[Ada] Preserve typedef layer when getting struct element
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum domain;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (startswith (field_name + len, "___")
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && !startswith (p, mapping->decoded); mapping += 1)
1007 ;
1008 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
1014 else
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
1019 }
1020
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
1023 }
1024
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
1029 char *
1030 ada_fold_name (const char *name)
1031 {
1032 static char *fold_buffer = NULL;
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1037
1038 if (name[0] == '\'')
1039 {
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
1042 }
1043 else
1044 {
1045 int i;
1046
1047 for (i = 0; i <= len; i += 1)
1048 fold_buffer[i] = tolower (name[i]);
1049 }
1050
1051 return fold_buffer;
1052 }
1053
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056 static int
1057 is_lower_alphanum (const char c)
1058 {
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060 }
1061
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
1069
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074 static void
1075 ada_remove_trailing_digits (const char *encoded, int *len)
1076 {
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
1080
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1088 *len = i - 2;
1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1090 *len = i - 1;
1091 }
1092 }
1093
1094 /* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097 static void
1098 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099 {
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114 }
1115
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118 static void
1119 ada_remove_Xbn_suffix (const char *encoded, int *len)
1120 {
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134 }
1135
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1139
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1142 is returned. */
1143
1144 const char *
1145 ada_decode (const char *encoded)
1146 {
1147 int i, j;
1148 int len0;
1149 const char *p;
1150 char *decoded;
1151 int at_start_name;
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
1154
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (startswith (encoded, "_ada_"))
1159 encoded += 5;
1160
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded[0] == '_' || encoded[0] == '<')
1165 goto Suppress;
1166
1167 len0 = strlen (encoded);
1168
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
1171
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
1178 {
1179 if (p[3] == 'X')
1180 len0 = p - encoded;
1181 else
1182 goto Suppress;
1183 }
1184
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1190 len0 -= 3;
1191
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1197 len0 -= 2;
1198
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1203 len0 -= 1;
1204
1205 /* Make decoded big enough for possible expansion by operator name. */
1206
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
1209
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1213 {
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
1222 }
1223
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
1233 /* Is this a symbol function? */
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
1237
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
1255 at_start_name = 0;
1256
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1261 i += 2;
1262
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1350 {
1351 /* Replace '__' by '.'. */
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
1357 else
1358 {
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
1365 }
1366 decoded[j] = '\000';
1367
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
1373 goto Suppress;
1374
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
1379
1380 Suppress:
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
1385 else
1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 return decoded;
1388
1389 }
1390
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab *decoded_names_store;
1397
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1403 GSYMBOL).
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1407
1408 const char *
1409 ada_decode_symbol (const struct general_symbol_info *arg)
1410 {
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
1414
1415 if (!gsymbol->ada_mangled)
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
1418 struct obstack *obstack = gsymbol->language_specific.obstack;
1419
1420 gsymbol->ada_mangled = 1;
1421
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
1425 {
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
1433
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
1438 }
1439
1440 return *resultp;
1441 }
1442
1443 static char *
1444 ada_la_decode (const char *encoded, int options)
1445 {
1446 return xstrdup (ada_decode (encoded));
1447 }
1448
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1455
1456 static int
1457 match_name (const char *sym_name, const char *name, int wild)
1458 {
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
1462 return wild_match (sym_name, name) == 0;
1463 else
1464 {
1465 int len_name = strlen (name);
1466
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (startswith (sym_name, "_ada_")
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
1472 }
1473 }
1474 \f
1475
1476 /* Arrays */
1477
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501 void
1502 ada_fixup_array_indexes_type (struct type *index_desc_type)
1503 {
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531 }
1532
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1534
1535 static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538 };
1539
1540 /* Maximum number of array dimensions we are prepared to handle. */
1541
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1543
1544
1545 /* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
1547
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1550
1551 static struct type *
1552 desc_base_type (struct type *type)
1553 {
1554 if (type == NULL)
1555 return NULL;
1556 type = ada_check_typedef (type);
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 else
1565 return type;
1566 }
1567
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1569
1570 static int
1571 is_thin_pntr (struct type *type)
1572 {
1573 return
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576 }
1577
1578 /* The descriptor type for thin pointer type TYPE. */
1579
1580 static struct type *
1581 thin_descriptor_type (struct type *type)
1582 {
1583 struct type *base_type = desc_base_type (type);
1584
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
1589 else
1590 {
1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1592
1593 if (alt_type == NULL)
1594 return base_type;
1595 else
1596 return alt_type;
1597 }
1598 }
1599
1600 /* A pointer to the array data for thin-pointer value VAL. */
1601
1602 static struct value *
1603 thin_data_pntr (struct value *val)
1604 {
1605 struct type *type = ada_check_typedef (value_type (val));
1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1607
1608 data_type = lookup_pointer_type (data_type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1611 return value_cast (data_type, value_copy (val));
1612 else
1613 return value_from_longest (data_type, value_address (val));
1614 }
1615
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1617
1618 static int
1619 is_thick_pntr (struct type *type)
1620 {
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1628
1629 static struct type *
1630 desc_bounds_type (struct type *type)
1631 {
1632 struct type *r;
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
1642 return NULL;
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
1645 return ada_check_typedef (r);
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 }
1653 return NULL;
1654 }
1655
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
1659 static struct value *
1660 desc_bounds (struct value *arr)
1661 {
1662 struct type *type = ada_check_typedef (value_type (arr));
1663
1664 if (is_thin_pntr (type))
1665 {
1666 struct type *bounds_type =
1667 desc_bounds_type (thin_descriptor_type (type));
1668 LONGEST addr;
1669
1670 if (bounds_type == NULL)
1671 error (_("Bad GNAT array descriptor"));
1672
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1677 addr = value_as_long (arr);
1678 else
1679 addr = value_address (arr);
1680
1681 return
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
1684 }
1685
1686 else if (is_thick_pntr (type))
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
1707 else
1708 return NULL;
1709 }
1710
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
1714 static int
1715 fat_pntr_bounds_bitpos (struct type *type)
1716 {
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718 }
1719
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1722
1723 static int
1724 fat_pntr_bounds_bitsize (struct type *type)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1732 }
1733
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
1738
1739 static struct type *
1740 desc_data_target_type (struct type *type)
1741 {
1742 type = desc_base_type (type);
1743
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1747 else if (is_thick_pntr (type))
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
1761
1762 static struct value *
1763 desc_data (struct value *arr)
1764 {
1765 struct type *type = value_type (arr);
1766
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1771 _("Bad GNAT array descriptor"));
1772 else
1773 return NULL;
1774 }
1775
1776
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1779
1780 static int
1781 fat_pntr_data_bitpos (struct type *type)
1782 {
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784 }
1785
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1788
1789 static int
1790 fat_pntr_data_bitsize (struct type *type)
1791 {
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
1796 else
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static struct value *
1805 desc_one_bound (struct value *bounds, int i, int which)
1806 {
1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1808 _("Bad GNAT array descriptor bounds"));
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitpos (struct type *type, int i, int which)
1817 {
1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1819 }
1820
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
1825 static int
1826 desc_bound_bitsize (struct type *type, int i, int which)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1834 }
1835
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
1839 static struct type *
1840 desc_index_type (struct type *type, int i)
1841 {
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
1847 return NULL;
1848 }
1849
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
1853 static int
1854 desc_arity (struct type *type)
1855 {
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861 }
1862
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
1867 static int
1868 ada_is_direct_array_type (struct type *type)
1869 {
1870 if (type == NULL)
1871 return 0;
1872 type = ada_check_typedef (type);
1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type));
1875 }
1876
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1878 * to one. */
1879
1880 static int
1881 ada_is_array_type (struct type *type)
1882 {
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1891
1892 int
1893 ada_is_simple_array_type (struct type *type)
1894 {
1895 if (type == NULL)
1896 return 0;
1897 type = ada_check_typedef (type);
1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
1902 }
1903
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
1906 int
1907 ada_is_array_descriptor_type (struct type *type)
1908 {
1909 struct type *data_type = desc_data_target_type (type);
1910
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
1917 }
1918
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1922 is still needed. */
1923
1924 int
1925 ada_is_bogus_array_descriptor (struct type *type)
1926 {
1927 return
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1942 a descriptor. */
1943 struct type *
1944 ada_type_of_array (struct value *arr, int bounds)
1945 {
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
1948
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
1951
1952 if (!bounds)
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
1963 else
1964 {
1965 struct type *elt_type;
1966 int arity;
1967 struct value *descriptor;
1968
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
1971
1972 if (elt_type == NULL || arity == 0)
1973 return ada_check_typedef (value_type (arr));
1974
1975 descriptor = desc_bounds (arr);
1976 if (value_as_long (descriptor) == 0)
1977 return NULL;
1978 while (arity > 0)
1979 {
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
1984
1985 arity -= 1;
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
1989 elt_type = create_array_type (array_type, elt_type, range_type);
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
2011 }
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
2022 struct value *
2023 ada_coerce_to_simple_array_ptr (struct value *arr)
2024 {
2025 if (ada_is_array_descriptor_type (value_type (arr)))
2026 {
2027 struct type *arrType = ada_type_of_array (arr, 1);
2028
2029 if (arrType == NULL)
2030 return NULL;
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2042
2043 struct value *
2044 ada_coerce_to_simple_array (struct value *arr)
2045 {
2046 if (ada_is_array_descriptor_type (value_type (arr)))
2047 {
2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2049
2050 if (arrVal == NULL)
2051 error (_("Bounds unavailable for null array pointer."));
2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2053 return value_ind (arrVal);
2054 }
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
2057 else
2058 return arr;
2059 }
2060
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2064
2065 struct type *
2066 ada_coerce_to_simple_array_type (struct type *type)
2067 {
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
2070
2071 if (ada_is_array_descriptor_type (type))
2072 return ada_check_typedef (desc_data_target_type (type));
2073
2074 return type;
2075 }
2076
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
2079 static int
2080 ada_is_packed_array_type (struct type *type)
2081 {
2082 if (type == NULL)
2083 return 0;
2084 type = desc_base_type (type);
2085 type = ada_check_typedef (type);
2086 return
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089 }
2090
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094 int
2095 ada_is_constrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104 static int
2105 ada_is_unconstrained_packed_array_type (struct type *type)
2106 {
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109 }
2110
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114 static long
2115 decode_packed_array_bitsize (struct type *type)
2116 {
2117 const char *raw_name;
2118 const char *tail;
2119 long bits;
2120
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
2135 gdb_assert (tail != NULL);
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145 }
2146
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
2163
2164 static struct type *
2165 constrained_packed_array_type (struct type *type, long *elt_bits)
2166 {
2167 struct type *new_elt_type;
2168 struct type *new_type;
2169 struct type *index_type_desc;
2170 struct type *index_type;
2171 LONGEST low_bound, high_bound;
2172
2173 type = ada_check_typedef (type);
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
2184 new_type = alloc_type_copy (type);
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
2188 create_array_type (new_type, new_elt_type, index_type);
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
2198 else
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
2201 TYPE_LENGTH (new_type) =
2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2203 }
2204
2205 TYPE_FIXED_INSTANCE (new_type) = 1;
2206 return new_type;
2207 }
2208
2209 /* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
2211
2212 static struct type *
2213 decode_constrained_packed_array_type (struct type *type)
2214 {
2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
2216 char *name;
2217 const char *tail;
2218 struct type *shadow_type;
2219 long bits;
2220
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
2229 type = desc_base_type (type);
2230
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
2237 {
2238 lim_warning (_("could not find bounds information on packed array"));
2239 return NULL;
2240 }
2241 CHECK_TYPEDEF (shadow_type);
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
2247 return NULL;
2248 }
2249
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
2252 }
2253
2254 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
2258 type length is set appropriately. */
2259
2260 static struct value *
2261 decode_constrained_packed_array (struct value *arr)
2262 {
2263 struct type *type;
2264
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2274 arr = value_ind (arr);
2275
2276 type = decode_constrained_packed_array_type (value_type (arr));
2277 if (type == NULL)
2278 {
2279 error (_("can't unpack array"));
2280 return NULL;
2281 }
2282
2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2284 && ada_is_modular_type (value_type (arr)))
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
2293 mod = ada_modulus (value_type (arr)) - 1;
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
2308 return coerce_unspec_val_to_type (arr, type);
2309 }
2310
2311
2312 /* The value of the element of packed array ARR at the ARITY indices
2313 given in IND. ARR must be a simple array. */
2314
2315 static struct value *
2316 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2317 {
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
2321 struct type *elt_type;
2322 struct value *v;
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
2326 elt_type = ada_check_typedef (value_type (arr));
2327 for (i = 0; i < arity; i += 1)
2328 {
2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
2334 else
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
2342 lim_warning (_("don't know bounds of array"));
2343 lowerbound = upperbound = 0;
2344 }
2345
2346 idx = pos_atr (ind[i]);
2347 if (idx < lowerbound || idx > upperbound)
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2353 }
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2359 bits, elt_type);
2360 return v;
2361 }
2362
2363 /* Non-zero iff TYPE includes negative integer values. */
2364
2365 static int
2366 has_negatives (struct type *type)
2367 {
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
2377 }
2378
2379
2380 /* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2383 assigning through the result will set the field fetched from.
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2388
2389 struct value *
2390 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2391 long offset, int bit_offset, int bit_size,
2392 struct type *type)
2393 {
2394 struct value *v;
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
2403 unsigned char *unpacked;
2404 unsigned long accum; /* Staging area for bits being transferred */
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2410
2411 type = ada_check_typedef (type);
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) (valaddr + offset);
2417 }
2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2419 {
2420 v = value_at (type, value_address (obj));
2421 type = value_type (v);
2422 bytes = (unsigned char *) alloca (len);
2423 read_memory (value_address (v) + offset, bytes, len);
2424 }
2425 else
2426 {
2427 v = allocate_value (type);
2428 bytes = (unsigned char *) value_contents (obj) + offset;
2429 }
2430
2431 if (obj != NULL)
2432 {
2433 long new_offset = offset;
2434
2435 set_value_component_location (v, obj);
2436 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2437 set_value_bitsize (v, bit_size);
2438 if (value_bitpos (v) >= HOST_CHAR_BIT)
2439 {
2440 ++new_offset;
2441 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2442 }
2443 set_value_offset (v, new_offset);
2444
2445 /* Also set the parent value. This is needed when trying to
2446 assign a new value (in inferior memory). */
2447 set_value_parent (v, obj);
2448 }
2449 else
2450 set_value_bitsize (v, bit_size);
2451 unpacked = (unsigned char *) value_contents (v);
2452
2453 srcBitsLeft = bit_size;
2454 nsrc = len;
2455 ntarg = TYPE_LENGTH (type);
2456 sign = 0;
2457 if (bit_size == 0)
2458 {
2459 memset (unpacked, 0, TYPE_LENGTH (type));
2460 return v;
2461 }
2462 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2463 {
2464 src = len - 1;
2465 if (has_negatives (type)
2466 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2467 sign = ~0;
2468
2469 unusedLS =
2470 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2471 % HOST_CHAR_BIT;
2472
2473 switch (TYPE_CODE (type))
2474 {
2475 case TYPE_CODE_ARRAY:
2476 case TYPE_CODE_UNION:
2477 case TYPE_CODE_STRUCT:
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 ntarg = targ + 1;
2485 break;
2486 default:
2487 accumSize = 0;
2488 targ = TYPE_LENGTH (type) - 1;
2489 break;
2490 }
2491 }
2492 else
2493 {
2494 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495
2496 src = targ = 0;
2497 unusedLS = bit_offset;
2498 accumSize = 0;
2499
2500 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2501 sign = ~0;
2502 }
2503
2504 accum = 0;
2505 while (nsrc > 0)
2506 {
2507 /* Mask for removing bits of the next source byte that are not
2508 part of the value. */
2509 unsigned int unusedMSMask =
2510 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 1;
2512 /* Sign-extend bits for this byte. */
2513 unsigned int signMask = sign & ~unusedMSMask;
2514
2515 accum |=
2516 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2517 accumSize += HOST_CHAR_BIT - unusedLS;
2518 if (accumSize >= HOST_CHAR_BIT)
2519 {
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 unusedLS = 0;
2528 nsrc -= 1;
2529 src += delta;
2530 }
2531 while (ntarg > 0)
2532 {
2533 accum |= sign << accumSize;
2534 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2535 accumSize -= HOST_CHAR_BIT;
2536 accum >>= HOST_CHAR_BIT;
2537 ntarg -= 1;
2538 targ += delta;
2539 }
2540
2541 return v;
2542 }
2543
2544 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2545 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2546 not overlap. */
2547 static void
2548 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2549 int src_offset, int n, int bits_big_endian_p)
2550 {
2551 unsigned int accum, mask;
2552 int accum_bits, chunk_size;
2553
2554 target += targ_offset / HOST_CHAR_BIT;
2555 targ_offset %= HOST_CHAR_BIT;
2556 source += src_offset / HOST_CHAR_BIT;
2557 src_offset %= HOST_CHAR_BIT;
2558 if (bits_big_endian_p)
2559 {
2560 accum = (unsigned char) *source;
2561 source += 1;
2562 accum_bits = HOST_CHAR_BIT - src_offset;
2563
2564 while (n > 0)
2565 {
2566 int unused_right;
2567
2568 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2569 accum_bits += HOST_CHAR_BIT;
2570 source += 1;
2571 chunk_size = HOST_CHAR_BIT - targ_offset;
2572 if (chunk_size > n)
2573 chunk_size = n;
2574 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2575 mask = ((1 << chunk_size) - 1) << unused_right;
2576 *target =
2577 (*target & ~mask)
2578 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2579 n -= chunk_size;
2580 accum_bits -= chunk_size;
2581 target += 1;
2582 targ_offset = 0;
2583 }
2584 }
2585 else
2586 {
2587 accum = (unsigned char) *source >> src_offset;
2588 source += 1;
2589 accum_bits = HOST_CHAR_BIT - src_offset;
2590
2591 while (n > 0)
2592 {
2593 accum = accum + ((unsigned char) *source << accum_bits);
2594 accum_bits += HOST_CHAR_BIT;
2595 source += 1;
2596 chunk_size = HOST_CHAR_BIT - targ_offset;
2597 if (chunk_size > n)
2598 chunk_size = n;
2599 mask = ((1 << chunk_size) - 1) << targ_offset;
2600 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2601 n -= chunk_size;
2602 accum_bits -= chunk_size;
2603 accum >>= chunk_size;
2604 target += 1;
2605 targ_offset = 0;
2606 }
2607 }
2608 }
2609
2610 /* Store the contents of FROMVAL into the location of TOVAL.
2611 Return a new value with the location of TOVAL and contents of
2612 FROMVAL. Handles assignment into packed fields that have
2613 floating-point or non-scalar types. */
2614
2615 static struct value *
2616 ada_value_assign (struct value *toval, struct value *fromval)
2617 {
2618 struct type *type = value_type (toval);
2619 int bits = value_bitsize (toval);
2620
2621 toval = ada_coerce_ref (toval);
2622 fromval = ada_coerce_ref (fromval);
2623
2624 if (ada_is_direct_array_type (value_type (toval)))
2625 toval = ada_coerce_to_simple_array (toval);
2626 if (ada_is_direct_array_type (value_type (fromval)))
2627 fromval = ada_coerce_to_simple_array (fromval);
2628
2629 if (!deprecated_value_modifiable (toval))
2630 error (_("Left operand of assignment is not a modifiable lvalue."));
2631
2632 if (VALUE_LVAL (toval) == lval_memory
2633 && bits > 0
2634 && (TYPE_CODE (type) == TYPE_CODE_FLT
2635 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2636 {
2637 int len = (value_bitpos (toval)
2638 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2639 int from_size;
2640 gdb_byte *buffer = alloca (len);
2641 struct value *val;
2642 CORE_ADDR to_addr = value_address (toval);
2643
2644 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2645 fromval = value_cast (type, fromval);
2646
2647 read_memory (to_addr, buffer, len);
2648 from_size = value_bitsize (fromval);
2649 if (from_size == 0)
2650 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2651 if (gdbarch_bits_big_endian (get_type_arch (type)))
2652 move_bits (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_size - bits, bits, 1);
2654 else
2655 move_bits (buffer, value_bitpos (toval),
2656 value_contents (fromval), 0, bits, 0);
2657 write_memory_with_notification (to_addr, buffer, len);
2658
2659 val = value_copy (toval);
2660 memcpy (value_contents_raw (val), value_contents (fromval),
2661 TYPE_LENGTH (type));
2662 deprecated_set_value_type (val, type);
2663
2664 return val;
2665 }
2666
2667 return value_assign (toval, fromval);
2668 }
2669
2670
2671 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2672 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2673 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2674 * COMPONENT, and not the inferior's memory. The current contents
2675 * of COMPONENT are ignored. */
2676 static void
2677 value_assign_to_component (struct value *container, struct value *component,
2678 struct value *val)
2679 {
2680 LONGEST offset_in_container =
2681 (LONGEST) (value_address (component) - value_address (container));
2682 int bit_offset_in_container =
2683 value_bitpos (component) - value_bitpos (container);
2684 int bits;
2685
2686 val = value_cast (value_type (component), val);
2687
2688 if (value_bitsize (component) == 0)
2689 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2690 else
2691 bits = value_bitsize (component);
2692
2693 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2694 move_bits (value_contents_writeable (container) + offset_in_container,
2695 value_bitpos (container) + bit_offset_in_container,
2696 value_contents (val),
2697 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2698 bits, 1);
2699 else
2700 move_bits (value_contents_writeable (container) + offset_in_container,
2701 value_bitpos (container) + bit_offset_in_container,
2702 value_contents (val), 0, bits, 0);
2703 }
2704
2705 /* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
2707 thereto. */
2708
2709 struct value *
2710 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2711 {
2712 int k;
2713 struct value *elt;
2714 struct type *elt_type;
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
2718 elt_type = ada_check_typedef (value_type (elt));
2719 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2726 error (_("too many subscripts (%d expected)"), k);
2727 elt = value_subscript (elt, pos_atr (ind[k]));
2728 }
2729 return elt;
2730 }
2731
2732 /* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
2734 Does not read the entire array into memory. */
2735
2736 static struct value *
2737 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2738 {
2739 int k;
2740 struct type *type
2741 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 LONGEST lwb, upb;
2746
2747 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2750 value_copy (arr));
2751 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2752 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2753 type = TYPE_TARGET_TYPE (type);
2754 }
2755
2756 return value_ind (arr);
2757 }
2758
2759 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2760 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2761 elements starting at index LOW. The lower bound of this array is LOW, as
2762 per Ada rules. */
2763 static struct value *
2764 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2765 int low, int high)
2766 {
2767 struct type *type0 = ada_check_typedef (type);
2768 CORE_ADDR base = value_as_address (array_ptr)
2769 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2770 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2771 struct type *index_type
2772 = create_static_range_type (NULL,
2773 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2774 low, high);
2775 struct type *slice_type =
2776 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2777
2778 return value_at_lazy (slice_type, base);
2779 }
2780
2781
2782 static struct value *
2783 ada_value_slice (struct value *array, int low, int high)
2784 {
2785 struct type *type = ada_check_typedef (value_type (array));
2786 struct type *index_type
2787 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2788 struct type *slice_type =
2789 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2790
2791 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2792 }
2793
2794 /* If type is a record type in the form of a standard GNAT array
2795 descriptor, returns the number of dimensions for type. If arr is a
2796 simple array, returns the number of "array of"s that prefix its
2797 type designation. Otherwise, returns 0. */
2798
2799 int
2800 ada_array_arity (struct type *type)
2801 {
2802 int arity;
2803
2804 if (type == NULL)
2805 return 0;
2806
2807 type = desc_base_type (type);
2808
2809 arity = 0;
2810 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2811 return desc_arity (desc_bounds_type (type));
2812 else
2813 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2814 {
2815 arity += 1;
2816 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2817 }
2818
2819 return arity;
2820 }
2821
2822 /* If TYPE is a record type in the form of a standard GNAT array
2823 descriptor or a simple array type, returns the element type for
2824 TYPE after indexing by NINDICES indices, or by all indices if
2825 NINDICES is -1. Otherwise, returns NULL. */
2826
2827 struct type *
2828 ada_array_element_type (struct type *type, int nindices)
2829 {
2830 type = desc_base_type (type);
2831
2832 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2833 {
2834 int k;
2835 struct type *p_array_type;
2836
2837 p_array_type = desc_data_target_type (type);
2838
2839 k = ada_array_arity (type);
2840 if (k == 0)
2841 return NULL;
2842
2843 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2844 if (nindices >= 0 && k > nindices)
2845 k = nindices;
2846 while (k > 0 && p_array_type != NULL)
2847 {
2848 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2849 k -= 1;
2850 }
2851 return p_array_type;
2852 }
2853 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2854 {
2855 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2856 {
2857 type = TYPE_TARGET_TYPE (type);
2858 nindices -= 1;
2859 }
2860 return type;
2861 }
2862
2863 return NULL;
2864 }
2865
2866 /* The type of nth index in arrays of given type (n numbering from 1).
2867 Does not examine memory. Throws an error if N is invalid or TYPE
2868 is not an array type. NAME is the name of the Ada attribute being
2869 evaluated ('range, 'first, 'last, or 'length); it is used in building
2870 the error message. */
2871
2872 static struct type *
2873 ada_index_type (struct type *type, int n, const char *name)
2874 {
2875 struct type *result_type;
2876
2877 type = desc_base_type (type);
2878
2879 if (n < 0 || n > ada_array_arity (type))
2880 error (_("invalid dimension number to '%s"), name);
2881
2882 if (ada_is_simple_array_type (type))
2883 {
2884 int i;
2885
2886 for (i = 1; i < n; i += 1)
2887 type = TYPE_TARGET_TYPE (type);
2888 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2889 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2890 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2891 perhaps stabsread.c would make more sense. */
2892 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2893 result_type = NULL;
2894 }
2895 else
2896 {
2897 result_type = desc_index_type (desc_bounds_type (type), n);
2898 if (result_type == NULL)
2899 error (_("attempt to take bound of something that is not an array"));
2900 }
2901
2902 return result_type;
2903 }
2904
2905 /* Given that arr is an array type, returns the lower bound of the
2906 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2907 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2908 array-descriptor type. It works for other arrays with bounds supplied
2909 by run-time quantities other than discriminants. */
2910
2911 static LONGEST
2912 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2913 {
2914 struct type *type, *index_type_desc, *index_type;
2915 int i;
2916
2917 gdb_assert (which == 0 || which == 1);
2918
2919 if (ada_is_constrained_packed_array_type (arr_type))
2920 arr_type = decode_constrained_packed_array_type (arr_type);
2921
2922 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2923 return (LONGEST) - which;
2924
2925 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2926 type = TYPE_TARGET_TYPE (arr_type);
2927 else
2928 type = arr_type;
2929
2930 if (TYPE_FIXED_INSTANCE (type))
2931 {
2932 /* The array has already been fixed, so we do not need to
2933 check the parallel ___XA type again. That encoding has
2934 already been applied, so ignore it now. */
2935 index_type_desc = NULL;
2936 }
2937 else
2938 {
2939 index_type_desc = ada_find_parallel_type (type, "___XA");
2940 ada_fixup_array_indexes_type (index_type_desc);
2941 }
2942
2943 if (index_type_desc != NULL)
2944 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2945 NULL);
2946 else
2947 {
2948 struct type *elt_type = check_typedef (type);
2949
2950 for (i = 1; i < n; i++)
2951 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2952
2953 index_type = TYPE_INDEX_TYPE (elt_type);
2954 }
2955
2956 return
2957 (LONGEST) (which == 0
2958 ? ada_discrete_type_low_bound (index_type)
2959 : ada_discrete_type_high_bound (index_type));
2960 }
2961
2962 /* Given that arr is an array value, returns the lower bound of the
2963 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2964 WHICH is 1. This routine will also work for arrays with bounds
2965 supplied by run-time quantities other than discriminants. */
2966
2967 static LONGEST
2968 ada_array_bound (struct value *arr, int n, int which)
2969 {
2970 struct type *arr_type;
2971
2972 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2973 arr = value_ind (arr);
2974 arr_type = value_enclosing_type (arr);
2975
2976 if (ada_is_constrained_packed_array_type (arr_type))
2977 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2978 else if (ada_is_simple_array_type (arr_type))
2979 return ada_array_bound_from_type (arr_type, n, which);
2980 else
2981 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2982 }
2983
2984 /* Given that arr is an array value, returns the length of the
2985 nth index. This routine will also work for arrays with bounds
2986 supplied by run-time quantities other than discriminants.
2987 Does not work for arrays indexed by enumeration types with representation
2988 clauses at the moment. */
2989
2990 static LONGEST
2991 ada_array_length (struct value *arr, int n)
2992 {
2993 struct type *arr_type;
2994
2995 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2996 arr = value_ind (arr);
2997 arr_type = value_enclosing_type (arr);
2998
2999 if (ada_is_constrained_packed_array_type (arr_type))
3000 return ada_array_length (decode_constrained_packed_array (arr), n);
3001
3002 if (ada_is_simple_array_type (arr_type))
3003 return (ada_array_bound_from_type (arr_type, n, 1)
3004 - ada_array_bound_from_type (arr_type, n, 0) + 1);
3005 else
3006 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3007 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
3008 }
3009
3010 /* An empty array whose type is that of ARR_TYPE (an array type),
3011 with bounds LOW to LOW-1. */
3012
3013 static struct value *
3014 empty_array (struct type *arr_type, int low)
3015 {
3016 struct type *arr_type0 = ada_check_typedef (arr_type);
3017 struct type *index_type
3018 = create_static_range_type
3019 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3020 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3021
3022 return allocate_value (create_array_type (NULL, elt_type, index_type));
3023 }
3024 \f
3025
3026 /* Name resolution */
3027
3028 /* The "decoded" name for the user-definable Ada operator corresponding
3029 to OP. */
3030
3031 static const char *
3032 ada_decoded_op_name (enum exp_opcode op)
3033 {
3034 int i;
3035
3036 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3037 {
3038 if (ada_opname_table[i].op == op)
3039 return ada_opname_table[i].decoded;
3040 }
3041 error (_("Could not find operator name for opcode"));
3042 }
3043
3044
3045 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3046 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3047 undefined namespace) and converts operators that are
3048 user-defined into appropriate function calls. If CONTEXT_TYPE is
3049 non-null, it provides a preferred result type [at the moment, only
3050 type void has any effect---causing procedures to be preferred over
3051 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3052 return type is preferred. May change (expand) *EXP. */
3053
3054 static void
3055 resolve (struct expression **expp, int void_context_p)
3056 {
3057 struct type *context_type = NULL;
3058 int pc = 0;
3059
3060 if (void_context_p)
3061 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3062
3063 resolve_subexp (expp, &pc, 1, context_type);
3064 }
3065
3066 /* Resolve the operator of the subexpression beginning at
3067 position *POS of *EXPP. "Resolving" consists of replacing
3068 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3069 with their resolutions, replacing built-in operators with
3070 function calls to user-defined operators, where appropriate, and,
3071 when DEPROCEDURE_P is non-zero, converting function-valued variables
3072 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3073 are as in ada_resolve, above. */
3074
3075 static struct value *
3076 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3077 struct type *context_type)
3078 {
3079 int pc = *pos;
3080 int i;
3081 struct expression *exp; /* Convenience: == *expp. */
3082 enum exp_opcode op = (*expp)->elts[pc].opcode;
3083 struct value **argvec; /* Vector of operand types (alloca'ed). */
3084 int nargs; /* Number of operands. */
3085 int oplen;
3086
3087 argvec = NULL;
3088 nargs = 0;
3089 exp = *expp;
3090
3091 /* Pass one: resolve operands, saving their types and updating *pos,
3092 if needed. */
3093 switch (op)
3094 {
3095 case OP_FUNCALL:
3096 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3097 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3098 *pos += 7;
3099 else
3100 {
3101 *pos += 3;
3102 resolve_subexp (expp, pos, 0, NULL);
3103 }
3104 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3105 break;
3106
3107 case UNOP_ADDR:
3108 *pos += 1;
3109 resolve_subexp (expp, pos, 0, NULL);
3110 break;
3111
3112 case UNOP_QUAL:
3113 *pos += 3;
3114 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3115 break;
3116
3117 case OP_ATR_MODULUS:
3118 case OP_ATR_SIZE:
3119 case OP_ATR_TAG:
3120 case OP_ATR_FIRST:
3121 case OP_ATR_LAST:
3122 case OP_ATR_LENGTH:
3123 case OP_ATR_POS:
3124 case OP_ATR_VAL:
3125 case OP_ATR_MIN:
3126 case OP_ATR_MAX:
3127 case TERNOP_IN_RANGE:
3128 case BINOP_IN_BOUNDS:
3129 case UNOP_IN_RANGE:
3130 case OP_AGGREGATE:
3131 case OP_OTHERS:
3132 case OP_CHOICES:
3133 case OP_POSITIONAL:
3134 case OP_DISCRETE_RANGE:
3135 case OP_NAME:
3136 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3137 *pos += oplen;
3138 break;
3139
3140 case BINOP_ASSIGN:
3141 {
3142 struct value *arg1;
3143
3144 *pos += 1;
3145 arg1 = resolve_subexp (expp, pos, 0, NULL);
3146 if (arg1 == NULL)
3147 resolve_subexp (expp, pos, 1, NULL);
3148 else
3149 resolve_subexp (expp, pos, 1, value_type (arg1));
3150 break;
3151 }
3152
3153 case UNOP_CAST:
3154 *pos += 3;
3155 nargs = 1;
3156 break;
3157
3158 case BINOP_ADD:
3159 case BINOP_SUB:
3160 case BINOP_MUL:
3161 case BINOP_DIV:
3162 case BINOP_REM:
3163 case BINOP_MOD:
3164 case BINOP_EXP:
3165 case BINOP_CONCAT:
3166 case BINOP_LOGICAL_AND:
3167 case BINOP_LOGICAL_OR:
3168 case BINOP_BITWISE_AND:
3169 case BINOP_BITWISE_IOR:
3170 case BINOP_BITWISE_XOR:
3171
3172 case BINOP_EQUAL:
3173 case BINOP_NOTEQUAL:
3174 case BINOP_LESS:
3175 case BINOP_GTR:
3176 case BINOP_LEQ:
3177 case BINOP_GEQ:
3178
3179 case BINOP_REPEAT:
3180 case BINOP_SUBSCRIPT:
3181 case BINOP_COMMA:
3182 *pos += 1;
3183 nargs = 2;
3184 break;
3185
3186 case UNOP_NEG:
3187 case UNOP_PLUS:
3188 case UNOP_LOGICAL_NOT:
3189 case UNOP_ABS:
3190 case UNOP_IND:
3191 *pos += 1;
3192 nargs = 1;
3193 break;
3194
3195 case OP_LONG:
3196 case OP_DOUBLE:
3197 case OP_VAR_VALUE:
3198 *pos += 4;
3199 break;
3200
3201 case OP_TYPE:
3202 case OP_BOOL:
3203 case OP_LAST:
3204 case OP_INTERNALVAR:
3205 *pos += 3;
3206 break;
3207
3208 case UNOP_MEMVAL:
3209 *pos += 3;
3210 nargs = 1;
3211 break;
3212
3213 case OP_REGISTER:
3214 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3215 break;
3216
3217 case STRUCTOP_STRUCT:
3218 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3219 nargs = 1;
3220 break;
3221
3222 case TERNOP_SLICE:
3223 *pos += 1;
3224 nargs = 3;
3225 break;
3226
3227 case OP_STRING:
3228 break;
3229
3230 default:
3231 error (_("Unexpected operator during name resolution"));
3232 }
3233
3234 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3235 for (i = 0; i < nargs; i += 1)
3236 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3237 argvec[i] = NULL;
3238 exp = *expp;
3239
3240 /* Pass two: perform any resolution on principal operator. */
3241 switch (op)
3242 {
3243 default:
3244 break;
3245
3246 case OP_VAR_VALUE:
3247 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3248 {
3249 struct ada_symbol_info *candidates;
3250 int n_candidates;
3251
3252 n_candidates =
3253 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3254 (exp->elts[pc + 2].symbol),
3255 exp->elts[pc + 1].block, VAR_DOMAIN,
3256 &candidates);
3257
3258 if (n_candidates > 1)
3259 {
3260 /* Types tend to get re-introduced locally, so if there
3261 are any local symbols that are not types, first filter
3262 out all types. */
3263 int j;
3264 for (j = 0; j < n_candidates; j += 1)
3265 switch (SYMBOL_CLASS (candidates[j].sym))
3266 {
3267 case LOC_REGISTER:
3268 case LOC_ARG:
3269 case LOC_REF_ARG:
3270 case LOC_REGPARM_ADDR:
3271 case LOC_LOCAL:
3272 case LOC_COMPUTED:
3273 goto FoundNonType;
3274 default:
3275 break;
3276 }
3277 FoundNonType:
3278 if (j < n_candidates)
3279 {
3280 j = 0;
3281 while (j < n_candidates)
3282 {
3283 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3284 {
3285 candidates[j] = candidates[n_candidates - 1];
3286 n_candidates -= 1;
3287 }
3288 else
3289 j += 1;
3290 }
3291 }
3292 }
3293
3294 if (n_candidates == 0)
3295 error (_("No definition found for %s"),
3296 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3297 else if (n_candidates == 1)
3298 i = 0;
3299 else if (deprocedure_p
3300 && !is_nonfunction (candidates, n_candidates))
3301 {
3302 i = ada_resolve_function
3303 (candidates, n_candidates, NULL, 0,
3304 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3305 context_type);
3306 if (i < 0)
3307 error (_("Could not find a match for %s"),
3308 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3309 }
3310 else
3311 {
3312 printf_filtered (_("Multiple matches for %s\n"),
3313 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3314 user_select_syms (candidates, n_candidates, 1);
3315 i = 0;
3316 }
3317
3318 exp->elts[pc + 1].block = candidates[i].block;
3319 exp->elts[pc + 2].symbol = candidates[i].sym;
3320 if (innermost_block == NULL
3321 || contained_in (candidates[i].block, innermost_block))
3322 innermost_block = candidates[i].block;
3323 }
3324
3325 if (deprocedure_p
3326 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3327 == TYPE_CODE_FUNC))
3328 {
3329 replace_operator_with_call (expp, pc, 0, 0,
3330 exp->elts[pc + 2].symbol,
3331 exp->elts[pc + 1].block);
3332 exp = *expp;
3333 }
3334 break;
3335
3336 case OP_FUNCALL:
3337 {
3338 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3339 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3340 {
3341 struct ada_symbol_info *candidates;
3342 int n_candidates;
3343
3344 n_candidates =
3345 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3346 (exp->elts[pc + 5].symbol),
3347 exp->elts[pc + 4].block, VAR_DOMAIN,
3348 &candidates);
3349 if (n_candidates == 1)
3350 i = 0;
3351 else
3352 {
3353 i = ada_resolve_function
3354 (candidates, n_candidates,
3355 argvec, nargs,
3356 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3357 context_type);
3358 if (i < 0)
3359 error (_("Could not find a match for %s"),
3360 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3361 }
3362
3363 exp->elts[pc + 4].block = candidates[i].block;
3364 exp->elts[pc + 5].symbol = candidates[i].sym;
3365 if (innermost_block == NULL
3366 || contained_in (candidates[i].block, innermost_block))
3367 innermost_block = candidates[i].block;
3368 }
3369 }
3370 break;
3371 case BINOP_ADD:
3372 case BINOP_SUB:
3373 case BINOP_MUL:
3374 case BINOP_DIV:
3375 case BINOP_REM:
3376 case BINOP_MOD:
3377 case BINOP_CONCAT:
3378 case BINOP_BITWISE_AND:
3379 case BINOP_BITWISE_IOR:
3380 case BINOP_BITWISE_XOR:
3381 case BINOP_EQUAL:
3382 case BINOP_NOTEQUAL:
3383 case BINOP_LESS:
3384 case BINOP_GTR:
3385 case BINOP_LEQ:
3386 case BINOP_GEQ:
3387 case BINOP_EXP:
3388 case UNOP_NEG:
3389 case UNOP_PLUS:
3390 case UNOP_LOGICAL_NOT:
3391 case UNOP_ABS:
3392 if (possible_user_operator_p (op, argvec))
3393 {
3394 struct ada_symbol_info *candidates;
3395 int n_candidates;
3396
3397 n_candidates =
3398 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3399 (struct block *) NULL, VAR_DOMAIN,
3400 &candidates);
3401 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3402 ada_decoded_op_name (op), NULL);
3403 if (i < 0)
3404 break;
3405
3406 replace_operator_with_call (expp, pc, nargs, 1,
3407 candidates[i].sym, candidates[i].block);
3408 exp = *expp;
3409 }
3410 break;
3411
3412 case OP_TYPE:
3413 case OP_REGISTER:
3414 return NULL;
3415 }
3416
3417 *pos = pc;
3418 return evaluate_subexp_type (exp, pos);
3419 }
3420
3421 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3422 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3423 a non-pointer. */
3424 /* The term "match" here is rather loose. The match is heuristic and
3425 liberal. */
3426
3427 static int
3428 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3429 {
3430 ftype = ada_check_typedef (ftype);
3431 atype = ada_check_typedef (atype);
3432
3433 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3434 ftype = TYPE_TARGET_TYPE (ftype);
3435 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3436 atype = TYPE_TARGET_TYPE (atype);
3437
3438 switch (TYPE_CODE (ftype))
3439 {
3440 default:
3441 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3442 case TYPE_CODE_PTR:
3443 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3444 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3445 TYPE_TARGET_TYPE (atype), 0);
3446 else
3447 return (may_deref
3448 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3449 case TYPE_CODE_INT:
3450 case TYPE_CODE_ENUM:
3451 case TYPE_CODE_RANGE:
3452 switch (TYPE_CODE (atype))
3453 {
3454 case TYPE_CODE_INT:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_RANGE:
3457 return 1;
3458 default:
3459 return 0;
3460 }
3461
3462 case TYPE_CODE_ARRAY:
3463 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3464 || ada_is_array_descriptor_type (atype));
3465
3466 case TYPE_CODE_STRUCT:
3467 if (ada_is_array_descriptor_type (ftype))
3468 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3469 || ada_is_array_descriptor_type (atype));
3470 else
3471 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3472 && !ada_is_array_descriptor_type (atype));
3473
3474 case TYPE_CODE_UNION:
3475 case TYPE_CODE_FLT:
3476 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3477 }
3478 }
3479
3480 /* Return non-zero if the formals of FUNC "sufficiently match" the
3481 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3482 may also be an enumeral, in which case it is treated as a 0-
3483 argument function. */
3484
3485 static int
3486 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3487 {
3488 int i;
3489 struct type *func_type = SYMBOL_TYPE (func);
3490
3491 if (SYMBOL_CLASS (func) == LOC_CONST
3492 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3493 return (n_actuals == 0);
3494 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3495 return 0;
3496
3497 if (TYPE_NFIELDS (func_type) != n_actuals)
3498 return 0;
3499
3500 for (i = 0; i < n_actuals; i += 1)
3501 {
3502 if (actuals[i] == NULL)
3503 return 0;
3504 else
3505 {
3506 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3507 i));
3508 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3509
3510 if (!ada_type_match (ftype, atype, 1))
3511 return 0;
3512 }
3513 }
3514 return 1;
3515 }
3516
3517 /* False iff function type FUNC_TYPE definitely does not produce a value
3518 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3519 FUNC_TYPE is not a valid function type with a non-null return type
3520 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3521
3522 static int
3523 return_match (struct type *func_type, struct type *context_type)
3524 {
3525 struct type *return_type;
3526
3527 if (func_type == NULL)
3528 return 1;
3529
3530 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3531 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3532 else
3533 return_type = get_base_type (func_type);
3534 if (return_type == NULL)
3535 return 1;
3536
3537 context_type = get_base_type (context_type);
3538
3539 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3540 return context_type == NULL || return_type == context_type;
3541 else if (context_type == NULL)
3542 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3543 else
3544 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3545 }
3546
3547
3548 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3549 function (if any) that matches the types of the NARGS arguments in
3550 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3551 that returns that type, then eliminate matches that don't. If
3552 CONTEXT_TYPE is void and there is at least one match that does not
3553 return void, eliminate all matches that do.
