1 /* Ada language support routines for GDB, the GNU debugger. Copyright
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include "gdb_string.h"
29 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "parser-defs.h"
41 #include "breakpoint.h"
44 #include "gdb_obstack.h"
46 #include "completer.h"
53 #include "dictionary.h"
54 #include "exceptions.h"
56 #ifndef ADA_RETAIN_DOTS
57 #define ADA_RETAIN_DOTS 0
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 static void extract_string (CORE_ADDR addr
, char *buf
);
71 static struct type
*ada_create_fundamental_type (struct objfile
*, int);
73 static void modify_general_field (char *, LONGEST
, int, int);
75 static struct type
*desc_base_type (struct type
*);
77 static struct type
*desc_bounds_type (struct type
*);
79 static struct value
*desc_bounds (struct value
*);
81 static int fat_pntr_bounds_bitpos (struct type
*);
83 static int fat_pntr_bounds_bitsize (struct type
*);
85 static struct type
*desc_data_type (struct type
*);
87 static struct value
*desc_data (struct value
*);
89 static int fat_pntr_data_bitpos (struct type
*);
91 static int fat_pntr_data_bitsize (struct type
*);
93 static struct value
*desc_one_bound (struct value
*, int, int);
95 static int desc_bound_bitpos (struct type
*, int, int);
97 static int desc_bound_bitsize (struct type
*, int, int);
99 static struct type
*desc_index_type (struct type
*, int);
101 static int desc_arity (struct type
*);
103 static int ada_type_match (struct type
*, struct type
*, int);
105 static int ada_args_match (struct symbol
*, struct value
**, int);
107 static struct value
*ensure_lval (struct value
*, CORE_ADDR
*);
109 static struct value
*convert_actual (struct value
*, struct type
*,
112 static struct value
*make_array_descriptor (struct type
*, struct value
*,
115 static void ada_add_block_symbols (struct obstack
*,
116 struct block
*, const char *,
117 domain_enum
, struct objfile
*,
118 struct symtab
*, int);
120 static int is_nonfunction (struct ada_symbol_info
*, int);
122 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
123 struct block
*, struct symtab
*);
125 static int num_defns_collected (struct obstack
*);
127 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
129 static struct partial_symbol
*ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
133 static struct symtab
*symtab_for_sym (struct symbol
*);
135 static struct value
*resolve_subexp (struct expression
**, int *, int,
138 static void replace_operator_with_call (struct expression
**, int, int, int,
139 struct symbol
*, struct block
*);
141 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
143 static char *ada_op_name (enum exp_opcode
);
145 static const char *ada_decoded_op_name (enum exp_opcode
);
147 static int numeric_type_p (struct type
*);
149 static int integer_type_p (struct type
*);
151 static int scalar_type_p (struct type
*);
153 static int discrete_type_p (struct type
*);
155 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
158 static struct value
*evaluate_subexp (struct type
*, struct expression
*,
161 static struct value
*evaluate_subexp_type (struct expression
*, int *);
163 static int is_dynamic_field (struct type
*, int);
165 static struct type
*to_fixed_variant_branch_type (struct type
*,
167 CORE_ADDR
, struct value
*);
169 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
171 static struct type
*to_fixed_range_type (char *, struct value
*,
174 static struct type
*to_static_fixed_type (struct type
*);
176 static struct value
*unwrap_value (struct value
*);
178 static struct type
*packed_array_type (struct type
*, long *);
180 static struct type
*decode_packed_array_type (struct type
*);
182 static struct value
*decode_packed_array (struct value
*);
184 static struct value
*value_subscript_packed (struct value
*, int,
187 static struct value
*coerce_unspec_val_to_type (struct value
*,
190 static struct value
*get_var_value (char *, char *);
192 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
194 static int equiv_types (struct type
*, struct type
*);
196 static int is_name_suffix (const char *);
198 static int wild_match (const char *, int, const char *);
200 static struct value
*ada_coerce_ref (struct value
*);
202 static LONGEST
pos_atr (struct value
*);
204 static struct value
*value_pos_atr (struct value
*);
206 static struct value
*value_val_atr (struct type
*, struct value
*);
208 static struct symbol
*standard_lookup (const char *, const struct block
*,
211 static struct value
*ada_search_struct_field (char *, struct value
*, int,
214 static struct value
*ada_value_primitive_field (struct value
*, int, int,
217 static int find_struct_field (char *, struct type
*, int,
218 struct type
**, int *, int *, int *);
220 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
223 static struct value
