improved error message when getting an exception printing a variable
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (const char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (const char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401 Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410 }
1411
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1418
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429 const char *
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1431 {
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463 }
1464
1465 static char *
1466 ada_la_decode (const char *encoded, int options)
1467 {
1468 return xstrdup (ada_decode (encoded));
1469 }
1470
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1472
1473 static int
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1475 {
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 \f
1511
1512 /* Arrays */
1513
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537 void
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1539 {
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567 }
1568
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574 };
1575
1576 /* Maximum number of array dimensions we are prepared to handle. */
1577
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581 /* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587 static struct type *
1588 desc_base_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602 }
1603
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1605
1606 static int
1607 is_thin_pntr (struct type *type)
1608 {
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612 }
1613
1614 /* The descriptor type for thin pointer type TYPE. */
1615
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1618 {
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634 }
1635
1636 /* A pointer to the array data for thin-pointer value VAL. */
1637
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1640 {
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650 }
1651
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1653
1654 static int
1655 is_thick_pntr (struct type *type)
1656 {
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660 }
1661
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1667 {
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695 static struct value *
1696 desc_bounds (struct value *arr)
1697 {
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768 }
1769
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1777 {
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798 static struct value *
1799 desc_data (struct value *arr)
1800 {
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810 }
1811
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitpos (struct type *type)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820 }
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitsize (struct type *type)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834 }
1835
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1842 {
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845 }
1846
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851 static int
1852 desc_bound_bitpos (struct type *type, int i, int which)
1853 {
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitsize (struct type *type, int i, int which)
1863 {
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870 }
1871
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1877 {
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884 }
1885
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889 static int
1890 desc_arity (struct type *type)
1891 {
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897 }
1898
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903 static int
1904 ada_is_direct_array_type (struct type *type)
1905 {
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911 }
1912
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916 static int
1917 ada_is_array_type (struct type *type)
1918 {
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924 }
1925
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928 int
1929 ada_is_simple_array_type (struct type *type)
1930 {
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938 }
1939
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942 int
1943 ada_is_array_descriptor_type (struct type *type)
1944 {
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953 }
1954
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960 int
1961 ada_is_bogus_array_descriptor (struct type *type)
1962 {
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969 }
1970
1971
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979 struct type *
1980 ada_type_of_array (struct value *arr, int bounds)
1981 {
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051 }
2052
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058 struct value *
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2060 {
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073 }
2074
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079 struct value *
2080 ada_coerce_to_simple_array (struct value *arr)
2081 {
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095 }
2096
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101 struct type *
2102 ada_coerce_to_simple_array_type (struct type *type)
2103 {
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111 }
2112
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115 static int
2116 ada_is_packed_array_type (struct type *type)
2117 {
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125 }
2126
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130 int
2131 ada_is_constrained_packed_array_type (struct type *type)
2132 {
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135 }
2136
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140 static int
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150 static long
2151 decode_packed_array_bitsize (struct type *type)
2152 {
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181 }
2182
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2202 {
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243 }
2244
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2250 {
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288 }
2289
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2298 {
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345 }
2346
2347
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353 {
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397 }
2398
2399 /* Non-zero iff TYPE includes negative integer values. */
2400
2401 static int
2402 has_negatives (struct type *type)
2403 {
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413 }
2414
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429 static void
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434 {
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541 }
2542
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552 struct value *
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556 {
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663 }
2664
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668 static void
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671 {
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729 }
2730
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2738 {
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789 }
2790
2791
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803 static void
2804 value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806 {
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830 }
2831
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836 struct value *
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838 {
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857 }
2858
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873 {
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899 }
2900
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908 {
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
2926
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2931 }
2932
2933
2934 static struct value *
2935 ada_value_slice (struct value *array, int low, int high)
2936 {
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (struct expression **expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3526 {
3527 struct block_symbol *candidates;
3528 int n_candidates;
3529
3530 n_candidates =
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3534 &candidates);
3535 make_cleanup (xfree, candidates);
3536
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = *expp;
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044 {
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 VALUE_LVAL (val) = lval_memory;
4481 set_value_address (val, addr);
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static symbol_name_match_type
4773 name_match_type_from_name (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
4778 }
4779
4780 /* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783 static struct symbol *
4784 standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786 {
4787 /* Initialize it just to avoid a GCC false warning. */
4788 struct block_symbol sym = {NULL, NULL};
4789
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4795 }
4796
4797
4798 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801 static int
4802 is_nonfunction (struct block_symbol syms[], int n)
4803 {
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4816 struct types. Otherwise, they may not. */
4817
4818 static int
4819 equiv_types (struct type *type0, struct type *type1)
4820 {
4821 if (type0 == type1)
4822 return 1;
4823 if (type0 == NULL || type1 == NULL
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4830 return 1;
4831
4832 return 0;
4833 }
4834
4835 /* True iff SYM0 represents the same entity as SYM1, or one that is
4836 no more defined than that of SYM1. */
4837
4838 static int
4839 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4840 {
4841 if (sym0 == sym1)
4842 return 1;
4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
4847 switch (SYMBOL_CLASS (sym0))
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4857 int len0 = strlen (name0);
4858
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4863 && startswith (name1 + len0, "___XV")));
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4868 default:
4869 return 0;
4870 }
4871 }
4872
4873 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4875
4876 static void
4877 add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
4879 const struct block *block)
4880 {
4881 int i;
4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4883
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4896 return;
4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4898 {
4899 prevDefns[i].symbol = sym;
4900 prevDefns[i].block = block;
4901 return;
4902 }
4903 }
4904
4905 {
4906 struct block_symbol info;
4907
4908 info.symbol = sym;
4909 info.block = block;
4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4911 }
4912 }
4913
4914 /* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4916
4917 static int
4918 num_defns_collected (struct obstack *obstackp)
4919 {
4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4921 }
4922
4923 /* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4925
4926 static struct block_symbol *
4927 defns_collected (struct obstack *obstackp, int finish)
4928 {
4929 if (finish)
4930 return (struct block_symbol *) obstack_finish (obstackp);
4931 else
4932 return (struct block_symbol *) obstack_base (obstackp);
4933 }
4934
4935 /* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4940
4941 struct bound_minimal_symbol
4942 ada_lookup_simple_minsym (const char *name)
4943 {
4944 struct bound_minimal_symbol result;
4945 struct objfile *objfile;
4946 struct minimal_symbol *msymbol;
4947
4948 memset (&result, 0, sizeof (result));
4949
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4955
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
4965 }
4966
4967 return result;
4968 }
4969
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4975
4976 static void
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
4980 {
4981 }
4982
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4985
4986 static int
4987 is_nondebugging_type (struct type *type)
4988 {
4989 const char *name = ada_type_name (type);
4990
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 }
4993
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001 static int
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 {
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035 }
5036
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057 static int
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 {
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5091 return 0;
5092
5093 return 1;
5094 }
5095
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5102
5103 static int
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 {
5106 int i, j;
5107
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 int remove_p = 0;
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5132 remove_p = 1;
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 remove_p = 1;
5154 }
5155 }
5156
5157 if (remove_p)
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
5164 i += 1;
5165 }
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
5182 return nsyms;
5183 }
5184
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5189
5190 static char *
5191 xget_renaming_scope (struct type *renaming_type)
5192 {
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5197
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
5201 int scope_len;
5202 char *scope;
5203
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5206
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
5210
5211 /* Make a copy of scope and return it. */
5212
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5218
5219 return scope;
5220 }
5221
5222 /* Return nonzero if NAME corresponds to a package name. */
5223
5224 static int
5225 is_package_name (const char *name)
5226 {
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5232
5233 char *fun_name;
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 fun_name = xstrprintf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 char *scope;
5260 struct cleanup *old_chain;
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5267
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
5274
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5277
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
5282 if (startswith (function_name, "_ada_"))
5283 function_name += 5;
5284
5285 {
5286 int is_invisible = !startswith (function_name, scope);
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
5291 }
5292
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5298
5299 Rationale:
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5312
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5329
5330 static int
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5333 {
5334 struct symbol *current_function;
5335 const char *current_function_name;
5336 int i;
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5359
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 name_len) == 0
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5384
5385 if (current_block == NULL)
5386 return nsyms;
5387
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 {
5407 int j;
5408
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418 }
5419
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430 static void
5431 ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
5434 {
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
5510
5511 static int
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
5516 {
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562 }
5563
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5566
5567 static int
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5570 {
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
5573 char c1, c2;
5574
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
5589 break;
5590
5591 string1 += 1;
5592 string2 += 1;
5593 }
5594
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
5602 if (is_name_suffix (string1))
5603 return 0;
5604 else
5605 return 1;
5606 }
5607 /* FALLTHROUGH */
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
5618 }
5619 }
5620
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632 static int
5633 compare_names (const char *string1, const char *string2)
5634 {
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647 }
5648
5649 /* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652 static const char *
5653 ada_lookup_name (const lookup_name_info &lookup_name)
5654 {
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656 }
5657
5658 /* Add to OBSTACKP all non-local symbols whose name and domain match
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
5662
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
5667 {
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5671
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5674
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
5677 ALL_OBJFILES (objfile)
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
5684 aux_add_nonlocal_symbols, &data,
5685 symbol_name_match_type::WILD,
5686 NULL);
5687 else
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
5690 aux_add_nonlocal_symbols, &data,
5691 symbol_name_match_type::FULL,
5692 compare_names);
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
5701 data.found_sym = 1;
5702 }
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
5710 ALL_OBJFILES (objfile)
5711 {
5712 data.objfile = objfile;
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
5715 aux_add_nonlocal_symbols,
5716 &data,
5717 symbol_name_match_type::FULL,
5718 compare_names);
5719 }
5720 }
5721 }
5722
5723 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
5726
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
5729 is the one match returned (no other matches in that or
5730 enclosing blocks is returned). If there are any matches in or
5731 surrounding BLOCK, then these alone are returned.
5732
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
5736
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740 static void
5741 ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
5743 const lookup_name_info &lookup_name,
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
5747 {
5748 struct symbol *sym;
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
5762
5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
5764
5765 if (block != NULL)
5766 {
5767 if (full_search)
5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5775 }
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
5778 }
5779
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
5786 {
5787 if (sym != NULL)
5788 add_defn_to_vec (obstackp, sym, block);
5789 return;
5790 }
5791
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
5794
5795 /* Search symbols from all global blocks. */
5796
5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5798
5799 /* Now add symbols from all per-file blocks if we've gotten no hits
5800 (not strictly correct, but perhaps better than an error). */
5801
5802 if (num_defns_collected (obstackp) == 0)
5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5804 }
5805
5806 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
5808 matches.
5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5810 indicating the symbols found and the blocks and symbol tables (if
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823 static int
5824 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829 {
5830 int syms_from_global_search;
5831 int ndefns;
5832 int results_size;
5833 auto_obstack obstack;
5834
5835 ada_add_all_symbols (&obstack, block, lookup_name,
5836 domain, full_search, &syms_from_global_search);
5837
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
5846 if (ndefns == 0 && full_search && syms_from_global_search)
5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5848
5849 if (ndefns == 1 && full_search && syms_from_global_search)
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
5852
5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5854
5855 return ndefns;
5856 }
5857
5858 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5859 in global scopes, returning the number of matches, and setting *RESULTS
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865 int
5866 ada_lookup_symbol_list (const char *name, const struct block *block,
5867 domain_enum domain, struct block_symbol **results)
5868 {
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5873 }
5874
5875 /* Implementation of the la_iterate_over_symbols method. */
5876
5877 static void
5878 ada_iterate_over_symbols
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
5881 gdb::function_view<symbol_found_callback_ftype> callback)
5882 {
5883 int ndefs, i;
5884 struct block_symbol *results;
5885 struct cleanup *old_chain;
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5888 old_chain = make_cleanup (xfree, results);
5889
5890 for (i = 0; i < ndefs; ++i)
5891 {
5892 if (!callback (results[i].symbol))
5893 break;
5894 }
5895
5896 do_cleanups (old_chain);
5897 }
5898
5899 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
5905
5906 void
5907 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5908 domain_enum domain,
5909 struct block_symbol *info)
5910 {
5911 struct block_symbol *candidates;
5912 int n_candidates;
5913 struct cleanup *old_chain;
5914
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5923 gdb_assert (info != NULL);
5924 memset (info, 0, sizeof (struct block_symbol));
5925
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
5928 old_chain = make_cleanup (xfree, candidates);
5929
5930 if (n_candidates == 0)
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
5935
5936 *info = candidates[0];
5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
5938
5939 do_cleanups (old_chain);
5940 }
5941
5942 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5945 choosing the first symbol if there are multiple choices.
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
5948 struct block_symbol
5949 ada_lookup_symbol (const char *name, const struct block *block0,
5950 domain_enum domain, int *is_a_field_of_this)
5951 {
5952 struct block_symbol info;
5953
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5958 block0, domain, &info);
5959 return info;
5960 }
5961
5962 static struct block_symbol
5963 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
5965 const struct block *block,
5966 const domain_enum domain)
5967 {
5968 struct block_symbol sym;
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5971 if (sym.symbol != NULL)
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
5996 return sym;
5997 }
5998
5999 return (struct block_symbol) {NULL, NULL};
6000 }
6001
6002
6003 /* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
6006 are given by any of the regular expressions:
6007
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6010 TKB [subprogram suffix for task bodies]
6011 _E[0-9]+[bs]$ [protected object entry suffixes]
6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
6017
6018 static int
6019 is_name_suffix (const char *str)
6020 {
6021 int k;
6022 const char *matching;
6023 const int len = strlen (str);
6024
6025 /* Skip optional leading __[0-9]+. */
6026
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
6032 }
6033
6034 /* [.$][0-9]+ */
6035
6036 if (str[0] == '.' || str[0] == '$')
6037 {
6038 matching = str + 1;
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
6046
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
6061 #if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
6065 all entity names that end with an "N" as a name suffix causes
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
6070 information is a bit risky. Perhaps we should change the encoding
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076 #endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
6097 while (str[0] != '_' && str[0] != '\0')
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
6103 }
6104
6105 if (str[0] == '\000')
6106 return 1;
6107
6108 if (str[0] == '_')
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
6111 return 0;
6112 if (str[2] == '_')
6113 {
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
6137 return 1;
6138 }
6139 if (str[0] == '$' && isdigit (str[1]))
6140 {
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
6144 return 1;
6145 }
6146 return 0;
6147 }
6148
6149 /* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
6151
6152 static int
6153 is_valid_name_for_wild_match (const char *name0)
6154 {
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169 }
6170
6171 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
6174
6175 static int
6176 advance_wild_match (const char **namep, const char *name0, int target0)
6177 {
6178 const char *name = *namep;
6179
6180 while (1)
6181 {
6182 int t0, t1;
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
6191 if (name == name0 + 5 && startswith (name0, "_ada"))
6192 break;
6193 else
6194 name += 1;
6195 }
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
6208 return 0;
6209 }
6210
6211 *namep = name;
6212 return 1;
6213 }
6214
6215 /* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
6219
6220 static bool
6221 wild_match (const char *name, const char *patn)
6222 {
6223 const char *p;
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
6236 return match == name0 || is_valid_name_for_wild_match (name0);
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
6242 return false;
6243 }
6244 }
6245
6246 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
6250
6251 static bool
6252 full_match (const char *sym_name, const char *search_name)
6253 {
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
6264
6265 return false;
6266 }
6267
6268 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
6271
6272 static void
6273 ada_add_block_symbols (struct obstack *obstackp,
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
6277 {
6278 struct block_iterator iter;
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
6290 {
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
6307 }
6308
6309 /* Handle renamings. */
6310
6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6312 found_sym = 1;
6313
6314 if (!found_sym && arg_sym != NULL)
6315 {
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
6318 block);
6319 }
6320
6321 if (!lookup_name.ada ().wild_match_p ())
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6330 {
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6370 block);
6371 }
6372 }
6373 }
6374 \f
6375
6376 /* Symbol Completion */
6377
6378 /* See symtab.h. */
6379
6380 bool
6381 ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
6384 completion_match_result *comp_match_res) const
6385 {
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
6393 match = true;
6394
6395 if (match && !m_encoded_p)
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
6402 bool has_angle_bracket;
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
6406 match = (has_angle_bracket == m_verbatim_p);
6407 sym_name = sym_name_copy;
6408 }
6409
6410 if (match && !m_verbatim_p)
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
6421 match = false;
6422 }
6423
6424 /* Second: Try wild matching... */
6425
6426 if (!match && m_wild_match_p)
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
6434 match = true;
6435 }
6436
6437 /* Finally: If we found a match, prepare the result to return. */
6438
6439 if (!match)
6440 return false;
6441
6442 if (comp_match_res != NULL)
6443 {
6444 std::string &match_str = comp_match_res->match.storage ();
6445
6446 if (!m_encoded_p)
6447 match_str = ada_decode (sym_name);
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
6454
6455 }
6456
6457 comp_match_res->set_match (match_str.c_str ());
6458 }
6459
6460 return true;
6461 }
6462
6463 /* Add the list of possible symbol names completing TEXT to TRACKER.
6464 WORD is the entire command on which completion is made. */
6465
6466 static void
6467 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6468 complete_symbol_mode mode,
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
6471 enum type_code code)
6472 {
6473 struct symbol *sym;
6474 struct compunit_symtab *s;
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
6477 const struct block *b, *surrounding_static_block = 0;
6478 struct block_iterator iter;
6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6480
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
6483 lookup_name_info lookup_name (text, name_match_type, true);
6484
6485 /* First, look at the partial symtab symbols. */
6486 expand_symtabs_matching (NULL,
6487 lookup_name,
6488 NULL,
6489 NULL,
6490 ALL_DOMAIN);
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
6500
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
6507 lookup_name, text, word);
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
6531 symbols which match. */
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
6545 lookup_name, text, word);
6546 }
6547 }
6548
6549 ALL_COMPUNITS (objfile, s)
6550 {
6551 QUIT;
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
6564 lookup_name, text, word);
6565 }
6566 }
6567
6568 do_cleanups (old_chain);
6569 }
6570
6571 /* Field Access */
6572
6573 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576 static int
6577 ada_is_dispatch_table_ptr_type (struct type *type)
6578 {
6579 const char *name;
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589 }
6590
6591 /* Return non-zero if TYPE is an interface tag. */
6592
6593 static int
6594 ada_is_interface_tag (struct type *type)
6595 {
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602 }
6603
6604 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
6606
6607 int
6608 ada_is_ignored_field (struct type *type, int field_num)
6609 {
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
6612
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
6630 if (name[0] == '_' && !startswith (name, "_parent"))
6631 return 1;
6632 }
6633
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
6636 if (ada_is_tagged_type (type, 1)
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
6643 }
6644
6645 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6646 pointer or reference type whose ultimate target has a tag field. */
6647
6648 int
6649 ada_is_tagged_type (struct type *type, int refok)
6650 {
6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6652 }
6653
6654 /* True iff TYPE represents the type of X'Tag */
6655
6656 int
6657 ada_is_tag_type (struct type *type)
6658 {
6659 type = ada_check_typedef (type);
6660
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
6664 {
6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6666
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
6669 }
6670 }
6671
6672 /* The type of the tag on VAL. */
6673
6674 struct type *
6675 ada_tag_type (struct value *val)
6676 {
6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6678 }
6679
6680 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683 static int
6684 is_ada95_tag (struct value *tag)
6685 {
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687 }
6688
6689 /* The value of the tag on VAL. */
6690
6691 struct value *
6692 ada_value_tag (struct value *val)
6693 {
6694 return ada_value_struct_elt (val, "_tag", 0);
6695 }
6696
6697 /* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
6699 ADDRESS. */
6700
6701 static struct value *
6702 value_tag_from_contents_and_address (struct type *type,
6703 const gdb_byte *valaddr,
6704 CORE_ADDR address)
6705 {
6706 int tag_byte_offset;
6707 struct type *tag_type;
6708
6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6710 NULL, NULL, NULL))
6711 {
6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
6713 ? NULL
6714 : valaddr + tag_byte_offset);
6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6716
6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
6718 }
6719 return NULL;
6720 }
6721
6722 static struct type *
6723 type_from_tag (struct value *tag)
6724 {
6725 const char *type_name = ada_tag_name (tag);
6726
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730 }
6731
6732 /* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738 struct value *
6739 ada_tag_value_at_base_address (struct value *obj)
6740 {
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6768 if (!val)
6769 return obj;
6770
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6775
6776 TRY
6777 {
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6779 }
6780
6781 CATCH (e, RETURN_MASK_ERROR)
6782 {
6783 return obj;
6784 }
6785 END_CATCH
6786
6787 /* If offset is null, nothing to do. */
6788
6789 if (offset_to_top == 0)
6790 return obj;
6791
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6794 now. */
6795
6796 if (offset_to_top == -1)
6797 return obj;
6798
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6806
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6809
6810 base_address = value_address (obj) + offset_to_top;
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6812
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6816
6817 if (!tag)
6818 return obj;
6819
6820 obj_type = type_from_tag (tag);
6821
6822 if (!obj_type)
6823 return obj;
6824
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6826 }
6827
6828 /* Return the "ada__tags__type_specific_data" type. */
6829
6830 static struct type *
6831 ada_get_tsd_type (struct inferior *inf)
6832 {
6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6834
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6838 }
6839
6840 /* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
6842
6843 May return NULL if we are unable to get the TSD. */
6844
6845 static struct value *
6846 ada_get_tsd_from_tag (struct value *tag)
6847 {
6848 struct value *val;
6849 struct type *type;
6850
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
6855
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6857 if (val)
6858 return val;
6859
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6863 table. */
6864
6865 type = ada_get_tsd_type (current_inferior());
6866 if (type == NULL)
6867 return NULL;
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6870 if (val == NULL)
6871 return NULL;
6872 return value_ind (value_ptradd (val, -1));
6873 }
6874
6875 /* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6877
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6880
6881 static char *
6882 ada_tag_name_from_tsd (struct value *tsd)
6883 {
6884 static char name[1024];
6885 char *p;
6886 struct value *val;
6887
6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6889 if (val == NULL)
6890 return NULL;
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6893 if (isalpha (*p))
6894 *p = tolower (*p);
6895 return name;
6896 }
6897
6898 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6899 a C string.
6900
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6903 call. */
6904
6905 const char *
6906 ada_tag_name (struct value *tag)
6907 {
6908 char *name = NULL;
6909
6910 if (!ada_is_tag_type (value_type (tag)))
6911 return NULL;
6912
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6918
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
6922 TRY
6923 {
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6925
6926 if (tsd != NULL)
6927 name = ada_tag_name_from_tsd (tsd);
6928 }
6929 CATCH (e, RETURN_MASK_ERROR)
6930 {
6931 }
6932 END_CATCH
6933
6934 return name;
6935 }
6936
6937 /* The parent type of TYPE, or NULL if none. */
6938
6939 struct type *
6940 ada_parent_type (struct type *type)
6941 {
6942 int i;
6943
6944 type = ada_check_typedef (type);
6945
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6947 return NULL;
6948
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
6951 {
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6953
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6959
6960 return ada_check_typedef (parent_type);
6961 }
6962
6963 return NULL;
6964 }
6965
6966 /* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
6969
6970 int
6971 ada_is_parent_field (struct type *type, int field_num)
6972 {
6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6974
6975 return (name != NULL
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
6978 }
6979
6980 /* True iff field number FIELD_NUM of structure type TYPE is a
6981 transparent wrapper field (which should be silently traversed when doing
6982 field selection and flattened when printing). Assumes TYPE is a
6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
6984 structures. */
6985
6986 int
6987 ada_is_wrapper_field (struct type *type, int field_num)
6988 {
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6990
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6992 {
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
6998 a wrapper. */
6999 return 0;
7000 }
7001
7002 return (name != NULL
7003 && (startswith (name, "PARENT")
7004 || strcmp (name, "REP") == 0
7005 || startswith (name, "_parent")
7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7007 }
7008
7009 /* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
7012
7013 int
7014 ada_is_variant_part (struct type *type, int field_num)
7015 {
7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7017
7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7019 || (is_dynamic_field (type, field_num)
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
7022 }
7023
7024 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7025 whose discriminants are contained in the record type OUTER_TYPE,
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
7028
7029 struct type *
7030 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7031 {
7032 const char *name = ada_variant_discrim_name (var_type);
7033
7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7035 }
7036
7037 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7039 represents a 'when others' clause; otherwise 0. */
7040
7041 int
7042 ada_is_others_clause (struct type *type, int field_num)
7043 {
7044 const char *name = TYPE_FIELD_NAME (type, field_num);
7045
7046 return (name != NULL && name[0] == 'O');
7047 }
7048
7049 /* Assuming that TYPE0 is the type of the variant part of a record,
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
7052
7053 const char *
7054 ada_variant_discrim_name (struct type *type0)
7055 {
7056 static char *result = NULL;
7057 static size_t result_len = 0;
7058 struct type *type;
7059 const char *name;
7060 const char *discrim_end;
7061 const char *discrim_start;
7062
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7065 else
7066 type = type0;
7067
7068 name = ada_type_name (type);
7069
7070 if (name == NULL || name[0] == '\000')
7071 return "";
7072
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7074 discrim_end -= 1)
7075 {
7076 if (startswith (discrim_end, "___XVN"))
7077 break;
7078 }
7079 if (discrim_end == name)
7080 return "";
7081
7082 for (discrim_start = discrim_end; discrim_start != name + 3;
7083 discrim_start -= 1)
7084 {
7085 if (discrim_start == name + 1)
7086 return "";
7087 if ((discrim_start > name + 3
7088 && startswith (discrim_start - 3, "___"))
7089 || discrim_start[-1] == '.')
7090 break;
7091 }
7092
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
7095 result[discrim_end - discrim_start] = '\0';
7096 return result;
7097 }
7098
7099 /* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
7106
7107 int
7108 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7109 {
7110 ULONGEST RU;
7111
7112 if (!isdigit (str[k]))
7113 return 0;
7114
7115 /* Do it the hard way so as not to make any assumption about
7116 the relationship of unsigned long (%lu scan format code) and
7117 LONGEST. */
7118 RU = 0;
7119 while (isdigit (str[k]))
7120 {
7121 RU = RU * 10 + (str[k] - '0');
7122 k += 1;
7123 }
7124
7125 if (str[k] == 'm')
7126 {
7127 if (R != NULL)
7128 *R = (-(LONGEST) (RU - 1)) - 1;
7129 k += 1;
7130 }
7131 else if (R != NULL)
7132 *R = (LONGEST) RU;
7133
7134 /* NOTE on the above: Technically, C does not say what the results of
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
7138 above is always equivalent to the negative of RU. */
7139
7140 if (new_k != NULL)
7141 *new_k = k;
7142 return 1;
7143 }
7144
7145 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7148
7149 int
7150 ada_in_variant (LONGEST val, struct type *type, int field_num)
7151 {
7152 const char *name = TYPE_FIELD_NAME (type, field_num);
7153 int p;
7154
7155 p = 0;
7156 while (1)
7157 {
7158 switch (name[p])
7159 {
7160 case '\0':
7161 return 0;
7162 case 'S':
7163 {
7164 LONGEST W;
7165
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7167 return 0;
7168 if (val == W)
7169 return 1;
7170 break;
7171 }
7172 case 'R':
7173 {
7174 LONGEST L, U;
7175
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7178 return 0;
7179 if (val >= L && val <= U)
7180 return 1;
7181 break;
7182 }
7183 case 'O':
7184 return 1;
7185 default:
7186 return 0;
7187 }
7188 }
7189 }
7190
7191 /* FIXME: Lots of redundancy below. Try to consolidate. */
7192
7193 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
7197
7198 static struct value *
7199 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7200 struct type *arg_type)
7201 {
7202 struct type *type;
7203
7204 arg_type = ada_check_typedef (arg_type);
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7206
7207 /* Handle packed fields. */
7208
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7210 {
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7213
7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
7217 }
7218 else
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7220 }
7221
7222 /* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7229 0 otherwise;
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7234
7235 Notice that we need to handle when a tagged record hierarchy
7236 has some components with the same name, like in this scenario:
7237
7238 type Top_T is tagged record
7239 N : Integer := 1;
7240 U : Integer := 974;
7241 A : Integer := 48;
7242 end record;
7243
7244 type Middle_T is new Top.Top_T with record
7245 N : Character := 'a';
7246 C : Integer := 3;
7247 end record;
7248
7249 type Bottom_T is new Middle.Middle_T with record
7250 N : Float := 4.0;
7251 C : Character := '5';
7252 X : Integer := 6;
7253 A : Character := 'J';
7254 end record;
7255
7256 Let's say we now have a variable declared and initialized as follow:
7257
7258 TC : Top_A := new Bottom_T;
7259
7260 And then we use this variable to call this function
7261
7262 procedure Assign (Obj: in out Top_T; TV : Integer);
7263
7264 as follow:
7265
7266 Assign (Top_T (B), 12);
7267
7268 Now, we're in the debugger, and we're inside that procedure
7269 then and we want to print the value of obj.c:
7270
7271 Usually, the tagged record or one of the parent type owns the
7272 component to print and there's no issue but in this particular
7273 case, what does it mean to ask for Obj.C? Since the actual
7274 type for object is type Bottom_T, it could mean two things: type
7275 component C from the Middle_T view, but also component C from
7276 Bottom_T. So in that "undefined" case, when the component is
7277 not found in the non-resolved type (which includes all the
7278 components of the parent type), then resolve it and see if we
7279 get better luck once expanded.
7280
7281 In the case of homonyms in the derived tagged type, we don't
7282 guaranty anything, and pick the one that's easiest for us
7283 to program.