3554
3555 Asks the user if there is more than one match remaining. Returns -1
3556 if there is no such symbol or none is selected. NAME is used
3557 solely for messages. May re-arrange and modify SYMS in
3558 the process; the index returned is for the modified vector. */
3559
3560 static int
3561 ada_resolve_function (struct ada_symbol_info syms[],
3562 int nsyms, struct value **args, int nargs,
3563 const char *name, struct type *context_type)
3564 {
3565 int fallback;
3566 int k;
3567 int m; /* Number of hits */
3568
3569 m = 0;
3570 /* In the first pass of the loop, we only accept functions matching
3571 context_type. If none are found, we add a second pass of the loop
3572 where every function is accepted. */
3573 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3574 {
3575 for (k = 0; k < nsyms; k += 1)
3576 {
3577 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3578
3579 if (ada_args_match (syms[k].sym, args, nargs)
3580 && (fallback || return_match (type, context_type)))
3581 {
3582 syms[m] = syms[k];
3583 m += 1;
3584 }
3585 }
3586 }
3587
3588 if (m == 0)
3589 return -1;
3590 else if (m > 1)
3591 {
3592 printf_filtered (_("Multiple matches for %s\n"), name);
3593 user_select_syms (syms, m, 1);
3594 return 0;
3595 }
3596 return 0;
3597 }
3598
3599 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3600 in a listing of choices during disambiguation (see sort_choices, below).
3601 The idea is that overloadings of a subprogram name from the
3602 same package should sort in their source order. We settle for ordering
3603 such symbols by their trailing number (__N or $N). */
3604
3605 static int
3606 encoded_ordered_before (const char *N0, const char *N1)
3607 {
3608 if (N1 == NULL)
3609 return 0;
3610 else if (N0 == NULL)
3611 return 1;
3612 else
3613 {
3614 int k0, k1;
3615
3616 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3617 ;
3618 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3619 ;
3620 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3621 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3622 {
3623 int n0, n1;
3624
3625 n0 = k0;
3626 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3627 n0 -= 1;
3628 n1 = k1;
3629 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3630 n1 -= 1;
3631 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3632 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3633 }
3634 return (strcmp (N0, N1) < 0);
3635 }
3636 }
3637
3638 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3639 encoded names. */
3640
3641 static void
3642 sort_choices (struct ada_symbol_info syms[], int nsyms)
3643 {
3644 int i;
3645
3646 for (i = 1; i < nsyms; i += 1)
3647 {
3648 struct ada_symbol_info sym = syms[i];
3649 int j;
3650
3651 for (j = i - 1; j >= 0; j -= 1)
3652 {
3653 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3654 SYMBOL_LINKAGE_NAME (sym.sym)))
3655 break;
3656 syms[j + 1] = syms[j];
3657 }
3658 syms[j + 1] = sym;
3659 }
3660 }
3661
3662 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3663 by asking the user (if necessary), returning the number selected,
3664 and setting the first elements of SYMS items. Error if no symbols
3665 selected. */
3666
3667 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3668 to be re-integrated one of these days. */
3669
3670 int
3671 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3672 {
3673 int i;
3674 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3675 int n_chosen;
3676 int first_choice = (max_results == 1) ? 1 : 2;
3677 const char *select_mode = multiple_symbols_select_mode ();
3678
3679 if (max_results < 1)
3680 error (_("Request to select 0 symbols!"));
3681 if (nsyms <= 1)
3682 return nsyms;
3683
3684 if (select_mode == multiple_symbols_cancel)
3685 error (_("\
3686 canceled because the command is ambiguous\n\
3687 See set/show multiple-symbol."));
3688
3689 /* If select_mode is "all", then return all possible symbols.
3690 Only do that if more than one symbol can be selected, of course.
3691 Otherwise, display the menu as usual. */
3692 if (select_mode == multiple_symbols_all && max_results > 1)
3693 return nsyms;
3694
3695 printf_unfiltered (_("[0] cancel\n"));
3696 if (max_results > 1)
3697 printf_unfiltered (_("[1] all\n"));
3698
3699 sort_choices (syms, nsyms);
3700
3701 for (i = 0; i < nsyms; i += 1)
3702 {
3703 if (syms[i].sym == NULL)
3704 continue;
3705
3706 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3707 {
3708 struct symtab_and_line sal =
3709 find_function_start_sal (syms[i].sym, 1);
3710
3711 if (sal.symtab == NULL)
3712 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3713 i + first_choice,
3714 SYMBOL_PRINT_NAME (syms[i].sym),
3715 sal.line);
3716 else
3717 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
3719 symtab_to_filename_for_display (sal.symtab),
3720 sal.line);
3721 continue;
3722 }
3723 else
3724 {
3725 int is_enumeral =
3726 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3727 && SYMBOL_TYPE (syms[i].sym) != NULL
3728 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3729 struct symtab *symtab = NULL;
3730
3731 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3732 symtab = symbol_symtab (syms[i].sym);
3733
3734 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3735 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3736 i + first_choice,
3737 SYMBOL_PRINT_NAME (syms[i].sym),
3738 symtab_to_filename_for_display (symtab),
3739 SYMBOL_LINE (syms[i].sym));
3740 else if (is_enumeral
3741 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3742 {
3743 printf_unfiltered (("[%d] "), i + first_choice);
3744 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3745 gdb_stdout, -1, 0, &type_print_raw_options);
3746 printf_unfiltered (_("'(%s) (enumeral)\n"),
3747 SYMBOL_PRINT_NAME (syms[i].sym));
3748 }
3749 else if (symtab != NULL)
3750 printf_unfiltered (is_enumeral
3751 ? _("[%d] %s in %s (enumeral)\n")
3752 : _("[%d] %s at %s:?\n"),
3753 i + first_choice,
3754 SYMBOL_PRINT_NAME (syms[i].sym),
3755 symtab_to_filename_for_display (symtab));
3756 else
3757 printf_unfiltered (is_enumeral
3758 ? _("[%d] %s (enumeral)\n")
3759 : _("[%d] %s at ?\n"),
3760 i + first_choice,
3761 SYMBOL_PRINT_NAME (syms[i].sym));
3762 }
3763 }
3764
3765 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3766 "overload-choice");
3767
3768 for (i = 0; i < n_chosen; i += 1)
3769 syms[i] = syms[chosen[i]];
3770
3771 return n_chosen;
3772 }
3773
3774 /* Read and validate a set of numeric choices from the user in the
3775 range 0 .. N_CHOICES-1. Place the results in increasing
3776 order in CHOICES[0 .. N-1], and return N.
3777
3778 The user types choices as a sequence of numbers on one line
3779 separated by blanks, encoding them as follows:
3780
3781 + A choice of 0 means to cancel the selection, throwing an error.
3782 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3783 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3784
3785 The user is not allowed to choose more than MAX_RESULTS values.
3786
3787 ANNOTATION_SUFFIX, if present, is used to annotate the input
3788 prompts (for use with the -f switch). */
3789
3790 int
3791 get_selections (int *choices, int n_choices, int max_results,
3792 int is_all_choice, char *annotation_suffix)
3793 {
3794 char *args;
3795 char *prompt;
3796 int n_chosen;
3797 int first_choice = is_all_choice ? 2 : 1;
3798
3799 prompt = getenv ("PS2");
3800 if (prompt == NULL)
3801 prompt = "> ";
3802
3803 args = command_line_input (prompt, 0, annotation_suffix);
3804
3805 if (args == NULL)
3806 error_no_arg (_("one or more choice numbers"));
3807
3808 n_chosen = 0;
3809
3810 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3811 order, as given in args. Choices are validated. */
3812 while (1)
3813 {
3814 char *args2;
3815 int choice, j;
3816
3817 args = skip_spaces (args);
3818 if (*args == '\0' && n_chosen == 0)
3819 error_no_arg (_("one or more choice numbers"));
3820 else if (*args == '\0')
3821 break;
3822
3823 choice = strtol (args, &args2, 10);
3824 if (args == args2 || choice < 0
3825 || choice > n_choices + first_choice - 1)
3826 error (_("Argument must be choice number"));
3827 args = args2;
3828
3829 if (choice == 0)
3830 error (_("cancelled"));
3831
3832 if (choice < first_choice)
3833 {
3834 n_chosen = n_choices;
3835 for (j = 0; j < n_choices; j += 1)
3836 choices[j] = j;
3837 break;
3838 }
3839 choice -= first_choice;
3840
3841 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3842 {
3843 }
3844
3845 if (j < 0 || choice != choices[j])
3846 {
3847 int k;
3848
3849 for (k = n_chosen - 1; k > j; k -= 1)
3850 choices[k + 1] = choices[k];
3851 choices[j + 1] = choice;
3852 n_chosen += 1;
3853 }
3854 }
3855
3856 if (n_chosen > max_results)
3857 error (_("Select no more than %d of the above"), max_results);
3858
3859 return n_chosen;
3860 }
3861
3862 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3863 on the function identified by SYM and BLOCK, and taking NARGS
3864 arguments. Update *EXPP as needed to hold more space. */
3865
3866 static void
3867 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3868 int oplen, struct symbol *sym,
3869 const struct block *block)
3870 {
3871 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3872 symbol, -oplen for operator being replaced). */
3873 struct expression *newexp = (struct expression *)
3874 xzalloc (sizeof (struct expression)
3875 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3876 struct expression *exp = *expp;
3877
3878 newexp->nelts = exp->nelts + 7 - oplen;
3879 newexp->language_defn = exp->language_defn;
3880 newexp->gdbarch = exp->gdbarch;
3881 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3882 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3883 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3884
3885 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3886 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3887
3888 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3889 newexp->elts[pc + 4].block = block;
3890 newexp->elts[pc + 5].symbol = sym;
3891
3892 *expp = newexp;
3893 xfree (exp);
3894 }
3895
3896 /* Type-class predicates */
3897
3898 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3899 or FLOAT). */
3900
3901 static int
3902 numeric_type_p (struct type *type)
3903 {
3904 if (type == NULL)
3905 return 0;
3906 else
3907 {
3908 switch (TYPE_CODE (type))
3909 {
3910 case TYPE_CODE_INT:
3911 case TYPE_CODE_FLT:
3912 return 1;
3913 case TYPE_CODE_RANGE:
3914 return (type == TYPE_TARGET_TYPE (type)
3915 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3916 default:
3917 return 0;
3918 }
3919 }
3920 }
3921
3922 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3923
3924 static int
3925 integer_type_p (struct type *type)
3926 {
3927 if (type == NULL)
3928 return 0;
3929 else
3930 {
3931 switch (TYPE_CODE (type))
3932 {
3933 case TYPE_CODE_INT:
3934 return 1;
3935 case TYPE_CODE_RANGE:
3936 return (type == TYPE_TARGET_TYPE (type)
3937 || integer_type_p (TYPE_TARGET_TYPE (type)));
3938 default:
3939 return 0;
3940 }
3941 }
3942 }
3943
3944 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3945
3946 static int
3947 scalar_type_p (struct type *type)
3948 {
3949 if (type == NULL)
3950 return 0;
3951 else
3952 {
3953 switch (TYPE_CODE (type))
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_RANGE:
3957 case TYPE_CODE_ENUM:
3958 case TYPE_CODE_FLT:
3959 return 1;
3960 default:
3961 return 0;
3962 }
3963 }
3964 }
3965
3966 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3967
3968 static int
3969 discrete_type_p (struct type *type)
3970 {
3971 if (type == NULL)
3972 return 0;
3973 else
3974 {
3975 switch (TYPE_CODE (type))
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_ENUM:
3980 case TYPE_CODE_BOOL:
3981 return 1;
3982 default:
3983 return 0;
3984 }
3985 }
3986 }
3987
3988 /* Returns non-zero if OP with operands in the vector ARGS could be
3989 a user-defined function. Errs on the side of pre-defined operators
3990 (i.e., result 0). */
3991
3992 static int
3993 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3994 {
3995 struct type *type0 =
3996 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3997 struct type *type1 =
3998 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3999
4000 if (type0 == NULL)
4001 return 0;
4002
4003 switch (op)
4004 {
4005 default:
4006 return 0;
4007
4008 case BINOP_ADD:
4009 case BINOP_SUB:
4010 case BINOP_MUL:
4011 case BINOP_DIV:
4012 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4013
4014 case BINOP_REM:
4015 case BINOP_MOD:
4016 case BINOP_BITWISE_AND:
4017 case BINOP_BITWISE_IOR:
4018 case BINOP_BITWISE_XOR:
4019 return (!(integer_type_p (type0) && integer_type_p (type1)));
4020
4021 case BINOP_EQUAL:
4022 case BINOP_NOTEQUAL:
4023 case BINOP_LESS:
4024 case BINOP_GTR:
4025 case BINOP_LEQ:
4026 case BINOP_GEQ:
4027 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4028
4029 case BINOP_CONCAT:
4030 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4031
4032 case BINOP_EXP:
4033 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4034
4035 case UNOP_NEG:
4036 case UNOP_PLUS:
4037 case UNOP_LOGICAL_NOT:
4038 case UNOP_ABS:
4039 return (!numeric_type_p (type0));
4040
4041 }
4042 }
4043 \f
4044 /* Renaming */
4045
4046 /* NOTES:
4047
4048 1. In the following, we assume that a renaming type's name may
4049 have an ___XD suffix. It would be nice if this went away at some
4050 point.
4051 2. We handle both the (old) purely type-based representation of
4052 renamings and the (new) variable-based encoding. At some point,
4053 it is devoutly to be hoped that the former goes away
4054 (FIXME: hilfinger-2007-07-09).
4055 3. Subprogram renamings are not implemented, although the XRS
4056 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4057
4058 /* If SYM encodes a renaming,
4059
4060 <renaming> renames <renamed entity>,
4061
4062 sets *LEN to the length of the renamed entity's name,
4063 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4064 the string describing the subcomponent selected from the renamed
4065 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4066 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4067 are undefined). Otherwise, returns a value indicating the category
4068 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4069 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4070 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4071 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4072 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4073 may be NULL, in which case they are not assigned.
4074
4075 [Currently, however, GCC does not generate subprogram renamings.] */
4076
4077 enum ada_renaming_category
4078 ada_parse_renaming (struct symbol *sym,
4079 const char **renamed_entity, int *len,
4080 const char **renaming_expr)
4081 {
4082 enum ada_renaming_category kind;
4083 const char *info;
4084 const char *suffix;
4085
4086 if (sym == NULL)
4087 return ADA_NOT_RENAMING;
4088 switch (SYMBOL_CLASS (sym))
4089 {
4090 default:
4091 return ADA_NOT_RENAMING;
4092 case LOC_TYPEDEF:
4093 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4094 renamed_entity, len, renaming_expr);
4095 case LOC_LOCAL:
4096 case LOC_STATIC:
4097 case LOC_COMPUTED:
4098 case LOC_OPTIMIZED_OUT:
4099 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4100 if (info == NULL)
4101 return ADA_NOT_RENAMING;
4102 switch (info[5])
4103 {
4104 case '_':
4105 kind = ADA_OBJECT_RENAMING;
4106 info += 6;
4107 break;
4108 case 'E':
4109 kind = ADA_EXCEPTION_RENAMING;
4110 info += 7;
4111 break;
4112 case 'P':
4113 kind = ADA_PACKAGE_RENAMING;
4114 info += 7;
4115 break;
4116 case 'S':
4117 kind = ADA_SUBPROGRAM_RENAMING;
4118 info += 7;
4119 break;
4120 default:
4121 return ADA_NOT_RENAMING;
4122 }
4123 }
4124
4125 if (renamed_entity != NULL)
4126 *renamed_entity = info;
4127 suffix = strstr (info, "___XE");
4128 if (suffix == NULL || suffix == info)
4129 return ADA_NOT_RENAMING;
4130 if (len != NULL)
4131 *len = strlen (info) - strlen (suffix);
4132 suffix += 5;
4133 if (renaming_expr != NULL)
4134 *renaming_expr = suffix;
4135 return kind;
4136 }
4137
4138 /* Assuming TYPE encodes a renaming according to the old encoding in
4139 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4140 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4141 ADA_NOT_RENAMING otherwise. */
4142 static enum ada_renaming_category
4143 parse_old_style_renaming (struct type *type,
4144 const char **renamed_entity, int *len,
4145 const char **renaming_expr)
4146 {
4147 enum ada_renaming_category kind;
4148 const char *name;
4149 const char *info;
4150 const char *suffix;
4151
4152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4153 || TYPE_NFIELDS (type) != 1)
4154 return ADA_NOT_RENAMING;
4155
4156 name = type_name_no_tag (type);
4157 if (name == NULL)
4158 return ADA_NOT_RENAMING;
4159
4160 name = strstr (name, "___XR");
4161 if (name == NULL)
4162 return ADA_NOT_RENAMING;
4163 switch (name[5])
4164 {
4165 case '\0':
4166 case '_':
4167 kind = ADA_OBJECT_RENAMING;
4168 break;
4169 case 'E':
4170 kind = ADA_EXCEPTION_RENAMING;
4171 break;
4172 case 'P':
4173 kind = ADA_PACKAGE_RENAMING;
4174 break;
4175 case 'S':
4176 kind = ADA_SUBPROGRAM_RENAMING;
4177 break;
4178 default:
4179 return ADA_NOT_RENAMING;
4180 }
4181
4182 info = TYPE_FIELD_NAME (type, 0);
4183 if (info == NULL)
4184 return ADA_NOT_RENAMING;
4185 if (renamed_entity != NULL)
4186 *renamed_entity = info;
4187 suffix = strstr (info, "___XE");
4188 if (renaming_expr != NULL)
4189 *renaming_expr = suffix + 5;
4190 if (suffix == NULL || suffix == info)
4191 return ADA_NOT_RENAMING;
4192 if (len != NULL)
4193 *len = suffix - info;
4194 return kind;
4195 }
4196
4197 /* Compute the value of the given RENAMING_SYM, which is expected to
4198 be a symbol encoding a renaming expression. BLOCK is the block
4199 used to evaluate the renaming. */
4200
4201 static struct value *
4202 ada_read_renaming_var_value (struct symbol *renaming_sym,
4203 const struct block *block)
4204 {
4205 const char *sym_name;
4206 struct expression *expr;
4207 struct value *value;
4208 struct cleanup *old_chain = NULL;
4209
4210 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4211 expr = parse_exp_1 (&sym_name, 0, block, 0);
4212 old_chain = make_cleanup (free_current_contents, &expr);
4213 value = evaluate_expression (expr);
4214
4215 do_cleanups (old_chain);
4216 return value;
4217 }
4218 \f
4219
4220 /* Evaluation: Function Calls */
4221
4222 /* Return an lvalue containing the value VAL. This is the identity on
4223 lvalues, and otherwise has the side-effect of allocating memory
4224 in the inferior where a copy of the value contents is copied. */
4225
4226 static struct value *
4227 ensure_lval (struct value *val)
4228 {
4229 if (VALUE_LVAL (val) == not_lval
4230 || VALUE_LVAL (val) == lval_internalvar)
4231 {
4232 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4233 const CORE_ADDR addr =
4234 value_as_long (value_allocate_space_in_inferior (len));
4235
4236 set_value_address (val, addr);
4237 VALUE_LVAL (val) = lval_memory;
4238 write_memory (addr, value_contents (val), len);
4239 }
4240
4241 return val;
4242 }
4243
4244 /* Return the value ACTUAL, converted to be an appropriate value for a
4245 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4246 allocating any necessary descriptors (fat pointers), or copies of
4247 values not residing in memory, updating it as needed. */
4248
4249 struct value *
4250 ada_convert_actual (struct value *actual, struct type *formal_type0)
4251 {
4252 struct type *actual_type = ada_check_typedef (value_type (actual));
4253 struct type *formal_type = ada_check_typedef (formal_type0);
4254 struct type *formal_target =
4255 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4256 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4257 struct type *actual_target =
4258 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4259 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4260
4261 if (ada_is_array_descriptor_type (formal_target)
4262 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4263 return make_array_descriptor (formal_type, actual);
4264 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4265 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4266 {
4267 struct value *result;
4268
4269 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4270 && ada_is_array_descriptor_type (actual_target))
4271 result = desc_data (actual);
4272 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4273 {
4274 if (VALUE_LVAL (actual) != lval_memory)
4275 {
4276 struct value *val;
4277
4278 actual_type = ada_check_typedef (value_type (actual));
4279 val = allocate_value (actual_type);
4280 memcpy ((char *) value_contents_raw (val),
4281 (char *) value_contents (actual),
4282 TYPE_LENGTH (actual_type));
4283 actual = ensure_lval (val);
4284 }
4285 result = value_addr (actual);
4286 }
4287 else
4288 return actual;
4289 return value_cast_pointers (formal_type, result, 0);
4290 }
4291 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4292 return ada_value_ind (actual);
4293
4294 return actual;
4295 }
4296
4297 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4298 type TYPE. This is usually an inefficient no-op except on some targets
4299 (such as AVR) where the representation of a pointer and an address
4300 differs. */
4301
4302 static CORE_ADDR
4303 value_pointer (struct value *value, struct type *type)
4304 {
4305 struct gdbarch *gdbarch = get_type_arch (type);
4306 unsigned len = TYPE_LENGTH (type);
4307 gdb_byte *buf = alloca (len);
4308 CORE_ADDR addr;
4309
4310 addr = value_address (value);
4311 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4312 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4313 return addr;
4314 }
4315
4316
4317 /* Push a descriptor of type TYPE for array value ARR on the stack at
4318 *SP, updating *SP to reflect the new descriptor. Return either
4319 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4320 to-descriptor type rather than a descriptor type), a struct value *
4321 representing a pointer to this descriptor. */
4322
4323 static struct value *
4324 make_array_descriptor (struct type *type, struct value *arr)
4325 {
4326 struct type *bounds_type = desc_bounds_type (type);
4327 struct type *desc_type = desc_base_type (type);
4328 struct value *descriptor = allocate_value (desc_type);
4329 struct value *bounds = allocate_value (bounds_type);
4330 int i;
4331
4332 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4333 i > 0; i -= 1)
4334 {
4335 modify_field (value_type (bounds), value_contents_writeable (bounds),
4336 ada_array_bound (arr, i, 0),
4337 desc_bound_bitpos (bounds_type, i, 0),
4338 desc_bound_bitsize (bounds_type, i, 0));
4339 modify_field (value_type (bounds), value_contents_writeable (bounds),
4340 ada_array_bound (arr, i, 1),
4341 desc_bound_bitpos (bounds_type, i, 1),
4342 desc_bound_bitsize (bounds_type, i, 1));
4343 }
4344
4345 bounds = ensure_lval (bounds);
4346
4347 modify_field (value_type (descriptor),
4348 value_contents_writeable (descriptor),
4349 value_pointer (ensure_lval (arr),
4350 TYPE_FIELD_TYPE (desc_type, 0)),
4351 fat_pntr_data_bitpos (desc_type),
4352 fat_pntr_data_bitsize (desc_type));
4353
4354 modify_field (value_type (descriptor),
4355 value_contents_writeable (descriptor),
4356 value_pointer (bounds,
4357 TYPE_FIELD_TYPE (desc_type, 1)),
4358 fat_pntr_bounds_bitpos (desc_type),
4359 fat_pntr_bounds_bitsize (desc_type));
4360
4361 descriptor = ensure_lval (descriptor);
4362
4363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4364 return value_addr (descriptor);
4365 else
4366 return descriptor;
4367 }
4368 \f
4369 /* Symbol Cache Module */
4370
4371 /* Performance measurements made as of 2010-01-15 indicate that
4372 this cache does bring some noticeable improvements. Depending
4373 on the type of entity being printed, the cache can make it as much
4374 as an order of magnitude faster than without it.
4375
4376 The descriptive type DWARF extension has significantly reduced
4377 the need for this cache, at least when DWARF is being used. However,
4378 even in this case, some expensive name-based symbol searches are still
4379 sometimes necessary - to find an XVZ variable, mostly. */
4380
4381 /* Initialize the contents of SYM_CACHE. */
4382
4383 static void
4384 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4385 {
4386 obstack_init (&sym_cache->cache_space);
4387 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4388 }
4389
4390 /* Free the memory used by SYM_CACHE. */
4391
4392 static void
4393 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4394 {
4395 obstack_free (&sym_cache->cache_space, NULL);
4396 xfree (sym_cache);
4397 }
4398
4399 /* Return the symbol cache associated to the given program space PSPACE.
4400 If not allocated for this PSPACE yet, allocate and initialize one. */
4401
4402 static struct ada_symbol_cache *
4403 ada_get_symbol_cache (struct program_space *pspace)
4404 {
4405 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4406
4407 if (pspace_data->sym_cache == NULL)
4408 {
4409 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4410 ada_init_symbol_cache (pspace_data->sym_cache);
4411 }
4412
4413 return pspace_data->sym_cache;
4414 }
4415
4416 /* Clear all entries from the symbol cache. */
4417
4418 static void
4419 ada_clear_symbol_cache (void)
4420 {
4421 struct ada_symbol_cache *sym_cache
4422 = ada_get_symbol_cache (current_program_space);
4423
4424 obstack_free (&sym_cache->cache_space, NULL);
4425 ada_init_symbol_cache (sym_cache);
4426 }
4427
4428 /* Search our cache for an entry matching NAME and DOMAIN.
4429 Return it if found, or NULL otherwise. */
4430
4431 static struct cache_entry **
4432 find_entry (const char *name, domain_enum domain)
4433 {
4434 struct ada_symbol_cache *sym_cache
4435 = ada_get_symbol_cache (current_program_space);
4436 int h = msymbol_hash (name) % HASH_SIZE;
4437 struct cache_entry **e;
4438
4439 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4440 {
4441 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4442 return e;
4443 }
4444 return NULL;
4445 }
4446
4447 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4448 Return 1 if found, 0 otherwise.
4449
4450 If an entry was found and SYM is not NULL, set *SYM to the entry's
4451 SYM. Same principle for BLOCK if not NULL. */
4452
4453 static int
4454 lookup_cached_symbol (const char *name, domain_enum domain,
4455 struct symbol **sym, const struct block **block)
4456 {
4457 struct cache_entry **e = find_entry (name, domain);
4458
4459 if (e == NULL)
4460 return 0;
4461 if (sym != NULL)
4462 *sym = (*e)->sym;
4463 if (block != NULL)
4464 *block = (*e)->block;
4465 return 1;
4466 }
4467
4468 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4469 in domain DOMAIN, save this result in our symbol cache. */
4470
4471 static void
4472 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4473 const struct block *block)
4474 {
4475 struct ada_symbol_cache *sym_cache
4476 = ada_get_symbol_cache (current_program_space);
4477 int h;
4478 char *copy;
4479 struct cache_entry *e;
4480
4481 /* Symbols for builtin types don't have a block.
4482 For now don't cache such symbols. */
4483 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4484 return;
4485
4486 /* If the symbol is a local symbol, then do not cache it, as a search
4487 for that symbol depends on the context. To determine whether
4488 the symbol is local or not, we check the block where we found it
4489 against the global and static blocks of its associated symtab. */
4490 if (sym
4491 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4492 GLOBAL_BLOCK) != block
4493 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4494 STATIC_BLOCK) != block)
4495 return;
4496
4497 h = msymbol_hash (name) % HASH_SIZE;
4498 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4499 sizeof (*e));
4500 e->next = sym_cache->root[h];
4501 sym_cache->root[h] = e;
4502 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4503 strcpy (copy, name);
4504 e->sym = sym;
4505 e->domain = domain;
4506 e->block = block;
4507 }
4508 \f
4509 /* Symbol Lookup */
4510
4511 /* Return nonzero if wild matching should be used when searching for
4512 all symbols matching LOOKUP_NAME.
4513
4514 LOOKUP_NAME is expected to be a symbol name after transformation
4515 for Ada lookups (see ada_name_for_lookup). */
4516
4517 static int
4518 should_use_wild_match (const char *lookup_name)
4519 {
4520 return (strstr (lookup_name, "__") == NULL);
4521 }
4522
4523 /* Return the result of a standard (literal, C-like) lookup of NAME in
4524 given DOMAIN, visible from lexical block BLOCK. */
4525
4526 static struct symbol *
4527 standard_lookup (const char *name, const struct block *block,
4528 domain_enum domain)
4529 {
4530 /* Initialize it just to avoid a GCC false warning. */
4531 struct symbol *sym = NULL;
4532
4533 if (lookup_cached_symbol (name, domain, &sym, NULL))
4534 return sym;
4535 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4536 cache_symbol (name, domain, sym, block_found);
4537 return sym;
4538 }
4539
4540
4541 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4542 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4543 since they contend in overloading in the same way. */
4544 static int
4545 is_nonfunction (struct ada_symbol_info syms[], int n)
4546 {
4547 int i;
4548
4549 for (i = 0; i < n; i += 1)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4551 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4552 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4553 return 1;
4554
4555 return 0;
4556 }
4557
4558 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4559 struct types. Otherwise, they may not. */
4560
4561 static int
4562 equiv_types (struct type *type0, struct type *type1)
4563 {
4564 if (type0 == type1)
4565 return 1;
4566 if (type0 == NULL || type1 == NULL
4567 || TYPE_CODE (type0) != TYPE_CODE (type1))
4568 return 0;
4569 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4570 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4571 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4572 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4573 return 1;
4574
4575 return 0;
4576 }
4577
4578 /* True iff SYM0 represents the same entity as SYM1, or one that is
4579 no more defined than that of SYM1. */
4580
4581 static int
4582 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4583 {
4584 if (sym0 == sym1)
4585 return 1;
4586 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4587 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4588 return 0;
4589
4590 switch (SYMBOL_CLASS (sym0))
4591 {
4592 case LOC_UNDEF:
4593 return 1;
4594 case LOC_TYPEDEF:
4595 {
4596 struct type *type0 = SYMBOL_TYPE (sym0);
4597 struct type *type1 = SYMBOL_TYPE (sym1);
4598 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4599 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4600 int len0 = strlen (name0);
4601
4602 return
4603 TYPE_CODE (type0) == TYPE_CODE (type1)
4604 && (equiv_types (type0, type1)
4605 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4606 && startswith (name1 + len0, "___XV")));
4607 }
4608 case LOC_CONST:
4609 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4610 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4611 default:
4612 return 0;
4613 }
4614 }
4615
4616 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4617 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4618
4619 static void
4620 add_defn_to_vec (struct obstack *obstackp,
4621 struct symbol *sym,
4622 const struct block *block)
4623 {
4624 int i;
4625 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4626
4627 /* Do not try to complete stub types, as the debugger is probably
4628 already scanning all symbols matching a certain name at the
4629 time when this function is called. Trying to replace the stub
4630 type by its associated full type will cause us to restart a scan
4631 which may lead to an infinite recursion. Instead, the client
4632 collecting the matching symbols will end up collecting several
4633 matches, with at least one of them complete. It can then filter
4634 out the stub ones if needed. */
4635
4636 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4637 {
4638 if (lesseq_defined_than (sym, prevDefns[i].sym))
4639 return;
4640 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4641 {
4642 prevDefns[i].sym = sym;
4643 prevDefns[i].block = block;
4644 return;
4645 }
4646 }
4647
4648 {
4649 struct ada_symbol_info info;
4650
4651 info.sym = sym;
4652 info.block = block;
4653 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4654 }
4655 }
4656
4657 /* Number of ada_symbol_info structures currently collected in
4658 current vector in *OBSTACKP. */
4659
4660 static int
4661 num_defns_collected (struct obstack *obstackp)
4662 {
4663 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4664 }
4665
4666 /* Vector of ada_symbol_info structures currently collected in current
4667 vector in *OBSTACKP. If FINISH, close off the vector and return
4668 its final address. */
4669
4670 static struct ada_symbol_info *
4671 defns_collected (struct obstack *obstackp, int finish)
4672 {
4673 if (finish)
4674 return obstack_finish (obstackp);
4675 else
4676 return (struct ada_symbol_info *) obstack_base (obstackp);
4677 }
4678
4679 /* Return a bound minimal symbol matching NAME according to Ada
4680 decoding rules. Returns an invalid symbol if there is no such
4681 minimal symbol. Names prefixed with "standard__" are handled
4682 specially: "standard__" is first stripped off, and only static and
4683 global symbols are searched. */
4684
4685 struct bound_minimal_symbol
4686 ada_lookup_simple_minsym (const char *name)
4687 {
4688 struct bound_minimal_symbol result;
4689 struct objfile *objfile;
4690 struct minimal_symbol *msymbol;
4691 const int wild_match_p = should_use_wild_match (name);
4692
4693 memset (&result, 0, sizeof (result));
4694
4695 /* Special case: If the user specifies a symbol name inside package
4696 Standard, do a non-wild matching of the symbol name without
4697 the "standard__" prefix. This was primarily introduced in order
4698 to allow the user to specifically access the standard exceptions
4699 using, for instance, Standard.Constraint_Error when Constraint_Error
4700 is ambiguous (due to the user defining its own Constraint_Error
4701 entity inside its program). */
4702 if (startswith (name, "standard__"))
4703 name += sizeof ("standard__") - 1;
4704
4705 ALL_MSYMBOLS (objfile, msymbol)
4706 {
4707 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4708 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4709 {
4710 result.minsym = msymbol;
4711 result.objfile = objfile;
4712 break;
4713 }
4714 }
4715
4716 return result;
4717 }
4718
4719 /* For all subprograms that statically enclose the subprogram of the
4720 selected frame, add symbols matching identifier NAME in DOMAIN
4721 and their blocks to the list of data in OBSTACKP, as for
4722 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4723 with a wildcard prefix. */
4724
4725 static void
4726 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4727 const char *name, domain_enum domain,
4728 int wild_match_p)
4729 {
4730 }
4731
4732 /* True if TYPE is definitely an artificial type supplied to a symbol
4733 for which no debugging information was given in the symbol file. */
4734
4735 static int
4736 is_nondebugging_type (struct type *type)
4737 {
4738 const char *name = ada_type_name (type);
4739
4740 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4741 }
4742
4743 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4744 that are deemed "identical" for practical purposes.
4745
4746 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4747 types and that their number of enumerals is identical (in other
4748 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4749
4750 static int
4751 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4752 {
4753 int i;
4754
4755 /* The heuristic we use here is fairly conservative. We consider
4756 that 2 enumerate types are identical if they have the same
4757 number of enumerals and that all enumerals have the same
4758 underlying value and name. */
4759
4760 /* All enums in the type should have an identical underlying value. */
4761 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4762 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4763 return 0;
4764
4765 /* All enumerals should also have the same name (modulo any numerical
4766 suffix). */
4767 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4768 {
4769 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4770 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4771 int len_1 = strlen (name_1);
4772 int len_2 = strlen (name_2);
4773
4774 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4776 if (len_1 != len_2
4777 || strncmp (TYPE_FIELD_NAME (type1, i),
4778 TYPE_FIELD_NAME (type2, i),
4779 len_1) != 0)
4780 return 0;
4781 }
4782
4783 return 1;
4784 }
4785
4786 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4787 that are deemed "identical" for practical purposes. Sometimes,
4788 enumerals are not strictly identical, but their types are so similar
4789 that they can be considered identical.
4790
4791 For instance, consider the following code:
4792
4793 type Color is (Black, Red, Green, Blue, White);
4794 type RGB_Color is new Color range Red .. Blue;
4795
4796 Type RGB_Color is a subrange of an implicit type which is a copy
4797 of type Color. If we call that implicit type RGB_ColorB ("B" is
4798 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4799 As a result, when an expression references any of the enumeral
4800 by name (Eg. "print green"), the expression is technically
4801 ambiguous and the user should be asked to disambiguate. But
4802 doing so would only hinder the user, since it wouldn't matter
4803 what choice he makes, the outcome would always be the same.
4804 So, for practical purposes, we consider them as the same. */
4805
4806 static int
4807 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4808 {
4809 int i;
4810
4811 /* Before performing a thorough comparison check of each type,
4812 we perform a series of inexpensive checks. We expect that these
4813 checks will quickly fail in the vast majority of cases, and thus
4814 help prevent the unnecessary use of a more expensive comparison.
4815 Said comparison also expects us to make some of these checks
4816 (see ada_identical_enum_types_p). */
4817
4818 /* Quick check: All symbols should have an enum type. */
4819 for (i = 0; i < nsyms; i++)
4820 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4821 return 0;
4822
4823 /* Quick check: They should all have the same value. */
4824 for (i = 1; i < nsyms; i++)
4825 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4826 return 0;
4827
4828 /* Quick check: They should all have the same number of enumerals. */
4829 for (i = 1; i < nsyms; i++)
4830 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4831 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4832 return 0;
4833
4834 /* All the sanity checks passed, so we might have a set of
4835 identical enumeration types. Perform a more complete
4836 comparison of the type of each symbol. */
4837 for (i = 1; i < nsyms; i++)
4838 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4839 SYMBOL_TYPE (syms[0].sym)))
4840 return 0;
4841
4842 return 1;
4843 }
4844
4845 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4846 duplicate other symbols in the list (The only case I know of where
4847 this happens is when object files containing stabs-in-ecoff are
4848 linked with files containing ordinary ecoff debugging symbols (or no
4849 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4850 Returns the number of items in the modified list. */
4851
4852 static int
4853 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4854 {
4855 int i, j;
4856
4857 /* We should never be called with less than 2 symbols, as there
4858 cannot be any extra symbol in that case. But it's easy to
4859 handle, since we have nothing to do in that case. */
4860 if (nsyms < 2)
4861 return nsyms;
4862
4863 i = 0;
4864 while (i < nsyms)
4865 {
4866 int remove_p = 0;
4867
4868 /* If two symbols have the same name and one of them is a stub type,
4869 the get rid of the stub. */
4870
4871 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4872 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4873 {
4874 for (j = 0; j < nsyms; j++)
4875 {
4876 if (j != i
4877 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4878 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4879 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4880 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4881 remove_p = 1;
4882 }
4883 }
4884
4885 /* Two symbols with the same name, same class and same address
4886 should be identical. */
4887
4888 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4889 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4890 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4891 {
4892 for (j = 0; j < nsyms; j += 1)
4893 {
4894 if (i != j
4895 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4896 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4897 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4898 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4899 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4900 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4901 remove_p = 1;
4902 }
4903 }
4904
4905 if (remove_p)
4906 {
4907 for (j = i + 1; j < nsyms; j += 1)
4908 syms[j - 1] = syms[j];
4909 nsyms -= 1;
4910 }
4911
4912 i += 1;
4913 }
4914
4915 /* If all the remaining symbols are identical enumerals, then
4916 just keep the first one and discard the rest.
4917
4918 Unlike what we did previously, we do not discard any entry
4919 unless they are ALL identical. This is because the symbol
4920 comparison is not a strict comparison, but rather a practical
4921 comparison. If all symbols are considered identical, then
4922 we can just go ahead and use the first one and discard the rest.
4923 But if we cannot reduce the list to a single element, we have
4924 to ask the user to disambiguate anyways. And if we have to
4925 present a multiple-choice menu, it's less confusing if the list
4926 isn't missing some choices that were identical and yet distinct. */
4927 if (symbols_are_identical_enums (syms, nsyms))
4928 nsyms = 1;
4929
4930 return nsyms;
4931 }
4932
4933 /* Given a type that corresponds to a renaming entity, use the type name
4934 to extract the scope (package name or function name, fully qualified,
4935 and following the GNAT encoding convention) where this renaming has been
4936 defined. The string returned needs to be deallocated after use. */
4937
4938 static char *
4939 xget_renaming_scope (struct type *renaming_type)
4940 {
4941 /* The renaming types adhere to the following convention:
4942 <scope>__<rename>___<XR extension>.
4943 So, to extract the scope, we search for the "___XR" extension,
4944 and then backtrack until we find the first "__". */
4945
4946 const char *name = type_name_no_tag (renaming_type);
4947 char *suffix = strstr (name, "___XR");
4948 char *last;
4949 int scope_len;
4950 char *scope;
4951
4952 /* Now, backtrack a bit until we find the first "__". Start looking
4953 at suffix - 3, as the <rename> part is at least one character long. */
4954
4955 for (last = suffix - 3; last > name; last--)
4956 if (last[0] == '_' && last[1] == '_')
4957 break;
4958
4959 /* Make a copy of scope and return it. */
4960
4961 scope_len = last - name;
4962 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4963
4964 strncpy (scope, name, scope_len);
4965 scope[scope_len] = '\0';
4966
4967 return scope;
4968 }
4969
4970 /* Return nonzero if NAME corresponds to a package name. */
4971
4972 static int
4973 is_package_name (const char *name)
4974 {
4975 /* Here, We take advantage of the fact that no symbols are generated
4976 for packages, while symbols are generated for each function.
4977 So the condition for NAME represent a package becomes equivalent
4978 to NAME not existing in our list of symbols. There is only one
4979 small complication with library-level functions (see below). */
4980
4981 char *fun_name;
4982
4983 /* If it is a function that has not been defined at library level,
4984 then we should be able to look it up in the symbols. */
4985 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4986 return 0;
4987
4988 /* Library-level function names start with "_ada_". See if function
4989 "_ada_" followed by NAME can be found. */
4990
4991 /* Do a quick check that NAME does not contain "__", since library-level
4992 functions names cannot contain "__" in them. */
4993 if (strstr (name, "__") != NULL)
4994 return 0;
4995
4996 fun_name = xstrprintf ("_ada_%s", name);
4997
4998 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4999 }
5000
5001 /* Return nonzero if SYM corresponds to a renaming entity that is
5002 not visible from FUNCTION_NAME. */
5003
5004 static int
5005 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5006 {
5007 char *scope;
5008 struct cleanup *old_chain;
5009
5010 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5011 return 0;
5012
5013 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5014 old_chain = make_cleanup (xfree, scope);
5015
5016 /* If the rename has been defined in a package, then it is visible. */
5017 if (is_package_name (scope))
5018 {
5019 do_cleanups (old_chain);
5020 return 0;
5021 }
5022
5023 /* Check that the rename is in the current function scope by checking
5024 that its name starts with SCOPE. */
5025
5026 /* If the function name starts with "_ada_", it means that it is
5027 a library-level function. Strip this prefix before doing the
5028 comparison, as the encoding for the renaming does not contain
5029 this prefix. */
5030 if (startswith (function_name, "_ada_"))
5031 function_name += 5;
5032
5033 {
5034 int is_invisible = !startswith (function_name, scope);
5035
5036 do_cleanups (old_chain);
5037 return is_invisible;
5038 }
5039 }
5040
5041 /* Remove entries from SYMS that corresponds to a renaming entity that
5042 is not visible from the function associated with CURRENT_BLOCK or
5043 that is superfluous due to the presence of more specific renaming
5044 information. Places surviving symbols in the initial entries of
5045 SYMS and returns the number of surviving symbols.
5046
5047 Rationale:
5048 First, in cases where an object renaming is implemented as a
5049 reference variable, GNAT may produce both the actual reference
5050 variable and the renaming encoding. In this case, we discard the
5051 latter.