*ada_to_fixed_value (struct value
*);
225 static int ada_resolve_function (struct ada_symbol_info
*, int,
226 struct value
**, int, const char *,
229 static struct value
*ada_coerce_to_simple_array (struct value
*);
231 static int ada_is_direct_array_type (struct type
*);
233 static void ada_language_arch_info (struct gdbarch
*,
234 struct language_arch_info
*);
236 static void check_size (const struct type
*);
240 /* Maximum-sized dynamic type. */
241 static unsigned int varsize_limit
;
243 /* FIXME: brobecker/2003-09-17: No longer a const because it is
244 returned by a function that does not return a const char *. */
245 static char *ada_completer_word_break_characters
=
247 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
249 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
252 /* The name of the symbol to use to get the name of the main subprogram. */
253 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
254 = "__gnat_ada_main_program_name";
256 /* The name of the runtime function called when an exception is raised. */
257 static const char raise_sym_name
[] = "__gnat_raise_nodefer_with_msg";
259 /* The name of the runtime function called when an unhandled exception
261 static const char raise_unhandled_sym_name
[] = "__gnat_unhandled_exception";
263 /* The name of the runtime function called when an assert failure is
265 static const char raise_assert_sym_name
[] =
266 "system__assertions__raise_assert_failure";
268 /* When GDB stops on an unhandled exception, GDB will go up the stack until
269 if finds a frame corresponding to this function, in order to extract the
270 name of the exception that has been raised from one of the parameters. */
271 static const char process_raise_exception_name
[] =
272 "ada__exceptions__process_raise_exception";
274 /* A string that reflects the longest exception expression rewrite,
275 aside from the exception name. */
276 static const char longest_exception_template
[] =
277 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
279 /* Limit on the number of warnings to raise per expression evaluation. */
280 static int warning_limit
= 2;
282 /* Number of warning messages issued; reset to 0 by cleanups after
283 expression evaluation. */
284 static int warnings_issued
= 0;
286 static const char *known_runtime_file_name_patterns
[] = {
287 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
290 static const char *known_auxiliary_function_name_patterns
[] = {
291 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
294 /* Space for allocating results of ada_lookup_symbol_list. */
295 static struct obstack symbol_list_obstack
;
301 ada_get_gdb_completer_word_break_characters (void)
303 return ada_completer_word_break_characters
;
306 /* Read the string located at ADDR from the inferior and store the
310 extract_string (CORE_ADDR addr
, char *buf
)
314 /* Loop, reading one byte at a time, until we reach the '\000'
315 end-of-string marker. */
318 target_read_memory (addr
+ char_index
* sizeof (char),
319 buf
+ char_index
* sizeof (char), sizeof (char));
322 while (buf
[char_index
- 1] != '\000');
325 /* Assuming VECT points to an array of *SIZE objects of size
326 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
327 updating *SIZE as necessary and returning the (new) array. */
330 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
332 if (*size
< min_size
)
335 if (*size
< min_size
)
337 vect
= xrealloc (vect
, *size
* element_size
);
342 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
343 suffix of FIELD_NAME beginning "___". */
346 field_name_match (const char *field_name
, const char *target
)
348 int len
= strlen (target
);
350 (strncmp (field_name
, target
, len
) == 0
351 && (field_name
[len
] == '\0'
352 || (strncmp (field_name
+ len
, "___", 3) == 0
353 && strcmp (field_name
+ strlen (field_name
) - 6,
358 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
359 FIELD_NAME, and return its index. This function also handles fields
360 whose name have ___ suffixes because the compiler sometimes alters
361 their name by adding such a suffix to represent fields with certain
362 constraints. If the field could not be found, return a negative
363 number if MAYBE_MISSING is set. Otherwise raise an error. */
366 ada_get_field_index (const struct type
*type
, const char *field_name
,
370 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (type
); fieldno
++)
371 if (field_name_match (TYPE_FIELD_NAME (type
, fieldno
), field_name
))
375 error (_("Unable to find field %s in struct %s. Aborting"),
376 field_name
, TYPE_NAME (type
));
381 /* The length of the prefix of NAME prior to any "___" suffix. */
384 ada_name_prefix_len (const char *name
)
390 const char *p
= strstr (name
, "___");
392 return strlen (name
);
398 /* Return non-zero if SUFFIX is a suffix of STR.