7284
7285 Returns 1 if found, 0 otherwise. */
7286
7287 static int
7288 find_struct_field (const char *name, struct type *type, int offset,
7289 struct type **field_type_p,
7290 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7291 int *index_p)
7292 {
7293 int i;
7294 int parent_offset = -1;
7295
7296 type = ada_check_typedef (type);
7297
7298 if (field_type_p != NULL)
7299 *field_type_p = NULL;
7300 if (byte_offset_p != NULL)
7301 *byte_offset_p = 0;
7302 if (bit_offset_p != NULL)
7303 *bit_offset_p = 0;
7304 if (bit_size_p != NULL)
7305 *bit_size_p = 0;
7306
7307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7308 {
7309 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7310 int fld_offset = offset + bit_pos / 8;
7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7312
7313 if (t_field_name == NULL)
7314 continue;
7315
7316 else if (ada_is_parent_field (type, i))
7317 {
7318 /* This is a field pointing us to the parent type of a tagged
7319 type. As hinted in this function's documentation, we give
7320 preference to fields in the current record first, so what
7321 we do here is just record the index of this field before
7322 we skip it. If it turns out we couldn't find our field
7323 in the current record, then we'll get back to it and search
7324 inside it whether the field might exist in the parent. */
7325
7326 parent_offset = i;
7327 continue;
7328 }
7329
7330 else if (name != NULL && field_name_match (t_field_name, name))
7331 {
7332 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7333
7334 if (field_type_p != NULL)
7335 *field_type_p = TYPE_FIELD_TYPE (type, i);
7336 if (byte_offset_p != NULL)
7337 *byte_offset_p = fld_offset;
7338 if (bit_offset_p != NULL)
7339 *bit_offset_p = bit_pos % 8;
7340 if (bit_size_p != NULL)
7341 *bit_size_p = bit_size;
7342 return 1;
7343 }
7344 else if (ada_is_wrapper_field (type, i))
7345 {
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7347 field_type_p, byte_offset_p, bit_offset_p,
7348 bit_size_p, index_p))
7349 return 1;
7350 }
7351 else if (ada_is_variant_part (type, i))
7352 {
7353 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7354 fixed type?? */
7355 int j;
7356 struct type *field_type
7357 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7358
7359 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7360 {
7361 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7362 fld_offset
7363 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7364 field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368 }
7369 else if (index_p != NULL)
7370 *index_p += 1;
7371 }
7372
7373 /* Field not found so far. If this is a tagged type which
7374 has a parent, try finding that field in the parent now. */
7375
7376 if (parent_offset != -1)
7377 {
7378 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7379 int fld_offset = offset + bit_pos / 8;
7380
7381 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7382 fld_offset, field_type_p, byte_offset_p,
7383 bit_offset_p, bit_size_p, index_p))
7384 return 1;
7385 }
7386
7387 return 0;
7388 }
7389
7390 /* Number of user-visible fields in record type TYPE. */
7391
7392 static int
7393 num_visible_fields (struct type *type)
7394 {
7395 int n;
7396
7397 n = 0;
7398 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7399 return n;
7400 }
7401
7402 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7403 and search in it assuming it has (class) type TYPE.
7404 If found, return value, else return NULL.
7405
7406 Searches recursively through wrapper fields (e.g., '_parent').
7407
7408 In the case of homonyms in the tagged types, please refer to the
7409 long explanation in find_struct_field's function documentation. */
7410
7411 static struct value *
7412 ada_search_struct_field (const char *name, struct value *arg, int offset,
7413 struct type *type)
7414 {
7415 int i;
7416 int parent_offset = -1;
7417
7418 type = ada_check_typedef (type);
7419 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7420 {
7421 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7422
7423 if (t_field_name == NULL)
7424 continue;
7425
7426 else if (ada_is_parent_field (type, i))
7427 {
7428 /* This is a field pointing us to the parent type of a tagged
7429 type. As hinted in this function's documentation, we give
7430 preference to fields in the current record first, so what
7431 we do here is just record the index of this field before
7432 we skip it. If it turns out we couldn't find our field
7433 in the current record, then we'll get back to it and search
7434 inside it whether the field might exist in the parent. */
7435
7436 parent_offset = i;
7437 continue;
7438 }
7439
7440 else if (field_name_match (t_field_name, name))
7441 return ada_value_primitive_field (arg, offset, i, type);
7442
7443 else if (ada_is_wrapper_field (type, i))
7444 {
7445 struct value *v = /* Do not let indent join lines here. */
7446 ada_search_struct_field (name, arg,
7447 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7448 TYPE_FIELD_TYPE (type, i));
7449
7450 if (v != NULL)
7451 return v;
7452 }
7453
7454 else if (ada_is_variant_part (type, i))
7455 {
7456 /* PNH: Do we ever get here? See find_struct_field. */
7457 int j;
7458 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7459 i));
7460 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7461
7462 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7463 {
7464 struct value *v = ada_search_struct_field /* Force line
7465 break. */
7466 (name, arg,
7467 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7468 TYPE_FIELD_TYPE (field_type, j));
7469
7470 if (v != NULL)
7471 return v;
7472 }
7473 }
7474 }
7475
7476 /* Field not found so far. If this is a tagged type which
7477 has a parent, try finding that field in the parent now. */
7478
7479 if (parent_offset != -1)
7480 {
7481 struct value *v = ada_search_struct_field (
7482 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7483 TYPE_FIELD_TYPE (type, parent_offset));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 return NULL;
7490 }
7491
7492 static struct value *ada_index_struct_field_1 (int *, struct value *,
7493 int, struct type *);
7494
7495
7496 /* Return field #INDEX in ARG, where the index is that returned by
7497 * find_struct_field through its INDEX_P argument. Adjust the address
7498 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7499 * If found, return value, else return NULL. */
7500
7501 static struct value *
7502 ada_index_struct_field (int index, struct value *arg, int offset,
7503 struct type *type)
7504 {
7505 return ada_index_struct_field_1 (&index, arg, offset, type);
7506 }
7507
7508
7509 /* Auxiliary function for ada_index_struct_field. Like
7510 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7511 * *INDEX_P. */
7512
7513 static struct value *
7514 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7515 struct type *type)
7516 {
7517 int i;
7518 type = ada_check_typedef (type);
7519
7520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7521 {
7522 if (TYPE_FIELD_NAME (type, i) == NULL)
7523 continue;
7524 else if (ada_is_wrapper_field (type, i))
7525 {
7526 struct value *v = /* Do not let indent join lines here. */
7527 ada_index_struct_field_1 (index_p, arg,
7528 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7529 TYPE_FIELD_TYPE (type, i));
7530
7531 if (v != NULL)
7532 return v;
7533 }
7534
7535 else if (ada_is_variant_part (type, i))
7536 {
7537 /* PNH: Do we ever get here? See ada_search_struct_field,
7538 find_struct_field. */
7539 error (_("Cannot assign this kind of variant record"));
7540 }
7541 else if (*index_p == 0)
7542 return ada_value_primitive_field (arg, offset, i, type);
7543 else
7544 *index_p -= 1;
7545 }
7546 return NULL;
7547 }
7548
7549 /* Given ARG, a value of type (pointer or reference to a)*
7550 structure/union, extract the component named NAME from the ultimate
7551 target structure/union and return it as a value with its
7552 appropriate type.
7553
7554 The routine searches for NAME among all members of the structure itself
7555 and (recursively) among all members of any wrapper members
7556 (e.g., '_parent').
7557
7558 If NO_ERR, then simply return NULL in case of error, rather than
7559 calling error. */
7560
7561 struct value *
7562 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7563 {
7564 struct type *t, *t1;
7565 struct value *v;
7566
7567 v = NULL;
7568 t1 = t = ada_check_typedef (value_type (arg));
7569 if (TYPE_CODE (t) == TYPE_CODE_REF)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
7573 goto BadValue;
7574 t1 = ada_check_typedef (t1);
7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7576 {
7577 arg = coerce_ref (arg);
7578 t = t1;
7579 }
7580 }
7581
7582 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7583 {
7584 t1 = TYPE_TARGET_TYPE (t);
7585 if (t1 == NULL)
7586 goto BadValue;
7587 t1 = ada_check_typedef (t1);
7588 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7589 {
7590 arg = value_ind (arg);
7591 t = t1;
7592 }
7593 else
7594 break;
7595 }
7596
7597 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7598 goto BadValue;
7599
7600 if (t1 == t)
7601 v = ada_search_struct_field (name, arg, 0, t);
7602 else
7603 {
7604 int bit_offset, bit_size, byte_offset;
7605 struct type *field_type;
7606 CORE_ADDR address;
7607
7608 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7609 address = value_address (ada_value_ind (arg));
7610 else
7611 address = value_address (ada_coerce_ref (arg));
7612
7613 /* Check to see if this is a tagged type. We also need to handle
7614 the case where the type is a reference to a tagged type, but
7615 we have to be careful to exclude pointers to tagged types.
7616 The latter should be shown as usual (as a pointer), whereas
7617 a reference should mostly be transparent to the user. */
7618
7619 if (ada_is_tagged_type (t1, 0)
7620 || (TYPE_CODE (t1) == TYPE_CODE_REF
7621 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7622 {
7623 /* We first try to find the searched field in the current type.
7624 If not found then let's look in the fixed type. */
7625
7626 if (!find_struct_field (name, t1, 0,
7627 &field_type, &byte_offset, &bit_offset,
7628 &bit_size, NULL))
7629 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7630 address, NULL, 1);
7631 }
7632 else
7633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7634 address, NULL, 1);
7635
7636 if (find_struct_field (name, t1, 0,
7637 &field_type, &byte_offset, &bit_offset,
7638 &bit_size, NULL))
7639 {
7640 if (bit_size != 0)
7641 {
7642 if (TYPE_CODE (t) == TYPE_CODE_REF)
7643 arg = ada_coerce_ref (arg);
7644 else
7645 arg = ada_value_ind (arg);
7646 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7647 bit_offset, bit_size,
7648 field_type);
7649 }
7650 else
7651 v = value_at_lazy (field_type, address + byte_offset);
7652 }
7653 }
7654
7655 if (v != NULL || no_err)
7656 return v;
7657 else
7658 error (_("There is no member named %s."), name);
7659
7660 BadValue:
7661 if (no_err)
7662 return NULL;
7663 else
7664 error (_("Attempt to extract a component of "
7665 "a value that is not a record."));
7666 }
7667
7668 /* Return a string representation of type TYPE. */
7669
7670 static std::string
7671 type_as_string (struct type *type)
7672 {
7673 string_file tmp_stream;
7674
7675 type_print (type, "", &tmp_stream, -1);
7676
7677 return std::move (tmp_stream.string ());
7678 }
7679
7680 /* Given a type TYPE, look up the type of the component of type named NAME.
7681 If DISPP is non-null, add its byte displacement from the beginning of a
7682 structure (pointed to by a value) of type TYPE to *DISPP (does not
7683 work for packed fields).
7684
7685 Matches any field whose name has NAME as a prefix, possibly
7686 followed by "___".
7687
7688 TYPE can be either a struct or union. If REFOK, TYPE may also
7689 be a (pointer or reference)+ to a struct or union, and the
7690 ultimate target type will be searched.
7691
7692 Looks recursively into variant clauses and parent types.
7693
7694 In the case of homonyms in the tagged types, please refer to the
7695 long explanation in find_struct_field's function documentation.
7696
7697 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7698 TYPE is not a type of the right kind. */
7699
7700 static struct type *
7701 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7702 int noerr)
7703 {
7704 int i;
7705 int parent_offset = -1;
7706
7707 if (name == NULL)
7708 goto BadName;
7709
7710 if (refok && type != NULL)
7711 while (1)
7712 {
7713 type = ada_check_typedef (type);
7714 if (TYPE_CODE (type) != TYPE_CODE_PTR
7715 && TYPE_CODE (type) != TYPE_CODE_REF)
7716 break;
7717 type = TYPE_TARGET_TYPE (type);
7718 }
7719
7720 if (type == NULL
7721 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7722 && TYPE_CODE (type) != TYPE_CODE_UNION))
7723 {
7724 if (noerr)
7725 return NULL;
7726
7727 error (_("Type %s is not a structure or union type"),
7728 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7729 }
7730
7731 type = to_static_fixed_type (type);
7732
7733 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7734 {
7735 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7736 struct type *t;
7737
7738 if (t_field_name == NULL)
7739 continue;
7740
7741 else if (ada_is_parent_field (type, i))
7742 {
7743 /* This is a field pointing us to the parent type of a tagged
7744 type. As hinted in this function's documentation, we give
7745 preference to fields in the current record first, so what
7746 we do here is just record the index of this field before
7747 we skip it. If it turns out we couldn't find our field
7748 in the current record, then we'll get back to it and search
7749 inside it whether the field might exist in the parent. */
7750
7751 parent_offset = i;
7752 continue;
7753 }
7754
7755 else if (field_name_match (t_field_name, name))
7756 return TYPE_FIELD_TYPE (type, i);
7757
7758 else if (ada_is_wrapper_field (type, i))
7759 {
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7761 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
7766 else if (ada_is_variant_part (type, i))
7767 {
7768 int j;
7769 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7770 i));
7771
7772 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7773 {
7774 /* FIXME pnh 2008/01/26: We check for a field that is
7775 NOT wrapped in a struct, since the compiler sometimes
7776 generates these for unchecked variant types. Revisit
7777 if the compiler changes this practice. */
7778 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7779
7780 if (v_field_name != NULL
7781 && field_name_match (v_field_name, name))
7782 t = TYPE_FIELD_TYPE (field_type, j);
7783 else
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7785 j),
7786 name, 0, 1);
7787
7788 if (t != NULL)
7789 return t;
7790 }
7791 }
7792
7793 }
7794
7795 /* Field not found so far. If this is a tagged type which
7796 has a parent, try finding that field in the parent now. */
7797
7798 if (parent_offset != -1)
7799 {
7800 struct type *t;
7801
7802 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7803 name, 0, 1);
7804 if (t != NULL)
7805 return t;
7806 }
7807
7808 BadName:
7809 if (!noerr)
7810 {
7811 const char *name_str = name != NULL ? name : _("<null>");
7812
7813 error (_("Type %s has no component named %s"),
7814 type_as_string (type).c_str (), name_str);
7815 }
7816
7817 return NULL;
7818 }
7819
7820 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7821 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7822 represents an unchecked union (that is, the variant part of a
7823 record that is named in an Unchecked_Union pragma). */
7824
7825 static int
7826 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7827 {
7828 const char *discrim_name = ada_variant_discrim_name (var_type);
7829
7830 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7831 }
7832
7833
7834 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7835 within a value of type OUTER_TYPE that is stored in GDB at
7836 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7837 numbering from 0) is applicable. Returns -1 if none are. */
7838
7839 int
7840 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7841 const gdb_byte *outer_valaddr)
7842 {
7843 int others_clause;
7844 int i;
7845 const char *discrim_name = ada_variant_discrim_name (var_type);
7846 struct value *outer;
7847 struct value *discrim;
7848 LONGEST discrim_val;
7849
7850 /* Using plain value_from_contents_and_address here causes problems
7851 because we will end up trying to resolve a type that is currently
7852 being constructed. */
7853 outer = value_from_contents_and_address_unresolved (outer_type,
7854 outer_valaddr, 0);
7855 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7856 if (discrim == NULL)
7857 return -1;
7858 discrim_val = value_as_long (discrim);
7859
7860 others_clause = -1;
7861 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7862 {
7863 if (ada_is_others_clause (var_type, i))
7864 others_clause = i;
7865 else if (ada_in_variant (discrim_val, var_type, i))
7866 return i;
7867 }
7868
7869 return others_clause;
7870 }
7871 \f
7872
7873
7874 /* Dynamic-Sized Records */
7875
7876 /* Strategy: The type ostensibly attached to a value with dynamic size
7877 (i.e., a size that is not statically recorded in the debugging
7878 data) does not accurately reflect the size or layout of the value.
7879 Our strategy is to convert these values to values with accurate,
7880 conventional types that are constructed on the fly. */
7881
7882 /* There is a subtle and tricky problem here. In general, we cannot
7883 determine the size of dynamic records without its data. However,
7884 the 'struct value' data structure, which GDB uses to represent
7885 quantities in the inferior process (the target), requires the size
7886 of the type at the time of its allocation in order to reserve space
7887 for GDB's internal copy of the data. That's why the
7888 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7889 rather than struct value*s.
7890
7891 However, GDB's internal history variables ($1, $2, etc.) are
7892 struct value*s containing internal copies of the data that are not, in
7893 general, the same as the data at their corresponding addresses in
7894 the target. Fortunately, the types we give to these values are all
7895 conventional, fixed-size types (as per the strategy described
7896 above), so that we don't usually have to perform the
7897 'to_fixed_xxx_type' conversions to look at their values.
7898 Unfortunately, there is one exception: if one of the internal
7899 history variables is an array whose elements are unconstrained
7900 records, then we will need to create distinct fixed types for each
7901 element selected. */
7902
7903 /* The upshot of all of this is that many routines take a (type, host
7904 address, target address) triple as arguments to represent a value.
7905 The host address, if non-null, is supposed to contain an internal
7906 copy of the relevant data; otherwise, the program is to consult the
7907 target at the target address. */
7908
7909 /* Assuming that VAL0 represents a pointer value, the result of
7910 dereferencing it. Differs from value_ind in its treatment of
7911 dynamic-sized types. */
7912
7913 struct value *
7914 ada_value_ind (struct value *val0)
7915 {
7916 struct value *val = value_ind (val0);
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
7921 return ada_to_fixed_value (val);
7922 }
7923
7924 /* The value resulting from dereferencing any "reference to"
7925 qualifiers on VAL0. */
7926
7927 static struct value *
7928 ada_coerce_ref (struct value *val0)
7929 {
7930 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7931 {
7932 struct value *val = val0;
7933
7934 val = coerce_ref (val);
7935
7936 if (ada_is_tagged_type (value_type (val), 0))
7937 val = ada_tag_value_at_base_address (val);
7938
7939 return ada_to_fixed_value (val);
7940 }
7941 else
7942 return val0;
7943 }
7944
7945 /* Return OFF rounded upward if necessary to a multiple of
7946 ALIGNMENT (a power of 2). */
7947
7948 static unsigned int
7949 align_value (unsigned int off, unsigned int alignment)
7950 {
7951 return (off + alignment - 1) & ~(alignment - 1);
7952 }
7953
7954 /* Return the bit alignment required for field #F of template type TYPE. */
7955
7956 static unsigned int
7957 field_alignment (struct type *type, int f)
7958 {
7959 const char *name = TYPE_FIELD_NAME (type, f);
7960 int len;
7961 int align_offset;
7962
7963 /* The field name should never be null, unless the debugging information
7964 is somehow malformed. In this case, we assume the field does not
7965 require any alignment. */
7966 if (name == NULL)
7967 return 1;
7968
7969 len = strlen (name);
7970
7971 if (!isdigit (name[len - 1]))
7972 return 1;
7973
7974 if (isdigit (name[len - 2]))
7975 align_offset = len - 2;
7976 else
7977 align_offset = len - 1;
7978
7979 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7980 return TARGET_CHAR_BIT;
7981
7982 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7983 }
7984
7985 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7986
7987 static struct symbol *
7988 ada_find_any_type_symbol (const char *name)
7989 {
7990 struct symbol *sym;
7991
7992 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7993 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7994 return sym;
7995
7996 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7997 return sym;
7998 }
7999
8000 /* Find a type named NAME. Ignores ambiguity. This routine will look
8001 solely for types defined by debug info, it will not search the GDB
8002 primitive types. */
8003
8004 static struct type *
8005 ada_find_any_type (const char *name)
8006 {
8007 struct symbol *sym = ada_find_any_type_symbol (name);
8008
8009 if (sym != NULL)
8010 return SYMBOL_TYPE (sym);
8011
8012 return NULL;
8013 }
8014
8015 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8016 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8017 symbol, in which case it is returned. Otherwise, this looks for
8018 symbols whose name is that of NAME_SYM suffixed with "___XR".
8019 Return symbol if found, and NULL otherwise. */
8020
8021 struct symbol *
8022 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8023 {
8024 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8025 struct symbol *sym;
8026
8027 if (strstr (name, "___XR") != NULL)
8028 return name_sym;
8029
8030 sym = find_old_style_renaming_symbol (name, block);
8031
8032 if (sym != NULL)
8033 return sym;
8034
8035 /* Not right yet. FIXME pnh 7/20/2007. */
8036 sym = ada_find_any_type_symbol (name);
8037 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8038 return sym;
8039 else
8040 return NULL;
8041 }
8042
8043 static struct symbol *
8044 find_old_style_renaming_symbol (const char *name, const struct block *block)
8045 {
8046 const struct symbol *function_sym = block_linkage_function (block);
8047 char *rename;
8048
8049 if (function_sym != NULL)
8050 {
8051 /* If the symbol is defined inside a function, NAME is not fully
8052 qualified. This means we need to prepend the function name
8053 as well as adding the ``___XR'' suffix to build the name of
8054 the associated renaming symbol. */
8055 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8056 /* Function names sometimes contain suffixes used
8057 for instance to qualify nested subprograms. When building
8058 the XR type name, we need to make sure that this suffix is
8059 not included. So do not include any suffix in the function
8060 name length below. */
8061 int function_name_len = ada_name_prefix_len (function_name);
8062 const int rename_len = function_name_len + 2 /* "__" */
8063 + strlen (name) + 6 /* "___XR\0" */ ;
8064
8065 /* Strip the suffix if necessary. */
8066 ada_remove_trailing_digits (function_name, &function_name_len);
8067 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8068 ada_remove_Xbn_suffix (function_name, &function_name_len);
8069
8070 /* Library-level functions are a special case, as GNAT adds
8071 a ``_ada_'' prefix to the function name to avoid namespace
8072 pollution. However, the renaming symbols themselves do not
8073 have this prefix, so we need to skip this prefix if present. */
8074 if (function_name_len > 5 /* "_ada_" */
8075 && strstr (function_name, "_ada_") == function_name)
8076 {
8077 function_name += 5;
8078 function_name_len -= 5;
8079 }
8080
8081 rename = (char *) alloca (rename_len * sizeof (char));
8082 strncpy (rename, function_name, function_name_len);
8083 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8084 "__%s___XR", name);
8085 }
8086 else
8087 {
8088 const int rename_len = strlen (name) + 6;
8089
8090 rename = (char *) alloca (rename_len * sizeof (char));
8091 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8092 }
8093
8094 return ada_find_any_type_symbol (rename);
8095 }
8096
8097 /* Because of GNAT encoding conventions, several GDB symbols may match a
8098 given type name. If the type denoted by TYPE0 is to be preferred to
8099 that of TYPE1 for purposes of type printing, return non-zero;
8100 otherwise return 0. */
8101
8102 int
8103 ada_prefer_type (struct type *type0, struct type *type1)
8104 {
8105 if (type1 == NULL)
8106 return 1;
8107 else if (type0 == NULL)
8108 return 0;
8109 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8110 return 1;
8111 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8112 return 0;
8113 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8114 return 1;
8115 else if (ada_is_constrained_packed_array_type (type0))
8116 return 1;
8117 else if (ada_is_array_descriptor_type (type0)
8118 && !ada_is_array_descriptor_type (type1))
8119 return 1;
8120 else
8121 {
8122 const char *type0_name = type_name_no_tag (type0);
8123 const char *type1_name = type_name_no_tag (type1);
8124
8125 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8126 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8127 return 1;
8128 }
8129 return 0;
8130 }
8131
8132 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8133 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8134
8135 const char *
8136 ada_type_name (struct type *type)
8137 {
8138 if (type == NULL)
8139 return NULL;
8140 else if (TYPE_NAME (type) != NULL)
8141 return TYPE_NAME (type);
8142 else
8143 return TYPE_TAG_NAME (type);
8144 }
8145
8146 /* Search the list of "descriptive" types associated to TYPE for a type
8147 whose name is NAME. */
8148
8149 static struct type *
8150 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8151 {
8152 struct type *result, *tmp;
8153
8154 if (ada_ignore_descriptive_types_p)
8155 return NULL;
8156
8157 /* If there no descriptive-type info, then there is no parallel type
8158 to be found. */
8159 if (!HAVE_GNAT_AUX_INFO (type))
8160 return NULL;
8161
8162 result = TYPE_DESCRIPTIVE_TYPE (type);
8163 while (result != NULL)
8164 {
8165 const char *result_name = ada_type_name (result);
8166
8167 if (result_name == NULL)
8168 {
8169 warning (_("unexpected null name on descriptive type"));
8170 return NULL;
8171 }
8172
8173 /* If the names match, stop. */
8174 if (strcmp (result_name, name) == 0)
8175 break;
8176
8177 /* Otherwise, look at the next item on the list, if any. */
8178 if (HAVE_GNAT_AUX_INFO (result))
8179 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 tmp = NULL;
8182
8183 /* If not found either, try after having resolved the typedef. */
8184 if (tmp != NULL)
8185 result = tmp;
8186 else
8187 {
8188 result = check_typedef (result);
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 result = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 result = NULL;
8193 }
8194 }
8195
8196 /* If we didn't find a match, see whether this is a packed array. With
8197 older compilers, the descriptive type information is either absent or
8198 irrelevant when it comes to packed arrays so the above lookup fails.
8199 Fall back to using a parallel lookup by name in this case. */
8200 if (result == NULL && ada_is_constrained_packed_array_type (type))
8201 return ada_find_any_type (name);
8202
8203 return result;
8204 }
8205
8206 /* Find a parallel type to TYPE with the specified NAME, using the
8207 descriptive type taken from the debugging information, if available,
8208 and otherwise using the (slower) name-based method. */
8209
8210 static struct type *
8211 ada_find_parallel_type_with_name (struct type *type, const char *name)
8212 {
8213 struct type *result = NULL;
8214
8215 if (HAVE_GNAT_AUX_INFO (type))
8216 result = find_parallel_type_by_descriptive_type (type, name);
8217 else
8218 result = ada_find_any_type (name);
8219
8220 return result;
8221 }
8222
8223 /* Same as above, but specify the name of the parallel type by appending
8224 SUFFIX to the name of TYPE. */
8225
8226 struct type *
8227 ada_find_parallel_type (struct type *type, const char *suffix)
8228 {
8229 char *name;
8230 const char *type_name = ada_type_name (type);
8231 int len;
8232
8233 if (type_name == NULL)
8234 return NULL;
8235
8236 len = strlen (type_name);
8237
8238 name = (char *) alloca (len + strlen (suffix) + 1);
8239
8240 strcpy (name, type_name);
8241 strcpy (name + len, suffix);
8242
8243 return ada_find_parallel_type_with_name (type, name);
8244 }
8245
8246 /* If TYPE is a variable-size record type, return the corresponding template
8247 type describing its fields. Otherwise, return NULL. */
8248
8249 static struct type *
8250 dynamic_template_type (struct type *type)
8251 {
8252 type = ada_check_typedef (type);
8253
8254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8255 || ada_type_name (type) == NULL)
8256 return NULL;
8257 else
8258 {
8259 int len = strlen (ada_type_name (type));
8260
8261 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8262 return type;
8263 else
8264 return ada_find_parallel_type (type, "___XVE");
8265 }
8266 }
8267
8268 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8269 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8270
8271 static int
8272 is_dynamic_field (struct type *templ_type, int field_num)
8273 {
8274 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8275
8276 return name != NULL
8277 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8278 && strstr (name, "___XVL") != NULL;
8279 }
8280
8281 /* The index of the variant field of TYPE, or -1 if TYPE does not
8282 represent a variant record type. */
8283
8284 static int
8285 variant_field_index (struct type *type)
8286 {
8287 int f;
8288
8289 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8290 return -1;
8291
8292 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8293 {
8294 if (ada_is_variant_part (type, f))
8295 return f;
8296 }
8297 return -1;
8298 }
8299
8300 /* A record type with no fields. */
8301
8302 static struct type *
8303 empty_record (struct type *templ)
8304 {
8305 struct type *type = alloc_type_copy (templ);
8306
8307 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8308 TYPE_NFIELDS (type) = 0;
8309 TYPE_FIELDS (type) = NULL;
8310 INIT_CPLUS_SPECIFIC (type);
8311 TYPE_NAME (type) = "<empty>";
8312 TYPE_TAG_NAME (type) = NULL;
8313 TYPE_LENGTH (type) = 0;
8314 return type;
8315 }
8316
8317 /* An ordinary record type (with fixed-length fields) that describes
8318 the value of type TYPE at VALADDR or ADDRESS (see comments at
8319 the beginning of this section) VAL according to GNAT conventions.
8320 DVAL0 should describe the (portion of a) record that contains any
8321 necessary discriminants. It should be NULL if value_type (VAL) is
8322 an outer-level type (i.e., as opposed to a branch of a variant.) A
8323 variant field (unless unchecked) is replaced by a particular branch
8324 of the variant.
8325
8326 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8327 length are not statically known are discarded. As a consequence,
8328 VALADDR, ADDRESS and DVAL0 are ignored.
8329
8330 NOTE: Limitations: For now, we assume that dynamic fields and
8331 variants occupy whole numbers of bytes. However, they need not be
8332 byte-aligned. */
8333
8334 struct type *
8335 ada_template_to_fixed_record_type_1 (struct type *type,
8336 const gdb_byte *valaddr,
8337 CORE_ADDR address, struct value *dval0,
8338 int keep_dynamic_fields)
8339 {
8340 struct value *mark = value_mark ();
8341 struct value *dval;
8342 struct type *rtype;
8343 int nfields, bit_len;
8344 int variant_field;
8345 long off;
8346 int fld_bit_len;
8347 int f;
8348
8349 /* Compute the number of fields in this record type that are going
8350 to be processed: unless keep_dynamic_fields, this includes only
8351 fields whose position and length are static will be processed. */
8352 if (keep_dynamic_fields)
8353 nfields = TYPE_NFIELDS (type);
8354 else
8355 {
8356 nfields = 0;
8357 while (nfields < TYPE_NFIELDS (type)
8358 && !ada_is_variant_part (type, nfields)
8359 && !is_dynamic_field (type, nfields))
8360 nfields++;
8361 }
8362
8363 rtype = alloc_type_copy (type);
8364 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8365 INIT_CPLUS_SPECIFIC (rtype);
8366 TYPE_NFIELDS (rtype) = nfields;
8367 TYPE_FIELDS (rtype) = (struct field *)
8368 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8369 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8370 TYPE_NAME (rtype) = ada_type_name (type);
8371 TYPE_TAG_NAME (rtype) = NULL;
8372 TYPE_FIXED_INSTANCE (rtype) = 1;
8373
8374 off = 0;
8375 bit_len = 0;
8376 variant_field = -1;
8377
8378 for (f = 0; f < nfields; f += 1)
8379 {
8380 off = align_value (off, field_alignment (type, f))
8381 + TYPE_FIELD_BITPOS (type, f);
8382 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8383 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8384
8385 if (ada_is_variant_part (type, f))
8386 {
8387 variant_field = f;
8388 fld_bit_len = 0;
8389 }
8390 else if (is_dynamic_field (type, f))
8391 {
8392 const gdb_byte *field_valaddr = valaddr;
8393 CORE_ADDR field_address = address;
8394 struct type *field_type =
8395 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8396
8397 if (dval0 == NULL)
8398 {
8399 /* rtype's length is computed based on the run-time
8400 value of discriminants. If the discriminants are not
8401 initialized, the type size may be completely bogus and
8402 GDB may fail to allocate a value for it. So check the
8403 size first before creating the value. */
8404 ada_ensure_varsize_limit (rtype);
8405 /* Using plain value_from_contents_and_address here
8406 causes problems because we will end up trying to
8407 resolve a type that is currently being
8408 constructed. */
8409 dval = value_from_contents_and_address_unresolved (rtype,
8410 valaddr,
8411 address);
8412 rtype = value_type (dval);
8413 }
8414 else
8415 dval = dval0;
8416
8417 /* If the type referenced by this field is an aligner type, we need
8418 to unwrap that aligner type, because its size might not be set.