5052
5053 Second, GNAT emits a type following a specified encoding for each renaming
5054 entity. Unfortunately, STABS currently does not support the definition
5055 of types that are local to a given lexical block, so all renamings types
5056 are emitted at library level. As a consequence, if an application
5057 contains two renaming entities using the same name, and a user tries to
5058 print the value of one of these entities, the result of the ada symbol
5059 lookup will also contain the wrong renaming type.
5060
5061 This function partially covers for this limitation by attempting to
5062 remove from the SYMS list renaming symbols that should be visible
5063 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5064 method with the current information available. The implementation
5065 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5066
5067 - When the user tries to print a rename in a function while there
5068 is another rename entity defined in a package: Normally, the
5069 rename in the function has precedence over the rename in the
5070 package, so the latter should be removed from the list. This is
5071 currently not the case.
5072
5073 - This function will incorrectly remove valid renames if
5074 the CURRENT_BLOCK corresponds to a function which symbol name
5075 has been changed by an "Export" pragma. As a consequence,
5076 the user will be unable to print such rename entities. */
5077
5078 static int
5079 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5080 int nsyms, const struct block *current_block)
5081 {
5082 struct symbol *current_function;
5083 const char *current_function_name;
5084 int i;
5085 int is_new_style_renaming;
5086
5087 /* If there is both a renaming foo___XR... encoded as a variable and
5088 a simple variable foo in the same block, discard the latter.
5089 First, zero out such symbols, then compress. */
5090 is_new_style_renaming = 0;
5091 for (i = 0; i < nsyms; i += 1)
5092 {
5093 struct symbol *sym = syms[i].sym;
5094 const struct block *block = syms[i].block;
5095 const char *name;
5096 const char *suffix;
5097
5098 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5099 continue;
5100 name = SYMBOL_LINKAGE_NAME (sym);
5101 suffix = strstr (name, "___XR");
5102
5103 if (suffix != NULL)
5104 {
5105 int name_len = suffix - name;
5106 int j;
5107
5108 is_new_style_renaming = 1;
5109 for (j = 0; j < nsyms; j += 1)
5110 if (i != j && syms[j].sym != NULL
5111 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5112 name_len) == 0
5113 && block == syms[j].block)
5114 syms[j].sym = NULL;
5115 }
5116 }
5117 if (is_new_style_renaming)
5118 {
5119 int j, k;
5120
5121 for (j = k = 0; j < nsyms; j += 1)
5122 if (syms[j].sym != NULL)
5123 {
5124 syms[k] = syms[j];
5125 k += 1;
5126 }
5127 return k;
5128 }
5129
5130 /* Extract the function name associated to CURRENT_BLOCK.
5131 Abort if unable to do so. */
5132
5133 if (current_block == NULL)
5134 return nsyms;
5135
5136 current_function = block_linkage_function (current_block);
5137 if (current_function == NULL)
5138 return nsyms;
5139
5140 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5141 if (current_function_name == NULL)
5142 return nsyms;
5143
5144 /* Check each of the symbols, and remove it from the list if it is
5145 a type corresponding to a renaming that is out of the scope of
5146 the current block. */
5147
5148 i = 0;
5149 while (i < nsyms)
5150 {
5151 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5152 == ADA_OBJECT_RENAMING
5153 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5154 {
5155 int j;
5156
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161 else
5162 i += 1;
5163 }
5164
5165 return nsyms;
5166 }
5167
5168 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5169 whose name and domain match NAME and DOMAIN respectively.
5170 If no match was found, then extend the search to "enclosing"
5171 routines (in other words, if we're inside a nested function,
5172 search the symbols defined inside the enclosing functions).
5173 If WILD_MATCH_P is nonzero, perform the naming matching in
5174 "wild" mode (see function "wild_match" for more info).
5175
5176 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5177
5178 static void
5179 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5180 const struct block *block, domain_enum domain,
5181 int wild_match_p)
5182 {
5183 int block_depth = 0;
5184
5185 while (block != NULL)
5186 {
5187 block_depth += 1;
5188 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5189 wild_match_p);
5190
5191 /* If we found a non-function match, assume that's the one. */
5192 if (is_nonfunction (defns_collected (obstackp, 0),
5193 num_defns_collected (obstackp)))
5194 return;
5195
5196 block = BLOCK_SUPERBLOCK (block);
5197 }
5198
5199 /* If no luck so far, try to find NAME as a local symbol in some lexically
5200 enclosing subprogram. */
5201 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5202 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5203 }
5204
5205 /* An object of this type is used as the user_data argument when
5206 calling the map_matching_symbols method. */
5207
5208 struct match_data
5209 {
5210 struct objfile *objfile;
5211 struct obstack *obstackp;
5212 struct symbol *arg_sym;
5213 int found_sym;
5214 };
5215
5216 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5217 to a list of symbols. DATA0 is a pointer to a struct match_data *
5218 containing the obstack that collects the symbol list, the file that SYM
5219 must come from, a flag indicating whether a non-argument symbol has
5220 been found in the current block, and the last argument symbol
5221 passed in SYM within the current block (if any). When SYM is null,
5222 marking the end of a block, the argument symbol is added if no
5223 other has been found. */
5224
5225 static int
5226 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5227 {
5228 struct match_data *data = (struct match_data *) data0;
5229
5230 if (sym == NULL)
5231 {
5232 if (!data->found_sym && data->arg_sym != NULL)
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (data->arg_sym, data->objfile),
5235 block);
5236 data->found_sym = 0;
5237 data->arg_sym = NULL;
5238 }
5239 else
5240 {
5241 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5242 return 0;
5243 else if (SYMBOL_IS_ARGUMENT (sym))
5244 data->arg_sym = sym;
5245 else
5246 {
5247 data->found_sym = 1;
5248 add_defn_to_vec (data->obstackp,
5249 fixup_symbol_section (sym, data->objfile),
5250 block);
5251 }
5252 }
5253 return 0;
5254 }
5255
5256 /* Implements compare_names, but only applying the comparision using
5257 the given CASING. */
5258
5259 static int
5260 compare_names_with_case (const char *string1, const char *string2,
5261 enum case_sensitivity casing)
5262 {
5263 while (*string1 != '\0' && *string2 != '\0')
5264 {
5265 char c1, c2;
5266
5267 if (isspace (*string1) || isspace (*string2))
5268 return strcmp_iw_ordered (string1, string2);
5269
5270 if (casing == case_sensitive_off)
5271 {
5272 c1 = tolower (*string1);
5273 c2 = tolower (*string2);
5274 }
5275 else
5276 {
5277 c1 = *string1;
5278 c2 = *string2;
5279 }
5280 if (c1 != c2)
5281 break;
5282
5283 string1 += 1;
5284 string2 += 1;
5285 }
5286
5287 switch (*string1)
5288 {
5289 case '(':
5290 return strcmp_iw_ordered (string1, string2);
5291 case '_':
5292 if (*string2 == '\0')
5293 {
5294 if (is_name_suffix (string1))
5295 return 0;
5296 else
5297 return 1;
5298 }
5299 /* FALLTHROUGH */
5300 default:
5301 if (*string2 == '(')
5302 return strcmp_iw_ordered (string1, string2);
5303 else
5304 {
5305 if (casing == case_sensitive_off)
5306 return tolower (*string1) - tolower (*string2);
5307 else
5308 return *string1 - *string2;
5309 }
5310 }
5311 }
5312
5313 /* Compare STRING1 to STRING2, with results as for strcmp.
5314 Compatible with strcmp_iw_ordered in that...
5315
5316 strcmp_iw_ordered (STRING1, STRING2) <= 0
5317
5318 ... implies...
5319
5320 compare_names (STRING1, STRING2) <= 0
5321
5322 (they may differ as to what symbols compare equal). */
5323
5324 static int
5325 compare_names (const char *string1, const char *string2)
5326 {
5327 int result;
5328
5329 /* Similar to what strcmp_iw_ordered does, we need to perform
5330 a case-insensitive comparison first, and only resort to
5331 a second, case-sensitive, comparison if the first one was
5332 not sufficient to differentiate the two strings. */
5333
5334 result = compare_names_with_case (string1, string2, case_sensitive_off);
5335 if (result == 0)
5336 result = compare_names_with_case (string1, string2, case_sensitive_on);
5337
5338 return result;
5339 }
5340
5341 /* Add to OBSTACKP all non-local symbols whose name and domain match
5342 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5343 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5344
5345 static void
5346 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5347 domain_enum domain, int global,
5348 int is_wild_match)
5349 {
5350 struct objfile *objfile;
5351 struct match_data data;
5352
5353 memset (&data, 0, sizeof data);
5354 data.obstackp = obstackp;
5355
5356 ALL_OBJFILES (objfile)
5357 {
5358 data.objfile = objfile;
5359
5360 if (is_wild_match)
5361 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5362 aux_add_nonlocal_symbols, &data,
5363 wild_match, NULL);
5364 else
5365 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5366 aux_add_nonlocal_symbols, &data,
5367 full_match, compare_names);
5368 }
5369
5370 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5371 {
5372 ALL_OBJFILES (objfile)
5373 {
5374 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5375 strcpy (name1, "_ada_");
5376 strcpy (name1 + sizeof ("_ada_") - 1, name);
5377 data.objfile = objfile;
5378 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5379 global,
5380 aux_add_nonlocal_symbols,
5381 &data,
5382 full_match, compare_names);
5383 }
5384 }
5385 }
5386
5387 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5388 non-zero, enclosing scope and in global scopes, returning the number of
5389 matches.
5390 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5391 indicating the symbols found and the blocks and symbol tables (if
5392 any) in which they were found. This vector is transient---good only to
5393 the next call of ada_lookup_symbol_list.
5394
5395 When full_search is non-zero, any non-function/non-enumeral
5396 symbol match within the nest of blocks whose innermost member is BLOCK0,
5397 is the one match returned (no other matches in that or
5398 enclosing blocks is returned). If there are any matches in or
5399 surrounding BLOCK0, then these alone are returned.
5400
5401 Names prefixed with "standard__" are handled specially: "standard__"
5402 is first stripped off, and only static and global symbols are searched. */
5403
5404 static int
5405 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5406 domain_enum domain,
5407 struct ada_symbol_info **results,
5408 int full_search)
5409 {
5410 struct symbol *sym;
5411 const struct block *block;
5412 const char *name;
5413 const int wild_match_p = should_use_wild_match (name0);
5414 int syms_from_global_search = 0;
5415 int ndefns;
5416
5417 obstack_free (&symbol_list_obstack, NULL);
5418 obstack_init (&symbol_list_obstack);
5419
5420 /* Search specified block and its superiors. */
5421
5422 name = name0;
5423 block = block0;
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
5432 if (startswith (name0, "standard__"))
5433 {
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
5439
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
5445 domain, wild_match_p);
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
5453 domain, NULL, wild_match_p);
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
5458
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
5463 if (lookup_cached_symbol (name0, domain, &sym, &block))
5464 {
5465 if (sym != NULL)
5466 add_defn_to_vec (&symbol_list_obstack, sym, block);
5467 goto done;
5468 }
5469
5470 syms_from_global_search = 1;
5471
5472 /* Search symbols from all global blocks. */
5473
5474 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
5475 wild_match_p);
5476
5477 /* Now add symbols from all per-file blocks if we've gotten no hits
5478 (not strictly correct, but perhaps better than an error). */
5479
5480 if (num_defns_collected (&symbol_list_obstack) == 0)
5481 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
5482 wild_match_p);
5483
5484 done:
5485 ndefns = num_defns_collected (&symbol_list_obstack);
5486 *results = defns_collected (&symbol_list_obstack, 1);
5487
5488 ndefns = remove_extra_symbols (*results, ndefns);
5489
5490 if (ndefns == 0 && full_search && syms_from_global_search)
5491 cache_symbol (name0, domain, NULL, NULL);
5492
5493 if (ndefns == 1 && full_search && syms_from_global_search)
5494 cache_symbol (name0, domain, (*results)[0].sym, (*results)[0].block);
5495
5496 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5497
5498 return ndefns;
5499 }
5500
5501 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5502 in global scopes, returning the number of matches, and setting *RESULTS
5503 to a vector of (SYM,BLOCK) tuples.
5504 See ada_lookup_symbol_list_worker for further details. */
5505
5506 int
5507 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5508 domain_enum domain, struct ada_symbol_info **results)
5509 {
5510 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5511 }
5512
5513 /* Implementation of the la_iterate_over_symbols method. */
5514
5515 static void
5516 ada_iterate_over_symbols (const struct block *block,
5517 const char *name, domain_enum domain,
5518 symbol_found_callback_ftype *callback,
5519 void *data)
5520 {
5521 int ndefs, i;
5522 struct ada_symbol_info *results;
5523
5524 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5525 for (i = 0; i < ndefs; ++i)
5526 {
5527 if (! (*callback) (results[i].sym, data))
5528 break;
5529 }
5530 }
5531
5532 /* If NAME is the name of an entity, return a string that should
5533 be used to look that entity up in Ada units. This string should
5534 be deallocated after use using xfree.
5535
5536 NAME can have any form that the "break" or "print" commands might
5537 recognize. In other words, it does not have to be the "natural"
5538 name, or the "encoded" name. */
5539
5540 char *
5541 ada_name_for_lookup (const char *name)
5542 {
5543 char *canon;
5544 int nlen = strlen (name);
5545
5546 if (name[0] == '<' && name[nlen - 1] == '>')
5547 {
5548 canon = xmalloc (nlen - 1);
5549 memcpy (canon, name + 1, nlen - 2);
5550 canon[nlen - 2] = '\0';
5551 }
5552 else
5553 canon = xstrdup (ada_encode (ada_fold_name (name)));
5554 return canon;
5555 }
5556
5557 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5558 to 1, but choosing the first symbol found if there are multiple
5559 choices.
5560
5561 The result is stored in *INFO, which must be non-NULL.
5562 If no match is found, INFO->SYM is set to NULL. */
5563
5564 void
5565 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5566 domain_enum domain,
5567 struct ada_symbol_info *info)
5568 {
5569 struct ada_symbol_info *candidates;
5570 int n_candidates;
5571
5572 gdb_assert (info != NULL);
5573 memset (info, 0, sizeof (struct ada_symbol_info));
5574
5575 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5576 if (n_candidates == 0)
5577 return;
5578
5579 *info = candidates[0];
5580 info->sym = fixup_symbol_section (info->sym, NULL);
5581 }
5582
5583 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5584 scope and in global scopes, or NULL if none. NAME is folded and
5585 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5586 choosing the first symbol if there are multiple choices.
5587 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5588
5589 struct symbol *
5590 ada_lookup_symbol (const char *name, const struct block *block0,
5591 domain_enum domain, int *is_a_field_of_this)
5592 {
5593 struct ada_symbol_info info;
5594
5595 if (is_a_field_of_this != NULL)
5596 *is_a_field_of_this = 0;
5597
5598 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5599 block0, domain, &info);
5600 return info.sym;
5601 }
5602
5603 static struct symbol *
5604 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5605 const char *name,
5606 const struct block *block,
5607 const domain_enum domain)
5608 {
5609 struct symbol *sym;
5610
5611 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5612 if (sym != NULL)
5613 return sym;
5614
5615 /* If we haven't found a match at this point, try the primitive
5616 types. In other languages, this search is performed before
5617 searching for global symbols in order to short-circuit that
5618 global-symbol search if it happens that the name corresponds
5619 to a primitive type. But we cannot do the same in Ada, because
5620 it is perfectly legitimate for a program to declare a type which
5621 has the same name as a standard type. If looking up a type in
5622 that situation, we have traditionally ignored the primitive type
5623 in favor of user-defined types. This is why, unlike most other
5624 languages, we search the primitive types this late and only after
5625 having searched the global symbols without success. */
5626
5627 if (domain == VAR_DOMAIN)
5628 {
5629 struct gdbarch *gdbarch;
5630
5631 if (block == NULL)
5632 gdbarch = target_gdbarch ();
5633 else
5634 gdbarch = block_gdbarch (block);
5635 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5636 if (sym != NULL)
5637 return sym;
5638 }
5639
5640 return NULL;
5641 }
5642
5643
5644 /* True iff STR is a possible encoded suffix of a normal Ada name
5645 that is to be ignored for matching purposes. Suffixes of parallel
5646 names (e.g., XVE) are not included here. Currently, the possible suffixes
5647 are given by any of the regular expressions:
5648
5649 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5650 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5651 TKB [subprogram suffix for task bodies]
5652 _E[0-9]+[bs]$ [protected object entry suffixes]
5653 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5654
5655 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5656 match is performed. This sequence is used to differentiate homonyms,
5657 is an optional part of a valid name suffix. */
5658
5659 static int
5660 is_name_suffix (const char *str)
5661 {
5662 int k;
5663 const char *matching;
5664 const int len = strlen (str);
5665
5666 /* Skip optional leading __[0-9]+. */
5667
5668 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5669 {
5670 str += 3;
5671 while (isdigit (str[0]))
5672 str += 1;
5673 }
5674
5675 /* [.$][0-9]+ */
5676
5677 if (str[0] == '.' || str[0] == '$')
5678 {
5679 matching = str + 1;
5680 while (isdigit (matching[0]))
5681 matching += 1;
5682 if (matching[0] == '\0')
5683 return 1;
5684 }
5685
5686 /* ___[0-9]+ */
5687
5688 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5689 {
5690 matching = str + 3;
5691 while (isdigit (matching[0]))
5692 matching += 1;
5693 if (matching[0] == '\0')
5694 return 1;
5695 }
5696
5697 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5698
5699 if (strcmp (str, "TKB") == 0)
5700 return 1;
5701
5702 #if 0
5703 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5704 with a N at the end. Unfortunately, the compiler uses the same
5705 convention for other internal types it creates. So treating
5706 all entity names that end with an "N" as a name suffix causes
5707 some regressions. For instance, consider the case of an enumerated
5708 type. To support the 'Image attribute, it creates an array whose
5709 name ends with N.
5710 Having a single character like this as a suffix carrying some
5711 information is a bit risky. Perhaps we should change the encoding
5712 to be something like "_N" instead. In the meantime, do not do
5713 the following check. */
5714 /* Protected Object Subprograms */
5715 if (len == 1 && str [0] == 'N')
5716 return 1;
5717 #endif
5718
5719 /* _E[0-9]+[bs]$ */
5720 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5721 {
5722 matching = str + 3;
5723 while (isdigit (matching[0]))
5724 matching += 1;
5725 if ((matching[0] == 'b' || matching[0] == 's')
5726 && matching [1] == '\0')
5727 return 1;
5728 }
5729
5730 /* ??? We should not modify STR directly, as we are doing below. This
5731 is fine in this case, but may become problematic later if we find
5732 that this alternative did not work, and want to try matching
5733 another one from the begining of STR. Since we modified it, we
5734 won't be able to find the begining of the string anymore! */
5735 if (str[0] == 'X')
5736 {
5737 str += 1;
5738 while (str[0] != '_' && str[0] != '\0')
5739 {
5740 if (str[0] != 'n' && str[0] != 'b')
5741 return 0;
5742 str += 1;
5743 }
5744 }
5745
5746 if (str[0] == '\000')
5747 return 1;
5748
5749 if (str[0] == '_')
5750 {
5751 if (str[1] != '_' || str[2] == '\000')
5752 return 0;
5753 if (str[2] == '_')
5754 {
5755 if (strcmp (str + 3, "JM") == 0)
5756 return 1;
5757 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5758 the LJM suffix in favor of the JM one. But we will
5759 still accept LJM as a valid suffix for a reasonable
5760 amount of time, just to allow ourselves to debug programs
5761 compiled using an older version of GNAT. */
5762 if (strcmp (str + 3, "LJM") == 0)
5763 return 1;
5764 if (str[3] != 'X')
5765 return 0;
5766 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5767 || str[4] == 'U' || str[4] == 'P')
5768 return 1;
5769 if (str[4] == 'R' && str[5] != 'T')
5770 return 1;
5771 return 0;
5772 }
5773 if (!isdigit (str[2]))
5774 return 0;
5775 for (k = 3; str[k] != '\0'; k += 1)
5776 if (!isdigit (str[k]) && str[k] != '_')
5777 return 0;
5778 return 1;
5779 }
5780 if (str[0] == '$' && isdigit (str[1]))
5781 {
5782 for (k = 2; str[k] != '\0'; k += 1)
5783 if (!isdigit (str[k]) && str[k] != '_')
5784 return 0;
5785 return 1;
5786 }
5787 return 0;
5788 }
5789
5790 /* Return non-zero if the string starting at NAME and ending before
5791 NAME_END contains no capital letters. */
5792
5793 static int
5794 is_valid_name_for_wild_match (const char *name0)
5795 {
5796 const char *decoded_name = ada_decode (name0);
5797 int i;
5798
5799 /* If the decoded name starts with an angle bracket, it means that
5800 NAME0 does not follow the GNAT encoding format. It should then
5801 not be allowed as a possible wild match. */
5802 if (decoded_name[0] == '<')
5803 return 0;
5804
5805 for (i=0; decoded_name[i] != '\0'; i++)
5806 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5807 return 0;
5808
5809 return 1;
5810 }
5811
5812 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5813 that could start a simple name. Assumes that *NAMEP points into
5814 the string beginning at NAME0. */
5815
5816 static int
5817 advance_wild_match (const char **namep, const char *name0, int target0)
5818 {
5819 const char *name = *namep;
5820
5821 while (1)
5822 {
5823 int t0, t1;
5824
5825 t0 = *name;
5826 if (t0 == '_')
5827 {
5828 t1 = name[1];
5829 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5830 {
5831 name += 1;
5832 if (name == name0 + 5 && startswith (name0, "_ada"))
5833 break;
5834 else
5835 name += 1;
5836 }
5837 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5838 || name[2] == target0))
5839 {
5840 name += 2;
5841 break;
5842 }
5843 else
5844 return 0;
5845 }
5846 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5847 name += 1;
5848 else
5849 return 0;
5850 }
5851
5852 *namep = name;
5853 return 1;
5854 }
5855
5856 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5857 informational suffixes of NAME (i.e., for which is_name_suffix is
5858 true). Assumes that PATN is a lower-cased Ada simple name. */
5859
5860 static int
5861 wild_match (const char *name, const char *patn)
5862 {
5863 const char *p;
5864 const char *name0 = name;
5865
5866 while (1)
5867 {
5868 const char *match = name;
5869
5870 if (*name == *patn)
5871 {
5872 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5873 if (*p != *name)
5874 break;
5875 if (*p == '\0' && is_name_suffix (name))
5876 return match != name0 && !is_valid_name_for_wild_match (name0);
5877
5878 if (name[-1] == '_')
5879 name -= 1;
5880 }
5881 if (!advance_wild_match (&name, name0, *patn))
5882 return 1;
5883 }
5884 }
5885
5886 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5887 informational suffix. */
5888
5889 static int
5890 full_match (const char *sym_name, const char *search_name)
5891 {
5892 return !match_name (sym_name, search_name, 0);
5893 }
5894
5895
5896 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5897 vector *defn_symbols, updating the list of symbols in OBSTACKP
5898 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5899 OBJFILE is the section containing BLOCK. */
5900
5901 static void
5902 ada_add_block_symbols (struct obstack *obstackp,
5903 const struct block *block, const char *name,
5904 domain_enum domain, struct objfile *objfile,
5905 int wild)
5906 {
5907 struct block_iterator iter;
5908 int name_len = strlen (name);
5909 /* A matching argument symbol, if any. */
5910 struct symbol *arg_sym;
5911 /* Set true when we find a matching non-argument symbol. */
5912 int found_sym;
5913 struct symbol *sym;
5914
5915 arg_sym = NULL;
5916 found_sym = 0;
5917 if (wild)
5918 {
5919 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5920 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5921 {
5922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5923 SYMBOL_DOMAIN (sym), domain)
5924 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5925 {
5926 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5927 continue;
5928 else if (SYMBOL_IS_ARGUMENT (sym))
5929 arg_sym = sym;
5930 else
5931 {
5932 found_sym = 1;
5933 add_defn_to_vec (obstackp,
5934 fixup_symbol_section (sym, objfile),
5935 block);
5936 }
5937 }
5938 }
5939 }
5940 else
5941 {
5942 for (sym = block_iter_match_first (block, name, full_match, &iter);
5943 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5944 {
5945 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5946 SYMBOL_DOMAIN (sym), domain))
5947 {
5948 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5949 {
5950 if (SYMBOL_IS_ARGUMENT (sym))
5951 arg_sym = sym;
5952 else
5953 {
5954 found_sym = 1;
5955 add_defn_to_vec (obstackp,
5956 fixup_symbol_section (sym, objfile),
5957 block);
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 if (!found_sym && arg_sym != NULL)
5965 {
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (arg_sym, objfile),
5968 block);
5969 }
5970
5971 if (!wild)
5972 {
5973 arg_sym = NULL;
5974 found_sym = 0;
5975
5976 ALL_BLOCK_SYMBOLS (block, iter, sym)
5977 {
5978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5979 SYMBOL_DOMAIN (sym), domain))
5980 {
5981 int cmp;
5982
5983 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5984 if (cmp == 0)
5985 {
5986 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
5987 if (cmp == 0)
5988 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5989 name_len);
5990 }
5991
5992 if (cmp == 0
5993 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5994 {
5995 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5996 {
5997 if (SYMBOL_IS_ARGUMENT (sym))
5998 arg_sym = sym;
5999 else
6000 {
6001 found_sym = 1;
6002 add_defn_to_vec (obstackp,
6003 fixup_symbol_section (sym, objfile),
6004 block);
6005 }
6006 }
6007 }
6008 }
6009 }
6010
6011 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6012 They aren't parameters, right? */
6013 if (!found_sym && arg_sym != NULL)
6014 {
6015 add_defn_to_vec (obstackp,
6016 fixup_symbol_section (arg_sym, objfile),
6017 block);
6018 }
6019 }
6020 }
6021 \f
6022
6023 /* Symbol Completion */
6024
6025 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6026 name in a form that's appropriate for the completion. The result
6027 does not need to be deallocated, but is only good until the next call.
6028
6029 TEXT_LEN is equal to the length of TEXT.
6030 Perform a wild match if WILD_MATCH_P is set.
6031 ENCODED_P should be set if TEXT represents the start of a symbol name
6032 in its encoded form. */
6033
6034 static const char *
6035 symbol_completion_match (const char *sym_name,
6036 const char *text, int text_len,
6037 int wild_match_p, int encoded_p)
6038 {
6039 const int verbatim_match = (text[0] == '<');
6040 int match = 0;
6041
6042 if (verbatim_match)
6043 {
6044 /* Strip the leading angle bracket. */
6045 text = text + 1;
6046 text_len--;
6047 }
6048
6049 /* First, test against the fully qualified name of the symbol. */
6050
6051 if (strncmp (sym_name, text, text_len) == 0)
6052 match = 1;
6053
6054 if (match && !encoded_p)
6055 {
6056 /* One needed check before declaring a positive match is to verify
6057 that iff we are doing a verbatim match, the decoded version
6058 of the symbol name starts with '<'. Otherwise, this symbol name
6059 is not a suitable completion. */
6060 const char *sym_name_copy = sym_name;
6061 int has_angle_bracket;
6062
6063 sym_name = ada_decode (sym_name);
6064 has_angle_bracket = (sym_name[0] == '<');
6065 match = (has_angle_bracket == verbatim_match);
6066 sym_name = sym_name_copy;
6067 }
6068
6069 if (match && !verbatim_match)
6070 {
6071 /* When doing non-verbatim match, another check that needs to
6072 be done is to verify that the potentially matching symbol name
6073 does not include capital letters, because the ada-mode would
6074 not be able to understand these symbol names without the
6075 angle bracket notation. */
6076 const char *tmp;
6077
6078 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6079 if (*tmp != '\0')
6080 match = 0;
6081 }
6082
6083 /* Second: Try wild matching... */
6084
6085 if (!match && wild_match_p)
6086 {
6087 /* Since we are doing wild matching, this means that TEXT
6088 may represent an unqualified symbol name. We therefore must
6089 also compare TEXT against the unqualified name of the symbol. */
6090 sym_name = ada_unqualified_name (ada_decode (sym_name));
6091
6092 if (strncmp (sym_name, text, text_len) == 0)
6093 match = 1;
6094 }
6095
6096 /* Finally: If we found a mach, prepare the result to return. */
6097
6098 if (!match)
6099 return NULL;
6100
6101 if (verbatim_match)
6102 sym_name = add_angle_brackets (sym_name);
6103
6104 if (!encoded_p)
6105 sym_name = ada_decode (sym_name);
6106
6107 return sym_name;
6108 }
6109
6110 /* A companion function to ada_make_symbol_completion_list().
6111 Check if SYM_NAME represents a symbol which name would be suitable
6112 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6113 it is appended at the end of the given string vector SV.
6114
6115 ORIG_TEXT is the string original string from the user command
6116 that needs to be completed. WORD is the entire command on which
6117 completion should be performed. These two parameters are used to
6118 determine which part of the symbol name should be added to the
6119 completion vector.
6120 if WILD_MATCH_P is set, then wild matching is performed.
6121 ENCODED_P should be set if TEXT represents a symbol name in its
6122 encoded formed (in which case the completion should also be
6123 encoded). */
6124
6125 static void
6126 symbol_completion_add (VEC(char_ptr) **sv,
6127 const char *sym_name,
6128 const char *text, int text_len,
6129 const char *orig_text, const char *word,
6130 int wild_match_p, int encoded_p)
6131 {
6132 const char *match = symbol_completion_match (sym_name, text, text_len,
6133 wild_match_p, encoded_p);
6134 char *completion;
6135
6136 if (match == NULL)
6137 return;
6138
6139 /* We found a match, so add the appropriate completion to the given
6140 string vector. */
6141
6142 if (word == orig_text)
6143 {
6144 completion = xmalloc (strlen (match) + 5);
6145 strcpy (completion, match);
6146 }
6147 else if (word > orig_text)
6148 {
6149 /* Return some portion of sym_name. */
6150 completion = xmalloc (strlen (match) + 5);
6151 strcpy (completion, match + (word - orig_text));
6152 }
6153 else
6154 {
6155 /* Return some of ORIG_TEXT plus sym_name. */
6156 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6157 strncpy (completion, word, orig_text - word);
6158 completion[orig_text - word] = '\0';
6159 strcat (completion, match);
6160 }
6161
6162 VEC_safe_push (char_ptr, *sv, completion);
6163 }
6164
6165 /* An object of this type is passed as the user_data argument to the
6166 expand_symtabs_matching method. */
6167 struct add_partial_datum
6168 {
6169 VEC(char_ptr) **completions;
6170 const char *text;
6171 int text_len;
6172 const char *text0;
6173 const char *word;
6174 int wild_match;
6175 int encoded;
6176 };
6177
6178 /* A callback for expand_symtabs_matching. */
6179
6180 static int
6181 ada_complete_symbol_matcher (const char *name, void *user_data)
6182 {
6183 struct add_partial_datum *data = user_data;
6184
6185 return symbol_completion_match (name, data->text, data->text_len,
6186 data->wild_match, data->encoded) != NULL;
6187 }
6188
6189 /* Return a list of possible symbol names completing TEXT0. WORD is
6190 the entire command on which completion is made. */
6191
6192 static VEC (char_ptr) *
6193 ada_make_symbol_completion_list (const char *text0, const char *word,
6194 enum type_code code)
6195 {
6196 char *text;
6197 int text_len;
6198 int wild_match_p;
6199 int encoded_p;
6200 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6201 struct symbol *sym;
6202 struct compunit_symtab *s;
6203 struct minimal_symbol *msymbol;
6204 struct objfile *objfile;
6205 const struct block *b, *surrounding_static_block = 0;
6206 int i;
6207 struct block_iterator iter;
6208 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6209
6210 gdb_assert (code == TYPE_CODE_UNDEF);
6211
6212 if (text0[0] == '<')
6213 {
6214 text = xstrdup (text0);
6215 make_cleanup (xfree, text);
6216 text_len = strlen (text);
6217 wild_match_p = 0;
6218 encoded_p = 1;
6219 }
6220 else
6221 {
6222 text = xstrdup (ada_encode (text0));
6223 make_cleanup (xfree, text);
6224 text_len = strlen (text);
6225 for (i = 0; i < text_len; i++)
6226 text[i] = tolower (text[i]);
6227
6228 encoded_p = (strstr (text0, "__") != NULL);
6229 /* If the name contains a ".", then the user is entering a fully
6230 qualified entity name, and the match must not be done in wild
6231 mode. Similarly, if the user wants to complete what looks like
6232 an encoded name, the match must not be done in wild mode. */
6233 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6234 }
6235
6236 /* First, look at the partial symtab symbols. */
6237 {
6238 struct add_partial_datum data;
6239
6240 data.completions = &completions;
6241 data.text = text;
6242 data.text_len = text_len;
6243 data.text0 = text0;
6244 data.word = word;
6245 data.wild_match = wild_match_p;
6246 data.encoded = encoded_p;
6247 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6248 ALL_DOMAIN, &data);
6249 }
6250
6251 /* At this point scan through the misc symbol vectors and add each
6252 symbol you find to the list. Eventually we want to ignore
6253 anything that isn't a text symbol (everything else will be
6254 handled by the psymtab code above). */
6255
6256 ALL_MSYMBOLS (objfile, msymbol)
6257 {
6258 QUIT;
6259 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6260 text, text_len, text0, word, wild_match_p,
6261 encoded_p);
6262 }
6263
6264 /* Search upwards from currently selected frame (so that we can
6265 complete on local vars. */
6266
6267 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6268 {
6269 if (!BLOCK_SUPERBLOCK (b))
6270 surrounding_static_block = b; /* For elmin of dups */
6271
6272 ALL_BLOCK_SYMBOLS (b, iter, sym)
6273 {
6274 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6275 text, text_len, text0, word,
6276 wild_match_p, encoded_p);
6277 }
6278 }
6279
6280 /* Go through the symtabs and check the externs and statics for
6281 symbols which match. */
6282
6283 ALL_COMPUNITS (objfile, s)
6284 {
6285 QUIT;
6286 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6287 ALL_BLOCK_SYMBOLS (b, iter, sym)
6288 {
6289 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6290 text, text_len, text0, word,
6291 wild_match_p, encoded_p);
6292 }
6293 }
6294
6295 ALL_COMPUNITS (objfile, s)
6296 {
6297 QUIT;
6298 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6299 /* Don't do this block twice. */
6300 if (b == surrounding_static_block)
6301 continue;
6302 ALL_BLOCK_SYMBOLS (b, iter, sym)
6303 {
6304 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6305 text, text_len, text0, word,
6306 wild_match_p, encoded_p);
6307 }
6308 }
6309
6310 do_cleanups (old_chain);
6311 return completions;
6312 }
6313
6314 /* Field Access */
6315
6316 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6317 for tagged types. */
6318
6319 static int
6320 ada_is_dispatch_table_ptr_type (struct type *type)
6321 {
6322 const char *name;
6323
6324 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6325 return 0;
6326
6327 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6328 if (name == NULL)
6329 return 0;
6330
6331 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6332 }
6333
6334 /* Return non-zero if TYPE is an interface tag. */
6335
6336 static int
6337 ada_is_interface_tag (struct type *type)
6338 {
6339 const char *name = TYPE_NAME (type);
6340
6341 if (name == NULL)
6342 return 0;
6343
6344 return (strcmp (name, "ada__tags__interface_tag") == 0);
6345 }
6346
6347 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6348 to be invisible to users. */
6349
6350 int
6351 ada_is_ignored_field (struct type *type, int field_num)
6352 {
6353 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6354 return 1;
6355
6356 /* Check the name of that field. */
6357 {
6358 const char *name = TYPE_FIELD_NAME (type, field_num);
6359
6360 /* Anonymous field names should not be printed.
6361 brobecker/2007-02-20: I don't think this can actually happen
6362 but we don't want to print the value of annonymous fields anyway. */
6363 if (name == NULL)
6364 return 1;
6365
6366 /* Normally, fields whose name start with an underscore ("_")
6367 are fields that have been internally generated by the compiler,
6368 and thus should not be printed. The "_parent" field is special,
6369 however: This is a field internally generated by the compiler
6370 for tagged types, and it contains the components inherited from
6371 the parent type. This field should not be printed as is, but
6372 should not be ignored either. */
6373 if (name[0] == '_' && !startswith (name, "_parent"))
6374 return 1;
6375 }
6376
6377 /* If this is the dispatch table of a tagged type or an interface tag,
6378 then ignore. */
6379 if (ada_is_tagged_type (type, 1)
6380 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6381 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6382 return 1;
6383
6384 /* Not a special field, so it should not be ignored. */
6385 return 0;
6386 }
6387
6388 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6389 pointer or reference type whose ultimate target has a tag field. */
6390
6391 int
6392 ada_is_tagged_type (struct type *type, int refok)
6393 {
6394 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6395 }
6396
6397 /* True iff TYPE represents the type of X'Tag */
6398
6399 int
6400 ada_is_tag_type (struct type *type)
6401 {
6402 type = ada_check_typedef (type);
6403
6404 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6405 return 0;
6406 else
6407 {
6408 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6409
6410 return (name != NULL
6411 && strcmp (name, "ada__tags__dispatch_table") == 0);
6412 }
6413 }
6414
6415 /* The type of the tag on VAL. */
6416
6417 struct type *
6418 ada_tag_type (struct value *val)
6419 {
6420 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6421 }
6422
6423 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6424 retired at Ada 05). */
6425
6426 static int
6427 is_ada95_tag (struct value *tag)
6428 {
6429 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6430 }
6431
6432 /* The value of the tag on VAL. */
6433
6434 struct value *
6435 ada_value_tag (struct value *val)
6436 {
6437 return ada_value_struct_elt (val, "_tag", 0);
6438 }
6439
6440 /* The value of the tag on the object of type TYPE whose contents are
6441 saved at VALADDR, if it is non-null, or is at memory address
6442 ADDRESS. */
6443
6444 static struct value *
6445 value_tag_from_contents_and_address (struct type *type,
6446 const gdb_byte *valaddr,
6447 CORE_ADDR address)
6448 {
6449 int tag_byte_offset;
6450 struct type *tag_type;
6451
6452 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6453 NULL, NULL, NULL))
6454 {
6455 const gdb_byte *valaddr1 = ((valaddr == NULL)
6456 ? NULL
6457 : valaddr + tag_byte_offset);
6458 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6459
6460 return value_from_contents_and_address (tag_type, valaddr1, address1);
6461 }
6462 return NULL;
6463 }
6464
6465 static struct type *
6466 type_from_tag (struct value *tag)
6467 {
6468 const char *type_name = ada_tag_name (tag);
6469
6470 if (type_name != NULL)
6471 return ada_find_any_type (ada_encode (type_name));
6472 return NULL;
6473 }
6474
6475 /* Given a value OBJ of a tagged type, return a value of this
6476 type at the base address of the object. The base address, as
6477 defined in Ada.Tags, it is the address of the primary tag of
6478 the object, and therefore where the field values of its full
6479 view can be fetched. */
6480
6481 struct value *
6482 ada_tag_value_at_base_address (struct value *obj)
6483 {
6484 struct value *val;
6485 LONGEST offset_to_top = 0;
6486 struct type *ptr_type, *obj_type;
6487 struct value *tag;
6488 CORE_ADDR base_address;
6489
6490 obj_type = value_type (obj);
6491
6492 /* It is the responsability of the caller to deref pointers. */
6493
6494 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6495 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6496 return obj;
6497
6498 tag = ada_value_tag (obj);
6499 if (!tag)
6500 return obj;
6501
6502 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6503
6504 if (is_ada95_tag (tag))
6505 return obj;
6506
6507 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6508 ptr_type = lookup_pointer_type (ptr_type);
6509 val = value_cast (ptr_type, tag);
6510 if (!val)
6511 return obj;
6512
6513 /* It is perfectly possible that an exception be raised while
6514 trying to determine the base address, just like for the tag;
6515 see ada_tag_name for more details. We do not print the error
6516 message for the same reason. */
6517
6518 TRY
6519 {
6520 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6521 }
6522
6523 CATCH (e, RETURN_MASK_ERROR)
6524 {
6525 return obj;
6526 }
6527 END_CATCH
6528
6529 /* If offset is null, nothing to do. */
6530
6531 if (offset_to_top == 0)
6532 return obj;
6533
6534 /* -1 is a special case in Ada.Tags; however, what should be done
6535 is not quite clear from the documentation. So do nothing for
6536 now. */
6537
6538 if (offset_to_top == -1)
6539 return obj;
6540
6541 base_address = value_address (obj) - offset_to_top;
6542 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6543
6544 /* Make sure that we have a proper tag at the new address.
6545 Otherwise, offset_to_top is bogus (which can happen when
6546 the object is not initialized yet). */
6547
6548 if (!tag)
6549 return obj;
6550
6551 obj_type = type_from_tag (tag);
6552
6553 if (!obj_type)
6554 return obj;
6555
6556 return value_from_contents_and_address (obj_type, NULL, base_address);
6557 }
6558
6559 /* Return the "ada__tags__type_specific_data" type. */
6560
6561 static struct type *
6562 ada_get_tsd_type (struct inferior *inf)
6563 {
6564 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6565
6566 if (data->tsd_type == 0)
6567 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6568 return data->tsd_type;
6569 }
6570
6571 /* Return the TSD (type-specific data) associated to the given TAG.
6572 TAG is assumed to be the tag of a tagged-type entity.
6573
6574 May return NULL if we are unable to get the TSD. */
6575
6576 static struct value *
6577 ada_get_tsd_from_tag (struct value *tag)
6578 {
6579 struct value *val;
6580 struct type *type;
6581
6582 /* First option: The TSD is simply stored as a field of our TAG.
6583 Only older versions of GNAT would use this format, but we have
6584 to test it first, because there are no visible markers for
6585 the current approach except the absence of that field. */
6586
6587 val = ada_value_struct_elt (tag, "tsd", 1);
6588 if (val)
6589 return val;
6590
6591 /* Try the second representation for the dispatch table (in which
6592 there is no explicit 'tsd' field in the referent of the tag pointer,
6593 and instead the tsd pointer is stored just before the dispatch
6594 table. */
6595
6596 type = ada_get_tsd_type (current_inferior());
6597 if (type == NULL)
6598 return NULL;
6599 type = lookup_pointer_type (lookup_pointer_type (type));
6600 val = value_cast (type, tag);
6601 if (val == NULL)
6602 return NULL;
6603 return value_ind (value_ptradd (val, -1));
6604 }
6605
6606 /* Given the TSD of a tag (type-specific data), return a string
6607 containing the name of the associated type.
6608
6609 The returned value is good until the next call. May return NULL
6610 if we are unable to determine the tag name. */
6611
6612 static char *
6613 ada_tag_name_from_tsd (struct value *tsd)
6614 {
6615 static char name[1024];
6616 char *p;
6617 struct value *val;
6618
6619 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6620 if (val == NULL)
6621 return NULL;
6622 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6623 for (p = name; *p != '\0'; p += 1)
6624 if (isalpha (*p))
6625 *p = tolower (*p);
6626 return name;
6627 }
6628
6629 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6630 a C string.
