaddr, address, NULL);
9016
9017 /* If STATIC_TYPE is a tagged type and we know the object's address,
9018 then we can determine its tag, and compute the object's actual
9019 type from there. Note that we have to use the fixed record
9020 type (the parent part of the record may have dynamic fields
9021 and the way the location of _tag is expressed may depend on
9022 them). */
9023
9024 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9025 {
9026 struct value *tag =
9027 value_tag_from_contents_and_address
9028 (fixed_record_type,
9029 valaddr,
9030 address);
9031 struct type *real_type = type_from_tag (tag);
9032 struct value *obj =
9033 value_from_contents_and_address (fixed_record_type,
9034 valaddr,
9035 address);
9036 fixed_record_type = value_type (obj);
9037 if (real_type != NULL)
9038 return to_fixed_record_type
9039 (real_type, NULL,
9040 value_address (ada_tag_value_at_base_address (obj)), NULL);
9041 }
9042
9043 /* Check to see if there is a parallel ___XVZ variable.
9044 If there is, then it provides the actual size of our type. */
9045 else if (ada_type_name (fixed_record_type) != NULL)
9046 {
9047 const char *name = ada_type_name (fixed_record_type);
9048 char *xvz_name
9049 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9050 bool xvz_found = false;
9051 LONGEST size;
9052
9053 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9054 TRY
9055 {
9056 xvz_found = get_int_var_value (xvz_name, size);
9057 }
9058 CATCH (except, RETURN_MASK_ERROR)
9059 {
9060 /* We found the variable, but somehow failed to read
9061 its value. Rethrow the same error, but with a little
9062 bit more information, to help the user understand
9063 what went wrong (Eg: the variable might have been
9064 optimized out). */
9065 throw_error (except.error,
9066 _("unable to read value of %s (%s)"),
9067 xvz_name, except.message);
9068 }
9069 END_CATCH
9070
9071 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9072 {
9073 fixed_record_type = copy_type (fixed_record_type);
9074 TYPE_LENGTH (fixed_record_type) = size;
9075
9076 /* The FIXED_RECORD_TYPE may have be a stub. We have
9077 observed this when the debugging info is STABS, and
9078 apparently it is something that is hard to fix.
9079
9080 In practice, we don't need the actual type definition
9081 at all, because the presence of the XVZ variable allows us
9082 to assume that there must be a XVS type as well, which we
9083 should be able to use later, when we need the actual type
9084 definition.
9085
9086 In the meantime, pretend that the "fixed" type we are
9087 returning is NOT a stub, because this can cause trouble
9088 when using this type to create new types targeting it.
9089 Indeed, the associated creation routines often check
9090 whether the target type is a stub and will try to replace
9091 it, thus using a type with the wrong size. This, in turn,
9092 might cause the new type to have the wrong size too.
9093 Consider the case of an array, for instance, where the size
9094 of the array is computed from the number of elements in
9095 our array multiplied by the size of its element. */
9096 TYPE_STUB (fixed_record_type) = 0;
9097 }
9098 }
9099 return fixed_record_type;
9100 }
9101 case TYPE_CODE_ARRAY:
9102 return to_fixed_array_type (type, dval, 1);
9103 case TYPE_CODE_UNION:
9104 if (dval == NULL)
9105 return type;
9106 else
9107 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9108 }
9109 }
9110
9111 /* The same as ada_to_fixed_type_1, except that it preserves the type
9112 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9113
9114 The typedef layer needs be preserved in order to differentiate between
9115 arrays and array pointers when both types are implemented using the same
9116 fat pointer. In the array pointer case, the pointer is encoded as
9117 a typedef of the pointer type. For instance, considering:
9118
9119 type String_Access is access String;
9120 S1 : String_Access := null;
9121
9122 To the debugger, S1 is defined as a typedef of type String. But
9123 to the user, it is a pointer. So if the user tries to print S1,
9124 we should not dereference the array, but print the array address
9125 instead.
9126
9127 If we didn't preserve the typedef layer, we would lose the fact that
9128 the type is to be presented as a pointer (needs de-reference before
9129 being printed). And we would also use the source-level type name. */
9130
9131 struct type *
9132 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9133 CORE_ADDR address, struct value *dval, int check_tag)
9134
9135 {
9136 struct type *fixed_type =
9137 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9138
9139 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9140 then preserve the typedef layer.
9141
9142 Implementation note: We can only check the main-type portion of
9143 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9144 from TYPE now returns a type that has the same instance flags
9145 as TYPE. For instance, if TYPE is a "typedef const", and its
9146 target type is a "struct", then the typedef elimination will return
9147 a "const" version of the target type. See check_typedef for more
9148 details about how the typedef layer elimination is done.
9149
9150 brobecker/2010-11-19: It seems to me that the only case where it is
9151 useful to preserve the typedef layer is when dealing with fat pointers.
9152 Perhaps, we could add a check for that and preserve the typedef layer
9153 only in that situation. But this seems unecessary so far, probably
9154 because we call check_typedef/ada_check_typedef pretty much everywhere.
9155 */
9156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9157 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9158 == TYPE_MAIN_TYPE (fixed_type)))
9159 return type;
9160
9161 return fixed_type;
9162 }
9163
9164 /* A standard (static-sized) type corresponding as well as possible to
9165 TYPE0, but based on no runtime data. */
9166
9167 static struct type *
9168 to_static_fixed_type (struct type *type0)
9169 {
9170 struct type *type;
9171
9172 if (type0 == NULL)
9173 return NULL;
9174
9175 if (TYPE_FIXED_INSTANCE (type0))
9176 return type0;
9177
9178 type0 = ada_check_typedef (type0);
9179
9180 switch (TYPE_CODE (type0))
9181 {
9182 default:
9183 return type0;
9184 case TYPE_CODE_STRUCT:
9185 type = dynamic_template_type (type0);
9186 if (type != NULL)
9187 return template_to_static_fixed_type (type);
9188 else
9189 return template_to_static_fixed_type (type0);
9190 case TYPE_CODE_UNION:
9191 type = ada_find_parallel_type (type0, "___XVU");
9192 if (type != NULL)
9193 return template_to_static_fixed_type (type);
9194 else
9195 return template_to_static_fixed_type (type0);
9196 }
9197 }
9198
9199 /* A static approximation of TYPE with all type wrappers removed. */
9200
9201 static struct type *
9202 static_unwrap_type (struct type *type)
9203 {
9204 if (ada_is_aligner_type (type))
9205 {
9206 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9207 if (ada_type_name (type1) == NULL)
9208 TYPE_NAME (type1) = ada_type_name (type);
9209
9210 return static_unwrap_type (type1);
9211 }
9212 else
9213 {
9214 struct type *raw_real_type = ada_get_base_type (type);
9215
9216 if (raw_real_type == type)
9217 return type;
9218 else
9219 return to_static_fixed_type (raw_real_type);
9220 }
9221 }
9222
9223 /* In some cases, incomplete and private types require
9224 cross-references that are not resolved as records (for example,
9225 type Foo;
9226 type FooP is access Foo;
9227 V: FooP;
9228 type Foo is array ...;
9229 ). In these cases, since there is no mechanism for producing
9230 cross-references to such types, we instead substitute for FooP a
9231 stub enumeration type that is nowhere resolved, and whose tag is
9232 the name of the actual type. Call these types "non-record stubs". */
9233
9234 /* A type equivalent to TYPE that is not a non-record stub, if one
9235 exists, otherwise TYPE. */
9236
9237 struct type *
9238 ada_check_typedef (struct type *type)
9239 {
9240 if (type == NULL)
9241 return NULL;
9242
9243 /* If our type is a typedef type of a fat pointer, then we're done.
9244 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9245 what allows us to distinguish between fat pointers that represent
9246 array types, and fat pointers that represent array access types
9247 (in both cases, the compiler implements them as fat pointers). */
9248 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9249 && is_thick_pntr (ada_typedef_target_type (type)))
9250 return type;
9251
9252 type = check_typedef (type);
9253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9254 || !TYPE_STUB (type)
9255 || TYPE_NAME (type) == NULL)
9256 return type;
9257 else
9258 {
9259 const char *name = TYPE_NAME (type);
9260 struct type *type1 = ada_find_any_type (name);
9261
9262 if (type1 == NULL)
9263 return type;
9264
9265 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9266 stubs pointing to arrays, as we don't create symbols for array
9267 types, only for the typedef-to-array types). If that's the case,
9268 strip the typedef layer. */
9269 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9270 type1 = ada_check_typedef (type1);
9271
9272 return type1;
9273 }
9274 }
9275
9276 /* A value representing the data at VALADDR/ADDRESS as described by
9277 type TYPE0, but with a standard (static-sized) type that correctly
9278 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9279 type, then return VAL0 [this feature is simply to avoid redundant
9280 creation of struct values]. */
9281
9282 static struct value *
9283 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9284 struct value *val0)
9285 {
9286 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9287
9288 if (type == type0 && val0 != NULL)
9289 return val0;
9290
9291 if (VALUE_LVAL (val0) != lval_memory)
9292 {
9293 /* Our value does not live in memory; it could be a convenience
9294 variable, for instance. Create a not_lval value using val0's
9295 contents. */
9296 return value_from_contents (type, value_contents (val0));
9297 }
9298
9299 return value_from_contents_and_address (type, 0, address);
9300 }
9301
9302 /* A value representing VAL, but with a standard (static-sized) type
9303 that correctly describes it. Does not necessarily create a new
9304 value. */
9305
9306 struct value *
9307 ada_to_fixed_value (struct value *val)
9308 {
9309 val = unwrap_value (val);
9310 val = ada_to_fixed_value_create (value_type (val),
9311 value_address (val),
9312 val);
9313 return val;
9314 }
9315 \f
9316
9317 /* Attributes */
9318
9319 /* Table mapping attribute numbers to names.
9320 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9321
9322 static const char *attribute_names[] = {
9323 "<?>",
9324
9325 "first",
9326 "last",
9327 "length",
9328 "image",
9329 "max",
9330 "min",
9331 "modulus",
9332 "pos",
9333 "size",
9334 "tag",
9335 "val",
9336 0
9337 };
9338
9339 const char *
9340 ada_attribute_name (enum exp_opcode n)
9341 {
9342 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9343 return attribute_names[n - OP_ATR_FIRST + 1];
9344 else
9345 return attribute_names[0];
9346 }
9347
9348 /* Evaluate the 'POS attribute applied to ARG. */
9349
9350 static LONGEST
9351 pos_atr (struct value *arg)
9352 {
9353 struct value *val = coerce_ref (arg);
9354 struct type *type = value_type (val);
9355 LONGEST result;
9356
9357 if (!discrete_type_p (type))
9358 error (_("'POS only defined on discrete types"));
9359
9360 if (!discrete_position (type, value_as_long (val), &result))
9361 error (_("enumeration value is invalid: can't find 'POS"));
9362
9363 return result;
9364 }
9365
9366 static struct value *
9367 value_pos_atr (struct type *type, struct value *arg)
9368 {
9369 return value_from_longest (type, pos_atr (arg));
9370 }
9371
9372 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9373
9374 static struct value *
9375 value_val_atr (struct type *type, struct value *arg)
9376 {
9377 if (!discrete_type_p (type))
9378 error (_("'VAL only defined on discrete types"));
9379 if (!integer_type_p (value_type (arg)))
9380 error (_("'VAL requires integral argument"));
9381
9382 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9383 {
9384 long pos = value_as_long (arg);
9385
9386 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9387 error (_("argument to 'VAL out of range"));
9388 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9389 }
9390 else
9391 return value_from_longest (type, value_as_long (arg));
9392 }
9393 \f
9394
9395 /* Evaluation */
9396
9397 /* True if TYPE appears to be an Ada character type.
9398 [At the moment, this is true only for Character and Wide_Character;
9399 It is a heuristic test that could stand improvement]. */
9400
9401 int
9402 ada_is_character_type (struct type *type)
9403 {
9404 const char *name;
9405
9406 /* If the type code says it's a character, then assume it really is,
9407 and don't check any further. */
9408 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9409 return 1;
9410
9411 /* Otherwise, assume it's a character type iff it is a discrete type
9412 with a known character type name. */
9413 name = ada_type_name (type);
9414 return (name != NULL
9415 && (TYPE_CODE (type) == TYPE_CODE_INT
9416 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9417 && (strcmp (name, "character") == 0
9418 || strcmp (name, "wide_character") == 0
9419 || strcmp (name, "wide_wide_character") == 0
9420 || strcmp (name, "unsigned char") == 0));
9421 }
9422
9423 /* True if TYPE appears to be an Ada string type. */
9424
9425 int
9426 ada_is_string_type (struct type *type)
9427 {
9428 type = ada_check_typedef (type);
9429 if (type != NULL
9430 && TYPE_CODE (type) != TYPE_CODE_PTR
9431 && (ada_is_simple_array_type (type)
9432 || ada_is_array_descriptor_type (type))
9433 && ada_array_arity (type) == 1)
9434 {
9435 struct type *elttype = ada_array_element_type (type, 1);
9436
9437 return ada_is_character_type (elttype);
9438 }
9439 else
9440 return 0;
9441 }
9442
9443 /* The compiler sometimes provides a parallel XVS type for a given
9444 PAD type. Normally, it is safe to follow the PAD type directly,
9445 but older versions of the compiler have a bug that causes the offset
9446 of its "F" field to be wrong. Following that field in that case
9447 would lead to incorrect results, but this can be worked around
9448 by ignoring the PAD type and using the associated XVS type instead.
9449
9450 Set to True if the debugger should trust the contents of PAD types.
9451 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9452 static int trust_pad_over_xvs = 1;
9453
9454 /* True if TYPE is a struct type introduced by the compiler to force the
9455 alignment of a value. Such types have a single field with a
9456 distinctive name. */
9457
9458 int
9459 ada_is_aligner_type (struct type *type)
9460 {
9461 type = ada_check_typedef (type);
9462
9463 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9464 return 0;
9465
9466 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9467 && TYPE_NFIELDS (type) == 1
9468 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9469 }
9470
9471 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9472 the parallel type. */
9473
9474 struct type *
9475 ada_get_base_type (struct type *raw_type)
9476 {
9477 struct type *real_type_namer;
9478 struct type *raw_real_type;
9479
9480 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9481 return raw_type;
9482
9483 if (ada_is_aligner_type (raw_type))
9484 /* The encoding specifies that we should always use the aligner type.
9485 So, even if this aligner type has an associated XVS type, we should
9486 simply ignore it.
9487
9488 According to the compiler gurus, an XVS type parallel to an aligner
9489 type may exist because of a stabs limitation. In stabs, aligner
9490 types are empty because the field has a variable-sized type, and
9491 thus cannot actually be used as an aligner type. As a result,
9492 we need the associated parallel XVS type to decode the type.
9493 Since the policy in the compiler is to not change the internal
9494 representation based on the debugging info format, we sometimes
9495 end up having a redundant XVS type parallel to the aligner type. */
9496 return raw_type;
9497
9498 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9499 if (real_type_namer == NULL
9500 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9501 || TYPE_NFIELDS (real_type_namer) != 1)
9502 return raw_type;
9503
9504 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9505 {
9506 /* This is an older encoding form where the base type needs to be
9507 looked up by name. We prefer the newer enconding because it is
9508 more efficient. */
9509 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9510 if (raw_real_type == NULL)
9511 return raw_type;
9512 else
9513 return raw_real_type;
9514 }
9515
9516 /* The field in our XVS type is a reference to the base type. */
9517 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9518 }
9519
9520 /* The type of value designated by TYPE, with all aligners removed. */
9521
9522 struct type *
9523 ada_aligned_type (struct type *type)
9524 {
9525 if (ada_is_aligner_type (type))
9526 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9527 else
9528 return ada_get_base_type (type);
9529 }
9530
9531
9532 /* The address of the aligned value in an object at address VALADDR
9533 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9534
9535 const gdb_byte *
9536 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9537 {
9538 if (ada_is_aligner_type (type))
9539 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9540 valaddr +
9541 TYPE_FIELD_BITPOS (type,
9542 0) / TARGET_CHAR_BIT);
9543 else
9544 return valaddr;
9545 }
9546
9547
9548
9549 /* The printed representation of an enumeration literal with encoded
9550 name NAME. The value is good to the next call of ada_enum_name. */
9551 const char *
9552 ada_enum_name (const char *name)
9553 {
9554 static char *result;
9555 static size_t result_len = 0;
9556 const char *tmp;
9557
9558 /* First, unqualify the enumeration name:
9559 1. Search for the last '.' character. If we find one, then skip
9560 all the preceding characters, the unqualified name starts
9561 right after that dot.