8419 Keeping the aligner type would cause us to compute the wrong
8420 size for this field, impacting the offset of the all the fields
8421 that follow this one. */
8422 if (ada_is_aligner_type (field_type))
8423 {
8424 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8425
8426 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8427 field_address = cond_offset_target (field_address, field_offset);
8428 field_type = ada_aligned_type (field_type);
8429 }
8430
8431 field_valaddr = cond_offset_host (field_valaddr,
8432 off / TARGET_CHAR_BIT);
8433 field_address = cond_offset_target (field_address,
8434 off / TARGET_CHAR_BIT);
8435
8436 /* Get the fixed type of the field. Note that, in this case,
8437 we do not want to get the real type out of the tag: if
8438 the current field is the parent part of a tagged record,
8439 we will get the tag of the object. Clearly wrong: the real
8440 type of the parent is not the real type of the child. We
8441 would end up in an infinite loop. */
8442 field_type = ada_get_base_type (field_type);
8443 field_type = ada_to_fixed_type (field_type, field_valaddr,
8444 field_address, dval, 0);
8445 /* If the field size is already larger than the maximum
8446 object size, then the record itself will necessarily
8447 be larger than the maximum object size. We need to make
8448 this check now, because the size might be so ridiculously
8449 large (due to an uninitialized variable in the inferior)
8450 that it would cause an overflow when adding it to the
8451 record size. */
8452 ada_ensure_varsize_limit (field_type);
8453
8454 TYPE_FIELD_TYPE (rtype, f) = field_type;
8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8456 /* The multiplication can potentially overflow. But because
8457 the field length has been size-checked just above, and
8458 assuming that the maximum size is a reasonable value,
8459 an overflow should not happen in practice. So rather than
8460 adding overflow recovery code to this already complex code,
8461 we just assume that it's not going to happen. */
8462 fld_bit_len =
8463 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8464 }
8465 else
8466 {
8467 /* Note: If this field's type is a typedef, it is important
8468 to preserve the typedef layer.
8469
8470 Otherwise, we might be transforming a typedef to a fat
8471 pointer (encoding a pointer to an unconstrained array),
8472 into a basic fat pointer (encoding an unconstrained
8473 array). As both types are implemented using the same
8474 structure, the typedef is the only clue which allows us
8475 to distinguish between the two options. Stripping it
8476 would prevent us from printing this field appropriately. */
8477 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8478 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8479 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8480 fld_bit_len =
8481 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8482 else
8483 {
8484 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8485
8486 /* We need to be careful of typedefs when computing
8487 the length of our field. If this is a typedef,
8488 get the length of the target type, not the length
8489 of the typedef. */
8490 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8491 field_type = ada_typedef_target_type (field_type);
8492
8493 fld_bit_len =
8494 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8495 }
8496 }
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 off += fld_bit_len;
8500 TYPE_LENGTH (rtype) =
8501 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8502 }
8503
8504 /* We handle the variant part, if any, at the end because of certain
8505 odd cases in which it is re-ordered so as NOT to be the last field of
8506 the record. This can happen in the presence of representation
8507 clauses. */
8508 if (variant_field >= 0)
8509 {
8510 struct type *branch_type;
8511
8512 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8513
8514 if (dval0 == NULL)
8515 {
8516 /* Using plain value_from_contents_and_address here causes
8517 problems because we will end up trying to resolve a type
8518 that is currently being constructed. */
8519 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8520 address);
8521 rtype = value_type (dval);
8522 }
8523 else
8524 dval = dval0;
8525
8526 branch_type =
8527 to_fixed_variant_branch_type
8528 (TYPE_FIELD_TYPE (type, variant_field),
8529 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8530 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8531 if (branch_type == NULL)
8532 {
8533 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8534 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8535 TYPE_NFIELDS (rtype) -= 1;
8536 }
8537 else
8538 {
8539 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8540 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8541 fld_bit_len =
8542 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8543 TARGET_CHAR_BIT;
8544 if (off + fld_bit_len > bit_len)
8545 bit_len = off + fld_bit_len;
8546 TYPE_LENGTH (rtype) =
8547 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8548 }
8549 }
8550
8551 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8552 should contain the alignment of that record, which should be a strictly
8553 positive value. If null or negative, then something is wrong, most
8554 probably in the debug info. In that case, we don't round up the size
8555 of the resulting type. If this record is not part of another structure,
8556 the current RTYPE length might be good enough for our purposes. */
8557 if (TYPE_LENGTH (type) <= 0)
8558 {
8559 if (TYPE_NAME (rtype))
8560 warning (_("Invalid type size for `%s' detected: %d."),
8561 TYPE_NAME (rtype), TYPE_LENGTH (type));
8562 else
8563 warning (_("Invalid type size for <unnamed> detected: %d."),
8564 TYPE_LENGTH (type));
8565 }
8566 else
8567 {
8568 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8569 TYPE_LENGTH (type));
8570 }
8571
8572 value_free_to_mark (mark);
8573 if (TYPE_LENGTH (rtype) > varsize_limit)
8574 error (_("record type with dynamic size is larger than varsize-limit"));
8575 return rtype;
8576 }
8577
8578 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8579 of 1. */
8580
8581 static struct type *
8582 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval0)
8584 {
8585 return ada_template_to_fixed_record_type_1 (type, valaddr,
8586 address, dval0, 1);
8587 }
8588
8589 /* An ordinary record type in which ___XVL-convention fields and
8590 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8591 static approximations, containing all possible fields. Uses
8592 no runtime values. Useless for use in values, but that's OK,
8593 since the results are used only for type determinations. Works on both
8594 structs and unions. Representation note: to save space, we memorize
8595 the result of this function in the TYPE_TARGET_TYPE of the
8596 template type. */
8597
8598 static struct type *
8599 template_to_static_fixed_type (struct type *type0)
8600 {
8601 struct type *type;
8602 int nfields;
8603 int f;
8604
8605 /* No need no do anything if the input type is already fixed. */
8606 if (TYPE_FIXED_INSTANCE (type0))
8607 return type0;
8608
8609 /* Likewise if we already have computed the static approximation. */
8610 if (TYPE_TARGET_TYPE (type0) != NULL)
8611 return TYPE_TARGET_TYPE (type0);
8612
8613 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8614 type = type0;
8615 nfields = TYPE_NFIELDS (type0);
8616
8617 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8618 recompute all over next time. */
8619 TYPE_TARGET_TYPE (type0) = type;
8620
8621 for (f = 0; f < nfields; f += 1)
8622 {
8623 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8624 struct type *new_type;
8625
8626 if (is_dynamic_field (type0, f))
8627 {
8628 field_type = ada_check_typedef (field_type);
8629 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8630 }
8631 else
8632 new_type = static_unwrap_type (field_type);
8633
8634 if (new_type != field_type)
8635 {
8636 /* Clone TYPE0 only the first time we get a new field type. */
8637 if (type == type0)
8638 {
8639 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8640 TYPE_CODE (type) = TYPE_CODE (type0);
8641 INIT_CPLUS_SPECIFIC (type);
8642 TYPE_NFIELDS (type) = nfields;
8643 TYPE_FIELDS (type) = (struct field *)
8644 TYPE_ALLOC (type, nfields * sizeof (struct field));
8645 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8646 sizeof (struct field) * nfields);
8647 TYPE_NAME (type) = ada_type_name (type0);
8648 TYPE_TAG_NAME (type) = NULL;
8649 TYPE_FIXED_INSTANCE (type) = 1;
8650 TYPE_LENGTH (type) = 0;
8651 }
8652 TYPE_FIELD_TYPE (type, f) = new_type;
8653 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8654 }
8655 }
8656
8657 return type;
8658 }
8659
8660 /* Given an object of type TYPE whose contents are at VALADDR and
8661 whose address in memory is ADDRESS, returns a revision of TYPE,
8662 which should be a non-dynamic-sized record, in which the variant
8663 part, if any, is replaced with the appropriate branch. Looks
8664 for discriminant values in DVAL0, which can be NULL if the record
8665 contains the necessary discriminant values. */
8666
8667 static struct type *
8668 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8669 CORE_ADDR address, struct value *dval0)
8670 {
8671 struct value *mark = value_mark ();
8672 struct value *dval;
8673 struct type *rtype;
8674 struct type *branch_type;
8675 int nfields = TYPE_NFIELDS (type);
8676 int variant_field = variant_field_index (type);
8677
8678 if (variant_field == -1)
8679 return type;
8680
8681 if (dval0 == NULL)
8682 {
8683 dval = value_from_contents_and_address (type, valaddr, address);
8684 type = value_type (dval);
8685 }
8686 else
8687 dval = dval0;
8688
8689 rtype = alloc_type_copy (type);
8690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8691 INIT_CPLUS_SPECIFIC (rtype);
8692 TYPE_NFIELDS (rtype) = nfields;
8693 TYPE_FIELDS (rtype) =
8694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8696 sizeof (struct field) * nfields);
8697 TYPE_NAME (rtype) = ada_type_name (type);
8698 TYPE_TAG_NAME (rtype) = NULL;
8699 TYPE_FIXED_INSTANCE (rtype) = 1;
8700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8701
8702 branch_type = to_fixed_variant_branch_type
8703 (TYPE_FIELD_TYPE (type, variant_field),
8704 cond_offset_host (valaddr,
8705 TYPE_FIELD_BITPOS (type, variant_field)
8706 / TARGET_CHAR_BIT),
8707 cond_offset_target (address,
8708 TYPE_FIELD_BITPOS (type, variant_field)
8709 / TARGET_CHAR_BIT), dval);
8710 if (branch_type == NULL)
8711 {
8712 int f;
8713
8714 for (f = variant_field + 1; f < nfields; f += 1)
8715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8716 TYPE_NFIELDS (rtype) -= 1;
8717 }
8718 else
8719 {
8720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8724 }
8725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8726
8727 value_free_to_mark (mark);
8728 return rtype;
8729 }
8730
8731 /* An ordinary record type (with fixed-length fields) that describes
8732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8733 beginning of this section]. Any necessary discriminants' values
8734 should be in DVAL, a record value; it may be NULL if the object
8735 at ADDR itself contains any necessary discriminant values.
8736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8737 values from the record are needed. Except in the case that DVAL,
8738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8739 unchecked) is replaced by a particular branch of the variant.
8740
8741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8742 is questionable and may be removed. It can arise during the
8743 processing of an unconstrained-array-of-record type where all the
8744 variant branches have exactly the same size. This is because in
8745 such cases, the compiler does not bother to use the XVS convention
8746 when encoding the record. I am currently dubious of this
8747 shortcut and suspect the compiler should be altered. FIXME. */
8748
8749 static struct type *
8750 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8751 CORE_ADDR address, struct value *dval)
8752 {
8753 struct type *templ_type;
8754
8755 if (TYPE_FIXED_INSTANCE (type0))
8756 return type0;
8757
8758 templ_type = dynamic_template_type (type0);
8759
8760 if (templ_type != NULL)
8761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8762 else if (variant_field_index (type0) >= 0)
8763 {
8764 if (dval == NULL && valaddr == NULL && address == 0)
8765 return type0;
8766 return to_record_with_fixed_variant_part (type0, valaddr, address,
8767 dval);
8768 }
8769 else
8770 {
8771 TYPE_FIXED_INSTANCE (type0) = 1;
8772 return type0;
8773 }
8774
8775 }
8776
8777 /* An ordinary record type (with fixed-length fields) that describes
8778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8779 union type. Any necessary discriminants' values should be in DVAL,
8780 a record value. That is, this routine selects the appropriate
8781 branch of the union at ADDR according to the discriminant value
8782 indicated in the union's type name. Returns VAR_TYPE0 itself if
8783 it represents a variant subject to a pragma Unchecked_Union. */
8784
8785 static struct type *
8786 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8787 CORE_ADDR address, struct value *dval)
8788 {
8789 int which;
8790 struct type *templ_type;
8791 struct type *var_type;
8792
8793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8794 var_type = TYPE_TARGET_TYPE (var_type0);
8795 else
8796 var_type = var_type0;
8797
8798 templ_type = ada_find_parallel_type (var_type, "___XVU");
8799
8800 if (templ_type != NULL)
8801 var_type = templ_type;
8802
8803 if (is_unchecked_variant (var_type, value_type (dval)))
8804 return var_type0;
8805 which =
8806 ada_which_variant_applies (var_type,
8807 value_type (dval), value_contents (dval));
8808
8809 if (which < 0)
8810 return empty_record (var_type);
8811 else if (is_dynamic_field (var_type, which))
8812 return to_fixed_record_type
8813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8814 valaddr, address, dval);
8815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8816 return
8817 to_fixed_record_type
8818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8819 else
8820 return TYPE_FIELD_TYPE (var_type, which);
8821 }
8822
8823 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8824 ENCODING_TYPE, a type following the GNAT conventions for discrete
8825 type encodings, only carries redundant information. */
8826
8827 static int
8828 ada_is_redundant_range_encoding (struct type *range_type,
8829 struct type *encoding_type)
8830 {
8831 const char *bounds_str;
8832 int n;
8833 LONGEST lo, hi;
8834
8835 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8836
8837 if (TYPE_CODE (get_base_type (range_type))
8838 != TYPE_CODE (get_base_type (encoding_type)))
8839 {
8840 /* The compiler probably used a simple base type to describe
8841 the range type instead of the range's actual base type,
8842 expecting us to get the real base type from the encoding
8843 anyway. In this situation, the encoding cannot be ignored
8844 as redundant. */
8845 return 0;
8846 }
8847
8848 if (is_dynamic_type (range_type))
8849 return 0;
8850
8851 if (TYPE_NAME (encoding_type) == NULL)
8852 return 0;
8853
8854 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8855 if (bounds_str == NULL)
8856 return 0;
8857
8858 n = 8; /* Skip "___XDLU_". */
8859 if (!ada_scan_number (bounds_str, n, &lo, &n))
8860 return 0;
8861 if (TYPE_LOW_BOUND (range_type) != lo)
8862 return 0;
8863
8864 n += 2; /* Skip the "__" separator between the two bounds. */
8865 if (!ada_scan_number (bounds_str, n, &hi, &n))
8866 return 0;
8867 if (TYPE_HIGH_BOUND (range_type) != hi)
8868 return 0;
8869
8870 return 1;
8871 }
8872
8873 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8874 a type following the GNAT encoding for describing array type
8875 indices, only carries redundant information. */
8876
8877 static int
8878 ada_is_redundant_index_type_desc (struct type *array_type,
8879 struct type *desc_type)
8880 {
8881 struct type *this_layer = check_typedef (array_type);
8882 int i;
8883
8884 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8885 {
8886 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8887 TYPE_FIELD_TYPE (desc_type, i)))
8888 return 0;
8889 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8890 }
8891
8892 return 1;
8893 }
8894
8895 /* Assuming that TYPE0 is an array type describing the type of a value
8896 at ADDR, and that DVAL describes a record containing any
8897 discriminants used in TYPE0, returns a type for the value that
8898 contains no dynamic components (that is, no components whose sizes
8899 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8900 true, gives an error message if the resulting type's size is over
8901 varsize_limit. */
8902
8903 static struct type *
8904 to_fixed_array_type (struct type *type0, struct value *dval,
8905 int ignore_too_big)
8906 {
8907 struct type *index_type_desc;
8908 struct type *result;
8909 int constrained_packed_array_p;
8910 static const char *xa_suffix = "___XA";
8911
8912 type0 = ada_check_typedef (type0);
8913 if (TYPE_FIXED_INSTANCE (type0))
8914 return type0;
8915
8916 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8917 if (constrained_packed_array_p)
8918 type0 = decode_constrained_packed_array_type (type0);
8919
8920 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8921
8922 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8923 encoding suffixed with 'P' may still be generated. If so,
8924 it should be used to find the XA type. */
8925
8926 if (index_type_desc == NULL)
8927 {
8928 const char *type_name = ada_type_name (type0);
8929
8930 if (type_name != NULL)
8931 {
8932 const int len = strlen (type_name);
8933 char *name = (char *) alloca (len + strlen (xa_suffix));
8934
8935 if (type_name[len - 1] == 'P')
8936 {
8937 strcpy (name, type_name);
8938 strcpy (name + len - 1, xa_suffix);
8939 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8940 }
8941 }
8942 }
8943
8944 ada_fixup_array_indexes_type (index_type_desc);
8945 if (index_type_desc != NULL
8946 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8947 {
8948 /* Ignore this ___XA parallel type, as it does not bring any
8949 useful information. This allows us to avoid creating fixed
8950 versions of the array's index types, which would be identical
8951 to the original ones. This, in turn, can also help avoid
8952 the creation of fixed versions of the array itself. */
8953 index_type_desc = NULL;
8954 }
8955
8956 if (index_type_desc == NULL)
8957 {
8958 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8959
8960 /* NOTE: elt_type---the fixed version of elt_type0---should never
8961 depend on the contents of the array in properly constructed
8962 debugging data. */
8963 /* Create a fixed version of the array element type.
8964 We're not providing the address of an element here,
8965 and thus the actual object value cannot be inspected to do
8966 the conversion. This should not be a problem, since arrays of
8967 unconstrained objects are not allowed. In particular, all
8968 the elements of an array of a tagged type should all be of
8969 the same type specified in the debugging info. No need to
8970 consult the object tag. */
8971 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8972
8973 /* Make sure we always create a new array type when dealing with
8974 packed array types, since we're going to fix-up the array
8975 type length and element bitsize a little further down. */
8976 if (elt_type0 == elt_type && !constrained_packed_array_p)
8977 result = type0;
8978 else
8979 result = create_array_type (alloc_type_copy (type0),
8980 elt_type, TYPE_INDEX_TYPE (type0));
8981 }
8982 else
8983 {
8984 int i;
8985 struct type *elt_type0;
8986
8987 elt_type0 = type0;
8988 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8989 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8990
8991 /* NOTE: result---the fixed version of elt_type0---should never
8992 depend on the contents of the array in properly constructed
8993 debugging data. */
8994 /* Create a fixed version of the array element type.
8995 We're not providing the address of an element here,
8996 and thus the actual object value cannot be inspected to do
8997 the conversion. This should not be a problem, since arrays of
8998 unconstrained objects are not allowed. In particular, all
8999 the elements of an array of a tagged type should all be of
9000 the same type specified in the debugging info. No need to
9001 consult the object tag. */
9002 result =
9003 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9004
9005 elt_type0 = type0;
9006 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9007 {
9008 struct type *range_type =
9009 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9010
9011 result = create_array_type (alloc_type_copy (elt_type0),
9012 result, range_type);
9013 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9014 }
9015 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9016 error (_("array type with dynamic size is larger than varsize-limit"));
9017 }
9018
9019 /* We want to preserve the type name. This can be useful when
9020 trying to get the type name of a value that has already been
9021 printed (for instance, if the user did "print VAR; whatis $". */
9022 TYPE_NAME (result) = TYPE_NAME (type0);
9023
9024 if (constrained_packed_array_p)
9025 {
9026 /* So far, the resulting type has been created as if the original
9027 type was a regular (non-packed) array type. As a result, the
9028 bitsize of the array elements needs to be set again, and the array
9029 length needs to be recomputed based on that bitsize. */
9030 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9031 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9032
9033 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9034 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9035 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9036 TYPE_LENGTH (result)++;
9037 }
9038
9039 TYPE_FIXED_INSTANCE (result) = 1;
9040 return result;
9041 }
9042
9043
9044 /* A standard type (containing no dynamically sized components)
9045 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9046 DVAL describes a record containing any discriminants used in TYPE0,
9047 and may be NULL if there are none, or if the object of type TYPE at
9048 ADDRESS or in VALADDR contains these discriminants.
9049
9050 If CHECK_TAG is not null, in the case of tagged types, this function
9051 attempts to locate the object's tag and use it to compute the actual
9052 type. However, when ADDRESS is null, we cannot use it to determine the
9053 location of the tag, and therefore compute the tagged type's actual type.
9054 So we return the tagged type without consulting the tag. */
9055
9056 static struct type *
9057 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9058 CORE_ADDR address, struct value *dval, int check_tag)
9059 {
9060 type = ada_check_typedef (type);
9061 switch (TYPE_CODE (type))
9062 {
9063 default:
9064 return type;
9065 case TYPE_CODE_STRUCT:
9066 {
9067 struct type *static_type = to_static_fixed_type (type);
9068 struct type *fixed_record_type =
9069 to_fixed_record_type (type, valaddr, address, NULL);
9070
9071 /* If STATIC_TYPE is a tagged type and we know the object's address,
9072 then we can determine its tag, and compute the object's actual
9073 type from there. Note that we have to use the fixed record
9074 type (the parent part of the record may have dynamic fields
9075 and the way the location of _tag is expressed may depend on
9076 them). */
9077
9078 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9079 {
9080 struct value *tag =
9081 value_tag_from_contents_and_address
9082 (fixed_record_type,
9083 valaddr,
9084 address);
9085 struct type *real_type = type_from_tag (tag);
9086 struct value *obj =
9087 value_from_contents_and_address (fixed_record_type,
9088 valaddr,
9089 address);
9090 fixed_record_type = value_type (obj);
9091 if (real_type != NULL)
9092 return to_fixed_record_type
9093 (real_type, NULL,
9094 value_address (ada_tag_value_at_base_address (obj)), NULL);
9095 }
9096
9097 /* Check to see if there is a parallel ___XVZ variable.
9098 If there is, then it provides the actual size of our type. */
9099 else if (ada_type_name (fixed_record_type) != NULL)
9100 {
9101 const char *name = ada_type_name (fixed_record_type);
9102 char *xvz_name
9103 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9104 bool xvz_found = false;
9105 LONGEST size;
9106
9107 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9108 TRY
9109 {
9110 xvz_found = get_int_var_value (xvz_name, size);
9111 }
9112 CATCH (except, RETURN_MASK_ERROR)
9113 {
9114 /* We found the variable, but somehow failed to read
9115 its value. Rethrow the same error, but with a little
9116 bit more information, to help the user understand
9117 what went wrong (Eg: the variable might have been
9118 optimized out). */
9119 throw_error (except.error,
9120 _("unable to read value of %s (%s)"),
9121 xvz_name, except.message);
9122 }
9123 END_CATCH
9124
9125 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9126 {
9127 fixed_record_type = copy_type (fixed_record_type);
9128 TYPE_LENGTH (fixed_record_type) = size;
9129
9130 /* The FIXED_RECORD_TYPE may have be a stub. We have
9131 observed this when the debugging info is STABS, and
9132 apparently it is something that is hard to fix.
9133
9134 In practice, we don't need the actual type definition
9135 at all, because the presence of the XVZ variable allows us
9136 to assume that there must be a XVS type as well, which we
9137 should be able to use later, when we need the actual type
9138 definition.
9139
9140 In the meantime, pretend that the "fixed" type we are
9141 returning is NOT a stub, because this can cause trouble
9142 when using this type to create new types targeting it.
9143 Indeed, the associated creation routines often check
9144 whether the target type is a stub and will try to replace
9145 it, thus using a type with the wrong size. This, in turn,
9146 might cause the new type to have the wrong size too.
9147 Consider the case of an array, for instance, where the size
9148 of the array is computed from the number of elements in
9149 our array multiplied by the size of its element. */
9150 TYPE_STUB (fixed_record_type) = 0;
9151 }
9152 }
9153 return fixed_record_type;
9154 }
9155 case TYPE_CODE_ARRAY:
9156 return to_fixed_array_type (type, dval, 1);
9157 case TYPE_CODE_UNION:
9158 if (dval == NULL)
9159 return type;
9160 else
9161 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9162 }
9163 }
9164
9165 /* The same as ada_to_fixed_type_1, except that it preserves the type
9166 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9167
9168 The typedef layer needs be preserved in order to differentiate between
9169 arrays and array pointers when both types are implemented using the same
9170 fat pointer. In the array pointer case, the pointer is encoded as
9171 a typedef of the pointer type. For instance, considering:
9172
9173 type String_Access is access String;
9174 S1 : String_Access := null;
9175
9176 To the debugger, S1 is defined as a typedef of type String. But
9177 to the user, it is a pointer. So if the user tries to print S1,
9178 we should not dereference the array, but print the array address
9179 instead.
9180
9181 If we didn't preserve the typedef layer, we would lose the fact that
9182 the type is to be presented as a pointer (needs de-reference before
9183 being printed). And we would also use the source-level type name. */
9184
9185 struct type *
9186 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9187 CORE_ADDR address, struct value *dval, int check_tag)
9188
9189 {
9190 struct type *fixed_type =
9191 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9192
9193 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9194 then preserve the typedef layer.
9195
9196 Implementation note: We can only check the main-type portion of
9197 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9198 from TYPE now returns a type that has the same instance flags
9199 as TYPE. For instance, if TYPE is a "typedef const", and its
9200 target type is a "struct", then the typedef elimination will return
9201 a "const" version of the target type. See check_typedef for more
9202 details about how the typedef layer elimination is done.
9203
9204 brobecker/2010-11-19: It seems to me that the only case where it is
9205 useful to preserve the typedef layer is when dealing with fat pointers.
9206 Perhaps, we could add a check for that and preserve the typedef layer
9207 only in that situation. But this seems unecessary so far, probably
9208 because we call check_typedef/ada_check_typedef pretty much everywhere.
9209 */
9210 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9211 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9212 == TYPE_MAIN_TYPE (fixed_type)))
9213 return type;
9214
9215 return fixed_type;
9216 }
9217
9218 /* A standard (static-sized) type corresponding as well as possible to
9219 TYPE0, but based on no runtime data. */
9220
9221 static struct type *
9222 to_static_fixed_type (struct type *type0)
9223 {
9224 struct type *type;
9225
9226 if (type0 == NULL)
9227 return NULL;
9228
9229 if (TYPE_FIXED_INSTANCE (type0))
9230 return type0;
9231
9232 type0 = ada_check_typedef (type0);
9233
9234 switch (TYPE_CODE (type0))
9235 {
9236 default:
9237 return type0;
9238 case TYPE_CODE_STRUCT:
9239 type = dynamic_template_type (type0);
9240 if (type != NULL)
9241 return template_to_static_fixed_type (type);
9242 else
9243 return template_to_static_fixed_type (type0);
9244 case TYPE_CODE_UNION:
9245 type = ada_find_parallel_type (type0, "___XVU");
9246 if (type != NULL)
9247 return template_to_static_fixed_type (type);
9248 else
9249 return template_to_static_fixed_type (type0);
9250 }
9251 }
9252
9253 /* A static approximation of TYPE with all type wrappers removed. */
9254
9255 static struct type *
9256 static_unwrap_type (struct type *type)
9257 {
9258 if (ada_is_aligner_type (type))
9259 {
9260 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9261 if (ada_type_name (type1) == NULL)
9262 TYPE_NAME (type1) = ada_type_name (type);
9263
9264 return static_unwrap_type (type1);
9265 }
9266 else
9267 {
9268 struct type *raw_real_type = ada_get_base_type (type);
9269
9270 if (raw_real_type == type)
9271 return type;
9272 else
9273 return to_static_fixed_type (raw_real_type);
9274 }
9275 }
9276
9277 /* In some cases, incomplete and private types require
9278 cross-references that are not resolved as records (for example,
9279 type Foo;
9280 type FooP is access Foo;
9281 V: FooP;
9282 type Foo is array ...;
9283 ). In these cases, since there is no mechanism for producing
9284 cross-references to such types, we instead substitute for FooP a
9285 stub enumeration type that is nowhere resolved, and whose tag is
9286 the name of the actual type. Call these types "non-record stubs". */
9287
9288 /* A type equivalent to TYPE that is not a non-record stub, if one
9289 exists, otherwise TYPE. */
9290
9291 struct type *
9292 ada_check_typedef (struct type *type)
9293 {
9294 if (type == NULL)
9295 return NULL;
9296
9297 /* If our type is a typedef type of a fat pointer, then we're done.
9298 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9299 what allows us to distinguish between fat pointers that represent
9300 array types, and fat pointers that represent array access types
9301 (in both cases, the compiler implements them as fat pointers). */
9302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9303 && is_thick_pntr (ada_typedef_target_type (type)))
9304 return type;
9305
9306 type = check_typedef (type);
9307 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9308 || !TYPE_STUB (type)
9309 || TYPE_TAG_NAME (type) == NULL)
9310 return type;
9311 else
9312 {
9313 const char *name = TYPE_TAG_NAME (type);
9314 struct type *type1 = ada_find_any_type (name);
9315
9316 if (type1 == NULL)
9317 return type;
9318
9319 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9320 stubs pointing to arrays, as we don't create symbols for array
9321 types, only for the typedef-to-array types). If that's the case,
9322 strip the typedef layer. */
9323 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9324 type1 = ada_check_typedef (type1);
9325
9326 return type1;
9327 }
9328 }
9329
9330 /* A value representing the data at VALADDR/ADDRESS as described by
9331 type TYPE0, but with a standard (static-sized) type that correctly
9332 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9333 type, then return VAL0 [this feature is simply to avoid redundant
9334 creation of struct values]. */
9335
9336 static struct value *
9337 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9338 struct value *val0)
9339 {
9340 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9341
9342 if (type == type0 && val0 != NULL)
9343 return val0;
9344 else
9345 return value_from_contents_and_address (type, 0, address);
9346 }
9347
9348 /* A value representing VAL, but with a standard (static-sized) type
9349 that correctly describes it. Does not necessarily create a new
9350 value. */
9351
9352 struct value *
9353 ada_to_fixed_value (struct value *val)
9354 {
9355 val = unwrap_value (val);
9356 val = ada_to_fixed_value_create (value_type (val),
9357 value_address (val),
9358 val);
9359 return val;
9360 }
9361 \f
9362
9363 /* Attributes */
9364
9365 /* Table mapping attribute numbers to names.
9366 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9367
9368 static const char *attribute_names[] = {
9369 "<?>",
9370
9371 "first",
9372 "last",
9373 "length",
9374 "image",
9375 "max",
9376 "min",
9377 "modulus",
9378 "pos",
9379 "size",
9380 "tag",
9381 "val",
9382 0
9383 };
9384
9385 const char *
9386 ada_attribute_name (enum exp_opcode n)
9387 {
9388 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9389 return attribute_names[n - OP_ATR_FIRST + 1];
9390 else
9391 return attribute_names[0];
9392 }
9393
9394 /* Evaluate the 'POS attribute applied to ARG. */
9395
9396 static LONGEST
9397 pos_atr (struct value *arg)
9398 {
9399 struct value *val = coerce_ref (arg);
9400 struct type *type = value_type (val);
9401 LONGEST result;
9402
9403 if (!discrete_type_p (type))
9404 error (_("'POS only defined on discrete types"));
9405
9406 if (!discrete_position (type, value_as_long (val), &result))
9407 error (_("enumeration value is invalid: can't find 'POS"));
9408
9409 return result;
9410 }
9411
9412 static struct value *
9413 value_pos_atr (struct type *type, struct value *arg)
9414 {
9415 return value_from_longest (type, pos_atr (arg));
9416 }
9417
9418 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9419
9420 static struct value *
9421 value_val_atr (struct type *type, struct value *arg)
9422 {
9423 if (!discrete_type_p (type))
9424 error (_("'VAL only defined on discrete types"));
9425 if (!integer_type_p (value_type (arg)))
9426 error (_("'VAL requires integral argument"));
9427
9428 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9429 {
9430 long pos = value_as_long (arg);
9431
9432 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9433 error (_("argument to 'VAL out of range"));
9434 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9435 }
9436 else
9437 return value_from_longest (type, value_as_long (arg));
9438 }
9439 \f
9440
9441 /* Evaluation */
9442
9443 /* True if TYPE appears to be an Ada character type.