399 Return zero if STR is null. */
402 is_suffix (const char *str
, const char *suffix
)
408 len2
= strlen (suffix
);
409 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
412 /* Create a value of type TYPE whose contents come from VALADDR, if it
413 is non-null, and whose memory address (in the inferior) is
417 value_from_contents_and_address (struct type
*type
,
418 const bfd_byte
*valaddr
,
421 struct value
*v
= allocate_value (type
);
423 set_value_lazy (v
, 1);
425 memcpy (value_contents_raw (v
), valaddr
, TYPE_LENGTH (type
));
426 VALUE_ADDRESS (v
) = address
;
428 VALUE_LVAL (v
) = lval_memory
;
432 /* The contents of value VAL, treated as a value of type TYPE. The
433 result is an lval in memory if VAL is. */
435 static struct value
*
436 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
438 type
= ada_check_typedef (type
);
439 if (value_type (val
) == type
)
443 struct value
*result
;
445 /* Make sure that the object size is not unreasonable before
446 trying to allocate some memory for it. */
449 result
= allocate_value (type
);
450 VALUE_LVAL (result
) = VALUE_LVAL (val
);
451 set_value_bitsize (result
, value_bitsize (val
));
452 set_value_bitpos (result
, value_bitpos (val
));
453 VALUE_ADDRESS (result
) = VALUE_ADDRESS (val
) + value_offset (val
);
455 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
456 set_value_lazy (result
, 1);
458 memcpy (value_contents_raw (result
), value_contents (val
),
464 static const bfd_byte
*
465 cond_offset_host (const bfd_byte
*valaddr
, long offset
)
470 return valaddr
+ offset
;
474 cond_offset_target (CORE_ADDR address
, long offset
)
479 return address
+ offset
;
482 /* Issue a warning (as for the definition of warning in utils.c, but
483 with exactly one argument rather than ...), unless the limit on the
484 number of warnings has passed during the evaluation of the current
487 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
488 provided by "complaint". */
489 static void lim_warning (const char *format
, ...) ATTR_FORMAT (printf
, 1, 2);
492 lim_warning (const char *format
, ...)
495 va_start (args
, format
);
497 warnings_issued
+= 1;
498 if (warnings_issued
<= warning_limit
)
499 vwarning (format
, args
);
504 /* Issue an error if the size of an object of type T is unreasonable,
505 i.e. if it would be a bad idea to allocate a value of this type in
509 check_size (const struct type
*type
)
511 if (TYPE_LENGTH (type
) > varsize_limit
)
512 error (_("object size is larger than varsize-limit"));
516 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
517 gdbtypes.h, but some of the necessary definitions in that file
518 seem to have gone missing. */
520 /* Maximum value of a SIZE-byte signed integer type. */
522 max_of_size (int size
)
524 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
525 return top_bit
| (top_bit
- 1);
528 /* Minimum value of a SIZE-byte signed integer type. */
530 min_of_size (int size
)
532 return -max_of_size (size
) - 1;
535 /* Maximum value of a SIZE-byte unsigned integer type. */
537 umax_of_size (int size
)
539 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
540 return top_bit
| (top_bit
- 1);
543 /* Maximum value of integral type T, as a signed quantity. */
545 max_of_type (struct type
*t
)
547 if (TYPE_UNSIGNED (t
))
548 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
550 return max_of_size (TYPE_LENGTH (t
));
553 /* Minimum value of integral type T, as a signed quantity. */
555 min_of_type (struct type
*t
)
557 if (TYPE_UNSIGNED (t
))
560 return min_of_size (TYPE_LENGTH (t
));
563 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
564 static struct value
*
565 discrete_type_high_bound (struct type
*type
)
567 switch (TYPE_CODE (type
))
569 case TYPE_CODE_RANGE
:
570 return value_from_longest (TYPE_TARGET_TYPE (type
),
571 TYPE_HIGH_BOUND (type
));
574 value_from_longest (type
,
575 TYPE_FIELD_BITPOS (type
,
576 TYPE_NFIELDS (type
) - 1));
578 return value_from_longest (type
, max_of_type (type
));
580 error (_("Unexpected type in discrete_type_high_bound."));
584 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
585 static struct value
*
586 discrete_type_low_bound (struct type
*type
)
588 switch (TYPE_CODE (type
))
590 case TYPE_CODE_RANGE
:
591 return value_from_longest (TYPE_TARGET_TYPE (type
),
592 TYPE_LOW_BOUND (type
));
594 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, 0));
596 return value_from_longest (type
, min_of_type (type
));
598 error (_("Unexpected type in discrete_type_low_bound."));
602 /* The identity on non-range types. For range types, the underlying
603 non-range scalar type. */
606 base_type (struct type
*type
)
608 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
610 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
612 type
= TYPE_TARGET_TYPE (type
);
618 /* Language Selection */
620 /* If the main program is in Ada, return language_ada, otherwise return LANG
621 (the main program is in Ada iif the adainit symbol is found).