6631
6632 Return NULL if the TAG is not an Ada tag, or if we were unable to
6633 determine the name of that tag. The result is good until the next
6634 call. */
6635
6636 const char *
6637 ada_tag_name (struct value *tag)
6638 {
6639 char *name = NULL;
6640
6641 if (!ada_is_tag_type (value_type (tag)))
6642 return NULL;
6643
6644 /* It is perfectly possible that an exception be raised while trying
6645 to determine the TAG's name, even under normal circumstances:
6646 The associated variable may be uninitialized or corrupted, for
6647 instance. We do not let any exception propagate past this point.
6648 instead we return NULL.
6649
6650 We also do not print the error message either (which often is very
6651 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6652 the caller print a more meaningful message if necessary. */
6653 TRY
6654 {
6655 struct value *tsd = ada_get_tsd_from_tag (tag);
6656
6657 if (tsd != NULL)
6658 name = ada_tag_name_from_tsd (tsd);
6659 }
6660 CATCH (e, RETURN_MASK_ERROR)
6661 {
6662 }
6663 END_CATCH
6664
6665 return name;
6666 }
6667
6668 /* The parent type of TYPE, or NULL if none. */
6669
6670 struct type *
6671 ada_parent_type (struct type *type)
6672 {
6673 int i;
6674
6675 type = ada_check_typedef (type);
6676
6677 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6678 return NULL;
6679
6680 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6681 if (ada_is_parent_field (type, i))
6682 {
6683 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6684
6685 /* If the _parent field is a pointer, then dereference it. */
6686 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6687 parent_type = TYPE_TARGET_TYPE (parent_type);
6688 /* If there is a parallel XVS type, get the actual base type. */
6689 parent_type = ada_get_base_type (parent_type);
6690
6691 return ada_check_typedef (parent_type);
6692 }
6693
6694 return NULL;
6695 }
6696
6697 /* True iff field number FIELD_NUM of structure type TYPE contains the
6698 parent-type (inherited) fields of a derived type. Assumes TYPE is
6699 a structure type with at least FIELD_NUM+1 fields. */
6700
6701 int
6702 ada_is_parent_field (struct type *type, int field_num)
6703 {
6704 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6705
6706 return (name != NULL
6707 && (startswith (name, "PARENT")
6708 || startswith (name, "_parent")));
6709 }
6710
6711 /* True iff field number FIELD_NUM of structure type TYPE is a
6712 transparent wrapper field (which should be silently traversed when doing
6713 field selection and flattened when printing). Assumes TYPE is a
6714 structure type with at least FIELD_NUM+1 fields. Such fields are always
6715 structures. */
6716
6717 int
6718 ada_is_wrapper_field (struct type *type, int field_num)
6719 {
6720 const char *name = TYPE_FIELD_NAME (type, field_num);
6721
6722 return (name != NULL
6723 && (startswith (name, "PARENT")
6724 || strcmp (name, "REP") == 0
6725 || startswith (name, "_parent")
6726 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6727 }
6728
6729 /* True iff field number FIELD_NUM of structure or union type TYPE
6730 is a variant wrapper. Assumes TYPE is a structure type with at least
6731 FIELD_NUM+1 fields. */
6732
6733 int
6734 ada_is_variant_part (struct type *type, int field_num)
6735 {
6736 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6737
6738 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6739 || (is_dynamic_field (type, field_num)
6740 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6741 == TYPE_CODE_UNION)));
6742 }
6743
6744 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6745 whose discriminants are contained in the record type OUTER_TYPE,
6746 returns the type of the controlling discriminant for the variant.
6747 May return NULL if the type could not be found. */
6748
6749 struct type *
6750 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6751 {
6752 char *name = ada_variant_discrim_name (var_type);
6753
6754 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6755 }
6756
6757 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6758 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6759 represents a 'when others' clause; otherwise 0. */
6760
6761 int
6762 ada_is_others_clause (struct type *type, int field_num)
6763 {
6764 const char *name = TYPE_FIELD_NAME (type, field_num);
6765
6766 return (name != NULL && name[0] == 'O');
6767 }
6768
6769 /* Assuming that TYPE0 is the type of the variant part of a record,
6770 returns the name of the discriminant controlling the variant.
6771 The value is valid until the next call to ada_variant_discrim_name. */
6772
6773 char *
6774 ada_variant_discrim_name (struct type *type0)
6775 {
6776 static char *result = NULL;
6777 static size_t result_len = 0;
6778 struct type *type;
6779 const char *name;
6780 const char *discrim_end;
6781 const char *discrim_start;
6782
6783 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6784 type = TYPE_TARGET_TYPE (type0);
6785 else
6786 type = type0;
6787
6788 name = ada_type_name (type);
6789
6790 if (name == NULL || name[0] == '\000')
6791 return "";
6792
6793 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6794 discrim_end -= 1)
6795 {
6796 if (startswith (discrim_end, "___XVN"))
6797 break;
6798 }
6799 if (discrim_end == name)
6800 return "";
6801
6802 for (discrim_start = discrim_end; discrim_start != name + 3;
6803 discrim_start -= 1)
6804 {
6805 if (discrim_start == name + 1)
6806 return "";
6807 if ((discrim_start > name + 3
6808 && startswith (discrim_start - 3, "___"))
6809 || discrim_start[-1] == '.')
6810 break;
6811 }
6812
6813 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6814 strncpy (result, discrim_start, discrim_end - discrim_start);
6815 result[discrim_end - discrim_start] = '\0';
6816 return result;
6817 }
6818
6819 /* Scan STR for a subtype-encoded number, beginning at position K.
6820 Put the position of the character just past the number scanned in
6821 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6822 Return 1 if there was a valid number at the given position, and 0
6823 otherwise. A "subtype-encoded" number consists of the absolute value
6824 in decimal, followed by the letter 'm' to indicate a negative number.
6825 Assumes 0m does not occur. */
6826
6827 int
6828 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6829 {
6830 ULONGEST RU;
6831
6832 if (!isdigit (str[k]))
6833 return 0;
6834
6835 /* Do it the hard way so as not to make any assumption about
6836 the relationship of unsigned long (%lu scan format code) and
6837 LONGEST. */
6838 RU = 0;
6839 while (isdigit (str[k]))
6840 {
6841 RU = RU * 10 + (str[k] - '0');
6842 k += 1;
6843 }
6844
6845 if (str[k] == 'm')
6846 {
6847 if (R != NULL)
6848 *R = (-(LONGEST) (RU - 1)) - 1;
6849 k += 1;
6850 }
6851 else if (R != NULL)
6852 *R = (LONGEST) RU;
6853
6854 /* NOTE on the above: Technically, C does not say what the results of
6855 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6856 number representable as a LONGEST (although either would probably work
6857 in most implementations). When RU>0, the locution in the then branch
6858 above is always equivalent to the negative of RU. */
6859
6860 if (new_k != NULL)
6861 *new_k = k;
6862 return 1;
6863 }
6864
6865 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6866 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6867 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6868
6869 int
6870 ada_in_variant (LONGEST val, struct type *type, int field_num)
6871 {
6872 const char *name = TYPE_FIELD_NAME (type, field_num);
6873 int p;
6874
6875 p = 0;
6876 while (1)
6877 {
6878 switch (name[p])
6879 {
6880 case '\0':
6881 return 0;
6882 case 'S':
6883 {
6884 LONGEST W;
6885
6886 if (!ada_scan_number (name, p + 1, &W, &p))
6887 return 0;
6888 if (val == W)
6889 return 1;
6890 break;
6891 }
6892 case 'R':
6893 {
6894 LONGEST L, U;
6895
6896 if (!ada_scan_number (name, p + 1, &L, &p)
6897 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6898 return 0;
6899 if (val >= L && val <= U)
6900 return 1;
6901 break;
6902 }
6903 case 'O':
6904 return 1;
6905 default:
6906 return 0;
6907 }
6908 }
6909 }
6910
6911 /* FIXME: Lots of redundancy below. Try to consolidate. */
6912
6913 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6914 ARG_TYPE, extract and return the value of one of its (non-static)
6915 fields. FIELDNO says which field. Differs from value_primitive_field
6916 only in that it can handle packed values of arbitrary type. */
6917
6918 static struct value *
6919 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6920 struct type *arg_type)
6921 {
6922 struct type *type;
6923
6924 arg_type = ada_check_typedef (arg_type);
6925 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6926
6927 /* Handle packed fields. */
6928
6929 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6930 {
6931 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6932 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6933
6934 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6935 offset + bit_pos / 8,
6936 bit_pos % 8, bit_size, type);
6937 }
6938 else
6939 return value_primitive_field (arg1, offset, fieldno, arg_type);
6940 }
6941
6942 /* Find field with name NAME in object of type TYPE. If found,
6943 set the following for each argument that is non-null:
6944 - *FIELD_TYPE_P to the field's type;
6945 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6946 an object of that type;
6947 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6948 - *BIT_SIZE_P to its size in bits if the field is packed, and
6949 0 otherwise;
6950 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6951 fields up to but not including the desired field, or by the total
6952 number of fields if not found. A NULL value of NAME never
6953 matches; the function just counts visible fields in this case.
6954
6955 Returns 1 if found, 0 otherwise. */
6956
6957 static int
6958 find_struct_field (const char *name, struct type *type, int offset,
6959 struct type **field_type_p,
6960 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6961 int *index_p)
6962 {
6963 int i;
6964
6965 type = ada_check_typedef (type);
6966
6967 if (field_type_p != NULL)
6968 *field_type_p = NULL;
6969 if (byte_offset_p != NULL)
6970 *byte_offset_p = 0;
6971 if (bit_offset_p != NULL)
6972 *bit_offset_p = 0;
6973 if (bit_size_p != NULL)
6974 *bit_size_p = 0;
6975
6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6977 {
6978 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6979 int fld_offset = offset + bit_pos / 8;
6980 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6981
6982 if (t_field_name == NULL)
6983 continue;
6984
6985 else if (name != NULL && field_name_match (t_field_name, name))
6986 {
6987 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6988
6989 if (field_type_p != NULL)
6990 *field_type_p = TYPE_FIELD_TYPE (type, i);
6991 if (byte_offset_p != NULL)
6992 *byte_offset_p = fld_offset;
6993 if (bit_offset_p != NULL)
6994 *bit_offset_p = bit_pos % 8;
6995 if (bit_size_p != NULL)
6996 *bit_size_p = bit_size;
6997 return 1;
6998 }
6999 else if (ada_is_wrapper_field (type, i))
7000 {
7001 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7002 field_type_p, byte_offset_p, bit_offset_p,
7003 bit_size_p, index_p))
7004 return 1;
7005 }
7006 else if (ada_is_variant_part (type, i))
7007 {
7008 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7009 fixed type?? */
7010 int j;
7011 struct type *field_type
7012 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7013
7014 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7015 {
7016 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7017 fld_offset
7018 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7019 field_type_p, byte_offset_p,
7020 bit_offset_p, bit_size_p, index_p))
7021 return 1;
7022 }
7023 }
7024 else if (index_p != NULL)
7025 *index_p += 1;
7026 }
7027 return 0;
7028 }
7029
7030 /* Number of user-visible fields in record type TYPE. */
7031
7032 static int
7033 num_visible_fields (struct type *type)
7034 {
7035 int n;
7036
7037 n = 0;
7038 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7039 return n;
7040 }
7041
7042 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7043 and search in it assuming it has (class) type TYPE.
7044 If found, return value, else return NULL.
7045
7046 Searches recursively through wrapper fields (e.g., '_parent'). */
7047
7048 static struct value *
7049 ada_search_struct_field (char *name, struct value *arg, int offset,
7050 struct type *type)
7051 {
7052 int i;
7053
7054 type = ada_check_typedef (type);
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7056 {
7057 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7058
7059 if (t_field_name == NULL)
7060 continue;
7061
7062 else if (field_name_match (t_field_name, name))
7063 return ada_value_primitive_field (arg, offset, i, type);
7064
7065 else if (ada_is_wrapper_field (type, i))
7066 {
7067 struct value *v = /* Do not let indent join lines here. */
7068 ada_search_struct_field (name, arg,
7069 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7070 TYPE_FIELD_TYPE (type, i));
7071
7072 if (v != NULL)
7073 return v;
7074 }
7075
7076 else if (ada_is_variant_part (type, i))
7077 {
7078 /* PNH: Do we ever get here? See find_struct_field. */
7079 int j;
7080 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7081 i));
7082 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7083
7084 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7085 {
7086 struct value *v = ada_search_struct_field /* Force line
7087 break. */
7088 (name, arg,
7089 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7090 TYPE_FIELD_TYPE (field_type, j));
7091
7092 if (v != NULL)
7093 return v;
7094 }
7095 }
7096 }
7097 return NULL;
7098 }
7099
7100 static struct value *ada_index_struct_field_1 (int *, struct value *,
7101 int, struct type *);
7102
7103
7104 /* Return field #INDEX in ARG, where the index is that returned by
7105 * find_struct_field through its INDEX_P argument. Adjust the address
7106 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7107 * If found, return value, else return NULL. */
7108
7109 static struct value *
7110 ada_index_struct_field (int index, struct value *arg, int offset,
7111 struct type *type)
7112 {
7113 return ada_index_struct_field_1 (&index, arg, offset, type);
7114 }
7115
7116
7117 /* Auxiliary function for ada_index_struct_field. Like
7118 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7119 * *INDEX_P. */
7120
7121 static struct value *
7122 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7123 struct type *type)
7124 {
7125 int i;
7126 type = ada_check_typedef (type);
7127
7128 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7129 {
7130 if (TYPE_FIELD_NAME (type, i) == NULL)
7131 continue;
7132 else if (ada_is_wrapper_field (type, i))
7133 {
7134 struct value *v = /* Do not let indent join lines here. */
7135 ada_index_struct_field_1 (index_p, arg,
7136 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7137 TYPE_FIELD_TYPE (type, i));
7138
7139 if (v != NULL)
7140 return v;
7141 }
7142
7143 else if (ada_is_variant_part (type, i))
7144 {
7145 /* PNH: Do we ever get here? See ada_search_struct_field,
7146 find_struct_field. */
7147 error (_("Cannot assign this kind of variant record"));
7148 }
7149 else if (*index_p == 0)
7150 return ada_value_primitive_field (arg, offset, i, type);
7151 else
7152 *index_p -= 1;
7153 }
7154 return NULL;
7155 }
7156
7157 /* Given ARG, a value of type (pointer or reference to a)*
7158 structure/union, extract the component named NAME from the ultimate
7159 target structure/union and return it as a value with its
7160 appropriate type.
7161
7162 The routine searches for NAME among all members of the structure itself
7163 and (recursively) among all members of any wrapper members
7164 (e.g., '_parent').
7165
7166 If NO_ERR, then simply return NULL in case of error, rather than
7167 calling error. */
7168
7169 struct value *
7170 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7171 {
7172 struct type *t, *t1;
7173 struct value *v;
7174
7175 v = NULL;
7176 t1 = t = ada_check_typedef (value_type (arg));
7177 if (TYPE_CODE (t) == TYPE_CODE_REF)
7178 {
7179 t1 = TYPE_TARGET_TYPE (t);
7180 if (t1 == NULL)
7181 goto BadValue;
7182 t1 = ada_check_typedef (t1);
7183 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7184 {
7185 arg = coerce_ref (arg);
7186 t = t1;
7187 }
7188 }
7189
7190 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7191 {
7192 t1 = TYPE_TARGET_TYPE (t);
7193 if (t1 == NULL)
7194 goto BadValue;
7195 t1 = ada_check_typedef (t1);
7196 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7197 {
7198 arg = value_ind (arg);
7199 t = t1;
7200 }
7201 else
7202 break;
7203 }
7204
7205 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7206 goto BadValue;
7207
7208 if (t1 == t)
7209 v = ada_search_struct_field (name, arg, 0, t);
7210 else
7211 {
7212 int bit_offset, bit_size, byte_offset;
7213 struct type *field_type;
7214 CORE_ADDR address;
7215
7216 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7217 address = value_address (ada_value_ind (arg));
7218 else
7219 address = value_address (ada_coerce_ref (arg));
7220
7221 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7222 if (find_struct_field (name, t1, 0,
7223 &field_type, &byte_offset, &bit_offset,
7224 &bit_size, NULL))
7225 {
7226 if (bit_size != 0)
7227 {
7228 if (TYPE_CODE (t) == TYPE_CODE_REF)
7229 arg = ada_coerce_ref (arg);
7230 else
7231 arg = ada_value_ind (arg);
7232 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7233 bit_offset, bit_size,
7234 field_type);
7235 }
7236 else
7237 v = value_at_lazy (field_type, address + byte_offset);
7238 }
7239 }
7240
7241 if (v != NULL || no_err)
7242 return v;
7243 else
7244 error (_("There is no member named %s."), name);
7245
7246 BadValue:
7247 if (no_err)
7248 return NULL;
7249 else
7250 error (_("Attempt to extract a component of "
7251 "a value that is not a record."));
7252 }
7253
7254 /* Given a type TYPE, look up the type of the component of type named NAME.
7255 If DISPP is non-null, add its byte displacement from the beginning of a
7256 structure (pointed to by a value) of type TYPE to *DISPP (does not
7257 work for packed fields).
7258
7259 Matches any field whose name has NAME as a prefix, possibly
7260 followed by "___".
7261
7262 TYPE can be either a struct or union. If REFOK, TYPE may also
7263 be a (pointer or reference)+ to a struct or union, and the
7264 ultimate target type will be searched.
7265
7266 Looks recursively into variant clauses and parent types.
7267
7268 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7269 TYPE is not a type of the right kind. */
7270
7271 static struct type *
7272 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7273 int noerr, int *dispp)
7274 {
7275 int i;
7276
7277 if (name == NULL)
7278 goto BadName;
7279
7280 if (refok && type != NULL)
7281 while (1)
7282 {
7283 type = ada_check_typedef (type);
7284 if (TYPE_CODE (type) != TYPE_CODE_PTR
7285 && TYPE_CODE (type) != TYPE_CODE_REF)
7286 break;
7287 type = TYPE_TARGET_TYPE (type);
7288 }
7289
7290 if (type == NULL
7291 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7292 && TYPE_CODE (type) != TYPE_CODE_UNION))
7293 {
7294 if (noerr)
7295 return NULL;
7296 else
7297 {
7298 target_terminal_ours ();
7299 gdb_flush (gdb_stdout);
7300 if (type == NULL)
7301 error (_("Type (null) is not a structure or union type"));
7302 else
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" is not a structure or union type"));
7308 }
7309 }
7310 }
7311
7312 type = to_static_fixed_type (type);
7313
7314 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7315 {
7316 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7317 struct type *t;
7318 int disp;
7319
7320 if (t_field_name == NULL)
7321 continue;
7322
7323 else if (field_name_match (t_field_name, name))
7324 {
7325 if (dispp != NULL)
7326 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7327 return TYPE_FIELD_TYPE (type, i);
7328 }
7329
7330 else if (ada_is_wrapper_field (type, i))
7331 {
7332 disp = 0;
7333 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7334 0, 1, &disp);
7335 if (t != NULL)
7336 {
7337 if (dispp != NULL)
7338 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7339 return t;
7340 }
7341 }
7342
7343 else if (ada_is_variant_part (type, i))
7344 {
7345 int j;
7346 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7347 i));
7348
7349 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7350 {
7351 /* FIXME pnh 2008/01/26: We check for a field that is
7352 NOT wrapped in a struct, since the compiler sometimes
7353 generates these for unchecked variant types. Revisit
7354 if the compiler changes this practice. */
7355 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7356 disp = 0;
7357 if (v_field_name != NULL
7358 && field_name_match (v_field_name, name))
7359 t = TYPE_FIELD_TYPE (field_type, j);
7360 else
7361 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7362 j),
7363 name, 0, 1, &disp);
7364
7365 if (t != NULL)
7366 {
7367 if (dispp != NULL)
7368 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7369 return t;
7370 }
7371 }
7372 }
7373
7374 }
7375
7376 BadName:
7377 if (!noerr)
7378 {
7379 target_terminal_ours ();
7380 gdb_flush (gdb_stdout);
7381 if (name == NULL)
7382 {
7383 /* XXX: type_sprint */
7384 fprintf_unfiltered (gdb_stderr, _("Type "));
7385 type_print (type, "", gdb_stderr, -1);
7386 error (_(" has no component named <null>"));
7387 }
7388 else
7389 {
7390 /* XXX: type_sprint */
7391 fprintf_unfiltered (gdb_stderr, _("Type "));
7392 type_print (type, "", gdb_stderr, -1);
7393 error (_(" has no component named %s"), name);
7394 }
7395 }
7396
7397 return NULL;
7398 }
7399
7400 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7401 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7402 represents an unchecked union (that is, the variant part of a
7403 record that is named in an Unchecked_Union pragma). */
7404
7405 static int
7406 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7407 {
7408 char *discrim_name = ada_variant_discrim_name (var_type);
7409
7410 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7411 == NULL);
7412 }
7413
7414
7415 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7416 within a value of type OUTER_TYPE that is stored in GDB at
7417 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7418 numbering from 0) is applicable. Returns -1 if none are. */
7419
7420 int
7421 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7422 const gdb_byte *outer_valaddr)
7423 {
7424 int others_clause;
7425 int i;
7426 char *discrim_name = ada_variant_discrim_name (var_type);
7427 struct value *outer;
7428 struct value *discrim;
7429 LONGEST discrim_val;
7430
7431 /* Using plain value_from_contents_and_address here causes problems
7432 because we will end up trying to resolve a type that is currently
7433 being constructed. */
7434 outer = value_from_contents_and_address_unresolved (outer_type,
7435 outer_valaddr, 0);
7436 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7437 if (discrim == NULL)
7438 return -1;
7439 discrim_val = value_as_long (discrim);
7440
7441 others_clause = -1;
7442 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7443 {
7444 if (ada_is_others_clause (var_type, i))
7445 others_clause = i;
7446 else if (ada_in_variant (discrim_val, var_type, i))
7447 return i;
7448 }
7449
7450 return others_clause;
7451 }
7452 \f
7453
7454
7455 /* Dynamic-Sized Records */
7456
7457 /* Strategy: The type ostensibly attached to a value with dynamic size
7458 (i.e., a size that is not statically recorded in the debugging
7459 data) does not accurately reflect the size or layout of the value.
7460 Our strategy is to convert these values to values with accurate,
7461 conventional types that are constructed on the fly. */
7462
7463 /* There is a subtle and tricky problem here. In general, we cannot
7464 determine the size of dynamic records without its data. However,
7465 the 'struct value' data structure, which GDB uses to represent
7466 quantities in the inferior process (the target), requires the size
7467 of the type at the time of its allocation in order to reserve space
7468 for GDB's internal copy of the data. That's why the
7469 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7470 rather than struct value*s.
7471
7472 However, GDB's internal history variables ($1, $2, etc.) are
7473 struct value*s containing internal copies of the data that are not, in
7474 general, the same as the data at their corresponding addresses in
7475 the target. Fortunately, the types we give to these values are all
7476 conventional, fixed-size types (as per the strategy described
7477 above), so that we don't usually have to perform the
7478 'to_fixed_xxx_type' conversions to look at their values.
7479 Unfortunately, there is one exception: if one of the internal
7480 history variables is an array whose elements are unconstrained
7481 records, then we will need to create distinct fixed types for each
7482 element selected. */
7483
7484 /* The upshot of all of this is that many routines take a (type, host
7485 address, target address) triple as arguments to represent a value.
7486 The host address, if non-null, is supposed to contain an internal
7487 copy of the relevant data; otherwise, the program is to consult the
7488 target at the target address. */
7489
7490 /* Assuming that VAL0 represents a pointer value, the result of
7491 dereferencing it. Differs from value_ind in its treatment of
7492 dynamic-sized types. */
7493
7494 struct value *
7495 ada_value_ind (struct value *val0)
7496 {
7497 struct value *val = value_ind (val0);
7498
7499 if (ada_is_tagged_type (value_type (val), 0))
7500 val = ada_tag_value_at_base_address (val);
7501
7502 return ada_to_fixed_value (val);
7503 }
7504
7505 /* The value resulting from dereferencing any "reference to"
7506 qualifiers on VAL0. */
7507
7508 static struct value *
7509 ada_coerce_ref (struct value *val0)
7510 {
7511 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7512 {
7513 struct value *val = val0;
7514
7515 val = coerce_ref (val);
7516
7517 if (ada_is_tagged_type (value_type (val), 0))
7518 val = ada_tag_value_at_base_address (val);
7519
7520 return ada_to_fixed_value (val);
7521 }
7522 else
7523 return val0;
7524 }
7525
7526 /* Return OFF rounded upward if necessary to a multiple of
7527 ALIGNMENT (a power of 2). */
7528
7529 static unsigned int
7530 align_value (unsigned int off, unsigned int alignment)
7531 {
7532 return (off + alignment - 1) & ~(alignment - 1);
7533 }
7534
7535 /* Return the bit alignment required for field #F of template type TYPE. */
7536
7537 static unsigned int
7538 field_alignment (struct type *type, int f)
7539 {
7540 const char *name = TYPE_FIELD_NAME (type, f);
7541 int len;
7542 int align_offset;
7543
7544 /* The field name should never be null, unless the debugging information
7545 is somehow malformed. In this case, we assume the field does not
7546 require any alignment. */
7547 if (name == NULL)
7548 return 1;
7549
7550 len = strlen (name);
7551
7552 if (!isdigit (name[len - 1]))
7553 return 1;
7554
7555 if (isdigit (name[len - 2]))
7556 align_offset = len - 2;
7557 else
7558 align_offset = len - 1;
7559
7560 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7561 return TARGET_CHAR_BIT;
7562
7563 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7564 }
7565
7566 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7567
7568 static struct symbol *
7569 ada_find_any_type_symbol (const char *name)
7570 {
7571 struct symbol *sym;
7572
7573 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7574 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7575 return sym;
7576
7577 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7578 return sym;
7579 }
7580
7581 /* Find a type named NAME. Ignores ambiguity. This routine will look
7582 solely for types defined by debug info, it will not search the GDB
7583 primitive types. */
7584
7585 static struct type *
7586 ada_find_any_type (const char *name)
7587 {
7588 struct symbol *sym = ada_find_any_type_symbol (name);
7589
7590 if (sym != NULL)
7591 return SYMBOL_TYPE (sym);
7592
7593 return NULL;
7594 }
7595
7596 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7597 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7598 symbol, in which case it is returned. Otherwise, this looks for
7599 symbols whose name is that of NAME_SYM suffixed with "___XR".
7600 Return symbol if found, and NULL otherwise. */
7601
7602 struct symbol *
7603 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7604 {
7605 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7606 struct symbol *sym;
7607
7608 if (strstr (name, "___XR") != NULL)
7609 return name_sym;
7610
7611 sym = find_old_style_renaming_symbol (name, block);
7612
7613 if (sym != NULL)
7614 return sym;
7615
7616 /* Not right yet. FIXME pnh 7/20/2007. */
7617 sym = ada_find_any_type_symbol (name);
7618 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7619 return sym;
7620 else
7621 return NULL;
7622 }
7623
7624 static struct symbol *
7625 find_old_style_renaming_symbol (const char *name, const struct block *block)
7626 {
7627 const struct symbol *function_sym = block_linkage_function (block);
7628 char *rename;
7629
7630 if (function_sym != NULL)
7631 {
7632 /* If the symbol is defined inside a function, NAME is not fully
7633 qualified. This means we need to prepend the function name
7634 as well as adding the ``___XR'' suffix to build the name of
7635 the associated renaming symbol. */
7636 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7637 /* Function names sometimes contain suffixes used
7638 for instance to qualify nested subprograms. When building
7639 the XR type name, we need to make sure that this suffix is
7640 not included. So do not include any suffix in the function
7641 name length below. */
7642 int function_name_len = ada_name_prefix_len (function_name);
7643 const int rename_len = function_name_len + 2 /* "__" */
7644 + strlen (name) + 6 /* "___XR\0" */ ;
7645
7646 /* Strip the suffix if necessary. */
7647 ada_remove_trailing_digits (function_name, &function_name_len);
7648 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7649 ada_remove_Xbn_suffix (function_name, &function_name_len);
7650
7651 /* Library-level functions are a special case, as GNAT adds
7652 a ``_ada_'' prefix to the function name to avoid namespace
7653 pollution. However, the renaming symbols themselves do not
7654 have this prefix, so we need to skip this prefix if present. */
7655 if (function_name_len > 5 /* "_ada_" */
7656 && strstr (function_name, "_ada_") == function_name)
7657 {
7658 function_name += 5;
7659 function_name_len -= 5;
7660 }
7661
7662 rename = (char *) alloca (rename_len * sizeof (char));
7663 strncpy (rename, function_name, function_name_len);
7664 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7665 "__%s___XR", name);
7666 }
7667 else
7668 {
7669 const int rename_len = strlen (name) + 6;
7670
7671 rename = (char *) alloca (rename_len * sizeof (char));
7672 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7673 }
7674
7675 return ada_find_any_type_symbol (rename);
7676 }
7677
7678 /* Because of GNAT encoding conventions, several GDB symbols may match a
7679 given type name. If the type denoted by TYPE0 is to be preferred to
7680 that of TYPE1 for purposes of type printing, return non-zero;
7681 otherwise return 0. */
7682
7683 int
7684 ada_prefer_type (struct type *type0, struct type *type1)
7685 {
7686 if (type1 == NULL)
7687 return 1;
7688 else if (type0 == NULL)
7689 return 0;
7690 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7691 return 1;
7692 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7693 return 0;
7694 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7695 return 1;
7696 else if (ada_is_constrained_packed_array_type (type0))
7697 return 1;
7698 else if (ada_is_array_descriptor_type (type0)
7699 && !ada_is_array_descriptor_type (type1))
7700 return 1;
7701 else
7702 {
7703 const char *type0_name = type_name_no_tag (type0);
7704 const char *type1_name = type_name_no_tag (type1);
7705
7706 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7707 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7708 return 1;
7709 }
7710 return 0;
7711 }
7712
7713 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7714 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7715
7716 const char *
7717 ada_type_name (struct type *type)
7718 {
7719 if (type == NULL)
7720 return NULL;
7721 else if (TYPE_NAME (type) != NULL)
7722 return TYPE_NAME (type);
7723 else
7724 return TYPE_TAG_NAME (type);
7725 }
7726
7727 /* Search the list of "descriptive" types associated to TYPE for a type
7728 whose name is NAME. */
7729
7730 static struct type *
7731 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7732 {
7733 struct type *result;
7734
7735 if (ada_ignore_descriptive_types_p)
7736 return NULL;
7737
7738 /* If there no descriptive-type info, then there is no parallel type
7739 to be found. */
7740 if (!HAVE_GNAT_AUX_INFO (type))
7741 return NULL;
7742
7743 result = TYPE_DESCRIPTIVE_TYPE (type);
7744 while (result != NULL)
7745 {
7746 const char *result_name = ada_type_name (result);
7747
7748 if (result_name == NULL)
7749 {
7750 warning (_("unexpected null name on descriptive type"));
7751 return NULL;
7752 }
7753
7754 /* If the names match, stop. */
7755 if (strcmp (result_name, name) == 0)
7756 break;
7757
7758 /* Otherwise, look at the next item on the list, if any. */
7759 if (HAVE_GNAT_AUX_INFO (result))
7760 result = TYPE_DESCRIPTIVE_TYPE (result);
7761 else
7762 result = NULL;
7763 }
7764
7765 /* If we didn't find a match, see whether this is a packed array. With
7766 older compilers, the descriptive type information is either absent or
7767 irrelevant when it comes to packed arrays so the above lookup fails.
7768 Fall back to using a parallel lookup by name in this case. */
7769 if (result == NULL && ada_is_constrained_packed_array_type (type))
7770 return ada_find_any_type (name);
7771
7772 return result;
7773 }
7774
7775 /* Find a parallel type to TYPE with the specified NAME, using the
7776 descriptive type taken from the debugging information, if available,
7777 and otherwise using the (slower) name-based method. */
7778
7779 static struct type *
7780 ada_find_parallel_type_with_name (struct type *type, const char *name)
7781 {
7782 struct type *result = NULL;
7783
7784 if (HAVE_GNAT_AUX_INFO (type))
7785 result = find_parallel_type_by_descriptive_type (type, name);
7786 else
7787 result = ada_find_any_type (name);
7788
7789 return result;
7790 }
7791
7792 /* Same as above, but specify the name of the parallel type by appending
7793 SUFFIX to the name of TYPE. */
7794
7795 struct type *
7796 ada_find_parallel_type (struct type *type, const char *suffix)
7797 {
7798 char *name;
7799 const char *type_name = ada_type_name (type);
7800 int len;
7801
7802 if (type_name == NULL)
7803 return NULL;
7804
7805 len = strlen (type_name);
7806
7807 name = (char *) alloca (len + strlen (suffix) + 1);
7808
7809 strcpy (name, type_name);
7810 strcpy (name + len, suffix);
7811
7812 return ada_find_parallel_type_with_name (type, name);
7813 }
7814
7815 /* If TYPE is a variable-size record type, return the corresponding template
7816 type describing its fields. Otherwise, return NULL. */
7817
7818 static struct type *
7819 dynamic_template_type (struct type *type)
7820 {
7821 type = ada_check_typedef (type);
7822
7823 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7824 || ada_type_name (type) == NULL)
7825 return NULL;
7826 else
7827 {
7828 int len = strlen (ada_type_name (type));
7829
7830 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7831 return type;
7832 else
7833 return ada_find_parallel_type (type, "___XVE");
7834 }
7835 }
7836
7837 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7838 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7839
7840 static int
7841 is_dynamic_field (struct type *templ_type, int field_num)
7842 {
7843 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7844
7845 return name != NULL
7846 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7847 && strstr (name, "___XVL") != NULL;
7848 }
7849
7850 /* The index of the variant field of TYPE, or -1 if TYPE does not
7851 represent a variant record type. */
7852
7853 static int
7854 variant_field_index (struct type *type)
7855 {
7856 int f;
7857
7858 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7859 return -1;
7860
7861 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7862 {
7863 if (ada_is_variant_part (type, f))
7864 return f;
7865 }
7866 return -1;
7867 }
7868
7869 /* A record type with no fields. */
7870
7871 static struct type *
7872 empty_record (struct type *templ)
7873 {
7874 struct type *type = alloc_type_copy (templ);
7875
7876 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7877 TYPE_NFIELDS (type) = 0;
7878 TYPE_FIELDS (type) = NULL;
7879 INIT_CPLUS_SPECIFIC (type);
7880 TYPE_NAME (type) = "<empty>";
7881 TYPE_TAG_NAME (type) = NULL;
7882 TYPE_LENGTH (type) = 0;
7883 return type;
7884 }
7885
7886 /* An ordinary record type (with fixed-length fields) that describes
7887 the value of type TYPE at VALADDR or ADDRESS (see comments at
7888 the beginning of this section) VAL according to GNAT conventions.
7889 DVAL0 should describe the (portion of a) record that contains any
7890 necessary discriminants. It should be NULL if value_type (VAL) is
7891 an outer-level type (i.e., as opposed to a branch of a variant.) A
7892 variant field (unless unchecked) is replaced by a particular branch
7893 of the variant.
7894
7895 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7896 length are not statically known are discarded. As a consequence,
7897 VALADDR, ADDRESS and DVAL0 are ignored.
7898
7899 NOTE: Limitations: For now, we assume that dynamic fields and
7900 variants occupy whole numbers of bytes. However, they need not be
7901 byte-aligned. */
7902
7903 struct type *
7904 ada_template_to_fixed_record_type_1 (struct type *type,
7905 const gdb_byte *valaddr,
7906 CORE_ADDR address, struct value *dval0,
7907 int keep_dynamic_fields)
7908 {
7909 struct value *mark = value_mark ();
7910 struct value *dval;
7911 struct type *rtype;
7912 int nfields, bit_len;
7913 int variant_field;
7914 long off;
7915 int fld_bit_len;
7916 int f;
7917
7918 /* Compute the number of fields in this record type that are going
7919 to be processed: unless keep_dynamic_fields, this includes only
7920 fields whose position and length are static will be processed. */
7921 if (keep_dynamic_fields)
7922 nfields = TYPE_NFIELDS (type);
7923 else
7924 {
7925 nfields = 0;
7926 while (nfields < TYPE_NFIELDS (type)
7927 && !ada_is_variant_part (type, nfields)
7928 && !is_dynamic_field (type, nfields))
7929 nfields++;
7930 }
7931
7932 rtype = alloc_type_copy (type);
7933 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7934 INIT_CPLUS_SPECIFIC (rtype);
7935 TYPE_NFIELDS (rtype) = nfields;
7936 TYPE_FIELDS (rtype) = (struct field *)
7937 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7938 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7939 TYPE_NAME (rtype) = ada_type_name (type);
7940 TYPE_TAG_NAME (rtype) = NULL;
7941 TYPE_FIXED_INSTANCE (rtype) = 1;
7942
7943 off = 0;
7944 bit_len = 0;
7945 variant_field = -1;
7946
7947 for (f = 0; f < nfields; f += 1)
7948 {
7949 off = align_value (off, field_alignment (type, f))
7950 + TYPE_FIELD_BITPOS (type, f);
7951 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7952 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7953
7954 if (ada_is_variant_part (type, f))
7955 {
7956 variant_field = f;
7957 fld_bit_len = 0;
7958 }
7959 else if (is_dynamic_field (type, f))
7960 {
7961 const gdb_byte *field_valaddr = valaddr;
7962 CORE_ADDR field_address = address;
7963 struct type *field_type =
7964 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7965
7966 if (dval0 == NULL)
7967 {
7968 /* rtype's length is computed based on the run-time
7969 value of discriminants. If the discriminants are not
7970 initialized, the type size may be completely bogus and
7971 GDB may fail to allocate a value for it. So check the
7972 size first before creating the value. */
7973 ada_ensure_varsize_limit (rtype);
7974 /* Using plain value_from_contents_and_address here
7975 causes problems because we will end up trying to
7976 resolve a type that is currently being
7977 constructed. */
7978 dval = value_from_contents_and_address_unresolved (rtype,
7979 valaddr,
7980 address);
7981 rtype = value_type (dval);
7982 }
7983 else
7984 dval = dval0;
7985
7986 /* If the type referenced by this field is an aligner type, we need
7987 to unwrap that aligner type, because its size might not be set.
7988 Keeping the aligner type would cause us to compute the wrong
7989 size for this field, impacting the offset of the all the fields
7990 that follow this one. */
7991 if (ada_is_aligner_type (field_type))
7992 {
7993 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7994
7995 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7996 field_address = cond_offset_target (field_address, field_offset);
7997 field_type = ada_aligned_type (field_type);
7998 }
7999
8000 field_valaddr = cond_offset_host (field_valaddr,
8001 off / TARGET_CHAR_BIT);
8002 field_address = cond_offset_target (field_address,
8003 off / TARGET_CHAR_BIT);
8004
8005 /* Get the fixed type of the field. Note that, in this case,
8006 we do not want to get the real type out of the tag: if
8007 the current field is the parent part of a tagged record,
8008 we will get the tag of the object. Clearly wrong: the real
8009 type of the parent is not the real type of the child. We
8010 would end up in an infinite loop. */
8011 field_type = ada_get_base_type (field_type);
8012 field_type = ada_to_fixed_type (field_type, field_valaddr,
8013 field_address, dval, 0);
8014 /* If the field size is already larger than the maximum
8015 object size, then the record itself will necessarily
8016 be larger than the maximum object size. We need to make
8017 this check now, because the size might be so ridiculously
8018 large (due to an uninitialized variable in the inferior)
8019 that it would cause an overflow when adding it to the
8020 record size. */
8021 ada_ensure_varsize_limit (field_type);
8022
8023 TYPE_FIELD_TYPE (rtype, f) = field_type;
8024 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8025 /* The multiplication can potentially overflow. But because
8026 the field length has been size-checked just above, and
8027 assuming that the maximum size is a reasonable value,
8028 an overflow should not happen in practice. So rather than
8029 adding overflow recovery code to this already complex code,
8030 we just assume that it's not going to happen. */
8031 fld_bit_len =
8032 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8033 }
8034 else
8035 {
8036 /* Note: If this field's type is a typedef, it is important
8037 to preserve the typedef layer.