9444 [At the moment, this is true only for Character and Wide_Character;
9445 It is a heuristic test that could stand improvement]. */
9446
9447 int
9448 ada_is_character_type (struct type *type)
9449 {
9450 const char *name;
9451
9452 /* If the type code says it's a character, then assume it really is,
9453 and don't check any further. */
9454 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9455 return 1;
9456
9457 /* Otherwise, assume it's a character type iff it is a discrete type
9458 with a known character type name. */
9459 name = ada_type_name (type);
9460 return (name != NULL
9461 && (TYPE_CODE (type) == TYPE_CODE_INT
9462 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9463 && (strcmp (name, "character") == 0
9464 || strcmp (name, "wide_character") == 0
9465 || strcmp (name, "wide_wide_character") == 0
9466 || strcmp (name, "unsigned char") == 0));
9467 }
9468
9469 /* True if TYPE appears to be an Ada string type. */
9470
9471 int
9472 ada_is_string_type (struct type *type)
9473 {
9474 type = ada_check_typedef (type);
9475 if (type != NULL
9476 && TYPE_CODE (type) != TYPE_CODE_PTR
9477 && (ada_is_simple_array_type (type)
9478 || ada_is_array_descriptor_type (type))
9479 && ada_array_arity (type) == 1)
9480 {
9481 struct type *elttype = ada_array_element_type (type, 1);
9482
9483 return ada_is_character_type (elttype);
9484 }
9485 else
9486 return 0;
9487 }
9488
9489 /* The compiler sometimes provides a parallel XVS type for a given
9490 PAD type. Normally, it is safe to follow the PAD type directly,
9491 but older versions of the compiler have a bug that causes the offset
9492 of its "F" field to be wrong. Following that field in that case
9493 would lead to incorrect results, but this can be worked around
9494 by ignoring the PAD type and using the associated XVS type instead.
9495
9496 Set to True if the debugger should trust the contents of PAD types.
9497 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9498 static int trust_pad_over_xvs = 1;
9499
9500 /* True if TYPE is a struct type introduced by the compiler to force the
9501 alignment of a value. Such types have a single field with a
9502 distinctive name. */
9503
9504 int
9505 ada_is_aligner_type (struct type *type)
9506 {
9507 type = ada_check_typedef (type);
9508
9509 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9510 return 0;
9511
9512 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9513 && TYPE_NFIELDS (type) == 1
9514 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9515 }
9516
9517 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9518 the parallel type. */
9519
9520 struct type *
9521 ada_get_base_type (struct type *raw_type)
9522 {
9523 struct type *real_type_namer;
9524 struct type *raw_real_type;
9525
9526 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9527 return raw_type;
9528
9529 if (ada_is_aligner_type (raw_type))
9530 /* The encoding specifies that we should always use the aligner type.
9531 So, even if this aligner type has an associated XVS type, we should
9532 simply ignore it.
9533
9534 According to the compiler gurus, an XVS type parallel to an aligner
9535 type may exist because of a stabs limitation. In stabs, aligner
9536 types are empty because the field has a variable-sized type, and
9537 thus cannot actually be used as an aligner type. As a result,
9538 we need the associated parallel XVS type to decode the type.
9539 Since the policy in the compiler is to not change the internal
9540 representation based on the debugging info format, we sometimes
9541 end up having a redundant XVS type parallel to the aligner type. */
9542 return raw_type;
9543
9544 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9545 if (real_type_namer == NULL
9546 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9547 || TYPE_NFIELDS (real_type_namer) != 1)
9548 return raw_type;
9549
9550 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9551 {
9552 /* This is an older encoding form where the base type needs to be
9553 looked up by name. We prefer the newer enconding because it is
9554 more efficient. */
9555 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9556 if (raw_real_type == NULL)
9557 return raw_type;
9558 else
9559 return raw_real_type;
9560 }
9561
9562 /* The field in our XVS type is a reference to the base type. */
9563 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9564 }
9565
9566 /* The type of value designated by TYPE, with all aligners removed. */
9567
9568 struct type *
9569 ada_aligned_type (struct type *type)
9570 {
9571 if (ada_is_aligner_type (type))
9572 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9573 else
9574 return ada_get_base_type (type);
9575 }
9576
9577
9578 /* The address of the aligned value in an object at address VALADDR
9579 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9580
9581 const gdb_byte *
9582 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9583 {
9584 if (ada_is_aligner_type (type))
9585 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9586 valaddr +
9587 TYPE_FIELD_BITPOS (type,
9588 0) / TARGET_CHAR_BIT);
9589 else
9590 return valaddr;
9591 }
9592
9593
9594
9595 /* The printed representation of an enumeration literal with encoded
9596 name NAME. The value is good to the next call of ada_enum_name. */
9597 const char *
9598 ada_enum_name (const char *name)
9599 {
9600 static char *result;
9601 static size_t result_len = 0;
9602 const char *tmp;
9603
9604 /* First, unqualify the enumeration name:
9605 1. Search for the last '.' character. If we find one, then skip
9606 all the preceding characters, the unqualified name starts
9607 right after that dot.
9608 2. Otherwise, we may be debugging on a target where the compiler
9609 translates dots into "__". Search forward for double underscores,
9610 but stop searching when we hit an overloading suffix, which is
9611 of the form "__" followed by digits. */
9612
9613 tmp = strrchr (name, '.');
9614 if (tmp != NULL)
9615 name = tmp + 1;
9616 else
9617 {
9618 while ((tmp = strstr (name, "__")) != NULL)
9619 {
9620 if (isdigit (tmp[2]))
9621 break;
9622 else
9623 name = tmp + 2;
9624 }
9625 }
9626
9627 if (name[0] == 'Q')
9628 {
9629 int v;
9630
9631 if (name[1] == 'U' || name[1] == 'W')
9632 {
9633 if (sscanf (name + 2, "%x", &v) != 1)
9634 return name;
9635 }
9636 else
9637 return name;
9638
9639 GROW_VECT (result, result_len, 16);
9640 if (isascii (v) && isprint (v))
9641 xsnprintf (result, result_len, "'%c'", v);
9642 else if (name[1] == 'U')
9643 xsnprintf (result, result_len, "[\"%02x\"]", v);
9644 else
9645 xsnprintf (result, result_len, "[\"%04x\"]", v);
9646
9647 return result;
9648 }
9649 else
9650 {
9651 tmp = strstr (name, "__");
9652 if (tmp == NULL)
9653 tmp = strstr (name, "$");
9654 if (tmp != NULL)
9655 {
9656 GROW_VECT (result, result_len, tmp - name + 1);
9657 strncpy (result, name, tmp - name);
9658 result[tmp - name] = '\0';
9659 return result;
9660 }
9661
9662 return name;
9663 }
9664 }
9665
9666 /* Evaluate the subexpression of EXP starting at *POS as for
9667 evaluate_type, updating *POS to point just past the evaluated
9668 expression. */
9669
9670 static struct value *
9671 evaluate_subexp_type (struct expression *exp, int *pos)
9672 {
9673 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9674 }
9675
9676 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9677 value it wraps. */
9678
9679 static struct value *
9680 unwrap_value (struct value *val)
9681 {
9682 struct type *type = ada_check_typedef (value_type (val));
9683
9684 if (ada_is_aligner_type (type))
9685 {
9686 struct value *v = ada_value_struct_elt (val, "F", 0);
9687 struct type *val_type = ada_check_typedef (value_type (v));
9688
9689 if (ada_type_name (val_type) == NULL)
9690 TYPE_NAME (val_type) = ada_type_name (type);
9691
9692 return unwrap_value (v);
9693 }
9694 else
9695 {
9696 struct type *raw_real_type =
9697 ada_check_typedef (ada_get_base_type (type));
9698
9699 /* If there is no parallel XVS or XVE type, then the value is
9700 already unwrapped. Return it without further modification. */
9701 if ((type == raw_real_type)
9702 && ada_find_parallel_type (type, "___XVE") == NULL)
9703 return val;
9704
9705 return
9706 coerce_unspec_val_to_type
9707 (val, ada_to_fixed_type (raw_real_type, 0,
9708 value_address (val),
9709 NULL, 1));
9710 }
9711 }
9712
9713 static struct value *
9714 cast_from_fixed (struct type *type, struct value *arg)
9715 {
9716 struct value *scale = ada_scaling_factor (value_type (arg));
9717 arg = value_cast (value_type (scale), arg);
9718
9719 arg = value_binop (arg, scale, BINOP_MUL);
9720 return value_cast (type, arg);
9721 }
9722
9723 static struct value *
9724 cast_to_fixed (struct type *type, struct value *arg)
9725 {
9726 if (type == value_type (arg))
9727 return arg;
9728
9729 struct value *scale = ada_scaling_factor (type);
9730 if (ada_is_fixed_point_type (value_type (arg)))
9731 arg = cast_from_fixed (value_type (scale), arg);
9732 else
9733 arg = value_cast (value_type (scale), arg);
9734
9735 arg = value_binop (arg, scale, BINOP_DIV);
9736 return value_cast (type, arg);
9737 }
9738
9739 /* Given two array types T1 and T2, return nonzero iff both arrays
9740 contain the same number of elements. */
9741
9742 static int
9743 ada_same_array_size_p (struct type *t1, struct type *t2)
9744 {
9745 LONGEST lo1, hi1, lo2, hi2;
9746
9747 /* Get the array bounds in order to verify that the size of
9748 the two arrays match. */
9749 if (!get_array_bounds (t1, &lo1, &hi1)
9750 || !get_array_bounds (t2, &lo2, &hi2))
9751 error (_("unable to determine array bounds"));
9752
9753 /* To make things easier for size comparison, normalize a bit
9754 the case of empty arrays by making sure that the difference
9755 between upper bound and lower bound is always -1. */
9756 if (lo1 > hi1)
9757 hi1 = lo1 - 1;
9758 if (lo2 > hi2)
9759 hi2 = lo2 - 1;
9760
9761 return (hi1 - lo1 == hi2 - lo2);
9762 }
9763
9764 /* Assuming that VAL is an array of integrals, and TYPE represents
9765 an array with the same number of elements, but with wider integral
9766 elements, return an array "casted" to TYPE. In practice, this
9767 means that the returned array is built by casting each element
9768 of the original array into TYPE's (wider) element type. */
9769
9770 static struct value *
9771 ada_promote_array_of_integrals (struct type *type, struct value *val)
9772 {
9773 struct type *elt_type = TYPE_TARGET_TYPE (type);
9774 LONGEST lo, hi;
9775 struct value *res;
9776 LONGEST i;
9777
9778 /* Verify that both val and type are arrays of scalars, and
9779 that the size of val's elements is smaller than the size
9780 of type's element. */
9781 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9782 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9783 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9784 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9785 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9786 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9787
9788 if (!get_array_bounds (type, &lo, &hi))
9789 error (_("unable to determine array bounds"));
9790
9791 res = allocate_value (type);
9792
9793 /* Promote each array element. */
9794 for (i = 0; i < hi - lo + 1; i++)
9795 {
9796 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9797
9798 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9799 value_contents_all (elt), TYPE_LENGTH (elt_type));
9800 }
9801
9802 return res;
9803 }
9804
9805 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9806 return the converted value. */
9807
9808 static struct value *
9809 coerce_for_assign (struct type *type, struct value *val)
9810 {
9811 struct type *type2 = value_type (val);
9812
9813 if (type == type2)
9814 return val;
9815
9816 type2 = ada_check_typedef (type2);
9817 type = ada_check_typedef (type);
9818
9819 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9820 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9821 {
9822 val = ada_value_ind (val);
9823 type2 = value_type (val);
9824 }
9825
9826 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9827 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9828 {
9829 if (!ada_same_array_size_p (type, type2))
9830 error (_("cannot assign arrays of different length"));
9831
9832 if (is_integral_type (TYPE_TARGET_TYPE (type))
9833 && is_integral_type (TYPE_TARGET_TYPE (type2))
9834 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9835 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9836 {
9837 /* Allow implicit promotion of the array elements to
9838 a wider type. */
9839 return ada_promote_array_of_integrals (type, val);
9840 }
9841
9842 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9843 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9844 error (_("Incompatible types in assignment"));
9845 deprecated_set_value_type (val, type);
9846 }
9847 return val;
9848 }
9849
9850 static struct value *
9851 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9852 {
9853 struct value *val;
9854 struct type *type1, *type2;
9855 LONGEST v, v1, v2;
9856
9857 arg1 = coerce_ref (arg1);
9858 arg2 = coerce_ref (arg2);
9859 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9860 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9861
9862 if (TYPE_CODE (type1) != TYPE_CODE_INT
9863 || TYPE_CODE (type2) != TYPE_CODE_INT)
9864 return value_binop (arg1, arg2, op);
9865
9866 switch (op)
9867 {
9868 case BINOP_MOD:
9869 case BINOP_DIV:
9870 case BINOP_REM:
9871 break;
9872 default:
9873 return value_binop (arg1, arg2, op);
9874 }
9875
9876 v2 = value_as_long (arg2);
9877 if (v2 == 0)
9878 error (_("second operand of %s must not be zero."), op_string (op));
9879
9880 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9881 return value_binop (arg1, arg2, op);
9882
9883 v1 = value_as_long (arg1);
9884 switch (op)
9885 {
9886 case BINOP_DIV:
9887 v = v1 / v2;
9888 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9889 v += v > 0 ? -1 : 1;
9890 break;
9891 case BINOP_REM:
9892 v = v1 % v2;
9893 if (v * v1 < 0)
9894 v -= v2;
9895 break;
9896 default:
9897 /* Should not reach this point. */
9898 v = 0;
9899 }
9900
9901 val = allocate_value (type1);
9902 store_unsigned_integer (value_contents_raw (val),
9903 TYPE_LENGTH (value_type (val)),
9904 gdbarch_byte_order (get_type_arch (type1)), v);
9905 return val;
9906 }
9907
9908 static int
9909 ada_value_equal (struct value *arg1, struct value *arg2)
9910 {
9911 if (ada_is_direct_array_type (value_type (arg1))
9912 || ada_is_direct_array_type (value_type (arg2)))
9913 {
9914 struct type *arg1_type, *arg2_type;
9915
9916 /* Automatically dereference any array reference before
9917 we attempt to perform the comparison. */
9918 arg1 = ada_coerce_ref (arg1);
9919 arg2 = ada_coerce_ref (arg2);
9920
9921 arg1 = ada_coerce_to_simple_array (arg1);
9922 arg2 = ada_coerce_to_simple_array (arg2);
9923
9924 arg1_type = ada_check_typedef (value_type (arg1));
9925 arg2_type = ada_check_typedef (value_type (arg2));
9926
9927 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9928 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9929 error (_("Attempt to compare array with non-array"));
9930 /* FIXME: The following works only for types whose
9931 representations use all bits (no padding or undefined bits)
9932 and do not have user-defined equality. */
9933 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9934 && memcmp (value_contents (arg1), value_contents (arg2),
9935 TYPE_LENGTH (arg1_type)) == 0);
9936 }
9937 return value_equal (arg1, arg2);
9938 }
9939
9940 /* Total number of component associations in the aggregate starting at
9941 index PC in EXP. Assumes that index PC is the start of an
9942 OP_AGGREGATE. */
9943
9944 static int
9945 num_component_specs (struct expression *exp, int pc)
9946 {
9947 int n, m, i;
9948
9949 m = exp->elts[pc + 1].longconst;
9950 pc += 3;
9951 n = 0;
9952 for (i = 0; i < m; i += 1)
9953 {
9954 switch (exp->elts[pc].opcode)
9955 {
9956 default:
9957 n += 1;
9958 break;
9959 case OP_CHOICES:
9960 n += exp->elts[pc + 1].longconst;
9961 break;
9962 }
9963 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9964 }
9965 return n;
9966 }
9967
9968 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9969 component of LHS (a simple array or a record), updating *POS past
9970 the expression, assuming that LHS is contained in CONTAINER. Does
9971 not modify the inferior's memory, nor does it modify LHS (unless
9972 LHS == CONTAINER). */
9973
9974 static void
9975 assign_component (struct value *container, struct value *lhs, LONGEST index,
9976 struct expression *exp, int *pos)
9977 {
9978 struct value *mark = value_mark ();
9979 struct value *elt;
9980 struct type *lhs_type = check_typedef (value_type (lhs));
9981
9982 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9983 {
9984 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9985 struct value *index_val = value_from_longest (index_type, index);
9986
9987 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9988 }
9989 else
9990 {
9991 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9992 elt = ada_to_fixed_value (elt);
9993 }
9994
9995 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9996 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9997 else
9998 value_assign_to_component (container, elt,
9999 ada_evaluate_subexp (NULL, exp, pos,
10000 EVAL_NORMAL));
10001
10002 value_free_to_mark (mark);
10003 }
10004
10005 /* Assuming that LHS represents an lvalue having a record or array
10006 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10007 of that aggregate's value to LHS, advancing *POS past the
10008 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10009 lvalue containing LHS (possibly LHS itself). Does not modify
10010 the inferior's memory, nor does it modify the contents of
10011 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10012
10013 static struct value *
10014 assign_aggregate (struct value *container,
10015 struct value *lhs, struct expression *exp,
10016 int *pos, enum noside noside)
10017 {
10018 struct type *lhs_type;
10019 int n = exp->elts[*pos+1].longconst;
10020 LONGEST low_index, high_index;
10021 int num_specs;
10022 LONGEST *indices;
10023 int max_indices, num_indices;
10024 int i;
10025
10026 *pos += 3;
10027 if (noside != EVAL_NORMAL)
10028 {
10029 for (i = 0; i < n; i += 1)
10030 ada_evaluate_subexp (NULL, exp, pos, noside);
10031 return container;
10032 }
10033
10034 container = ada_coerce_ref (container);
10035 if (ada_is_direct_array_type (value_type (container)))
10036 container = ada_coerce_to_simple_array (container);
10037 lhs = ada_coerce_ref (lhs);
10038 if (!deprecated_value_modifiable (lhs))
10039 error (_("Left operand of assignment is not a modifiable lvalue."));
10040
10041 lhs_type = check_typedef (value_type (lhs));
10042 if (ada_is_direct_array_type (lhs_type))
10043 {
10044 lhs = ada_coerce_to_simple_array (lhs);
10045 lhs_type = check_typedef (value_type (lhs));
10046 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10047 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10048 }
10049 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10050 {
10051 low_index = 0;
10052 high_index = num_visible_fields (lhs_type) - 1;
10053 }
10054 else
10055 error (_("Left-hand side must be array or record."));
10056
10057 num_specs = num_component_specs (exp, *pos - 3);
10058 max_indices = 4 * num_specs + 4;
10059 indices = XALLOCAVEC (LONGEST, max_indices);
10060 indices[0] = indices[1] = low_index - 1;
10061 indices[2] = indices[3] = high_index + 1;
10062 num_indices = 4;
10063
10064 for (i = 0; i < n; i += 1)
10065 {
10066 switch (exp->elts[*pos].opcode)
10067 {
10068 case OP_CHOICES:
10069 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10070 &num_indices, max_indices,
10071 low_index, high_index);
10072 break;
10073 case OP_POSITIONAL:
10074 aggregate_assign_positional (container, lhs, exp, pos, indices,
10075 &num_indices, max_indices,
10076 low_index, high_index);
10077 break;
10078 case OP_OTHERS:
10079 if (i != n-1)
10080 error (_("Misplaced 'others' clause"));
10081 aggregate_assign_others (container, lhs, exp, pos, indices,
10082 num_indices, low_index, high_index);
10083 break;
10084 default:
10085 error (_("Internal error: bad aggregate clause"));
10086 }
10087 }
10088
10089 return container;
10090 }
10091
10092 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10093 construct at *POS, updating *POS past the construct, given that
10094 the positions are relative to lower bound LOW, where HIGH is the
10095 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10096 updating *NUM_INDICES as needed. CONTAINER is as for
10097 assign_aggregate. */
10098 static void
10099 aggregate_assign_positional (struct value *container,
10100 struct value *lhs, struct expression *exp,
10101 int *pos, LONGEST *indices, int *num_indices,
10102 int max_indices, LONGEST low, LONGEST high)
10103 {
10104 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10105
10106 if (ind - 1 == high)
10107 warning (_("Extra components in aggregate ignored."));
10108 if (ind <= high)
10109 {
10110 add_component_interval (ind, ind, indices, num_indices, max_indices);
10111 *pos += 3;
10112 assign_component (container, lhs, ind, exp, pos);
10113 }
10114 else
10115 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10116 }
10117
10118 /* Assign into the components of LHS indexed by the OP_CHOICES
10119 construct at *POS, updating *POS past the construct, given that
10120 the allowable indices are LOW..HIGH. Record the indices assigned
10121 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10122 needed. CONTAINER is as for assign_aggregate. */
10123 static void
10124 aggregate_assign_from_choices (struct value *container,
10125 struct value *lhs, struct expression *exp,
10126 int *pos, LONGEST *indices, int *num_indices,
10127 int max_indices, LONGEST low, LONGEST high)
10128 {
10129 int j;
10130 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10131 int choice_pos, expr_pc;
10132 int is_array = ada_is_direct_array_type (value_type (lhs));
10133
10134 choice_pos = *pos += 3;
10135
10136 for (j = 0; j < n_choices; j += 1)
10137 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10138 expr_pc = *pos;
10139 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10140
10141 for (j = 0; j < n_choices; j += 1)
10142 {
10143 LONGEST lower, upper;
10144 enum exp_opcode op = exp->elts[choice_pos].opcode;
10145
10146 if (op == OP_DISCRETE_RANGE)
10147 {
10148 choice_pos += 1;
10149 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10150 EVAL_NORMAL));
10151 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10152 EVAL_NORMAL));
10153 }
10154 else if (is_array)
10155 {
10156 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10157 EVAL_NORMAL));
10158 upper = lower;
10159 }
10160 else
10161 {
10162 int ind;
10163 const char *name;
10164
10165 switch (op)
10166 {
10167 case OP_NAME:
10168 name = &exp->elts[choice_pos + 2].string;
10169 break;
10170 case OP_VAR_VALUE:
10171 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10172 break;
10173 default:
10174 error (_("Invalid record component association."));
10175 }
10176 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10177 ind = 0;
10178 if (! find_struct_field (name, value_type (lhs), 0,
10179 NULL, NULL, NULL, NULL, &ind))
10180 error (_("Unknown component name: %s."), name);
10181 lower = upper = ind;
10182 }
10183
10184 if (lower <= upper && (lower < low || upper > high))
10185 error (_("Index in component association out of bounds."));
10186
10187 add_component_interval (lower, upper, indices, num_indices,
10188 max_indices);
10189 while (lower <= upper)
10190 {
10191 int pos1;
10192
10193 pos1 = expr_pc;
10194 assign_component (container, lhs, lower, exp, &pos1);
10195 lower += 1;
10196 }
10197 }
10198 }
10199
10200 /* Assign the value of the expression in the OP_OTHERS construct in
10201 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10202 have not been previously assigned. The index intervals already assigned
10203 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10204 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10205 static void
10206 aggregate_assign_others (struct value *container,
10207 struct value *lhs, struct expression *exp,
10208 int *pos, LONGEST *indices, int num_indices,
10209 LONGEST low, LONGEST high)
10210 {
10211 int i;
10212 int expr_pc = *pos + 1;
10213
10214 for (i = 0; i < num_indices - 2; i += 2)
10215 {
10216 LONGEST ind;
10217
10218 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10219 {
10220 int localpos;
10221
10222 localpos = expr_pc;
10223 assign_component (container, lhs, ind, exp, &localpos);
10224 }
10225 }
10226 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10227 }
10228
10229 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10230 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10231 modifying *SIZE as needed. It is an error if *SIZE exceeds
10232 MAX_SIZE. The resulting intervals do not overlap. */
10233 static void
10234 add_component_interval (LONGEST low, LONGEST high,
10235 LONGEST* indices, int *size, int max_size)
10236 {
10237 int i, j;
10238
10239 for (i = 0; i < *size; i += 2) {
10240 if (high >= indices[i] && low <= indices[i + 1])
10241 {
10242 int kh;
10243
10244 for (kh = i + 2; kh < *size; kh += 2)
10245 if (high < indices[kh])
10246 break;
10247 if (low < indices[i])
10248 indices[i] = low;
10249 indices[i + 1] = indices[kh - 1];
10250 if (high > indices[i + 1])
10251 indices[i + 1] = high;
10252 memcpy (indices + i + 2, indices + kh, *size - kh);
10253 *size -= kh - i - 2;
10254 return;
10255 }
10256 else if (high < indices[i])
10257 break;
10258 }
10259
10260 if (*size == max_size)
10261 error (_("Internal error: miscounted aggregate components."));
10262 *size += 2;
10263 for (j = *size-1; j >= i+2; j -= 1)
10264 indices[j] = indices[j - 2];
10265 indices[i] = low;
10266 indices[i + 1] = high;
10267 }
10268
10269 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10270 is different. */
10271
10272 static struct value *
10273 ada_value_cast (struct type *type, struct value *arg2)
10274 {
10275 if (type == ada_check_typedef (value_type (arg2)))
10276 return arg2;
10277
10278 if (ada_is_fixed_point_type (type))
10279 return (cast_to_fixed (type, arg2));
10280
10281 if (ada_is_fixed_point_type (value_type (arg2)))
10282 return cast_from_fixed (type, arg2);
10283
10284 return value_cast (type, arg2);
10285 }
10286
10287 /* Evaluating Ada expressions, and printing their result.
10288 ------------------------------------------------------
10289
10290 1. Introduction:
10291 ----------------
10292
10293 We usually evaluate an Ada expression in order to print its value.
10294 We also evaluate an expression in order to print its type, which
10295 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10296 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10297 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10298 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10299 similar.
10300
10301 Evaluating expressions is a little more complicated for Ada entities
10302 than it is for entities in languages such as C. The main reason for
10303 this is that Ada provides types whose definition might be dynamic.
10304 One example of such types is variant records. Or another example
10305 would be an array whose bounds can only be known at run time.
10306
10307 The following description is a general guide as to what should be
10308 done (and what should NOT be done) in order to evaluate an expression
10309 involving such types, and when. This does not cover how the semantic
10310 information is encoded by GNAT as this is covered separatly. For the
10311 document used as the reference for the GNAT encoding, see exp_dbug.ads
10312 in the GNAT sources.
10313
10314 Ideally, we should embed each part of this description next to its
10315 associated code. Unfortunately, the amount of code is so vast right
10316 now that it's hard to see whether the code handling a particular
10317 situation might be duplicated or not. One day, when the code is
10318 cleaned up, this guide might become redundant with the comments
10319 inserted in the code, and we might want to remove it.
10320
10321 2. ``Fixing'' an Entity, the Simple Case:
10322 -----------------------------------------
10323
10324 When evaluating Ada expressions, the tricky issue is that they may
10325 reference entities whose type contents and size are not statically
10326 known. Consider for instance a variant record:
10327
10328 type Rec (Empty : Boolean := True) is record
10329 case Empty is
10330 when True => null;
10331 when False => Value : Integer;
10332 end case;
10333 end record;
10334 Yes : Rec := (Empty => False, Value => 1);
10335 No : Rec := (empty => True);
10336
10337 The size and contents of that record depends on the value of the
10338 descriminant (Rec.Empty). At this point, neither the debugging
10339 information nor the associated type structure in GDB are able to
10340 express such dynamic types. So what the debugger does is to create
10341 "fixed" versions of the type that applies to the specific object.
10342 We also informally refer to this opperation as "fixing" an object,
10343 which means creating its associated fixed type.
10344
10345 Example: when printing the value of variable "Yes" above, its fixed
10346 type would look like this:
10347
10348 type Rec is record
10349 Empty : Boolean;
10350 Value : Integer;
10351 end record;
10352
10353 On the other hand, if we printed the value of "No", its fixed type
10354 would become:
10355
10356 type Rec is record
10357 Empty : Boolean;
10358 end record;
10359
10360 Things become a little more complicated when trying to fix an entity
10361 with a dynamic type that directly contains another dynamic type,
10362 such as an array of variant records, for instance. There are
10363 two possible cases: Arrays, and records.
10364
10365 3. ``Fixing'' Arrays:
10366 ---------------------
10367
10368 The type structure in GDB describes an array in terms of its bounds,
10369 and the type of its elements. By design, all elements in the array
10370 have the same type and we cannot represent an array of variant elements
10371 using the current type structure in GDB. When fixing an array,
10372 we cannot fix the array element, as we would potentially need one
10373 fixed type per element of the array. As a result, the best we can do
10374 when fixing an array is to produce an array whose bounds and size
10375 are correct (allowing us to read it from memory), but without having
10376 touched its element type. Fixing each element will be done later,
10377 when (if) necessary.
10378
10379 Arrays are a little simpler to handle than records, because the same
10380 amount of memory is allocated for each element of the array, even if
10381 the amount of space actually used by each element differs from element
10382 to element. Consider for instance the following array of type Rec:
10383
10384 type Rec_Array is array (1 .. 2) of Rec;
10385
10386 The actual amount of memory occupied by each element might be different
10387 from element to element, depending on the value of their discriminant.
10388 But the amount of space reserved for each element in the array remains
10389 fixed regardless. So we simply need to compute that size using
10390 the debugging information available, from which we can then determine
10391 the array size (we multiply the number of elements of the array by
10392 the size of each element).
10393
10394 The simplest case is when we have an array of a constrained element
10395 type. For instance, consider the following type declarations:
10396
10397 type Bounded_String (Max_Size : Integer) is
10398 Length : Integer;
10399 Buffer : String (1 .. Max_Size);
10400 end record;
10401 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10402
10403 In this case, the compiler describes the array as an array of
10404 variable-size elements (identified by its XVS suffix) for which
10405 the size can be read in the parallel XVZ variable.
10406
10407 In the case of an array of an unconstrained element type, the compiler
10408 wraps the array element inside a private PAD type. This type should not
10409 be shown to the user, and must be "unwrap"'ed before printing. Note
10410 that we also use the adjective "aligner" in our code to designate
10411 these wrapper types.