9562 2. Otherwise, we may be debugging on a target where the compiler
9563 translates dots into "__". Search forward for double underscores,
9564 but stop searching when we hit an overloading suffix, which is
9565 of the form "__" followed by digits. */
9566
9567 tmp = strrchr (name, '.');
9568 if (tmp != NULL)
9569 name = tmp + 1;
9570 else
9571 {
9572 while ((tmp = strstr (name, "__")) != NULL)
9573 {
9574 if (isdigit (tmp[2]))
9575 break;
9576 else
9577 name = tmp + 2;
9578 }
9579 }
9580
9581 if (name[0] == 'Q')
9582 {
9583 int v;
9584
9585 if (name[1] == 'U' || name[1] == 'W')
9586 {
9587 if (sscanf (name + 2, "%x", &v) != 1)
9588 return name;
9589 }
9590 else
9591 return name;
9592
9593 GROW_VECT (result, result_len, 16);
9594 if (isascii (v) && isprint (v))
9595 xsnprintf (result, result_len, "'%c'", v);
9596 else if (name[1] == 'U')
9597 xsnprintf (result, result_len, "[\"%02x\"]", v);
9598 else
9599 xsnprintf (result, result_len, "[\"%04x\"]", v);
9600
9601 return result;
9602 }
9603 else
9604 {
9605 tmp = strstr (name, "__");
9606 if (tmp == NULL)
9607 tmp = strstr (name, "$");
9608 if (tmp != NULL)
9609 {
9610 GROW_VECT (result, result_len, tmp - name + 1);
9611 strncpy (result, name, tmp - name);
9612 result[tmp - name] = '\0';
9613 return result;
9614 }
9615
9616 return name;
9617 }
9618 }
9619
9620 /* Evaluate the subexpression of EXP starting at *POS as for
9621 evaluate_type, updating *POS to point just past the evaluated
9622 expression. */
9623
9624 static struct value *
9625 evaluate_subexp_type (struct expression *exp, int *pos)
9626 {
9627 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9628 }
9629
9630 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9631 value it wraps. */
9632
9633 static struct value *
9634 unwrap_value (struct value *val)
9635 {
9636 struct type *type = ada_check_typedef (value_type (val));
9637
9638 if (ada_is_aligner_type (type))
9639 {
9640 struct value *v = ada_value_struct_elt (val, "F", 0);
9641 struct type *val_type = ada_check_typedef (value_type (v));
9642
9643 if (ada_type_name (val_type) == NULL)
9644 TYPE_NAME (val_type) = ada_type_name (type);
9645
9646 return unwrap_value (v);
9647 }
9648 else
9649 {
9650 struct type *raw_real_type =
9651 ada_check_typedef (ada_get_base_type (type));
9652
9653 /* If there is no parallel XVS or XVE type, then the value is
9654 already unwrapped. Return it without further modification. */
9655 if ((type == raw_real_type)
9656 && ada_find_parallel_type (type, "___XVE") == NULL)
9657 return val;
9658
9659 return
9660 coerce_unspec_val_to_type
9661 (val, ada_to_fixed_type (raw_real_type, 0,
9662 value_address (val),
9663 NULL, 1));
9664 }
9665 }
9666
9667 static struct value *
9668 cast_from_fixed (struct type *type, struct value *arg)
9669 {
9670 struct value *scale = ada_scaling_factor (value_type (arg));
9671 arg = value_cast (value_type (scale), arg);
9672
9673 arg = value_binop (arg, scale, BINOP_MUL);
9674 return value_cast (type, arg);
9675 }
9676
9677 static struct value *
9678 cast_to_fixed (struct type *type, struct value *arg)
9679 {
9680 if (type == value_type (arg))
9681 return arg;
9682
9683 struct value *scale = ada_scaling_factor (type);
9684 if (ada_is_fixed_point_type (value_type (arg)))
9685 arg = cast_from_fixed (value_type (scale), arg);
9686 else
9687 arg = value_cast (value_type (scale), arg);
9688
9689 arg = value_binop (arg, scale, BINOP_DIV);
9690 return value_cast (type, arg);
9691 }
9692
9693 /* Given two array types T1 and T2, return nonzero iff both arrays
9694 contain the same number of elements. */
9695
9696 static int
9697 ada_same_array_size_p (struct type *t1, struct type *t2)
9698 {
9699 LONGEST lo1, hi1, lo2, hi2;
9700
9701 /* Get the array bounds in order to verify that the size of
9702 the two arrays match. */
9703 if (!get_array_bounds (t1, &lo1, &hi1)
9704 || !get_array_bounds (t2, &lo2, &hi2))
9705 error (_("unable to determine array bounds"));
9706
9707 /* To make things easier for size comparison, normalize a bit
9708 the case of empty arrays by making sure that the difference
9709 between upper bound and lower bound is always -1. */
9710 if (lo1 > hi1)
9711 hi1 = lo1 - 1;
9712 if (lo2 > hi2)
9713 hi2 = lo2 - 1;
9714
9715 return (hi1 - lo1 == hi2 - lo2);
9716 }
9717
9718 /* Assuming that VAL is an array of integrals, and TYPE represents
9719 an array with the same number of elements, but with wider integral
9720 elements, return an array "casted" to TYPE. In practice, this
9721 means that the returned array is built by casting each element
9722 of the original array into TYPE's (wider) element type. */
9723
9724 static struct value *
9725 ada_promote_array_of_integrals (struct type *type, struct value *val)
9726 {
9727 struct type *elt_type = TYPE_TARGET_TYPE (type);
9728 LONGEST lo, hi;
9729 struct value *res;
9730 LONGEST i;
9731
9732 /* Verify that both val and type are arrays of scalars, and
9733 that the size of val's elements is smaller than the size
9734 of type's element. */
9735 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9737 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9738 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9739 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9740 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9741
9742 if (!get_array_bounds (type, &lo, &hi))
9743 error (_("unable to determine array bounds"));
9744
9745 res = allocate_value (type);
9746
9747 /* Promote each array element. */
9748 for (i = 0; i < hi - lo + 1; i++)
9749 {
9750 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9751
9752 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9753 value_contents_all (elt), TYPE_LENGTH (elt_type));
9754 }
9755
9756 return res;
9757 }
9758
9759 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9760 return the converted value. */
9761
9762 static struct value *
9763 coerce_for_assign (struct type *type, struct value *val)
9764 {
9765 struct type *type2 = value_type (val);
9766
9767 if (type == type2)
9768 return val;
9769
9770 type2 = ada_check_typedef (type2);
9771 type = ada_check_typedef (type);
9772
9773 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9774 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9775 {
9776 val = ada_value_ind (val);
9777 type2 = value_type (val);
9778 }
9779
9780 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9781 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9782 {
9783 if (!ada_same_array_size_p (type, type2))
9784 error (_("cannot assign arrays of different length"));
9785
9786 if (is_integral_type (TYPE_TARGET_TYPE (type))
9787 && is_integral_type (TYPE_TARGET_TYPE (type2))
9788 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9789 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9790 {
9791 /* Allow implicit promotion of the array elements to
9792 a wider type. */
9793 return ada_promote_array_of_integrals (type, val);
9794 }
9795
9796 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9797 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9798 error (_("Incompatible types in assignment"));
9799 deprecated_set_value_type (val, type);
9800 }
9801 return val;
9802 }
9803
9804 static struct value *
9805 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9806 {
9807 struct value *val;
9808 struct type *type1, *type2;
9809 LONGEST v, v1, v2;
9810
9811 arg1 = coerce_ref (arg1);
9812 arg2 = coerce_ref (arg2);
9813 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9814 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9815
9816 if (TYPE_CODE (type1) != TYPE_CODE_INT
9817 || TYPE_CODE (type2) != TYPE_CODE_INT)
9818 return value_binop (arg1, arg2, op);
9819
9820 switch (op)
9821 {
9822 case BINOP_MOD:
9823 case BINOP_DIV:
9824 case BINOP_REM:
9825 break;
9826 default:
9827 return value_binop (arg1, arg2, op);
9828 }
9829
9830 v2 = value_as_long (arg2);
9831 if (v2 == 0)
9832 error (_("second operand of %s must not be zero."), op_string (op));
9833
9834 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9835 return value_binop (arg1, arg2, op);
9836
9837 v1 = value_as_long (arg1);
9838 switch (op)
9839 {
9840 case BINOP_DIV:
9841 v = v1 / v2;
9842 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9843 v += v > 0 ? -1 : 1;
9844 break;
9845 case BINOP_REM:
9846 v = v1 % v2;
9847 if (v * v1 < 0)
9848 v -= v2;
9849 break;
9850 default:
9851 /* Should not reach this point. */
9852 v = 0;
9853 }
9854
9855 val = allocate_value (type1);
9856 store_unsigned_integer (value_contents_raw (val),
9857 TYPE_LENGTH (value_type (val)),
9858 gdbarch_byte_order (get_type_arch (type1)), v);
9859 return val;
9860 }
9861
9862 static int
9863 ada_value_equal (struct value *arg1, struct value *arg2)
9864 {
9865 if (ada_is_direct_array_type (value_type (arg1))
9866 || ada_is_direct_array_type (value_type (arg2)))
9867 {
9868 struct type *arg1_type, *arg2_type;
9869
9870 /* Automatically dereference any array reference before
9871 we attempt to perform the comparison. */
9872 arg1 = ada_coerce_ref (arg1);
9873 arg2 = ada_coerce_ref (arg2);
9874
9875 arg1 = ada_coerce_to_simple_array (arg1);
9876 arg2 = ada_coerce_to_simple_array (arg2);
9877
9878 arg1_type = ada_check_typedef (value_type (arg1));
9879 arg2_type = ada_check_typedef (value_type (arg2));
9880
9881 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9882 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9883 error (_("Attempt to compare array with non-array"));
9884 /* FIXME: The following works only for types whose
9885 representations use all bits (no padding or undefined bits)
9886 and do not have user-defined equality. */
9887 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9888 && memcmp (value_contents (arg1), value_contents (arg2),
9889 TYPE_LENGTH (arg1_type)) == 0);
9890 }
9891 return value_equal (arg1, arg2);
9892 }
9893
9894 /* Total number of component associations in the aggregate starting at
9895 index PC in EXP. Assumes that index PC is the start of an
9896 OP_AGGREGATE. */
9897
9898 static int
9899 num_component_specs (struct expression *exp, int pc)
9900 {
9901 int n, m, i;
9902
9903 m = exp->elts[pc + 1].longconst;
9904 pc += 3;
9905 n = 0;
9906 for (i = 0; i < m; i += 1)
9907 {
9908 switch (exp->elts[pc].opcode)
9909 {
9910 default:
9911 n += 1;
9912 break;
9913 case OP_CHOICES:
9914 n += exp->elts[pc + 1].longconst;
9915 break;
9916 }
9917 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9918 }
9919 return n;
9920 }
9921
9922 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9923 component of LHS (a simple array or a record), updating *POS past
9924 the expression, assuming that LHS is contained in CONTAINER. Does
9925 not modify the inferior's memory, nor does it modify LHS (unless
9926 LHS == CONTAINER). */
9927
9928 static void
9929 assign_component (struct value *container, struct value *lhs, LONGEST index,
9930 struct expression *exp, int *pos)
9931 {
9932 struct value *mark = value_mark ();
9933 struct value *elt;
9934 struct type *lhs_type = check_typedef (value_type (lhs));
9935
9936 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9937 {
9938 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9939 struct value *index_val = value_from_longest (index_type, index);
9940
9941 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9942 }
9943 else
9944 {
9945 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9946 elt = ada_to_fixed_value (elt);
9947 }
9948
9949 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9950 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9951 else
9952 value_assign_to_component (container, elt,
9953 ada_evaluate_subexp (NULL, exp, pos,
9954 EVAL_NORMAL));
9955
9956 value_free_to_mark (mark);
9957 }
9958
9959 /* Assuming that LHS represents an lvalue having a record or array
9960 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9961 of that aggregate's value to LHS, advancing *POS past the
9962 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9963 lvalue containing LHS (possibly LHS itself). Does not modify
9964 the inferior's memory, nor does it modify the contents of
9965 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9966
9967 static struct value *
9968 assign_aggregate (struct value *container,
9969 struct value *lhs, struct expression *exp,
9970 int *pos, enum noside noside)
9971 {
9972 struct type *lhs_type;
9973 int n = exp->elts[*pos+1].longconst;
9974 LONGEST low_index, high_index;
9975 int num_specs;
9976 LONGEST *indices;
9977 int max_indices, num_indices;
9978 int i;
9979
9980 *pos += 3;
9981 if (noside != EVAL_NORMAL)
9982 {
9983 for (i = 0; i < n; i += 1)
9984 ada_evaluate_subexp (NULL, exp, pos, noside);
9985 return container;
9986 }
9987
9988 container = ada_coerce_ref (container);
9989 if (ada_is_direct_array_type (value_type (container)))
9990 container = ada_coerce_to_simple_array (container);
9991 lhs = ada_coerce_ref (lhs);
9992 if (!deprecated_value_modifiable (lhs))
9993 error (_("Left operand of assignment is not a modifiable lvalue."));
9994
9995 lhs_type = check_typedef (value_type (lhs));
9996 if (ada_is_direct_array_type (lhs_type))
9997 {
9998 lhs = ada_coerce_to_simple_array (lhs);
9999 lhs_type = check_typedef (value_type (lhs));
10000 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10001 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10002 }
10003 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10004 {
10005 low_index = 0;
10006 high_index = num_visible_fields (lhs_type) - 1;
10007 }
10008 else
10009 error (_("Left-hand side must be array or record."));
10010
10011 num_specs = num_component_specs (exp, *pos - 3);
10012 max_indices = 4 * num_specs + 4;
10013 indices = XALLOCAVEC (LONGEST, max_indices);
10014 indices[0] = indices[1] = low_index - 1;
10015 indices[2] = indices[3] = high_index + 1;
10016 num_indices = 4;
10017
10018 for (i = 0; i < n; i += 1)
10019 {
10020 switch (exp->elts[*pos].opcode)
10021 {
10022 case OP_CHOICES:
10023 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10024 &num_indices, max_indices,
10025 low_index, high_index);
10026 break;
10027 case OP_POSITIONAL:
10028 aggregate_assign_positional (container, lhs, exp, pos, indices,
10029 &num_indices, max_indices,
10030 low_index, high_index);
10031 break;
10032 case OP_OTHERS:
10033 if (i != n-1)
10034 error (_("Misplaced 'others' clause"));
10035 aggregate_assign_others (container, lhs, exp, pos, indices,
10036 num_indices, low_index, high_index);
10037 break;
10038 default:
10039 error (_("Internal error: bad aggregate clause"));
10040 }
10041 }
10042
10043 return container;
10044 }
10045
10046 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10047 construct at *POS, updating *POS past the construct, given that
10048 the positions are relative to lower bound LOW, where HIGH is the
10049 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10050 updating *NUM_INDICES as needed. CONTAINER is as for
10051 assign_aggregate. */
10052 static void
10053 aggregate_assign_positional (struct value *container,
10054 struct value *lhs, struct expression *exp,
10055 int *pos, LONGEST *indices, int *num_indices,
10056 int max_indices, LONGEST low, LONGEST high)
10057 {
10058 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10059
10060 if (ind - 1 == high)
10061 warning (_("Extra components in aggregate ignored."));
10062 if (ind <= high)
10063 {
10064 add_component_interval (ind, ind, indices, num_indices, max_indices);
10065 *pos += 3;
10066 assign_component (container, lhs, ind, exp, pos);
10067 }
10068 else
10069 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10070 }
10071
10072 /* Assign into the components of LHS indexed by the OP_CHOICES
10073 construct at *POS, updating *POS past the construct, given that
10074 the allowable indices are LOW..HIGH. Record the indices assigned
10075 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10076 needed. CONTAINER is as for assign_aggregate. */
10077 static void
10078 aggregate_assign_from_choices (struct value *container,
10079 struct value *lhs, struct expression *exp,
10080 int *pos, LONGEST *indices, int *num_indices,
10081 int max_indices, LONGEST low, LONGEST high)
10082 {
10083 int j;
10084 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10085 int choice_pos, expr_pc;
10086 int is_array = ada_is_direct_array_type (value_type (lhs));
10087
10088 choice_pos = *pos += 3;
10089
10090 for (j = 0; j < n_choices; j += 1)
10091 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10092 expr_pc = *pos;
10093 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10094
10095 for (j = 0; j < n_choices; j += 1)
10096 {
10097 LONGEST lower, upper;
10098 enum exp_opcode op = exp->elts[choice_pos].opcode;
10099
10100 if (op == OP_DISCRETE_RANGE)
10101 {
10102 choice_pos += 1;
10103 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10104 EVAL_NORMAL));
10105 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10106 EVAL_NORMAL));
10107 }
10108 else if (is_array)
10109 {
10110 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10111 EVAL_NORMAL));
10112 upper = lower;
10113 }
10114 else
10115 {
10116 int ind;
10117 const char *name;
10118
10119 switch (op)
10120 {
10121 case OP_NAME:
10122 name = &exp->elts[choice_pos + 2].string;
10123 break;
10124 case OP_VAR_VALUE:
10125 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10126 break;
10127 default:
10128 error (_("Invalid record component association."));
10129 }
10130 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10131 ind = 0;
10132 if (! find_struct_field (name, value_type (lhs), 0,
10133 NULL, NULL, NULL, NULL, &ind))
10134 error (_("Unknown component name: %s."), name);
10135 lower = upper = ind;
10136 }
10137
10138 if (lower <= upper && (lower < low || upper > high))
10139 error (_("Index in component association out of bounds."));
10140
10141 add_component_interval (lower, upper, indices, num_indices,
10142 max_indices);
10143 while (lower <= upper)
10144 {
10145 int pos1;
10146
10147 pos1 = expr_pc;
10148 assign_component (container, lhs, lower, exp, &pos1);
10149 lower += 1;
10150 }
10151 }
10152 }
10153
10154 /* Assign the value of the expression in the OP_OTHERS construct in
10155 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10156 have not been previously assigned. The index intervals already assigned
10157 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10158 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10159 static void
10160 aggregate_assign_others (struct value *container,
10161 struct value *lhs, struct expression *exp,
10162 int *pos, LONGEST *indices, int num_indices,
10163 LONGEST low, LONGEST high)
10164 {
10165 int i;
10166 int expr_pc = *pos + 1;
10167
10168 for (i = 0; i < num_indices - 2; i += 2)
10169 {
10170 LONGEST ind;
10171
10172 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10173 {
10174 int localpos;
10175
10176 localpos = expr_pc;
10177 assign_component (container, lhs, ind, exp, &localpos);
10178 }
10179 }
10180 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10181 }
10182
10183 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10184 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10185 modifying *SIZE as needed. It is an error if *SIZE exceeds
10186 MAX_SIZE. The resulting intervals do not overlap. */
10187 static void
10188 add_component_interval (LONGEST low, LONGEST high,
10189 LONGEST* indices, int *size, int max_size)
10190 {
10191 int i, j;
10192
10193 for (i = 0; i < *size; i += 2) {
10194 if (high >= indices[i] && low <= indices[i + 1])
10195 {
10196 int kh;
10197
10198 for (kh = i + 2; kh < *size; kh += 2)
10199 if (high < indices[kh])
10200 break;
10201 if (low < indices[i])
10202 indices[i] = low;
10203 indices[i + 1] = indices[kh - 1];
10204 if (high > indices[i + 1])
10205 indices[i + 1] = high;
10206 memcpy (indices + i + 2, indices + kh, *size - kh);
10207 *size -= kh - i - 2;
10208 return;
10209 }
10210 else if (high < indices[i])
10211 break;
10212 }
10213
10214 if (*size == max_size)
10215 error (_("Internal error: miscounted aggregate components."));
10216 *size += 2;
10217 for (j = *size-1; j >= i+2; j -= 1)
10218 indices[j] = indices[j - 2];
10219 indices[i] = low;
10220 indices[i + 1] = high;
10221 }
10222
10223 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10224 is different. */
10225
10226 static struct value *
10227 ada_value_cast (struct type *type, struct value *arg2)
10228 {
10229 if (type == ada_check_typedef (value_type (arg2)))
10230 return arg2;
10231
10232 if (ada_is_fixed_point_type (type))
10233 return (cast_to_fixed (type, arg2));
10234
10235 if (ada_is_fixed_point_type (value_type (arg2)))
10236 return cast_from_fixed (type, arg2);
10237
10238 return value_cast (type, arg2);
10239 }
10240
10241 /* Evaluating Ada expressions, and printing their result.
10242 ------------------------------------------------------
10243
10244 1. Introduction:
10245 ----------------
10246
10247 We usually evaluate an Ada expression in order to print its value.
10248 We also evaluate an expression in order to print its type, which
10249 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10250 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10251 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10252 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10253 similar.
10254
10255 Evaluating expressions is a little more complicated for Ada entities
10256 than it is for entities in languages such as C. The main reason for
10257 this is that Ada provides types whose definition might be dynamic.
10258 One example of such types is variant records. Or another example
10259 would be an array whose bounds can only be known at run time.
10260
10261 The following description is a general guide as to what should be
10262 done (and what should NOT be done) in order to evaluate an expression
10263 involving such types, and when. This does not cover how the semantic
10264 information is encoded by GNAT as this is covered separatly. For the
10265 document used as the reference for the GNAT encoding, see exp_dbug.ads
10266 in the GNAT sources.
10267
10268 Ideally, we should embed each part of this description next to its
10269 associated code. Unfortunately, the amount of code is so vast right
10270 now that it's hard to see whether the code handling a particular
10271 situation might be duplicated or not. One day, when the code is
10272 cleaned up, this guide might become redundant with the comments
10273 inserted in the code, and we might want to remove it.
10274
10275 2. ``Fixing'' an Entity, the Simple Case:
10276 -----------------------------------------
10277
10278 When evaluating Ada expressions, the tricky issue is that they may
10279 reference entities whose type contents and size are not statically
10280 known. Consider for instance a variant record:
10281
10282 type Rec (Empty : Boolean := True) is record
10283 case Empty is
10284 when True => null;
10285 when False => Value : Integer;
10286 end case;
10287 end record;
10288 Yes : Rec := (Empty => False, Value => 1);
10289 No : Rec := (empty => True);
10290
10291 The size and contents of that record depends on the value of the
10292 descriminant (Rec.Empty). At this point, neither the debugging
10293 information nor the associated type structure in GDB are able to
10294 express such dynamic types. So what the debugger does is to create
10295 "fixed" versions of the type that applies to the specific object.
10296 We also informally refer to this opperation as "fixing" an object,
10297 which means creating its associated fixed type.
10298
10299 Example: when printing the value of variable "Yes" above, its fixed
10300 type would look like this:
10301
10302 type Rec is record
10303 Empty : Boolean;
10304 Value : Integer;
10305 end record;
10306
10307 On the other hand, if we printed the value of "No", its fixed type
10308 would become:
10309
10310 type Rec is record
10311 Empty : Boolean;
10312 end record;
10313
10314 Things become a little more complicated when trying to fix an entity
10315 with a dynamic type that directly contains another dynamic type,
10316 such as an array of variant records, for instance. There are
10317 two possible cases: Arrays, and records.
10318
10319 3. ``Fixing'' Arrays:
10320 ---------------------
10321
10322 The type structure in GDB describes an array in terms of its bounds,
10323 and the type of its elements. By design, all elements in the array
10324 have the same type and we cannot represent an array of variant elements
10325 using the current type structure in GDB. When fixing an array,
10326 we cannot fix the array element, as we would potentially need one
10327 fixed type per element of the array. As a result, the best we can do
10328 when fixing an array is to produce an array whose bounds and size
10329 are correct (allowing us to read it from memory), but without having
10330 touched its element type. Fixing each element will be done later,
10331 when (if) necessary.
10332
10333 Arrays are a little simpler to handle than records, because the same
10334 amount of memory is allocated for each element of the array, even if
10335 the amount of space actually used by each element differs from element
10336 to element. Consider for instance the following array of type Rec:
10337
10338 type Rec_Array is array (1 .. 2) of Rec;
10339
10340 The actual amount of memory occupied by each element might be different
10341 from element to element, depending on the value of their discriminant.
10342 But the amount of space reserved for each element in the array remains
10343 fixed regardless. So we simply need to compute that size using
10344 the debugging information available, from which we can then determine
10345 the array size (we multiply the number of elements of the array by
10346 the size of each element).
10347
10348 The simplest case is when we have an array of a constrained element
10349 type. For instance, consider the following type declarations:
10350
10351 type Bounded_String (Max_Size : Integer) is
10352 Length : Integer;
10353 Buffer : String (1 .. Max_Size);
10354 end record;
10355 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10356
10357 In this case, the compiler describes the array as an array of
10358 variable-size elements (identified by its XVS suffix) for which
10359 the size can be read in the parallel XVZ variable.
10360
10361 In the case of an array of an unconstrained element type, the compiler
10362 wraps the array element inside a private PAD type. This type should not
10363 be shown to the user, and must be "unwrap"'ed before printing. Note
10364 that we also use the adjective "aligner" in our code to designate
10365 these wrapper types.
10366
10367 In some cases, the size allocated for each element is statically
10368 known. In that case, the PAD type already has the correct size,
10369 and the array element should remain unfixed.
10370
10371 But there are cases when this size is not statically known.
10372 For instance, assuming that "Five" is an integer variable:
10373
10374 type Dynamic is array (1 .. Five) of Integer;
10375 type Wrapper (Has_Length : Boolean := False) is record
10376 Data : Dynamic;
10377 case Has_Length is
10378 when True => Length : Integer;
10379 when False => null;
10380 end case;
10381 end record;
10382 type Wrapper_Array is array (1 .. 2) of Wrapper;
10383
10384 Hello : Wrapper_Array := (others => (Has_Length => True,
10385 Data => (others => 17),
10386 Length => 1));
10387
10388
10389 The debugging info would describe variable Hello as being an
10390 array of a PAD type. The size of that PAD type is not statically
10391 known, but can be determined using a parallel XVZ variable.