623 MAIN_PST is not used. */
626 ada_update_initial_language (enum language lang
,
627 struct partial_symtab
*main_pst
)
629 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
630 (struct objfile
*) NULL
) != NULL
)
636 /* If the main procedure is written in Ada, then return its name.
637 The result is good until the next call. Return NULL if the main
638 procedure doesn't appear to be in Ada. */
643 struct minimal_symbol
*msym
;
644 CORE_ADDR main_program_name_addr
;
645 static char main_program_name
[1024];
647 /* For Ada, the name of the main procedure is stored in a specific
648 string constant, generated by the binder. Look for that symbol,
649 extract its address, and then read that string. If we didn't find
650 that string, then most probably the main procedure is not written
652 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
656 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
657 if (main_program_name_addr
== 0)
658 error (_("Invalid address for Ada main program name."));
660 extract_string (main_program_name_addr
, main_program_name
);
661 return main_program_name
;
664 /* The main procedure doesn't seem to be in Ada. */
670 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
673 const struct ada_opname_map ada_opname_table
[] = {
674 {"Oadd", "\"+\"", BINOP_ADD
},
675 {"Osubtract", "\"-\"", BINOP_SUB
},
676 {"Omultiply", "\"*\"", BINOP_MUL
},
677 {"Odivide", "\"/\"", BINOP_DIV
},
678 {"Omod", "\"mod\"", BINOP_MOD
},
679 {"Orem", "\"rem\"", BINOP_REM
},
680 {"Oexpon", "\"**\"", BINOP_EXP
},
681 {"Olt", "\"<\"", BINOP_LESS
},
682 {"Ole", "\"<=\"", BINOP_LEQ
},
683 {"Ogt", "\">\"", BINOP_GTR
},
684 {"Oge", "\">=\"", BINOP_GEQ
},
685 {"Oeq", "\"=\"", BINOP_EQUAL
},
686 {"One", "\"/=\"", BINOP_NOTEQUAL
},
687 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
688 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
689 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
690 {"Oconcat", "\"&\"", BINOP_CONCAT
},
691 {"Oabs", "\"abs\"", UNOP_ABS
},
692 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
693 {"Oadd", "\"+\"", UNOP_PLUS
},
694 {"Osubtract", "\"-\"", UNOP_NEG
},
698 /* Return non-zero if STR should be suppressed in info listings. */
701 is_suppressed_name (const char *str
)
703 if (strncmp (str
, "_ada_", 5) == 0)
705 if (str
[0] == '_' || str
[0] == '\000')
710 const char *suffix
= strstr (str
, "___");
711 if (suffix
!= NULL
&& suffix
[3] != 'X')
714 suffix
= str
+ strlen (str
);
715 for (p
= suffix
- 1; p
!= str
; p
-= 1)
719 if (p
[0] == 'X' && p
[-1] != '_')
723 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
724 if (strncmp (ada_opname_table
[i
].encoded
, p
,
725 strlen (ada_opname_table
[i
].encoded
)) == 0)
734 /* The "encoded" form of DECODED, according to GNAT conventions.
735 The result is valid until the next call to ada_encode. */
738 ada_encode (const char *decoded
)
740 static char *encoding_buffer
= NULL
;
741 static size_t encoding_buffer_size
= 0;
748 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
749 2 * strlen (decoded
) + 10);
752 for (p
= decoded
; *p
!= '\0'; p
+= 1)
754 if (!ADA_RETAIN_DOTS
&& *p
== '.')