10412
10413 In some cases, the size allocated for each element is statically
10414 known. In that case, the PAD type already has the correct size,
10415 and the array element should remain unfixed.
10416
10417 But there are cases when this size is not statically known.
10418 For instance, assuming that "Five" is an integer variable:
10419
10420 type Dynamic is array (1 .. Five) of Integer;
10421 type Wrapper (Has_Length : Boolean := False) is record
10422 Data : Dynamic;
10423 case Has_Length is
10424 when True => Length : Integer;
10425 when False => null;
10426 end case;
10427 end record;
10428 type Wrapper_Array is array (1 .. 2) of Wrapper;
10429
10430 Hello : Wrapper_Array := (others => (Has_Length => True,
10431 Data => (others => 17),
10432 Length => 1));
10433
10434
10435 The debugging info would describe variable Hello as being an
10436 array of a PAD type. The size of that PAD type is not statically
10437 known, but can be determined using a parallel XVZ variable.
10438 In that case, a copy of the PAD type with the correct size should
10439 be used for the fixed array.
10440
10441 3. ``Fixing'' record type objects:
10442 ----------------------------------
10443
10444 Things are slightly different from arrays in the case of dynamic
10445 record types. In this case, in order to compute the associated
10446 fixed type, we need to determine the size and offset of each of
10447 its components. This, in turn, requires us to compute the fixed
10448 type of each of these components.
10449
10450 Consider for instance the example:
10451
10452 type Bounded_String (Max_Size : Natural) is record
10453 Str : String (1 .. Max_Size);
10454 Length : Natural;
10455 end record;
10456 My_String : Bounded_String (Max_Size => 10);
10457
10458 In that case, the position of field "Length" depends on the size
10459 of field Str, which itself depends on the value of the Max_Size
10460 discriminant. In order to fix the type of variable My_String,
10461 we need to fix the type of field Str. Therefore, fixing a variant
10462 record requires us to fix each of its components.
10463
10464 However, if a component does not have a dynamic size, the component
10465 should not be fixed. In particular, fields that use a PAD type
10466 should not fixed. Here is an example where this might happen
10467 (assuming type Rec above):
10468
10469 type Container (Big : Boolean) is record
10470 First : Rec;
10471 After : Integer;
10472 case Big is
10473 when True => Another : Integer;
10474 when False => null;
10475 end case;
10476 end record;
10477 My_Container : Container := (Big => False,
10478 First => (Empty => True),
10479 After => 42);
10480
10481 In that example, the compiler creates a PAD type for component First,
10482 whose size is constant, and then positions the component After just
10483 right after it. The offset of component After is therefore constant
10484 in this case.
10485
10486 The debugger computes the position of each field based on an algorithm
10487 that uses, among other things, the actual position and size of the field
10488 preceding it. Let's now imagine that the user is trying to print
10489 the value of My_Container. If the type fixing was recursive, we would
10490 end up computing the offset of field After based on the size of the
10491 fixed version of field First. And since in our example First has
10492 only one actual field, the size of the fixed type is actually smaller
10493 than the amount of space allocated to that field, and thus we would
10494 compute the wrong offset of field After.
10495
10496 To make things more complicated, we need to watch out for dynamic
10497 components of variant records (identified by the ___XVL suffix in
10498 the component name). Even if the target type is a PAD type, the size
10499 of that type might not be statically known. So the PAD type needs
10500 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10501 we might end up with the wrong size for our component. This can be
10502 observed with the following type declarations:
10503
10504 type Octal is new Integer range 0 .. 7;
10505 type Octal_Array is array (Positive range <>) of Octal;
10506 pragma Pack (Octal_Array);
10507
10508 type Octal_Buffer (Size : Positive) is record
10509 Buffer : Octal_Array (1 .. Size);
10510 Length : Integer;
10511 end record;
10512
10513 In that case, Buffer is a PAD type whose size is unset and needs
10514 to be computed by fixing the unwrapped type.
10515
10516 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10517 ----------------------------------------------------------
10518
10519 Lastly, when should the sub-elements of an entity that remained unfixed
10520 thus far, be actually fixed?
10521
10522 The answer is: Only when referencing that element. For instance
10523 when selecting one component of a record, this specific component
10524 should be fixed at that point in time. Or when printing the value
10525 of a record, each component should be fixed before its value gets
10526 printed. Similarly for arrays, the element of the array should be
10527 fixed when printing each element of the array, or when extracting
10528 one element out of that array. On the other hand, fixing should
10529 not be performed on the elements when taking a slice of an array!
10530
10531 Note that one of the side effects of miscomputing the offset and
10532 size of each field is that we end up also miscomputing the size
10533 of the containing type. This can have adverse results when computing
10534 the value of an entity. GDB fetches the value of an entity based
10535 on the size of its type, and thus a wrong size causes GDB to fetch
10536 the wrong amount of memory. In the case where the computed size is
10537 too small, GDB fetches too little data to print the value of our
10538 entity. Results in this case are unpredictable, as we usually read
10539 past the buffer containing the data =:-o. */
10540
10541 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10542 for that subexpression cast to TO_TYPE. Advance *POS over the
10543 subexpression. */
10544
10545 static value *
10546 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10547 enum noside noside, struct type *to_type)
10548 {
10549 int pc = *pos;
10550
10551 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10552 || exp->elts[pc].opcode == OP_VAR_VALUE)
10553 {
10554 (*pos) += 4;
10555
10556 value *val;
10557 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10558 {
10559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10560 return value_zero (to_type, not_lval);
10561
10562 val = evaluate_var_msym_value (noside,
10563 exp->elts[pc + 1].objfile,
10564 exp->elts[pc + 2].msymbol);
10565 }
10566 else
10567 val = evaluate_var_value (noside,
10568 exp->elts[pc + 1].block,
10569 exp->elts[pc + 2].symbol);
10570
10571 if (noside == EVAL_SKIP)
10572 return eval_skip_value (exp);
10573
10574 val = ada_value_cast (to_type, val);
10575
10576 /* Follow the Ada language semantics that do not allow taking
10577 an address of the result of a cast (view conversion in Ada). */
10578 if (VALUE_LVAL (val) == lval_memory)
10579 {
10580 if (value_lazy (val))
10581 value_fetch_lazy (val);
10582 VALUE_LVAL (val) = not_lval;
10583 }
10584 return val;
10585 }
10586
10587 value *val = evaluate_subexp (to_type, exp, pos, noside);
10588 if (noside == EVAL_SKIP)
10589 return eval_skip_value (exp);
10590 return ada_value_cast (to_type, val);
10591 }
10592
10593 /* Implement the evaluate_exp routine in the exp_descriptor structure
10594 for the Ada language. */
10595
10596 static struct value *
10597 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10598 int *pos, enum noside noside)
10599 {
10600 enum exp_opcode op;
10601 int tem;
10602 int pc;
10603 int preeval_pos;
10604 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10605 struct type *type;
10606 int nargs, oplen;
10607 struct value **argvec;
10608
10609 pc = *pos;
10610 *pos += 1;
10611 op = exp->elts[pc].opcode;
10612
10613 switch (op)
10614 {
10615 default:
10616 *pos -= 1;
10617 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10618
10619 if (noside == EVAL_NORMAL)
10620 arg1 = unwrap_value (arg1);
10621
10622 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10623 then we need to perform the conversion manually, because
10624 evaluate_subexp_standard doesn't do it. This conversion is
10625 necessary in Ada because the different kinds of float/fixed
10626 types in Ada have different representations.
10627
10628 Similarly, we need to perform the conversion from OP_LONG
10629 ourselves. */
10630 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10631 arg1 = ada_value_cast (expect_type, arg1);
10632
10633 return arg1;
10634
10635 case OP_STRING:
10636 {
10637 struct value *result;
10638
10639 *pos -= 1;
10640 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10641 /* The result type will have code OP_STRING, bashed there from
10642 OP_ARRAY. Bash it back. */
10643 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10644 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10645 return result;
10646 }
10647
10648 case UNOP_CAST:
10649 (*pos) += 2;
10650 type = exp->elts[pc + 1].type;
10651 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10652
10653 case UNOP_QUAL:
10654 (*pos) += 2;
10655 type = exp->elts[pc + 1].type;
10656 return ada_evaluate_subexp (type, exp, pos, noside);
10657
10658 case BINOP_ASSIGN:
10659 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10660 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10661 {
10662 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10663 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10664 return arg1;
10665 return ada_value_assign (arg1, arg1);
10666 }
10667 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10668 except if the lhs of our assignment is a convenience variable.
10669 In the case of assigning to a convenience variable, the lhs
10670 should be exactly the result of the evaluation of the rhs. */
10671 type = value_type (arg1);
10672 if (VALUE_LVAL (arg1) == lval_internalvar)
10673 type = NULL;
10674 arg2 = evaluate_subexp (type, exp, pos, noside);
10675 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10676 return arg1;
10677 if (ada_is_fixed_point_type (value_type (arg1)))
10678 arg2 = cast_to_fixed (value_type (arg1), arg2);
10679 else if (ada_is_fixed_point_type (value_type (arg2)))
10680 error
10681 (_("Fixed-point values must be assigned to fixed-point variables"));
10682 else
10683 arg2 = coerce_for_assign (value_type (arg1), arg2);
10684 return ada_value_assign (arg1, arg2);
10685
10686 case BINOP_ADD:
10687 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10688 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10689 if (noside == EVAL_SKIP)
10690 goto nosideret;
10691 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10692 return (value_from_longest
10693 (value_type (arg1),
10694 value_as_long (arg1) + value_as_long (arg2)));
10695 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10696 return (value_from_longest
10697 (value_type (arg2),
10698 value_as_long (arg1) + value_as_long (arg2)));
10699 if ((ada_is_fixed_point_type (value_type (arg1))
10700 || ada_is_fixed_point_type (value_type (arg2)))
10701 && value_type (arg1) != value_type (arg2))
10702 error (_("Operands of fixed-point addition must have the same type"));
10703 /* Do the addition, and cast the result to the type of the first
10704 argument. We cannot cast the result to a reference type, so if
10705 ARG1 is a reference type, find its underlying type. */
10706 type = value_type (arg1);
10707 while (TYPE_CODE (type) == TYPE_CODE_REF)
10708 type = TYPE_TARGET_TYPE (type);
10709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10710 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10711
10712 case BINOP_SUB:
10713 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10714 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10715 if (noside == EVAL_SKIP)
10716 goto nosideret;
10717 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10718 return (value_from_longest
10719 (value_type (arg1),
10720 value_as_long (arg1) - value_as_long (arg2)));
10721 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10722 return (value_from_longest
10723 (value_type (arg2),
10724 value_as_long (arg1) - value_as_long (arg2)));
10725 if ((ada_is_fixed_point_type (value_type (arg1))
10726 || ada_is_fixed_point_type (value_type (arg2)))
10727 && value_type (arg1) != value_type (arg2))
10728 error (_("Operands of fixed-point subtraction "
10729 "must have the same type"));
10730 /* Do the substraction, and cast the result to the type of the first
10731 argument. We cannot cast the result to a reference type, so if
10732 ARG1 is a reference type, find its underlying type. */
10733 type = value_type (arg1);
10734 while (TYPE_CODE (type) == TYPE_CODE_REF)
10735 type = TYPE_TARGET_TYPE (type);
10736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10737 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10738
10739 case BINOP_MUL:
10740 case BINOP_DIV:
10741 case BINOP_REM:
10742 case BINOP_MOD:
10743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10745 if (noside == EVAL_SKIP)
10746 goto nosideret;
10747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10748 {
10749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10750 return value_zero (value_type (arg1), not_lval);
10751 }
10752 else
10753 {
10754 type = builtin_type (exp->gdbarch)->builtin_double;
10755 if (ada_is_fixed_point_type (value_type (arg1)))
10756 arg1 = cast_from_fixed (type, arg1);
10757 if (ada_is_fixed_point_type (value_type (arg2)))
10758 arg2 = cast_from_fixed (type, arg2);
10759 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10760 return ada_value_binop (arg1, arg2, op);
10761 }
10762
10763 case BINOP_EQUAL:
10764 case BINOP_NOTEQUAL:
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10767 if (noside == EVAL_SKIP)
10768 goto nosideret;
10769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10770 tem = 0;
10771 else
10772 {
10773 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10774 tem = ada_value_equal (arg1, arg2);
10775 }
10776 if (op == BINOP_NOTEQUAL)
10777 tem = !tem;
10778 type = language_bool_type (exp->language_defn, exp->gdbarch);
10779 return value_from_longest (type, (LONGEST) tem);
10780
10781 case UNOP_NEG:
10782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10783 if (noside == EVAL_SKIP)
10784 goto nosideret;
10785 else if (ada_is_fixed_point_type (value_type (arg1)))
10786 return value_cast (value_type (arg1), value_neg (arg1));
10787 else
10788 {
10789 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10790 return value_neg (arg1);
10791 }
10792
10793 case BINOP_LOGICAL_AND:
10794 case BINOP_LOGICAL_OR:
10795 case UNOP_LOGICAL_NOT:
10796 {
10797 struct value *val;
10798
10799 *pos -= 1;
10800 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10801 type = language_bool_type (exp->language_defn, exp->gdbarch);
10802 return value_cast (type, val);
10803 }
10804
10805 case BINOP_BITWISE_AND:
10806 case BINOP_BITWISE_IOR:
10807 case BINOP_BITWISE_XOR:
10808 {
10809 struct value *val;
10810
10811 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10812 *pos = pc;
10813 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10814
10815 return value_cast (value_type (arg1), val);
10816 }
10817
10818 case OP_VAR_VALUE:
10819 *pos -= 1;
10820
10821 if (noside == EVAL_SKIP)
10822 {
10823 *pos += 4;
10824 goto nosideret;
10825 }
10826
10827 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10828 /* Only encountered when an unresolved symbol occurs in a
10829 context other than a function call, in which case, it is
10830 invalid. */
10831 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10832 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10833
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 {
10836 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10837 /* Check to see if this is a tagged type. We also need to handle
10838 the case where the type is a reference to a tagged type, but
10839 we have to be careful to exclude pointers to tagged types.
10840 The latter should be shown as usual (as a pointer), whereas
10841 a reference should mostly be transparent to the user. */
10842 if (ada_is_tagged_type (type, 0)
10843 || (TYPE_CODE (type) == TYPE_CODE_REF
10844 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10845 {
10846 /* Tagged types are a little special in the fact that the real
10847 type is dynamic and can only be determined by inspecting the
10848 object's tag. This means that we need to get the object's
10849 value first (EVAL_NORMAL) and then extract the actual object
10850 type from its tag.
10851
10852 Note that we cannot skip the final step where we extract
10853 the object type from its tag, because the EVAL_NORMAL phase
10854 results in dynamic components being resolved into fixed ones.
10855 This can cause problems when trying to print the type
10856 description of tagged types whose parent has a dynamic size:
10857 We use the type name of the "_parent" component in order
10858 to print the name of the ancestor type in the type description.
10859 If that component had a dynamic size, the resolution into
10860 a fixed type would result in the loss of that type name,
10861 thus preventing us from printing the name of the ancestor
10862 type in the type description. */
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10864
10865 if (TYPE_CODE (type) != TYPE_CODE_REF)
10866 {
10867 struct type *actual_type;
10868
10869 actual_type = type_from_tag (ada_value_tag (arg1));
10870 if (actual_type == NULL)
10871 /* If, for some reason, we were unable to determine
10872 the actual type from the tag, then use the static
10873 approximation that we just computed as a fallback.
10874 This can happen if the debugging information is
10875 incomplete, for instance. */
10876 actual_type = type;
10877 return value_zero (actual_type, not_lval);
10878 }
10879 else
10880 {
10881 /* In the case of a ref, ada_coerce_ref takes care
10882 of determining the actual type. But the evaluation
10883 should return a ref as it should be valid to ask
10884 for its address; so rebuild a ref after coerce. */
10885 arg1 = ada_coerce_ref (arg1);
10886 return value_ref (arg1, TYPE_CODE_REF);
10887 }
10888 }
10889
10890 /* Records and unions for which GNAT encodings have been
10891 generated need to be statically fixed as well.
10892 Otherwise, non-static fixing produces a type where
10893 all dynamic properties are removed, which prevents "ptype"
10894 from being able to completely describe the type.
10895 For instance, a case statement in a variant record would be
10896 replaced by the relevant components based on the actual
10897 value of the discriminants. */
10898 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10899 && dynamic_template_type (type) != NULL)
10900 || (TYPE_CODE (type) == TYPE_CODE_UNION
10901 && ada_find_parallel_type (type, "___XVU") != NULL))
10902 {
10903 *pos += 4;
10904 return value_zero (to_static_fixed_type (type), not_lval);
10905 }
10906 }
10907
10908 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10909 return ada_to_fixed_value (arg1);
10910
10911 case OP_FUNCALL:
10912 (*pos) += 2;
10913
10914 /* Allocate arg vector, including space for the function to be
10915 called in argvec[0] and a terminating NULL. */
10916 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10917 argvec = XALLOCAVEC (struct value *, nargs + 2);
10918
10919 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10920 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10921 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10922 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10923 else
10924 {
10925 for (tem = 0; tem <= nargs; tem += 1)
10926 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10927 argvec[tem] = 0;
10928
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931 }
10932
10933 if (ada_is_constrained_packed_array_type
10934 (desc_base_type (value_type (argvec[0]))))
10935 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10936 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10937 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10938 /* This is a packed array that has already been fixed, and
10939 therefore already coerced to a simple array. Nothing further
10940 to do. */
10941 ;
10942 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10943 {
10944 /* Make sure we dereference references so that all the code below
10945 feels like it's really handling the referenced value. Wrapping
10946 types (for alignment) may be there, so make sure we strip them as
10947 well. */
10948 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10949 }
10950 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10951 && VALUE_LVAL (argvec[0]) == lval_memory)
10952 argvec[0] = value_addr (argvec[0]);
10953
10954 type = ada_check_typedef (value_type (argvec[0]));
10955
10956 /* Ada allows us to implicitly dereference arrays when subscripting
10957 them. So, if this is an array typedef (encoding use for array
10958 access types encoded as fat pointers), strip it now. */
10959 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10960 type = ada_typedef_target_type (type);
10961
10962 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10963 {
10964 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10965 {
10966 case TYPE_CODE_FUNC:
10967 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10968 break;
10969 case TYPE_CODE_ARRAY:
10970 break;
10971 case TYPE_CODE_STRUCT:
10972 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10973 argvec[0] = ada_value_ind (argvec[0]);
10974 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10975 break;
10976 default:
10977 error (_("cannot subscript or call something of type `%s'"),
10978 ada_type_name (value_type (argvec[0])));
10979 break;
10980 }
10981 }
10982
10983 switch (TYPE_CODE (type))
10984 {
10985 case TYPE_CODE_FUNC:
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 {
10988 if (TYPE_TARGET_TYPE (type) == NULL)
10989 error_call_unknown_return_type (NULL);
10990 return allocate_value (TYPE_TARGET_TYPE (type));
10991 }
10992 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10993 case TYPE_CODE_INTERNAL_FUNCTION:
10994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10995 /* We don't know anything about what the internal
10996 function might return, but we have to return
10997 something. */
10998 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10999 not_lval);
11000 else
11001 return call_internal_function (exp->gdbarch, exp->language_defn,
11002 argvec[0], nargs, argvec + 1);
11003
11004 case TYPE_CODE_STRUCT:
11005 {
11006 int arity;
11007
11008 arity = ada_array_arity (type);
11009 type = ada_array_element_type (type, nargs);
11010 if (type == NULL)
11011 error (_("cannot subscript or call a record"));
11012 if (arity != nargs)
11013 error (_("wrong number of subscripts; expecting %d"), arity);
11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11015 return value_zero (ada_aligned_type (type), lval_memory);
11016 return
11017 unwrap_value (ada_value_subscript
11018 (argvec[0], nargs, argvec + 1));
11019 }
11020 case TYPE_CODE_ARRAY:
11021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 {
11023 type = ada_array_element_type (type, nargs);
11024 if (type == NULL)
11025 error (_("element type of array unknown"));
11026 else
11027 return value_zero (ada_aligned_type (type), lval_memory);
11028 }
11029 return
11030 unwrap_value (ada_value_subscript
11031 (ada_coerce_to_simple_array (argvec[0]),
11032 nargs, argvec + 1));
11033 case TYPE_CODE_PTR: /* Pointer to array */
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11035 {
11036 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11037 type = ada_array_element_type (type, nargs);
11038 if (type == NULL)
11039 error (_("element type of array unknown"));
11040 else
11041 return value_zero (ada_aligned_type (type), lval_memory);
11042 }
11043 return
11044 unwrap_value (ada_value_ptr_subscript (argvec[0],
11045 nargs, argvec + 1));
11046
11047 default:
11048 error (_("Attempt to index or call something other than an "
11049 "array or function"));
11050 }
11051
11052 case TERNOP_SLICE:
11053 {
11054 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 struct value *low_bound_val =
11056 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11057 struct value *high_bound_val =
11058 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11059 LONGEST low_bound;
11060 LONGEST high_bound;
11061
11062 low_bound_val = coerce_ref (low_bound_val);
11063 high_bound_val = coerce_ref (high_bound_val);
11064 low_bound = value_as_long (low_bound_val);
11065 high_bound = value_as_long (high_bound_val);
11066
11067 if (noside == EVAL_SKIP)
11068 goto nosideret;
11069
11070 /* If this is a reference to an aligner type, then remove all
11071 the aligners. */
11072 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11073 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11074 TYPE_TARGET_TYPE (value_type (array)) =
11075 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11076
11077 if (ada_is_constrained_packed_array_type (value_type (array)))
11078 error (_("cannot slice a packed array"));
11079
11080 /* If this is a reference to an array or an array lvalue,
11081 convert to a pointer. */
11082 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11083 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11084 && VALUE_LVAL (array) == lval_memory))
11085 array = value_addr (array);
11086
11087 if (noside == EVAL_AVOID_SIDE_EFFECTS
11088 && ada_is_array_descriptor_type (ada_check_typedef
11089 (value_type (array))))
11090 return empty_array (ada_type_of_array (array, 0), low_bound);
11091
11092 array = ada_coerce_to_simple_array_ptr (array);
11093
11094 /* If we have more than one level of pointer indirection,
11095 dereference the value until we get only one level. */
11096 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11097 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11098 == TYPE_CODE_PTR))
11099 array = value_ind (array);
11100
11101 /* Make sure we really do have an array type before going further,
11102 to avoid a SEGV when trying to get the index type or the target
11103 type later down the road if the debug info generated by
11104 the compiler is incorrect or incomplete. */
11105 if (!ada_is_simple_array_type (value_type (array)))
11106 error (_("cannot take slice of non-array"));
11107
11108 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11109 == TYPE_CODE_PTR)
11110 {
11111 struct type *type0 = ada_check_typedef (value_type (array));
11112
11113 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11114 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11115 else
11116 {
11117 struct type *arr_type0 =
11118 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11119
11120 return ada_value_slice_from_ptr (array, arr_type0,
11121 longest_to_int (low_bound),
11122 longest_to_int (high_bound));
11123 }
11124 }
11125 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11126 return array;
11127 else if (high_bound < low_bound)
11128 return empty_array (value_type (array), low_bound);
11129 else
11130 return ada_value_slice (array, longest_to_int (low_bound),
11131 longest_to_int (high_bound));
11132 }
11133
11134 case UNOP_IN_RANGE:
11135 (*pos) += 2;
11136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11137 type = check_typedef (exp->elts[pc + 1].type);
11138
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141
11142 switch (TYPE_CODE (type))
11143 {
11144 default:
11145 lim_warning (_("Membership test incompletely implemented; "
11146 "always returns true"));
11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
11148 return value_from_longest (type, (LONGEST) 1);
11149
11150 case TYPE_CODE_RANGE:
11151 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11152 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11155 type = language_bool_type (exp->language_defn, exp->gdbarch);
11156 return
11157 value_from_longest (type,
11158 (value_less (arg1, arg3)
11159 || value_equal (arg1, arg3))
11160 && (value_less (arg2, arg1)
11161 || value_equal (arg2, arg1)));
11162 }
11163
11164 case BINOP_IN_BOUNDS:
11165 (*pos) += 2;
11166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11168
11169 if (noside == EVAL_SKIP)
11170 goto nosideret;
11171
11172 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11173 {
11174 type = language_bool_type (exp->language_defn, exp->gdbarch);
11175 return value_zero (type, not_lval);
11176 }
11177
11178 tem = longest_to_int (exp->elts[pc + 1].longconst);
11179
11180 type = ada_index_type (value_type (arg2), tem, "range");
11181 if (!type)
11182 type = value_type (arg1);
11183
11184 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11185 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11186
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11189 type = language_bool_type (exp->language_defn, exp->gdbarch);
11190 return
11191 value_from_longest (type,
11192 (value_less (arg1, arg3)
11193 || value_equal (arg1, arg3))
11194 && (value_less (arg2, arg1)
11195 || value_equal (arg2, arg1)));
11196
11197 case TERNOP_IN_RANGE:
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11207 type = language_bool_type (exp->language_defn, exp->gdbarch);
11208 return
11209 value_from_longest (type,
11210 (value_less (arg1, arg3)
11211 || value_equal (arg1, arg3))
11212 && (value_less (arg2, arg1)
11213 || value_equal (arg2, arg1)));
11214
11215 case OP_ATR_FIRST:
11216 case OP_ATR_LAST:
11217 case OP_ATR_LENGTH:
11218 {
11219 struct type *type_arg;
11220
11221 if (exp->elts[*pos].opcode == OP_TYPE)
11222 {
11223 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11224 arg1 = NULL;
11225 type_arg = check_typedef (exp->elts[pc + 2].type);
11226 }
11227 else
11228 {
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 type_arg = NULL;
11231 }
11232
11233 if (exp->elts[*pos].opcode != OP_LONG)
11234 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11235 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11236 *pos += 4;
11237
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240
11241 if (type_arg == NULL)
11242 {
11243 arg1 = ada_coerce_ref (arg1);
11244
11245 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11246 arg1 = ada_coerce_to_simple_array (arg1);
11247
11248 if (op == OP_ATR_LENGTH)
11249 type = builtin_type (exp->gdbarch)->builtin_int;
11250 else
11251 {
11252 type = ada_index_type (value_type (arg1), tem,
11253 ada_attribute_name (op));
11254 if (type == NULL)
11255 type = builtin_type (exp->gdbarch)->builtin_int;
11256 }
11257
11258 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11259 return allocate_value (type);
11260
11261 switch (op)
11262 {
11263 default: /* Should never happen. */
11264 error (_("unexpected attribute encountered"));
11265 case OP_ATR_FIRST:
11266 return value_from_longest
11267 (type, ada_array_bound (arg1, tem, 0));
11268 case OP_ATR_LAST:
11269 return value_from_longest
11270 (type, ada_array_bound (arg1, tem, 1));
11271 case OP_ATR_LENGTH:
11272 return value_from_longest
11273 (type, ada_array_length (arg1, tem));
11274 }
11275 }
11276 else if (discrete_type_p (type_arg))
11277 {
11278 struct type *range_type;
11279 const char *name = ada_type_name (type_arg);
11280
11281 range_type = NULL;
11282 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11283 range_type = to_fixed_range_type (type_arg, NULL);
11284 if (range_type == NULL)
11285 range_type = type_arg;
11286 switch (op)
11287 {
11288 default:
11289 error (_("unexpected attribute encountered"));
11290 case OP_ATR_FIRST:
11291 return value_from_longest
11292 (range_type, ada_discrete_type_low_bound (range_type));
11293 case OP_ATR_LAST:
11294 return value_from_longest
11295 (range_type, ada_discrete_type_high_bound (range_type));
11296 case OP_ATR_LENGTH:
11297 error (_("the 'length attribute applies only to array types"));
11298 }
11299 }
11300 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11301 error (_("unimplemented type attribute"));
11302 else
11303 {
11304 LONGEST low, high;
11305
11306 if (ada_is_constrained_packed_array_type (type_arg))
11307 type_arg = decode_constrained_packed_array_type (type_arg);
11308
11309 if (op == OP_ATR_LENGTH)
11310 type = builtin_type (exp->gdbarch)->builtin_int;
11311 else
11312 {
11313 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11314 if (type == NULL)
11315 type = builtin_type (exp->gdbarch)->builtin_int;
11316 }
11317
11318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11319 return allocate_value (type);
11320
11321 switch (op)
11322 {
11323 default:
11324 error (_("unexpected attribute encountered"));
11325 case OP_ATR_FIRST:
11326 low = ada_array_bound_from_type (type_arg, tem, 0);
11327 return value_from_longest (type, low);
11328 case OP_ATR_LAST:
11329 high = ada_array_bound_from_type (type_arg, tem, 1);
11330 return value_from_longest (type, high);
11331 case OP_ATR_LENGTH:
11332 low = ada_array_bound_from_type (type_arg, tem, 0);
11333 high = ada_array_bound_from_type (type_arg, tem, 1);
11334 return value_from_longest (type, high - low + 1);
11335 }
11336 }
11337 }
11338
11339 case OP_ATR_TAG:
11340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11341 if (noside == EVAL_SKIP)
11342 goto nosideret;
11343
11344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11345 return value_zero (ada_tag_type (arg1), not_lval);
11346
11347 return ada_value_tag (arg1);
11348
11349 case OP_ATR_MIN:
11350 case OP_ATR_MAX:
11351 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11354 if (noside == EVAL_SKIP)
11355 goto nosideret;
11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11357 return value_zero (value_type (arg1), not_lval);
11358 else
11359 {
11360 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11361 return value_binop (arg1, arg2,
11362 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11363 }
11364
11365 case OP_ATR_MODULUS:
11366 {
11367 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11368
11369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11370 if (noside == EVAL_SKIP)
11371 goto nosideret;
11372
11373 if (!ada_is_modular_type (type_arg))
11374 error (_("'modulus must be applied to modular type"));
11375
11376 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11377 ada_modulus (type_arg));
11378 }
11379
11380
11381 case OP_ATR_POS:
11382 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11384 if (noside == EVAL_SKIP)
11385 goto nosideret;
11386 type = builtin_type (exp->gdbarch)->builtin_int;
11387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11388 return value_zero (type, not_lval);
11389 else
11390 return value_pos_atr (type, arg1);
11391
11392 case OP_ATR_SIZE:
11393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11394 type = value_type (arg1);
11395
11396 /* If the argument is a reference, then dereference its type, since
11397 the user is really asking for the size of the actual object,
11398 not the size of the pointer. */
11399 if (TYPE_CODE (type) == TYPE_CODE_REF)
11400 type = TYPE_TARGET_TYPE (type);
11401
11402 if (noside == EVAL_SKIP)
11403 goto nosideret;
11404 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11405 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11406 else
11407 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11408 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11409
11410 case OP_ATR_VAL:
11411 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 type = exp->elts[pc + 2].type;
11414 if (noside == EVAL_SKIP)
11415 goto nosideret;
11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11417 return value_zero (type, not_lval);
11418 else
11419 return value_val_atr (type, arg1);
11420
11421 case BINOP_EXP:
11422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11423 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11424 if (noside == EVAL_SKIP)
11425 goto nosideret;
11426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11427 return value_zero (value_type (arg1), not_lval);
11428 else
11429 {
11430 /* For integer exponentiation operations,
11431 only promote the first argument. */
11432 if (is_integral_type (value_type (arg2)))
11433 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11434 else
11435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11436
11437 return value_binop (arg1, arg2, op);
11438 }
11439
11440 case UNOP_PLUS:
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 if (noside == EVAL_SKIP)
11443 goto nosideret;
11444 else
11445 return arg1;
11446
11447 case UNOP_ABS:
11448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11449 if (noside == EVAL_SKIP)
11450 goto nosideret;
11451 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11452 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11453 return value_neg (arg1);
11454 else
11455 return arg1;
11456
11457 case UNOP_IND:
11458 preeval_pos = *pos;
11459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11460 if (noside == EVAL_SKIP)
11461 goto nosideret;
11462 type = ada_check_typedef (value_type (arg1));
11463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11464 {
11465 if (ada_is_array_descriptor_type (type))
11466 /* GDB allows dereferencing GNAT array descriptors. */
11467 {
11468 struct type *arrType = ada_type_of_array (arg1, 0);
11469
11470 if (arrType == NULL)
11471 error (_("Attempt to dereference null array pointer."));
11472 return value_at_lazy (arrType, 0);
11473 }
11474 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11475 || TYPE_CODE (type) == TYPE_CODE_REF
11476 /* In C you can dereference an array to get the 1st elt. */
11477 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11478 {
11479 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11480 only be determined by inspecting the object's tag.