10392 In that case, a copy of the PAD type with the correct size should
10393 be used for the fixed array.
10394
10395 3. ``Fixing'' record type objects:
10396 ----------------------------------
10397
10398 Things are slightly different from arrays in the case of dynamic
10399 record types. In this case, in order to compute the associated
10400 fixed type, we need to determine the size and offset of each of
10401 its components. This, in turn, requires us to compute the fixed
10402 type of each of these components.
10403
10404 Consider for instance the example:
10405
10406 type Bounded_String (Max_Size : Natural) is record
10407 Str : String (1 .. Max_Size);
10408 Length : Natural;
10409 end record;
10410 My_String : Bounded_String (Max_Size => 10);
10411
10412 In that case, the position of field "Length" depends on the size
10413 of field Str, which itself depends on the value of the Max_Size
10414 discriminant. In order to fix the type of variable My_String,
10415 we need to fix the type of field Str. Therefore, fixing a variant
10416 record requires us to fix each of its components.
10417
10418 However, if a component does not have a dynamic size, the component
10419 should not be fixed. In particular, fields that use a PAD type
10420 should not fixed. Here is an example where this might happen
10421 (assuming type Rec above):
10422
10423 type Container (Big : Boolean) is record
10424 First : Rec;
10425 After : Integer;
10426 case Big is
10427 when True => Another : Integer;
10428 when False => null;
10429 end case;
10430 end record;
10431 My_Container : Container := (Big => False,
10432 First => (Empty => True),
10433 After => 42);
10434
10435 In that example, the compiler creates a PAD type for component First,
10436 whose size is constant, and then positions the component After just
10437 right after it. The offset of component After is therefore constant
10438 in this case.
10439
10440 The debugger computes the position of each field based on an algorithm
10441 that uses, among other things, the actual position and size of the field
10442 preceding it. Let's now imagine that the user is trying to print
10443 the value of My_Container. If the type fixing was recursive, we would
10444 end up computing the offset of field After based on the size of the
10445 fixed version of field First. And since in our example First has
10446 only one actual field, the size of the fixed type is actually smaller
10447 than the amount of space allocated to that field, and thus we would
10448 compute the wrong offset of field After.
10449
10450 To make things more complicated, we need to watch out for dynamic
10451 components of variant records (identified by the ___XVL suffix in
10452 the component name). Even if the target type is a PAD type, the size
10453 of that type might not be statically known. So the PAD type needs
10454 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10455 we might end up with the wrong size for our component. This can be
10456 observed with the following type declarations:
10457
10458 type Octal is new Integer range 0 .. 7;
10459 type Octal_Array is array (Positive range <>) of Octal;
10460 pragma Pack (Octal_Array);
10461
10462 type Octal_Buffer (Size : Positive) is record
10463 Buffer : Octal_Array (1 .. Size);
10464 Length : Integer;
10465 end record;
10466
10467 In that case, Buffer is a PAD type whose size is unset and needs
10468 to be computed by fixing the unwrapped type.
10469
10470 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10471 ----------------------------------------------------------
10472
10473 Lastly, when should the sub-elements of an entity that remained unfixed
10474 thus far, be actually fixed?
10475
10476 The answer is: Only when referencing that element. For instance
10477 when selecting one component of a record, this specific component
10478 should be fixed at that point in time. Or when printing the value
10479 of a record, each component should be fixed before its value gets
10480 printed. Similarly for arrays, the element of the array should be
10481 fixed when printing each element of the array, or when extracting
10482 one element out of that array. On the other hand, fixing should
10483 not be performed on the elements when taking a slice of an array!
10484
10485 Note that one of the side effects of miscomputing the offset and
10486 size of each field is that we end up also miscomputing the size
10487 of the containing type. This can have adverse results when computing
10488 the value of an entity. GDB fetches the value of an entity based
10489 on the size of its type, and thus a wrong size causes GDB to fetch
10490 the wrong amount of memory. In the case where the computed size is
10491 too small, GDB fetches too little data to print the value of our
10492 entity. Results in this case are unpredictable, as we usually read
10493 past the buffer containing the data =:-o. */
10494
10495 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10496 for that subexpression cast to TO_TYPE. Advance *POS over the
10497 subexpression. */
10498
10499 static value *
10500 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10501 enum noside noside, struct type *to_type)
10502 {
10503 int pc = *pos;
10504
10505 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10506 || exp->elts[pc].opcode == OP_VAR_VALUE)
10507 {
10508 (*pos) += 4;
10509
10510 value *val;
10511 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10512 {
10513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10514 return value_zero (to_type, not_lval);
10515
10516 val = evaluate_var_msym_value (noside,
10517 exp->elts[pc + 1].objfile,
10518 exp->elts[pc + 2].msymbol);
10519 }
10520 else
10521 val = evaluate_var_value (noside,
10522 exp->elts[pc + 1].block,
10523 exp->elts[pc + 2].symbol);
10524
10525 if (noside == EVAL_SKIP)
10526 return eval_skip_value (exp);
10527
10528 val = ada_value_cast (to_type, val);
10529
10530 /* Follow the Ada language semantics that do not allow taking
10531 an address of the result of a cast (view conversion in Ada). */
10532 if (VALUE_LVAL (val) == lval_memory)
10533 {
10534 if (value_lazy (val))
10535 value_fetch_lazy (val);
10536 VALUE_LVAL (val) = not_lval;
10537 }
10538 return val;
10539 }
10540
10541 value *val = evaluate_subexp (to_type, exp, pos, noside);
10542 if (noside == EVAL_SKIP)
10543 return eval_skip_value (exp);
10544 return ada_value_cast (to_type, val);
10545 }
10546
10547 /* Implement the evaluate_exp routine in the exp_descriptor structure
10548 for the Ada language. */
10549
10550 static struct value *
10551 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10552 int *pos, enum noside noside)
10553 {
10554 enum exp_opcode op;
10555 int tem;
10556 int pc;
10557 int preeval_pos;
10558 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10559 struct type *type;
10560 int nargs, oplen;
10561 struct value **argvec;
10562
10563 pc = *pos;
10564 *pos += 1;
10565 op = exp->elts[pc].opcode;
10566
10567 switch (op)
10568 {
10569 default:
10570 *pos -= 1;
10571 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10572
10573 if (noside == EVAL_NORMAL)
10574 arg1 = unwrap_value (arg1);
10575
10576 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10577 then we need to perform the conversion manually, because
10578 evaluate_subexp_standard doesn't do it. This conversion is
10579 necessary in Ada because the different kinds of float/fixed
10580 types in Ada have different representations.
10581
10582 Similarly, we need to perform the conversion from OP_LONG
10583 ourselves. */
10584 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10585 arg1 = ada_value_cast (expect_type, arg1);
10586
10587 return arg1;
10588
10589 case OP_STRING:
10590 {
10591 struct value *result;
10592
10593 *pos -= 1;
10594 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595 /* The result type will have code OP_STRING, bashed there from
10596 OP_ARRAY. Bash it back. */
10597 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10598 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10599 return result;
10600 }
10601
10602 case UNOP_CAST:
10603 (*pos) += 2;
10604 type = exp->elts[pc + 1].type;
10605 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10606
10607 case UNOP_QUAL:
10608 (*pos) += 2;
10609 type = exp->elts[pc + 1].type;
10610 return ada_evaluate_subexp (type, exp, pos, noside);
10611
10612 case BINOP_ASSIGN:
10613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10615 {
10616 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10617 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10618 return arg1;
10619 return ada_value_assign (arg1, arg1);
10620 }
10621 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10622 except if the lhs of our assignment is a convenience variable.
10623 In the case of assigning to a convenience variable, the lhs
10624 should be exactly the result of the evaluation of the rhs. */
10625 type = value_type (arg1);
10626 if (VALUE_LVAL (arg1) == lval_internalvar)
10627 type = NULL;
10628 arg2 = evaluate_subexp (type, exp, pos, noside);
10629 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10630 return arg1;
10631 if (ada_is_fixed_point_type (value_type (arg1)))
10632 arg2 = cast_to_fixed (value_type (arg1), arg2);
10633 else if (ada_is_fixed_point_type (value_type (arg2)))
10634 error
10635 (_("Fixed-point values must be assigned to fixed-point variables"));
10636 else
10637 arg2 = coerce_for_assign (value_type (arg1), arg2);
10638 return ada_value_assign (arg1, arg2);
10639
10640 case BINOP_ADD:
10641 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10642 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10643 if (noside == EVAL_SKIP)
10644 goto nosideret;
10645 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10646 return (value_from_longest
10647 (value_type (arg1),
10648 value_as_long (arg1) + value_as_long (arg2)));
10649 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10650 return (value_from_longest
10651 (value_type (arg2),
10652 value_as_long (arg1) + value_as_long (arg2)));
10653 if ((ada_is_fixed_point_type (value_type (arg1))
10654 || ada_is_fixed_point_type (value_type (arg2)))
10655 && value_type (arg1) != value_type (arg2))
10656 error (_("Operands of fixed-point addition must have the same type"));
10657 /* Do the addition, and cast the result to the type of the first
10658 argument. We cannot cast the result to a reference type, so if
10659 ARG1 is a reference type, find its underlying type. */
10660 type = value_type (arg1);
10661 while (TYPE_CODE (type) == TYPE_CODE_REF)
10662 type = TYPE_TARGET_TYPE (type);
10663 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10664 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10665
10666 case BINOP_SUB:
10667 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10668 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10669 if (noside == EVAL_SKIP)
10670 goto nosideret;
10671 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10672 return (value_from_longest
10673 (value_type (arg1),
10674 value_as_long (arg1) - value_as_long (arg2)));
10675 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10676 return (value_from_longest
10677 (value_type (arg2),
10678 value_as_long (arg1) - value_as_long (arg2)));
10679 if ((ada_is_fixed_point_type (value_type (arg1))
10680 || ada_is_fixed_point_type (value_type (arg2)))
10681 && value_type (arg1) != value_type (arg2))
10682 error (_("Operands of fixed-point subtraction "
10683 "must have the same type"));
10684 /* Do the substraction, and cast the result to the type of the first
10685 argument. We cannot cast the result to a reference type, so if
10686 ARG1 is a reference type, find its underlying type. */
10687 type = value_type (arg1);
10688 while (TYPE_CODE (type) == TYPE_CODE_REF)
10689 type = TYPE_TARGET_TYPE (type);
10690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10691 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10692
10693 case BINOP_MUL:
10694 case BINOP_DIV:
10695 case BINOP_REM:
10696 case BINOP_MOD:
10697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10699 if (noside == EVAL_SKIP)
10700 goto nosideret;
10701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10702 {
10703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10704 return value_zero (value_type (arg1), not_lval);
10705 }
10706 else
10707 {
10708 type = builtin_type (exp->gdbarch)->builtin_double;
10709 if (ada_is_fixed_point_type (value_type (arg1)))
10710 arg1 = cast_from_fixed (type, arg1);
10711 if (ada_is_fixed_point_type (value_type (arg2)))
10712 arg2 = cast_from_fixed (type, arg2);
10713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10714 return ada_value_binop (arg1, arg2, op);
10715 }
10716
10717 case BINOP_EQUAL:
10718 case BINOP_NOTEQUAL:
10719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10720 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10721 if (noside == EVAL_SKIP)
10722 goto nosideret;
10723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10724 tem = 0;
10725 else
10726 {
10727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10728 tem = ada_value_equal (arg1, arg2);
10729 }
10730 if (op == BINOP_NOTEQUAL)
10731 tem = !tem;
10732 type = language_bool_type (exp->language_defn, exp->gdbarch);
10733 return value_from_longest (type, (LONGEST) tem);
10734
10735 case UNOP_NEG:
10736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 if (noside == EVAL_SKIP)
10738 goto nosideret;
10739 else if (ada_is_fixed_point_type (value_type (arg1)))
10740 return value_cast (value_type (arg1), value_neg (arg1));
10741 else
10742 {
10743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10744 return value_neg (arg1);
10745 }
10746
10747 case BINOP_LOGICAL_AND:
10748 case BINOP_LOGICAL_OR:
10749 case UNOP_LOGICAL_NOT:
10750 {
10751 struct value *val;
10752
10753 *pos -= 1;
10754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10755 type = language_bool_type (exp->language_defn, exp->gdbarch);
10756 return value_cast (type, val);
10757 }
10758
10759 case BINOP_BITWISE_AND:
10760 case BINOP_BITWISE_IOR:
10761 case BINOP_BITWISE_XOR:
10762 {
10763 struct value *val;
10764
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10766 *pos = pc;
10767 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10768
10769 return value_cast (value_type (arg1), val);
10770 }
10771
10772 case OP_VAR_VALUE:
10773 *pos -= 1;
10774
10775 if (noside == EVAL_SKIP)
10776 {
10777 *pos += 4;
10778 goto nosideret;
10779 }
10780
10781 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10782 /* Only encountered when an unresolved symbol occurs in a
10783 context other than a function call, in which case, it is
10784 invalid. */
10785 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10786 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10787
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10789 {
10790 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10791 /* Check to see if this is a tagged type. We also need to handle
10792 the case where the type is a reference to a tagged type, but
10793 we have to be careful to exclude pointers to tagged types.
10794 The latter should be shown as usual (as a pointer), whereas
10795 a reference should mostly be transparent to the user. */
10796 if (ada_is_tagged_type (type, 0)
10797 || (TYPE_CODE (type) == TYPE_CODE_REF
10798 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10799 {
10800 /* Tagged types are a little special in the fact that the real
10801 type is dynamic and can only be determined by inspecting the
10802 object's tag. This means that we need to get the object's
10803 value first (EVAL_NORMAL) and then extract the actual object
10804 type from its tag.
10805
10806 Note that we cannot skip the final step where we extract
10807 the object type from its tag, because the EVAL_NORMAL phase
10808 results in dynamic components being resolved into fixed ones.
10809 This can cause problems when trying to print the type
10810 description of tagged types whose parent has a dynamic size:
10811 We use the type name of the "_parent" component in order
10812 to print the name of the ancestor type in the type description.
10813 If that component had a dynamic size, the resolution into
10814 a fixed type would result in the loss of that type name,
10815 thus preventing us from printing the name of the ancestor
10816 type in the type description. */
10817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10818
10819 if (TYPE_CODE (type) != TYPE_CODE_REF)
10820 {
10821 struct type *actual_type;
10822
10823 actual_type = type_from_tag (ada_value_tag (arg1));
10824 if (actual_type == NULL)
10825 /* If, for some reason, we were unable to determine
10826 the actual type from the tag, then use the static
10827 approximation that we just computed as a fallback.
10828 This can happen if the debugging information is
10829 incomplete, for instance. */
10830 actual_type = type;
10831 return value_zero (actual_type, not_lval);
10832 }
10833 else
10834 {
10835 /* In the case of a ref, ada_coerce_ref takes care
10836 of determining the actual type. But the evaluation
10837 should return a ref as it should be valid to ask
10838 for its address; so rebuild a ref after coerce. */
10839 arg1 = ada_coerce_ref (arg1);
10840 return value_ref (arg1, TYPE_CODE_REF);
10841 }
10842 }
10843
10844 /* Records and unions for which GNAT encodings have been
10845 generated need to be statically fixed as well.
10846 Otherwise, non-static fixing produces a type where
10847 all dynamic properties are removed, which prevents "ptype"
10848 from being able to completely describe the type.