8038
8039 Otherwise, we might be transforming a typedef to a fat
8040 pointer (encoding a pointer to an unconstrained array),
8041 into a basic fat pointer (encoding an unconstrained
8042 array). As both types are implemented using the same
8043 structure, the typedef is the only clue which allows us
8044 to distinguish between the two options. Stripping it
8045 would prevent us from printing this field appropriately. */
8046 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8047 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8048 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8049 fld_bit_len =
8050 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8051 else
8052 {
8053 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8054
8055 /* We need to be careful of typedefs when computing
8056 the length of our field. If this is a typedef,
8057 get the length of the target type, not the length
8058 of the typedef. */
8059 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8060 field_type = ada_typedef_target_type (field_type);
8061
8062 fld_bit_len =
8063 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8064 }
8065 }
8066 if (off + fld_bit_len > bit_len)
8067 bit_len = off + fld_bit_len;
8068 off += fld_bit_len;
8069 TYPE_LENGTH (rtype) =
8070 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8071 }
8072
8073 /* We handle the variant part, if any, at the end because of certain
8074 odd cases in which it is re-ordered so as NOT to be the last field of
8075 the record. This can happen in the presence of representation
8076 clauses. */
8077 if (variant_field >= 0)
8078 {
8079 struct type *branch_type;
8080
8081 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8082
8083 if (dval0 == NULL)
8084 {
8085 /* Using plain value_from_contents_and_address here causes
8086 problems because we will end up trying to resolve a type
8087 that is currently being constructed. */
8088 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8089 address);
8090 rtype = value_type (dval);
8091 }
8092 else
8093 dval = dval0;
8094
8095 branch_type =
8096 to_fixed_variant_branch_type
8097 (TYPE_FIELD_TYPE (type, variant_field),
8098 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8099 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8100 if (branch_type == NULL)
8101 {
8102 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8103 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8104 TYPE_NFIELDS (rtype) -= 1;
8105 }
8106 else
8107 {
8108 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8109 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8110 fld_bit_len =
8111 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8112 TARGET_CHAR_BIT;
8113 if (off + fld_bit_len > bit_len)
8114 bit_len = off + fld_bit_len;
8115 TYPE_LENGTH (rtype) =
8116 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8117 }
8118 }
8119
8120 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8121 should contain the alignment of that record, which should be a strictly
8122 positive value. If null or negative, then something is wrong, most
8123 probably in the debug info. In that case, we don't round up the size
8124 of the resulting type. If this record is not part of another structure,
8125 the current RTYPE length might be good enough for our purposes. */
8126 if (TYPE_LENGTH (type) <= 0)
8127 {
8128 if (TYPE_NAME (rtype))
8129 warning (_("Invalid type size for `%s' detected: %d."),
8130 TYPE_NAME (rtype), TYPE_LENGTH (type));
8131 else
8132 warning (_("Invalid type size for <unnamed> detected: %d."),
8133 TYPE_LENGTH (type));
8134 }
8135 else
8136 {
8137 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8138 TYPE_LENGTH (type));
8139 }
8140
8141 value_free_to_mark (mark);
8142 if (TYPE_LENGTH (rtype) > varsize_limit)
8143 error (_("record type with dynamic size is larger than varsize-limit"));
8144 return rtype;
8145 }
8146
8147 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8148 of 1. */
8149
8150 static struct type *
8151 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8152 CORE_ADDR address, struct value *dval0)
8153 {
8154 return ada_template_to_fixed_record_type_1 (type, valaddr,
8155 address, dval0, 1);
8156 }
8157
8158 /* An ordinary record type in which ___XVL-convention fields and
8159 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8160 static approximations, containing all possible fields. Uses
8161 no runtime values. Useless for use in values, but that's OK,
8162 since the results are used only for type determinations. Works on both
8163 structs and unions. Representation note: to save space, we memorize
8164 the result of this function in the TYPE_TARGET_TYPE of the
8165 template type. */
8166
8167 static struct type *
8168 template_to_static_fixed_type (struct type *type0)
8169 {
8170 struct type *type;
8171 int nfields;
8172 int f;
8173
8174 if (TYPE_TARGET_TYPE (type0) != NULL)
8175 return TYPE_TARGET_TYPE (type0);
8176
8177 nfields = TYPE_NFIELDS (type0);
8178 type = type0;
8179
8180 for (f = 0; f < nfields; f += 1)
8181 {
8182 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8183 struct type *new_type;
8184
8185 if (is_dynamic_field (type0, f))
8186 {
8187 field_type = ada_check_typedef (field_type);
8188 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8189 }
8190 else
8191 new_type = static_unwrap_type (field_type);
8192 if (type == type0 && new_type != field_type)
8193 {
8194 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8195 TYPE_CODE (type) = TYPE_CODE (type0);
8196 INIT_CPLUS_SPECIFIC (type);
8197 TYPE_NFIELDS (type) = nfields;
8198 TYPE_FIELDS (type) = (struct field *)
8199 TYPE_ALLOC (type, nfields * sizeof (struct field));
8200 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8201 sizeof (struct field) * nfields);
8202 TYPE_NAME (type) = ada_type_name (type0);
8203 TYPE_TAG_NAME (type) = NULL;
8204 TYPE_FIXED_INSTANCE (type) = 1;
8205 TYPE_LENGTH (type) = 0;
8206 }
8207 TYPE_FIELD_TYPE (type, f) = new_type;
8208 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8209 }
8210 return type;
8211 }
8212
8213 /* Given an object of type TYPE whose contents are at VALADDR and
8214 whose address in memory is ADDRESS, returns a revision of TYPE,
8215 which should be a non-dynamic-sized record, in which the variant
8216 part, if any, is replaced with the appropriate branch. Looks
8217 for discriminant values in DVAL0, which can be NULL if the record
8218 contains the necessary discriminant values. */
8219
8220 static struct type *
8221 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8222 CORE_ADDR address, struct value *dval0)
8223 {
8224 struct value *mark = value_mark ();
8225 struct value *dval;
8226 struct type *rtype;
8227 struct type *branch_type;
8228 int nfields = TYPE_NFIELDS (type);
8229 int variant_field = variant_field_index (type);
8230
8231 if (variant_field == -1)
8232 return type;
8233
8234 if (dval0 == NULL)
8235 {
8236 dval = value_from_contents_and_address (type, valaddr, address);
8237 type = value_type (dval);
8238 }
8239 else
8240 dval = dval0;
8241
8242 rtype = alloc_type_copy (type);
8243 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8244 INIT_CPLUS_SPECIFIC (rtype);
8245 TYPE_NFIELDS (rtype) = nfields;
8246 TYPE_FIELDS (rtype) =
8247 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8248 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8249 sizeof (struct field) * nfields);
8250 TYPE_NAME (rtype) = ada_type_name (type);
8251 TYPE_TAG_NAME (rtype) = NULL;
8252 TYPE_FIXED_INSTANCE (rtype) = 1;
8253 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8254
8255 branch_type = to_fixed_variant_branch_type
8256 (TYPE_FIELD_TYPE (type, variant_field),
8257 cond_offset_host (valaddr,
8258 TYPE_FIELD_BITPOS (type, variant_field)
8259 / TARGET_CHAR_BIT),
8260 cond_offset_target (address,
8261 TYPE_FIELD_BITPOS (type, variant_field)
8262 / TARGET_CHAR_BIT), dval);
8263 if (branch_type == NULL)
8264 {
8265 int f;
8266
8267 for (f = variant_field + 1; f < nfields; f += 1)
8268 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8269 TYPE_NFIELDS (rtype) -= 1;
8270 }
8271 else
8272 {
8273 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8274 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8275 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8276 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8277 }
8278 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8279
8280 value_free_to_mark (mark);
8281 return rtype;
8282 }
8283
8284 /* An ordinary record type (with fixed-length fields) that describes
8285 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8286 beginning of this section]. Any necessary discriminants' values
8287 should be in DVAL, a record value; it may be NULL if the object
8288 at ADDR itself contains any necessary discriminant values.
8289 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8290 values from the record are needed. Except in the case that DVAL,
8291 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8292 unchecked) is replaced by a particular branch of the variant.
8293
8294 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8295 is questionable and may be removed. It can arise during the
8296 processing of an unconstrained-array-of-record type where all the
8297 variant branches have exactly the same size. This is because in
8298 such cases, the compiler does not bother to use the XVS convention
8299 when encoding the record. I am currently dubious of this
8300 shortcut and suspect the compiler should be altered. FIXME. */
8301
8302 static struct type *
8303 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8304 CORE_ADDR address, struct value *dval)
8305 {
8306 struct type *templ_type;
8307
8308 if (TYPE_FIXED_INSTANCE (type0))
8309 return type0;
8310
8311 templ_type = dynamic_template_type (type0);
8312
8313 if (templ_type != NULL)
8314 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8315 else if (variant_field_index (type0) >= 0)
8316 {
8317 if (dval == NULL && valaddr == NULL && address == 0)
8318 return type0;
8319 return to_record_with_fixed_variant_part (type0, valaddr, address,
8320 dval);
8321 }
8322 else
8323 {
8324 TYPE_FIXED_INSTANCE (type0) = 1;
8325 return type0;
8326 }
8327
8328 }
8329
8330 /* An ordinary record type (with fixed-length fields) that describes
8331 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8332 union type. Any necessary discriminants' values should be in DVAL,
8333 a record value. That is, this routine selects the appropriate
8334 branch of the union at ADDR according to the discriminant value
8335 indicated in the union's type name. Returns VAR_TYPE0 itself if
8336 it represents a variant subject to a pragma Unchecked_Union. */
8337
8338 static struct type *
8339 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8340 CORE_ADDR address, struct value *dval)
8341 {
8342 int which;
8343 struct type *templ_type;
8344 struct type *var_type;
8345
8346 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8347 var_type = TYPE_TARGET_TYPE (var_type0);
8348 else
8349 var_type = var_type0;
8350
8351 templ_type = ada_find_parallel_type (var_type, "___XVU");
8352
8353 if (templ_type != NULL)
8354 var_type = templ_type;
8355
8356 if (is_unchecked_variant (var_type, value_type (dval)))
8357 return var_type0;
8358 which =
8359 ada_which_variant_applies (var_type,
8360 value_type (dval), value_contents (dval));
8361
8362 if (which < 0)
8363 return empty_record (var_type);
8364 else if (is_dynamic_field (var_type, which))
8365 return to_fixed_record_type
8366 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8367 valaddr, address, dval);
8368 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8369 return
8370 to_fixed_record_type
8371 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8372 else
8373 return TYPE_FIELD_TYPE (var_type, which);
8374 }
8375
8376 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8377 ENCODING_TYPE, a type following the GNAT conventions for discrete
8378 type encodings, only carries redundant information. */
8379
8380 static int
8381 ada_is_redundant_range_encoding (struct type *range_type,
8382 struct type *encoding_type)
8383 {
8384 struct type *fixed_range_type;
8385 char *bounds_str;
8386 int n;
8387 LONGEST lo, hi;
8388
8389 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8390
8391 if (TYPE_CODE (get_base_type (range_type))
8392 != TYPE_CODE (get_base_type (encoding_type)))
8393 {
8394 /* The compiler probably used a simple base type to describe
8395 the range type instead of the range's actual base type,
8396 expecting us to get the real base type from the encoding
8397 anyway. In this situation, the encoding cannot be ignored
8398 as redundant. */
8399 return 0;
8400 }
8401
8402 if (is_dynamic_type (range_type))
8403 return 0;
8404
8405 if (TYPE_NAME (encoding_type) == NULL)
8406 return 0;
8407
8408 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8409 if (bounds_str == NULL)
8410 return 0;
8411
8412 n = 8; /* Skip "___XDLU_". */
8413 if (!ada_scan_number (bounds_str, n, &lo, &n))
8414 return 0;
8415 if (TYPE_LOW_BOUND (range_type) != lo)
8416 return 0;
8417
8418 n += 2; /* Skip the "__" separator between the two bounds. */
8419 if (!ada_scan_number (bounds_str, n, &hi, &n))
8420 return 0;
8421 if (TYPE_HIGH_BOUND (range_type) != hi)
8422 return 0;
8423
8424 return 1;
8425 }
8426
8427 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8428 a type following the GNAT encoding for describing array type
8429 indices, only carries redundant information. */
8430
8431 static int
8432 ada_is_redundant_index_type_desc (struct type *array_type,
8433 struct type *desc_type)
8434 {
8435 struct type *this_layer = check_typedef (array_type);
8436 int i;
8437
8438 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8439 {
8440 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8441 TYPE_FIELD_TYPE (desc_type, i)))
8442 return 0;
8443 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8444 }
8445
8446 return 1;
8447 }
8448
8449 /* Assuming that TYPE0 is an array type describing the type of a value
8450 at ADDR, and that DVAL describes a record containing any
8451 discriminants used in TYPE0, returns a type for the value that
8452 contains no dynamic components (that is, no components whose sizes
8453 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8454 true, gives an error message if the resulting type's size is over
8455 varsize_limit. */
8456
8457 static struct type *
8458 to_fixed_array_type (struct type *type0, struct value *dval,
8459 int ignore_too_big)
8460 {
8461 struct type *index_type_desc;
8462 struct type *result;
8463 int constrained_packed_array_p;
8464
8465 type0 = ada_check_typedef (type0);
8466 if (TYPE_FIXED_INSTANCE (type0))
8467 return type0;
8468
8469 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8470 if (constrained_packed_array_p)
8471 type0 = decode_constrained_packed_array_type (type0);
8472
8473 index_type_desc = ada_find_parallel_type (type0, "___XA");
8474 ada_fixup_array_indexes_type (index_type_desc);
8475 if (index_type_desc != NULL
8476 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8477 {
8478 /* Ignore this ___XA parallel type, as it does not bring any
8479 useful information. This allows us to avoid creating fixed
8480 versions of the array's index types, which would be identical
8481 to the original ones. This, in turn, can also help avoid
8482 the creation of fixed versions of the array itself. */
8483 index_type_desc = NULL;
8484 }
8485
8486 if (index_type_desc == NULL)
8487 {
8488 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8489
8490 /* NOTE: elt_type---the fixed version of elt_type0---should never
8491 depend on the contents of the array in properly constructed
8492 debugging data. */
8493 /* Create a fixed version of the array element type.
8494 We're not providing the address of an element here,
8495 and thus the actual object value cannot be inspected to do
8496 the conversion. This should not be a problem, since arrays of
8497 unconstrained objects are not allowed. In particular, all
8498 the elements of an array of a tagged type should all be of
8499 the same type specified in the debugging info. No need to
8500 consult the object tag. */
8501 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8502
8503 /* Make sure we always create a new array type when dealing with
8504 packed array types, since we're going to fix-up the array
8505 type length and element bitsize a little further down. */
8506 if (elt_type0 == elt_type && !constrained_packed_array_p)
8507 result = type0;
8508 else
8509 result = create_array_type (alloc_type_copy (type0),
8510 elt_type, TYPE_INDEX_TYPE (type0));
8511 }
8512 else
8513 {
8514 int i;
8515 struct type *elt_type0;
8516
8517 elt_type0 = type0;
8518 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8519 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8520
8521 /* NOTE: result---the fixed version of elt_type0---should never
8522 depend on the contents of the array in properly constructed
8523 debugging data. */
8524 /* Create a fixed version of the array element type.
8525 We're not providing the address of an element here,
8526 and thus the actual object value cannot be inspected to do
8527 the conversion. This should not be a problem, since arrays of
8528 unconstrained objects are not allowed. In particular, all
8529 the elements of an array of a tagged type should all be of
8530 the same type specified in the debugging info. No need to
8531 consult the object tag. */
8532 result =
8533 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8534
8535 elt_type0 = type0;
8536 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8537 {
8538 struct type *range_type =
8539 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8540
8541 result = create_array_type (alloc_type_copy (elt_type0),
8542 result, range_type);
8543 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8544 }
8545 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8546 error (_("array type with dynamic size is larger than varsize-limit"));
8547 }
8548
8549 /* We want to preserve the type name. This can be useful when
8550 trying to get the type name of a value that has already been
8551 printed (for instance, if the user did "print VAR; whatis $". */
8552 TYPE_NAME (result) = TYPE_NAME (type0);
8553
8554 if (constrained_packed_array_p)
8555 {
8556 /* So far, the resulting type has been created as if the original
8557 type was a regular (non-packed) array type. As a result, the
8558 bitsize of the array elements needs to be set again, and the array
8559 length needs to be recomputed based on that bitsize. */
8560 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8561 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8562
8563 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8564 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8565 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8566 TYPE_LENGTH (result)++;
8567 }
8568
8569 TYPE_FIXED_INSTANCE (result) = 1;
8570 return result;
8571 }
8572
8573
8574 /* A standard type (containing no dynamically sized components)
8575 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8576 DVAL describes a record containing any discriminants used in TYPE0,
8577 and may be NULL if there are none, or if the object of type TYPE at
8578 ADDRESS or in VALADDR contains these discriminants.
8579
8580 If CHECK_TAG is not null, in the case of tagged types, this function
8581 attempts to locate the object's tag and use it to compute the actual
8582 type. However, when ADDRESS is null, we cannot use it to determine the
8583 location of the tag, and therefore compute the tagged type's actual type.
8584 So we return the tagged type without consulting the tag. */
8585
8586 static struct type *
8587 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8588 CORE_ADDR address, struct value *dval, int check_tag)
8589 {
8590 type = ada_check_typedef (type);
8591 switch (TYPE_CODE (type))
8592 {
8593 default:
8594 return type;
8595 case TYPE_CODE_STRUCT:
8596 {
8597 struct type *static_type = to_static_fixed_type (type);
8598 struct type *fixed_record_type =
8599 to_fixed_record_type (type, valaddr, address, NULL);
8600
8601 /* If STATIC_TYPE is a tagged type and we know the object's address,
8602 then we can determine its tag, and compute the object's actual
8603 type from there. Note that we have to use the fixed record
8604 type (the parent part of the record may have dynamic fields
8605 and the way the location of _tag is expressed may depend on
8606 them). */
8607
8608 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8609 {
8610 struct value *tag =
8611 value_tag_from_contents_and_address
8612 (fixed_record_type,
8613 valaddr,
8614 address);
8615 struct type *real_type = type_from_tag (tag);
8616 struct value *obj =
8617 value_from_contents_and_address (fixed_record_type,
8618 valaddr,
8619 address);
8620 fixed_record_type = value_type (obj);
8621 if (real_type != NULL)
8622 return to_fixed_record_type
8623 (real_type, NULL,
8624 value_address (ada_tag_value_at_base_address (obj)), NULL);
8625 }
8626
8627 /* Check to see if there is a parallel ___XVZ variable.
8628 If there is, then it provides the actual size of our type. */
8629 else if (ada_type_name (fixed_record_type) != NULL)
8630 {
8631 const char *name = ada_type_name (fixed_record_type);
8632 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8633 int xvz_found = 0;
8634 LONGEST size;
8635
8636 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8637 size = get_int_var_value (xvz_name, &xvz_found);
8638 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8639 {
8640 fixed_record_type = copy_type (fixed_record_type);
8641 TYPE_LENGTH (fixed_record_type) = size;
8642
8643 /* The FIXED_RECORD_TYPE may have be a stub. We have
8644 observed this when the debugging info is STABS, and
8645 apparently it is something that is hard to fix.
8646
8647 In practice, we don't need the actual type definition
8648 at all, because the presence of the XVZ variable allows us
8649 to assume that there must be a XVS type as well, which we
8650 should be able to use later, when we need the actual type
8651 definition.
8652
8653 In the meantime, pretend that the "fixed" type we are
8654 returning is NOT a stub, because this can cause trouble
8655 when using this type to create new types targeting it.
8656 Indeed, the associated creation routines often check
8657 whether the target type is a stub and will try to replace
8658 it, thus using a type with the wrong size. This, in turn,
8659 might cause the new type to have the wrong size too.
8660 Consider the case of an array, for instance, where the size
8661 of the array is computed from the number of elements in
8662 our array multiplied by the size of its element. */
8663 TYPE_STUB (fixed_record_type) = 0;
8664 }
8665 }
8666 return fixed_record_type;
8667 }
8668 case TYPE_CODE_ARRAY:
8669 return to_fixed_array_type (type, dval, 1);
8670 case TYPE_CODE_UNION:
8671 if (dval == NULL)
8672 return type;
8673 else
8674 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8675 }
8676 }
8677
8678 /* The same as ada_to_fixed_type_1, except that it preserves the type
8679 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8680
8681 The typedef layer needs be preserved in order to differentiate between
8682 arrays and array pointers when both types are implemented using the same
8683 fat pointer. In the array pointer case, the pointer is encoded as
8684 a typedef of the pointer type. For instance, considering:
8685
8686 type String_Access is access String;
8687 S1 : String_Access := null;
8688
8689 To the debugger, S1 is defined as a typedef of type String. But
8690 to the user, it is a pointer. So if the user tries to print S1,
8691 we should not dereference the array, but print the array address
8692 instead.
8693
8694 If we didn't preserve the typedef layer, we would lose the fact that
8695 the type is to be presented as a pointer (needs de-reference before
8696 being printed). And we would also use the source-level type name. */
8697
8698 struct type *
8699 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8700 CORE_ADDR address, struct value *dval, int check_tag)
8701
8702 {
8703 struct type *fixed_type =
8704 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8705
8706 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8707 then preserve the typedef layer.
8708
8709 Implementation note: We can only check the main-type portion of
8710 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8711 from TYPE now returns a type that has the same instance flags
8712 as TYPE. For instance, if TYPE is a "typedef const", and its
8713 target type is a "struct", then the typedef elimination will return
8714 a "const" version of the target type. See check_typedef for more
8715 details about how the typedef layer elimination is done.
8716
8717 brobecker/2010-11-19: It seems to me that the only case where it is
8718 useful to preserve the typedef layer is when dealing with fat pointers.
8719 Perhaps, we could add a check for that and preserve the typedef layer
8720 only in that situation. But this seems unecessary so far, probably
8721 because we call check_typedef/ada_check_typedef pretty much everywhere.
8722 */
8723 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8724 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8725 == TYPE_MAIN_TYPE (fixed_type)))
8726 return type;
8727
8728 return fixed_type;
8729 }
8730
8731 /* A standard (static-sized) type corresponding as well as possible to
8732 TYPE0, but based on no runtime data. */
8733
8734 static struct type *
8735 to_static_fixed_type (struct type *type0)
8736 {
8737 struct type *type;
8738
8739 if (type0 == NULL)
8740 return NULL;
8741
8742 if (TYPE_FIXED_INSTANCE (type0))
8743 return type0;
8744
8745 type0 = ada_check_typedef (type0);
8746
8747 switch (TYPE_CODE (type0))
8748 {
8749 default:
8750 return type0;
8751 case TYPE_CODE_STRUCT:
8752 type = dynamic_template_type (type0);
8753 if (type != NULL)
8754 return template_to_static_fixed_type (type);
8755 else
8756 return template_to_static_fixed_type (type0);
8757 case TYPE_CODE_UNION:
8758 type = ada_find_parallel_type (type0, "___XVU");
8759 if (type != NULL)
8760 return template_to_static_fixed_type (type);
8761 else
8762 return template_to_static_fixed_type (type0);
8763 }
8764 }
8765
8766 /* A static approximation of TYPE with all type wrappers removed. */
8767
8768 static struct type *
8769 static_unwrap_type (struct type *type)
8770 {
8771 if (ada_is_aligner_type (type))
8772 {
8773 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8774 if (ada_type_name (type1) == NULL)
8775 TYPE_NAME (type1) = ada_type_name (type);
8776
8777 return static_unwrap_type (type1);
8778 }
8779 else
8780 {
8781 struct type *raw_real_type = ada_get_base_type (type);
8782
8783 if (raw_real_type == type)
8784 return type;
8785 else
8786 return to_static_fixed_type (raw_real_type);
8787 }
8788 }
8789
8790 /* In some cases, incomplete and private types require
8791 cross-references that are not resolved as records (for example,
8792 type Foo;
8793 type FooP is access Foo;
8794 V: FooP;
8795 type Foo is array ...;
8796 ). In these cases, since there is no mechanism for producing
8797 cross-references to such types, we instead substitute for FooP a
8798 stub enumeration type that is nowhere resolved, and whose tag is
8799 the name of the actual type. Call these types "non-record stubs". */
8800
8801 /* A type equivalent to TYPE that is not a non-record stub, if one
8802 exists, otherwise TYPE. */
8803
8804 struct type *
8805 ada_check_typedef (struct type *type)
8806 {
8807 if (type == NULL)
8808 return NULL;
8809
8810 /* If our type is a typedef type of a fat pointer, then we're done.
8811 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8812 what allows us to distinguish between fat pointers that represent
8813 array types, and fat pointers that represent array access types
8814 (in both cases, the compiler implements them as fat pointers). */
8815 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8816 && is_thick_pntr (ada_typedef_target_type (type)))
8817 return type;
8818
8819 CHECK_TYPEDEF (type);
8820 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8821 || !TYPE_STUB (type)
8822 || TYPE_TAG_NAME (type) == NULL)
8823 return type;
8824 else
8825 {
8826 const char *name = TYPE_TAG_NAME (type);
8827 struct type *type1 = ada_find_any_type (name);
8828
8829 if (type1 == NULL)
8830 return type;
8831
8832 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8833 stubs pointing to arrays, as we don't create symbols for array
8834 types, only for the typedef-to-array types). If that's the case,
8835 strip the typedef layer. */
8836 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8837 type1 = ada_check_typedef (type1);
8838
8839 return type1;
8840 }
8841 }
8842
8843 /* A value representing the data at VALADDR/ADDRESS as described by
8844 type TYPE0, but with a standard (static-sized) type that correctly
8845 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8846 type, then return VAL0 [this feature is simply to avoid redundant
8847 creation of struct values]. */
8848
8849 static struct value *
8850 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8851 struct value *val0)
8852 {
8853 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8854
8855 if (type == type0 && val0 != NULL)
8856 return val0;
8857 else
8858 return value_from_contents_and_address (type, 0, address);
8859 }
8860
8861 /* A value representing VAL, but with a standard (static-sized) type
8862 that correctly describes it. Does not necessarily create a new
8863 value. */
8864
8865 struct value *
8866 ada_to_fixed_value (struct value *val)
8867 {
8868 val = unwrap_value (val);
8869 val = ada_to_fixed_value_create (value_type (val),
8870 value_address (val),
8871 val);
8872 return val;
8873 }
8874 \f
8875
8876 /* Attributes */
8877
8878 /* Table mapping attribute numbers to names.
8879 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8880
8881 static const char *attribute_names[] = {
8882 "<?>",
8883
8884 "first",
8885 "last",
8886 "length",
8887 "image",
8888 "max",
8889 "min",
8890 "modulus",
8891 "pos",
8892 "size",
8893 "tag",
8894 "val",
8895 0
8896 };
8897
8898 const char *
8899 ada_attribute_name (enum exp_opcode n)
8900 {
8901 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8902 return attribute_names[n - OP_ATR_FIRST + 1];
8903 else
8904 return attribute_names[0];
8905 }
8906
8907 /* Evaluate the 'POS attribute applied to ARG. */
8908
8909 static LONGEST
8910 pos_atr (struct value *arg)
8911 {
8912 struct value *val = coerce_ref (arg);
8913 struct type *type = value_type (val);
8914
8915 if (!discrete_type_p (type))
8916 error (_("'POS only defined on discrete types"));
8917
8918 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8919 {
8920 int i;
8921 LONGEST v = value_as_long (val);
8922
8923 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8924 {
8925 if (v == TYPE_FIELD_ENUMVAL (type, i))
8926 return i;
8927 }
8928 error (_("enumeration value is invalid: can't find 'POS"));
8929 }
8930 else
8931 return value_as_long (val);
8932 }
8933
8934 static struct value *
8935 value_pos_atr (struct type *type, struct value *arg)
8936 {
8937 return value_from_longest (type, pos_atr (arg));
8938 }
8939
8940 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8941
8942 static struct value *
8943 value_val_atr (struct type *type, struct value *arg)
8944 {
8945 if (!discrete_type_p (type))
8946 error (_("'VAL only defined on discrete types"));
8947 if (!integer_type_p (value_type (arg)))
8948 error (_("'VAL requires integral argument"));
8949
8950 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8951 {
8952 long pos = value_as_long (arg);
8953
8954 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8955 error (_("argument to 'VAL out of range"));
8956 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8957 }
8958 else
8959 return value_from_longest (type, value_as_long (arg));
8960 }
8961 \f
8962
8963 /* Evaluation */
8964
8965 /* True if TYPE appears to be an Ada character type.
8966 [At the moment, this is true only for Character and Wide_Character;
8967 It is a heuristic test that could stand improvement]. */
8968
8969 int
8970 ada_is_character_type (struct type *type)
8971 {
8972 const char *name;
8973
8974 /* If the type code says it's a character, then assume it really is,
8975 and don't check any further. */
8976 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8977 return 1;
8978
8979 /* Otherwise, assume it's a character type iff it is a discrete type
8980 with a known character type name. */
8981 name = ada_type_name (type);
8982 return (name != NULL
8983 && (TYPE_CODE (type) == TYPE_CODE_INT
8984 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8985 && (strcmp (name, "character") == 0
8986 || strcmp (name, "wide_character") == 0
8987 || strcmp (name, "wide_wide_character") == 0
8988 || strcmp (name, "unsigned char") == 0));
8989 }
8990
8991 /* True if TYPE appears to be an Ada string type. */
8992
8993 int
8994 ada_is_string_type (struct type *type)
8995 {
8996 type = ada_check_typedef (type);
8997 if (type != NULL
8998 && TYPE_CODE (type) != TYPE_CODE_PTR
8999 && (ada_is_simple_array_type (type)
9000 || ada_is_array_descriptor_type (type))
9001 && ada_array_arity (type) == 1)
9002 {
9003 struct type *elttype = ada_array_element_type (type, 1);
9004
9005 return ada_is_character_type (elttype);
9006 }
9007 else
9008 return 0;
9009 }
9010
9011 /* The compiler sometimes provides a parallel XVS type for a given
9012 PAD type. Normally, it is safe to follow the PAD type directly,
9013 but older versions of the compiler have a bug that causes the offset
9014 of its "F" field to be wrong. Following that field in that case
9015 would lead to incorrect results, but this can be worked around
9016 by ignoring the PAD type and using the associated XVS type instead.
9017
9018 Set to True if the debugger should trust the contents of PAD types.
9019 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9020 static int trust_pad_over_xvs = 1;
9021
9022 /* True if TYPE is a struct type introduced by the compiler to force the
9023 alignment of a value. Such types have a single field with a
9024 distinctive name. */
9025
9026 int
9027 ada_is_aligner_type (struct type *type)
9028 {
9029 type = ada_check_typedef (type);
9030
9031 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9032 return 0;
9033
9034 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9035 && TYPE_NFIELDS (type) == 1
9036 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9037 }
9038
9039 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9040 the parallel type. */
9041
9042 struct type *
9043 ada_get_base_type (struct type *raw_type)
9044 {
9045 struct type *real_type_namer;
9046 struct type *raw_real_type;
9047
9048 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9049 return raw_type;
9050
9051 if (ada_is_aligner_type (raw_type))
9052 /* The encoding specifies that we should always use the aligner type.
9053 So, even if this aligner type has an associated XVS type, we should
9054 simply ignore it.
9055
9056 According to the compiler gurus, an XVS type parallel to an aligner
9057 type may exist because of a stabs limitation. In stabs, aligner
9058 types are empty because the field has a variable-sized type, and
9059 thus cannot actually be used as an aligner type. As a result,
9060 we need the associated parallel XVS type to decode the type.
9061 Since the policy in the compiler is to not change the internal
9062 representation based on the debugging info format, we sometimes
9063 end up having a redundant XVS type parallel to the aligner type. */
9064 return raw_type;
9065
9066 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9067 if (real_type_namer == NULL
9068 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9069 || TYPE_NFIELDS (real_type_namer) != 1)
9070 return raw_type;
9071
9072 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9073 {
9074 /* This is an older encoding form where the base type needs to be
9075 looked up by name. We prefer the newer enconding because it is
9076 more efficient. */
9077 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9078 if (raw_real_type == NULL)
9079 return raw_type;
9080 else
9081 return raw_real_type;
9082 }
9083
9084 /* The field in our XVS type is a reference to the base type. */
9085 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9086 }
9087
9088 /* The type of value designated by TYPE, with all aligners removed. */
9089
9090 struct type *
9091 ada_aligned_type (struct type *type)
9092 {
9093 if (ada_is_aligner_type (type))
9094 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9095 else
9096 return ada_get_base_type (type);
9097 }
9098
9099
9100 /* The address of the aligned value in an object at address VALADDR
9101 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9102
9103 const gdb_byte *
9104 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9105 {
9106 if (ada_is_aligner_type (type))
9107 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9108 valaddr +
9109 TYPE_FIELD_BITPOS (type,
9110 0) / TARGET_CHAR_BIT);
9111 else
9112 return valaddr;
9113 }
9114
9115
9116
9117 /* The printed representation of an enumeration literal with encoded
9118 name NAME. The value is good to the next call of ada_enum_name. */
9119 const char *
9120 ada_enum_name (const char *name)
9121 {
9122 static char *result;
9123 static size_t result_len = 0;
9124 char *tmp;
9125
9126 /* First, unqualify the enumeration name:
9127 1. Search for the last '.' character. If we find one, then skip
9128 all the preceding characters, the unqualified name starts
9129 right after that dot.
9130 2. Otherwise, we may be debugging on a target where the compiler
9131 translates dots into "__". Search forward for double underscores,
9132 but stop searching when we hit an overloading suffix, which is
9133 of the form "__" followed by digits. */
9134
9135 tmp = strrchr (name, '.');
9136 if (tmp != NULL)
9137 name = tmp + 1;
9138 else
9139 {
9140 while ((tmp = strstr (name, "__")) != NULL)
9141 {
9142 if (isdigit (tmp[2]))
9143 break;
9144 else
9145 name = tmp + 2;
9146 }
9147 }
9148
9149 if (name[0] == 'Q')
9150 {
9151 int v;
9152
9153 if (name[1] == 'U' || name[1] == 'W')
9154 {
9155 if (sscanf (name + 2, "%x", &v) != 1)
9156 return name;
9157 }
9158 else
9159 return name;
9160
9161 GROW_VECT (result, result_len, 16);
9162 if (isascii (v) && isprint (v))
9163 xsnprintf (result, result_len, "'%c'", v);
9164 else if (name[1] == 'U')
9165 xsnprintf (result, result_len, "[\"%02x\"]", v);
9166 else
9167 xsnprintf (result, result_len, "[\"%04x\"]", v);
9168
9169 return result;
9170 }
9171 else
9172 {
9173 tmp = strstr (name, "__");
9174 if (tmp == NULL)
9175 tmp = strstr (name, "$");
9176 if (tmp != NULL)
9177 {
9178 GROW_VECT (result, result_len, tmp - name + 1);
9179 strncpy (result, name, tmp - name);
9180 result[tmp - name] = '\0';
9181 return result;
9182 }
9183
9184 return name;
9185 }
9186 }
9187
9188 /* Evaluate the subexpression of EXP starting at *POS as for
9189 evaluate_type, updating *POS to point just past the evaluated
9190 expression. */
9191
9192 static struct value *
9193 evaluate_subexp_type (struct expression *exp, int *pos)
9194 {
9195 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9196 }
9197
9198 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9199 value it wraps. */
9200
9201 static struct value *
9202 unwrap_value (struct value *val)
9203 {
9204 struct type *type = ada_check_typedef (value_type (val));
9205
9206 if (ada_is_aligner_type (type))
9207 {
9208 struct value *v = ada_value_struct_elt (val, "F", 0);
9209 struct type *val_type = ada_check_typedef (value_type (v));
9210
9211 if (ada_type_name (val_type) == NULL)
9212 TYPE_NAME (val_type) = ada_type_name (type);
9213
9214 return unwrap_value (v);
9215 }
9216 else
9217 {
9218 struct type *raw_real_type =
9219 ada_check_typedef (ada_get_base_type (type));
9220
9221 /* If there is no parallel XVS or XVE type, then the value is
9222 already unwrapped. Return it without further modification. */
9223 if ((type == raw_real_type)
9224 && ada_find_parallel_type (type, "___XVE") == NULL)
9225 return val;
9226
9227 return
9228 coerce_unspec_val_to_type
9229 (val, ada_to_fixed_type (raw_real_type, 0,
9230 value_address (val),
9231 NULL, 1));
9232 }
9233 }
9234
9235 static struct value *
9236 cast_to_fixed (struct type *type, struct value *arg)
9237 {
9238 LONGEST val;
9239
9240 if (type == value_type (arg))
9241 return arg;
9242 else if (ada_is_fixed_point_type (value_type (arg)))
9243 val = ada_float_to_fixed (type,
9244 ada_fixed_to_float (value_type (arg),
9245 value_as_long (arg)));
9246 else
9247 {
9248 DOUBLEST argd = value_as_double (arg);
9249
9250 val = ada_float_to_fixed (type, argd);
9251 }
9252
9253 return value_from_longest (type, val);
9254 }
9255
9256 static struct value *
9257 cast_from_fixed (struct type *type, struct value *arg)
9258 {
9259 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9260 value_as_long (arg));
9261
9262 return value_from_double (type, val);
9263 }
9264
9265 /* Given two array types T1 and T2, return nonzero iff both arrays
9266 contain the same number of elements. */
9267
9268 static int
9269 ada_same_array_size_p (struct type *t1, struct type *t2)
9270 {
9271 LONGEST lo1, hi1, lo2, hi2;
9272
9273 /* Get the array bounds in order to verify that the size of
9274 the two arrays match. */
9275 if (!get_array_bounds (t1, &lo1, &hi1)
9276 || !get_array_bounds (t2, &lo2, &hi2))
9277 error (_("unable to determine array bounds"));
9278
9279 /* To make things easier for size comparison, normalize a bit
9280 the case of empty arrays by making sure that the difference
9281 between upper bound and lower bound is always -1. */
9282 if (lo1 > hi1)
9283 hi1 = lo1 - 1;
9284 if (lo2 > hi2)
9285 hi2 = lo2 - 1;
9286
9287 return (hi1 - lo1 == hi2 - lo2);
9288 }
9289
9290 /* Assuming that VAL is an array of integrals, and TYPE represents
9291 an array with the same number of elements, but with wider integral
9292 elements, return an array "casted" to TYPE. In practice, this
9293 means that the returned array is built by casting each element
9294 of the original array into TYPE's (wider) element type. */
9295
9296 static struct value *
9297 ada_promote_array_of_integrals (struct type *type, struct value *val)
9298 {
9299 struct type *elt_type = TYPE_TARGET_TYPE (type);
9300 LONGEST lo, hi;
9301 struct value *res;
9302 LONGEST i;
9303
9304 /* Verify that both val and type are arrays of scalars, and
9305 that the size of val's elements is smaller than the size
9306 of type's element. */
9307 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9308 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9309 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9310 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9311 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9312 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9313
9314 if (!get_array_bounds (type, &lo, &hi))
9315 error (_("unable to determine array bounds"));
9316
9317 res = allocate_value (type);
9318
9319 /* Promote each array element. */
9320 for (i = 0; i < hi - lo + 1; i++)
9321 {
9322 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9323
9324 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9325 value_contents_all (elt), TYPE_LENGTH (elt_type));
9326 }
9327
9328 return res;
9329 }
9330
9331 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9332 return the converted value. */
9333
9334 static struct value *
9335 coerce_for_assign (struct type *type, struct value *val)
9336 {
9337 struct type *type2 = value_type (val);
9338
9339 if (type == type2)
9340 return val;
9341
9342 type2 = ada_check_typedef (type2);
9343 type = ada_check_typedef (type);
9344
9345 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9346 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9347 {
9348 val = ada_value_ind (val);
9349 type2 = value_type (val);
9350 }
9351
9352 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9353 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9354 {
9355 if (!ada_same_array_size_p (type, type2))
9356 error (_("cannot assign arrays of different length"));
9357
9358 if (is_integral_type (TYPE_TARGET_TYPE (type))
9359 && is_integral_type (TYPE_TARGET_TYPE (type2))
9360 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9361 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9362 {
9363 /* Allow implicit promotion of the array elements to
9364 a wider type. */
9365 return ada_promote_array_of_integrals (type, val);
9366 }
9367
9368 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9369 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9370 error (_("Incompatible types in assignment"));
9371 deprecated_set_value_type (val, type);
9372 }
9373 return val;
9374 }
9375
9376 static struct value *
9377 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9378 {
9379 struct value *val;
9380 struct type *type1, *type2;
9381 LONGEST v, v1, v2;
9382
9383 arg1 = coerce_ref (arg1);
9384 arg2 = coerce_ref (arg2);
9385 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9386 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9387
9388 if (TYPE_CODE (type1) != TYPE_CODE_INT
9389 || TYPE_CODE (type2) != TYPE_CODE_INT)
9390 return value_binop (arg1, arg2, op);
9391
9392 switch (op)
9393 {
9394 case BINOP_MOD:
9395 case BINOP_DIV:
9396 case BINOP_REM:
9397 break;
9398 default:
9399 return value_binop (arg1, arg2, op);
9400 }
9401
9402 v2 = value_as_long (arg2);
9403 if (v2 == 0)
9404 error (_("second operand of %s must not be zero."), op_string (op));
9405
9406 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9407 return value_binop (arg1, arg2, op);
9408
9409 v1 = value_as_long (arg1);
9410 switch (op)
9411 {
9412 case BINOP_DIV:
9413 v = v1 / v2;
9414 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9415 v += v > 0 ? -1 : 1;
9416 break;
9417 case BINOP_REM:
9418 v = v1 % v2;
9419 if (v * v1 < 0)
9420 v -= v2;
9421 break;
9422 default:
9423 /* Should not reach this point. */
9424 v = 0;
9425 }
9426
9427 val = allocate_value (type1);
9428 store_unsigned_integer (value_contents_raw (val),
9429 TYPE_LENGTH (value_type (val)),
9430 gdbarch_byte_order (get_type_arch (type1)), v);
9431 return val;
9432 }
9433
9434 static int
9435 ada_value_equal (struct value *arg1, struct value *arg2)
9436 {
9437 if (ada_is_direct_array_type (value_type (arg1))
9438 || ada_is_direct_array_type (value_type (arg2)))
9439 {
9440 /* Automatically dereference any array reference before
9441 we attempt to perform the comparison. */
9442 arg1 = ada_coerce_ref (arg1);
9443 arg2 = ada_coerce_ref (arg2);
9444
9445 arg1 = ada_coerce_to_simple_array (arg1);
9446 arg2 = ada_coerce_to_simple_array (arg2);
9447 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9448 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9449 error (_("Attempt to compare array with non-array"));
9450 /* FIXME: The following works only for types whose
9451 representations use all bits (no padding or undefined bits)
9452 and do not have user-defined equality. */
9453 return
9454 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9455 && memcmp (value_contents (arg1), value_contents (arg2),
9456 TYPE_LENGTH (value_type (arg1))) == 0;
9457 }
9458 return value_equal (arg1, arg2);
9459 }
9460
9461 /* Total number of component associations in the aggregate starting at
9462 index PC in EXP. Assumes that index PC is the start of an
9463 OP_AGGREGATE. */
9464
9465 static int
9466 num_component_specs (struct expression *exp, int pc)
9467 {
9468 int n, m, i;
9469
9470 m = exp->elts[pc + 1].longconst;
9471 pc += 3;
9472 n = 0;
9473 for (i = 0; i < m; i += 1)
9474 {
9475 switch (exp->elts[pc].opcode)
9476 {
9477 default:
9478 n += 1;
9479 break;
9480 case OP_CHOICES:
9481 n += exp->elts[pc + 1].longconst;
9482 break;
9483 }
9484 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9485 }
9486 return n;
9487 }
9488
9489 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9490 component of LHS (a simple array or a record), updating *POS past
9491 the expression, assuming that LHS is contained in CONTAINER. Does
9492 not modify the inferior's memory, nor does it modify LHS (unless
9493 LHS == CONTAINER). */
9494
9495 static void
9496 assign_component (struct value *container, struct value *lhs, LONGEST index,
9497 struct expression *exp, int *pos)
9498 {
9499 struct value *mark = value_mark ();
9500 struct value *elt;
9501
9502 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9503 {
9504 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9505 struct value *index_val = value_from_longest (index_type, index);
9506
9507 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9508 }
9509 else
9510 {
9511 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9512 elt = ada_to_fixed_value (elt);
9513 }
9514
9515 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9516 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9517 else
9518 value_assign_to_component (container, elt,
9519 ada_evaluate_subexp (NULL, exp, pos,
9520 EVAL_NORMAL));
9521
9522 value_free_to_mark (mark);
9523 }
9524
9525 /* Assuming that LHS represents an lvalue having a record or array
9526 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9527 of that aggregate's value to LHS, advancing *POS past the
9528 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9529 lvalue containing LHS (possibly LHS itself). Does not modify
9530 the inferior's memory, nor does it modify the contents of
9531 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9532
9533 static struct value *
9534 assign_aggregate (struct value *container,
9535 struct value *lhs, struct expression *exp,
9536 int *pos, enum noside noside)
9537 {
9538 struct type *lhs_type;
9539 int n = exp->elts[*pos+1].longconst;
9540 LONGEST low_index, high_index;
9541 int num_specs;
9542 LONGEST *indices;
9543 int max_indices, num_indices;
9544 int i;
9545
9546 *pos += 3;
9547 if (noside != EVAL_NORMAL)
9548 {
9549 for (i = 0; i < n; i += 1)
9550 ada_evaluate_subexp (NULL, exp, pos, noside);
9551 return container;
9552 }
9553
9554 container = ada_coerce_ref (container);
9555 if (ada_is_direct_array_type (value_type (container)))
9556 container = ada_coerce_to_simple_array (container);
9557 lhs = ada_coerce_ref (lhs);
9558 if (!deprecated_value_modifiable (lhs))
9559 error (_("Left operand of assignment is not a modifiable lvalue."));
9560
9561 lhs_type = value_type (lhs);
9562 if (ada_is_direct_array_type (lhs_type))
9563 {
9564 lhs = ada_coerce_to_simple_array (lhs);
9565 lhs_type = value_type (lhs);
9566 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9567 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9568 }
9569 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9570 {
9571 low_index = 0;
9572 high_index = num_visible_fields (lhs_type) - 1;
9573 }
9574 else
9575 error (_("Left-hand side must be array or record."));
9576
9577 num_specs = num_component_specs (exp, *pos - 3);
9578 max_indices = 4 * num_specs + 4;
9579 indices = alloca (max_indices * sizeof (indices[0]));
9580 indices[0] = indices[1] = low_index - 1;
9581 indices[2] = indices[3] = high_index + 1;
9582 num_indices = 4;
9583
9584 for (i = 0; i < n; i += 1)
9585 {
9586 switch (exp->elts[*pos].opcode)
9587 {
9588 case OP_CHOICES:
9589 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9590 &num_indices, max_indices,
9591 low_index, high_index);
9592 break;
9593 case OP_POSITIONAL:
9594 aggregate_assign_positional (container, lhs, exp, pos, indices,
9595 &num_indices, max_indices,
9596 low_index, high_index);
9597 break;
9598 case OP_OTHERS:
9599 if (i != n-1)
9600 error (_("Misplaced 'others' clause"));
9601 aggregate_assign_others (container, lhs, exp, pos, indices,
9602 num_indices, low_index, high_index);
9603 break;
9604 default:
9605 error (_("Internal error: bad aggregate clause"));
9606 }
9607 }
9608
9609 return container;
9610 }
9611
9612 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9613 construct at *POS, updating *POS past the construct, given that
9614 the positions are relative to lower bound LOW, where HIGH is the
9615 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9616 updating *NUM_INDICES as needed. CONTAINER is as for
9617 assign_aggregate. */
9618 static void
9619 aggregate_assign_positional (struct value *container,
9620 struct value *lhs, struct expression *exp,
9621 int *pos, LONGEST *indices, int *num_indices,
9622 int max_indices, LONGEST low, LONGEST high)
9623 {
9624 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9625
9626 if (ind - 1 == high)
9627 warning (_("Extra components in aggregate ignored."));
9628 if (ind <= high)
9629 {
9630 add_component_interval (ind, ind, indices, num_indices, max_indices);
9631 *pos += 3;
9632 assign_component (container, lhs, ind, exp, pos);
9633 }
9634 else
9635 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9636 }
9637
9638 /* Assign into the components of LHS indexed by the OP_CHOICES
9639 construct at *POS, updating *POS past the construct, given that
9640 the allowable indices are LOW..HIGH. Record the indices assigned
9641 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9642 needed. CONTAINER is as for assign_aggregate. */
9643 static void
9644 aggregate_assign_from_choices (struct value *container,
9645 struct value *lhs, struct expression *exp,
9646 int *pos, LONGEST *indices, int *num_indices,
9647 int max_indices, LONGEST low, LONGEST high)
9648 {
9649 int j;
9650 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9651 int choice_pos, expr_pc;
9652 int is_array = ada_is_direct_array_type (value_type (lhs));
9653
9654 choice_pos = *pos += 3;
9655
9656 for (j = 0; j < n_choices; j += 1)
9657 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9658 expr_pc = *pos;
9659 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9660
9661 for (j = 0; j < n_choices; j += 1)
9662 {
9663 LONGEST lower, upper;
9664 enum exp_opcode op = exp->elts[choice_pos].opcode;
9665
9666 if (op == OP_DISCRETE_RANGE)
9667 {
9668 choice_pos += 1;
9669 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9670 EVAL_NORMAL));
9671 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9672 EVAL_NORMAL));
9673 }
9674 else if (is_array)
9675 {
9676 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9677 EVAL_NORMAL));
9678 upper = lower;
9679 }
9680 else
9681 {
9682 int ind;
9683 const char *name;
9684
9685 switch (op)
9686 {
9687 case OP_NAME:
9688 name = &exp->elts[choice_pos + 2].string;
9689 break;
9690 case OP_VAR_VALUE:
9691 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9692 break;
9693 default:
9694 error (_("Invalid record component association."));
9695 }
9696 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9697 ind = 0;
9698 if (! find_struct_field (name, value_type (lhs), 0,
9699 NULL, NULL, NULL, NULL, &ind))
9700 error (_("Unknown component name: %s."), name);
9701 lower = upper = ind;
9702 }
9703
9704 if (lower <= upper && (lower < low || upper > high))
9705 error (_("Index in component association out of bounds."));
9706
9707 add_component_interval (lower, upper, indices, num_indices,
9708 max_indices);
9709 while (lower <= upper)
9710 {
9711 int pos1;
9712
9713 pos1 = expr_pc;
9714 assign_component (container, lhs, lower, exp, &pos1);
9715 lower += 1;
9716 }
9717 }
9718 }
9719
9720 /* Assign the value of the expression in the OP_OTHERS construct in
9721 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9722 have not been previously assigned. The index intervals already assigned
9723 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9724 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9725 static void
9726 aggregate_assign_others (struct value *container,
9727 struct value *lhs, struct expression *exp,
9728 int *pos, LONGEST *indices, int num_indices,
9729 LONGEST low, LONGEST high)
9730 {
9731 int i;
9732 int expr_pc = *pos + 1;
9733
9734 for (i = 0; i < num_indices - 2; i += 2)
9735 {
9736 LONGEST ind;
9737
9738 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9739 {
9740 int localpos;
9741
9742 localpos = expr_pc;
9743 assign_component (container, lhs, ind, exp, &localpos);
9744 }
9745 }
9746 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9747 }
9748
9749 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9750 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9751 modifying *SIZE as needed. It is an error if *SIZE exceeds
9752 MAX_SIZE. The resulting intervals do not overlap. */
9753 static void
9754 add_component_interval (LONGEST low, LONGEST high,
9755 LONGEST* indices, int *size, int max_size)
9756 {
9757 int i, j;
9758
9759 for (i = 0; i < *size; i += 2) {
9760 if (high >= indices[i] && low <= indices[i + 1])
9761 {
9762 int kh;
9763
9764 for (kh = i + 2; kh < *size; kh += 2)
9765 if (high < indices[kh])
9766 break;
9767 if (low < indices[i])
9768 indices[i] = low;
9769 indices[i + 1] = indices[kh - 1];
9770 if (high > indices[i + 1])
9771 indices[i + 1] = high;
9772 memcpy (indices + i + 2, indices + kh, *size - kh);
9773 *size -= kh - i - 2;
9774 return;
9775 }
9776 else if (high < indices[i])
9777 break;
9778 }
9779
9780 if (*size == max_size)
9781 error (_("Internal error: miscounted aggregate components."));
9782 *size += 2;
9783 for (j = *size-1; j >= i+2; j -= 1)
9784 indices[j] = indices[j - 2];
9785 indices[i] = low;
9786 indices[i + 1] = high;
9787 }
9788
9789 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9790 is different. */
9791
9792 static struct value *
9793 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9794 {
9795 if (type == ada_check_typedef (value_type (arg2)))
9796 return arg2;
9797
9798 if (ada_is_fixed_point_type (type))
9799 return (cast_to_fixed (type, arg2));
9800
9801 if (ada_is_fixed_point_type (value_type (arg2)))
9802 return cast_from_fixed (type, arg2);
9803
9804 return value_cast (type, arg2);
9805 }
9806
9807 /* Evaluating Ada expressions, and printing their result.