11481 This means that we need to evaluate completely the
11482 expression in order to get its type. */
11483
11484 if ((TYPE_CODE (type) == TYPE_CODE_REF
11485 || TYPE_CODE (type) == TYPE_CODE_PTR)
11486 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11487 {
11488 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11489 EVAL_NORMAL);
11490 type = value_type (ada_value_ind (arg1));
11491 }
11492 else
11493 {
11494 type = to_static_fixed_type
11495 (ada_aligned_type
11496 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11497 }
11498 ada_ensure_varsize_limit (type);
11499 return value_zero (type, lval_memory);
11500 }
11501 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11502 {
11503 /* GDB allows dereferencing an int. */
11504 if (expect_type == NULL)
11505 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11506 lval_memory);
11507 else
11508 {
11509 expect_type =
11510 to_static_fixed_type (ada_aligned_type (expect_type));
11511 return value_zero (expect_type, lval_memory);
11512 }
11513 }
11514 else
11515 error (_("Attempt to take contents of a non-pointer value."));
11516 }
11517 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11518 type = ada_check_typedef (value_type (arg1));
11519
11520 if (TYPE_CODE (type) == TYPE_CODE_INT)
11521 /* GDB allows dereferencing an int. If we were given
11522 the expect_type, then use that as the target type.
11523 Otherwise, assume that the target type is an int. */
11524 {
11525 if (expect_type != NULL)
11526 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11527 arg1));
11528 else
11529 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11530 (CORE_ADDR) value_as_address (arg1));
11531 }
11532
11533 if (ada_is_array_descriptor_type (type))
11534 /* GDB allows dereferencing GNAT array descriptors. */
11535 return ada_coerce_to_simple_array (arg1);
11536 else
11537 return ada_value_ind (arg1);
11538
11539 case STRUCTOP_STRUCT:
11540 tem = longest_to_int (exp->elts[pc + 1].longconst);
11541 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11542 preeval_pos = *pos;
11543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11544 if (noside == EVAL_SKIP)
11545 goto nosideret;
11546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11547 {
11548 struct type *type1 = value_type (arg1);
11549
11550 if (ada_is_tagged_type (type1, 1))
11551 {
11552 type = ada_lookup_struct_elt_type (type1,
11553 &exp->elts[pc + 2].string,
11554 1, 1);
11555
11556 /* If the field is not found, check if it exists in the
11557 extension of this object's type. This means that we
11558 need to evaluate completely the expression. */
11559
11560 if (type == NULL)
11561 {
11562 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11563 EVAL_NORMAL);
11564 arg1 = ada_value_struct_elt (arg1,
11565 &exp->elts[pc + 2].string,
11566 0);
11567 arg1 = unwrap_value (arg1);
11568 type = value_type (ada_to_fixed_value (arg1));
11569 }
11570 }
11571 else
11572 type =
11573 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11574 0);
11575
11576 return value_zero (ada_aligned_type (type), lval_memory);
11577 }
11578 else
11579 {
11580 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11581 arg1 = unwrap_value (arg1);
11582 return ada_to_fixed_value (arg1);
11583 }
11584
11585 case OP_TYPE:
11586 /* The value is not supposed to be used. This is here to make it
11587 easier to accommodate expressions that contain types. */
11588 (*pos) += 2;
11589 if (noside == EVAL_SKIP)
11590 goto nosideret;
11591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11592 return allocate_value (exp->elts[pc + 1].type);
11593 else
11594 error (_("Attempt to use a type name as an expression"));
11595
11596 case OP_AGGREGATE:
11597 case OP_CHOICES:
11598 case OP_OTHERS:
11599 case OP_DISCRETE_RANGE:
11600 case OP_POSITIONAL:
11601 case OP_NAME:
11602 if (noside == EVAL_NORMAL)
11603 switch (op)
11604 {
11605 case OP_NAME:
11606 error (_("Undefined name, ambiguous name, or renaming used in "
11607 "component association: %s."), &exp->elts[pc+2].string);
11608 case OP_AGGREGATE:
11609 error (_("Aggregates only allowed on the right of an assignment"));
11610 default:
11611 internal_error (__FILE__, __LINE__,
11612 _("aggregate apparently mangled"));
11613 }
11614
11615 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11616 *pos += oplen - 1;
11617 for (tem = 0; tem < nargs; tem += 1)
11618 ada_evaluate_subexp (NULL, exp, pos, noside);
11619 goto nosideret;
11620 }
11621
11622 nosideret:
11623 return eval_skip_value (exp);
11624 }
11625 \f
11626
11627 /* Fixed point */
11628
11629 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11630 type name that encodes the 'small and 'delta information.
11631 Otherwise, return NULL. */
11632
11633 static const char *
11634 fixed_type_info (struct type *type)
11635 {
11636 const char *name = ada_type_name (type);
11637 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11638
11639 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11640 {
11641 const char *tail = strstr (name, "___XF_");
11642
11643 if (tail == NULL)
11644 return NULL;
11645 else
11646 return tail + 5;
11647 }
11648 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11649 return fixed_type_info (TYPE_TARGET_TYPE (type));
11650 else
11651 return NULL;
11652 }
11653
11654 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11655
11656 int
11657 ada_is_fixed_point_type (struct type *type)
11658 {
11659 return fixed_type_info (type) != NULL;
11660 }
11661
11662 /* Return non-zero iff TYPE represents a System.Address type. */
11663
11664 int
11665 ada_is_system_address_type (struct type *type)
11666 {
11667 return (TYPE_NAME (type)
11668 && strcmp (TYPE_NAME (type), "system__address") == 0);
11669 }
11670
11671 /* Assuming that TYPE is the representation of an Ada fixed-point
11672 type, return the target floating-point type to be used to represent
11673 of this type during internal computation. */
11674
11675 static struct type *
11676 ada_scaling_type (struct type *type)
11677 {
11678 return builtin_type (get_type_arch (type))->builtin_long_double;
11679 }
11680
11681 /* Assuming that TYPE is the representation of an Ada fixed-point
11682 type, return its delta, or NULL if the type is malformed and the
11683 delta cannot be determined. */
11684
11685 struct value *
11686 ada_delta (struct type *type)
11687 {
11688 const char *encoding = fixed_type_info (type);
11689 struct type *scale_type = ada_scaling_type (type);
11690
11691 long long num, den;
11692
11693 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11694 return nullptr;
11695 else
11696 return value_binop (value_from_longest (scale_type, num),
11697 value_from_longest (scale_type, den), BINOP_DIV);
11698 }
11699
11700 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11701 factor ('SMALL value) associated with the type. */
11702
11703 struct value *
11704 ada_scaling_factor (struct type *type)
11705 {
11706 const char *encoding = fixed_type_info (type);
11707 struct type *scale_type = ada_scaling_type (type);
11708
11709 long long num0, den0, num1, den1;
11710 int n;
11711
11712 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11713 &num0, &den0, &num1, &den1);
11714
11715 if (n < 2)
11716 return value_from_longest (scale_type, 1);
11717 else if (n == 4)
11718 return value_binop (value_from_longest (scale_type, num1),
11719 value_from_longest (scale_type, den1), BINOP_DIV);
11720 else
11721 return value_binop (value_from_longest (scale_type, num0),
11722 value_from_longest (scale_type, den0), BINOP_DIV);
11723 }
11724
11725 \f
11726
11727 /* Range types */
11728
11729 /* Scan STR beginning at position K for a discriminant name, and
11730 return the value of that discriminant field of DVAL in *PX. If
11731 PNEW_K is not null, put the position of the character beyond the
11732 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11733 not alter *PX and *PNEW_K if unsuccessful. */
11734
11735 static int
11736 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11737 int *pnew_k)
11738 {
11739 static char *bound_buffer = NULL;
11740 static size_t bound_buffer_len = 0;
11741 const char *pstart, *pend, *bound;
11742 struct value *bound_val;
11743
11744 if (dval == NULL || str == NULL || str[k] == '\0')
11745 return 0;
11746
11747 pstart = str + k;
11748 pend = strstr (pstart, "__");
11749 if (pend == NULL)
11750 {
11751 bound = pstart;
11752 k += strlen (bound);
11753 }
11754 else
11755 {
11756 int len = pend - pstart;
11757
11758 /* Strip __ and beyond. */
11759 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11760 strncpy (bound_buffer, pstart, len);
11761 bound_buffer[len] = '\0';
11762
11763 bound = bound_buffer;
11764 k = pend - str;
11765 }
11766
11767 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11768 if (bound_val == NULL)
11769 return 0;
11770
11771 *px = value_as_long (bound_val);
11772 if (pnew_k != NULL)
11773 *pnew_k = k;
11774 return 1;
11775 }
11776
11777 /* Value of variable named NAME in the current environment. If
11778 no such variable found, then if ERR_MSG is null, returns 0, and
11779 otherwise causes an error with message ERR_MSG. */
11780
11781 static struct value *
11782 get_var_value (const char *name, const char *err_msg)
11783 {
11784 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11785
11786 struct block_symbol *syms;
11787 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11788 get_selected_block (0),
11789 VAR_DOMAIN, &syms, 1);
11790 struct cleanup *old_chain = make_cleanup (xfree, syms);
11791
11792 if (nsyms != 1)
11793 {
11794 do_cleanups (old_chain);
11795 if (err_msg == NULL)
11796 return 0;
11797 else
11798 error (("%s"), err_msg);
11799 }
11800
11801 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11802 do_cleanups (old_chain);
11803 return result;
11804 }
11805
11806 /* Value of integer variable named NAME in the current environment.
11807 If no such variable is found, returns false. Otherwise, sets VALUE
11808 to the variable's value and returns true. */
11809
11810 bool
11811 get_int_var_value (const char *name, LONGEST &value)
11812 {
11813 struct value *var_val = get_var_value (name, 0);
11814
11815 if (var_val == 0)
11816 return false;
11817
11818 value = value_as_long (var_val);
11819 return true;
11820 }
11821
11822
11823 /* Return a range type whose base type is that of the range type named
11824 NAME in the current environment, and whose bounds are calculated
11825 from NAME according to the GNAT range encoding conventions.
11826 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11827 corresponding range type from debug information; fall back to using it
11828 if symbol lookup fails. If a new type must be created, allocate it
11829 like ORIG_TYPE was. The bounds information, in general, is encoded
11830 in NAME, the base type given in the named range type. */
11831
11832 static struct type *
11833 to_fixed_range_type (struct type *raw_type, struct value *dval)
11834 {
11835 const char *name;
11836 struct type *base_type;
11837 const char *subtype_info;
11838
11839 gdb_assert (raw_type != NULL);
11840 gdb_assert (TYPE_NAME (raw_type) != NULL);
11841
11842 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11843 base_type = TYPE_TARGET_TYPE (raw_type);
11844 else
11845 base_type = raw_type;
11846
11847 name = TYPE_NAME (raw_type);
11848 subtype_info = strstr (name, "___XD");
11849 if (subtype_info == NULL)
11850 {
11851 LONGEST L = ada_discrete_type_low_bound (raw_type);
11852 LONGEST U = ada_discrete_type_high_bound (raw_type);
11853
11854 if (L < INT_MIN || U > INT_MAX)
11855 return raw_type;
11856 else
11857 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11858 L, U);
11859 }
11860 else
11861 {
11862 static char *name_buf = NULL;
11863 static size_t name_len = 0;
11864 int prefix_len = subtype_info - name;
11865 LONGEST L, U;
11866 struct type *type;
11867 const char *bounds_str;
11868 int n;
11869
11870 GROW_VECT (name_buf, name_len, prefix_len + 5);
11871 strncpy (name_buf, name, prefix_len);
11872 name_buf[prefix_len] = '\0';
11873
11874 subtype_info += 5;
11875 bounds_str = strchr (subtype_info, '_');
11876 n = 1;
11877
11878 if (*subtype_info == 'L')
11879 {
11880 if (!ada_scan_number (bounds_str, n, &L, &n)
11881 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11882 return raw_type;
11883 if (bounds_str[n] == '_')
11884 n += 2;
11885 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11886 n += 1;
11887 subtype_info += 1;
11888 }
11889 else
11890 {
11891 strcpy (name_buf + prefix_len, "___L");
11892 if (!get_int_var_value (name_buf, L))
11893 {
11894 lim_warning (_("Unknown lower bound, using 1."));
11895 L = 1;
11896 }
11897 }
11898
11899 if (*subtype_info == 'U')
11900 {
11901 if (!ada_scan_number (bounds_str, n, &U, &n)
11902 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11903 return raw_type;
11904 }
11905 else
11906 {
11907 strcpy (name_buf + prefix_len, "___U");
11908 if (!get_int_var_value (name_buf, U))
11909 {
11910 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11911 U = L;
11912 }
11913 }
11914
11915 type = create_static_range_type (alloc_type_copy (raw_type),
11916 base_type, L, U);
11917 /* create_static_range_type alters the resulting type's length
11918 to match the size of the base_type, which is not what we want.
11919 Set it back to the original range type's length. */
11920 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11921 TYPE_NAME (type) = name;
11922 return type;
11923 }
11924 }
11925
11926 /* True iff NAME is the name of a range type. */
11927
11928 int
11929 ada_is_range_type_name (const char *name)
11930 {
11931 return (name != NULL && strstr (name, "___XD"));
11932 }
11933 \f
11934
11935 /* Modular types */
11936
11937 /* True iff TYPE is an Ada modular type. */
11938
11939 int
11940 ada_is_modular_type (struct type *type)
11941 {
11942 struct type *subranged_type = get_base_type (type);
11943
11944 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11945 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11946 && TYPE_UNSIGNED (subranged_type));
11947 }
11948
11949 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11950
11951 ULONGEST
11952 ada_modulus (struct type *type)
11953 {
11954 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11955 }
11956 \f
11957
11958 /* Ada exception catchpoint support:
11959 ---------------------------------
11960
11961 We support 3 kinds of exception catchpoints:
11962 . catchpoints on Ada exceptions
11963 . catchpoints on unhandled Ada exceptions
11964 . catchpoints on failed assertions
11965
11966 Exceptions raised during failed assertions, or unhandled exceptions
11967 could perfectly be caught with the general catchpoint on Ada exceptions.
11968 However, we can easily differentiate these two special cases, and having
11969 the option to distinguish these two cases from the rest can be useful
11970 to zero-in on certain situations.
11971
11972 Exception catchpoints are a specialized form of breakpoint,
11973 since they rely on inserting breakpoints inside known routines
11974 of the GNAT runtime. The implementation therefore uses a standard
11975 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11976 of breakpoint_ops.
11977
11978 Support in the runtime for exception catchpoints have been changed
11979 a few times already, and these changes affect the implementation
11980 of these catchpoints. In order to be able to support several
11981 variants of the runtime, we use a sniffer that will determine
11982 the runtime variant used by the program being debugged. */
11983
11984 /* Ada's standard exceptions.
11985
11986 The Ada 83 standard also defined Numeric_Error. But there so many
11987 situations where it was unclear from the Ada 83 Reference Manual
11988 (RM) whether Constraint_Error or Numeric_Error should be raised,
11989 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11990 Interpretation saying that anytime the RM says that Numeric_Error
11991 should be raised, the implementation may raise Constraint_Error.
11992 Ada 95 went one step further and pretty much removed Numeric_Error
11993 from the list of standard exceptions (it made it a renaming of
11994 Constraint_Error, to help preserve compatibility when compiling
11995 an Ada83 compiler). As such, we do not include Numeric_Error from
11996 this list of standard exceptions. */
11997
11998 static const char *standard_exc[] = {
11999 "constraint_error",
12000 "program_error",
12001 "storage_error",
12002 "tasking_error"
12003 };
12004
12005 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12006
12007 /* A structure that describes how to support exception catchpoints
12008 for a given executable. */
12009
12010 struct exception_support_info
12011 {
12012 /* The name of the symbol to break on in order to insert
12013 a catchpoint on exceptions. */
12014 const char *catch_exception_sym;
12015
12016 /* The name of the symbol to break on in order to insert
12017 a catchpoint on unhandled exceptions. */
12018 const char *catch_exception_unhandled_sym;
12019
12020 /* The name of the symbol to break on in order to insert
12021 a catchpoint on failed assertions. */
12022 const char *catch_assert_sym;
12023
12024 /* Assuming that the inferior just triggered an unhandled exception
12025 catchpoint, this function is responsible for returning the address
12026 in inferior memory where the name of that exception is stored.
12027 Return zero if the address could not be computed. */
12028 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12029 };
12030
12031 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12032 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12033
12034 /* The following exception support info structure describes how to
12035 implement exception catchpoints with the latest version of the
12036 Ada runtime (as of 2007-03-06). */
12037
12038 static const struct exception_support_info default_exception_support_info =
12039 {
12040 "__gnat_debug_raise_exception", /* catch_exception_sym */
12041 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12042 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12043 ada_unhandled_exception_name_addr
12044 };
12045
12046 /* The following exception support info structure describes how to
12047 implement exception catchpoints with a slightly older version
12048 of the Ada runtime. */
12049
12050 static const struct exception_support_info exception_support_info_fallback =
12051 {
12052 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12053 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12054 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12055 ada_unhandled_exception_name_addr_from_raise
12056 };
12057
12058 /* Return nonzero if we can detect the exception support routines
12059 described in EINFO.
12060
12061 This function errors out if an abnormal situation is detected
12062 (for instance, if we find the exception support routines, but
12063 that support is found to be incomplete). */
12064
12065 static int
12066 ada_has_this_exception_support (const struct exception_support_info *einfo)
12067 {
12068 struct symbol *sym;
12069
12070 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12071 that should be compiled with debugging information. As a result, we
12072 expect to find that symbol in the symtabs. */
12073
12074 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12075 if (sym == NULL)
12076 {
12077 /* Perhaps we did not find our symbol because the Ada runtime was
12078 compiled without debugging info, or simply stripped of it.
12079 It happens on some GNU/Linux distributions for instance, where
12080 users have to install a separate debug package in order to get
12081 the runtime's debugging info. In that situation, let the user
12082 know why we cannot insert an Ada exception catchpoint.
12083
12084 Note: Just for the purpose of inserting our Ada exception
12085 catchpoint, we could rely purely on the associated minimal symbol.
12086 But we would be operating in degraded mode anyway, since we are
12087 still lacking the debugging info needed later on to extract
12088 the name of the exception being raised (this name is printed in
12089 the catchpoint message, and is also used when trying to catch
12090 a specific exception). We do not handle this case for now. */
12091 struct bound_minimal_symbol msym
12092 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093
12094 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12095 error (_("Your Ada runtime appears to be missing some debugging "
12096 "information.\nCannot insert Ada exception catchpoint "
12097 "in this configuration."));
12098
12099 return 0;
12100 }
12101
12102 /* Make sure that the symbol we found corresponds to a function. */
12103
12104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12105 error (_("Symbol \"%s\" is not a function (class = %d)"),
12106 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12107
12108 return 1;
12109 }
12110
12111 /* Inspect the Ada runtime and determine which exception info structure
12112 should be used to provide support for exception catchpoints.
12113
12114 This function will always set the per-inferior exception_info,
12115 or raise an error. */
12116
12117 static void
12118 ada_exception_support_info_sniffer (void)
12119 {
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
12122 /* If the exception info is already known, then no need to recompute it. */
12123 if (data->exception_info != NULL)
12124 return;
12125
12126 /* Check the latest (default) exception support info. */
12127 if (ada_has_this_exception_support (&default_exception_support_info))
12128 {
12129 data->exception_info = &default_exception_support_info;
12130 return;
12131 }
12132
12133 /* Try our fallback exception suport info. */
12134 if (ada_has_this_exception_support (&exception_support_info_fallback))
12135 {
12136 data->exception_info = &exception_support_info_fallback;
12137 return;
12138 }
12139
12140 /* Sometimes, it is normal for us to not be able to find the routine
12141 we are looking for. This happens when the program is linked with
12142 the shared version of the GNAT runtime, and the program has not been
12143 started yet. Inform the user of these two possible causes if
12144 applicable. */
12145
12146 if (ada_update_initial_language (language_unknown) != language_ada)
12147 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148
12149 /* If the symbol does not exist, then check that the program is
12150 already started, to make sure that shared libraries have been
12151 loaded. If it is not started, this may mean that the symbol is
12152 in a shared library. */
12153
12154 if (ptid_get_pid (inferior_ptid) == 0)
12155 error (_("Unable to insert catchpoint. Try to start the program first."));
12156
12157 /* At this point, we know that we are debugging an Ada program and
12158 that the inferior has been started, but we still are not able to
12159 find the run-time symbols. That can mean that we are in
12160 configurable run time mode, or that a-except as been optimized
12161 out by the linker... In any case, at this point it is not worth
12162 supporting this feature. */
12163
12164 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12165 }
12166
12167 /* True iff FRAME is very likely to be that of a function that is
12168 part of the runtime system. This is all very heuristic, but is
12169 intended to be used as advice as to what frames are uninteresting
12170 to most users. */
12171
12172 static int
12173 is_known_support_routine (struct frame_info *frame)
12174 {
12175 enum language func_lang;
12176 int i;
12177 const char *fullname;
12178
12179 /* If this code does not have any debugging information (no symtab),
12180 This cannot be any user code. */
12181
12182 symtab_and_line sal = find_frame_sal (frame);
12183 if (sal.symtab == NULL)
12184 return 1;
12185
12186 /* If there is a symtab, but the associated source file cannot be
12187 located, then assume this is not user code: Selecting a frame
12188 for which we cannot display the code would not be very helpful
12189 for the user. This should also take care of case such as VxWorks
12190 where the kernel has some debugging info provided for a few units. */
12191
12192 fullname = symtab_to_fullname (sal.symtab);
12193 if (access (fullname, R_OK) != 0)
12194 return 1;
12195
12196 /* Check the unit filename againt the Ada runtime file naming.
12197 We also check the name of the objfile against the name of some
12198 known system libraries that sometimes come with debugging info
12199 too. */
12200
12201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_runtime_file_name_patterns[i]);
12204 if (re_exec (lbasename (sal.symtab->filename)))
12205 return 1;
12206 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12207 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12208 return 1;
12209 }
12210
12211 /* Check whether the function is a GNAT-generated entity. */
12212
12213 gdb::unique_xmalloc_ptr<char> func_name
12214 = find_frame_funname (frame, &func_lang, NULL);
12215 if (func_name == NULL)
12216 return 1;
12217
12218 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_auxiliary_function_name_patterns[i]);
12221 if (re_exec (func_name.get ()))
12222 return 1;
12223 }
12224
12225 return 0;
12226 }
12227
12228 /* Find the first frame that contains debugging information and that is not
12229 part of the Ada run-time, starting from FI and moving upward. */
12230
12231 void
12232 ada_find_printable_frame (struct frame_info *fi)
12233 {
12234 for (; fi != NULL; fi = get_prev_frame (fi))
12235 {
12236 if (!is_known_support_routine (fi))
12237 {
12238 select_frame (fi);
12239 break;
12240 }
12241 }
12242
12243 }
12244
12245 /* Assuming that the inferior just triggered an unhandled exception
12246 catchpoint, return the address in inferior memory where the name
12247 of the exception is stored.
12248
12249 Return zero if the address could not be computed. */
12250
12251 static CORE_ADDR
12252 ada_unhandled_exception_name_addr (void)
12253 {
12254 return parse_and_eval_address ("e.full_name");
12255 }
12256
12257 /* Same as ada_unhandled_exception_name_addr, except that this function
12258 should be used when the inferior uses an older version of the runtime,
12259 where the exception name needs to be extracted from a specific frame
12260 several frames up in the callstack. */
12261
12262 static CORE_ADDR
12263 ada_unhandled_exception_name_addr_from_raise (void)
12264 {
12265 int frame_level;
12266 struct frame_info *fi;
12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268
12269 /* To determine the name of this exception, we need to select
12270 the frame corresponding to RAISE_SYM_NAME. This frame is
12271 at least 3 levels up, so we simply skip the first 3 frames
12272 without checking the name of their associated function. */
12273 fi = get_current_frame ();
12274 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 if (fi != NULL)
12276 fi = get_prev_frame (fi);
12277
12278 while (fi != NULL)
12279 {
12280 enum language func_lang;
12281
12282 gdb::unique_xmalloc_ptr<char> func_name
12283 = find_frame_funname (fi, &func_lang, NULL);
12284 if (func_name != NULL)
12285 {
12286 if (strcmp (func_name.get (),
12287 data->exception_info->catch_exception_sym) == 0)
12288 break; /* We found the frame we were looking for... */
12289 fi = get_prev_frame (fi);
12290 }
12291 }
12292
12293 if (fi == NULL)
12294 return 0;
12295
12296 select_frame (fi);
12297 return parse_and_eval_address ("id.full_name");
12298 }
12299
12300 /* Assuming the inferior just triggered an Ada exception catchpoint
12301 (of any type), return the address in inferior memory where the name
12302 of the exception is stored, if applicable.
12303
12304 Assumes the selected frame is the current frame.
12305
12306 Return zero if the address could not be computed, or if not relevant. */
12307
12308 static CORE_ADDR
12309 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12310 struct breakpoint *b)
12311 {
12312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12313
12314 switch (ex)
12315 {
12316 case ada_catch_exception:
12317 return (parse_and_eval_address ("e.full_name"));
12318 break;
12319
12320 case ada_catch_exception_unhandled:
12321 return data->exception_info->unhandled_exception_name_addr ();
12322 break;
12323
12324 case ada_catch_assert:
12325 return 0; /* Exception name is not relevant in this case. */
12326 break;
12327
12328 default:
12329 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12330 break;
12331 }
12332
12333 return 0; /* Should never be reached. */
12334 }
12335
12336 /* Assuming the inferior is stopped at an exception catchpoint,
12337 return the message which was associated to the exception, if
12338 available. Return NULL if the message could not be retrieved.
12339
12340 The caller must xfree the string after use.
12341
12342 Note: The exception message can be associated to an exception
12343 either through the use of the Raise_Exception function, or
12344 more simply (Ada 2005 and later), via:
12345
12346 raise Exception_Name with "exception message";
12347
12348 */
12349
12350 static char *
12351 ada_exception_message_1 (void)
12352 {
12353 struct value *e_msg_val;
12354 char *e_msg = NULL;
12355 int e_msg_len;
12356 struct cleanup *cleanups;
12357
12358 /* For runtimes that support this feature, the exception message
12359 is passed as an unbounded string argument called "message". */
12360 e_msg_val = parse_and_eval ("message");
12361 if (e_msg_val == NULL)
12362 return NULL; /* Exception message not supported. */
12363
12364 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12365 gdb_assert (e_msg_val != NULL);
12366 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12367
12368 /* If the message string is empty, then treat it as if there was
12369 no exception message. */
12370 if (e_msg_len <= 0)
12371 return NULL;
12372
12373 e_msg = (char *) xmalloc (e_msg_len + 1);
12374 cleanups = make_cleanup (xfree, e_msg);
12375 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12376 e_msg[e_msg_len] = '\0';
12377
12378 discard_cleanups (cleanups);
12379 return e_msg;
12380 }
12381
12382 /* Same as ada_exception_message_1, except that all exceptions are
12383 contained here (returning NULL instead). */
12384
12385 static char *
12386 ada_exception_message (void)
12387 {
12388 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12389
12390 TRY
12391 {
12392 e_msg = ada_exception_message_1 ();
12393 }
12394 CATCH (e, RETURN_MASK_ERROR)
12395 {
12396 e_msg = NULL;
12397 }
12398 END_CATCH
12399
12400 return e_msg;
12401 }
12402
12403 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12404 any error that ada_exception_name_addr_1 might cause to be thrown.
12405 When an error is intercepted, a warning with the error message is printed,
12406 and zero is returned. */
12407
12408 static CORE_ADDR
12409 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12410 struct breakpoint *b)
12411 {
12412 CORE_ADDR result = 0;
12413
12414 TRY
12415 {
12416 result = ada_exception_name_addr_1 (ex, b);
12417 }
12418
12419 CATCH (e, RETURN_MASK_ERROR)
12420 {
12421 warning (_("failed to get exception name: %s"), e.message);
12422 return 0;
12423 }
12424 END_CATCH
12425
12426 return result;
12427 }
12428
12429 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12430
12431 /* Ada catchpoints.
12432
12433 In the case of catchpoints on Ada exceptions, the catchpoint will
12434 stop the target on every exception the program throws. When a user
12435 specifies the name of a specific exception, we translate this
12436 request into a condition expression (in text form), and then parse
12437 it into an expression stored in each of the catchpoint's locations.