756 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
761 const struct ada_opname_map
*mapping
;
763 for (mapping
= ada_opname_table
;
764 mapping
->encoded
!= NULL
765 && strncmp (mapping
->decoded
, p
,
766 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
768 if (mapping
->encoded
== NULL
)
769 error (_("invalid Ada operator name: %s"), p
);
770 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
771 k
+= strlen (mapping
->encoded
);
776 encoding_buffer
[k
] = *p
;
781 encoding_buffer
[k
] = '\0';
782 return encoding_buffer
;
785 /* Return NAME folded to lower case, or, if surrounded by single
786 quotes, unfolded, but with the quotes stripped away. Result good
790 ada_fold_name (const char *name
)
792 static char *fold_buffer
= NULL
;
793 static size_t fold_buffer_size
= 0;
795 int len
= strlen (name
);
796 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
800 strncpy (fold_buffer
, name
+ 1, len
- 2);
801 fold_buffer
[len
- 2] = '\000';
806 for (i
= 0; i
<= len
; i
+= 1)
807 fold_buffer
[i
] = tolower (name
[i
]);
814 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
815 These are suffixes introduced by GNAT5 to nested subprogram
816 names, and do not serve any purpose for the debugger.
817 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
818 2. Convert other instances of embedded "__" to `.'.
819 3. Discard leading _ada_.
820 4. Convert operator names to the appropriate quoted symbols.
821 5. Remove everything after first ___ if it is followed by
823 6. Replace TK__ with __, and a trailing B or TKB with nothing.
824 7. Put symbols that should be suppressed in <...> brackets.
825 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
827 The resulting string is valid until the next call of ada_decode.
828 If the string is unchanged by demangling, the original string pointer
832 ada_decode (const char *encoded
)
839 static char *decoding_buffer
= NULL
;
840 static size_t decoding_buffer_size
= 0;
842 if (strncmp (encoded
, "_ada_", 5) == 0)
845 if (encoded
[0] == '_' || encoded
[0] == '<')
848 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
849 len0
= strlen (encoded
);
850 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
853 while (i
> 0 && isdigit (encoded
[i
]))
855 if (i
>= 0 && encoded
[i
] == '.')
857 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
861 /* Remove the ___X.* suffix if present. Do not forget to verify that
862 the suffix is located before the current "end" of ENCODED. We want
863 to avoid re-matching parts of ENCODED that have previously been
864 marked as discarded (by decrementing LEN0). */
865 p
= strstr (encoded
, "___");
866 if (p
!= NULL
&& p
- encoded
< len0
- 3)
874 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
877 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
880 /* Make decoded big enough for possible expansion by operator name. */
881 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
882 decoded
= decoding_buffer
;
884 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
887 while ((i
>= 0 && isdigit (encoded
[i
]))
888 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
890 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
892 else if (encoded
[i
] == '$')
896 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
897 decoded
[j
] = encoded
[i
];
902 if (at_start_name
&& encoded
[i
] == 'O')
905 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
907 int op_len
= strlen (ada_opname_table
[k
].encoded
);
908 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
910 && !isalnum (encoded
[i
+ op_len
]))
912 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
915 j
+= strlen (ada_opname_table
[k
].decoded
);
919 if (ada_opname_table
[k
].encoded
!= NULL
)
924 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
926 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
930 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
934 else if (!ADA_RETAIN_DOTS
935 && i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
944 decoded
[j
] = encoded
[i
];
951 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
952 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
955 if (strcmp (decoded
, encoded
) == 0)
961 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
962 decoded
= decoding_buffer
;
963 if (encoded
[0] == '<')
964 strcpy (decoded
, encoded
);
966 sprintf (decoded
, "<%s>", encoded
);
971 /* Table for keeping permanent unique copies of decoded names. Once
972 allocated, names in this table are never released. While this is a
973 storage leak, it should not be significant unless there are massive
974 changes in the set of decoded names in successive versions of a
975 symbol table loaded during a single session. */
976 static struct htab
*decoded_names_store
;
978 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
979 in the language-specific part of GSYMBOL, if it has not been
980 previously computed. Tries to save the decoded name in the same
981 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
982 in any case, the decoded symbol has a lifetime at least that of
984 The GSYMBOL parameter is "mutable" in the C++ sense: logically
985 const, but nevertheless modified to a semantically equivalent form
986 when a decoded name is cached in it.