10849 For instance, a case statement in a variant record would be
10850 replaced by the relevant components based on the actual
10851 value of the discriminants. */
10852 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10853 && dynamic_template_type (type) != NULL)
10854 || (TYPE_CODE (type) == TYPE_CODE_UNION
10855 && ada_find_parallel_type (type, "___XVU") != NULL))
10856 {
10857 *pos += 4;
10858 return value_zero (to_static_fixed_type (type), not_lval);
10859 }
10860 }
10861
10862 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10863 return ada_to_fixed_value (arg1);
10864
10865 case OP_FUNCALL:
10866 (*pos) += 2;
10867
10868 /* Allocate arg vector, including space for the function to be
10869 called in argvec[0] and a terminating NULL. */
10870 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10871 argvec = XALLOCAVEC (struct value *, nargs + 2);
10872
10873 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10874 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10875 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10876 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10877 else
10878 {
10879 for (tem = 0; tem <= nargs; tem += 1)
10880 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 argvec[tem] = 0;
10882
10883 if (noside == EVAL_SKIP)
10884 goto nosideret;
10885 }
10886
10887 if (ada_is_constrained_packed_array_type
10888 (desc_base_type (value_type (argvec[0]))))
10889 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10890 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10891 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10892 /* This is a packed array that has already been fixed, and
10893 therefore already coerced to a simple array. Nothing further
10894 to do. */
10895 ;
10896 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10897 {
10898 /* Make sure we dereference references so that all the code below
10899 feels like it's really handling the referenced value. Wrapping
10900 types (for alignment) may be there, so make sure we strip them as
10901 well. */
10902 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10903 }
10904 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10905 && VALUE_LVAL (argvec[0]) == lval_memory)
10906 argvec[0] = value_addr (argvec[0]);
10907
10908 type = ada_check_typedef (value_type (argvec[0]));
10909
10910 /* Ada allows us to implicitly dereference arrays when subscripting
10911 them. So, if this is an array typedef (encoding use for array
10912 access types encoded as fat pointers), strip it now. */
10913 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10914 type = ada_typedef_target_type (type);
10915
10916 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10917 {
10918 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10919 {
10920 case TYPE_CODE_FUNC:
10921 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10922 break;
10923 case TYPE_CODE_ARRAY:
10924 break;
10925 case TYPE_CODE_STRUCT:
10926 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10927 argvec[0] = ada_value_ind (argvec[0]);
10928 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10929 break;
10930 default:
10931 error (_("cannot subscript or call something of type `%s'"),
10932 ada_type_name (value_type (argvec[0])));
10933 break;
10934 }
10935 }
10936
10937 switch (TYPE_CODE (type))
10938 {
10939 case TYPE_CODE_FUNC:
10940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10941 {
10942 if (TYPE_TARGET_TYPE (type) == NULL)
10943 error_call_unknown_return_type (NULL);
10944 return allocate_value (TYPE_TARGET_TYPE (type));
10945 }
10946 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10947 case TYPE_CODE_INTERNAL_FUNCTION:
10948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 /* We don't know anything about what the internal
10950 function might return, but we have to return
10951 something. */
10952 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10953 not_lval);
10954 else
10955 return call_internal_function (exp->gdbarch, exp->language_defn,
10956 argvec[0], nargs, argvec + 1);
10957
10958 case TYPE_CODE_STRUCT:
10959 {
10960 int arity;
10961
10962 arity = ada_array_arity (type);
10963 type = ada_array_element_type (type, nargs);
10964 if (type == NULL)
10965 error (_("cannot subscript or call a record"));
10966 if (arity != nargs)
10967 error (_("wrong number of subscripts; expecting %d"), arity);
10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10969 return value_zero (ada_aligned_type (type), lval_memory);
10970 return
10971 unwrap_value (ada_value_subscript
10972 (argvec[0], nargs, argvec + 1));
10973 }
10974 case TYPE_CODE_ARRAY:
10975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10976 {
10977 type = ada_array_element_type (type, nargs);
10978 if (type == NULL)
10979 error (_("element type of array unknown"));
10980 else
10981 return value_zero (ada_aligned_type (type), lval_memory);
10982 }
10983 return
10984 unwrap_value (ada_value_subscript
10985 (ada_coerce_to_simple_array (argvec[0]),
10986 nargs, argvec + 1));
10987 case TYPE_CODE_PTR: /* Pointer to array */
10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 {
10990 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10991 type = ada_array_element_type (type, nargs);
10992 if (type == NULL)
10993 error (_("element type of array unknown"));
10994 else
10995 return value_zero (ada_aligned_type (type), lval_memory);
10996 }
10997 return
10998 unwrap_value (ada_value_ptr_subscript (argvec[0],
10999 nargs, argvec + 1));
11000
11001 default:
11002 error (_("Attempt to index or call something other than an "
11003 "array or function"));
11004 }
11005
11006 case TERNOP_SLICE:
11007 {
11008 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 struct value *low_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 struct value *high_bound_val =
11012 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 LONGEST low_bound;
11014 LONGEST high_bound;
11015
11016 low_bound_val = coerce_ref (low_bound_val);
11017 high_bound_val = coerce_ref (high_bound_val);
11018 low_bound = value_as_long (low_bound_val);
11019 high_bound = value_as_long (high_bound_val);
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
11024 /* If this is a reference to an aligner type, then remove all
11025 the aligners. */
11026 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11027 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11028 TYPE_TARGET_TYPE (value_type (array)) =
11029 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11030
11031 if (ada_is_constrained_packed_array_type (value_type (array)))
11032 error (_("cannot slice a packed array"));
11033
11034 /* If this is a reference to an array or an array lvalue,
11035 convert to a pointer. */
11036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11037 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11038 && VALUE_LVAL (array) == lval_memory))
11039 array = value_addr (array);
11040
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS
11042 && ada_is_array_descriptor_type (ada_check_typedef
11043 (value_type (array))))
11044 return empty_array (ada_type_of_array (array, 0), low_bound);
11045
11046 array = ada_coerce_to_simple_array_ptr (array);
11047
11048 /* If we have more than one level of pointer indirection,
11049 dereference the value until we get only one level. */
11050 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11051 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11052 == TYPE_CODE_PTR))
11053 array = value_ind (array);
11054
11055 /* Make sure we really do have an array type before going further,
11056 to avoid a SEGV when trying to get the index type or the target
11057 type later down the road if the debug info generated by
11058 the compiler is incorrect or incomplete. */
11059 if (!ada_is_simple_array_type (value_type (array)))
11060 error (_("cannot take slice of non-array"));
11061
11062 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11063 == TYPE_CODE_PTR)
11064 {
11065 struct type *type0 = ada_check_typedef (value_type (array));
11066
11067 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11068 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11069 else
11070 {
11071 struct type *arr_type0 =
11072 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11073
11074 return ada_value_slice_from_ptr (array, arr_type0,
11075 longest_to_int (low_bound),
11076 longest_to_int (high_bound));
11077 }
11078 }
11079 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11080 return array;
11081 else if (high_bound < low_bound)
11082 return empty_array (value_type (array), low_bound);
11083 else
11084 return ada_value_slice (array, longest_to_int (low_bound),
11085 longest_to_int (high_bound));
11086 }
11087
11088 case UNOP_IN_RANGE:
11089 (*pos) += 2;
11090 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11091 type = check_typedef (exp->elts[pc + 1].type);
11092
11093 if (noside == EVAL_SKIP)
11094 goto nosideret;
11095
11096 switch (TYPE_CODE (type))
11097 {
11098 default:
11099 lim_warning (_("Membership test incompletely implemented; "
11100 "always returns true"));
11101 type = language_bool_type (exp->language_defn, exp->gdbarch);
11102 return value_from_longest (type, (LONGEST) 1);
11103
11104 case TYPE_CODE_RANGE:
11105 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11106 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11109 type = language_bool_type (exp->language_defn, exp->gdbarch);
11110 return
11111 value_from_longest (type,
11112 (value_less (arg1, arg3)
11113 || value_equal (arg1, arg3))
11114 && (value_less (arg2, arg1)
11115 || value_equal (arg2, arg1)));
11116 }
11117
11118 case BINOP_IN_BOUNDS:
11119 (*pos) += 2;
11120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11121 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122
11123 if (noside == EVAL_SKIP)
11124 goto nosideret;
11125
11126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11127 {
11128 type = language_bool_type (exp->language_defn, exp->gdbarch);
11129 return value_zero (type, not_lval);
11130 }
11131
11132 tem = longest_to_int (exp->elts[pc + 1].longconst);
11133
11134 type = ada_index_type (value_type (arg2), tem, "range");
11135 if (!type)
11136 type = value_type (arg1);
11137
11138 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11139 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11140
11141 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11143 type = language_bool_type (exp->language_defn, exp->gdbarch);
11144 return
11145 value_from_longest (type,
11146 (value_less (arg1, arg3)
11147 || value_equal (arg1, arg3))
11148 && (value_less (arg2, arg1)
11149 || value_equal (arg2, arg1)));
11150
11151 case TERNOP_IN_RANGE:
11152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155
11156 if (noside == EVAL_SKIP)
11157 goto nosideret;
11158
11159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11161 type = language_bool_type (exp->language_defn, exp->gdbarch);
11162 return
11163 value_from_longest (type,
11164 (value_less (arg1, arg3)
11165 || value_equal (arg1, arg3))
11166 && (value_less (arg2, arg1)
11167 || value_equal (arg2, arg1)));
11168
11169 case OP_ATR_FIRST:
11170 case OP_ATR_LAST:
11171 case OP_ATR_LENGTH:
11172 {
11173 struct type *type_arg;
11174
11175 if (exp->elts[*pos].opcode == OP_TYPE)
11176 {
11177 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11178 arg1 = NULL;
11179 type_arg = check_typedef (exp->elts[pc + 2].type);
11180 }
11181 else
11182 {
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 type_arg = NULL;
11185 }
11186
11187 if (exp->elts[*pos].opcode != OP_LONG)
11188 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11189 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11190 *pos += 4;
11191
11192 if (noside == EVAL_SKIP)
11193 goto nosideret;
11194
11195 if (type_arg == NULL)
11196 {
11197 arg1 = ada_coerce_ref (arg1);
11198
11199 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11200 arg1 = ada_coerce_to_simple_array (arg1);
11201
11202 if (op == OP_ATR_LENGTH)
11203 type = builtin_type (exp->gdbarch)->builtin_int;
11204 else
11205 {
11206 type = ada_index_type (value_type (arg1), tem,
11207 ada_attribute_name (op));
11208 if (type == NULL)
11209 type = builtin_type (exp->gdbarch)->builtin_int;
11210 }
11211
11212 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11213 return allocate_value (type);
11214
11215 switch (op)
11216 {
11217 default: /* Should never happen. */
11218 error (_("unexpected attribute encountered"));
11219 case OP_ATR_FIRST:
11220 return value_from_longest
11221 (type, ada_array_bound (arg1, tem, 0));
11222 case OP_ATR_LAST:
11223 return value_from_longest
11224 (type, ada_array_bound (arg1, tem, 1));
11225 case OP_ATR_LENGTH:
11226 return value_from_longest
11227 (type, ada_array_length (arg1, tem));
11228 }
11229 }
11230 else if (discrete_type_p (type_arg))
11231 {
11232 struct type *range_type;
11233 const char *name = ada_type_name (type_arg);
11234
11235 range_type = NULL;
11236 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11237 range_type = to_fixed_range_type (type_arg, NULL);
11238 if (range_type == NULL)
11239 range_type = type_arg;
11240 switch (op)
11241 {
11242 default:
11243 error (_("unexpected attribute encountered"));
11244 case OP_ATR_FIRST:
11245 return value_from_longest
11246 (range_type, ada_discrete_type_low_bound (range_type));
11247 case OP_ATR_LAST:
11248 return value_from_longest
11249 (range_type, ada_discrete_type_high_bound (range_type));
11250 case OP_ATR_LENGTH:
11251 error (_("the 'length attribute applies only to array types"));
11252 }
11253 }
11254 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11255 error (_("unimplemented type attribute"));
11256 else
11257 {
11258 LONGEST low, high;
11259
11260 if (ada_is_constrained_packed_array_type (type_arg))
11261 type_arg = decode_constrained_packed_array_type (type_arg);
11262
11263 if (op == OP_ATR_LENGTH)
11264 type = builtin_type (exp->gdbarch)->builtin_int;
11265 else
11266 {
11267 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11268 if (type == NULL)
11269 type = builtin_type (exp->gdbarch)->builtin_int;
11270 }
11271
11272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11273 return allocate_value (type);
11274
11275 switch (op)
11276 {
11277 default:
11278 error (_("unexpected attribute encountered"));
11279 case OP_ATR_FIRST:
11280 low = ada_array_bound_from_type (type_arg, tem, 0);
11281 return value_from_longest (type, low);
11282 case OP_ATR_LAST:
11283 high = ada_array_bound_from_type (type_arg, tem, 1);
11284 return value_from_longest (type, high);
11285 case OP_ATR_LENGTH:
11286 low = ada_array_bound_from_type (type_arg, tem, 0);
11287 high = ada_array_bound_from_type (type_arg, tem, 1);
11288 return value_from_longest (type, high - low + 1);
11289 }
11290 }
11291 }
11292
11293 case OP_ATR_TAG:
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
11296 goto nosideret;
11297
11298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11299 return value_zero (ada_tag_type (arg1), not_lval);
11300
11301 return ada_value_tag (arg1);
11302
11303 case OP_ATR_MIN:
11304 case OP_ATR_MAX:
11305 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11307 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 if (noside == EVAL_SKIP)
11309 goto nosideret;
11310 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11311 return value_zero (value_type (arg1), not_lval);
11312 else
11313 {
11314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11315 return value_binop (arg1, arg2,
11316 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11317 }
11318
11319 case OP_ATR_MODULUS:
11320 {
11321 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11322
11323 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11324 if (noside == EVAL_SKIP)
11325 goto nosideret;
11326
11327 if (!ada_is_modular_type (type_arg))
11328 error (_("'modulus must be applied to modular type"));
11329
11330 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11331 ada_modulus (type_arg));
11332 }
11333
11334
11335 case OP_ATR_POS:
11336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
11339 goto nosideret;
11340 type = builtin_type (exp->gdbarch)->builtin_int;
11341 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11342 return value_zero (type, not_lval);
11343 else
11344 return value_pos_atr (type, arg1);
11345
11346 case OP_ATR_SIZE:
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 type = value_type (arg1);
11349
11350 /* If the argument is a reference, then dereference its type, since
11351 the user is really asking for the size of the actual object,
11352 not the size of the pointer. */
11353 if (TYPE_CODE (type) == TYPE_CODE_REF)
11354 type = TYPE_TARGET_TYPE (type);
11355
11356 if (noside == EVAL_SKIP)
11357 goto nosideret;
11358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11359 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11360 else
11361 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11362 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11363
11364 case OP_ATR_VAL:
11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 type = exp->elts[pc + 2].type;
11368 if (noside == EVAL_SKIP)
11369 goto nosideret;
11370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 return value_zero (type, not_lval);
11372 else
11373 return value_val_atr (type, arg1);
11374
11375 case BINOP_EXP:
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 if (noside == EVAL_SKIP)
11379 goto nosideret;
11380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11381 return value_zero (value_type (arg1), not_lval);
11382 else
11383 {
11384 /* For integer exponentiation operations,
11385 only promote the first argument. */
11386 if (is_integral_type (value_type (arg2)))
11387 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11388 else
11389 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11390
11391 return value_binop (arg1, arg2, op);
11392 }
11393
11394 case UNOP_PLUS:
11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11396 if (noside == EVAL_SKIP)
11397 goto nosideret;
11398 else
11399 return arg1;
11400
11401 case UNOP_ABS:
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
11404 goto nosideret;
11405 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11406 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11407 return value_neg (arg1);
11408 else
11409 return arg1;
11410
11411 case UNOP_IND:
11412 preeval_pos = *pos;
11413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11414 if (noside == EVAL_SKIP)
11415 goto nosideret;
11416 type = ada_check_typedef (value_type (arg1));
11417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11418 {
11419 if (ada_is_array_descriptor_type (type))
11420 /* GDB allows dereferencing GNAT array descriptors. */
11421 {
11422 struct type *arrType = ada_type_of_array (arg1, 0);
11423
11424 if (arrType == NULL)
11425 error (_("Attempt to dereference null array pointer."));
11426 return value_at_lazy (arrType, 0);
11427 }
11428 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11429 || TYPE_CODE (type) == TYPE_CODE_REF
11430 /* In C you can dereference an array to get the 1st elt. */
11431 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11432 {
11433 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11434 only be determined by inspecting the object's tag.
11435 This means that we need to evaluate completely the
11436 expression in order to get its type. */
11437
11438 if ((TYPE_CODE (type) == TYPE_CODE_REF
11439 || TYPE_CODE (type) == TYPE_CODE_PTR)
11440 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11441 {
11442 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11443 EVAL_NORMAL);
11444 type = value_type (ada_value_ind (arg1));
11445 }
11446 else
11447 {
11448 type = to_static_fixed_type
11449 (ada_aligned_type
11450 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11451 }
11452 ada_ensure_varsize_limit (type);
11453 return value_zero (type, lval_memory);
11454 }
11455 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11456 {
11457 /* GDB allows dereferencing an int. */
11458 if (expect_type == NULL)
11459 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11460 lval_memory);
11461 else
11462 {
11463 expect_type =
11464 to_static_fixed_type (ada_aligned_type (expect_type));
11465 return value_zero (expect_type, lval_memory);
11466 }
11467 }
11468 else
11469 error (_("Attempt to take contents of a non-pointer value."));
11470 }
11471 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11472 type = ada_check_typedef (value_type (arg1));
11473
11474 if (TYPE_CODE (type) == TYPE_CODE_INT)
11475 /* GDB allows dereferencing an int. If we were given
11476 the expect_type, then use that as the target type.
11477 Otherwise, assume that the target type is an int. */
11478 {
11479 if (expect_type != NULL)
11480 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11481 arg1));
11482 else
11483 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11484 (CORE_ADDR) value_as_address (arg1));
11485 }
11486
11487 if (ada_is_array_descriptor_type (type))
11488 /* GDB allows dereferencing GNAT array descriptors. */
11489 return ada_coerce_to_simple_array (arg1);
11490 else
11491 return ada_value_ind (arg1);
11492
11493 case STRUCTOP_STRUCT:
11494 tem = longest_to_int (exp->elts[pc + 1].longconst);
11495 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11496 preeval_pos = *pos;
11497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11498 if (noside == EVAL_SKIP)
11499 goto nosideret;
11500 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11501 {
11502 struct type *type1 = value_type (arg1);
11503
11504 if (ada_is_tagged_type (type1, 1))
11505 {
11506 type = ada_lookup_struct_elt_type (type1,
11507 &exp->elts[pc + 2].string,
11508 1, 1);
11509
11510 /* If the field is not found, check if it exists in the
11511 extension of this object's type. This means that we
11512 need to evaluate completely the expression. */
11513
11514 if (type == NULL)
11515 {
11516 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11517 EVAL_NORMAL);
11518 arg1 = ada_value_struct_elt (arg1,
11519 &exp->elts[pc + 2].string,
11520 0);
11521 arg1 = unwrap_value (arg1);
11522 type = value_type (ada_to_fixed_value (arg1));
11523 }
11524 }
11525 else
11526 type =
11527 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11528 0);
11529
11530 return value_zero (ada_aligned_type (type), lval_memory);
11531 }
11532 else
11533 {
11534 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11535 arg1 = unwrap_value (arg1);
11536 return ada_to_fixed_value (arg1);
11537 }
11538
11539 case OP_TYPE:
11540 /* The value is not supposed to be used. This is here to make it
11541 easier to accommodate expressions that contain types. */
11542 (*pos) += 2;
11543 if (noside == EVAL_SKIP)
11544 goto nosideret;
11545 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11546 return allocate_value (exp->elts[pc + 1].type);
11547 else
11548 error (_("Attempt to use a type name as an expression"));
11549
11550 case OP_AGGREGATE:
11551 case OP_CHOICES:
11552 case OP_OTHERS:
11553 case OP_DISCRETE_RANGE:
11554 case OP_POSITIONAL:
11555 case OP_NAME:
11556 if (noside == EVAL_NORMAL)
11557 switch (op)
11558 {
11559 case OP_NAME:
11560 error (_("Undefined name, ambiguous name, or renaming used in "
11561 "component association: %s."), &exp->elts[pc+2].string);
11562 case OP_AGGREGATE:
11563 error (_("Aggregates only allowed on the right of an assignment"));
11564 default:
11565 internal_error (__FILE__, __LINE__,
11566 _("aggregate apparently mangled"));
11567 }
11568
11569 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11570 *pos += oplen - 1;
11571 for (tem = 0; tem < nargs; tem += 1)
11572 ada_evaluate_subexp (NULL, exp, pos, noside);
11573 goto nosideret;
11574 }
11575
11576 nosideret:
11577 return eval_skip_value (exp);
11578 }
11579 \f
11580
11581 /* Fixed point */
11582
11583 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11584 type name that encodes the 'small and 'delta information.
11585 Otherwise, return NULL. */
11586
11587 static const char *
11588 fixed_type_info (struct type *type)
11589 {
11590 const char *name = ada_type_name (type);
11591 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11592
11593 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11594 {
11595 const char *tail = strstr (name, "___XF_");
11596
11597 if (tail == NULL)
11598 return NULL;
11599 else
11600 return tail + 5;
11601 }
11602 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11603 return fixed_type_info (TYPE_TARGET_TYPE (type));
11604 else
11605 return NULL;
11606 }
11607
11608 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11609
11610 int
11611 ada_is_fixed_point_type (struct type *type)
11612 {
11613 return fixed_type_info (type) != NULL;
11614 }
11615
11616 /* Return non-zero iff TYPE represents a System.Address type. */
11617
11618 int
11619 ada_is_system_address_type (struct type *type)
11620 {
11621 return (TYPE_NAME (type)
11622 && strcmp (TYPE_NAME (type), "system__address") == 0);
11623 }
11624
11625 /* Assuming that TYPE is the representation of an Ada fixed-point
11626 type, return the target floating-point type to be used to represent
11627 of this type during internal computation. */
11628
11629 static struct type *
11630 ada_scaling_type (struct type *type)
11631 {
11632 return builtin_type (get_type_arch (type))->builtin_long_double;
11633 }
11634
11635 /* Assuming that TYPE is the representation of an Ada fixed-point
11636 type, return its delta, or NULL if the type is malformed and the
11637 delta cannot be determined. */
11638
11639 struct value *
11640 ada_delta (struct type *type)
11641 {
11642 const char *encoding = fixed_type_info (type);
11643 struct type *scale_type = ada_scaling_type (type);
11644
11645 long long num, den;
11646
11647 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11648 return nullptr;
11649 else
11650 return value_binop (value_from_longest (scale_type, num),
11651 value_from_longest (scale_type, den), BINOP_DIV);
11652 }
11653
11654 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11655 factor ('SMALL value) associated with the type. */
11656
11657 struct value *
11658 ada_scaling_factor (struct type *type)
11659 {
11660 const char *encoding = fixed_type_info (type);
11661 struct type *scale_type = ada_scaling_type (type);
11662
11663 long long num0, den0, num1, den1;
11664 int n;
11665
11666 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11667 &num0, &den0, &num1, &den1);
11668
11669 if (n < 2)
11670 return value_from_longest (scale_type, 1);
11671 else if (n == 4)
11672 return value_binop (value_from_longest (scale_type, num1),
11673 value_from_longest (scale_type, den1), BINOP_DIV);
11674 else
11675 return value_binop (value_from_longest (scale_type, num0),
11676 value_from_longest (scale_type, den0), BINOP_DIV);
11677 }
11678
11679 \f
11680
11681 /* Range types */
11682
11683 /* Scan STR beginning at position K for a discriminant name, and
11684 return the value of that discriminant field of DVAL in *PX. If
11685 PNEW_K is not null, put the position of the character beyond the
11686 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11687 not alter *PX and *PNEW_K if unsuccessful. */
11688
11689 static int
11690 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11691 int *pnew_k)
11692 {
11693 static char *bound_buffer = NULL;
11694 static size_t bound_buffer_len = 0;
11695 const char *pstart, *pend, *bound;
11696 struct value *bound_val;
11697
11698 if (dval == NULL || str == NULL || str[k] == '\0')
11699 return 0;
11700
11701 pstart = str + k;
11702 pend = strstr (pstart, "__");
11703 if (pend == NULL)
11704 {
11705 bound = pstart;
11706 k += strlen (bound);
11707 }
11708 else
11709 {
11710 int len = pend - pstart;
11711
11712 /* Strip __ and beyond. */
11713 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11714 strncpy (bound_buffer, pstart, len);
11715 bound_buffer[len] = '\0';
11716
11717 bound = bound_buffer;
11718 k = pend - str;
11719 }
11720
11721 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11722 if (bound_val == NULL)
11723 return 0;
11724
11725 *px = value_as_long (bound_val);
11726 if (pnew_k != NULL)
11727 *pnew_k = k;
11728 return 1;
11729 }
11730
11731 /* Value of variable named NAME in the current environment. If
11732 no such variable found, then if ERR_MSG is null, returns 0, and
11733 otherwise causes an error with message ERR_MSG. */
11734
11735 static struct value *
11736 get_var_value (const char *name, const char *err_msg)
11737 {
11738 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11739
11740 std::vector<struct block_symbol> syms;
11741 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11742 get_selected_block (0),
11743 VAR_DOMAIN, &syms, 1);
11744
11745 if (nsyms != 1)
11746 {
11747 if (err_msg == NULL)
11748 return 0;
11749 else
11750 error (("%s"), err_msg);
11751 }
11752
11753 return value_of_variable (syms[0].symbol, syms[0].block);
11754 }
11755
11756 /* Value of integer variable named NAME in the current environment.
11757 If no such variable is found, returns false. Otherwise, sets VALUE
11758 to the variable's value and returns true. */
11759
11760 bool
11761 get_int_var_value (const char *name, LONGEST &value)
11762 {
11763 struct value *var_val = get_var_value (name, 0);
11764
11765 if (var_val == 0)
11766 return false;
11767
11768 value = value_as_long (var_val);
11769 return true;
11770 }
11771
11772
11773 /* Return a range type whose base type is that of the range type named
11774 NAME in the current environment, and whose bounds are calculated
11775 from NAME according to the GNAT range encoding conventions.