12438 We then use this condition to check whether the exception that was
12439 raised is the one the user is interested in. If not, then the
12440 target is resumed again. We store the name of the requested
12441 exception, in order to be able to re-set the condition expression
12442 when symbols change. */
12443
12444 /* An instance of this type is used to represent an Ada catchpoint
12445 breakpoint location. */
12446
12447 class ada_catchpoint_location : public bp_location
12448 {
12449 public:
12450 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12451 : bp_location (ops, owner)
12452 {}
12453
12454 /* The condition that checks whether the exception that was raised
12455 is the specific exception the user specified on catchpoint
12456 creation. */
12457 expression_up excep_cond_expr;
12458 };
12459
12460 /* Implement the DTOR method in the bp_location_ops structure for all
12461 Ada exception catchpoint kinds. */
12462
12463 static void
12464 ada_catchpoint_location_dtor (struct bp_location *bl)
12465 {
12466 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12467
12468 al->excep_cond_expr.reset ();
12469 }
12470
12471 /* The vtable to be used in Ada catchpoint locations. */
12472
12473 static const struct bp_location_ops ada_catchpoint_location_ops =
12474 {
12475 ada_catchpoint_location_dtor
12476 };
12477
12478 /* An instance of this type is used to represent an Ada catchpoint. */
12479
12480 struct ada_catchpoint : public breakpoint
12481 {
12482 ~ada_catchpoint () override;
12483
12484 /* The name of the specific exception the user specified. */
12485 char *excep_string;
12486 };
12487
12488 /* Parse the exception condition string in the context of each of the
12489 catchpoint's locations, and store them for later evaluation. */
12490
12491 static void
12492 create_excep_cond_exprs (struct ada_catchpoint *c)
12493 {
12494 struct cleanup *old_chain;
12495 struct bp_location *bl;
12496 char *cond_string;
12497
12498 /* Nothing to do if there's no specific exception to catch. */
12499 if (c->excep_string == NULL)
12500 return;
12501
12502 /* Same if there are no locations... */
12503 if (c->loc == NULL)
12504 return;
12505
12506 /* Compute the condition expression in text form, from the specific
12507 expection we want to catch. */
12508 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12509 old_chain = make_cleanup (xfree, cond_string);
12510
12511 /* Iterate over all the catchpoint's locations, and parse an
12512 expression for each. */
12513 for (bl = c->loc; bl != NULL; bl = bl->next)
12514 {
12515 struct ada_catchpoint_location *ada_loc
12516 = (struct ada_catchpoint_location *) bl;
12517 expression_up exp;
12518
12519 if (!bl->shlib_disabled)
12520 {
12521 const char *s;
12522
12523 s = cond_string;
12524 TRY
12525 {
12526 exp = parse_exp_1 (&s, bl->address,
12527 block_for_pc (bl->address),
12528 0);
12529 }
12530 CATCH (e, RETURN_MASK_ERROR)
12531 {
12532 warning (_("failed to reevaluate internal exception condition "
12533 "for catchpoint %d: %s"),
12534 c->number, e.message);
12535 }
12536 END_CATCH
12537 }
12538
12539 ada_loc->excep_cond_expr = std::move (exp);
12540 }
12541
12542 do_cleanups (old_chain);
12543 }
12544
12545 /* ada_catchpoint destructor. */
12546
12547 ada_catchpoint::~ada_catchpoint ()
12548 {
12549 xfree (this->excep_string);
12550 }
12551
12552 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12553 structure for all exception catchpoint kinds. */
12554
12555 static struct bp_location *
12556 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12557 struct breakpoint *self)
12558 {
12559 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12560 }
12561
12562 /* Implement the RE_SET method in the breakpoint_ops structure for all
12563 exception catchpoint kinds. */
12564
12565 static void
12566 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12567 {
12568 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12569
12570 /* Call the base class's method. This updates the catchpoint's
12571 locations. */
12572 bkpt_breakpoint_ops.re_set (b);
12573
12574 /* Reparse the exception conditional expressions. One for each
12575 location. */
12576 create_excep_cond_exprs (c);
12577 }
12578
12579 /* Returns true if we should stop for this breakpoint hit. If the
12580 user specified a specific exception, we only want to cause a stop
12581 if the program thrown that exception. */
12582
12583 static int
12584 should_stop_exception (const struct bp_location *bl)
12585 {
12586 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12587 const struct ada_catchpoint_location *ada_loc
12588 = (const struct ada_catchpoint_location *) bl;
12589 int stop;
12590
12591 /* With no specific exception, should always stop. */
12592 if (c->excep_string == NULL)
12593 return 1;
12594
12595 if (ada_loc->excep_cond_expr == NULL)
12596 {
12597 /* We will have a NULL expression if back when we were creating
12598 the expressions, this location's had failed to parse. */
12599 return 1;
12600 }
12601
12602 stop = 1;
12603 TRY
12604 {
12605 struct value *mark;
12606
12607 mark = value_mark ();
12608 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12609 value_free_to_mark (mark);
12610 }
12611 CATCH (ex, RETURN_MASK_ALL)
12612 {
12613 exception_fprintf (gdb_stderr, ex,
12614 _("Error in testing exception condition:\n"));
12615 }
12616 END_CATCH
12617
12618 return stop;
12619 }
12620
12621 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12622 for all exception catchpoint kinds. */
12623
12624 static void
12625 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12626 {
12627 bs->stop = should_stop_exception (bs->bp_location_at);
12628 }
12629
12630 /* Implement the PRINT_IT method in the breakpoint_ops structure
12631 for all exception catchpoint kinds. */
12632
12633 static enum print_stop_action
12634 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12635 {
12636 struct ui_out *uiout = current_uiout;
12637 struct breakpoint *b = bs->breakpoint_at;
12638 char *exception_message;
12639
12640 annotate_catchpoint (b->number);
12641
12642 if (uiout->is_mi_like_p ())
12643 {
12644 uiout->field_string ("reason",
12645 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12646 uiout->field_string ("disp", bpdisp_text (b->disposition));
12647 }
12648
12649 uiout->text (b->disposition == disp_del
12650 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12651 uiout->field_int ("bkptno", b->number);
12652 uiout->text (", ");
12653
12654 /* ada_exception_name_addr relies on the selected frame being the
12655 current frame. Need to do this here because this function may be
12656 called more than once when printing a stop, and below, we'll
12657 select the first frame past the Ada run-time (see
12658 ada_find_printable_frame). */
12659 select_frame (get_current_frame ());
12660
12661 switch (ex)
12662 {
12663 case ada_catch_exception:
12664 case ada_catch_exception_unhandled:
12665 {
12666 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12667 char exception_name[256];
12668
12669 if (addr != 0)
12670 {
12671 read_memory (addr, (gdb_byte *) exception_name,
12672 sizeof (exception_name) - 1);
12673 exception_name [sizeof (exception_name) - 1] = '\0';
12674 }
12675 else
12676 {
12677 /* For some reason, we were unable to read the exception
12678 name. This could happen if the Runtime was compiled
12679 without debugging info, for instance. In that case,
12680 just replace the exception name by the generic string
12681 "exception" - it will read as "an exception" in the
12682 notification we are about to print. */
12683 memcpy (exception_name, "exception", sizeof ("exception"));
12684 }
12685 /* In the case of unhandled exception breakpoints, we print
12686 the exception name as "unhandled EXCEPTION_NAME", to make
12687 it clearer to the user which kind of catchpoint just got
12688 hit. We used ui_out_text to make sure that this extra
12689 info does not pollute the exception name in the MI case. */
12690 if (ex == ada_catch_exception_unhandled)
12691 uiout->text ("unhandled ");
12692 uiout->field_string ("exception-name", exception_name);
12693 }
12694 break;
12695 case ada_catch_assert:
12696 /* In this case, the name of the exception is not really
12697 important. Just print "failed assertion" to make it clearer
12698 that his program just hit an assertion-failure catchpoint.
12699 We used ui_out_text because this info does not belong in
12700 the MI output. */
12701 uiout->text ("failed assertion");
12702 break;
12703 }
12704
12705 exception_message = ada_exception_message ();
12706 if (exception_message != NULL)
12707 {
12708 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12709
12710 uiout->text (" (");
12711 uiout->field_string ("exception-message", exception_message);
12712 uiout->text (")");
12713
12714 do_cleanups (cleanups);
12715 }
12716
12717 uiout->text (" at ");
12718 ada_find_printable_frame (get_current_frame ());
12719
12720 return PRINT_SRC_AND_LOC;
12721 }
12722
12723 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12724 for all exception catchpoint kinds. */
12725
12726 static void
12727 print_one_exception (enum ada_exception_catchpoint_kind ex,
12728 struct breakpoint *b, struct bp_location **last_loc)
12729 {
12730 struct ui_out *uiout = current_uiout;
12731 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12732 struct value_print_options opts;
12733
12734 get_user_print_options (&opts);
12735 if (opts.addressprint)
12736 {
12737 annotate_field (4);
12738 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12739 }
12740
12741 annotate_field (5);
12742 *last_loc = b->loc;
12743 switch (ex)
12744 {
12745 case ada_catch_exception:
12746 if (c->excep_string != NULL)
12747 {
12748 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12749
12750 uiout->field_string ("what", msg);
12751 xfree (msg);
12752 }
12753 else
12754 uiout->field_string ("what", "all Ada exceptions");
12755
12756 break;
12757
12758 case ada_catch_exception_unhandled:
12759 uiout->field_string ("what", "unhandled Ada exceptions");
12760 break;
12761
12762 case ada_catch_assert:
12763 uiout->field_string ("what", "failed Ada assertions");
12764 break;
12765
12766 default:
12767 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12768 break;
12769 }
12770 }
12771
12772 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12773 for all exception catchpoint kinds. */
12774
12775 static void
12776 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12777 struct breakpoint *b)
12778 {
12779 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12780 struct ui_out *uiout = current_uiout;
12781
12782 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12783 : _("Catchpoint "));
12784 uiout->field_int ("bkptno", b->number);
12785 uiout->text (": ");
12786
12787 switch (ex)
12788 {
12789 case ada_catch_exception:
12790 if (c->excep_string != NULL)
12791 {
12792 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12793 struct cleanup *old_chain = make_cleanup (xfree, info);
12794
12795 uiout->text (info);
12796 do_cleanups (old_chain);
12797 }
12798 else
12799 uiout->text (_("all Ada exceptions"));
12800 break;
12801
12802 case ada_catch_exception_unhandled:
12803 uiout->text (_("unhandled Ada exceptions"));
12804 break;
12805
12806 case ada_catch_assert:
12807 uiout->text (_("failed Ada assertions"));
12808 break;
12809
12810 default:
12811 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12812 break;
12813 }
12814 }
12815
12816 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12817 for all exception catchpoint kinds. */
12818
12819 static void
12820 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12821 struct breakpoint *b, struct ui_file *fp)
12822 {
12823 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12824
12825 switch (ex)
12826 {
12827 case ada_catch_exception:
12828 fprintf_filtered (fp, "catch exception");
12829 if (c->excep_string != NULL)
12830 fprintf_filtered (fp, " %s", c->excep_string);
12831 break;
12832
12833 case ada_catch_exception_unhandled:
12834 fprintf_filtered (fp, "catch exception unhandled");
12835 break;
12836
12837 case ada_catch_assert:
12838 fprintf_filtered (fp, "catch assert");
12839 break;
12840
12841 default:
12842 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12843 }
12844 print_recreate_thread (b, fp);
12845 }
12846
12847 /* Virtual table for "catch exception" breakpoints. */
12848
12849 static struct bp_location *
12850 allocate_location_catch_exception (struct breakpoint *self)
12851 {
12852 return allocate_location_exception (ada_catch_exception, self);
12853 }
12854
12855 static void
12856 re_set_catch_exception (struct breakpoint *b)
12857 {
12858 re_set_exception (ada_catch_exception, b);
12859 }
12860
12861 static void
12862 check_status_catch_exception (bpstat bs)
12863 {
12864 check_status_exception (ada_catch_exception, bs);
12865 }
12866
12867 static enum print_stop_action
12868 print_it_catch_exception (bpstat bs)
12869 {
12870 return print_it_exception (ada_catch_exception, bs);
12871 }
12872
12873 static void
12874 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12875 {
12876 print_one_exception (ada_catch_exception, b, last_loc);
12877 }
12878
12879 static void
12880 print_mention_catch_exception (struct breakpoint *b)
12881 {
12882 print_mention_exception (ada_catch_exception, b);
12883 }
12884
12885 static void
12886 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12887 {
12888 print_recreate_exception (ada_catch_exception, b, fp);
12889 }
12890
12891 static struct breakpoint_ops catch_exception_breakpoint_ops;
12892
12893 /* Virtual table for "catch exception unhandled" breakpoints. */
12894
12895 static struct bp_location *
12896 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12897 {
12898 return allocate_location_exception (ada_catch_exception_unhandled, self);
12899 }
12900
12901 static void
12902 re_set_catch_exception_unhandled (struct breakpoint *b)
12903 {
12904 re_set_exception (ada_catch_exception_unhandled, b);
12905 }
12906
12907 static void
12908 check_status_catch_exception_unhandled (bpstat bs)
12909 {
12910 check_status_exception (ada_catch_exception_unhandled, bs);
12911 }
12912
12913 static enum print_stop_action
12914 print_it_catch_exception_unhandled (bpstat bs)
12915 {
12916 return print_it_exception (ada_catch_exception_unhandled, bs);
12917 }
12918
12919 static void
12920 print_one_catch_exception_unhandled (struct breakpoint *b,
12921 struct bp_location **last_loc)
12922 {
12923 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12924 }
12925
12926 static void
12927 print_mention_catch_exception_unhandled (struct breakpoint *b)
12928 {
12929 print_mention_exception (ada_catch_exception_unhandled, b);
12930 }
12931
12932 static void
12933 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12934 struct ui_file *fp)
12935 {
12936 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12937 }
12938
12939 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12940
12941 /* Virtual table for "catch assert" breakpoints. */
12942
12943 static struct bp_location *
12944 allocate_location_catch_assert (struct breakpoint *self)
12945 {
12946 return allocate_location_exception (ada_catch_assert, self);
12947 }
12948
12949 static void
12950 re_set_catch_assert (struct breakpoint *b)
12951 {
12952 re_set_exception (ada_catch_assert, b);
12953 }
12954
12955 static void
12956 check_status_catch_assert (bpstat bs)
12957 {
12958 check_status_exception (ada_catch_assert, bs);
12959 }
12960
12961 static enum print_stop_action
12962 print_it_catch_assert (bpstat bs)
12963 {
12964 return print_it_exception (ada_catch_assert, bs);
12965 }
12966
12967 static void
12968 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12969 {
12970 print_one_exception (ada_catch_assert, b, last_loc);
12971 }
12972
12973 static void
12974 print_mention_catch_assert (struct breakpoint *b)
12975 {
12976 print_mention_exception (ada_catch_assert, b);
12977 }
12978
12979 static void
12980 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12981 {
12982 print_recreate_exception (ada_catch_assert, b, fp);
12983 }
12984
12985 static struct breakpoint_ops catch_assert_breakpoint_ops;
12986
12987 /* Return a newly allocated copy of the first space-separated token
12988 in ARGSP, and then adjust ARGSP to point immediately after that
12989 token.
12990
12991 Return NULL if ARGPS does not contain any more tokens. */
12992
12993 static char *
12994 ada_get_next_arg (const char **argsp)
12995 {
12996 const char *args = *argsp;
12997 const char *end;
12998 char *result;
12999
13000 args = skip_spaces (args);
13001 if (args[0] == '\0')
13002 return NULL; /* No more arguments. */
13003
13004 /* Find the end of the current argument. */
13005
13006 end = skip_to_space (args);
13007
13008 /* Adjust ARGSP to point to the start of the next argument. */
13009
13010 *argsp = end;
13011
13012 /* Make a copy of the current argument and return it. */
13013
13014 result = (char *) xmalloc (end - args + 1);
13015 strncpy (result, args, end - args);
13016 result[end - args] = '\0';
13017
13018 return result;
13019 }
13020
13021 /* Split the arguments specified in a "catch exception" command.
13022 Set EX to the appropriate catchpoint type.
13023 Set EXCEP_STRING to the name of the specific exception if
13024 specified by the user.
13025 If a condition is found at the end of the arguments, the condition
13026 expression is stored in COND_STRING (memory must be deallocated
13027 after use). Otherwise COND_STRING is set to NULL. */
13028
13029 static void
13030 catch_ada_exception_command_split (const char *args,
13031 enum ada_exception_catchpoint_kind *ex,
13032 char **excep_string,
13033 char **cond_string)
13034 {
13035 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13036 char *exception_name;
13037 char *cond = NULL;
13038
13039 exception_name = ada_get_next_arg (&args);
13040 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13041 {
13042 /* This is not an exception name; this is the start of a condition
13043 expression for a catchpoint on all exceptions. So, "un-get"
13044 this token, and set exception_name to NULL. */
13045 xfree (exception_name);
13046 exception_name = NULL;
13047 args -= 2;
13048 }
13049 make_cleanup (xfree, exception_name);
13050
13051 /* Check to see if we have a condition. */
13052
13053 args = skip_spaces (args);
13054 if (startswith (args, "if")
13055 && (isspace (args[2]) || args[2] == '\0'))
13056 {
13057 args += 2;
13058 args = skip_spaces (args);
13059
13060 if (args[0] == '\0')
13061 error (_("Condition missing after `if' keyword"));
13062 cond = xstrdup (args);
13063 make_cleanup (xfree, cond);
13064
13065 args += strlen (args);
13066 }
13067
13068 /* Check that we do not have any more arguments. Anything else
13069 is unexpected. */
13070
13071 if (args[0] != '\0')
13072 error (_("Junk at end of expression"));
13073
13074 discard_cleanups (old_chain);
13075
13076 if (exception_name == NULL)
13077 {
13078 /* Catch all exceptions. */
13079 *ex = ada_catch_exception;
13080 *excep_string = NULL;
13081 }
13082 else if (strcmp (exception_name, "unhandled") == 0)
13083 {
13084 /* Catch unhandled exceptions. */
13085 *ex = ada_catch_exception_unhandled;
13086 *excep_string = NULL;
13087 }
13088 else
13089 {
13090 /* Catch a specific exception. */
13091 *ex = ada_catch_exception;
13092 *excep_string = exception_name;
13093 }
13094 *cond_string = cond;
13095 }
13096
13097 /* Return the name of the symbol on which we should break in order to
13098 implement a catchpoint of the EX kind. */
13099
13100 static const char *
13101 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13102 {
13103 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13104
13105 gdb_assert (data->exception_info != NULL);
13106
13107 switch (ex)
13108 {
13109 case ada_catch_exception:
13110 return (data->exception_info->catch_exception_sym);
13111 break;
13112 case ada_catch_exception_unhandled:
13113 return (data->exception_info->catch_exception_unhandled_sym);
13114 break;
13115 case ada_catch_assert:
13116 return (data->exception_info->catch_assert_sym);
13117 break;
13118 default:
13119 internal_error (__FILE__, __LINE__,
13120 _("unexpected catchpoint kind (%d)"), ex);
13121 }
13122 }
13123
13124 /* Return the breakpoint ops "virtual table" used for catchpoints
13125 of the EX kind. */
13126
13127 static const struct breakpoint_ops *
13128 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13129 {
13130 switch (ex)
13131 {
13132 case ada_catch_exception:
13133 return (&catch_exception_breakpoint_ops);
13134 break;
13135 case ada_catch_exception_unhandled:
13136 return (&catch_exception_unhandled_breakpoint_ops);
13137 break;
13138 case ada_catch_assert:
13139 return (&catch_assert_breakpoint_ops);
13140 break;
13141 default:
13142 internal_error (__FILE__, __LINE__,
13143 _("unexpected catchpoint kind (%d)"), ex);
13144 }
13145 }
13146
13147 /* Return the condition that will be used to match the current exception
13148 being raised with the exception that the user wants to catch. This
13149 assumes that this condition is used when the inferior just triggered
13150 an exception catchpoint.
13151
13152 The string returned is a newly allocated string that needs to be
13153 deallocated later. */
13154
13155 static char *
13156 ada_exception_catchpoint_cond_string (const char *excep_string)
13157 {
13158 int i;
13159
13160 /* The standard exceptions are a special case. They are defined in
13161 runtime units that have been compiled without debugging info; if
13162 EXCEP_STRING is the not-fully-qualified name of a standard
13163 exception (e.g. "constraint_error") then, during the evaluation
13164 of the condition expression, the symbol lookup on this name would
13165 *not* return this standard exception. The catchpoint condition
13166 may then be set only on user-defined exceptions which have the
13167 same not-fully-qualified name (e.g. my_package.constraint_error).
13168
13169 To avoid this unexcepted behavior, these standard exceptions are
13170 systematically prefixed by "standard". This means that "catch
13171 exception constraint_error" is rewritten into "catch exception
13172 standard.constraint_error".
13173
13174 If an exception named contraint_error is defined in another package of
13175 the inferior program, then the only way to specify this exception as a
13176 breakpoint condition is to use its fully-qualified named:
13177 e.g. my_package.constraint_error. */
13178
13179 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13180 {
13181 if (strcmp (standard_exc [i], excep_string) == 0)
13182 {
13183 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13184 excep_string);
13185 }
13186 }
13187 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13188 }
13189
13190 /* Return the symtab_and_line that should be used to insert an exception
13191 catchpoint of the TYPE kind.
13192
13193 EXCEP_STRING should contain the name of a specific exception that
13194 the catchpoint should catch, or NULL otherwise.
13195
13196 ADDR_STRING returns the name of the function where the real
13197 breakpoint that implements the catchpoints is set, depending on the
13198 type of catchpoint we need to create. */
13199
13200 static struct symtab_and_line
13201 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13202 const char **addr_string, const struct breakpoint_ops **ops)
13203 {
13204 const char *sym_name;
13205 struct symbol *sym;
13206
13207 /* First, find out which exception support info to use. */
13208 ada_exception_support_info_sniffer ();
13209
13210 /* Then lookup the function on which we will break in order to catch
13211 the Ada exceptions requested by the user. */
13212 sym_name = ada_exception_sym_name (ex);
13213 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13214
13215 /* We can assume that SYM is not NULL at this stage. If the symbol
13216 did not exist, ada_exception_support_info_sniffer would have
13217 raised an exception.
13218
13219 Also, ada_exception_support_info_sniffer should have already
13220 verified that SYM is a function symbol. */
13221 gdb_assert (sym != NULL);
13222 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13223
13224 /* Set ADDR_STRING. */
13225 *addr_string = xstrdup (sym_name);
13226
13227 /* Set OPS. */
13228 *ops = ada_exception_breakpoint_ops (ex);
13229
13230 return find_function_start_sal (sym, 1);
13231 }
13232
13233 /* Create an Ada exception catchpoint.
13234
13235 EX_KIND is the kind of exception catchpoint to be created.
13236
13237 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13238 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13239 of the exception to which this catchpoint applies. When not NULL,
13240 the string must be allocated on the heap, and its deallocation
13241 is no longer the responsibility of the caller.
13242
13243 COND_STRING, if not NULL, is the catchpoint condition. This string
13244 must be allocated on the heap, and its deallocation is no longer
13245 the responsibility of the caller.
13246
13247 TEMPFLAG, if nonzero, means that the underlying breakpoint
13248 should be temporary.
13249
13250 FROM_TTY is the usual argument passed to all commands implementations. */
13251
13252 void
13253 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13254 enum ada_exception_catchpoint_kind ex_kind,
13255 char *excep_string,
13256 char *cond_string,
13257 int tempflag,
13258 int disabled,
13259 int from_tty)
13260 {
13261 const char *addr_string = NULL;
13262 const struct breakpoint_ops *ops = NULL;
13263 struct symtab_and_line sal
13264 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13265
13266 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13267 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13268 ops, tempflag, disabled, from_tty);
13269 c->excep_string = excep_string;
13270 create_excep_cond_exprs (c.get ());
13271 if (cond_string != NULL)
13272 set_breakpoint_condition (c.get (), cond_string, from_tty);
13273 install_breakpoint (0, std::move (c), 1);
13274 }
13275
13276 /* Implement the "catch exception" command. */
13277
13278 static void
13279 catch_ada_exception_command (const char *arg_entry, int from_tty,
13280 struct cmd_list_element *command)
13281 {
13282 const char *arg = arg_entry;
13283 struct gdbarch *gdbarch = get_current_arch ();
13284 int tempflag;
13285 enum ada_exception_catchpoint_kind ex_kind;
13286 char *excep_string = NULL;
13287 char *cond_string = NULL;
13288
13289 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13290
13291 if (!arg)
13292 arg = "";
13293 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13294 &cond_string);
13295 create_ada_exception_catchpoint (gdbarch, ex_kind,
13296 excep_string, cond_string,
13297 tempflag, 1 /* enabled */,
13298 from_tty);
13299 }
13300
13301 /* Split the arguments specified in a "catch assert" command.
13302
13303 ARGS contains the command's arguments (or the empty string if
13304 no arguments were passed).
13305
13306 If ARGS contains a condition, set COND_STRING to that condition
13307 (the memory needs to be deallocated after use). */
13308
13309 static void
13310 catch_ada_assert_command_split (const char *args, char **cond_string)
13311 {
13312 args = skip_spaces (args);
13313
13314 /* Check whether a condition was provided. */
13315 if (startswith (args, "if")
13316 && (isspace (args[2]) || args[2] == '\0'))
13317 {
13318 args += 2;
13319 args = skip_spaces (args);
13320 if (args[0] == '\0')
13321 error (_("condition missing after `if' keyword"));
13322 *cond_string = xstrdup (args);
13323 }
13324
13325 /* Otherwise, there should be no other argument at the end of
13326 the command. */
13327 else if (args[0] != '\0')
13328 error (_("Junk at end of arguments."));
13329 }
13330
13331 /* Implement the "catch assert" command. */
13332
13333 static void
13334 catch_assert_command (const char *arg_entry, int from_tty,
13335 struct cmd_list_element *command)
13336 {
13337 const char *arg = arg_entry;
13338 struct gdbarch *gdbarch = get_current_arch ();
13339 int tempflag;
13340 char *cond_string = NULL;
13341
13342 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13343
13344 if (!arg)
13345 arg = "";
13346 catch_ada_assert_command_split (arg, &cond_string);
13347 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13348 NULL, cond_string,
13349 tempflag, 1 /* enabled */,
13350 from_tty);
13351 }
13352
13353 /* Return non-zero if the symbol SYM is an Ada exception object. */
13354
13355 static int
13356 ada_is_exception_sym (struct symbol *sym)
13357 {
13358 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13359
13360 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13361 && SYMBOL_CLASS (sym) != LOC_BLOCK
13362 && SYMBOL_CLASS (sym) != LOC_CONST
13363 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13364 && type_name != NULL && strcmp (type_name, "exception") == 0);
13365 }
13366
13367 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13368 Ada exception object. This matches all exceptions except the ones
13369 defined by the Ada language. */
13370
13371 static int
13372 ada_is_non_standard_exception_sym (struct symbol *sym)
13373 {
13374 int i;
13375
13376 if (!ada_is_exception_sym (sym))
13377 return 0;
13378
13379 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13380 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13381 return 0; /* A standard exception. */
13382
13383 /* Numeric_Error is also a standard exception, so exclude it.
13384 See the STANDARD_EXC description for more details as to why
13385 this exception is not listed in that array. */
13386 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13387 return 0;
13388
13389 return 1;
13390 }
13391
13392 /* A helper function for std::sort, comparing two struct ada_exc_info
13393 objects.
13394
13395 The comparison is determined first by exception name, and then
13396 by exception address. */
13397
13398 bool
13399 ada_exc_info::operator< (const ada_exc_info &other) const
13400 {
13401 int result;
13402
13403 result = strcmp (name, other.name);
13404 if (result < 0)
13405 return true;
13406 if (result == 0 && addr < other.addr)
13407 return true;
13408 return false;
13409 }
13410
13411 bool
13412 ada_exc_info::operator== (const ada_exc_info &other) const
13413 {
13414 return addr == other.addr && strcmp (name, other.name) == 0;
13415 }
13416
13417 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13418 routine, but keeping the first SKIP elements untouched.
13419
13420 All duplicates are also removed. */
13421
13422 static void
13423 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13424 int skip)
13425 {
13426 std::sort (exceptions->begin () + skip, exceptions->end ());
13427 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13428 exceptions->end ());
13429 }
13430
13431 /* Add all exceptions defined by the Ada standard whose name match
13432 a regular expression.
13433
13434 If PREG is not NULL, then this regexp_t object is used to
13435 perform the symbol name matching. Otherwise, no name-based
13436 filtering is performed.
13437
13438 EXCEPTIONS is a vector of exceptions to which matching exceptions
13439 gets pushed. */
13440
13441 static void
13442 ada_add_standard_exceptions (compiled_regex *preg,
13443 std::vector<ada_exc_info> *exceptions)
13444 {
13445 int i;
13446
13447 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13448 {
13449 if (preg == NULL
13450 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13451 {
13452 struct bound_minimal_symbol msymbol
13453 = ada_lookup_simple_minsym (standard_exc[i]);
13454
13455 if (msymbol.minsym != NULL)
13456 {
13457 struct ada_exc_info info
13458 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13459
13460 exceptions->push_back (info);
13461 }
13462 }
13463 }
13464 }
13465
13466 /* Add all Ada exceptions defined locally and accessible from the given
13467 FRAME.
13468
13469 If PREG is not NULL, then this regexp_t object is used to
13470 perform the symbol name matching. Otherwise, no name-based
13471 filtering is performed.
13472
13473 EXCEPTIONS is a vector of exceptions to which matching exceptions
13474 gets pushed. */
13475
13476 static void
13477 ada_add_exceptions_from_frame (compiled_regex *preg,
13478 struct frame_info *frame,
13479 std::vector<ada_exc_info> *exceptions)
13480 {
13481 const struct block *block = get_frame_block (frame, 0);
13482
13483 while (block != 0)
13484 {
13485 struct block_iterator iter;
13486 struct symbol *sym;
13487
13488 ALL_BLOCK_SYMBOLS (block, iter, sym)
13489 {
13490 switch (SYMBOL_CLASS (sym))
13491 {
13492 case LOC_TYPEDEF:
13493 case LOC_BLOCK:
13494 case LOC_CONST:
13495 break;
13496 default:
13497 if (ada_is_exception_sym (sym))
13498 {
13499 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13500 SYMBOL_VALUE_ADDRESS (sym)};
13501
13502 exceptions->push_back (info);
13503 }
13504 }
13505 }
13506 if (BLOCK_FUNCTION (block) != NULL)
13507 break;
13508 block = BLOCK_SUPERBLOCK (block);
13509 }
13510 }
13511
13512 /* Return true if NAME matches PREG or if PREG is NULL. */
13513
13514 static bool
13515 name_matches_regex (const char *name, compiled_regex *preg)
13516 {
13517 return (preg == NULL
13518 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13519 }
13520
13521 /* Add all exceptions defined globally whose name name match
13522 a regular expression, excluding standard exceptions.