9808 ------------------------------------------------------
9809
9810 1. Introduction:
9811 ----------------
9812
9813 We usually evaluate an Ada expression in order to print its value.
9814 We also evaluate an expression in order to print its type, which
9815 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9816 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9817 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9818 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9819 similar.
9820
9821 Evaluating expressions is a little more complicated for Ada entities
9822 than it is for entities in languages such as C. The main reason for
9823 this is that Ada provides types whose definition might be dynamic.
9824 One example of such types is variant records. Or another example
9825 would be an array whose bounds can only be known at run time.
9826
9827 The following description is a general guide as to what should be
9828 done (and what should NOT be done) in order to evaluate an expression
9829 involving such types, and when. This does not cover how the semantic
9830 information is encoded by GNAT as this is covered separatly. For the
9831 document used as the reference for the GNAT encoding, see exp_dbug.ads
9832 in the GNAT sources.
9833
9834 Ideally, we should embed each part of this description next to its
9835 associated code. Unfortunately, the amount of code is so vast right
9836 now that it's hard to see whether the code handling a particular
9837 situation might be duplicated or not. One day, when the code is
9838 cleaned up, this guide might become redundant with the comments
9839 inserted in the code, and we might want to remove it.
9840
9841 2. ``Fixing'' an Entity, the Simple Case:
9842 -----------------------------------------
9843
9844 When evaluating Ada expressions, the tricky issue is that they may
9845 reference entities whose type contents and size are not statically
9846 known. Consider for instance a variant record:
9847
9848 type Rec (Empty : Boolean := True) is record
9849 case Empty is
9850 when True => null;
9851 when False => Value : Integer;
9852 end case;
9853 end record;
9854 Yes : Rec := (Empty => False, Value => 1);
9855 No : Rec := (empty => True);
9856
9857 The size and contents of that record depends on the value of the
9858 descriminant (Rec.Empty). At this point, neither the debugging
9859 information nor the associated type structure in GDB are able to
9860 express such dynamic types. So what the debugger does is to create
9861 "fixed" versions of the type that applies to the specific object.
9862 We also informally refer to this opperation as "fixing" an object,
9863 which means creating its associated fixed type.
9864
9865 Example: when printing the value of variable "Yes" above, its fixed
9866 type would look like this:
9867
9868 type Rec is record
9869 Empty : Boolean;
9870 Value : Integer;
9871 end record;
9872
9873 On the other hand, if we printed the value of "No", its fixed type
9874 would become:
9875
9876 type Rec is record
9877 Empty : Boolean;
9878 end record;
9879
9880 Things become a little more complicated when trying to fix an entity
9881 with a dynamic type that directly contains another dynamic type,
9882 such as an array of variant records, for instance. There are
9883 two possible cases: Arrays, and records.
9884
9885 3. ``Fixing'' Arrays:
9886 ---------------------
9887
9888 The type structure in GDB describes an array in terms of its bounds,
9889 and the type of its elements. By design, all elements in the array
9890 have the same type and we cannot represent an array of variant elements
9891 using the current type structure in GDB. When fixing an array,
9892 we cannot fix the array element, as we would potentially need one
9893 fixed type per element of the array. As a result, the best we can do
9894 when fixing an array is to produce an array whose bounds and size
9895 are correct (allowing us to read it from memory), but without having
9896 touched its element type. Fixing each element will be done later,
9897 when (if) necessary.
9898
9899 Arrays are a little simpler to handle than records, because the same
9900 amount of memory is allocated for each element of the array, even if
9901 the amount of space actually used by each element differs from element
9902 to element. Consider for instance the following array of type Rec:
9903
9904 type Rec_Array is array (1 .. 2) of Rec;
9905
9906 The actual amount of memory occupied by each element might be different
9907 from element to element, depending on the value of their discriminant.
9908 But the amount of space reserved for each element in the array remains
9909 fixed regardless. So we simply need to compute that size using
9910 the debugging information available, from which we can then determine
9911 the array size (we multiply the number of elements of the array by
9912 the size of each element).
9913
9914 The simplest case is when we have an array of a constrained element
9915 type. For instance, consider the following type declarations:
9916
9917 type Bounded_String (Max_Size : Integer) is
9918 Length : Integer;
9919 Buffer : String (1 .. Max_Size);
9920 end record;
9921 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9922
9923 In this case, the compiler describes the array as an array of
9924 variable-size elements (identified by its XVS suffix) for which
9925 the size can be read in the parallel XVZ variable.
9926
9927 In the case of an array of an unconstrained element type, the compiler
9928 wraps the array element inside a private PAD type. This type should not
9929 be shown to the user, and must be "unwrap"'ed before printing. Note
9930 that we also use the adjective "aligner" in our code to designate
9931 these wrapper types.
9932
9933 In some cases, the size allocated for each element is statically
9934 known. In that case, the PAD type already has the correct size,
9935 and the array element should remain unfixed.
9936
9937 But there are cases when this size is not statically known.
9938 For instance, assuming that "Five" is an integer variable:
9939
9940 type Dynamic is array (1 .. Five) of Integer;
9941 type Wrapper (Has_Length : Boolean := False) is record
9942 Data : Dynamic;
9943 case Has_Length is
9944 when True => Length : Integer;
9945 when False => null;
9946 end case;
9947 end record;
9948 type Wrapper_Array is array (1 .. 2) of Wrapper;
9949
9950 Hello : Wrapper_Array := (others => (Has_Length => True,
9951 Data => (others => 17),
9952 Length => 1));
9953
9954
9955 The debugging info would describe variable Hello as being an
9956 array of a PAD type. The size of that PAD type is not statically
9957 known, but can be determined using a parallel XVZ variable.
9958 In that case, a copy of the PAD type with the correct size should
9959 be used for the fixed array.
9960
9961 3. ``Fixing'' record type objects:
9962 ----------------------------------
9963
9964 Things are slightly different from arrays in the case of dynamic
9965 record types. In this case, in order to compute the associated
9966 fixed type, we need to determine the size and offset of each of
9967 its components. This, in turn, requires us to compute the fixed
9968 type of each of these components.
9969
9970 Consider for instance the example:
9971
9972 type Bounded_String (Max_Size : Natural) is record
9973 Str : String (1 .. Max_Size);
9974 Length : Natural;
9975 end record;
9976 My_String : Bounded_String (Max_Size => 10);
9977
9978 In that case, the position of field "Length" depends on the size
9979 of field Str, which itself depends on the value of the Max_Size
9980 discriminant. In order to fix the type of variable My_String,
9981 we need to fix the type of field Str. Therefore, fixing a variant
9982 record requires us to fix each of its components.
9983
9984 However, if a component does not have a dynamic size, the component
9985 should not be fixed. In particular, fields that use a PAD type
9986 should not fixed. Here is an example where this might happen
9987 (assuming type Rec above):
9988
9989 type Container (Big : Boolean) is record
9990 First : Rec;
9991 After : Integer;
9992 case Big is
9993 when True => Another : Integer;
9994 when False => null;
9995 end case;
9996 end record;
9997 My_Container : Container := (Big => False,
9998 First => (Empty => True),
9999 After => 42);
10000
10001 In that example, the compiler creates a PAD type for component First,
10002 whose size is constant, and then positions the component After just
10003 right after it. The offset of component After is therefore constant
10004 in this case.
10005
10006 The debugger computes the position of each field based on an algorithm
10007 that uses, among other things, the actual position and size of the field
10008 preceding it. Let's now imagine that the user is trying to print
10009 the value of My_Container. If the type fixing was recursive, we would
10010 end up computing the offset of field After based on the size of the
10011 fixed version of field First. And since in our example First has
10012 only one actual field, the size of the fixed type is actually smaller
10013 than the amount of space allocated to that field, and thus we would
10014 compute the wrong offset of field After.
10015
10016 To make things more complicated, we need to watch out for dynamic
10017 components of variant records (identified by the ___XVL suffix in
10018 the component name). Even if the target type is a PAD type, the size
10019 of that type might not be statically known. So the PAD type needs
10020 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10021 we might end up with the wrong size for our component. This can be
10022 observed with the following type declarations:
10023
10024 type Octal is new Integer range 0 .. 7;
10025 type Octal_Array is array (Positive range <>) of Octal;
10026 pragma Pack (Octal_Array);
10027
10028 type Octal_Buffer (Size : Positive) is record
10029 Buffer : Octal_Array (1 .. Size);
10030 Length : Integer;
10031 end record;
10032
10033 In that case, Buffer is a PAD type whose size is unset and needs
10034 to be computed by fixing the unwrapped type.
10035
10036 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10037 ----------------------------------------------------------
10038
10039 Lastly, when should the sub-elements of an entity that remained unfixed
10040 thus far, be actually fixed?
10041
10042 The answer is: Only when referencing that element. For instance
10043 when selecting one component of a record, this specific component
10044 should be fixed at that point in time. Or when printing the value
10045 of a record, each component should be fixed before its value gets
10046 printed. Similarly for arrays, the element of the array should be
10047 fixed when printing each element of the array, or when extracting
10048 one element out of that array. On the other hand, fixing should
10049 not be performed on the elements when taking a slice of an array!
10050
10051 Note that one of the side-effects of miscomputing the offset and
10052 size of each field is that we end up also miscomputing the size
10053 of the containing type. This can have adverse results when computing
10054 the value of an entity. GDB fetches the value of an entity based
10055 on the size of its type, and thus a wrong size causes GDB to fetch
10056 the wrong amount of memory. In the case where the computed size is
10057 too small, GDB fetches too little data to print the value of our
10058 entiry. Results in this case as unpredicatble, as we usually read
10059 past the buffer containing the data =:-o. */
10060
10061 /* Implement the evaluate_exp routine in the exp_descriptor structure
10062 for the Ada language. */
10063
10064 static struct value *
10065 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10066 int *pos, enum noside noside)
10067 {
10068 enum exp_opcode op;
10069 int tem;
10070 int pc;
10071 int preeval_pos;
10072 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10073 struct type *type;
10074 int nargs, oplen;
10075 struct value **argvec;
10076
10077 pc = *pos;
10078 *pos += 1;
10079 op = exp->elts[pc].opcode;
10080
10081 switch (op)
10082 {
10083 default:
10084 *pos -= 1;
10085 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10086
10087 if (noside == EVAL_NORMAL)
10088 arg1 = unwrap_value (arg1);
10089
10090 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10091 then we need to perform the conversion manually, because
10092 evaluate_subexp_standard doesn't do it. This conversion is
10093 necessary in Ada because the different kinds of float/fixed
10094 types in Ada have different representations.
10095
10096 Similarly, we need to perform the conversion from OP_LONG
10097 ourselves. */
10098 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10099 arg1 = ada_value_cast (expect_type, arg1, noside);
10100
10101 return arg1;
10102
10103 case OP_STRING:
10104 {
10105 struct value *result;
10106
10107 *pos -= 1;
10108 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10109 /* The result type will have code OP_STRING, bashed there from
10110 OP_ARRAY. Bash it back. */
10111 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10112 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10113 return result;
10114 }
10115
10116 case UNOP_CAST:
10117 (*pos) += 2;
10118 type = exp->elts[pc + 1].type;
10119 arg1 = evaluate_subexp (type, exp, pos, noside);
10120 if (noside == EVAL_SKIP)
10121 goto nosideret;
10122 arg1 = ada_value_cast (type, arg1, noside);
10123 return arg1;
10124
10125 case UNOP_QUAL:
10126 (*pos) += 2;
10127 type = exp->elts[pc + 1].type;
10128 return ada_evaluate_subexp (type, exp, pos, noside);
10129
10130 case BINOP_ASSIGN:
10131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10132 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10133 {
10134 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10135 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10136 return arg1;
10137 return ada_value_assign (arg1, arg1);
10138 }
10139 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10140 except if the lhs of our assignment is a convenience variable.
10141 In the case of assigning to a convenience variable, the lhs
10142 should be exactly the result of the evaluation of the rhs. */
10143 type = value_type (arg1);
10144 if (VALUE_LVAL (arg1) == lval_internalvar)
10145 type = NULL;
10146 arg2 = evaluate_subexp (type, exp, pos, noside);
10147 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10148 return arg1;
10149 if (ada_is_fixed_point_type (value_type (arg1)))
10150 arg2 = cast_to_fixed (value_type (arg1), arg2);
10151 else if (ada_is_fixed_point_type (value_type (arg2)))
10152 error
10153 (_("Fixed-point values must be assigned to fixed-point variables"));
10154 else
10155 arg2 = coerce_for_assign (value_type (arg1), arg2);
10156 return ada_value_assign (arg1, arg2);
10157
10158 case BINOP_ADD:
10159 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10160 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10161 if (noside == EVAL_SKIP)
10162 goto nosideret;
10163 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10164 return (value_from_longest
10165 (value_type (arg1),
10166 value_as_long (arg1) + value_as_long (arg2)));
10167 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10168 return (value_from_longest
10169 (value_type (arg2),
10170 value_as_long (arg1) + value_as_long (arg2)));
10171 if ((ada_is_fixed_point_type (value_type (arg1))
10172 || ada_is_fixed_point_type (value_type (arg2)))
10173 && value_type (arg1) != value_type (arg2))
10174 error (_("Operands of fixed-point addition must have the same type"));
10175 /* Do the addition, and cast the result to the type of the first
10176 argument. We cannot cast the result to a reference type, so if
10177 ARG1 is a reference type, find its underlying type. */
10178 type = value_type (arg1);
10179 while (TYPE_CODE (type) == TYPE_CODE_REF)
10180 type = TYPE_TARGET_TYPE (type);
10181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10182 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10183
10184 case BINOP_SUB:
10185 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10186 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10187 if (noside == EVAL_SKIP)
10188 goto nosideret;
10189 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10190 return (value_from_longest
10191 (value_type (arg1),
10192 value_as_long (arg1) - value_as_long (arg2)));
10193 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10194 return (value_from_longest
10195 (value_type (arg2),
10196 value_as_long (arg1) - value_as_long (arg2)));
10197 if ((ada_is_fixed_point_type (value_type (arg1))
10198 || ada_is_fixed_point_type (value_type (arg2)))
10199 && value_type (arg1) != value_type (arg2))
10200 error (_("Operands of fixed-point subtraction "
10201 "must have the same type"));
10202 /* Do the substraction, and cast the result to the type of the first
10203 argument. We cannot cast the result to a reference type, so if
10204 ARG1 is a reference type, find its underlying type. */
10205 type = value_type (arg1);
10206 while (TYPE_CODE (type) == TYPE_CODE_REF)
10207 type = TYPE_TARGET_TYPE (type);
10208 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10209 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10210
10211 case BINOP_MUL:
10212 case BINOP_DIV:
10213 case BINOP_REM:
10214 case BINOP_MOD:
10215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10217 if (noside == EVAL_SKIP)
10218 goto nosideret;
10219 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10220 {
10221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10222 return value_zero (value_type (arg1), not_lval);
10223 }
10224 else
10225 {
10226 type = builtin_type (exp->gdbarch)->builtin_double;
10227 if (ada_is_fixed_point_type (value_type (arg1)))
10228 arg1 = cast_from_fixed (type, arg1);
10229 if (ada_is_fixed_point_type (value_type (arg2)))
10230 arg2 = cast_from_fixed (type, arg2);
10231 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10232 return ada_value_binop (arg1, arg2, op);
10233 }
10234
10235 case BINOP_EQUAL:
10236 case BINOP_NOTEQUAL:
10237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10238 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10242 tem = 0;
10243 else
10244 {
10245 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10246 tem = ada_value_equal (arg1, arg2);
10247 }
10248 if (op == BINOP_NOTEQUAL)
10249 tem = !tem;
10250 type = language_bool_type (exp->language_defn, exp->gdbarch);
10251 return value_from_longest (type, (LONGEST) tem);
10252
10253 case UNOP_NEG:
10254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10255 if (noside == EVAL_SKIP)
10256 goto nosideret;
10257 else if (ada_is_fixed_point_type (value_type (arg1)))
10258 return value_cast (value_type (arg1), value_neg (arg1));
10259 else
10260 {
10261 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10262 return value_neg (arg1);
10263 }
10264
10265 case BINOP_LOGICAL_AND:
10266 case BINOP_LOGICAL_OR:
10267 case UNOP_LOGICAL_NOT:
10268 {
10269 struct value *val;
10270
10271 *pos -= 1;
10272 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10273 type = language_bool_type (exp->language_defn, exp->gdbarch);
10274 return value_cast (type, val);
10275 }
10276
10277 case BINOP_BITWISE_AND:
10278 case BINOP_BITWISE_IOR:
10279 case BINOP_BITWISE_XOR:
10280 {
10281 struct value *val;
10282
10283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10284 *pos = pc;
10285 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10286
10287 return value_cast (value_type (arg1), val);
10288 }
10289
10290 case OP_VAR_VALUE:
10291 *pos -= 1;
10292
10293 if (noside == EVAL_SKIP)
10294 {
10295 *pos += 4;
10296 goto nosideret;
10297 }
10298
10299 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10300 /* Only encountered when an unresolved symbol occurs in a
10301 context other than a function call, in which case, it is
10302 invalid. */
10303 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10304 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10305
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 {
10308 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10309 /* Check to see if this is a tagged type. We also need to handle
10310 the case where the type is a reference to a tagged type, but
10311 we have to be careful to exclude pointers to tagged types.
10312 The latter should be shown as usual (as a pointer), whereas
10313 a reference should mostly be transparent to the user. */
10314 if (ada_is_tagged_type (type, 0)
10315 || (TYPE_CODE (type) == TYPE_CODE_REF
10316 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10317 {
10318 /* Tagged types are a little special in the fact that the real
10319 type is dynamic and can only be determined by inspecting the
10320 object's tag. This means that we need to get the object's
10321 value first (EVAL_NORMAL) and then extract the actual object
10322 type from its tag.
10323
10324 Note that we cannot skip the final step where we extract
10325 the object type from its tag, because the EVAL_NORMAL phase
10326 results in dynamic components being resolved into fixed ones.
10327 This can cause problems when trying to print the type
10328 description of tagged types whose parent has a dynamic size:
10329 We use the type name of the "_parent" component in order
10330 to print the name of the ancestor type in the type description.
10331 If that component had a dynamic size, the resolution into
10332 a fixed type would result in the loss of that type name,
10333 thus preventing us from printing the name of the ancestor
10334 type in the type description. */
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10336
10337 if (TYPE_CODE (type) != TYPE_CODE_REF)
10338 {
10339 struct type *actual_type;
10340
10341 actual_type = type_from_tag (ada_value_tag (arg1));
10342 if (actual_type == NULL)
10343 /* If, for some reason, we were unable to determine
10344 the actual type from the tag, then use the static
10345 approximation that we just computed as a fallback.
10346 This can happen if the debugging information is
10347 incomplete, for instance. */
10348 actual_type = type;
10349 return value_zero (actual_type, not_lval);
10350 }
10351 else
10352 {
10353 /* In the case of a ref, ada_coerce_ref takes care
10354 of determining the actual type. But the evaluation
10355 should return a ref as it should be valid to ask
10356 for its address; so rebuild a ref after coerce. */
10357 arg1 = ada_coerce_ref (arg1);
10358 return value_ref (arg1);
10359 }
10360 }
10361
10362 /* Records and unions for which GNAT encodings have been
10363 generated need to be statically fixed as well.
10364 Otherwise, non-static fixing produces a type where
10365 all dynamic properties are removed, which prevents "ptype"
10366 from being able to completely describe the type.
10367 For instance, a case statement in a variant record would be
10368 replaced by the relevant components based on the actual
10369 value of the discriminants. */
10370 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10371 && dynamic_template_type (type) != NULL)
10372 || (TYPE_CODE (type) == TYPE_CODE_UNION
10373 && ada_find_parallel_type (type, "___XVU") != NULL))
10374 {
10375 *pos += 4;
10376 return value_zero (to_static_fixed_type (type), not_lval);
10377 }
10378 }
10379
10380 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10381 return ada_to_fixed_value (arg1);
10382
10383 case OP_FUNCALL:
10384 (*pos) += 2;
10385
10386 /* Allocate arg vector, including space for the function to be
10387 called in argvec[0] and a terminating NULL. */
10388 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10389 argvec =
10390 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10391
10392 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10393 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10394 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10395 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10396 else
10397 {
10398 for (tem = 0; tem <= nargs; tem += 1)
10399 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10400 argvec[tem] = 0;
10401
10402 if (noside == EVAL_SKIP)
10403 goto nosideret;
10404 }
10405
10406 if (ada_is_constrained_packed_array_type
10407 (desc_base_type (value_type (argvec[0]))))
10408 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10409 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10410 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10411 /* This is a packed array that has already been fixed, and
10412 therefore already coerced to a simple array. Nothing further
10413 to do. */
10414 ;
10415 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10416 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10417 && VALUE_LVAL (argvec[0]) == lval_memory))
10418 argvec[0] = value_addr (argvec[0]);
10419
10420 type = ada_check_typedef (value_type (argvec[0]));
10421
10422 /* Ada allows us to implicitly dereference arrays when subscripting
10423 them. So, if this is an array typedef (encoding use for array
10424 access types encoded as fat pointers), strip it now. */
10425 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10426 type = ada_typedef_target_type (type);
10427
10428 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10429 {
10430 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10431 {
10432 case TYPE_CODE_FUNC:
10433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10434 break;
10435 case TYPE_CODE_ARRAY:
10436 break;
10437 case TYPE_CODE_STRUCT:
10438 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10439 argvec[0] = ada_value_ind (argvec[0]);
10440 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10441 break;
10442 default:
10443 error (_("cannot subscript or call something of type `%s'"),
10444 ada_type_name (value_type (argvec[0])));
10445 break;
10446 }
10447 }
10448
10449 switch (TYPE_CODE (type))
10450 {
10451 case TYPE_CODE_FUNC:
10452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10453 {
10454 struct type *rtype = TYPE_TARGET_TYPE (type);
10455
10456 if (TYPE_GNU_IFUNC (type))
10457 return allocate_value (TYPE_TARGET_TYPE (rtype));
10458 return allocate_value (rtype);
10459 }
10460 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10461 case TYPE_CODE_INTERNAL_FUNCTION:
10462 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10463 /* We don't know anything about what the internal
10464 function might return, but we have to return
10465 something. */
10466 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10467 not_lval);
10468 else
10469 return call_internal_function (exp->gdbarch, exp->language_defn,
10470 argvec[0], nargs, argvec + 1);
10471
10472 case TYPE_CODE_STRUCT:
10473 {
10474 int arity;
10475
10476 arity = ada_array_arity (type);
10477 type = ada_array_element_type (type, nargs);
10478 if (type == NULL)
10479 error (_("cannot subscript or call a record"));
10480 if (arity != nargs)
10481 error (_("wrong number of subscripts; expecting %d"), arity);
10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10483 return value_zero (ada_aligned_type (type), lval_memory);
10484 return
10485 unwrap_value (ada_value_subscript
10486 (argvec[0], nargs, argvec + 1));
10487 }
10488 case TYPE_CODE_ARRAY:
10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10490 {
10491 type = ada_array_element_type (type, nargs);
10492 if (type == NULL)
10493 error (_("element type of array unknown"));
10494 else
10495 return value_zero (ada_aligned_type (type), lval_memory);
10496 }
10497 return
10498 unwrap_value (ada_value_subscript
10499 (ada_coerce_to_simple_array (argvec[0]),
10500 nargs, argvec + 1));
10501 case TYPE_CODE_PTR: /* Pointer to array */
10502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10503 {
10504 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10505 type = ada_array_element_type (type, nargs);
10506 if (type == NULL)
10507 error (_("element type of array unknown"));
10508 else
10509 return value_zero (ada_aligned_type (type), lval_memory);
10510 }
10511 return
10512 unwrap_value (ada_value_ptr_subscript (argvec[0],
10513 nargs, argvec + 1));
10514
10515 default:
10516 error (_("Attempt to index or call something other than an "
10517 "array or function"));
10518 }
10519
10520 case TERNOP_SLICE:
10521 {
10522 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 struct value *low_bound_val =
10524 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 struct value *high_bound_val =
10526 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10527 LONGEST low_bound;
10528 LONGEST high_bound;
10529
10530 low_bound_val = coerce_ref (low_bound_val);
10531 high_bound_val = coerce_ref (high_bound_val);
10532 low_bound = pos_atr (low_bound_val);
10533 high_bound = pos_atr (high_bound_val);
10534
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
10537
10538 /* If this is a reference to an aligner type, then remove all
10539 the aligners. */
10540 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10541 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10542 TYPE_TARGET_TYPE (value_type (array)) =
10543 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10544
10545 if (ada_is_constrained_packed_array_type (value_type (array)))
10546 error (_("cannot slice a packed array"));
10547
10548 /* If this is a reference to an array or an array lvalue,
10549 convert to a pointer. */
10550 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10551 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10552 && VALUE_LVAL (array) == lval_memory))
10553 array = value_addr (array);
10554
10555 if (noside == EVAL_AVOID_SIDE_EFFECTS
10556 && ada_is_array_descriptor_type (ada_check_typedef
10557 (value_type (array))))
10558 return empty_array (ada_type_of_array (array, 0), low_bound);
10559
10560 array = ada_coerce_to_simple_array_ptr (array);
10561
10562 /* If we have more than one level of pointer indirection,
10563 dereference the value until we get only one level. */
10564 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10565 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10566 == TYPE_CODE_PTR))
10567 array = value_ind (array);
10568
10569 /* Make sure we really do have an array type before going further,
10570 to avoid a SEGV when trying to get the index type or the target
10571 type later down the road if the debug info generated by
10572 the compiler is incorrect or incomplete. */
10573 if (!ada_is_simple_array_type (value_type (array)))
10574 error (_("cannot take slice of non-array"));
10575
10576 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10577 == TYPE_CODE_PTR)
10578 {
10579 struct type *type0 = ada_check_typedef (value_type (array));
10580
10581 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10583 else
10584 {
10585 struct type *arr_type0 =
10586 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10587
10588 return ada_value_slice_from_ptr (array, arr_type0,
10589 longest_to_int (low_bound),
10590 longest_to_int (high_bound));
10591 }
10592 }
10593 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10594 return array;
10595 else if (high_bound < low_bound)
10596 return empty_array (value_type (array), low_bound);
10597 else
10598 return ada_value_slice (array, longest_to_int (low_bound),
10599 longest_to_int (high_bound));
10600 }
10601
10602 case UNOP_IN_RANGE:
10603 (*pos) += 2;
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 type = check_typedef (exp->elts[pc + 1].type);
10606
10607 if (noside == EVAL_SKIP)
10608 goto nosideret;
10609
10610 switch (TYPE_CODE (type))
10611 {
10612 default:
10613 lim_warning (_("Membership test incompletely implemented; "
10614 "always returns true"));
10615 type = language_bool_type (exp->language_defn, exp->gdbarch);
10616 return value_from_longest (type, (LONGEST) 1);
10617
10618 case TYPE_CODE_RANGE:
10619 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10620 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10622 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return
10625 value_from_longest (type,
10626 (value_less (arg1, arg3)
10627 || value_equal (arg1, arg3))
10628 && (value_less (arg2, arg1)
10629 || value_equal (arg2, arg1)));
10630 }
10631
10632 case BINOP_IN_BOUNDS:
10633 (*pos) += 2;
10634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10635 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10636
10637 if (noside == EVAL_SKIP)
10638 goto nosideret;
10639
10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10641 {
10642 type = language_bool_type (exp->language_defn, exp->gdbarch);
10643 return value_zero (type, not_lval);
10644 }
10645
10646 tem = longest_to_int (exp->elts[pc + 1].longconst);
10647
10648 type = ada_index_type (value_type (arg2), tem, "range");
10649 if (!type)
10650 type = value_type (arg1);
10651
10652 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10653 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10654
10655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10657 type = language_bool_type (exp->language_defn, exp->gdbarch);
10658 return
10659 value_from_longest (type,
10660 (value_less (arg1, arg3)
10661 || value_equal (arg1, arg3))
10662 && (value_less (arg2, arg1)
10663 || value_equal (arg2, arg1)));
10664
10665 case TERNOP_IN_RANGE:
10666 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10667 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10668 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10669
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672
10673 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10675 type = language_bool_type (exp->language_defn, exp->gdbarch);
10676 return
10677 value_from_longest (type,
10678 (value_less (arg1, arg3)
10679 || value_equal (arg1, arg3))
10680 && (value_less (arg2, arg1)
10681 || value_equal (arg2, arg1)));
10682
10683 case OP_ATR_FIRST:
10684 case OP_ATR_LAST:
10685 case OP_ATR_LENGTH:
10686 {
10687 struct type *type_arg;
10688
10689 if (exp->elts[*pos].opcode == OP_TYPE)
10690 {
10691 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10692 arg1 = NULL;
10693 type_arg = check_typedef (exp->elts[pc + 2].type);
10694 }
10695 else
10696 {
10697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10698 type_arg = NULL;
10699 }
10700
10701 if (exp->elts[*pos].opcode != OP_LONG)
10702 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10703 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10704 *pos += 4;
10705
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708
10709 if (type_arg == NULL)
10710 {
10711 arg1 = ada_coerce_ref (arg1);
10712
10713 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10714 arg1 = ada_coerce_to_simple_array (arg1);
10715
10716 if (op == OP_ATR_LENGTH)
10717 type = builtin_type (exp->gdbarch)->builtin_int;
10718 else
10719 {
10720 type = ada_index_type (value_type (arg1), tem,
10721 ada_attribute_name (op));
10722 if (type == NULL)
10723 type = builtin_type (exp->gdbarch)->builtin_int;
10724 }
10725
10726 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10727 return allocate_value (type);
10728
10729 switch (op)
10730 {
10731 default: /* Should never happen. */
10732 error (_("unexpected attribute encountered"));
10733 case OP_ATR_FIRST:
10734 return value_from_longest
10735 (type, ada_array_bound (arg1, tem, 0));
10736 case OP_ATR_LAST:
10737 return value_from_longest
10738 (type, ada_array_bound (arg1, tem, 1));
10739 case OP_ATR_LENGTH:
10740 return value_from_longest
10741 (type, ada_array_length (arg1, tem));
10742 }
10743 }
10744 else if (discrete_type_p (type_arg))
10745 {
10746 struct type *range_type;
10747 const char *name = ada_type_name (type_arg);
10748
10749 range_type = NULL;
10750 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10751 range_type = to_fixed_range_type (type_arg, NULL);
10752 if (range_type == NULL)
10753 range_type = type_arg;
10754 switch (op)
10755 {
10756 default:
10757 error (_("unexpected attribute encountered"));
10758 case OP_ATR_FIRST:
10759 return value_from_longest
10760 (range_type, ada_discrete_type_low_bound (range_type));
10761 case OP_ATR_LAST:
10762 return value_from_longest
10763 (range_type, ada_discrete_type_high_bound (range_type));
10764 case OP_ATR_LENGTH:
10765 error (_("the 'length attribute applies only to array types"));
10766 }
10767 }
10768 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10769 error (_("unimplemented type attribute"));
10770 else
10771 {
10772 LONGEST low, high;
10773
10774 if (ada_is_constrained_packed_array_type (type_arg))
10775 type_arg = decode_constrained_packed_array_type (type_arg);
10776
10777 if (op == OP_ATR_LENGTH)
10778 type = builtin_type (exp->gdbarch)->builtin_int;
10779 else
10780 {
10781 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10782 if (type == NULL)
10783 type = builtin_type (exp->gdbarch)->builtin_int;
10784 }
10785
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 return allocate_value (type);
10788
10789 switch (op)
10790 {
10791 default:
10792 error (_("unexpected attribute encountered"));
10793 case OP_ATR_FIRST:
10794 low = ada_array_bound_from_type (type_arg, tem, 0);
10795 return value_from_longest (type, low);
10796 case OP_ATR_LAST:
10797 high = ada_array_bound_from_type (type_arg, tem, 1);
10798 return value_from_longest (type, high);
10799 case OP_ATR_LENGTH:
10800 low = ada_array_bound_from_type (type_arg, tem, 0);
10801 high = ada_array_bound_from_type (type_arg, tem, 1);
10802 return value_from_longest (type, high - low + 1);
10803 }
10804 }
10805 }
10806
10807 case OP_ATR_TAG:
10808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10809 if (noside == EVAL_SKIP)
10810 goto nosideret;
10811
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10813 return value_zero (ada_tag_type (arg1), not_lval);
10814
10815 return ada_value_tag (arg1);
10816
10817 case OP_ATR_MIN:
10818 case OP_ATR_MAX:
10819 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10820 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10821 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10822 if (noside == EVAL_SKIP)
10823 goto nosideret;
10824 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10825 return value_zero (value_type (arg1), not_lval);
10826 else
10827 {
10828 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10829 return value_binop (arg1, arg2,
10830 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10831 }
10832
10833 case OP_ATR_MODULUS:
10834 {
10835 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10836
10837 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10838 if (noside == EVAL_SKIP)
10839 goto nosideret;
10840
10841 if (!ada_is_modular_type (type_arg))
10842 error (_("'modulus must be applied to modular type"));
10843
10844 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10845 ada_modulus (type_arg));
10846 }
10847
10848
10849 case OP_ATR_POS:
10850 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854 type = builtin_type (exp->gdbarch)->builtin_int;
10855 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10856 return value_zero (type, not_lval);
10857 else
10858 return value_pos_atr (type, arg1);
10859
10860 case OP_ATR_SIZE:
10861 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10862 type = value_type (arg1);
10863
10864 /* If the argument is a reference, then dereference its type, since
10865 the user is really asking for the size of the actual object,
10866 not the size of the pointer. */
10867 if (TYPE_CODE (type) == TYPE_CODE_REF)
10868 type = TYPE_TARGET_TYPE (type);
10869
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10873 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10874 else
10875 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10876 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10877
10878 case OP_ATR_VAL:
10879 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 type = exp->elts[pc + 2].type;
10882 if (noside == EVAL_SKIP)
10883 goto nosideret;
10884 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10885 return value_zero (type, not_lval);
10886 else
10887 return value_val_atr (type, arg1);
10888
10889 case BINOP_EXP:
10890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10891 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 if (noside == EVAL_SKIP)
10893 goto nosideret;
10894 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10895 return value_zero (value_type (arg1), not_lval);
10896 else
10897 {
10898 /* For integer exponentiation operations,
10899 only promote the first argument. */
10900 if (is_integral_type (value_type (arg2)))
10901 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10902 else
10903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10904
10905 return value_binop (arg1, arg2, op);
10906 }
10907
10908 case UNOP_PLUS:
10909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 if (noside == EVAL_SKIP)
10911 goto nosideret;
10912 else
10913 return arg1;
10914
10915 case UNOP_ABS:
10916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10920 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10921 return value_neg (arg1);
10922 else
10923 return arg1;
10924
10925 case UNOP_IND:
10926 preeval_pos = *pos;
10927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10928 if (noside == EVAL_SKIP)
10929 goto nosideret;
10930 type = ada_check_typedef (value_type (arg1));
10931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 {
10933 if (ada_is_array_descriptor_type (type))
10934 /* GDB allows dereferencing GNAT array descriptors. */
10935 {
10936 struct type *arrType = ada_type_of_array (arg1, 0);
10937
10938 if (arrType == NULL)
10939 error (_("Attempt to dereference null array pointer."));
10940 return value_at_lazy (arrType, 0);
10941 }
10942 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10943 || TYPE_CODE (type) == TYPE_CODE_REF
10944 /* In C you can dereference an array to get the 1st elt. */
10945 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10946 {
10947 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10948 only be determined by inspecting the object's tag.