11776 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11777 corresponding range type from debug information; fall back to using it
11778 if symbol lookup fails. If a new type must be created, allocate it
11779 like ORIG_TYPE was. The bounds information, in general, is encoded
11780 in NAME, the base type given in the named range type. */
11781
11782 static struct type *
11783 to_fixed_range_type (struct type *raw_type, struct value *dval)
11784 {
11785 const char *name;
11786 struct type *base_type;
11787 const char *subtype_info;
11788
11789 gdb_assert (raw_type != NULL);
11790 gdb_assert (TYPE_NAME (raw_type) != NULL);
11791
11792 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11793 base_type = TYPE_TARGET_TYPE (raw_type);
11794 else
11795 base_type = raw_type;
11796
11797 name = TYPE_NAME (raw_type);
11798 subtype_info = strstr (name, "___XD");
11799 if (subtype_info == NULL)
11800 {
11801 LONGEST L = ada_discrete_type_low_bound (raw_type);
11802 LONGEST U = ada_discrete_type_high_bound (raw_type);
11803
11804 if (L < INT_MIN || U > INT_MAX)
11805 return raw_type;
11806 else
11807 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11808 L, U);
11809 }
11810 else
11811 {
11812 static char *name_buf = NULL;
11813 static size_t name_len = 0;
11814 int prefix_len = subtype_info - name;
11815 LONGEST L, U;
11816 struct type *type;
11817 const char *bounds_str;
11818 int n;
11819
11820 GROW_VECT (name_buf, name_len, prefix_len + 5);
11821 strncpy (name_buf, name, prefix_len);
11822 name_buf[prefix_len] = '\0';
11823
11824 subtype_info += 5;
11825 bounds_str = strchr (subtype_info, '_');
11826 n = 1;
11827
11828 if (*subtype_info == 'L')
11829 {
11830 if (!ada_scan_number (bounds_str, n, &L, &n)
11831 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11832 return raw_type;
11833 if (bounds_str[n] == '_')
11834 n += 2;
11835 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11836 n += 1;
11837 subtype_info += 1;
11838 }
11839 else
11840 {
11841 strcpy (name_buf + prefix_len, "___L");
11842 if (!get_int_var_value (name_buf, L))
11843 {
11844 lim_warning (_("Unknown lower bound, using 1."));
11845 L = 1;
11846 }
11847 }
11848
11849 if (*subtype_info == 'U')
11850 {
11851 if (!ada_scan_number (bounds_str, n, &U, &n)
11852 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11853 return raw_type;
11854 }
11855 else
11856 {
11857 strcpy (name_buf + prefix_len, "___U");
11858 if (!get_int_var_value (name_buf, U))
11859 {
11860 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11861 U = L;
11862 }
11863 }
11864
11865 type = create_static_range_type (alloc_type_copy (raw_type),
11866 base_type, L, U);
11867 /* create_static_range_type alters the resulting type's length
11868 to match the size of the base_type, which is not what we want.
11869 Set it back to the original range type's length. */
11870 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11871 TYPE_NAME (type) = name;
11872 return type;
11873 }
11874 }
11875
11876 /* True iff NAME is the name of a range type. */
11877
11878 int
11879 ada_is_range_type_name (const char *name)
11880 {
11881 return (name != NULL && strstr (name, "___XD"));
11882 }
11883 \f
11884
11885 /* Modular types */
11886
11887 /* True iff TYPE is an Ada modular type. */
11888
11889 int
11890 ada_is_modular_type (struct type *type)
11891 {
11892 struct type *subranged_type = get_base_type (type);
11893
11894 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11895 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11896 && TYPE_UNSIGNED (subranged_type));
11897 }
11898
11899 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11900
11901 ULONGEST
11902 ada_modulus (struct type *type)
11903 {
11904 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11905 }
11906 \f
11907
11908 /* Ada exception catchpoint support:
11909 ---------------------------------
11910
11911 We support 3 kinds of exception catchpoints:
11912 . catchpoints on Ada exceptions
11913 . catchpoints on unhandled Ada exceptions
11914 . catchpoints on failed assertions
11915
11916 Exceptions raised during failed assertions, or unhandled exceptions
11917 could perfectly be caught with the general catchpoint on Ada exceptions.
11918 However, we can easily differentiate these two special cases, and having
11919 the option to distinguish these two cases from the rest can be useful
11920 to zero-in on certain situations.
11921
11922 Exception catchpoints are a specialized form of breakpoint,
11923 since they rely on inserting breakpoints inside known routines
11924 of the GNAT runtime. The implementation therefore uses a standard
11925 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11926 of breakpoint_ops.
11927
11928 Support in the runtime for exception catchpoints have been changed
11929 a few times already, and these changes affect the implementation
11930 of these catchpoints. In order to be able to support several
11931 variants of the runtime, we use a sniffer that will determine
11932 the runtime variant used by the program being debugged. */
11933
11934 /* Ada's standard exceptions.
11935
11936 The Ada 83 standard also defined Numeric_Error. But there so many
11937 situations where it was unclear from the Ada 83 Reference Manual
11938 (RM) whether Constraint_Error or Numeric_Error should be raised,
11939 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11940 Interpretation saying that anytime the RM says that Numeric_Error
11941 should be raised, the implementation may raise Constraint_Error.
11942 Ada 95 went one step further and pretty much removed Numeric_Error
11943 from the list of standard exceptions (it made it a renaming of
11944 Constraint_Error, to help preserve compatibility when compiling
11945 an Ada83 compiler). As such, we do not include Numeric_Error from
11946 this list of standard exceptions. */
11947
11948 static const char *standard_exc[] = {
11949 "constraint_error",
11950 "program_error",
11951 "storage_error",
11952 "tasking_error"
11953 };
11954
11955 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11956
11957 /* A structure that describes how to support exception catchpoints
11958 for a given executable. */
11959
11960 struct exception_support_info
11961 {
11962 /* The name of the symbol to break on in order to insert
11963 a catchpoint on exceptions. */
11964 const char *catch_exception_sym;
11965
11966 /* The name of the symbol to break on in order to insert
11967 a catchpoint on unhandled exceptions. */
11968 const char *catch_exception_unhandled_sym;
11969
11970 /* The name of the symbol to break on in order to insert
11971 a catchpoint on failed assertions. */
11972 const char *catch_assert_sym;
11973
11974 /* The name of the symbol to break on in order to insert
11975 a catchpoint on exception handling. */
11976 const char *catch_handlers_sym;
11977
11978 /* Assuming that the inferior just triggered an unhandled exception
11979 catchpoint, this function is responsible for returning the address
11980 in inferior memory where the name of that exception is stored.
11981 Return zero if the address could not be computed. */
11982 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11983 };
11984
11985 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11986 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11987
11988 /* The following exception support info structure describes how to
11989 implement exception catchpoints with the latest version of the
11990 Ada runtime (as of 2007-03-06). */
11991
11992 static const struct exception_support_info default_exception_support_info =
11993 {
11994 "__gnat_debug_raise_exception", /* catch_exception_sym */
11995 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11996 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11997 "__gnat_begin_handler", /* catch_handlers_sym */
11998 ada_unhandled_exception_name_addr
11999 };
12000
12001 /* The following exception support info structure describes how to
12002 implement exception catchpoints with a slightly older version
12003 of the Ada runtime. */
12004
12005 static const struct exception_support_info exception_support_info_fallback =
12006 {
12007 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12008 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12009 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12010 "__gnat_begin_handler", /* catch_handlers_sym */
12011 ada_unhandled_exception_name_addr_from_raise
12012 };
12013
12014 /* Return nonzero if we can detect the exception support routines
12015 described in EINFO.
12016
12017 This function errors out if an abnormal situation is detected
12018 (for instance, if we find the exception support routines, but
12019 that support is found to be incomplete). */
12020
12021 static int
12022 ada_has_this_exception_support (const struct exception_support_info *einfo)
12023 {
12024 struct symbol *sym;
12025
12026 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12027 that should be compiled with debugging information. As a result, we
12028 expect to find that symbol in the symtabs. */
12029
12030 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12031 if (sym == NULL)
12032 {
12033 /* Perhaps we did not find our symbol because the Ada runtime was
12034 compiled without debugging info, or simply stripped of it.
12035 It happens on some GNU/Linux distributions for instance, where
12036 users have to install a separate debug package in order to get
12037 the runtime's debugging info. In that situation, let the user
12038 know why we cannot insert an Ada exception catchpoint.
12039
12040 Note: Just for the purpose of inserting our Ada exception
12041 catchpoint, we could rely purely on the associated minimal symbol.
12042 But we would be operating in degraded mode anyway, since we are
12043 still lacking the debugging info needed later on to extract
12044 the name of the exception being raised (this name is printed in
12045 the catchpoint message, and is also used when trying to catch
12046 a specific exception). We do not handle this case for now. */
12047 struct bound_minimal_symbol msym
12048 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12049
12050 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12051 error (_("Your Ada runtime appears to be missing some debugging "
12052 "information.\nCannot insert Ada exception catchpoint "
12053 "in this configuration."));
12054
12055 return 0;
12056 }
12057
12058 /* Make sure that the symbol we found corresponds to a function. */
12059
12060 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12061 error (_("Symbol \"%s\" is not a function (class = %d)"),
12062 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12063
12064 return 1;
12065 }
12066
12067 /* Inspect the Ada runtime and determine which exception info structure
12068 should be used to provide support for exception catchpoints.
12069
12070 This function will always set the per-inferior exception_info,
12071 or raise an error. */
12072
12073 static void
12074 ada_exception_support_info_sniffer (void)
12075 {
12076 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12077
12078 /* If the exception info is already known, then no need to recompute it. */
12079 if (data->exception_info != NULL)
12080 return;
12081
12082 /* Check the latest (default) exception support info. */
12083 if (ada_has_this_exception_support (&default_exception_support_info))
12084 {
12085 data->exception_info = &default_exception_support_info;
12086 return;
12087 }
12088
12089 /* Try our fallback exception suport info. */
12090 if (ada_has_this_exception_support (&exception_support_info_fallback))
12091 {
12092 data->exception_info = &exception_support_info_fallback;
12093 return;
12094 }
12095
12096 /* Sometimes, it is normal for us to not be able to find the routine
12097 we are looking for. This happens when the program is linked with
12098 the shared version of the GNAT runtime, and the program has not been
12099 started yet. Inform the user of these two possible causes if
12100 applicable. */
12101
12102 if (ada_update_initial_language (language_unknown) != language_ada)
12103 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12104
12105 /* If the symbol does not exist, then check that the program is
12106 already started, to make sure that shared libraries have been
12107 loaded. If it is not started, this may mean that the symbol is
12108 in a shared library. */
12109
12110 if (inferior_ptid.pid () == 0)
12111 error (_("Unable to insert catchpoint. Try to start the program first."));
12112
12113 /* At this point, we know that we are debugging an Ada program and
12114 that the inferior has been started, but we still are not able to
12115 find the run-time symbols. That can mean that we are in
12116 configurable run time mode, or that a-except as been optimized
12117 out by the linker... In any case, at this point it is not worth
12118 supporting this feature. */
12119
12120 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12121 }
12122
12123 /* True iff FRAME is very likely to be that of a function that is
12124 part of the runtime system. This is all very heuristic, but is
12125 intended to be used as advice as to what frames are uninteresting
12126 to most users. */
12127
12128 static int
12129 is_known_support_routine (struct frame_info *frame)
12130 {
12131 enum language func_lang;
12132 int i;
12133 const char *fullname;
12134
12135 /* If this code does not have any debugging information (no symtab),
12136 This cannot be any user code. */
12137
12138 symtab_and_line sal = find_frame_sal (frame);
12139 if (sal.symtab == NULL)
12140 return 1;
12141
12142 /* If there is a symtab, but the associated source file cannot be
12143 located, then assume this is not user code: Selecting a frame
12144 for which we cannot display the code would not be very helpful
12145 for the user. This should also take care of case such as VxWorks
12146 where the kernel has some debugging info provided for a few units. */
12147
12148 fullname = symtab_to_fullname (sal.symtab);
12149 if (access (fullname, R_OK) != 0)
12150 return 1;
12151
12152 /* Check the unit filename againt the Ada runtime file naming.
12153 We also check the name of the objfile against the name of some
12154 known system libraries that sometimes come with debugging info
12155 too. */
12156
12157 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12158 {
12159 re_comp (known_runtime_file_name_patterns[i]);
12160 if (re_exec (lbasename (sal.symtab->filename)))
12161 return 1;
12162 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12163 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12164 return 1;
12165 }
12166
12167 /* Check whether the function is a GNAT-generated entity. */
12168
12169 gdb::unique_xmalloc_ptr<char> func_name
12170 = find_frame_funname (frame, &func_lang, NULL);
12171 if (func_name == NULL)
12172 return 1;
12173
12174 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12175 {
12176 re_comp (known_auxiliary_function_name_patterns[i]);
12177 if (re_exec (func_name.get ()))
12178 return 1;
12179 }
12180
12181 return 0;
12182 }
12183
12184 /* Find the first frame that contains debugging information and that is not
12185 part of the Ada run-time, starting from FI and moving upward. */
12186
12187 void
12188 ada_find_printable_frame (struct frame_info *fi)
12189 {
12190 for (; fi != NULL; fi = get_prev_frame (fi))
12191 {
12192 if (!is_known_support_routine (fi))
12193 {
12194 select_frame (fi);
12195 break;
12196 }
12197 }
12198
12199 }
12200
12201 /* Assuming that the inferior just triggered an unhandled exception
12202 catchpoint, return the address in inferior memory where the name
12203 of the exception is stored.
12204
12205 Return zero if the address could not be computed. */
12206
12207 static CORE_ADDR
12208 ada_unhandled_exception_name_addr (void)
12209 {
12210 return parse_and_eval_address ("e.full_name");
12211 }
12212
12213 /* Same as ada_unhandled_exception_name_addr, except that this function
12214 should be used when the inferior uses an older version of the runtime,
12215 where the exception name needs to be extracted from a specific frame
12216 several frames up in the callstack. */
12217
12218 static CORE_ADDR
12219 ada_unhandled_exception_name_addr_from_raise (void)
12220 {
12221 int frame_level;
12222 struct frame_info *fi;
12223 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12224
12225 /* To determine the name of this exception, we need to select
12226 the frame corresponding to RAISE_SYM_NAME. This frame is
12227 at least 3 levels up, so we simply skip the first 3 frames
12228 without checking the name of their associated function. */
12229 fi = get_current_frame ();
12230 for (frame_level = 0; frame_level < 3; frame_level += 1)
12231 if (fi != NULL)
12232 fi = get_prev_frame (fi);
12233
12234 while (fi != NULL)
12235 {
12236 enum language func_lang;
12237
12238 gdb::unique_xmalloc_ptr<char> func_name
12239 = find_frame_funname (fi, &func_lang, NULL);
12240 if (func_name != NULL)
12241 {
12242 if (strcmp (func_name.get (),
12243 data->exception_info->catch_exception_sym) == 0)
12244 break; /* We found the frame we were looking for... */
12245 fi = get_prev_frame (fi);
12246 }
12247 }
12248
12249 if (fi == NULL)
12250 return 0;
12251
12252 select_frame (fi);
12253 return parse_and_eval_address ("id.full_name");
12254 }
12255
12256 /* Assuming the inferior just triggered an Ada exception catchpoint
12257 (of any type), return the address in inferior memory where the name
12258 of the exception is stored, if applicable.
12259
12260 Assumes the selected frame is the current frame.
12261
12262 Return zero if the address could not be computed, or if not relevant. */
12263
12264 static CORE_ADDR
12265 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12266 struct breakpoint *b)
12267 {
12268 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12269
12270 switch (ex)
12271 {
12272 case ada_catch_exception:
12273 return (parse_and_eval_address ("e.full_name"));
12274 break;
12275
12276 case ada_catch_exception_unhandled:
12277 return data->exception_info->unhandled_exception_name_addr ();
12278 break;
12279
12280 case ada_catch_handlers:
12281 return 0; /* The runtimes does not provide access to the exception
12282 name. */
12283 break;
12284
12285 case ada_catch_assert:
12286 return 0; /* Exception name is not relevant in this case. */
12287 break;
12288
12289 default:
12290 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12291 break;
12292 }
12293
12294 return 0; /* Should never be reached. */
12295 }
12296
12297 /* Assuming the inferior is stopped at an exception catchpoint,
12298 return the message which was associated to the exception, if
12299 available. Return NULL if the message could not be retrieved.
12300
12301 Note: The exception message can be associated to an exception
12302 either through the use of the Raise_Exception function, or
12303 more simply (Ada 2005 and later), via:
12304
12305 raise Exception_Name with "exception message";
12306
12307 */
12308
12309 static gdb::unique_xmalloc_ptr<char>
12310 ada_exception_message_1 (void)
12311 {
12312 struct value *e_msg_val;
12313 int e_msg_len;
12314
12315 /* For runtimes that support this feature, the exception message
12316 is passed as an unbounded string argument called "message". */
12317 e_msg_val = parse_and_eval ("message");
12318 if (e_msg_val == NULL)
12319 return NULL; /* Exception message not supported. */
12320
12321 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12322 gdb_assert (e_msg_val != NULL);
12323 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12324
12325 /* If the message string is empty, then treat it as if there was
12326 no exception message. */
12327 if (e_msg_len <= 0)
12328 return NULL;
12329
12330 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12331 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12332 e_msg.get ()[e_msg_len] = '\0';
12333
12334 return e_msg;
12335 }
12336
12337 /* Same as ada_exception_message_1, except that all exceptions are
12338 contained here (returning NULL instead). */
12339
12340 static gdb::unique_xmalloc_ptr<char>
12341 ada_exception_message (void)
12342 {
12343 gdb::unique_xmalloc_ptr<char> e_msg;
12344
12345 TRY
12346 {
12347 e_msg = ada_exception_message_1 ();
12348 }
12349 CATCH (e, RETURN_MASK_ERROR)
12350 {
12351 e_msg.reset (nullptr);
12352 }
12353 END_CATCH
12354
12355 return e_msg;
12356 }
12357
12358 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12359 any error that ada_exception_name_addr_1 might cause to be thrown.
12360 When an error is intercepted, a warning with the error message is printed,
12361 and zero is returned. */
12362
12363 static CORE_ADDR
12364 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12365 struct breakpoint *b)
12366 {
12367 CORE_ADDR result = 0;
12368
12369 TRY
12370 {
12371 result = ada_exception_name_addr_1 (ex, b);
12372 }
12373
12374 CATCH (e, RETURN_MASK_ERROR)
12375 {
12376 warning (_("failed to get exception name: %s"), e.message);
12377 return 0;
12378 }
12379 END_CATCH
12380
12381 return result;
12382 }
12383
12384 static std::string ada_exception_catchpoint_cond_string
12385 (const char *excep_string,
12386 enum ada_exception_catchpoint_kind ex);
12387
12388 /* Ada catchpoints.
12389
12390 In the case of catchpoints on Ada exceptions, the catchpoint will
12391 stop the target on every exception the program throws. When a user
12392 specifies the name of a specific exception, we translate this
12393 request into a condition expression (in text form), and then parse
12394 it into an expression stored in each of the catchpoint's locations.