13523
13524 The reason we exclude standard exceptions is that they need
13525 to be handled separately: Standard exceptions are defined inside
13526 a runtime unit which is normally not compiled with debugging info,
13527 and thus usually do not show up in our symbol search. However,
13528 if the unit was in fact built with debugging info, we need to
13529 exclude them because they would duplicate the entry we found
13530 during the special loop that specifically searches for those
13531 standard exceptions.
13532
13533 If PREG is not NULL, then this regexp_t object is used to
13534 perform the symbol name matching. Otherwise, no name-based
13535 filtering is performed.
13536
13537 EXCEPTIONS is a vector of exceptions to which matching exceptions
13538 gets pushed. */
13539
13540 static void
13541 ada_add_global_exceptions (compiled_regex *preg,
13542 std::vector<ada_exc_info> *exceptions)
13543 {
13544 struct objfile *objfile;
13545 struct compunit_symtab *s;
13546
13547 /* In Ada, the symbol "search name" is a linkage name, whereas the
13548 regular expression used to do the matching refers to the natural
13549 name. So match against the decoded name. */
13550 expand_symtabs_matching (NULL,
13551 lookup_name_info::match_any (),
13552 [&] (const char *search_name)
13553 {
13554 const char *decoded = ada_decode (search_name);
13555 return name_matches_regex (decoded, preg);
13556 },
13557 NULL,
13558 VARIABLES_DOMAIN);
13559
13560 ALL_COMPUNITS (objfile, s)
13561 {
13562 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13563 int i;
13564
13565 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13566 {
13567 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13568 struct block_iterator iter;
13569 struct symbol *sym;
13570
13571 ALL_BLOCK_SYMBOLS (b, iter, sym)
13572 if (ada_is_non_standard_exception_sym (sym)
13573 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13574 {
13575 struct ada_exc_info info
13576 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13577
13578 exceptions->push_back (info);
13579 }
13580 }
13581 }
13582 }
13583
13584 /* Implements ada_exceptions_list with the regular expression passed
13585 as a regex_t, rather than a string.
13586
13587 If not NULL, PREG is used to filter out exceptions whose names
13588 do not match. Otherwise, all exceptions are listed. */
13589
13590 static std::vector<ada_exc_info>
13591 ada_exceptions_list_1 (compiled_regex *preg)
13592 {
13593 std::vector<ada_exc_info> result;
13594 int prev_len;
13595
13596 /* First, list the known standard exceptions. These exceptions
13597 need to be handled separately, as they are usually defined in
13598 runtime units that have been compiled without debugging info. */
13599
13600 ada_add_standard_exceptions (preg, &result);
13601
13602 /* Next, find all exceptions whose scope is local and accessible
13603 from the currently selected frame. */
13604
13605 if (has_stack_frames ())
13606 {
13607 prev_len = result.size ();
13608 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13609 &result);
13610 if (result.size () > prev_len)
13611 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13612 }
13613
13614 /* Add all exceptions whose scope is global. */
13615
13616 prev_len = result.size ();
13617 ada_add_global_exceptions (preg, &result);
13618 if (result.size () > prev_len)
13619 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13620
13621 return result;
13622 }
13623
13624 /* Return a vector of ada_exc_info.
13625
13626 If REGEXP is NULL, all exceptions are included in the result.
13627 Otherwise, it should contain a valid regular expression,
13628 and only the exceptions whose names match that regular expression
13629 are included in the result.
13630
13631 The exceptions are sorted in the following order:
13632 - Standard exceptions (defined by the Ada language), in
13633 alphabetical order;
13634 - Exceptions only visible from the current frame, in
13635 alphabetical order;
13636 - Exceptions whose scope is global, in alphabetical order. */
13637
13638 std::vector<ada_exc_info>
13639 ada_exceptions_list (const char *regexp)
13640 {
13641 if (regexp == NULL)
13642 return ada_exceptions_list_1 (NULL);
13643
13644 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13645 return ada_exceptions_list_1 (&reg);
13646 }
13647
13648 /* Implement the "info exceptions" command. */
13649
13650 static void
13651 info_exceptions_command (const char *regexp, int from_tty)
13652 {
13653 struct gdbarch *gdbarch = get_current_arch ();
13654
13655 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13656
13657 if (regexp != NULL)
13658 printf_filtered
13659 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13660 else
13661 printf_filtered (_("All defined Ada exceptions:\n"));
13662
13663 for (const ada_exc_info &info : exceptions)
13664 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13665 }
13666
13667 /* Operators */
13668 /* Information about operators given special treatment in functions
13669 below. */
13670 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13671
13672 #define ADA_OPERATORS \
13673 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13674 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13675 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13676 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13680 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13686 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13687 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13688 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13689 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13690 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13691 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13692
13693 static void
13694 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13695 int *argsp)
13696 {
13697 switch (exp->elts[pc - 1].opcode)
13698 {
13699 default:
13700 operator_length_standard (exp, pc, oplenp, argsp);
13701 break;
13702
13703 #define OP_DEFN(op, len, args, binop) \
13704 case op: *oplenp = len; *argsp = args; break;
13705 ADA_OPERATORS;
13706 #undef OP_DEFN
13707
13708 case OP_AGGREGATE:
13709 *oplenp = 3;
13710 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13711 break;
13712
13713 case OP_CHOICES:
13714 *oplenp = 3;
13715 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13716 break;
13717 }
13718 }
13719
13720 /* Implementation of the exp_descriptor method operator_check. */
13721
13722 static int
13723 ada_operator_check (struct expression *exp, int pos,
13724 int (*objfile_func) (struct objfile *objfile, void *data),
13725 void *data)
13726 {
13727 const union exp_element *const elts = exp->elts;
13728 struct type *type = NULL;
13729
13730 switch (elts[pos].opcode)
13731 {
13732 case UNOP_IN_RANGE:
13733 case UNOP_QUAL:
13734 type = elts[pos + 1].type;
13735 break;
13736
13737 default:
13738 return operator_check_standard (exp, pos, objfile_func, data);
13739 }
13740
13741 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13742
13743 if (type && TYPE_OBJFILE (type)
13744 && (*objfile_func) (TYPE_OBJFILE (type), data))
13745 return 1;
13746
13747 return 0;
13748 }
13749
13750 static const char *
13751 ada_op_name (enum exp_opcode opcode)
13752 {
13753 switch (opcode)
13754 {
13755 default:
13756 return op_name_standard (opcode);
13757
13758 #define OP_DEFN(op, len, args, binop) case op: return #op;
13759 ADA_OPERATORS;
13760 #undef OP_DEFN
13761
13762 case OP_AGGREGATE:
13763 return "OP_AGGREGATE";
13764 case OP_CHOICES:
13765 return "OP_CHOICES";
13766 case OP_NAME:
13767 return "OP_NAME";
13768 }
13769 }
13770
13771 /* As for operator_length, but assumes PC is pointing at the first
13772 element of the operator, and gives meaningful results only for the
13773 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13774
13775 static void
13776 ada_forward_operator_length (struct expression *exp, int pc,
13777 int *oplenp, int *argsp)
13778 {
13779 switch (exp->elts[pc].opcode)
13780 {
13781 default:
13782 *oplenp = *argsp = 0;
13783 break;
13784
13785 #define OP_DEFN(op, len, args, binop) \
13786 case op: *oplenp = len; *argsp = args; break;
13787 ADA_OPERATORS;
13788 #undef OP_DEFN
13789
13790 case OP_AGGREGATE:
13791 *oplenp = 3;
13792 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13793 break;
13794
13795 case OP_CHOICES:
13796 *oplenp = 3;
13797 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13798 break;
13799
13800 case OP_STRING:
13801 case OP_NAME:
13802 {
13803 int len = longest_to_int (exp->elts[pc + 1].longconst);
13804
13805 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13806 *argsp = 0;
13807 break;
13808 }
13809 }
13810 }
13811
13812 static int
13813 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13814 {
13815 enum exp_opcode op = exp->elts[elt].opcode;
13816 int oplen, nargs;
13817 int pc = elt;
13818 int i;
13819
13820 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13821
13822 switch (op)
13823 {
13824 /* Ada attributes ('Foo). */
13825 case OP_ATR_FIRST:
13826 case OP_ATR_LAST:
13827 case OP_ATR_LENGTH:
13828 case OP_ATR_IMAGE:
13829 case OP_ATR_MAX:
13830 case OP_ATR_MIN:
13831 case OP_ATR_MODULUS:
13832 case OP_ATR_POS:
13833 case OP_ATR_SIZE:
13834 case OP_ATR_TAG:
13835 case OP_ATR_VAL:
13836 break;
13837
13838 case UNOP_IN_RANGE:
13839 case UNOP_QUAL:
13840 /* XXX: gdb_sprint_host_address, type_sprint */
13841 fprintf_filtered (stream, _("Type @"));
13842 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13843 fprintf_filtered (stream, " (");
13844 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13845 fprintf_filtered (stream, ")");
13846 break;
13847 case BINOP_IN_BOUNDS:
13848 fprintf_filtered (stream, " (%d)",
13849 longest_to_int (exp->elts[pc + 2].longconst));
13850 break;
13851 case TERNOP_IN_RANGE:
13852 break;
13853
13854 case OP_AGGREGATE:
13855 case OP_OTHERS:
13856 case OP_DISCRETE_RANGE:
13857 case OP_POSITIONAL:
13858 case OP_CHOICES:
13859 break;
13860
13861 case OP_NAME:
13862 case OP_STRING:
13863 {
13864 char *name = &exp->elts[elt + 2].string;
13865 int len = longest_to_int (exp->elts[elt + 1].longconst);
13866
13867 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13868 break;
13869 }
13870
13871 default:
13872 return dump_subexp_body_standard (exp, stream, elt);
13873 }
13874
13875 elt += oplen;
13876 for (i = 0; i < nargs; i += 1)
13877 elt = dump_subexp (exp, stream, elt);
13878
13879 return elt;
13880 }
13881
13882 /* The Ada extension of print_subexp (q.v.). */
13883
13884 static void
13885 ada_print_subexp (struct expression *exp, int *pos,
13886 struct ui_file *stream, enum precedence prec)
13887 {
13888 int oplen, nargs, i;
13889 int pc = *pos;
13890 enum exp_opcode op = exp->elts[pc].opcode;
13891
13892 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13893
13894 *pos += oplen;
13895 switch (op)
13896 {
13897 default:
13898 *pos -= oplen;
13899 print_subexp_standard (exp, pos, stream, prec);
13900 return;
13901
13902 case OP_VAR_VALUE:
13903 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13904 return;
13905
13906 case BINOP_IN_BOUNDS:
13907 /* XXX: sprint_subexp */
13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
13909 fputs_filtered (" in ", stream);
13910 print_subexp (exp, pos, stream, PREC_SUFFIX);
13911 fputs_filtered ("'range", stream);
13912 if (exp->elts[pc + 1].longconst > 1)
13913 fprintf_filtered (stream, "(%ld)",
13914 (long) exp->elts[pc + 1].longconst);
13915 return;
13916
13917 case TERNOP_IN_RANGE:
13918 if (prec >= PREC_EQUAL)
13919 fputs_filtered ("(", stream);
13920 /* XXX: sprint_subexp */
13921 print_subexp (exp, pos, stream, PREC_SUFFIX);
13922 fputs_filtered (" in ", stream);
13923 print_subexp (exp, pos, stream, PREC_EQUAL);
13924 fputs_filtered (" .. ", stream);
13925 print_subexp (exp, pos, stream, PREC_EQUAL);
13926 if (prec >= PREC_EQUAL)
13927 fputs_filtered (")", stream);
13928 return;
13929
13930 case OP_ATR_FIRST:
13931 case OP_ATR_LAST:
13932 case OP_ATR_LENGTH:
13933 case OP_ATR_IMAGE:
13934 case OP_ATR_MAX:
13935 case OP_ATR_MIN:
13936 case OP_ATR_MODULUS:
13937 case OP_ATR_POS:
13938 case OP_ATR_SIZE:
13939 case OP_ATR_TAG:
13940 case OP_ATR_VAL:
13941 if (exp->elts[*pos].opcode == OP_TYPE)
13942 {
13943 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13944 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13945 &type_print_raw_options);
13946 *pos += 3;
13947 }
13948 else
13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
13950 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13951 if (nargs > 1)
13952 {
13953 int tem;
13954
13955 for (tem = 1; tem < nargs; tem += 1)
13956 {
13957 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13958 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13959 }
13960 fputs_filtered (")", stream);
13961 }
13962 return;
13963
13964 case UNOP_QUAL:
13965 type_print (exp->elts[pc + 1].type, "", stream, 0);
13966 fputs_filtered ("'(", stream);
13967 print_subexp (exp, pos, stream, PREC_PREFIX);
13968 fputs_filtered (")", stream);
13969 return;
13970
13971 case UNOP_IN_RANGE:
13972 /* XXX: sprint_subexp */
13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
13974 fputs_filtered (" in ", stream);
13975 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13976 &type_print_raw_options);
13977 return;
13978
13979 case OP_DISCRETE_RANGE:
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 fputs_filtered ("..", stream);
13982 print_subexp (exp, pos, stream, PREC_SUFFIX);
13983 return;
13984
13985 case OP_OTHERS:
13986 fputs_filtered ("others => ", stream);
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 return;
13989
13990 case OP_CHOICES:
13991 for (i = 0; i < nargs-1; i += 1)
13992 {
13993 if (i > 0)
13994 fputs_filtered ("|", stream);
13995 print_subexp (exp, pos, stream, PREC_SUFFIX);
13996 }
13997 fputs_filtered (" => ", stream);
13998 print_subexp (exp, pos, stream, PREC_SUFFIX);
13999 return;
14000
14001 case OP_POSITIONAL:
14002 print_subexp (exp, pos, stream, PREC_SUFFIX);
14003 return;
14004
14005 case OP_AGGREGATE:
14006 fputs_filtered ("(", stream);
14007 for (i = 0; i < nargs; i += 1)
14008 {
14009 if (i > 0)
14010 fputs_filtered (", ", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 }
14013 fputs_filtered (")", stream);
14014 return;
14015 }
14016 }
14017
14018 /* Table mapping opcodes into strings for printing operators
14019 and precedences of the operators. */
14020
14021 static const struct op_print ada_op_print_tab[] = {
14022 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14023 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14024 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14025 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14026 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14027 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14028 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14029 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14030 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14031 {">=", BINOP_GEQ, PREC_ORDER, 0},
14032 {">", BINOP_GTR, PREC_ORDER, 0},
14033 {"<", BINOP_LESS, PREC_ORDER, 0},
14034 {">>", BINOP_RSH, PREC_SHIFT, 0},
14035 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14036 {"+", BINOP_ADD, PREC_ADD, 0},
14037 {"-", BINOP_SUB, PREC_ADD, 0},
14038 {"&", BINOP_CONCAT, PREC_ADD, 0},
14039 {"*", BINOP_MUL, PREC_MUL, 0},
14040 {"/", BINOP_DIV, PREC_MUL, 0},
14041 {"rem", BINOP_REM, PREC_MUL, 0},
14042 {"mod", BINOP_MOD, PREC_MUL, 0},
14043 {"**", BINOP_EXP, PREC_REPEAT, 0},
14044 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14045 {"-", UNOP_NEG, PREC_PREFIX, 0},
14046 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14047 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14048 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14049 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14050 {".all", UNOP_IND, PREC_SUFFIX, 1},
14051 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14052 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14053 {NULL, OP_NULL, PREC_SUFFIX, 0}
14054 };
14055 \f
14056 enum ada_primitive_types {
14057 ada_primitive_type_int,
14058 ada_primitive_type_long,
14059 ada_primitive_type_short,
14060 ada_primitive_type_char,
14061 ada_primitive_type_float,
14062 ada_primitive_type_double,
14063 ada_primitive_type_void,
14064 ada_primitive_type_long_long,
14065 ada_primitive_type_long_double,
14066 ada_primitive_type_natural,
14067 ada_primitive_type_positive,
14068 ada_primitive_type_system_address,
14069 ada_primitive_type_storage_offset,
14070 nr_ada_primitive_types
14071 };
14072
14073 static void
14074 ada_language_arch_info (struct gdbarch *gdbarch,
14075 struct language_arch_info *lai)
14076 {
14077 const struct builtin_type *builtin = builtin_type (gdbarch);
14078
14079 lai->primitive_type_vector
14080 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14081 struct type *);
14082
14083 lai->primitive_type_vector [ada_primitive_type_int]
14084 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14085 0, "integer");
14086 lai->primitive_type_vector [ada_primitive_type_long]
14087 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14088 0, "long_integer");
14089 lai->primitive_type_vector [ada_primitive_type_short]
14090 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14091 0, "short_integer");
14092 lai->string_char_type
14093 = lai->primitive_type_vector [ada_primitive_type_char]
14094 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14095 lai->primitive_type_vector [ada_primitive_type_float]
14096 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14097 "float", gdbarch_float_format (gdbarch));
14098 lai->primitive_type_vector [ada_primitive_type_double]
14099 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14100 "long_float", gdbarch_double_format (gdbarch));
14101 lai->primitive_type_vector [ada_primitive_type_long_long]
14102 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14103 0, "long_long_integer");
14104 lai->primitive_type_vector [ada_primitive_type_long_double]
14105 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14106 "long_long_float", gdbarch_long_double_format (gdbarch));
14107 lai->primitive_type_vector [ada_primitive_type_natural]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14109 0, "natural");
14110 lai->primitive_type_vector [ada_primitive_type_positive]
14111 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14112 0, "positive");
14113 lai->primitive_type_vector [ada_primitive_type_void]
14114 = builtin->builtin_void;
14115
14116 lai->primitive_type_vector [ada_primitive_type_system_address]
14117 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14118 "void"));
14119 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14120 = "system__address";
14121
14122 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14123 type. This is a signed integral type whose size is the same as
14124 the size of addresses. */
14125 {
14126 unsigned int addr_length = TYPE_LENGTH
14127 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14128
14129 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14130 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14131 "storage_offset");
14132 }
14133
14134 lai->bool_type_symbol = NULL;
14135 lai->bool_type_default = builtin->builtin_bool;
14136 }
14137 \f
14138 /* Language vector */
14139
14140 /* Not really used, but needed in the ada_language_defn. */
14141
14142 static void
14143 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14144 {
14145 ada_emit_char (c, type, stream, quoter, 1);
14146 }
14147
14148 static int
14149 parse (struct parser_state *ps)
14150 {
14151 warnings_issued = 0;
14152 return ada_parse (ps);
14153 }
14154
14155 static const struct exp_descriptor ada_exp_descriptor = {
14156 ada_print_subexp,
14157 ada_operator_length,
14158 ada_operator_check,
14159 ada_op_name,
14160 ada_dump_subexp_body,
14161 ada_evaluate_subexp
14162 };
14163
14164 /* symbol_name_matcher_ftype adapter for wild_match. */
14165
14166 static bool
14167 do_wild_match (const char *symbol_search_name,
14168 const lookup_name_info &lookup_name,
14169 completion_match_result *comp_match_res)
14170 {
14171 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14172 }
14173
14174 /* symbol_name_matcher_ftype adapter for full_match. */
14175
14176 static bool
14177 do_full_match (const char *symbol_search_name,
14178 const lookup_name_info &lookup_name,
14179 completion_match_result *comp_match_res)
14180 {
14181 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14182 }
14183
14184 /* Build the Ada lookup name for LOOKUP_NAME. */
14185
14186 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14187 {
14188 const std::string &user_name = lookup_name.name ();
14189
14190 if (user_name[0] == '<')
14191 {
14192 if (user_name.back () == '>')
14193 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14194 else
14195 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14196 m_encoded_p = true;
14197 m_verbatim_p = true;
14198 m_wild_match_p = false;
14199 m_standard_p = false;
14200 }
14201 else
14202 {
14203 m_verbatim_p = false;
14204
14205 m_encoded_p = user_name.find ("__") != std::string::npos;
14206
14207 if (!m_encoded_p)
14208 {
14209 const char *folded = ada_fold_name (user_name.c_str ());
14210 const char *encoded = ada_encode_1 (folded, false);
14211 if (encoded != NULL)
14212 m_encoded_name = encoded;
14213 else
14214 m_encoded_name = user_name;
14215 }
14216 else
14217 m_encoded_name = user_name;
14218
14219 /* Handle the 'package Standard' special case. See description
14220 of m_standard_p. */
14221 if (startswith (m_encoded_name.c_str (), "standard__"))
14222 {
14223 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14224 m_standard_p = true;
14225 }
14226 else
14227 m_standard_p = false;
14228
14229 /* If the name contains a ".", then the user is entering a fully
14230 qualified entity name, and the match must not be done in wild
14231 mode. Similarly, if the user wants to complete what looks
14232 like an encoded name, the match must not be done in wild
14233 mode. Also, in the standard__ special case always do
14234 non-wild matching. */
14235 m_wild_match_p
14236 = (lookup_name.match_type () != symbol_name_match_type::FULL
14237 && !m_encoded_p
14238 && !m_standard_p
14239 && user_name.find ('.') == std::string::npos);
14240 }
14241 }
14242
14243 /* symbol_name_matcher_ftype method for Ada. This only handles
14244 completion mode. */
14245
14246 static bool
14247 ada_symbol_name_matches (const char *symbol_search_name,
14248 const lookup_name_info &lookup_name,
14249 completion_match_result *comp_match_res)
14250 {
14251 return lookup_name.ada ().matches (symbol_search_name,
14252 lookup_name.match_type (),
14253 comp_match_res);
14254 }
14255
14256 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14257 Ada. */
14258
14259 static symbol_name_matcher_ftype *
14260 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14261 {
14262 if (lookup_name.completion_mode ())
14263 return ada_symbol_name_matches;
14264 else
14265 {
14266 if (lookup_name.ada ().wild_match_p ())
14267 return do_wild_match;
14268 else
14269 return do_full_match;
14270 }
14271 }
14272
14273 /* Implement the "la_read_var_value" language_defn method for Ada. */
14274
14275 static struct value *
14276 ada_read_var_value (struct symbol *var, const struct block *var_block,
14277 struct frame_info *frame)
14278 {
14279 const struct block *frame_block = NULL;
14280 struct symbol *renaming_sym = NULL;
14281
14282 /* The only case where default_read_var_value is not sufficient
14283 is when VAR is a renaming... */
14284 if (frame)
14285 frame_block = get_frame_block (frame, NULL);
14286 if (frame_block)
14287 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14288 if (renaming_sym != NULL)
14289 return ada_read_renaming_var_value (renaming_sym, frame_block);
14290
14291 /* This is a typical case where we expect the default_read_var_value
14292 function to work. */
14293 return default_read_var_value (var, var_block, frame);
14294 }
14295
14296 static const char *ada_extensions[] =
14297 {
14298 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14299 };
14300
14301 extern const struct language_defn ada_language_defn = {
14302 "ada", /* Language name */
14303 "Ada",
14304 language_ada,
14305 range_check_off,
14306 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14307 that's not quite what this means. */
14308 array_row_major,
14309 macro_expansion_no,
14310 ada_extensions,
14311 &ada_exp_descriptor,
14312 parse,
14313 ada_yyerror,
14314 resolve,
14315 ada_printchar, /* Print a character constant */
14316 ada_printstr, /* Function to print string constant */
14317 emit_char, /* Function to print single char (not used) */
14318 ada_print_type, /* Print a type using appropriate syntax */
14319 ada_print_typedef, /* Print a typedef using appropriate syntax */
14320 ada_val_print, /* Print a value using appropriate syntax */
14321 ada_value_print, /* Print a top-level value */
14322 ada_read_var_value, /* la_read_var_value */
14323 NULL, /* Language specific skip_trampoline */
14324 NULL, /* name_of_this */
14325 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14326 basic_lookup_transparent_type, /* lookup_transparent_type */
14327 ada_la_decode, /* Language specific symbol demangler */
14328 ada_sniff_from_mangled_name,
14329 NULL, /* Language specific
14330 class_name_from_physname */
14331 ada_op_print_tab, /* expression operators for printing */
14332 0, /* c-style arrays */
14333 1, /* String lower bound */
14334 ada_get_gdb_completer_word_break_characters,
14335 ada_collect_symbol_completion_matches,
14336 ada_language_arch_info,
14337 ada_print_array_index,
14338 default_pass_by_reference,
14339 c_get_string,
14340 c_watch_location_expression,
14341 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14342 ada_iterate_over_symbols,
14343 default_search_name_hash,
14344 &ada_varobj_ops,
14345 NULL,
14346 NULL,
14347 LANG_MAGIC
14348 };
14349
14350 /* Command-list for the "set/show ada" prefix command. */
14351 static struct cmd_list_element *set_ada_list;
14352 static struct cmd_list_element *show_ada_list;
14353
14354 /* Implement the "set ada" prefix command. */
14355
14356 static void
14357 set_ada_command (const char *arg, int from_tty)
14358 {
14359 printf_unfiltered (_(\
14360 "\"set ada\" must be followed by the name of a setting.\n"));
14361 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14362 }
14363
14364 /* Implement the "show ada" prefix command. */
14365
14366 static void
14367 show_ada_command (const char *args, int from_tty)
14368 {
14369 cmd_show_list (show_ada_list, from_tty, "");
14370 }
14371
14372 static void
14373 initialize_ada_catchpoint_ops (void)
14374 {
14375 struct breakpoint_ops *ops;
14376
14377 initialize_breakpoint_ops ();
14378
14379 ops = &catch_exception_breakpoint_ops;
14380 *ops = bkpt_breakpoint_ops;
14381 ops->allocate_location = allocate_location_catch_exception;
14382 ops->re_set = re_set_catch_exception;
14383 ops->check_status = check_status_catch_exception;
14384 ops->print_it = print_it_catch_exception;
14385 ops->print_one = print_one_catch_exception;
14386 ops->print_mention = print_mention_catch_exception;
14387 ops->print_recreate = print_recreate_catch_exception;
14388
14389 ops = &catch_exception_unhandled_breakpoint_ops;
14390 *ops = bkpt_breakpoint_ops;
14391 ops->allocate_location = allocate_location_catch_exception_unhandled;
14392 ops->re_set = re_set_catch_exception_unhandled;
14393 ops->check_status = check_status_catch_exception_unhandled;
14394 ops->print_it = print_it_catch_exception_unhandled;
14395 ops->print_one = print_one_catch_exception_unhandled;
14396 ops->print_mention = print_mention_catch_exception_unhandled;
14397 ops->print_recreate = print_recreate_catch_exception_unhandled;
14398
14399 ops = &catch_assert_breakpoint_ops;
14400 *ops = bkpt_breakpoint_ops;
14401 ops->allocate_location = allocate_location_catch_assert;
14402 ops->re_set = re_set_catch_assert;
14403 ops->check_status = check_status_catch_assert;
14404 ops->print_it = print_it_catch_assert;
14405 ops->print_one = print_one_catch_assert;
14406 ops->print_mention = print_mention_catch_assert;
14407 ops->print_recreate = print_recreate_catch_assert;
14408 }
14409
14410 /* This module's 'new_objfile' observer. */
14411
14412 static void
14413 ada_new_objfile_observer (struct objfile *objfile)
14414 {
14415 ada_clear_symbol_cache ();
14416 }
14417
14418 /* This module's 'free_objfile' observer. */
14419
14420 static void
14421 ada_free_objfile_observer (struct objfile *objfile)
14422 {
14423 ada_clear_symbol_cache ();
14424 }
14425
14426 void
14427 _initialize_ada_language (void)
14428 {
14429 initialize_ada_catchpoint_ops ();
14430
14431 add_prefix_cmd ("ada", no_class, set_ada_command,
14432 _("Prefix command for changing Ada-specfic settings"),
14433 &set_ada_list, "set ada ", 0, &setlist);
14434
14435 add_prefix_cmd ("ada", no_class, show_ada_command,
14436 _("Generic command for showing Ada-specific settings."),
14437 &show_ada_list, "show ada ", 0, &showlist);
14438
14439 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14440 &trust_pad_over_xvs, _("\
14441 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14442 Show whether an optimization trusting PAD types over XVS types is activated"),
14443 _("\
14444 This is related to the encoding used by the GNAT compiler. The debugger\n\
14445 should normally trust the contents of PAD types, but certain older versions\n\
14446 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14447 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14448 work around this bug. It is always safe to turn this option \"off\", but\n\
14449 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14450 this option to \"off\" unless necessary."),
14451 NULL, NULL, &set_ada_list, &show_ada_list);
14452
14453 add_setshow_boolean_cmd ("print-signatures", class_vars,
14454 &print_signatures, _("\
14455 Enable or disable the output of formal and return types for functions in the \
14456 overloads selection menu"), _("\
14457 Show whether the output of formal and return types for functions in the \
14458 overloads selection menu is activated"),
14459 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14460
14461 add_catch_command ("exception", _("\
14462 Catch Ada exceptions, when raised.\n\
14463 With an argument, catch only exceptions with the given name."),
14464 catch_ada_exception_command,
14465 NULL,
14466 CATCH_PERMANENT,
14467 CATCH_TEMPORARY);
14468 add_catch_command ("assert", _("\
14469 Catch failed Ada assertions, when raised.\n\
14470 With an argument, catch only exceptions with the given name."),
14471 catch_assert_command,
14472 NULL,
14473 CATCH_PERMANENT,
14474 CATCH_TEMPORARY);
14475
14476 varsize_limit = 65536;
14477
14478 add_info ("exceptions", info_exceptions_command,
14479 _("\
14480 List all Ada exception names.\n\
14481 If a regular expression is passed as an argument, only those matching\n\
14482 the regular expression are listed."));
14483
14484 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14485 _("Set Ada maintenance-related variables."),
14486 &maint_set_ada_cmdlist, "maintenance set ada ",
14487 0/*allow-unknown*/, &maintenance_set_cmdlist);
14488
14489 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14490 _("Show Ada maintenance-related variables"),
14491 &maint_show_ada_cmdlist, "maintenance show ada ",
14492 0/*allow-unknown*/, &maintenance_show_cmdlist);
14493
14494 add_setshow_boolean_cmd
14495 ("ignore-descriptive-types", class_maintenance,
14496 &ada_ignore_descriptive_types_p,
14497 _("Set whether descriptive types generated by GNAT should be ignored."),
14498 _("Show whether descriptive types generated by GNAT should be ignored."),
14499 _("\
14500 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14501 DWARF attribute."),
14502 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14503
14504 decoded_names_store = htab_create_alloc
14505 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14506 NULL, xcalloc, xfree);
14507
14508 /* The ada-lang observers. */
14509 observer_attach_new_objfile (ada_new_objfile_observer);
14510 observer_attach_free_objfile (ada_free_objfile_observer);
14511 observer_attach_inferior_exit (ada_inferior_exit);
14512
14513 /* Setup various context-specific data. */
14514 ada_inferior_data
14515 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14516 ada_pspace_data_handle
14517 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14518 }
This page took 0.354643 seconds and 4 git commands to generate.