990 ada_decode_symbol (const struct general_symbol_info
*gsymbol
)
993 (char **) &gsymbol
->language_specific
.cplus_specific
.demangled_name
;
994 if (*resultp
== NULL
)
996 const char *decoded
= ada_decode (gsymbol
->name
);
997 if (gsymbol
->bfd_section
!= NULL
)
999 bfd
*obfd
= gsymbol
->bfd_section
->owner
;
1002 struct objfile
*objf
;
1005 if (obfd
== objf
->obfd
)
1007 *resultp
= obsavestring (decoded
, strlen (decoded
),
1008 &objf
->objfile_obstack
);
1014 /* Sometimes, we can't find a corresponding objfile, in which
1015 case, we put the result on the heap. Since we only decode
1016 when needed, we hope this usually does not cause a
1017 significant memory leak (FIXME). */
1018 if (*resultp
== NULL
)
1020 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1023 *slot
= xstrdup (decoded
);
1032 ada_la_decode (const char *encoded
, int options
)
1034 return xstrdup (ada_decode (encoded
));
1037 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1038 suffixes that encode debugging information or leading _ada_ on
1039 SYM_NAME (see is_name_suffix commentary for the debugging
1040 information that is ignored). If WILD, then NAME need only match a
1041 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1042 either argument is NULL. */
1045 ada_match_name (const char *sym_name
, const char *name
, int wild
)
1047 if (sym_name
== NULL
|| name
== NULL
)
1050 return wild_match (name
, strlen (name
), sym_name
);
1053 int len_name
= strlen (name
);
1054 return (strncmp (sym_name
, name
, len_name
) == 0
1055 && is_name_suffix (sym_name
+ len_name
))
1056 || (strncmp (sym_name
, "_ada_", 5) == 0
1057 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1058 && is_name_suffix (sym_name
+ len_name
+ 5));
1062 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1063 suppressed in info listings. */
1066 ada_suppress_symbol_printing (struct symbol
*sym
)
1068 if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
)
1071 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym
));
1077 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1079 static char *bound_name
[] = {
1080 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1081 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1084 /* Maximum number of array dimensions we are prepared to handle. */
1086 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1088 /* Like modify_field, but allows bitpos > wordlength. */
1091 modify_general_field (char *addr
, LONGEST fieldval
, int bitpos
, int bitsize
)
1093 modify_field (addr
+ bitpos
/ 8, fieldval
, bitpos
% 8, bitsize
);
1097 /* The desc_* routines return primitive portions of array descriptors
1100 /* The descriptor or array type, if any, indicated by TYPE; removes
1101 level of indirection, if needed. */
1103 static struct type
*
1104 desc_base_type (struct type
*type
)
1108 type
= ada_check_typedef (type
);
1110 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1111 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1112 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1117 /* True iff TYPE indicates a "thin" array pointer type. */
1120 is_thin_pntr (struct type
*type
)
1123 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1124 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1127 /* The descriptor type for thin pointer type TYPE. */
1129 static struct type
*
1130 thin_descriptor_type (struct type
*type
)
1132 struct type
*base_type
= desc_base_type (type
);
1133 if (base_type
== NULL
)
1135 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1139 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1140 if (alt_type
== NULL
)
1147 /* A pointer to the array data for thin-pointer value VAL. */
1149 static struct value
*
1150 thin_data_pntr (struct value
*val
)
1152 struct type
*type
= value_type (val
);
1153 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1154 return value_cast (desc_data_type (thin_descriptor_type (type
)),
1157 return value_from_longest (desc_data_type (thin_descriptor_type (type
)),
1158 VALUE_ADDRESS (val
) + value_offset (val
));
1161 /* True iff TYPE indicates a "thick" array pointer type. */
1164 is_thick_pntr (struct type
*type
)
1166 type
= desc_base_type (type
);
1167 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1168 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1171 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1172 pointer to one, the type of its bounds data; otherwise, NULL. */
1174 static struct type
*
1175 desc_bounds_type (struct type
*type
)
1179 type
= desc_base_type (type
);
1183 else if (is_thin_pntr (type
))
1185 type
= thin_descriptor_type (type
);
1188 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1190 return ada_check_typedef (r
);
1192 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1194 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1196 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1201 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1202 one, a pointer to its bounds data. Otherwise NULL. */
1204 static struct value
*
1205 desc_bounds (struct value
*arr
)
1207 struct type
*type
= ada_check_typedef (value_type (arr
));
1208 if (is_thin_pntr (type
))
1210 struct type
*bounds_type
=
1211 desc_bounds_type (thin_descriptor_type (type
));
1214 if (desc_bounds_type
== NULL
)
1215 error (_("Bad GNAT array descriptor"));
1217 /* NOTE: The following calculation is not really kosher, but
1218 since desc_type is an XVE-encoded type (and shouldn't be),