12395 We then use this condition to check whether the exception that was
12396 raised is the one the user is interested in. If not, then the
12397 target is resumed again. We store the name of the requested
12398 exception, in order to be able to re-set the condition expression
12399 when symbols change. */
12400
12401 /* An instance of this type is used to represent an Ada catchpoint
12402 breakpoint location. */
12403
12404 class ada_catchpoint_location : public bp_location
12405 {
12406 public:
12407 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12408 : bp_location (ops, owner)
12409 {}
12410
12411 /* The condition that checks whether the exception that was raised
12412 is the specific exception the user specified on catchpoint
12413 creation. */
12414 expression_up excep_cond_expr;
12415 };
12416
12417 /* Implement the DTOR method in the bp_location_ops structure for all
12418 Ada exception catchpoint kinds. */
12419
12420 static void
12421 ada_catchpoint_location_dtor (struct bp_location *bl)
12422 {
12423 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12424
12425 al->excep_cond_expr.reset ();
12426 }
12427
12428 /* The vtable to be used in Ada catchpoint locations. */
12429
12430 static const struct bp_location_ops ada_catchpoint_location_ops =
12431 {
12432 ada_catchpoint_location_dtor
12433 };
12434
12435 /* An instance of this type is used to represent an Ada catchpoint. */
12436
12437 struct ada_catchpoint : public breakpoint
12438 {
12439 /* The name of the specific exception the user specified. */
12440 std::string excep_string;
12441 };
12442
12443 /* Parse the exception condition string in the context of each of the
12444 catchpoint's locations, and store them for later evaluation. */
12445
12446 static void
12447 create_excep_cond_exprs (struct ada_catchpoint *c,
12448 enum ada_exception_catchpoint_kind ex)
12449 {
12450 struct bp_location *bl;
12451
12452 /* Nothing to do if there's no specific exception to catch. */
12453 if (c->excep_string.empty ())
12454 return;
12455
12456 /* Same if there are no locations... */
12457 if (c->loc == NULL)
12458 return;
12459
12460 /* Compute the condition expression in text form, from the specific
12461 expection we want to catch. */
12462 std::string cond_string
12463 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12464
12465 /* Iterate over all the catchpoint's locations, and parse an
12466 expression for each. */
12467 for (bl = c->loc; bl != NULL; bl = bl->next)
12468 {
12469 struct ada_catchpoint_location *ada_loc
12470 = (struct ada_catchpoint_location *) bl;
12471 expression_up exp;
12472
12473 if (!bl->shlib_disabled)
12474 {
12475 const char *s;
12476
12477 s = cond_string.c_str ();
12478 TRY
12479 {
12480 exp = parse_exp_1 (&s, bl->address,
12481 block_for_pc (bl->address),
12482 0);
12483 }
12484 CATCH (e, RETURN_MASK_ERROR)
12485 {
12486 warning (_("failed to reevaluate internal exception condition "
12487 "for catchpoint %d: %s"),
12488 c->number, e.message);
12489 }
12490 END_CATCH
12491 }
12492
12493 ada_loc->excep_cond_expr = std::move (exp);
12494 }
12495 }
12496
12497 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12498 structure for all exception catchpoint kinds. */
12499
12500 static struct bp_location *
12501 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12502 struct breakpoint *self)
12503 {
12504 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12505 }
12506
12507 /* Implement the RE_SET method in the breakpoint_ops structure for all
12508 exception catchpoint kinds. */
12509
12510 static void
12511 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12512 {
12513 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12514
12515 /* Call the base class's method. This updates the catchpoint's
12516 locations. */
12517 bkpt_breakpoint_ops.re_set (b);
12518
12519 /* Reparse the exception conditional expressions. One for each
12520 location. */
12521 create_excep_cond_exprs (c, ex);
12522 }
12523
12524 /* Returns true if we should stop for this breakpoint hit. If the
12525 user specified a specific exception, we only want to cause a stop
12526 if the program thrown that exception. */
12527
12528 static int
12529 should_stop_exception (const struct bp_location *bl)
12530 {
12531 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12532 const struct ada_catchpoint_location *ada_loc
12533 = (const struct ada_catchpoint_location *) bl;
12534 int stop;
12535
12536 /* With no specific exception, should always stop. */
12537 if (c->excep_string.empty ())
12538 return 1;
12539
12540 if (ada_loc->excep_cond_expr == NULL)
12541 {
12542 /* We will have a NULL expression if back when we were creating
12543 the expressions, this location's had failed to parse. */
12544 return 1;
12545 }
12546
12547 stop = 1;
12548 TRY
12549 {
12550 struct value *mark;
12551
12552 mark = value_mark ();
12553 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12554 value_free_to_mark (mark);
12555 }
12556 CATCH (ex, RETURN_MASK_ALL)
12557 {
12558 exception_fprintf (gdb_stderr, ex,
12559 _("Error in testing exception condition:\n"));
12560 }
12561 END_CATCH
12562
12563 return stop;
12564 }
12565
12566 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12567 for all exception catchpoint kinds. */
12568
12569 static void
12570 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12571 {
12572 bs->stop = should_stop_exception (bs->bp_location_at);
12573 }
12574
12575 /* Implement the PRINT_IT method in the breakpoint_ops structure
12576 for all exception catchpoint kinds. */
12577
12578 static enum print_stop_action
12579 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12580 {
12581 struct ui_out *uiout = current_uiout;
12582 struct breakpoint *b = bs->breakpoint_at;
12583
12584 annotate_catchpoint (b->number);
12585
12586 if (uiout->is_mi_like_p ())
12587 {
12588 uiout->field_string ("reason",
12589 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12590 uiout->field_string ("disp", bpdisp_text (b->disposition));
12591 }
12592
12593 uiout->text (b->disposition == disp_del
12594 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12595 uiout->field_int ("bkptno", b->number);
12596 uiout->text (", ");
12597
12598 /* ada_exception_name_addr relies on the selected frame being the
12599 current frame. Need to do this here because this function may be
12600 called more than once when printing a stop, and below, we'll
12601 select the first frame past the Ada run-time (see
12602 ada_find_printable_frame). */
12603 select_frame (get_current_frame ());
12604
12605 switch (ex)
12606 {
12607 case ada_catch_exception:
12608 case ada_catch_exception_unhandled:
12609 case ada_catch_handlers:
12610 {
12611 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12612 char exception_name[256];
12613
12614 if (addr != 0)
12615 {
12616 read_memory (addr, (gdb_byte *) exception_name,
12617 sizeof (exception_name) - 1);
12618 exception_name [sizeof (exception_name) - 1] = '\0';
12619 }
12620 else
12621 {
12622 /* For some reason, we were unable to read the exception
12623 name. This could happen if the Runtime was compiled
12624 without debugging info, for instance. In that case,
12625 just replace the exception name by the generic string
12626 "exception" - it will read as "an exception" in the
12627 notification we are about to print. */
12628 memcpy (exception_name, "exception", sizeof ("exception"));
12629 }
12630 /* In the case of unhandled exception breakpoints, we print
12631 the exception name as "unhandled EXCEPTION_NAME", to make
12632 it clearer to the user which kind of catchpoint just got
12633 hit. We used ui_out_text to make sure that this extra
12634 info does not pollute the exception name in the MI case. */
12635 if (ex == ada_catch_exception_unhandled)
12636 uiout->text ("unhandled ");
12637 uiout->field_string ("exception-name", exception_name);
12638 }
12639 break;
12640 case ada_catch_assert:
12641 /* In this case, the name of the exception is not really
12642 important. Just print "failed assertion" to make it clearer
12643 that his program just hit an assertion-failure catchpoint.
12644 We used ui_out_text because this info does not belong in
12645 the MI output. */
12646 uiout->text ("failed assertion");
12647 break;
12648 }
12649
12650 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12651 if (exception_message != NULL)
12652 {
12653 uiout->text (" (");
12654 uiout->field_string ("exception-message", exception_message.get ());
12655 uiout->text (")");
12656 }
12657
12658 uiout->text (" at ");
12659 ada_find_printable_frame (get_current_frame ());
12660
12661 return PRINT_SRC_AND_LOC;
12662 }
12663
12664 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12665 for all exception catchpoint kinds. */
12666
12667 static void
12668 print_one_exception (enum ada_exception_catchpoint_kind ex,
12669 struct breakpoint *b, struct bp_location **last_loc)
12670 {
12671 struct ui_out *uiout = current_uiout;
12672 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12673 struct value_print_options opts;
12674
12675 get_user_print_options (&opts);
12676 if (opts.addressprint)
12677 {
12678 annotate_field (4);
12679 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12680 }
12681
12682 annotate_field (5);
12683 *last_loc = b->loc;
12684 switch (ex)
12685 {
12686 case ada_catch_exception:
12687 if (!c->excep_string.empty ())
12688 {
12689 std::string msg = string_printf (_("`%s' Ada exception"),
12690 c->excep_string.c_str ());
12691
12692 uiout->field_string ("what", msg);
12693 }
12694 else
12695 uiout->field_string ("what", "all Ada exceptions");
12696
12697 break;
12698
12699 case ada_catch_exception_unhandled:
12700 uiout->field_string ("what", "unhandled Ada exceptions");
12701 break;
12702
12703 case ada_catch_handlers:
12704 if (!c->excep_string.empty ())
12705 {
12706 uiout->field_fmt ("what",
12707 _("`%s' Ada exception handlers"),
12708 c->excep_string.c_str ());
12709 }
12710 else
12711 uiout->field_string ("what", "all Ada exceptions handlers");
12712 break;
12713
12714 case ada_catch_assert:
12715 uiout->field_string ("what", "failed Ada assertions");
12716 break;
12717
12718 default:
12719 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12720 break;
12721 }
12722 }
12723
12724 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12725 for all exception catchpoint kinds. */
12726
12727 static void
12728 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12729 struct breakpoint *b)
12730 {
12731 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12732 struct ui_out *uiout = current_uiout;
12733
12734 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12735 : _("Catchpoint "));
12736 uiout->field_int ("bkptno", b->number);
12737 uiout->text (": ");
12738
12739 switch (ex)
12740 {
12741 case ada_catch_exception:
12742 if (!c->excep_string.empty ())
12743 {
12744 std::string info = string_printf (_("`%s' Ada exception"),
12745 c->excep_string.c_str ());
12746 uiout->text (info.c_str ());
12747 }
12748 else
12749 uiout->text (_("all Ada exceptions"));
12750 break;
12751
12752 case ada_catch_exception_unhandled:
12753 uiout->text (_("unhandled Ada exceptions"));
12754 break;
12755
12756 case ada_catch_handlers:
12757 if (!c->excep_string.empty ())
12758 {
12759 std::string info
12760 = string_printf (_("`%s' Ada exception handlers"),
12761 c->excep_string.c_str ());
12762 uiout->text (info.c_str ());
12763 }
12764 else
12765 uiout->text (_("all Ada exceptions handlers"));
12766 break;
12767
12768 case ada_catch_assert:
12769 uiout->text (_("failed Ada assertions"));
12770 break;
12771
12772 default:
12773 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12774 break;
12775 }
12776 }
12777
12778 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12779 for all exception catchpoint kinds. */
12780
12781 static void
12782 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12783 struct breakpoint *b, struct ui_file *fp)
12784 {
12785 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12786
12787 switch (ex)
12788 {
12789 case ada_catch_exception:
12790 fprintf_filtered (fp, "catch exception");
12791 if (!c->excep_string.empty ())
12792 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12793 break;
12794
12795 case ada_catch_exception_unhandled:
12796 fprintf_filtered (fp, "catch exception unhandled");
12797 break;
12798
12799 case ada_catch_handlers:
12800 fprintf_filtered (fp, "catch handlers");
12801 break;
12802
12803 case ada_catch_assert:
12804 fprintf_filtered (fp, "catch assert");
12805 break;
12806
12807 default:
12808 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12809 }
12810 print_recreate_thread (b, fp);
12811 }
12812
12813 /* Virtual table for "catch exception" breakpoints. */
12814
12815 static struct bp_location *
12816 allocate_location_catch_exception (struct breakpoint *self)
12817 {
12818 return allocate_location_exception (ada_catch_exception, self);
12819 }
12820
12821 static void
12822 re_set_catch_exception (struct breakpoint *b)
12823 {
12824 re_set_exception (ada_catch_exception, b);
12825 }
12826
12827 static void
12828 check_status_catch_exception (bpstat bs)
12829 {
12830 check_status_exception (ada_catch_exception, bs);
12831 }
12832
12833 static enum print_stop_action
12834 print_it_catch_exception (bpstat bs)
12835 {
12836 return print_it_exception (ada_catch_exception, bs);
12837 }
12838
12839 static void
12840 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12841 {
12842 print_one_exception (ada_catch_exception, b, last_loc);
12843 }
12844
12845 static void
12846 print_mention_catch_exception (struct breakpoint *b)
12847 {
12848 print_mention_exception (ada_catch_exception, b);
12849 }
12850
12851 static void
12852 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12853 {
12854 print_recreate_exception (ada_catch_exception, b, fp);
12855 }
12856
12857 static struct breakpoint_ops catch_exception_breakpoint_ops;
12858
12859 /* Virtual table for "catch exception unhandled" breakpoints. */
12860
12861 static struct bp_location *
12862 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12863 {
12864 return allocate_location_exception (ada_catch_exception_unhandled, self);
12865 }
12866
12867 static void
12868 re_set_catch_exception_unhandled (struct breakpoint *b)
12869 {
12870 re_set_exception (ada_catch_exception_unhandled, b);
12871 }
12872
12873 static void
12874 check_status_catch_exception_unhandled (bpstat bs)
12875 {
12876 check_status_exception (ada_catch_exception_unhandled, bs);
12877 }
12878
12879 static enum print_stop_action
12880 print_it_catch_exception_unhandled (bpstat bs)
12881 {
12882 return print_it_exception (ada_catch_exception_unhandled, bs);
12883 }
12884
12885 static void
12886 print_one_catch_exception_unhandled (struct breakpoint *b,
12887 struct bp_location **last_loc)
12888 {
12889 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12890 }
12891
12892 static void
12893 print_mention_catch_exception_unhandled (struct breakpoint *b)
12894 {
12895 print_mention_exception (ada_catch_exception_unhandled, b);
12896 }
12897
12898 static void
12899 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12900 struct ui_file *fp)
12901 {
12902 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12903 }
12904
12905 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12906
12907 /* Virtual table for "catch assert" breakpoints. */
12908
12909 static struct bp_location *
12910 allocate_location_catch_assert (struct breakpoint *self)
12911 {
12912 return allocate_location_exception (ada_catch_assert, self);
12913 }
12914
12915 static void
12916 re_set_catch_assert (struct breakpoint *b)
12917 {
12918 re_set_exception (ada_catch_assert, b);
12919 }
12920
12921 static void
12922 check_status_catch_assert (bpstat bs)
12923 {
12924 check_status_exception (ada_catch_assert, bs);
12925 }
12926
12927 static enum print_stop_action
12928 print_it_catch_assert (bpstat bs)
12929 {
12930 return print_it_exception (ada_catch_assert, bs);
12931 }
12932
12933 static void
12934 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12935 {
12936 print_one_exception (ada_catch_assert, b, last_loc);
12937 }
12938
12939 static void
12940 print_mention_catch_assert (struct breakpoint *b)
12941 {
12942 print_mention_exception (ada_catch_assert, b);
12943 }
12944
12945 static void
12946 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12947 {
12948 print_recreate_exception (ada_catch_assert, b, fp);
12949 }
12950
12951 static struct breakpoint_ops catch_assert_breakpoint_ops;
12952
12953 /* Virtual table for "catch handlers" breakpoints. */
12954
12955 static struct bp_location *
12956 allocate_location_catch_handlers (struct breakpoint *self)
12957 {
12958 return allocate_location_exception (ada_catch_handlers, self);
12959 }
12960
12961 static void
12962 re_set_catch_handlers (struct breakpoint *b)
12963 {
12964 re_set_exception (ada_catch_handlers, b);
12965 }
12966
12967 static void
12968 check_status_catch_handlers (bpstat bs)
12969 {
12970 check_status_exception (ada_catch_handlers, bs);
12971 }
12972
12973 static enum print_stop_action
12974 print_it_catch_handlers (bpstat bs)
12975 {
12976 return print_it_exception (ada_catch_handlers, bs);
12977 }
12978
12979 static void
12980 print_one_catch_handlers (struct breakpoint *b,
12981 struct bp_location **last_loc)
12982 {
12983 print_one_exception (ada_catch_handlers, b, last_loc);
12984 }
12985
12986 static void
12987 print_mention_catch_handlers (struct breakpoint *b)
12988 {
12989 print_mention_exception (ada_catch_handlers, b);
12990 }
12991
12992 static void
12993 print_recreate_catch_handlers (struct breakpoint *b,
12994 struct ui_file *fp)
12995 {
12996 print_recreate_exception (ada_catch_handlers, b, fp);
12997 }
12998
12999 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13000
13001 /* Split the arguments specified in a "catch exception" command.
13002 Set EX to the appropriate catchpoint type.
13003 Set EXCEP_STRING to the name of the specific exception if
13004 specified by the user.
13005 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13006 "catch handlers" command. False otherwise.
13007 If a condition is found at the end of the arguments, the condition
13008 expression is stored in COND_STRING (memory must be deallocated
13009 after use). Otherwise COND_STRING is set to NULL. */
13010
13011 static void
13012 catch_ada_exception_command_split (const char *args,
13013 bool is_catch_handlers_cmd,
13014 enum ada_exception_catchpoint_kind *ex,
13015 std::string *excep_string,
13016 std::string *cond_string)
13017 {
13018 std::string exception_name;
13019
13020 exception_name = extract_arg (&args);
13021 if (exception_name == "if")
13022 {
13023 /* This is not an exception name; this is the start of a condition
13024 expression for a catchpoint on all exceptions. So, "un-get"
13025 this token, and set exception_name to NULL. */
13026 exception_name.clear ();
13027 args -= 2;
13028 }
13029
13030 /* Check to see if we have a condition. */
13031
13032 args = skip_spaces (args);
13033 if (startswith (args, "if")
13034 && (isspace (args[2]) || args[2] == '\0'))
13035 {
13036 args += 2;
13037 args = skip_spaces (args);
13038
13039 if (args[0] == '\0')
13040 error (_("Condition missing after `if' keyword"));
13041 *cond_string = args;
13042
13043 args += strlen (args);
13044 }
13045
13046 /* Check that we do not have any more arguments. Anything else
13047 is unexpected. */
13048
13049 if (args[0] != '\0')
13050 error (_("Junk at end of expression"));
13051
13052 if (is_catch_handlers_cmd)
13053 {
13054 /* Catch handling of exceptions. */
13055 *ex = ada_catch_handlers;
13056 *excep_string = exception_name;
13057 }
13058 else if (exception_name.empty ())
13059 {
13060 /* Catch all exceptions. */
13061 *ex = ada_catch_exception;
13062 excep_string->clear ();
13063 }
13064 else if (exception_name == "unhandled")
13065 {
13066 /* Catch unhandled exceptions. */
13067 *ex = ada_catch_exception_unhandled;
13068 excep_string->clear ();
13069 }
13070 else
13071 {
13072 /* Catch a specific exception. */
13073 *ex = ada_catch_exception;
13074 *excep_string = exception_name;
13075 }
13076 }
13077
13078 /* Return the name of the symbol on which we should break in order to
13079 implement a catchpoint of the EX kind. */
13080
13081 static const char *
13082 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13083 {
13084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13085
13086 gdb_assert (data->exception_info != NULL);
13087
13088 switch (ex)
13089 {
13090 case ada_catch_exception:
13091 return (data->exception_info->catch_exception_sym);
13092 break;
13093 case ada_catch_exception_unhandled:
13094 return (data->exception_info->catch_exception_unhandled_sym);
13095 break;
13096 case ada_catch_assert:
13097 return (data->exception_info->catch_assert_sym);
13098 break;
13099 case ada_catch_handlers:
13100 return (data->exception_info->catch_handlers_sym);
13101 break;
13102 default:
13103 internal_error (__FILE__, __LINE__,
13104 _("unexpected catchpoint kind (%d)"), ex);
13105 }
13106 }
13107
13108 /* Return the breakpoint ops "virtual table" used for catchpoints
13109 of the EX kind. */
13110
13111 static const struct breakpoint_ops *
13112 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13113 {
13114 switch (ex)
13115 {
13116 case ada_catch_exception:
13117 return (&catch_exception_breakpoint_ops);
13118 break;
13119 case ada_catch_exception_unhandled:
13120 return (&catch_exception_unhandled_breakpoint_ops);
13121 break;
13122 case ada_catch_assert:
13123 return (&catch_assert_breakpoint_ops);
13124 break;
13125 case ada_catch_handlers:
13126 return (&catch_handlers_breakpoint_ops);
13127 break;
13128 default:
13129 internal_error (__FILE__, __LINE__,
13130 _("unexpected catchpoint kind (%d)"), ex);
13131 }
13132 }
13133
13134 /* Return the condition that will be used to match the current exception
13135 being raised with the exception that the user wants to catch. This
13136 assumes that this condition is used when the inferior just triggered
13137 an exception catchpoint.
13138 EX: the type of catchpoints used for catching Ada exceptions. */
13139
13140 static std::string
13141 ada_exception_catchpoint_cond_string (const char *excep_string,
13142 enum ada_exception_catchpoint_kind ex)
13143 {
13144 int i;
13145 bool is_standard_exc = false;
13146 std::string result;
13147
13148 if (ex == ada_catch_handlers)
13149 {
13150 /* For exception handlers catchpoints, the condition string does
13151 not use the same parameter as for the other exceptions. */
13152 result = ("long_integer (GNAT_GCC_exception_Access"
13153 "(gcc_exception).all.occurrence.id)");
13154 }
13155 else
13156 result = "long_integer (e)";
13157
13158 /* The standard exceptions are a special case. They are defined in
13159 runtime units that have been compiled without debugging info; if
13160 EXCEP_STRING is the not-fully-qualified name of a standard
13161 exception (e.g. "constraint_error") then, during the evaluation
13162 of the condition expression, the symbol lookup on this name would
13163 *not* return this standard exception. The catchpoint condition
13164 may then be set only on user-defined exceptions which have the
13165 same not-fully-qualified name (e.g. my_package.constraint_error).
13166
13167 To avoid this unexcepted behavior, these standard exceptions are
13168 systematically prefixed by "standard". This means that "catch
13169 exception constraint_error" is rewritten into "catch exception
13170 standard.constraint_error".
13171
13172 If an exception named contraint_error is defined in another package of
13173 the inferior program, then the only way to specify this exception as a
13174 breakpoint condition is to use its fully-qualified named:
13175 e.g. my_package.constraint_error. */
13176
13177 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13178 {
13179 if (strcmp (standard_exc [i], excep_string) == 0)
13180 {
13181 is_standard_exc = true;
13182 break;
13183 }
13184 }
13185
13186 result += " = ";
13187
13188 if (is_standard_exc)
13189 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13190 else
13191 string_appendf (result, "long_integer (&%s)", excep_string);
13192
13193 return result;
13194 }
13195
13196 /* Return the symtab_and_line that should be used to insert an exception
13197 catchpoint of the TYPE kind.