10949 This means that we need to evaluate completely the
10950 expression in order to get its type. */
10951
10952 if ((TYPE_CODE (type) == TYPE_CODE_REF
10953 || TYPE_CODE (type) == TYPE_CODE_PTR)
10954 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10955 {
10956 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10957 EVAL_NORMAL);
10958 type = value_type (ada_value_ind (arg1));
10959 }
10960 else
10961 {
10962 type = to_static_fixed_type
10963 (ada_aligned_type
10964 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10965 }
10966 ada_ensure_varsize_limit (type);
10967 return value_zero (type, lval_memory);
10968 }
10969 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10970 {
10971 /* GDB allows dereferencing an int. */
10972 if (expect_type == NULL)
10973 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10974 lval_memory);
10975 else
10976 {
10977 expect_type =
10978 to_static_fixed_type (ada_aligned_type (expect_type));
10979 return value_zero (expect_type, lval_memory);
10980 }
10981 }
10982 else
10983 error (_("Attempt to take contents of a non-pointer value."));
10984 }
10985 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10986 type = ada_check_typedef (value_type (arg1));
10987
10988 if (TYPE_CODE (type) == TYPE_CODE_INT)
10989 /* GDB allows dereferencing an int. If we were given
10990 the expect_type, then use that as the target type.
10991 Otherwise, assume that the target type is an int. */
10992 {
10993 if (expect_type != NULL)
10994 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10995 arg1));
10996 else
10997 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10998 (CORE_ADDR) value_as_address (arg1));
10999 }
11000
11001 if (ada_is_array_descriptor_type (type))
11002 /* GDB allows dereferencing GNAT array descriptors. */
11003 return ada_coerce_to_simple_array (arg1);
11004 else
11005 return ada_value_ind (arg1);
11006
11007 case STRUCTOP_STRUCT:
11008 tem = longest_to_int (exp->elts[pc + 1].longconst);
11009 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11010 preeval_pos = *pos;
11011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 if (noside == EVAL_SKIP)
11013 goto nosideret;
11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11015 {
11016 struct type *type1 = value_type (arg1);
11017
11018 if (ada_is_tagged_type (type1, 1))
11019 {
11020 type = ada_lookup_struct_elt_type (type1,
11021 &exp->elts[pc + 2].string,
11022 1, 1, NULL);
11023
11024 /* If the field is not found, check if it exists in the
11025 extension of this object's type. This means that we
11026 need to evaluate completely the expression. */
11027
11028 if (type == NULL)
11029 {
11030 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11031 EVAL_NORMAL);
11032 arg1 = ada_value_struct_elt (arg1,
11033 &exp->elts[pc + 2].string,
11034 0);
11035 arg1 = unwrap_value (arg1);
11036 type = value_type (ada_to_fixed_value (arg1));
11037 }
11038 }
11039 else
11040 type =
11041 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11042 0, NULL);
11043
11044 return value_zero (ada_aligned_type (type), lval_memory);
11045 }
11046 else
11047 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11048 arg1 = unwrap_value (arg1);
11049 return ada_to_fixed_value (arg1);
11050
11051 case OP_TYPE:
11052 /* The value is not supposed to be used. This is here to make it
11053 easier to accommodate expressions that contain types. */
11054 (*pos) += 2;
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11058 return allocate_value (exp->elts[pc + 1].type);
11059 else
11060 error (_("Attempt to use a type name as an expression"));
11061
11062 case OP_AGGREGATE:
11063 case OP_CHOICES:
11064 case OP_OTHERS:
11065 case OP_DISCRETE_RANGE:
11066 case OP_POSITIONAL:
11067 case OP_NAME:
11068 if (noside == EVAL_NORMAL)
11069 switch (op)
11070 {
11071 case OP_NAME:
11072 error (_("Undefined name, ambiguous name, or renaming used in "
11073 "component association: %s."), &exp->elts[pc+2].string);
11074 case OP_AGGREGATE:
11075 error (_("Aggregates only allowed on the right of an assignment"));
11076 default:
11077 internal_error (__FILE__, __LINE__,
11078 _("aggregate apparently mangled"));
11079 }
11080
11081 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11082 *pos += oplen - 1;
11083 for (tem = 0; tem < nargs; tem += 1)
11084 ada_evaluate_subexp (NULL, exp, pos, noside);
11085 goto nosideret;
11086 }
11087
11088 nosideret:
11089 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11090 }
11091 \f
11092
11093 /* Fixed point */
11094
11095 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11096 type name that encodes the 'small and 'delta information.
11097 Otherwise, return NULL. */
11098
11099 static const char *
11100 fixed_type_info (struct type *type)
11101 {
11102 const char *name = ada_type_name (type);
11103 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11104
11105 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11106 {
11107 const char *tail = strstr (name, "___XF_");
11108
11109 if (tail == NULL)
11110 return NULL;
11111 else
11112 return tail + 5;
11113 }
11114 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11115 return fixed_type_info (TYPE_TARGET_TYPE (type));
11116 else
11117 return NULL;
11118 }
11119
11120 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11121
11122 int
11123 ada_is_fixed_point_type (struct type *type)
11124 {
11125 return fixed_type_info (type) != NULL;
11126 }
11127
11128 /* Return non-zero iff TYPE represents a System.Address type. */
11129
11130 int
11131 ada_is_system_address_type (struct type *type)
11132 {
11133 return (TYPE_NAME (type)
11134 && strcmp (TYPE_NAME (type), "system__address") == 0);
11135 }
11136
11137 /* Assuming that TYPE is the representation of an Ada fixed-point
11138 type, return its delta, or -1 if the type is malformed and the
11139 delta cannot be determined. */
11140
11141 DOUBLEST
11142 ada_delta (struct type *type)
11143 {
11144 const char *encoding = fixed_type_info (type);
11145 DOUBLEST num, den;
11146
11147 /* Strictly speaking, num and den are encoded as integer. However,
11148 they may not fit into a long, and they will have to be converted
11149 to DOUBLEST anyway. So scan them as DOUBLEST. */
11150 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11151 &num, &den) < 2)
11152 return -1.0;
11153 else
11154 return num / den;
11155 }
11156
11157 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11158 factor ('SMALL value) associated with the type. */
11159
11160 static DOUBLEST
11161 scaling_factor (struct type *type)
11162 {
11163 const char *encoding = fixed_type_info (type);
11164 DOUBLEST num0, den0, num1, den1;
11165 int n;
11166
11167 /* Strictly speaking, num's and den's are encoded as integer. However,
11168 they may not fit into a long, and they will have to be converted
11169 to DOUBLEST anyway. So scan them as DOUBLEST. */
11170 n = sscanf (encoding,
11171 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11172 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11173 &num0, &den0, &num1, &den1);
11174
11175 if (n < 2)
11176 return 1.0;
11177 else if (n == 4)
11178 return num1 / den1;
11179 else
11180 return num0 / den0;
11181 }
11182
11183
11184 /* Assuming that X is the representation of a value of fixed-point
11185 type TYPE, return its floating-point equivalent. */
11186
11187 DOUBLEST
11188 ada_fixed_to_float (struct type *type, LONGEST x)
11189 {
11190 return (DOUBLEST) x *scaling_factor (type);
11191 }
11192
11193 /* The representation of a fixed-point value of type TYPE
11194 corresponding to the value X. */
11195
11196 LONGEST
11197 ada_float_to_fixed (struct type *type, DOUBLEST x)
11198 {
11199 return (LONGEST) (x / scaling_factor (type) + 0.5);
11200 }
11201
11202 \f
11203
11204 /* Range types */
11205
11206 /* Scan STR beginning at position K for a discriminant name, and
11207 return the value of that discriminant field of DVAL in *PX. If
11208 PNEW_K is not null, put the position of the character beyond the
11209 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11210 not alter *PX and *PNEW_K if unsuccessful. */
11211
11212 static int
11213 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11214 int *pnew_k)
11215 {
11216 static char *bound_buffer = NULL;
11217 static size_t bound_buffer_len = 0;
11218 char *bound;
11219 char *pend;
11220 struct value *bound_val;
11221
11222 if (dval == NULL || str == NULL || str[k] == '\0')
11223 return 0;
11224
11225 pend = strstr (str + k, "__");
11226 if (pend == NULL)
11227 {
11228 bound = str + k;
11229 k += strlen (bound);
11230 }
11231 else
11232 {
11233 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11234 bound = bound_buffer;
11235 strncpy (bound_buffer, str + k, pend - (str + k));
11236 bound[pend - (str + k)] = '\0';
11237 k = pend - str;
11238 }
11239
11240 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11241 if (bound_val == NULL)
11242 return 0;
11243
11244 *px = value_as_long (bound_val);
11245 if (pnew_k != NULL)
11246 *pnew_k = k;
11247 return 1;
11248 }
11249
11250 /* Value of variable named NAME in the current environment. If
11251 no such variable found, then if ERR_MSG is null, returns 0, and
11252 otherwise causes an error with message ERR_MSG. */
11253
11254 static struct value *
11255 get_var_value (char *name, char *err_msg)
11256 {
11257 struct ada_symbol_info *syms;
11258 int nsyms;
11259
11260 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11261 &syms);
11262
11263 if (nsyms != 1)
11264 {
11265 if (err_msg == NULL)
11266 return 0;
11267 else
11268 error (("%s"), err_msg);
11269 }
11270
11271 return value_of_variable (syms[0].sym, syms[0].block);
11272 }
11273
11274 /* Value of integer variable named NAME in the current environment. If
11275 no such variable found, returns 0, and sets *FLAG to 0. If
11276 successful, sets *FLAG to 1. */
11277
11278 LONGEST
11279 get_int_var_value (char *name, int *flag)
11280 {
11281 struct value *var_val = get_var_value (name, 0);
11282
11283 if (var_val == 0)
11284 {
11285 if (flag != NULL)
11286 *flag = 0;
11287 return 0;
11288 }
11289 else
11290 {
11291 if (flag != NULL)
11292 *flag = 1;
11293 return value_as_long (var_val);
11294 }
11295 }
11296
11297
11298 /* Return a range type whose base type is that of the range type named
11299 NAME in the current environment, and whose bounds are calculated
11300 from NAME according to the GNAT range encoding conventions.
11301 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11302 corresponding range type from debug information; fall back to using it
11303 if symbol lookup fails. If a new type must be created, allocate it
11304 like ORIG_TYPE was. The bounds information, in general, is encoded
11305 in NAME, the base type given in the named range type. */
11306
11307 static struct type *
11308 to_fixed_range_type (struct type *raw_type, struct value *dval)
11309 {
11310 const char *name;
11311 struct type *base_type;
11312 char *subtype_info;
11313
11314 gdb_assert (raw_type != NULL);
11315 gdb_assert (TYPE_NAME (raw_type) != NULL);
11316
11317 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11318 base_type = TYPE_TARGET_TYPE (raw_type);
11319 else
11320 base_type = raw_type;
11321
11322 name = TYPE_NAME (raw_type);
11323 subtype_info = strstr (name, "___XD");
11324 if (subtype_info == NULL)
11325 {
11326 LONGEST L = ada_discrete_type_low_bound (raw_type);
11327 LONGEST U = ada_discrete_type_high_bound (raw_type);
11328
11329 if (L < INT_MIN || U > INT_MAX)
11330 return raw_type;
11331 else
11332 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11333 L, U);
11334 }
11335 else
11336 {
11337 static char *name_buf = NULL;
11338 static size_t name_len = 0;
11339 int prefix_len = subtype_info - name;
11340 LONGEST L, U;
11341 struct type *type;
11342 char *bounds_str;
11343 int n;
11344
11345 GROW_VECT (name_buf, name_len, prefix_len + 5);
11346 strncpy (name_buf, name, prefix_len);
11347 name_buf[prefix_len] = '\0';
11348
11349 subtype_info += 5;
11350 bounds_str = strchr (subtype_info, '_');
11351 n = 1;
11352
11353 if (*subtype_info == 'L')
11354 {
11355 if (!ada_scan_number (bounds_str, n, &L, &n)
11356 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11357 return raw_type;
11358 if (bounds_str[n] == '_')
11359 n += 2;
11360 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11361 n += 1;
11362 subtype_info += 1;
11363 }
11364 else
11365 {
11366 int ok;
11367
11368 strcpy (name_buf + prefix_len, "___L");
11369 L = get_int_var_value (name_buf, &ok);
11370 if (!ok)
11371 {
11372 lim_warning (_("Unknown lower bound, using 1."));
11373 L = 1;
11374 }
11375 }
11376
11377 if (*subtype_info == 'U')
11378 {
11379 if (!ada_scan_number (bounds_str, n, &U, &n)
11380 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11381 return raw_type;
11382 }
11383 else
11384 {
11385 int ok;
11386
11387 strcpy (name_buf + prefix_len, "___U");
11388 U = get_int_var_value (name_buf, &ok);
11389 if (!ok)
11390 {
11391 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11392 U = L;
11393 }
11394 }
11395
11396 type = create_static_range_type (alloc_type_copy (raw_type),
11397 base_type, L, U);
11398 TYPE_NAME (type) = name;
11399 return type;
11400 }
11401 }
11402
11403 /* True iff NAME is the name of a range type. */
11404
11405 int
11406 ada_is_range_type_name (const char *name)
11407 {
11408 return (name != NULL && strstr (name, "___XD"));
11409 }
11410 \f
11411
11412 /* Modular types */
11413
11414 /* True iff TYPE is an Ada modular type. */
11415
11416 int
11417 ada_is_modular_type (struct type *type)
11418 {
11419 struct type *subranged_type = get_base_type (type);
11420
11421 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11422 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11423 && TYPE_UNSIGNED (subranged_type));
11424 }
11425
11426 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11427
11428 ULONGEST
11429 ada_modulus (struct type *type)
11430 {
11431 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11432 }
11433 \f
11434
11435 /* Ada exception catchpoint support:
11436 ---------------------------------
11437
11438 We support 3 kinds of exception catchpoints:
11439 . catchpoints on Ada exceptions
11440 . catchpoints on unhandled Ada exceptions
11441 . catchpoints on failed assertions
11442
11443 Exceptions raised during failed assertions, or unhandled exceptions
11444 could perfectly be caught with the general catchpoint on Ada exceptions.
11445 However, we can easily differentiate these two special cases, and having
11446 the option to distinguish these two cases from the rest can be useful
11447 to zero-in on certain situations.
11448
11449 Exception catchpoints are a specialized form of breakpoint,
11450 since they rely on inserting breakpoints inside known routines
11451 of the GNAT runtime. The implementation therefore uses a standard
11452 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11453 of breakpoint_ops.
11454
11455 Support in the runtime for exception catchpoints have been changed
11456 a few times already, and these changes affect the implementation
11457 of these catchpoints. In order to be able to support several
11458 variants of the runtime, we use a sniffer that will determine
11459 the runtime variant used by the program being debugged. */
11460
11461 /* Ada's standard exceptions.
11462
11463 The Ada 83 standard also defined Numeric_Error. But there so many
11464 situations where it was unclear from the Ada 83 Reference Manual
11465 (RM) whether Constraint_Error or Numeric_Error should be raised,
11466 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11467 Interpretation saying that anytime the RM says that Numeric_Error
11468 should be raised, the implementation may raise Constraint_Error.
11469 Ada 95 went one step further and pretty much removed Numeric_Error
11470 from the list of standard exceptions (it made it a renaming of
11471 Constraint_Error, to help preserve compatibility when compiling
11472 an Ada83 compiler). As such, we do not include Numeric_Error from
11473 this list of standard exceptions. */
11474
11475 static char *standard_exc[] = {
11476 "constraint_error",
11477 "program_error",
11478 "storage_error",
11479 "tasking_error"
11480 };
11481
11482 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11483
11484 /* A structure that describes how to support exception catchpoints
11485 for a given executable. */
11486
11487 struct exception_support_info
11488 {
11489 /* The name of the symbol to break on in order to insert
11490 a catchpoint on exceptions. */
11491 const char *catch_exception_sym;
11492
11493 /* The name of the symbol to break on in order to insert
11494 a catchpoint on unhandled exceptions. */
11495 const char *catch_exception_unhandled_sym;
11496
11497 /* The name of the symbol to break on in order to insert
11498 a catchpoint on failed assertions. */
11499 const char *catch_assert_sym;
11500
11501 /* Assuming that the inferior just triggered an unhandled exception
11502 catchpoint, this function is responsible for returning the address
11503 in inferior memory where the name of that exception is stored.
11504 Return zero if the address could not be computed. */
11505 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11506 };
11507
11508 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11509 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11510
11511 /* The following exception support info structure describes how to
11512 implement exception catchpoints with the latest version of the
11513 Ada runtime (as of 2007-03-06). */
11514
11515 static const struct exception_support_info default_exception_support_info =
11516 {
11517 "__gnat_debug_raise_exception", /* catch_exception_sym */
11518 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11519 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11520 ada_unhandled_exception_name_addr
11521 };
11522
11523 /* The following exception support info structure describes how to
11524 implement exception catchpoints with a slightly older version
11525 of the Ada runtime. */
11526
11527 static const struct exception_support_info exception_support_info_fallback =
11528 {
11529 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11530 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11531 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11532 ada_unhandled_exception_name_addr_from_raise
11533 };
11534
11535 /* Return nonzero if we can detect the exception support routines
11536 described in EINFO.
11537
11538 This function errors out if an abnormal situation is detected
11539 (for instance, if we find the exception support routines, but
11540 that support is found to be incomplete). */
11541
11542 static int
11543 ada_has_this_exception_support (const struct exception_support_info *einfo)
11544 {
11545 struct symbol *sym;
11546
11547 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11548 that should be compiled with debugging information. As a result, we
11549 expect to find that symbol in the symtabs. */
11550
11551 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11552 if (sym == NULL)
11553 {
11554 /* Perhaps we did not find our symbol because the Ada runtime was
11555 compiled without debugging info, or simply stripped of it.
11556 It happens on some GNU/Linux distributions for instance, where
11557 users have to install a separate debug package in order to get
11558 the runtime's debugging info. In that situation, let the user
11559 know why we cannot insert an Ada exception catchpoint.
11560
11561 Note: Just for the purpose of inserting our Ada exception
11562 catchpoint, we could rely purely on the associated minimal symbol.
11563 But we would be operating in degraded mode anyway, since we are
11564 still lacking the debugging info needed later on to extract
11565 the name of the exception being raised (this name is printed in
11566 the catchpoint message, and is also used when trying to catch
11567 a specific exception). We do not handle this case for now. */
11568 struct bound_minimal_symbol msym
11569 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11570
11571 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11572 error (_("Your Ada runtime appears to be missing some debugging "
11573 "information.\nCannot insert Ada exception catchpoint "
11574 "in this configuration."));
11575
11576 return 0;
11577 }
11578
11579 /* Make sure that the symbol we found corresponds to a function. */
11580
11581 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11582 error (_("Symbol \"%s\" is not a function (class = %d)"),
11583 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11584
11585 return 1;
11586 }
11587
11588 /* Inspect the Ada runtime and determine which exception info structure
11589 should be used to provide support for exception catchpoints.
11590
11591 This function will always set the per-inferior exception_info,
11592 or raise an error. */
11593
11594 static void
11595 ada_exception_support_info_sniffer (void)
11596 {
11597 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11598
11599 /* If the exception info is already known, then no need to recompute it. */
11600 if (data->exception_info != NULL)
11601 return;
11602
11603 /* Check the latest (default) exception support info. */
11604 if (ada_has_this_exception_support (&default_exception_support_info))
11605 {
11606 data->exception_info = &default_exception_support_info;
11607 return;
11608 }
11609
11610 /* Try our fallback exception suport info. */
11611 if (ada_has_this_exception_support (&exception_support_info_fallback))
11612 {
11613 data->exception_info = &exception_support_info_fallback;
11614 return;
11615 }
11616
11617 /* Sometimes, it is normal for us to not be able to find the routine
11618 we are looking for. This happens when the program is linked with
11619 the shared version of the GNAT runtime, and the program has not been
11620 started yet. Inform the user of these two possible causes if
11621 applicable. */
11622
11623 if (ada_update_initial_language (language_unknown) != language_ada)
11624 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11625
11626 /* If the symbol does not exist, then check that the program is
11627 already started, to make sure that shared libraries have been
11628 loaded. If it is not started, this may mean that the symbol is
11629 in a shared library. */
11630
11631 if (ptid_get_pid (inferior_ptid) == 0)
11632 error (_("Unable to insert catchpoint. Try to start the program first."));
11633
11634 /* At this point, we know that we are debugging an Ada program and
11635 that the inferior has been started, but we still are not able to
11636 find the run-time symbols. That can mean that we are in
11637 configurable run time mode, or that a-except as been optimized
11638 out by the linker... In any case, at this point it is not worth
11639 supporting this feature. */
11640
11641 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11642 }
11643
11644 /* True iff FRAME is very likely to be that of a function that is
11645 part of the runtime system. This is all very heuristic, but is
11646 intended to be used as advice as to what frames are uninteresting
11647 to most users. */
11648
11649 static int
11650 is_known_support_routine (struct frame_info *frame)
11651 {
11652 struct symtab_and_line sal;
11653 char *func_name;
11654 enum language func_lang;
11655 int i;
11656 const char *fullname;
11657
11658 /* If this code does not have any debugging information (no symtab),
11659 This cannot be any user code. */
11660
11661 find_frame_sal (frame, &sal);
11662 if (sal.symtab == NULL)
11663 return 1;
11664
11665 /* If there is a symtab, but the associated source file cannot be
11666 located, then assume this is not user code: Selecting a frame
11667 for which we cannot display the code would not be very helpful
11668 for the user. This should also take care of case such as VxWorks
11669 where the kernel has some debugging info provided for a few units. */
11670
11671 fullname = symtab_to_fullname (sal.symtab);
11672 if (access (fullname, R_OK) != 0)
11673 return 1;
11674
11675 /* Check the unit filename againt the Ada runtime file naming.
11676 We also check the name of the objfile against the name of some
11677 known system libraries that sometimes come with debugging info
11678 too. */
11679
11680 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11681 {
11682 re_comp (known_runtime_file_name_patterns[i]);
11683 if (re_exec (lbasename (sal.symtab->filename)))
11684 return 1;
11685 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11686 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11687 return 1;
11688 }
11689
11690 /* Check whether the function is a GNAT-generated entity. */
11691
11692 find_frame_funname (frame, &func_name, &func_lang, NULL);
11693 if (func_name == NULL)
11694 return 1;
11695
11696 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11697 {
11698 re_comp (known_auxiliary_function_name_patterns[i]);
11699 if (re_exec (func_name))
11700 {
11701 xfree (func_name);
11702 return 1;
11703 }
11704 }
11705
11706 xfree (func_name);
11707 return 0;
11708 }
11709
11710 /* Find the first frame that contains debugging information and that is not
11711 part of the Ada run-time, starting from FI and moving upward. */
11712
11713 void
11714 ada_find_printable_frame (struct frame_info *fi)
11715 {
11716 for (; fi != NULL; fi = get_prev_frame (fi))
11717 {
11718 if (!is_known_support_routine (fi))
11719 {
11720 select_frame (fi);
11721 break;
11722 }
11723 }
11724
11725 }
11726
11727 /* Assuming that the inferior just triggered an unhandled exception
11728 catchpoint, return the address in inferior memory where the name
11729 of the exception is stored.
11730
11731 Return zero if the address could not be computed. */
11732
11733 static CORE_ADDR
11734 ada_unhandled_exception_name_addr (void)
11735 {
11736 return parse_and_eval_address ("e.full_name");
11737 }
11738
11739 /* Same as ada_unhandled_exception_name_addr, except that this function
11740 should be used when the inferior uses an older version of the runtime,
11741 where the exception name needs to be extracted from a specific frame
11742 several frames up in the callstack. */
11743
11744 static CORE_ADDR
11745 ada_unhandled_exception_name_addr_from_raise (void)
11746 {
11747 int frame_level;
11748 struct frame_info *fi;
11749 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11750 struct cleanup *old_chain;
11751
11752 /* To determine the name of this exception, we need to select
11753 the frame corresponding to RAISE_SYM_NAME. This frame is
11754 at least 3 levels up, so we simply skip the first 3 frames
11755 without checking the name of their associated function. */
11756 fi = get_current_frame ();
11757 for (frame_level = 0; frame_level < 3; frame_level += 1)
11758 if (fi != NULL)
11759 fi = get_prev_frame (fi);
11760
11761 old_chain = make_cleanup (null_cleanup, NULL);
11762 while (fi != NULL)
11763 {
11764 char *func_name;
11765 enum language func_lang;
11766
11767 find_frame_funname (fi, &func_name, &func_lang, NULL);
11768 if (func_name != NULL)
11769 {
11770 make_cleanup (xfree, func_name);
11771
11772 if (strcmp (func_name,
11773 data->exception_info->catch_exception_sym) == 0)
11774 break; /* We found the frame we were looking for... */
11775 fi = get_prev_frame (fi);
11776 }
11777 }
11778 do_cleanups (old_chain);
11779
11780 if (fi == NULL)
11781 return 0;
11782
11783 select_frame (fi);
11784 return parse_and_eval_address ("id.full_name");
11785 }
11786
11787 /* Assuming the inferior just triggered an Ada exception catchpoint
11788 (of any type), return the address in inferior memory where the name
11789 of the exception is stored, if applicable.
11790
11791 Return zero if the address could not be computed, or if not relevant. */
11792
11793 static CORE_ADDR
11794 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11795 struct breakpoint *b)
11796 {
11797 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11798
11799 switch (ex)
11800 {
11801 case ada_catch_exception:
11802 return (parse_and_eval_address ("e.full_name"));
11803 break;
11804
11805 case ada_catch_exception_unhandled:
11806 return data->exception_info->unhandled_exception_name_addr ();
11807 break;
11808
11809 case ada_catch_assert:
11810 return 0; /* Exception name is not relevant in this case. */
11811 break;
11812
11813 default:
11814 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11815 break;
11816 }
11817
11818 return 0; /* Should never be reached. */
11819 }
11820
11821 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11822 any error that ada_exception_name_addr_1 might cause to be thrown.
11823 When an error is intercepted, a warning with the error message is printed,
11824 and zero is returned. */
11825
11826 static CORE_ADDR
11827 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11828 struct breakpoint *b)
11829 {
11830 CORE_ADDR result = 0;
11831
11832 TRY
11833 {
11834 result = ada_exception_name_addr_1 (ex, b);
11835 }
11836
11837 CATCH (e, RETURN_MASK_ERROR)
11838 {
11839 warning (_("failed to get exception name: %s"), e.message);
11840 return 0;
11841 }
11842 END_CATCH
11843
11844 return result;
11845 }
11846
11847 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11848
11849 /* Ada catchpoints.
11850
11851 In the case of catchpoints on Ada exceptions, the catchpoint will
11852 stop the target on every exception the program throws. When a user
11853 specifies the name of a specific exception, we translate this
11854 request into a condition expression (in text form), and then parse
11855 it into an expression stored in each of the catchpoint's locations.
11856 We then use this condition to check whether the exception that was
11857 raised is the one the user is interested in. If not, then the
11858 target is resumed again. We store the name of the requested
11859 exception, in order to be able to re-set the condition expression
11860 when symbols change. */
11861
11862 /* An instance of this type is used to represent an Ada catchpoint
11863 breakpoint location. It includes a "struct bp_location" as a kind
11864 of base class; users downcast to "struct bp_location *" when
11865 needed. */
11866
11867 struct ada_catchpoint_location
11868 {
11869 /* The base class. */
11870 struct bp_location base;
11871
11872 /* The condition that checks whether the exception that was raised
11873 is the specific exception the user specified on catchpoint
11874 creation. */
11875 struct expression *excep_cond_expr;
11876 };
11877
11878 /* Implement the DTOR method in the bp_location_ops structure for all
11879 Ada exception catchpoint kinds. */
11880
11881 static void
11882 ada_catchpoint_location_dtor (struct bp_location *bl)
11883 {
11884 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11885
11886 xfree (al->excep_cond_expr);
11887 }
11888
11889 /* The vtable to be used in Ada catchpoint locations. */
11890
11891 static const struct bp_location_ops ada_catchpoint_location_ops =
11892 {
11893 ada_catchpoint_location_dtor
11894 };
11895
11896 /* An instance of this type is used to represent an Ada catchpoint.
11897 It includes a "struct breakpoint" as a kind of base class; users
11898 downcast to "struct breakpoint *" when needed. */
11899
11900 struct ada_catchpoint
11901 {
11902 /* The base class. */
11903 struct breakpoint base;
11904
11905 /* The name of the specific exception the user specified. */
11906 char *excep_string;
11907 };
11908
11909 /* Parse the exception condition string in the context of each of the
11910 catchpoint's locations, and store them for later evaluation. */
11911
11912 static void
11913 create_excep_cond_exprs (struct ada_catchpoint *c)
11914 {
11915 struct cleanup *old_chain;
11916 struct bp_location *bl;
11917 char *cond_string;
11918
11919 /* Nothing to do if there's no specific exception to catch. */
11920 if (c->excep_string == NULL)
11921 return;
11922
11923 /* Same if there are no locations... */
11924 if (c->base.loc == NULL)
11925 return;
11926
11927 /* Compute the condition expression in text form, from the specific
11928 expection we want to catch. */
11929 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11930 old_chain = make_cleanup (xfree, cond_string);
11931
11932 /* Iterate over all the catchpoint's locations, and parse an
11933 expression for each. */
11934 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11935 {
11936 struct ada_catchpoint_location *ada_loc
11937 = (struct ada_catchpoint_location *) bl;
11938 struct expression *exp = NULL;
11939
11940 if (!bl->shlib_disabled)
11941 {
11942 const char *s;
11943
11944 s = cond_string;
11945 TRY
11946 {
11947 exp = parse_exp_1 (&s, bl->address,
11948 block_for_pc (bl->address), 0);
11949 }
11950 CATCH (e, RETURN_MASK_ERROR)
11951 {
11952 warning (_("failed to reevaluate internal exception condition "
11953 "for catchpoint %d: %s"),
11954 c->base.number, e.message);
11955 /* There is a bug in GCC on sparc-solaris when building with
11956 optimization which causes EXP to change unexpectedly
11957 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11958 The problem should be fixed starting with GCC 4.9.
11959 In the meantime, work around it by forcing EXP back
11960 to NULL. */
11961 exp = NULL;
11962 }
11963 END_CATCH
11964 }
11965
11966 ada_loc->excep_cond_expr = exp;
11967 }
11968
11969 do_cleanups (old_chain);
11970 }
11971
11972 /* Implement the DTOR method in the breakpoint_ops structure for all
11973 exception catchpoint kinds. */
11974
11975 static void
11976 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11977 {
11978 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11979
11980 xfree (c->excep_string);
11981
11982 bkpt_breakpoint_ops.dtor (b);
11983 }
11984
11985 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11986 structure for all exception catchpoint kinds. */
11987
11988 static struct bp_location *
11989 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11990 struct breakpoint *self)
11991 {
11992 struct ada_catchpoint_location *loc;
11993
11994 loc = XNEW (struct ada_catchpoint_location);
11995 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11996 loc->excep_cond_expr = NULL;
11997 return &loc->base;
11998 }
11999
12000 /* Implement the RE_SET method in the breakpoint_ops structure for all
12001 exception catchpoint kinds. */
12002
12003 static void
12004 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12005 {
12006 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12007
12008 /* Call the base class's method. This updates the catchpoint's
12009 locations. */
12010 bkpt_breakpoint_ops.re_set (b);
12011
12012 /* Reparse the exception conditional expressions. One for each
12013 location. */
12014 create_excep_cond_exprs (c);
12015 }
12016
12017 /* Returns true if we should stop for this breakpoint hit. If the
12018 user specified a specific exception, we only want to cause a stop
12019 if the program thrown that exception. */
12020
12021 static int
12022 should_stop_exception (const struct bp_location *bl)
12023 {
12024 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12025 const struct ada_catchpoint_location *ada_loc
12026 = (const struct ada_catchpoint_location *) bl;
12027 int stop;
12028
12029 /* With no specific exception, should always stop. */
12030 if (c->excep_string == NULL)
12031 return 1;
12032
12033 if (ada_loc->excep_cond_expr == NULL)
12034 {
12035 /* We will have a NULL expression if back when we were creating
12036 the expressions, this location's had failed to parse. */
12037 return 1;
12038 }
12039
12040 stop = 1;
12041 TRY
12042 {
12043 struct value *mark;
12044
12045 mark = value_mark ();
12046 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12047 value_free_to_mark (mark);
12048 }
12049 CATCH (ex, RETURN_MASK_ALL)
12050 {
12051 exception_fprintf (gdb_stderr, ex,
12052 _("Error in testing exception condition:\n"));
12053 }
12054 END_CATCH
12055
12056 return stop;
12057 }
12058
12059 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12060 for all exception catchpoint kinds. */
12061
12062 static void
12063 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12064 {
12065 bs->stop = should_stop_exception (bs->bp_location_at);
12066 }
12067
12068 /* Implement the PRINT_IT method in the breakpoint_ops structure
12069 for all exception catchpoint kinds. */
12070
12071 static enum print_stop_action
12072 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12073 {
12074 struct ui_out *uiout = current_uiout;
12075 struct breakpoint *b = bs->breakpoint_at;
12076
12077 annotate_catchpoint (b->number);
12078
12079 if (ui_out_is_mi_like_p (uiout))
12080 {
12081 ui_out_field_string (uiout, "reason",
12082 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12083 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12084 }
12085
12086 ui_out_text (uiout,
12087 b->disposition == disp_del ? "\nTemporary catchpoint "
12088 : "\nCatchpoint ");
12089 ui_out_field_int (uiout, "bkptno", b->number);
12090 ui_out_text (uiout, ", ");
12091
12092 switch (ex)
12093 {
12094 case ada_catch_exception:
12095 case ada_catch_exception_unhandled:
12096 {
12097 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12098 char exception_name[256];
12099
12100 if (addr != 0)
12101 {
12102 read_memory (addr, (gdb_byte *) exception_name,
12103 sizeof (exception_name) - 1);
12104 exception_name [sizeof (exception_name) - 1] = '\0';
12105 }
12106 else
12107 {
12108 /* For some reason, we were unable to read the exception
12109 name. This could happen if the Runtime was compiled
12110 without debugging info, for instance. In that case,
12111 just replace the exception name by the generic string
12112 "exception" - it will read as "an exception" in the
12113 notification we are about to print. */
12114 memcpy (exception_name, "exception", sizeof ("exception"));
12115 }
12116 /* In the case of unhandled exception breakpoints, we print
12117 the exception name as "unhandled EXCEPTION_NAME", to make
12118 it clearer to the user which kind of catchpoint just got
12119 hit. We used ui_out_text to make sure that this extra
12120 info does not pollute the exception name in the MI case. */
12121 if (ex == ada_catch_exception_unhandled)
12122 ui_out_text (uiout, "unhandled ");
12123 ui_out_field_string (uiout, "exception-name", exception_name);
12124 }
12125 break;
12126 case ada_catch_assert:
12127 /* In this case, the name of the exception is not really
12128 important. Just print "failed assertion" to make it clearer
12129 that his program just hit an assertion-failure catchpoint.
12130 We used ui_out_text because this info does not belong in
12131 the MI output. */
12132 ui_out_text (uiout, "failed assertion");
12133 break;
12134 }
12135 ui_out_text (uiout, " at ");
12136 ada_find_printable_frame (get_current_frame ());
12137
12138 return PRINT_SRC_AND_LOC;
12139 }
12140
12141 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12142 for all exception catchpoint kinds. */
12143
12144 static void
12145 print_one_exception (enum ada_exception_catchpoint_kind ex,
12146 struct breakpoint *b, struct bp_location **last_loc)
12147 {
12148 struct ui_out *uiout = current_uiout;
12149 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12150 struct value_print_options opts;
12151
12152 get_user_print_options (&opts);
12153 if (opts.addressprint)
12154 {
12155 annotate_field (4);
12156 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12157 }
12158
12159 annotate_field (5);
12160 *last_loc = b->loc;
12161 switch (ex)
12162 {
12163 case ada_catch_exception:
12164 if (c->excep_string != NULL)
12165 {
12166 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12167
12168 ui_out_field_string (uiout, "what", msg);
12169 xfree (msg);
12170 }
12171 else
12172 ui_out_field_string (uiout, "what", "all Ada exceptions");
12173
12174 break;
12175
12176 case ada_catch_exception_unhandled:
12177 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12178 break;
12179
12180 case ada_catch_assert:
12181 ui_out_field_string (uiout, "what", "failed Ada assertions");
12182 break;
12183
12184 default:
12185 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12186 break;
12187 }
12188 }
12189
12190 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12191 for all exception catchpoint kinds. */
12192
12193 static void
12194 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12195 struct breakpoint *b)
12196 {
12197 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12198 struct ui_out *uiout = current_uiout;
12199
12200 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12201 : _("Catchpoint "));
12202 ui_out_field_int (uiout, "bkptno", b->number);
12203 ui_out_text (uiout, ": ");
12204
12205 switch (ex)
12206 {
12207 case ada_catch_exception:
12208 if (c->excep_string != NULL)
12209 {
12210 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12211 struct cleanup *old_chain = make_cleanup (xfree, info);
12212
12213 ui_out_text (uiout, info);
12214 do_cleanups (old_chain);
12215 }
12216 else
12217 ui_out_text (uiout, _("all Ada exceptions"));
12218 break;
12219
12220 case ada_catch_exception_unhandled:
12221 ui_out_text (uiout, _("unhandled Ada exceptions"));
12222 break;
12223
12224 case ada_catch_assert:
12225 ui_out_text (uiout, _("failed Ada assertions"));
12226 break;
12227
12228 default:
12229 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12230 break;
12231 }
12232 }
12233
12234 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12235 for all exception catchpoint kinds. */
12236
12237 static void
12238 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12239 struct breakpoint *b, struct ui_file *fp)
12240 {
12241 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12242
12243 switch (ex)
12244 {
12245 case ada_catch_exception:
12246 fprintf_filtered (fp, "catch exception");
12247 if (c->excep_string != NULL)
12248 fprintf_filtered (fp, " %s", c->excep_string);
12249 break;
12250
12251 case ada_catch_exception_unhandled:
12252 fprintf_filtered (fp, "catch exception unhandled");
12253 break;
12254
12255 case ada_catch_assert:
12256 fprintf_filtered (fp, "catch assert");
12257 break;
12258
12259 default:
12260 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12261 }
12262 print_recreate_thread (b, fp);
12263 }
12264
12265 /* Virtual table for "catch exception" breakpoints. */
12266
12267 static void
12268 dtor_catch_exception (struct breakpoint *b)
12269 {
12270 dtor_exception (ada_catch_exception, b);
12271 }
12272
12273 static struct bp_location *
12274 allocate_location_catch_exception (struct breakpoint *self)
12275 {
12276 return allocate_location_exception (ada_catch_exception, self);
12277 }
12278
12279 static void
12280 re_set_catch_exception (struct breakpoint *b)
12281 {
12282 re_set_exception (ada_catch_exception, b);
12283 }
12284
12285 static void
12286 check_status_catch_exception (bpstat bs)
12287 {
12288 check_status_exception (ada_catch_exception, bs);
12289 }
12290
12291 static enum print_stop_action
12292 print_it_catch_exception (bpstat bs)
12293 {
12294 return print_it_exception (ada_catch_exception, bs);
12295 }
12296
12297 static void
12298 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12299 {
12300 print_one_exception (ada_catch_exception, b, last_loc);
12301 }
12302
12303 static void
12304 print_mention_catch_exception (struct breakpoint *b)
12305 {
12306 print_mention_exception (ada_catch_exception, b);
12307 }
12308
12309 static void
12310 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12311 {
12312 print_recreate_exception (ada_catch_exception, b, fp);
12313 }
12314
12315 static struct breakpoint_ops catch_exception_breakpoint_ops;
12316
12317 /* Virtual table for "catch exception unhandled" breakpoints. */
12318
12319 static void
12320 dtor_catch_exception_unhandled (struct breakpoint *b)
12321 {
12322 dtor_exception (ada_catch_exception_unhandled, b);
12323 }
12324
12325 static struct bp_location *
12326 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12327 {
12328 return allocate_location_exception (ada_catch_exception_unhandled, self);
12329 }
12330
12331 static void
12332 re_set_catch_exception_unhandled (struct breakpoint *b)
12333 {
12334 re_set_exception (ada_catch_exception_unhandled, b);
12335 }
12336
12337 static void
12338 check_status_catch_exception_unhandled (bpstat bs)
12339 {
12340 check_status_exception (ada_catch_exception_unhandled, bs);
12341 }
12342
12343 static enum print_stop_action
12344 print_it_catch_exception_unhandled (bpstat bs)
12345 {
12346 return print_it_exception (ada_catch_exception_unhandled, bs);
12347 }
12348
12349 static void
12350 print_one_catch_exception_unhandled (struct breakpoint *b,
12351 struct bp_location **last_loc)
12352 {
12353 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12354 }
12355
12356 static void
12357 print_mention_catch_exception_unhandled (struct breakpoint *b)
12358 {
12359 print_mention_exception (ada_catch_exception_unhandled, b);
12360 }
12361
12362 static void
12363 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12364 struct ui_file *fp)
12365 {
12366 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12367 }
12368
12369 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12370
12371 /* Virtual table for "catch assert" breakpoints. */
12372
12373 static void
12374 dtor_catch_assert (struct breakpoint *b)
12375 {
12376 dtor_exception (ada_catch_assert, b);
12377 }
12378
12379 static struct bp_location *
12380 allocate_location_catch_assert (struct breakpoint *self)
12381 {
12382 return allocate_location_exception (ada_catch_assert, self);
12383 }
12384
12385 static void
12386 re_set_catch_assert (struct breakpoint *b)
12387 {
12388 re_set_exception (ada_catch_assert, b);
12389 }
12390
12391 static void
12392 check_status_catch_assert (bpstat bs)
12393 {
12394 check_status_exception (ada_catch_assert, bs);
12395 }
12396
12397 static enum print_stop_action
12398 print_it_catch_assert (bpstat bs)
12399 {
12400 return print_it_exception (ada_catch_assert, bs);
12401 }
12402
12403 static void
12404 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12405 {
12406 print_one_exception (ada_catch_assert, b, last_loc);
12407 }
12408
12409 static void
12410 print_mention_catch_assert (struct breakpoint *b)
12411 {
12412 print_mention_exception (ada_catch_assert, b);
12413 }
12414
12415 static void
12416 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12417 {
12418 print_recreate_exception (ada_catch_assert, b, fp);
12419 }
12420
12421 static struct breakpoint_ops catch_assert_breakpoint_ops;
12422
12423 /* Return a newly allocated copy of the first space-separated token
12424 in ARGSP, and then adjust ARGSP to point immediately after that
12425 token.
12426
12427 Return NULL if ARGPS does not contain any more tokens. */
12428
12429 static char *
12430 ada_get_next_arg (char **argsp)
12431 {
12432 char *args = *argsp;
12433 char *end;
12434 char *result;
12435
12436 args = skip_spaces (args);
12437 if (args[0] == '\0')
12438 return NULL; /* No more arguments. */
12439
12440 /* Find the end of the current argument. */
12441
12442 end = skip_to_space (args);
12443
12444 /* Adjust ARGSP to point to the start of the next argument. */
12445
12446 *argsp = end;
12447
12448 /* Make a copy of the current argument and return it. */
12449
12450 result = xmalloc (end - args + 1);
12451 strncpy (result, args, end - args);
12452 result[end - args] = '\0';
12453
12454 return result;
12455 }
12456
12457 /* Split the arguments specified in a "catch exception" command.
12458 Set EX to the appropriate catchpoint type.
12459 Set EXCEP_STRING to the name of the specific exception if
12460 specified by the user.