13198
13199 ADDR_STRING returns the name of the function where the real
13200 breakpoint that implements the catchpoints is set, depending on the
13201 type of catchpoint we need to create. */
13202
13203 static struct symtab_and_line
13204 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13205 const char **addr_string, const struct breakpoint_ops **ops)
13206 {
13207 const char *sym_name;
13208 struct symbol *sym;
13209
13210 /* First, find out which exception support info to use. */
13211 ada_exception_support_info_sniffer ();
13212
13213 /* Then lookup the function on which we will break in order to catch
13214 the Ada exceptions requested by the user. */
13215 sym_name = ada_exception_sym_name (ex);
13216 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13217
13218 /* We can assume that SYM is not NULL at this stage. If the symbol
13219 did not exist, ada_exception_support_info_sniffer would have
13220 raised an exception.
13221
13222 Also, ada_exception_support_info_sniffer should have already
13223 verified that SYM is a function symbol. */
13224 gdb_assert (sym != NULL);
13225 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13226
13227 /* Set ADDR_STRING. */
13228 *addr_string = xstrdup (sym_name);
13229
13230 /* Set OPS. */
13231 *ops = ada_exception_breakpoint_ops (ex);
13232
13233 return find_function_start_sal (sym, 1);
13234 }
13235
13236 /* Create an Ada exception catchpoint.
13237
13238 EX_KIND is the kind of exception catchpoint to be created.
13239
13240 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13241 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13242 of the exception to which this catchpoint applies.
13243
13244 COND_STRING, if not empty, is the catchpoint condition.
13245
13246 TEMPFLAG, if nonzero, means that the underlying breakpoint
13247 should be temporary.
13248
13249 FROM_TTY is the usual argument passed to all commands implementations. */
13250
13251 void
13252 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13253 enum ada_exception_catchpoint_kind ex_kind,
13254 const std::string &excep_string,
13255 const std::string &cond_string,
13256 int tempflag,
13257 int disabled,
13258 int from_tty)
13259 {
13260 const char *addr_string = NULL;
13261 const struct breakpoint_ops *ops = NULL;
13262 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13263
13264 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13265 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13266 ops, tempflag, disabled, from_tty);
13267 c->excep_string = excep_string;
13268 create_excep_cond_exprs (c.get (), ex_kind);
13269 if (!cond_string.empty ())
13270 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13271 install_breakpoint (0, std::move (c), 1);
13272 }
13273
13274 /* Implement the "catch exception" command. */
13275
13276 static void
13277 catch_ada_exception_command (const char *arg_entry, int from_tty,
13278 struct cmd_list_element *command)
13279 {
13280 const char *arg = arg_entry;
13281 struct gdbarch *gdbarch = get_current_arch ();
13282 int tempflag;
13283 enum ada_exception_catchpoint_kind ex_kind;
13284 std::string excep_string;
13285 std::string cond_string;
13286
13287 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13288
13289 if (!arg)
13290 arg = "";
13291 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13292 &cond_string);
13293 create_ada_exception_catchpoint (gdbarch, ex_kind,
13294 excep_string, cond_string,
13295 tempflag, 1 /* enabled */,
13296 from_tty);
13297 }
13298
13299 /* Implement the "catch handlers" command. */
13300
13301 static void
13302 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13303 struct cmd_list_element *command)
13304 {
13305 const char *arg = arg_entry;
13306 struct gdbarch *gdbarch = get_current_arch ();
13307 int tempflag;
13308 enum ada_exception_catchpoint_kind ex_kind;
13309 std::string excep_string;
13310 std::string cond_string;
13311
13312 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13313
13314 if (!arg)
13315 arg = "";
13316 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13317 &cond_string);
13318 create_ada_exception_catchpoint (gdbarch, ex_kind,
13319 excep_string, cond_string,
13320 tempflag, 1 /* enabled */,
13321 from_tty);
13322 }
13323
13324 /* Split the arguments specified in a "catch assert" command.
13325
13326 ARGS contains the command's arguments (or the empty string if
13327 no arguments were passed).
13328
13329 If ARGS contains a condition, set COND_STRING to that condition
13330 (the memory needs to be deallocated after use). */
13331
13332 static void
13333 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13334 {
13335 args = skip_spaces (args);
13336
13337 /* Check whether a condition was provided. */
13338 if (startswith (args, "if")
13339 && (isspace (args[2]) || args[2] == '\0'))
13340 {
13341 args += 2;
13342 args = skip_spaces (args);
13343 if (args[0] == '\0')
13344 error (_("condition missing after `if' keyword"));
13345 cond_string.assign (args);
13346 }
13347
13348 /* Otherwise, there should be no other argument at the end of
13349 the command. */
13350 else if (args[0] != '\0')
13351 error (_("Junk at end of arguments."));
13352 }
13353
13354 /* Implement the "catch assert" command. */
13355
13356 static void
13357 catch_assert_command (const char *arg_entry, int from_tty,
13358 struct cmd_list_element *command)
13359 {
13360 const char *arg = arg_entry;
13361 struct gdbarch *gdbarch = get_current_arch ();
13362 int tempflag;
13363 std::string cond_string;
13364
13365 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13366
13367 if (!arg)
13368 arg = "";
13369 catch_ada_assert_command_split (arg, cond_string);
13370 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13371 "", cond_string,
13372 tempflag, 1 /* enabled */,
13373 from_tty);
13374 }
13375
13376 /* Return non-zero if the symbol SYM is an Ada exception object. */
13377
13378 static int
13379 ada_is_exception_sym (struct symbol *sym)
13380 {
13381 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13382
13383 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13384 && SYMBOL_CLASS (sym) != LOC_BLOCK
13385 && SYMBOL_CLASS (sym) != LOC_CONST
13386 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13387 && type_name != NULL && strcmp (type_name, "exception") == 0);
13388 }
13389
13390 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13391 Ada exception object. This matches all exceptions except the ones
13392 defined by the Ada language. */
13393
13394 static int
13395 ada_is_non_standard_exception_sym (struct symbol *sym)
13396 {
13397 int i;
13398
13399 if (!ada_is_exception_sym (sym))
13400 return 0;
13401
13402 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13403 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13404 return 0; /* A standard exception. */
13405
13406 /* Numeric_Error is also a standard exception, so exclude it.
13407 See the STANDARD_EXC description for more details as to why
13408 this exception is not listed in that array. */
13409 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13410 return 0;
13411
13412 return 1;
13413 }
13414
13415 /* A helper function for std::sort, comparing two struct ada_exc_info
13416 objects.
13417
13418 The comparison is determined first by exception name, and then
13419 by exception address. */
13420
13421 bool
13422 ada_exc_info::operator< (const ada_exc_info &other) const
13423 {
13424 int result;
13425
13426 result = strcmp (name, other.name);
13427 if (result < 0)
13428 return true;
13429 if (result == 0 && addr < other.addr)
13430 return true;
13431 return false;
13432 }
13433
13434 bool
13435 ada_exc_info::operator== (const ada_exc_info &other) const
13436 {
13437 return addr == other.addr && strcmp (name, other.name) == 0;
13438 }
13439
13440 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13441 routine, but keeping the first SKIP elements untouched.
13442
13443 All duplicates are also removed. */
13444
13445 static void
13446 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13447 int skip)
13448 {
13449 std::sort (exceptions->begin () + skip, exceptions->end ());
13450 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13451 exceptions->end ());
13452 }
13453
13454 /* Add all exceptions defined by the Ada standard whose name match
13455 a regular expression.
13456
13457 If PREG is not NULL, then this regexp_t object is used to
13458 perform the symbol name matching. Otherwise, no name-based
13459 filtering is performed.
13460
13461 EXCEPTIONS is a vector of exceptions to which matching exceptions
13462 gets pushed. */
13463
13464 static void
13465 ada_add_standard_exceptions (compiled_regex *preg,
13466 std::vector<ada_exc_info> *exceptions)
13467 {
13468 int i;
13469
13470 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13471 {
13472 if (preg == NULL
13473 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13474 {
13475 struct bound_minimal_symbol msymbol
13476 = ada_lookup_simple_minsym (standard_exc[i]);
13477
13478 if (msymbol.minsym != NULL)
13479 {
13480 struct ada_exc_info info
13481 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13482
13483 exceptions->push_back (info);
13484 }
13485 }
13486 }
13487 }
13488
13489 /* Add all Ada exceptions defined locally and accessible from the given
13490 FRAME.
13491
13492 If PREG is not NULL, then this regexp_t object is used to
13493 perform the symbol name matching. Otherwise, no name-based
13494 filtering is performed.
13495
13496 EXCEPTIONS is a vector of exceptions to which matching exceptions
13497 gets pushed. */
13498
13499 static void
13500 ada_add_exceptions_from_frame (compiled_regex *preg,
13501 struct frame_info *frame,
13502 std::vector<ada_exc_info> *exceptions)
13503 {
13504 const struct block *block = get_frame_block (frame, 0);
13505
13506 while (block != 0)
13507 {
13508 struct block_iterator iter;
13509 struct symbol *sym;
13510
13511 ALL_BLOCK_SYMBOLS (block, iter, sym)
13512 {
13513 switch (SYMBOL_CLASS (sym))
13514 {
13515 case LOC_TYPEDEF:
13516 case LOC_BLOCK:
13517 case LOC_CONST:
13518 break;
13519 default:
13520 if (ada_is_exception_sym (sym))
13521 {
13522 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13523 SYMBOL_VALUE_ADDRESS (sym)};
13524
13525 exceptions->push_back (info);
13526 }
13527 }
13528 }
13529 if (BLOCK_FUNCTION (block) != NULL)
13530 break;
13531 block = BLOCK_SUPERBLOCK (block);
13532 }
13533 }
13534
13535 /* Return true if NAME matches PREG or if PREG is NULL. */
13536
13537 static bool
13538 name_matches_regex (const char *name, compiled_regex *preg)
13539 {
13540 return (preg == NULL
13541 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13542 }
13543
13544 /* Add all exceptions defined globally whose name name match
13545 a regular expression, excluding standard exceptions.
13546
13547 The reason we exclude standard exceptions is that they need
13548 to be handled separately: Standard exceptions are defined inside
13549 a runtime unit which is normally not compiled with debugging info,
13550 and thus usually do not show up in our symbol search. However,
13551 if the unit was in fact built with debugging info, we need to
13552 exclude them because they would duplicate the entry we found
13553 during the special loop that specifically searches for those
13554 standard exceptions.
13555
13556 If PREG is not NULL, then this regexp_t object is used to
13557 perform the symbol name matching. Otherwise, no name-based
13558 filtering is performed.
13559
13560 EXCEPTIONS is a vector of exceptions to which matching exceptions
13561 gets pushed. */
13562
13563 static void
13564 ada_add_global_exceptions (compiled_regex *preg,
13565 std::vector<ada_exc_info> *exceptions)
13566 {
13567 struct objfile *objfile;
13568 struct compunit_symtab *s;
13569
13570 /* In Ada, the symbol "search name" is a linkage name, whereas the
13571 regular expression used to do the matching refers to the natural
13572 name. So match against the decoded name. */
13573 expand_symtabs_matching (NULL,
13574 lookup_name_info::match_any (),
13575 [&] (const char *search_name)
13576 {
13577 const char *decoded = ada_decode (search_name);
13578 return name_matches_regex (decoded, preg);
13579 },
13580 NULL,
13581 VARIABLES_DOMAIN);
13582
13583 ALL_COMPUNITS (objfile, s)
13584 {
13585 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13586 int i;
13587
13588 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13589 {
13590 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13591 struct block_iterator iter;
13592 struct symbol *sym;
13593
13594 ALL_BLOCK_SYMBOLS (b, iter, sym)
13595 if (ada_is_non_standard_exception_sym (sym)
13596 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13597 {
13598 struct ada_exc_info info
13599 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13600
13601 exceptions->push_back (info);
13602 }
13603 }
13604 }
13605 }
13606
13607 /* Implements ada_exceptions_list with the regular expression passed
13608 as a regex_t, rather than a string.
13609
13610 If not NULL, PREG is used to filter out exceptions whose names
13611 do not match. Otherwise, all exceptions are listed. */
13612
13613 static std::vector<ada_exc_info>
13614 ada_exceptions_list_1 (compiled_regex *preg)
13615 {
13616 std::vector<ada_exc_info> result;
13617 int prev_len;
13618
13619 /* First, list the known standard exceptions. These exceptions
13620 need to be handled separately, as they are usually defined in
13621 runtime units that have been compiled without debugging info. */
13622
13623 ada_add_standard_exceptions (preg, &result);
13624
13625 /* Next, find all exceptions whose scope is local and accessible
13626 from the currently selected frame. */
13627
13628 if (has_stack_frames ())
13629 {
13630 prev_len = result.size ();
13631 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13632 &result);
13633 if (result.size () > prev_len)
13634 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13635 }
13636
13637 /* Add all exceptions whose scope is global. */
13638
13639 prev_len = result.size ();
13640 ada_add_global_exceptions (preg, &result);
13641 if (result.size () > prev_len)
13642 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13643
13644 return result;
13645 }
13646
13647 /* Return a vector of ada_exc_info.
13648
13649 If REGEXP is NULL, all exceptions are included in the result.
13650 Otherwise, it should contain a valid regular expression,
13651 and only the exceptions whose names match that regular expression
13652 are included in the result.
13653
13654 The exceptions are sorted in the following order:
13655 - Standard exceptions (defined by the Ada language), in
13656 alphabetical order;
13657 - Exceptions only visible from the current frame, in
13658 alphabetical order;
13659 - Exceptions whose scope is global, in alphabetical order. */
13660
13661 std::vector<ada_exc_info>
13662 ada_exceptions_list (const char *regexp)
13663 {
13664 if (regexp == NULL)
13665 return ada_exceptions_list_1 (NULL);
13666
13667 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13668 return ada_exceptions_list_1 (&reg);
13669 }
13670
13671 /* Implement the "info exceptions" command. */
13672
13673 static void
13674 info_exceptions_command (const char *regexp, int from_tty)
13675 {
13676 struct gdbarch *gdbarch = get_current_arch ();
13677
13678 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13679
13680 if (regexp != NULL)
13681 printf_filtered
13682 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13683 else
13684 printf_filtered (_("All defined Ada exceptions:\n"));
13685
13686 for (const ada_exc_info &info : exceptions)
13687 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13688 }
13689
13690 /* Operators */
13691 /* Information about operators given special treatment in functions
13692 below. */
13693 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13694
13695 #define ADA_OPERATORS \
13696 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13697 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13698 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13699 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13700 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13704 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13705 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13706 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13707 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13708 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13709 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13710 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13711 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13712 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13713 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13714 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13715
13716 static void
13717 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13718 int *argsp)
13719 {
13720 switch (exp->elts[pc - 1].opcode)
13721 {
13722 default:
13723 operator_length_standard (exp, pc, oplenp, argsp);
13724 break;
13725
13726 #define OP_DEFN(op, len, args, binop) \
13727 case op: *oplenp = len; *argsp = args; break;
13728 ADA_OPERATORS;
13729 #undef OP_DEFN
13730
13731 case OP_AGGREGATE:
13732 *oplenp = 3;
13733 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13734 break;
13735
13736 case OP_CHOICES:
13737 *oplenp = 3;
13738 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13739 break;
13740 }
13741 }
13742
13743 /* Implementation of the exp_descriptor method operator_check. */
13744
13745 static int
13746 ada_operator_check (struct expression *exp, int pos,
13747 int (*objfile_func) (struct objfile *objfile, void *data),
13748 void *data)
13749 {
13750 const union exp_element *const elts = exp->elts;
13751 struct type *type = NULL;
13752
13753 switch (elts[pos].opcode)
13754 {
13755 case UNOP_IN_RANGE:
13756 case UNOP_QUAL:
13757 type = elts[pos + 1].type;
13758 break;
13759
13760 default:
13761 return operator_check_standard (exp, pos, objfile_func, data);
13762 }
13763
13764 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13765
13766 if (type && TYPE_OBJFILE (type)
13767 && (*objfile_func) (TYPE_OBJFILE (type), data))
13768 return 1;
13769
13770 return 0;
13771 }
13772
13773 static const char *
13774 ada_op_name (enum exp_opcode opcode)
13775 {
13776 switch (opcode)
13777 {
13778 default:
13779 return op_name_standard (opcode);
13780
13781 #define OP_DEFN(op, len, args, binop) case op: return #op;
13782 ADA_OPERATORS;
13783 #undef OP_DEFN
13784
13785 case OP_AGGREGATE:
13786 return "OP_AGGREGATE";
13787 case OP_CHOICES:
13788 return "OP_CHOICES";
13789 case OP_NAME:
13790 return "OP_NAME";
13791 }
13792 }
13793
13794 /* As for operator_length, but assumes PC is pointing at the first
13795 element of the operator, and gives meaningful results only for the
13796 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13797
13798 static void
13799 ada_forward_operator_length (struct expression *exp, int pc,
13800 int *oplenp, int *argsp)
13801 {
13802 switch (exp->elts[pc].opcode)
13803 {
13804 default:
13805 *oplenp = *argsp = 0;
13806 break;
13807
13808 #define OP_DEFN(op, len, args, binop) \
13809 case op: *oplenp = len; *argsp = args; break;
13810 ADA_OPERATORS;
13811 #undef OP_DEFN
13812
13813 case OP_AGGREGATE:
13814 *oplenp = 3;
13815 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13816 break;
13817
13818 case OP_CHOICES:
13819 *oplenp = 3;
13820 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13821 break;
13822
13823 case OP_STRING:
13824 case OP_NAME:
13825 {
13826 int len = longest_to_int (exp->elts[pc + 1].longconst);
13827
13828 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13829 *argsp = 0;
13830 break;
13831 }
13832 }
13833 }
13834
13835 static int
13836 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13837 {
13838 enum exp_opcode op = exp->elts[elt].opcode;
13839 int oplen, nargs;
13840 int pc = elt;
13841 int i;
13842
13843 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13844
13845 switch (op)
13846 {
13847 /* Ada attributes ('Foo). */
13848 case OP_ATR_FIRST:
13849 case OP_ATR_LAST:
13850 case OP_ATR_LENGTH:
13851 case OP_ATR_IMAGE:
13852 case OP_ATR_MAX:
13853 case OP_ATR_MIN:
13854 case OP_ATR_MODULUS:
13855 case OP_ATR_POS:
13856 case OP_ATR_SIZE:
13857 case OP_ATR_TAG:
13858 case OP_ATR_VAL:
13859 break;
13860
13861 case UNOP_IN_RANGE:
13862 case UNOP_QUAL:
13863 /* XXX: gdb_sprint_host_address, type_sprint */
13864 fprintf_filtered (stream, _("Type @"));
13865 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13866 fprintf_filtered (stream, " (");
13867 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13868 fprintf_filtered (stream, ")");
13869 break;
13870 case BINOP_IN_BOUNDS:
13871 fprintf_filtered (stream, " (%d)",
13872 longest_to_int (exp->elts[pc + 2].longconst));
13873 break;
13874 case TERNOP_IN_RANGE:
13875 break;
13876
13877 case OP_AGGREGATE:
13878 case OP_OTHERS:
13879 case OP_DISCRETE_RANGE:
13880 case OP_POSITIONAL:
13881 case OP_CHOICES:
13882 break;
13883
13884 case OP_NAME:
13885 case OP_STRING:
13886 {
13887 char *name = &exp->elts[elt + 2].string;
13888 int len = longest_to_int (exp->elts[elt + 1].longconst);
13889
13890 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13891 break;
13892 }
13893
13894 default:
13895 return dump_subexp_body_standard (exp, stream, elt);
13896 }
13897
13898 elt += oplen;
13899 for (i = 0; i < nargs; i += 1)
13900 elt = dump_subexp (exp, stream, elt);
13901
13902 return elt;
13903 }
13904
13905 /* The Ada extension of print_subexp (q.v.). */
13906
13907 static void
13908 ada_print_subexp (struct expression *exp, int *pos,
13909 struct ui_file *stream, enum precedence prec)
13910 {
13911 int oplen, nargs, i;
13912 int pc = *pos;
13913 enum exp_opcode op = exp->elts[pc].opcode;
13914
13915 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13916
13917 *pos += oplen;
13918 switch (op)
13919 {
13920 default:
13921 *pos -= oplen;
13922 print_subexp_standard (exp, pos, stream, prec);
13923 return;
13924
13925 case OP_VAR_VALUE:
13926 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13927 return;
13928
13929 case BINOP_IN_BOUNDS:
13930 /* XXX: sprint_subexp */
13931 print_subexp (exp, pos, stream, PREC_SUFFIX);
13932 fputs_filtered (" in ", stream);
13933 print_subexp (exp, pos, stream, PREC_SUFFIX);
13934 fputs_filtered ("'range", stream);
13935 if (exp->elts[pc + 1].longconst > 1)
13936 fprintf_filtered (stream, "(%ld)",
13937 (long) exp->elts[pc + 1].longconst);
13938 return;
13939
13940 case TERNOP_IN_RANGE:
13941 if (prec >= PREC_EQUAL)
13942 fputs_filtered ("(", stream);
13943 /* XXX: sprint_subexp */
13944 print_subexp (exp, pos, stream, PREC_SUFFIX);
13945 fputs_filtered (" in ", stream);
13946 print_subexp (exp, pos, stream, PREC_EQUAL);
13947 fputs_filtered (" .. ", stream);
13948 print_subexp (exp, pos, stream, PREC_EQUAL);
13949 if (prec >= PREC_EQUAL)
13950 fputs_filtered (")", stream);
13951 return;
13952
13953 case OP_ATR_FIRST:
13954 case OP_ATR_LAST:
13955 case OP_ATR_LENGTH:
13956 case OP_ATR_IMAGE:
13957 case OP_ATR_MAX:
13958 case OP_ATR_MIN:
13959 case OP_ATR_MODULUS:
13960 case OP_ATR_POS:
13961 case OP_ATR_SIZE:
13962 case OP_ATR_TAG:
13963 case OP_ATR_VAL:
13964 if (exp->elts[*pos].opcode == OP_TYPE)
13965 {
13966 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13967 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13968 &type_print_raw_options);
13969 *pos += 3;
13970 }
13971 else
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13974 if (nargs > 1)
13975 {
13976 int tem;
13977
13978 for (tem = 1; tem < nargs; tem += 1)
13979 {
13980 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13981 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13982 }
13983 fputs_filtered (")", stream);
13984 }
13985 return;
13986
13987 case UNOP_QUAL:
13988 type_print (exp->elts[pc + 1].type, "", stream, 0);
13989 fputs_filtered ("'(", stream);
13990 print_subexp (exp, pos, stream, PREC_PREFIX);
13991 fputs_filtered (")", stream);
13992 return;
13993
13994 case UNOP_IN_RANGE:
13995 /* XXX: sprint_subexp */
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 fputs_filtered (" in ", stream);
13998 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13999 &type_print_raw_options);
14000 return;
14001
14002 case OP_DISCRETE_RANGE:
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 fputs_filtered ("..", stream);
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 return;
14007
14008 case OP_OTHERS:
14009 fputs_filtered ("others => ", stream);
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 return;
14012
14013 case OP_CHOICES:
14014 for (i = 0; i < nargs-1; i += 1)
14015 {
14016 if (i > 0)
14017 fputs_filtered ("|", stream);
14018 print_subexp (exp, pos, stream, PREC_SUFFIX);
14019 }
14020 fputs_filtered (" => ", stream);
14021 print_subexp (exp, pos, stream, PREC_SUFFIX);
14022 return;
14023
14024 case OP_POSITIONAL:
14025 print_subexp (exp, pos, stream, PREC_SUFFIX);
14026 return;
14027
14028 case OP_AGGREGATE:
14029 fputs_filtered ("(", stream);
14030 for (i = 0; i < nargs; i += 1)
14031 {
14032 if (i > 0)
14033 fputs_filtered (", ", stream);
14034 print_subexp (exp, pos, stream, PREC_SUFFIX);
14035 }
14036 fputs_filtered (")", stream);
14037 return;
14038 }
14039 }
14040
14041 /* Table mapping opcodes into strings for printing operators
14042 and precedences of the operators. */
14043
14044 static const struct op_print ada_op_print_tab[] = {
14045 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14046 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14047 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14048 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14049 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14050 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14051 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14052 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14053 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14054 {">=", BINOP_GEQ, PREC_ORDER, 0},
14055 {">", BINOP_GTR, PREC_ORDER, 0},
14056 {"<", BINOP_LESS, PREC_ORDER, 0},
14057 {">>", BINOP_RSH, PREC_SHIFT, 0},
14058 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14059 {"+", BINOP_ADD, PREC_ADD, 0},
14060 {"-", BINOP_SUB, PREC_ADD, 0},
14061 {"&", BINOP_CONCAT, PREC_ADD, 0},
14062 {"*", BINOP_MUL, PREC_MUL, 0},
14063 {"/", BINOP_DIV, PREC_MUL, 0},
14064 {"rem", BINOP_REM, PREC_MUL, 0},
14065 {"mod", BINOP_MOD, PREC_MUL, 0},
14066 {"**", BINOP_EXP, PREC_REPEAT, 0},
14067 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14068 {"-", UNOP_NEG, PREC_PREFIX, 0},
14069 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14070 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14071 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14072 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14073 {".all", UNOP_IND, PREC_SUFFIX, 1},
14074 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14075 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14076 {NULL, OP_NULL, PREC_SUFFIX, 0}
14077 };
14078 \f
14079 enum ada_primitive_types {
14080 ada_primitive_type_int,
14081 ada_primitive_type_long,
14082 ada_primitive_type_short,
14083 ada_primitive_type_char,
14084 ada_primitive_type_float,
14085 ada_primitive_type_double,
14086 ada_primitive_type_void,
14087 ada_primitive_type_long_long,
14088 ada_primitive_type_long_double,
14089 ada_primitive_type_natural,
14090 ada_primitive_type_positive,
14091 ada_primitive_type_system_address,
14092 ada_primitive_type_storage_offset,
14093 nr_ada_primitive_types
14094 };
14095
14096 static void
14097 ada_language_arch_info (struct gdbarch *gdbarch,
14098 struct language_arch_info *lai)
14099 {
14100 const struct builtin_type *builtin = builtin_type (gdbarch);
14101
14102 lai->primitive_type_vector
14103 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14104 struct type *);
14105
14106 lai->primitive_type_vector [ada_primitive_type_int]
14107 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 0, "integer");
14109 lai->primitive_type_vector [ada_primitive_type_long]
14110 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14111 0, "long_integer");
14112 lai->primitive_type_vector [ada_primitive_type_short]
14113 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14114 0, "short_integer");
14115 lai->string_char_type
14116 = lai->primitive_type_vector [ada_primitive_type_char]
14117 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14118 lai->primitive_type_vector [ada_primitive_type_float]
14119 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14120 "float", gdbarch_float_format (gdbarch));
14121 lai->primitive_type_vector [ada_primitive_type_double]
14122 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14123 "long_float", gdbarch_double_format (gdbarch));
14124 lai->primitive_type_vector [ada_primitive_type_long_long]
14125 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14126 0, "long_long_integer");
14127 lai->primitive_type_vector [ada_primitive_type_long_double]
14128 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14129 "long_long_float", gdbarch_long_double_format (gdbarch));
14130 lai->primitive_type_vector [ada_primitive_type_natural]
14131 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14132 0, "natural");
14133 lai->primitive_type_vector [ada_primitive_type_positive]
14134 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14135 0, "positive");
14136 lai->primitive_type_vector [ada_primitive_type_void]
14137 = builtin->builtin_void;
14138
14139 lai->primitive_type_vector [ada_primitive_type_system_address]
14140 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14141 "void"));
14142 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14143 = "system__address";
14144
14145 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14146 type. This is a signed integral type whose size is the same as
14147 the size of addresses. */
14148 {
14149 unsigned int addr_length = TYPE_LENGTH
14150 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14151
14152 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14153 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14154 "storage_offset");
14155 }
14156
14157 lai->bool_type_symbol = NULL;
14158 lai->bool_type_default = builtin->builtin_bool;
14159 }
14160 \f
14161 /* Language vector */
14162
14163 /* Not really used, but needed in the ada_language_defn. */
14164
14165 static void
14166 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14167 {
14168 ada_emit_char (c, type, stream, quoter, 1);
14169 }
14170
14171 static int
14172 parse (struct parser_state *ps)
14173 {
14174 warnings_issued = 0;
14175 return ada_parse (ps);
14176 }
14177
14178 static const struct exp_descriptor ada_exp_descriptor = {
14179 ada_print_subexp,
14180 ada_operator_length,
14181 ada_operator_check,
14182 ada_op_name,
14183 ada_dump_subexp_body,
14184 ada_evaluate_subexp
14185 };
14186
14187 /* symbol_name_matcher_ftype adapter for wild_match. */
14188
14189 static bool
14190 do_wild_match (const char *symbol_search_name,
14191 const lookup_name_info &lookup_name,
14192 completion_match_result *comp_match_res)
14193 {
14194 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14195 }
14196
14197 /* symbol_name_matcher_ftype adapter for full_match. */
14198
14199 static bool
14200 do_full_match (const char *symbol_search_name,
14201 const lookup_name_info &lookup_name,
14202 completion_match_result *comp_match_res)
14203 {
14204 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14205 }
14206
14207 /* Build the Ada lookup name for LOOKUP_NAME. */
14208
14209 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14210 {
14211 const std::string &user_name = lookup_name.name ();
14212
14213 if (user_name[0] == '<')
14214 {
14215 if (user_name.back () == '>')
14216 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14217 else
14218 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14219 m_encoded_p = true;
14220 m_verbatim_p = true;
14221 m_wild_match_p = false;
14222 m_standard_p = false;
14223 }
14224 else
14225 {
14226 m_verbatim_p = false;
14227
14228 m_encoded_p = user_name.find ("__") != std::string::npos;
14229
14230 if (!m_encoded_p)
14231 {
14232 const char *folded = ada_fold_name (user_name.c_str ());
14233 const char *encoded = ada_encode_1 (folded, false);
14234 if (encoded != NULL)
14235 m_encoded_name = encoded;
14236 else
14237 m_encoded_name = user_name;
14238 }
14239 else
14240 m_encoded_name = user_name;
14241
14242 /* Handle the 'package Standard' special case. See description
14243 of m_standard_p. */
14244 if (startswith (m_encoded_name.c_str (), "standard__"))
14245 {
14246 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14247 m_standard_p = true;
14248 }
14249 else
14250 m_standard_p = false;
14251
14252 /* If the name contains a ".", then the user is entering a fully
14253 qualified entity name, and the match must not be done in wild
14254 mode. Similarly, if the user wants to complete what looks
14255 like an encoded name, the match must not be done in wild
14256 mode. Also, in the standard__ special case always do
14257 non-wild matching. */
14258 m_wild_match_p
14259 = (lookup_name.match_type () != symbol_name_match_type::FULL
14260 && !m_encoded_p
14261 && !m_standard_p
14262 && user_name.find ('.') == std::string::npos);
14263 }
14264 }
14265
14266 /* symbol_name_matcher_ftype method for Ada. This only handles
14267 completion mode. */
14268
14269 static bool
14270 ada_symbol_name_matches (const char *symbol_search_name,
14271 const lookup_name_info &lookup_name,
14272 completion_match_result *comp_match_res)
14273 {
14274 return lookup_name.ada ().matches (symbol_search_name,
14275 lookup_name.match_type (),
14276 comp_match_res);
14277 }
14278
14279 /* A name matcher that matches the symbol name exactly, with
14280 strcmp. */
14281
14282 static bool
14283 literal_symbol_name_matcher (const char *symbol_search_name,
14284 const lookup_name_info &lookup_name,
14285 completion_match_result *comp_match_res)
14286 {
14287 const std::string &name = lookup_name.name ();
14288
14289 int cmp = (lookup_name.completion_mode ()
14290 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14291 : strcmp (symbol_search_name, name.c_str ()));
14292 if (cmp == 0)
14293 {
14294 if (comp_match_res != NULL)
14295 comp_match_res->set_match (symbol_search_name);
14296 return true;
14297 }
14298 else
14299 return false;
14300 }
14301
14302 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14303 Ada. */
14304
14305 static symbol_name_matcher_ftype *
14306 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14307 {
14308 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14309 return literal_symbol_name_matcher;
14310
14311 if (lookup_name.completion_mode ())
14312 return ada_symbol_name_matches;
14313 else
14314 {
14315 if (lookup_name.ada ().wild_match_p ())
14316 return do_wild_match;
14317 else
14318 return do_full_match;
14319 }
14320 }
14321
14322 /* Implement the "la_read_var_value" language_defn method for Ada. */
14323
14324 static struct value *
14325 ada_read_var_value (struct symbol *var, const struct block *var_block,
14326 struct frame_info *frame)
14327 {
14328 const struct block *frame_block = NULL;
14329 struct symbol *renaming_sym = NULL;
14330
14331 /* The only case where default_read_var_value is not sufficient
14332 is when VAR is a renaming... */
14333 if (frame)
14334 frame_block = get_frame_block (frame, NULL);
14335 if (frame_block)
14336 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14337 if (renaming_sym != NULL)
14338 return ada_read_renaming_var_value (renaming_sym, frame_block);
14339
14340 /* This is a typical case where we expect the default_read_var_value
14341 function to work. */
14342 return default_read_var_value (var, var_block, frame);
14343 }
14344
14345 static const char *ada_extensions[] =
14346 {
14347 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14348 };
14349
14350 extern const struct language_defn ada_language_defn = {
14351 "ada", /* Language name */
14352 "Ada",
14353 language_ada,
14354 range_check_off,
14355 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14356 that's not quite what this means. */
14357 array_row_major,
14358 macro_expansion_no,
14359 ada_extensions,
14360 &ada_exp_descriptor,
14361 parse,
14362 resolve,
14363 ada_printchar, /* Print a character constant */
14364 ada_printstr, /* Function to print string constant */
14365 emit_char, /* Function to print single char (not used) */
14366 ada_print_type, /* Print a type using appropriate syntax */
14367 ada_print_typedef, /* Print a typedef using appropriate syntax */
14368 ada_val_print, /* Print a value using appropriate syntax */
14369 ada_value_print, /* Print a top-level value */
14370 ada_read_var_value, /* la_read_var_value */
14371 NULL, /* Language specific skip_trampoline */
14372 NULL, /* name_of_this */
14373 true, /* la_store_sym_names_in_linkage_form_p */
14374 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14375 basic_lookup_transparent_type, /* lookup_transparent_type */
14376 ada_la_decode, /* Language specific symbol demangler */
14377 ada_sniff_from_mangled_name,
14378 NULL, /* Language specific
14379 class_name_from_physname */
14380 ada_op_print_tab, /* expression operators for printing */
14381 0, /* c-style arrays */
14382 1, /* String lower bound */
14383 ada_get_gdb_completer_word_break_characters,
14384 ada_collect_symbol_completion_matches,
14385 ada_language_arch_info,
14386 ada_print_array_index,
14387 default_pass_by_reference,
14388 c_get_string,
14389 c_watch_location_expression,
14390 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14391 ada_iterate_over_symbols,
14392 default_search_name_hash,
14393 &ada_varobj_ops,
14394 NULL,
14395 NULL,
14396 LANG_MAGIC
14397 };
14398
14399 /* Command-list for the "set/show ada" prefix command. */
14400 static struct cmd_list_element *set_ada_list;
14401 static struct cmd_list_element *show_ada_list;
14402
14403 /* Implement the "set ada" prefix command. */
14404
14405 static void
14406 set_ada_command (const char *arg, int from_tty)
14407 {
14408 printf_unfiltered (_(\
14409 "\"set ada\" must be followed by the name of a setting.\n"));
14410 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14411 }
14412
14413 /* Implement the "show ada" prefix command. */
14414
14415 static void
14416 show_ada_command (const char *args, int from_tty)
14417 {
14418 cmd_show_list (show_ada_list, from_tty, "");
14419 }
14420
14421 static void
14422 initialize_ada_catchpoint_ops (void)
14423 {
14424 struct breakpoint_ops *ops;
14425
14426 initialize_breakpoint_ops ();
14427
14428 ops = &catch_exception_breakpoint_ops;
14429 *ops = bkpt_breakpoint_ops;
14430 ops->allocate_location = allocate_location_catch_exception;
14431 ops->re_set = re_set_catch_exception;
14432 ops->check_status = check_status_catch_exception;
14433 ops->print_it = print_it_catch_exception;
14434 ops->print_one = print_one_catch_exception;
14435 ops->print_mention = print_mention_catch_exception;
14436 ops->print_recreate = print_recreate_catch_exception;
14437
14438 ops = &catch_exception_unhandled_breakpoint_ops;
14439 *ops = bkpt_breakpoint_ops;
14440 ops->allocate_location = allocate_location_catch_exception_unhandled;
14441 ops->re_set = re_set_catch_exception_unhandled;
14442 ops->check_status = check_status_catch_exception_unhandled;
14443 ops->print_it = print_it_catch_exception_unhandled;
14444 ops->print_one = print_one_catch_exception_unhandled;
14445 ops->print_mention = print_mention_catch_exception_unhandled;
14446 ops->print_recreate = print_recreate_catch_exception_unhandled;
14447
14448 ops = &catch_assert_breakpoint_ops;
14449 *ops = bkpt_breakpoint_ops;
14450 ops->allocate_location = allocate_location_catch_assert;
14451 ops->re_set = re_set_catch_assert;
14452 ops->check_status = check_status_catch_assert;
14453 ops->print_it = print_it_catch_assert;
14454 ops->print_one = print_one_catch_assert;
14455 ops->print_mention = print_mention_catch_assert;
14456 ops->print_recreate = print_recreate_catch_assert;
14457
14458 ops = &catch_handlers_breakpoint_ops;
14459 *ops = bkpt_breakpoint_ops;
14460 ops->allocate_location = allocate_location_catch_handlers;
14461 ops->re_set = re_set_catch_handlers;
14462 ops->check_status = check_status_catch_handlers;
14463 ops->print_it = print_it_catch_handlers;
14464 ops->print_one = print_one_catch_handlers;
14465 ops->print_mention = print_mention_catch_handlers;
14466 ops->print_recreate = print_recreate_catch_handlers;
14467 }
14468
14469 /* This module's 'new_objfile' observer. */
14470
14471 static void
14472 ada_new_objfile_observer (struct objfile *objfile)
14473 {
14474 ada_clear_symbol_cache ();
14475 }
14476
14477 /* This module's 'free_objfile' observer. */
14478
14479 static void
14480 ada_free_objfile_observer (struct objfile *objfile)
14481 {
14482 ada_clear_symbol_cache ();
14483 }
14484
14485 void
14486 _initialize_ada_language (void)
14487 {
14488 initialize_ada_catchpoint_ops ();
14489
14490 add_prefix_cmd ("ada", no_class, set_ada_command,
14491 _("Prefix command for changing Ada-specfic settings"),
14492 &set_ada_list, "set ada ", 0, &setlist);
14493
14494 add_prefix_cmd ("ada", no_class, show_ada_command,
14495 _("Generic command for showing Ada-specific settings."),
14496 &show_ada_list, "show ada ", 0, &showlist);
14497
14498 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14499 &trust_pad_over_xvs, _("\
14500 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14501 Show whether an optimization trusting PAD types over XVS types is activated"),
14502 _("\
14503 This is related to the encoding used by the GNAT compiler. The debugger\n\
14504 should normally trust the contents of PAD types, but certain older versions\n\
14505 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14506 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14507 work around this bug. It is always safe to turn this option \"off\", but\n\
14508 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14509 this option to \"off\" unless necessary."),
14510 NULL, NULL, &set_ada_list, &show_ada_list);
14511
14512 add_setshow_boolean_cmd ("print-signatures", class_vars,
14513 &print_signatures, _("\
14514 Enable or disable the output of formal and return types for functions in the \
14515 overloads selection menu"), _("\
14516 Show whether the output of formal and return types for functions in the \
14517 overloads selection menu is activated"),
14518 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14519
14520 add_catch_command ("exception", _("\
14521 Catch Ada exceptions, when raised.\n\
14522 With an argument, catch only exceptions with the given name."),
14523 catch_ada_exception_command,
14524 NULL,
14525 CATCH_PERMANENT,
14526 CATCH_TEMPORARY);
14527
14528 add_catch_command ("handlers", _("\
14529 Catch Ada exceptions, when handled.\n\
14530 With an argument, catch only exceptions with the given name."),
14531 catch_ada_handlers_command,
14532 NULL,
14533 CATCH_PERMANENT,
14534 CATCH_TEMPORARY);
14535 add_catch_command ("assert", _("\
14536 Catch failed Ada assertions, when raised.\n\
14537 With an argument, catch only exceptions with the given name."),
14538 catch_assert_command,
14539 NULL,
14540 CATCH_PERMANENT,
14541 CATCH_TEMPORARY);
14542
14543 varsize_limit = 65536;
14544 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14545 &varsize_limit, _("\
14546 Set the maximum number of bytes allowed in a variable-size object."), _("\
14547 Show the maximum number of bytes allowed in a variable-size object."), _("\
14548 Attempts to access an object whose size is not a compile-time constant\n\
14549 and exceeds this limit will cause an error."),
14550 NULL, NULL, &setlist, &showlist);
14551
14552 add_info ("exceptions", info_exceptions_command,
14553 _("\
14554 List all Ada exception names.\n\
14555 If a regular expression is passed as an argument, only those matching\n\
14556 the regular expression are listed."));
14557
14558 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14559 _("Set Ada maintenance-related variables."),
14560 &maint_set_ada_cmdlist, "maintenance set ada ",
14561 0/*allow-unknown*/, &maintenance_set_cmdlist);
14562
14563 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14564 _("Show Ada maintenance-related variables"),
14565 &maint_show_ada_cmdlist, "maintenance show ada ",
14566 0/*allow-unknown*/, &maintenance_show_cmdlist);
14567
14568 add_setshow_boolean_cmd
14569 ("ignore-descriptive-types", class_maintenance,
14570 &ada_ignore_descriptive_types_p,
14571 _("Set whether descriptive types generated by GNAT should be ignored."),
14572 _("Show whether descriptive types generated by GNAT should be ignored."),
14573 _("\
14574 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14575 DWARF attribute."),
14576 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14577
14578 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14579 NULL, xcalloc, xfree);
14580
14581 /* The ada-lang observers. */
14582 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14583 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14584 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14585
14586 /* Setup various context-specific data. */
14587 ada_inferior_data
14588 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14589 ada_pspace_data_handle
14590 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14591 }
This page took 0.336156 seconds and 4 git commands to generate.