12461 If a condition is found at the end of the arguments, the condition
12462 expression is stored in COND_STRING (memory must be deallocated
12463 after use). Otherwise COND_STRING is set to NULL. */
12464
12465 static void
12466 catch_ada_exception_command_split (char *args,
12467 enum ada_exception_catchpoint_kind *ex,
12468 char **excep_string,
12469 char **cond_string)
12470 {
12471 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12472 char *exception_name;
12473 char *cond = NULL;
12474
12475 exception_name = ada_get_next_arg (&args);
12476 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12477 {
12478 /* This is not an exception name; this is the start of a condition
12479 expression for a catchpoint on all exceptions. So, "un-get"
12480 this token, and set exception_name to NULL. */
12481 xfree (exception_name);
12482 exception_name = NULL;
12483 args -= 2;
12484 }
12485 make_cleanup (xfree, exception_name);
12486
12487 /* Check to see if we have a condition. */
12488
12489 args = skip_spaces (args);
12490 if (startswith (args, "if")
12491 && (isspace (args[2]) || args[2] == '\0'))
12492 {
12493 args += 2;
12494 args = skip_spaces (args);
12495
12496 if (args[0] == '\0')
12497 error (_("Condition missing after `if' keyword"));
12498 cond = xstrdup (args);
12499 make_cleanup (xfree, cond);
12500
12501 args += strlen (args);
12502 }
12503
12504 /* Check that we do not have any more arguments. Anything else
12505 is unexpected. */
12506
12507 if (args[0] != '\0')
12508 error (_("Junk at end of expression"));
12509
12510 discard_cleanups (old_chain);
12511
12512 if (exception_name == NULL)
12513 {
12514 /* Catch all exceptions. */
12515 *ex = ada_catch_exception;
12516 *excep_string = NULL;
12517 }
12518 else if (strcmp (exception_name, "unhandled") == 0)
12519 {
12520 /* Catch unhandled exceptions. */
12521 *ex = ada_catch_exception_unhandled;
12522 *excep_string = NULL;
12523 }
12524 else
12525 {
12526 /* Catch a specific exception. */
12527 *ex = ada_catch_exception;
12528 *excep_string = exception_name;
12529 }
12530 *cond_string = cond;
12531 }
12532
12533 /* Return the name of the symbol on which we should break in order to
12534 implement a catchpoint of the EX kind. */
12535
12536 static const char *
12537 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12538 {
12539 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12540
12541 gdb_assert (data->exception_info != NULL);
12542
12543 switch (ex)
12544 {
12545 case ada_catch_exception:
12546 return (data->exception_info->catch_exception_sym);
12547 break;
12548 case ada_catch_exception_unhandled:
12549 return (data->exception_info->catch_exception_unhandled_sym);
12550 break;
12551 case ada_catch_assert:
12552 return (data->exception_info->catch_assert_sym);
12553 break;
12554 default:
12555 internal_error (__FILE__, __LINE__,
12556 _("unexpected catchpoint kind (%d)"), ex);
12557 }
12558 }
12559
12560 /* Return the breakpoint ops "virtual table" used for catchpoints
12561 of the EX kind. */
12562
12563 static const struct breakpoint_ops *
12564 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12565 {
12566 switch (ex)
12567 {
12568 case ada_catch_exception:
12569 return (&catch_exception_breakpoint_ops);
12570 break;
12571 case ada_catch_exception_unhandled:
12572 return (&catch_exception_unhandled_breakpoint_ops);
12573 break;
12574 case ada_catch_assert:
12575 return (&catch_assert_breakpoint_ops);
12576 break;
12577 default:
12578 internal_error (__FILE__, __LINE__,
12579 _("unexpected catchpoint kind (%d)"), ex);
12580 }
12581 }
12582
12583 /* Return the condition that will be used to match the current exception
12584 being raised with the exception that the user wants to catch. This
12585 assumes that this condition is used when the inferior just triggered
12586 an exception catchpoint.
12587
12588 The string returned is a newly allocated string that needs to be
12589 deallocated later. */
12590
12591 static char *
12592 ada_exception_catchpoint_cond_string (const char *excep_string)
12593 {
12594 int i;
12595
12596 /* The standard exceptions are a special case. They are defined in
12597 runtime units that have been compiled without debugging info; if
12598 EXCEP_STRING is the not-fully-qualified name of a standard
12599 exception (e.g. "constraint_error") then, during the evaluation
12600 of the condition expression, the symbol lookup on this name would
12601 *not* return this standard exception. The catchpoint condition
12602 may then be set only on user-defined exceptions which have the
12603 same not-fully-qualified name (e.g. my_package.constraint_error).
12604
12605 To avoid this unexcepted behavior, these standard exceptions are
12606 systematically prefixed by "standard". This means that "catch
12607 exception constraint_error" is rewritten into "catch exception
12608 standard.constraint_error".
12609
12610 If an exception named contraint_error is defined in another package of
12611 the inferior program, then the only way to specify this exception as a
12612 breakpoint condition is to use its fully-qualified named:
12613 e.g. my_package.constraint_error. */
12614
12615 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12616 {
12617 if (strcmp (standard_exc [i], excep_string) == 0)
12618 {
12619 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12620 excep_string);
12621 }
12622 }
12623 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12624 }
12625
12626 /* Return the symtab_and_line that should be used to insert an exception
12627 catchpoint of the TYPE kind.
12628
12629 EXCEP_STRING should contain the name of a specific exception that
12630 the catchpoint should catch, or NULL otherwise.
12631
12632 ADDR_STRING returns the name of the function where the real
12633 breakpoint that implements the catchpoints is set, depending on the
12634 type of catchpoint we need to create. */
12635
12636 static struct symtab_and_line
12637 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12638 char **addr_string, const struct breakpoint_ops **ops)
12639 {
12640 const char *sym_name;
12641 struct symbol *sym;
12642
12643 /* First, find out which exception support info to use. */
12644 ada_exception_support_info_sniffer ();
12645
12646 /* Then lookup the function on which we will break in order to catch
12647 the Ada exceptions requested by the user. */
12648 sym_name = ada_exception_sym_name (ex);
12649 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12650
12651 /* We can assume that SYM is not NULL at this stage. If the symbol
12652 did not exist, ada_exception_support_info_sniffer would have
12653 raised an exception.
12654
12655 Also, ada_exception_support_info_sniffer should have already
12656 verified that SYM is a function symbol. */
12657 gdb_assert (sym != NULL);
12658 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12659
12660 /* Set ADDR_STRING. */
12661 *addr_string = xstrdup (sym_name);
12662
12663 /* Set OPS. */
12664 *ops = ada_exception_breakpoint_ops (ex);
12665
12666 return find_function_start_sal (sym, 1);
12667 }
12668
12669 /* Create an Ada exception catchpoint.
12670
12671 EX_KIND is the kind of exception catchpoint to be created.
12672
12673 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12674 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12675 of the exception to which this catchpoint applies. When not NULL,
12676 the string must be allocated on the heap, and its deallocation
12677 is no longer the responsibility of the caller.
12678
12679 COND_STRING, if not NULL, is the catchpoint condition. This string
12680 must be allocated on the heap, and its deallocation is no longer
12681 the responsibility of the caller.
12682
12683 TEMPFLAG, if nonzero, means that the underlying breakpoint
12684 should be temporary.
12685
12686 FROM_TTY is the usual argument passed to all commands implementations. */
12687
12688 void
12689 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12690 enum ada_exception_catchpoint_kind ex_kind,
12691 char *excep_string,
12692 char *cond_string,
12693 int tempflag,
12694 int disabled,
12695 int from_tty)
12696 {
12697 struct ada_catchpoint *c;
12698 char *addr_string = NULL;
12699 const struct breakpoint_ops *ops = NULL;
12700 struct symtab_and_line sal
12701 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12702
12703 c = XNEW (struct ada_catchpoint);
12704 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12705 ops, tempflag, disabled, from_tty);
12706 c->excep_string = excep_string;
12707 create_excep_cond_exprs (c);
12708 if (cond_string != NULL)
12709 set_breakpoint_condition (&c->base, cond_string, from_tty);
12710 install_breakpoint (0, &c->base, 1);
12711 }
12712
12713 /* Implement the "catch exception" command. */
12714
12715 static void
12716 catch_ada_exception_command (char *arg, int from_tty,
12717 struct cmd_list_element *command)
12718 {
12719 struct gdbarch *gdbarch = get_current_arch ();
12720 int tempflag;
12721 enum ada_exception_catchpoint_kind ex_kind;
12722 char *excep_string = NULL;
12723 char *cond_string = NULL;
12724
12725 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12726
12727 if (!arg)
12728 arg = "";
12729 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12730 &cond_string);
12731 create_ada_exception_catchpoint (gdbarch, ex_kind,
12732 excep_string, cond_string,
12733 tempflag, 1 /* enabled */,
12734 from_tty);
12735 }
12736
12737 /* Split the arguments specified in a "catch assert" command.
12738
12739 ARGS contains the command's arguments (or the empty string if
12740 no arguments were passed).
12741
12742 If ARGS contains a condition, set COND_STRING to that condition
12743 (the memory needs to be deallocated after use). */
12744
12745 static void
12746 catch_ada_assert_command_split (char *args, char **cond_string)
12747 {
12748 args = skip_spaces (args);
12749
12750 /* Check whether a condition was provided. */
12751 if (startswith (args, "if")
12752 && (isspace (args[2]) || args[2] == '\0'))
12753 {
12754 args += 2;
12755 args = skip_spaces (args);
12756 if (args[0] == '\0')
12757 error (_("condition missing after `if' keyword"));
12758 *cond_string = xstrdup (args);
12759 }
12760
12761 /* Otherwise, there should be no other argument at the end of
12762 the command. */
12763 else if (args[0] != '\0')
12764 error (_("Junk at end of arguments."));
12765 }
12766
12767 /* Implement the "catch assert" command. */
12768
12769 static void
12770 catch_assert_command (char *arg, int from_tty,
12771 struct cmd_list_element *command)
12772 {
12773 struct gdbarch *gdbarch = get_current_arch ();
12774 int tempflag;
12775 char *cond_string = NULL;
12776
12777 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12778
12779 if (!arg)
12780 arg = "";
12781 catch_ada_assert_command_split (arg, &cond_string);
12782 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12783 NULL, cond_string,
12784 tempflag, 1 /* enabled */,
12785 from_tty);
12786 }
12787
12788 /* Return non-zero if the symbol SYM is an Ada exception object. */
12789
12790 static int
12791 ada_is_exception_sym (struct symbol *sym)
12792 {
12793 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12794
12795 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12796 && SYMBOL_CLASS (sym) != LOC_BLOCK
12797 && SYMBOL_CLASS (sym) != LOC_CONST
12798 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12799 && type_name != NULL && strcmp (type_name, "exception") == 0);
12800 }
12801
12802 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12803 Ada exception object. This matches all exceptions except the ones
12804 defined by the Ada language. */
12805
12806 static int
12807 ada_is_non_standard_exception_sym (struct symbol *sym)
12808 {
12809 int i;
12810
12811 if (!ada_is_exception_sym (sym))
12812 return 0;
12813
12814 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12815 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12816 return 0; /* A standard exception. */
12817
12818 /* Numeric_Error is also a standard exception, so exclude it.
12819 See the STANDARD_EXC description for more details as to why
12820 this exception is not listed in that array. */
12821 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12822 return 0;
12823
12824 return 1;
12825 }
12826
12827 /* A helper function for qsort, comparing two struct ada_exc_info
12828 objects.
12829
12830 The comparison is determined first by exception name, and then
12831 by exception address. */
12832
12833 static int
12834 compare_ada_exception_info (const void *a, const void *b)
12835 {
12836 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12837 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12838 int result;
12839
12840 result = strcmp (exc_a->name, exc_b->name);
12841 if (result != 0)
12842 return result;
12843
12844 if (exc_a->addr < exc_b->addr)
12845 return -1;
12846 if (exc_a->addr > exc_b->addr)
12847 return 1;
12848
12849 return 0;
12850 }
12851
12852 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12853 routine, but keeping the first SKIP elements untouched.
12854
12855 All duplicates are also removed. */
12856
12857 static void
12858 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12859 int skip)
12860 {
12861 struct ada_exc_info *to_sort
12862 = VEC_address (ada_exc_info, *exceptions) + skip;
12863 int to_sort_len
12864 = VEC_length (ada_exc_info, *exceptions) - skip;
12865 int i, j;
12866
12867 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12868 compare_ada_exception_info);
12869
12870 for (i = 1, j = 1; i < to_sort_len; i++)
12871 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12872 to_sort[j++] = to_sort[i];
12873 to_sort_len = j;
12874 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12875 }
12876
12877 /* A function intended as the "name_matcher" callback in the struct
12878 quick_symbol_functions' expand_symtabs_matching method.
12879
12880 SEARCH_NAME is the symbol's search name.
12881
12882 If USER_DATA is not NULL, it is a pointer to a regext_t object
12883 used to match the symbol (by natural name). Otherwise, when USER_DATA
12884 is null, no filtering is performed, and all symbols are a positive
12885 match. */
12886
12887 static int
12888 ada_exc_search_name_matches (const char *search_name, void *user_data)
12889 {
12890 regex_t *preg = user_data;
12891
12892 if (preg == NULL)
12893 return 1;
12894
12895 /* In Ada, the symbol "search name" is a linkage name, whereas
12896 the regular expression used to do the matching refers to
12897 the natural name. So match against the decoded name. */
12898 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12899 }
12900
12901 /* Add all exceptions defined by the Ada standard whose name match
12902 a regular expression.
12903
12904 If PREG is not NULL, then this regexp_t object is used to
12905 perform the symbol name matching. Otherwise, no name-based
12906 filtering is performed.
12907
12908 EXCEPTIONS is a vector of exceptions to which matching exceptions
12909 gets pushed. */
12910
12911 static void
12912 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12913 {
12914 int i;
12915
12916 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12917 {
12918 if (preg == NULL
12919 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12920 {
12921 struct bound_minimal_symbol msymbol
12922 = ada_lookup_simple_minsym (standard_exc[i]);
12923
12924 if (msymbol.minsym != NULL)
12925 {
12926 struct ada_exc_info info
12927 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12928
12929 VEC_safe_push (ada_exc_info, *exceptions, &info);
12930 }
12931 }
12932 }
12933 }
12934
12935 /* Add all Ada exceptions defined locally and accessible from the given
12936 FRAME.
12937
12938 If PREG is not NULL, then this regexp_t object is used to
12939 perform the symbol name matching. Otherwise, no name-based
12940 filtering is performed.
12941
12942 EXCEPTIONS is a vector of exceptions to which matching exceptions
12943 gets pushed. */
12944
12945 static void
12946 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12947 VEC(ada_exc_info) **exceptions)
12948 {
12949 const struct block *block = get_frame_block (frame, 0);
12950
12951 while (block != 0)
12952 {
12953 struct block_iterator iter;
12954 struct symbol *sym;
12955
12956 ALL_BLOCK_SYMBOLS (block, iter, sym)
12957 {
12958 switch (SYMBOL_CLASS (sym))
12959 {
12960 case LOC_TYPEDEF:
12961 case LOC_BLOCK:
12962 case LOC_CONST:
12963 break;
12964 default:
12965 if (ada_is_exception_sym (sym))
12966 {
12967 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12968 SYMBOL_VALUE_ADDRESS (sym)};
12969
12970 VEC_safe_push (ada_exc_info, *exceptions, &info);
12971 }
12972 }
12973 }
12974 if (BLOCK_FUNCTION (block) != NULL)
12975 break;
12976 block = BLOCK_SUPERBLOCK (block);
12977 }
12978 }
12979
12980 /* Add all exceptions defined globally whose name name match
12981 a regular expression, excluding standard exceptions.
12982
12983 The reason we exclude standard exceptions is that they need
12984 to be handled separately: Standard exceptions are defined inside
12985 a runtime unit which is normally not compiled with debugging info,
12986 and thus usually do not show up in our symbol search. However,
12987 if the unit was in fact built with debugging info, we need to
12988 exclude them because they would duplicate the entry we found
12989 during the special loop that specifically searches for those
12990 standard exceptions.
12991
12992 If PREG is not NULL, then this regexp_t object is used to
12993 perform the symbol name matching. Otherwise, no name-based
12994 filtering is performed.
12995
12996 EXCEPTIONS is a vector of exceptions to which matching exceptions
12997 gets pushed. */
12998
12999 static void
13000 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13001 {
13002 struct objfile *objfile;
13003 struct compunit_symtab *s;
13004
13005 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13006 VARIABLES_DOMAIN, preg);
13007
13008 ALL_COMPUNITS (objfile, s)
13009 {
13010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13011 int i;
13012
13013 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13014 {
13015 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13016 struct block_iterator iter;
13017 struct symbol *sym;
13018
13019 ALL_BLOCK_SYMBOLS (b, iter, sym)
13020 if (ada_is_non_standard_exception_sym (sym)
13021 && (preg == NULL
13022 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13023 0, NULL, 0) == 0))
13024 {
13025 struct ada_exc_info info
13026 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13027
13028 VEC_safe_push (ada_exc_info, *exceptions, &info);
13029 }
13030 }
13031 }
13032 }
13033
13034 /* Implements ada_exceptions_list with the regular expression passed
13035 as a regex_t, rather than a string.
13036
13037 If not NULL, PREG is used to filter out exceptions whose names
13038 do not match. Otherwise, all exceptions are listed. */
13039
13040 static VEC(ada_exc_info) *
13041 ada_exceptions_list_1 (regex_t *preg)
13042 {
13043 VEC(ada_exc_info) *result = NULL;
13044 struct cleanup *old_chain
13045 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13046 int prev_len;
13047
13048 /* First, list the known standard exceptions. These exceptions
13049 need to be handled separately, as they are usually defined in
13050 runtime units that have been compiled without debugging info. */
13051
13052 ada_add_standard_exceptions (preg, &result);
13053
13054 /* Next, find all exceptions whose scope is local and accessible
13055 from the currently selected frame. */
13056
13057 if (has_stack_frames ())
13058 {
13059 prev_len = VEC_length (ada_exc_info, result);
13060 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13061 &result);
13062 if (VEC_length (ada_exc_info, result) > prev_len)
13063 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13064 }
13065
13066 /* Add all exceptions whose scope is global. */
13067
13068 prev_len = VEC_length (ada_exc_info, result);
13069 ada_add_global_exceptions (preg, &result);
13070 if (VEC_length (ada_exc_info, result) > prev_len)
13071 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13072
13073 discard_cleanups (old_chain);
13074 return result;
13075 }
13076
13077 /* Return a vector of ada_exc_info.
13078
13079 If REGEXP is NULL, all exceptions are included in the result.
13080 Otherwise, it should contain a valid regular expression,
13081 and only the exceptions whose names match that regular expression
13082 are included in the result.
13083
13084 The exceptions are sorted in the following order:
13085 - Standard exceptions (defined by the Ada language), in
13086 alphabetical order;
13087 - Exceptions only visible from the current frame, in
13088 alphabetical order;
13089 - Exceptions whose scope is global, in alphabetical order. */
13090
13091 VEC(ada_exc_info) *
13092 ada_exceptions_list (const char *regexp)
13093 {
13094 VEC(ada_exc_info) *result = NULL;
13095 struct cleanup *old_chain = NULL;
13096 regex_t reg;
13097
13098 if (regexp != NULL)
13099 old_chain = compile_rx_or_error (&reg, regexp,
13100 _("invalid regular expression"));
13101
13102 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13103
13104 if (old_chain != NULL)
13105 do_cleanups (old_chain);
13106 return result;
13107 }
13108
13109 /* Implement the "info exceptions" command. */
13110
13111 static void
13112 info_exceptions_command (char *regexp, int from_tty)
13113 {
13114 VEC(ada_exc_info) *exceptions;
13115 struct cleanup *cleanup;
13116 struct gdbarch *gdbarch = get_current_arch ();
13117 int ix;
13118 struct ada_exc_info *info;
13119
13120 exceptions = ada_exceptions_list (regexp);
13121 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13122
13123 if (regexp != NULL)
13124 printf_filtered
13125 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13126 else
13127 printf_filtered (_("All defined Ada exceptions:\n"));
13128
13129 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13130 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13131
13132 do_cleanups (cleanup);
13133 }
13134
13135 /* Operators */
13136 /* Information about operators given special treatment in functions
13137 below. */
13138 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13139
13140 #define ADA_OPERATORS \
13141 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13142 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13143 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13144 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13145 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13146 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13147 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13148 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13149 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13150 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13151 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13152 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13153 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13154 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13155 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13156 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13157 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13158 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13159 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13160
13161 static void
13162 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13163 int *argsp)
13164 {
13165 switch (exp->elts[pc - 1].opcode)
13166 {
13167 default:
13168 operator_length_standard (exp, pc, oplenp, argsp);
13169 break;
13170
13171 #define OP_DEFN(op, len, args, binop) \
13172 case op: *oplenp = len; *argsp = args; break;
13173 ADA_OPERATORS;
13174 #undef OP_DEFN
13175
13176 case OP_AGGREGATE:
13177 *oplenp = 3;
13178 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13179 break;
13180
13181 case OP_CHOICES:
13182 *oplenp = 3;
13183 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13184 break;
13185 }
13186 }
13187
13188 /* Implementation of the exp_descriptor method operator_check. */
13189
13190 static int
13191 ada_operator_check (struct expression *exp, int pos,
13192 int (*objfile_func) (struct objfile *objfile, void *data),
13193 void *data)
13194 {
13195 const union exp_element *const elts = exp->elts;
13196 struct type *type = NULL;
13197
13198 switch (elts[pos].opcode)
13199 {
13200 case UNOP_IN_RANGE:
13201 case UNOP_QUAL:
13202 type = elts[pos + 1].type;
13203 break;
13204
13205 default:
13206 return operator_check_standard (exp, pos, objfile_func, data);
13207 }
13208
13209 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13210
13211 if (type && TYPE_OBJFILE (type)
13212 && (*objfile_func) (TYPE_OBJFILE (type), data))
13213 return 1;
13214
13215 return 0;
13216 }
13217
13218 static char *
13219 ada_op_name (enum exp_opcode opcode)
13220 {
13221 switch (opcode)
13222 {
13223 default:
13224 return op_name_standard (opcode);
13225
13226 #define OP_DEFN(op, len, args, binop) case op: return #op;
13227 ADA_OPERATORS;
13228 #undef OP_DEFN
13229
13230 case OP_AGGREGATE:
13231 return "OP_AGGREGATE";
13232 case OP_CHOICES:
13233 return "OP_CHOICES";
13234 case OP_NAME:
13235 return "OP_NAME";
13236 }
13237 }
13238
13239 /* As for operator_length, but assumes PC is pointing at the first
13240 element of the operator, and gives meaningful results only for the
13241 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13242
13243 static void
13244 ada_forward_operator_length (struct expression *exp, int pc,
13245 int *oplenp, int *argsp)
13246 {
13247 switch (exp->elts[pc].opcode)
13248 {
13249 default:
13250 *oplenp = *argsp = 0;
13251 break;
13252
13253 #define OP_DEFN(op, len, args, binop) \
13254 case op: *oplenp = len; *argsp = args; break;
13255 ADA_OPERATORS;
13256 #undef OP_DEFN
13257
13258 case OP_AGGREGATE:
13259 *oplenp = 3;
13260 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13261 break;
13262
13263 case OP_CHOICES:
13264 *oplenp = 3;
13265 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13266 break;
13267
13268 case OP_STRING:
13269 case OP_NAME:
13270 {
13271 int len = longest_to_int (exp->elts[pc + 1].longconst);
13272
13273 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13274 *argsp = 0;
13275 break;
13276 }
13277 }
13278 }
13279
13280 static int
13281 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13282 {
13283 enum exp_opcode op = exp->elts[elt].opcode;
13284 int oplen, nargs;
13285 int pc = elt;
13286 int i;
13287
13288 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13289
13290 switch (op)
13291 {
13292 /* Ada attributes ('Foo). */
13293 case OP_ATR_FIRST:
13294 case OP_ATR_LAST:
13295 case OP_ATR_LENGTH:
13296 case OP_ATR_IMAGE:
13297 case OP_ATR_MAX:
13298 case OP_ATR_MIN:
13299 case OP_ATR_MODULUS:
13300 case OP_ATR_POS:
13301 case OP_ATR_SIZE:
13302 case OP_ATR_TAG:
13303 case OP_ATR_VAL:
13304 break;
13305
13306 case UNOP_IN_RANGE:
13307 case UNOP_QUAL:
13308 /* XXX: gdb_sprint_host_address, type_sprint */
13309 fprintf_filtered (stream, _("Type @"));
13310 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13311 fprintf_filtered (stream, " (");
13312 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13313 fprintf_filtered (stream, ")");
13314 break;
13315 case BINOP_IN_BOUNDS:
13316 fprintf_filtered (stream, " (%d)",
13317 longest_to_int (exp->elts[pc + 2].longconst));
13318 break;
13319 case TERNOP_IN_RANGE:
13320 break;
13321
13322 case OP_AGGREGATE:
13323 case OP_OTHERS:
13324 case OP_DISCRETE_RANGE:
13325 case OP_POSITIONAL:
13326 case OP_CHOICES:
13327 break;
13328
13329 case OP_NAME:
13330 case OP_STRING:
13331 {
13332 char *name = &exp->elts[elt + 2].string;
13333 int len = longest_to_int (exp->elts[elt + 1].longconst);
13334
13335 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13336 break;
13337 }
13338
13339 default:
13340 return dump_subexp_body_standard (exp, stream, elt);
13341 }
13342
13343 elt += oplen;
13344 for (i = 0; i < nargs; i += 1)
13345 elt = dump_subexp (exp, stream, elt);
13346
13347 return elt;
13348 }
13349
13350 /* The Ada extension of print_subexp (q.v.). */
13351
13352 static void
13353 ada_print_subexp (struct expression *exp, int *pos,
13354 struct ui_file *stream, enum precedence prec)
13355 {
13356 int oplen, nargs, i;
13357 int pc = *pos;
13358 enum exp_opcode op = exp->elts[pc].opcode;
13359
13360 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13361
13362 *pos += oplen;
13363 switch (op)
13364 {
13365 default:
13366 *pos -= oplen;
13367 print_subexp_standard (exp, pos, stream, prec);
13368 return;
13369
13370 case OP_VAR_VALUE:
13371 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13372 return;
13373
13374 case BINOP_IN_BOUNDS:
13375 /* XXX: sprint_subexp */
13376 print_subexp (exp, pos, stream, PREC_SUFFIX);
13377 fputs_filtered (" in ", stream);
13378 print_subexp (exp, pos, stream, PREC_SUFFIX);
13379 fputs_filtered ("'range", stream);
13380 if (exp->elts[pc + 1].longconst > 1)
13381 fprintf_filtered (stream, "(%ld)",
13382 (long) exp->elts[pc + 1].longconst);
13383 return;
13384
13385 case TERNOP_IN_RANGE:
13386 if (prec >= PREC_EQUAL)
13387 fputs_filtered ("(", stream);
13388 /* XXX: sprint_subexp */
13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
13390 fputs_filtered (" in ", stream);
13391 print_subexp (exp, pos, stream, PREC_EQUAL);
13392 fputs_filtered (" .. ", stream);
13393 print_subexp (exp, pos, stream, PREC_EQUAL);
13394 if (prec >= PREC_EQUAL)
13395 fputs_filtered (")", stream);
13396 return;
13397
13398 case OP_ATR_FIRST:
13399 case OP_ATR_LAST:
13400 case OP_ATR_LENGTH:
13401 case OP_ATR_IMAGE:
13402 case OP_ATR_MAX:
13403 case OP_ATR_MIN:
13404 case OP_ATR_MODULUS:
13405 case OP_ATR_POS:
13406 case OP_ATR_SIZE:
13407 case OP_ATR_TAG:
13408 case OP_ATR_VAL:
13409 if (exp->elts[*pos].opcode == OP_TYPE)
13410 {
13411 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13412 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13413 &type_print_raw_options);
13414 *pos += 3;
13415 }
13416 else
13417 print_subexp (exp, pos, stream, PREC_SUFFIX);
13418 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13419 if (nargs > 1)
13420 {
13421 int tem;
13422
13423 for (tem = 1; tem < nargs; tem += 1)
13424 {
13425 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13426 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13427 }
13428 fputs_filtered (")", stream);
13429 }
13430 return;
13431
13432 case UNOP_QUAL:
13433 type_print (exp->elts[pc + 1].type, "", stream, 0);
13434 fputs_filtered ("'(", stream);
13435 print_subexp (exp, pos, stream, PREC_PREFIX);
13436 fputs_filtered (")", stream);
13437 return;
13438
13439 case UNOP_IN_RANGE:
13440 /* XXX: sprint_subexp */
13441 print_subexp (exp, pos, stream, PREC_SUFFIX);
13442 fputs_filtered (" in ", stream);
13443 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13444 &type_print_raw_options);
13445 return;
13446
13447 case OP_DISCRETE_RANGE:
13448 print_subexp (exp, pos, stream, PREC_SUFFIX);
13449 fputs_filtered ("..", stream);
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 return;
13452
13453 case OP_OTHERS:
13454 fputs_filtered ("others => ", stream);
13455 print_subexp (exp, pos, stream, PREC_SUFFIX);
13456 return;
13457
13458 case OP_CHOICES:
13459 for (i = 0; i < nargs-1; i += 1)
13460 {
13461 if (i > 0)
13462 fputs_filtered ("|", stream);
13463 print_subexp (exp, pos, stream, PREC_SUFFIX);
13464 }
13465 fputs_filtered (" => ", stream);
13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
13467 return;
13468
13469 case OP_POSITIONAL:
13470 print_subexp (exp, pos, stream, PREC_SUFFIX);
13471 return;
13472
13473 case OP_AGGREGATE:
13474 fputs_filtered ("(", stream);
13475 for (i = 0; i < nargs; i += 1)
13476 {
13477 if (i > 0)
13478 fputs_filtered (", ", stream);
13479 print_subexp (exp, pos, stream, PREC_SUFFIX);
13480 }
13481 fputs_filtered (")", stream);
13482 return;
13483 }
13484 }
13485
13486 /* Table mapping opcodes into strings for printing operators
13487 and precedences of the operators. */
13488
13489 static const struct op_print ada_op_print_tab[] = {
13490 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13491 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13492 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13493 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13494 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13495 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13496 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13497 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13498 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13499 {">=", BINOP_GEQ, PREC_ORDER, 0},
13500 {">", BINOP_GTR, PREC_ORDER, 0},
13501 {"<", BINOP_LESS, PREC_ORDER, 0},
13502 {">>", BINOP_RSH, PREC_SHIFT, 0},
13503 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13504 {"+", BINOP_ADD, PREC_ADD, 0},
13505 {"-", BINOP_SUB, PREC_ADD, 0},
13506 {"&", BINOP_CONCAT, PREC_ADD, 0},
13507 {"*", BINOP_MUL, PREC_MUL, 0},
13508 {"/", BINOP_DIV, PREC_MUL, 0},
13509 {"rem", BINOP_REM, PREC_MUL, 0},
13510 {"mod", BINOP_MOD, PREC_MUL, 0},
13511 {"**", BINOP_EXP, PREC_REPEAT, 0},
13512 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13513 {"-", UNOP_NEG, PREC_PREFIX, 0},
13514 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13515 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13516 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13517 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13518 {".all", UNOP_IND, PREC_SUFFIX, 1},
13519 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13520 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13521 {NULL, 0, 0, 0}
13522 };
13523 \f
13524 enum ada_primitive_types {
13525 ada_primitive_type_int,
13526 ada_primitive_type_long,
13527 ada_primitive_type_short,
13528 ada_primitive_type_char,
13529 ada_primitive_type_float,
13530 ada_primitive_type_double,
13531 ada_primitive_type_void,
13532 ada_primitive_type_long_long,
13533 ada_primitive_type_long_double,
13534 ada_primitive_type_natural,
13535 ada_primitive_type_positive,
13536 ada_primitive_type_system_address,
13537 nr_ada_primitive_types
13538 };
13539
13540 static void
13541 ada_language_arch_info (struct gdbarch *gdbarch,
13542 struct language_arch_info *lai)
13543 {
13544 const struct builtin_type *builtin = builtin_type (gdbarch);
13545
13546 lai->primitive_type_vector
13547 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13548 struct type *);
13549
13550 lai->primitive_type_vector [ada_primitive_type_int]
13551 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13552 0, "integer");
13553 lai->primitive_type_vector [ada_primitive_type_long]
13554 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13555 0, "long_integer");
13556 lai->primitive_type_vector [ada_primitive_type_short]
13557 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13558 0, "short_integer");
13559 lai->string_char_type
13560 = lai->primitive_type_vector [ada_primitive_type_char]
13561 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13562 lai->primitive_type_vector [ada_primitive_type_float]
13563 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13564 "float", NULL);
13565 lai->primitive_type_vector [ada_primitive_type_double]
13566 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13567 "long_float", NULL);
13568 lai->primitive_type_vector [ada_primitive_type_long_long]
13569 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13570 0, "long_long_integer");
13571 lai->primitive_type_vector [ada_primitive_type_long_double]
13572 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13573 "long_long_float", NULL);
13574 lai->primitive_type_vector [ada_primitive_type_natural]
13575 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13576 0, "natural");
13577 lai->primitive_type_vector [ada_primitive_type_positive]
13578 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13579 0, "positive");
13580 lai->primitive_type_vector [ada_primitive_type_void]
13581 = builtin->builtin_void;
13582
13583 lai->primitive_type_vector [ada_primitive_type_system_address]
13584 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13585 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13586 = "system__address";
13587
13588 lai->bool_type_symbol = NULL;
13589 lai->bool_type_default = builtin->builtin_bool;
13590 }
13591 \f
13592 /* Language vector */
13593
13594 /* Not really used, but needed in the ada_language_defn. */
13595
13596 static void
13597 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13598 {
13599 ada_emit_char (c, type, stream, quoter, 1);
13600 }
13601
13602 static int
13603 parse (struct parser_state *ps)
13604 {
13605 warnings_issued = 0;
13606 return ada_parse (ps);
13607 }
13608
13609 static const struct exp_descriptor ada_exp_descriptor = {
13610 ada_print_subexp,
13611 ada_operator_length,
13612 ada_operator_check,
13613 ada_op_name,
13614 ada_dump_subexp_body,
13615 ada_evaluate_subexp
13616 };
13617
13618 /* Implement the "la_get_symbol_name_cmp" language_defn method
13619 for Ada. */
13620
13621 static symbol_name_cmp_ftype
13622 ada_get_symbol_name_cmp (const char *lookup_name)
13623 {
13624 if (should_use_wild_match (lookup_name))
13625 return wild_match;
13626 else
13627 return compare_names;
13628 }
13629
13630 /* Implement the "la_read_var_value" language_defn method for Ada. */
13631
13632 static struct value *
13633 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13634 {
13635 const struct block *frame_block = NULL;
13636 struct symbol *renaming_sym = NULL;
13637
13638 /* The only case where default_read_var_value is not sufficient
13639 is when VAR is a renaming... */
13640 if (frame)
13641 frame_block = get_frame_block (frame, NULL);
13642 if (frame_block)
13643 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13644 if (renaming_sym != NULL)
13645 return ada_read_renaming_var_value (renaming_sym, frame_block);
13646
13647 /* This is a typical case where we expect the default_read_var_value
13648 function to work. */
13649 return default_read_var_value (var, frame);
13650 }
13651
13652 const struct language_defn ada_language_defn = {
13653 "ada", /* Language name */
13654 "Ada",
13655 language_ada,
13656 range_check_off,
13657 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13658 that's not quite what this means. */
13659 array_row_major,
13660 macro_expansion_no,
13661 &ada_exp_descriptor,
13662 parse,
13663 ada_error,
13664 resolve,
13665 ada_printchar, /* Print a character constant */
13666 ada_printstr, /* Function to print string constant */
13667 emit_char, /* Function to print single char (not used) */
13668 ada_print_type, /* Print a type using appropriate syntax */
13669 ada_print_typedef, /* Print a typedef using appropriate syntax */
13670 ada_val_print, /* Print a value using appropriate syntax */
13671 ada_value_print, /* Print a top-level value */
13672 ada_read_var_value, /* la_read_var_value */
13673 NULL, /* Language specific skip_trampoline */
13674 NULL, /* name_of_this */
13675 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13676 basic_lookup_transparent_type, /* lookup_transparent_type */
13677 ada_la_decode, /* Language specific symbol demangler */
13678 NULL, /* Language specific
13679 class_name_from_physname */
13680 ada_op_print_tab, /* expression operators for printing */
13681 0, /* c-style arrays */
13682 1, /* String lower bound */
13683 ada_get_gdb_completer_word_break_characters,
13684 ada_make_symbol_completion_list,
13685 ada_language_arch_info,
13686 ada_print_array_index,
13687 default_pass_by_reference,
13688 c_get_string,
13689 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13690 ada_iterate_over_symbols,
13691 &ada_varobj_ops,
13692 NULL,
13693 NULL,
13694 LANG_MAGIC
13695 };
13696
13697 /* Provide a prototype to silence -Wmissing-prototypes. */
13698 extern initialize_file_ftype _initialize_ada_language;
13699
13700 /* Command-list for the "set/show ada" prefix command. */
13701 static struct cmd_list_element *set_ada_list;
13702 static struct cmd_list_element *show_ada_list;
13703
13704 /* Implement the "set ada" prefix command. */
13705
13706 static void
13707 set_ada_command (char *arg, int from_tty)
13708 {
13709 printf_unfiltered (_(\
13710 "\"set ada\" must be followed by the name of a setting.\n"));
13711 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13712 }
13713
13714 /* Implement the "show ada" prefix command. */
13715
13716 static void
13717 show_ada_command (char *args, int from_tty)
13718 {
13719 cmd_show_list (show_ada_list, from_tty, "");
13720 }
13721
13722 static void
13723 initialize_ada_catchpoint_ops (void)
13724 {
13725 struct breakpoint_ops *ops;
13726
13727 initialize_breakpoint_ops ();
13728
13729 ops = &catch_exception_breakpoint_ops;
13730 *ops = bkpt_breakpoint_ops;
13731 ops->dtor = dtor_catch_exception;
13732 ops->allocate_location = allocate_location_catch_exception;
13733 ops->re_set = re_set_catch_exception;
13734 ops->check_status = check_status_catch_exception;
13735 ops->print_it = print_it_catch_exception;
13736 ops->print_one = print_one_catch_exception;
13737 ops->print_mention = print_mention_catch_exception;
13738 ops->print_recreate = print_recreate_catch_exception;
13739
13740 ops = &catch_exception_unhandled_breakpoint_ops;
13741 *ops = bkpt_breakpoint_ops;
13742 ops->dtor = dtor_catch_exception_unhandled;
13743 ops->allocate_location = allocate_location_catch_exception_unhandled;
13744 ops->re_set = re_set_catch_exception_unhandled;
13745 ops->check_status = check_status_catch_exception_unhandled;
13746 ops->print_it = print_it_catch_exception_unhandled;
13747 ops->print_one = print_one_catch_exception_unhandled;
13748 ops->print_mention = print_mention_catch_exception_unhandled;
13749 ops->print_recreate = print_recreate_catch_exception_unhandled;
13750
13751 ops = &catch_assert_breakpoint_ops;
13752 *ops = bkpt_breakpoint_ops;
13753 ops->dtor = dtor_catch_assert;
13754 ops->allocate_location = allocate_location_catch_assert;
13755 ops->re_set = re_set_catch_assert;
13756 ops->check_status = check_status_catch_assert;
13757 ops->print_it = print_it_catch_assert;
13758 ops->print_one = print_one_catch_assert;
13759 ops->print_mention = print_mention_catch_assert;
13760 ops->print_recreate = print_recreate_catch_assert;
13761 }
13762
13763 /* This module's 'new_objfile' observer. */
13764
13765 static void
13766 ada_new_objfile_observer (struct objfile *objfile)
13767 {
13768 ada_clear_symbol_cache ();
13769 }
13770
13771 /* This module's 'free_objfile' observer. */
13772
13773 static void
13774 ada_free_objfile_observer (struct objfile *objfile)
13775 {
13776 ada_clear_symbol_cache ();
13777 }
13778
13779 void
13780 _initialize_ada_language (void)
13781 {
13782 add_language (&ada_language_defn);
13783
13784 initialize_ada_catchpoint_ops ();
13785
13786 add_prefix_cmd ("ada", no_class, set_ada_command,
13787 _("Prefix command for changing Ada-specfic settings"),
13788 &set_ada_list, "set ada ", 0, &setlist);
13789
13790 add_prefix_cmd ("ada", no_class, show_ada_command,
13791 _("Generic command for showing Ada-specific settings."),
13792 &show_ada_list, "show ada ", 0, &showlist);
13793
13794 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13795 &trust_pad_over_xvs, _("\
13796 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13797 Show whether an optimization trusting PAD types over XVS types is activated"),
13798 _("\
13799 This is related to the encoding used by the GNAT compiler. The debugger\n\
13800 should normally trust the contents of PAD types, but certain older versions\n\
13801 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13802 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13803 work around this bug. It is always safe to turn this option \"off\", but\n\
13804 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13805 this option to \"off\" unless necessary."),
13806 NULL, NULL, &set_ada_list, &show_ada_list);
13807
13808 add_catch_command ("exception", _("\
13809 Catch Ada exceptions, when raised.\n\
13810 With an argument, catch only exceptions with the given name."),
13811 catch_ada_exception_command,
13812 NULL,
13813 CATCH_PERMANENT,
13814 CATCH_TEMPORARY);
13815 add_catch_command ("assert", _("\
13816 Catch failed Ada assertions, when raised.\n\
13817 With an argument, catch only exceptions with the given name."),
13818 catch_assert_command,
13819 NULL,
13820 CATCH_PERMANENT,
13821 CATCH_TEMPORARY);
13822
13823 varsize_limit = 65536;
13824
13825 add_info ("exceptions", info_exceptions_command,
13826 _("\
13827 List all Ada exception names.\n\
13828 If a regular expression is passed as an argument, only those matching\n\
13829 the regular expression are listed."));
13830
13831 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13832 _("Set Ada maintenance-related variables."),
13833 &maint_set_ada_cmdlist, "maintenance set ada ",
13834 0/*allow-unknown*/, &maintenance_set_cmdlist);
13835
13836 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13837 _("Show Ada maintenance-related variables"),
13838 &maint_show_ada_cmdlist, "maintenance show ada ",
13839 0/*allow-unknown*/, &maintenance_show_cmdlist);
13840
13841 add_setshow_boolean_cmd
13842 ("ignore-descriptive-types", class_maintenance,
13843 &ada_ignore_descriptive_types_p,
13844 _("Set whether descriptive types generated by GNAT should be ignored."),
13845 _("Show whether descriptive types generated by GNAT should be ignored."),
13846 _("\
13847 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13848 DWARF attribute."),
13849 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13850
13851 obstack_init (&symbol_list_obstack);
13852
13853 decoded_names_store = htab_create_alloc
13854 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13855 NULL, xcalloc, xfree);
13856
13857 /* The ada-lang observers. */
13858 observer_attach_new_objfile (ada_new_objfile_observer);
13859 observer_attach_free_objfile (ada_free_objfile_observer);
13860 observer_attach_inferior_exit (ada_inferior_exit);
13861
13862 /* Setup various context-specific data. */
13863 ada_inferior_data
13864 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13865 ada_pspace_data_handle
13866 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13867 }
This page took 0.329944 seconds and 4 git commands to generate.