1219 the correct calculation is a real pain. FIXME (and fix GCC). */
1220 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1221 addr
= value_as_long (arr
);
1223 addr
= VALUE_ADDRESS (arr
) + value_offset (arr
);
1226 value_from_longest (lookup_pointer_type (bounds_type
),
1227 addr
- TYPE_LENGTH (bounds_type
));
1230 else if (is_thick_pntr (type
))
1231 return value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1232 _("Bad GNAT array descriptor"));
1237 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1238 position of the field containing the address of the bounds data. */
1241 fat_pntr_bounds_bitpos (struct type
*type
)
1243 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1246 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1247 size of the field containing the address of the bounds data. */
1250 fat_pntr_bounds_bitsize (struct type
*type
)
1252 type
= desc_base_type (type
);
1254 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1255 return TYPE_FIELD_BITSIZE (type
, 1);
1257 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1260 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1261 pointer to one, the type of its array data (a
1262 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1263 ada_type_of_array to get an array type with bounds data. */
1265 static struct type
*
1266 desc_data_type (struct type
*type
)
1268 type
= desc_base_type (type
);
1270 /* NOTE: The following is bogus; see comment in desc_bounds. */
1271 if (is_thin_pntr (type
))
1272 return lookup_pointer_type
1273 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1)));
1274 else if (is_thick_pntr (type
))
1275 return lookup_struct_elt_type (type
, "P_ARRAY", 1);
1280 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1283 static struct value
*
1284 desc_data (struct value
*arr
)
1286 struct type
*type
= value_type (arr
);
1287 if (is_thin_pntr (type
))
1288 return thin_data_pntr (arr
);
1289 else if (is_thick_pntr (type
))
1290 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1291 _("Bad GNAT array descriptor"));
1297 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1298 position of the field containing the address of the data. */
1301 fat_pntr_data_bitpos (struct type
*type
)
1303 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1306 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1307 size of the field containing the address of the data. */
1310 fat_pntr_data_bitsize (struct type
*type
)
1312 type
= desc_base_type (type
);
1314 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1315 return TYPE_FIELD_BITSIZE (type
, 0);
1317 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1320 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1321 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1322 bound, if WHICH is 1. The first bound is I=1. */
1324 static struct value
*
1325 desc_one_bound (struct value
*bounds
, int i
, int which
)
1327 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1328 _("Bad GNAT array descriptor bounds"));
1331 /* If BOUNDS is an array-bounds structure type, return the bit position
1332 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1333 bound, if WHICH is 1. The first bound is I=1. */
1336 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1338 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1341 /* If BOUNDS is an array-bounds structure type, return the bit field size
1342 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1343 bound, if WHICH is 1. The first bound is I=1. */
1346 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1348 type
= desc_base_type (type
);
1350 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1351 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1353 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1356 /* If TYPE is the type of an array-bounds structure, the type of its
1357 Ith bound (numbering from 1). Otherwise, NULL. */
1359 static struct type
*
1360 desc_index_type (struct type
*type
, int i
)
1362 type
= desc_base_type (type
);
1364 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1365 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1370 /* The number of index positions in the array-bounds type TYPE.
1371 Return 0 if TYPE is NULL. */
1374 desc_arity (struct type
*type
)
1376 type
= desc_base_type (type
);
1379 return TYPE_NFIELDS (type
) / 2;
1383 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1384 an array descriptor type (representing an unconstrained array
1388 ada_is_direct_array_type (struct type
*type
)
1392 type
= ada_check_typedef (type
);
1393 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1394 || ada_is_array_descriptor_type (type
));
1397 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1400 ada_is_simple_array_type (struct type
*type
)
1404 type
= ada_check_typedef (type
);
1405 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1406 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1407 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_ARRAY
));
1410 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1413 ada_is_array_descriptor_type (struct type
*type
)
1415 struct type
*data_type
= desc_data_type (type
);
1419 type
= ada_check_typedef (type
);
1422 && ((TYPE_CODE (data_type
) == TYPE_CODE_PTR
1423 && TYPE_TARGET_TYPE (data_type
) != NULL
1424 && TYPE_CODE (TYPE_TARGET_TYPE (data_type
)) == TYPE_CODE_ARRAY
)
1425 || TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
)
1426 && desc_arity (desc_bounds_type (type
)) > 0;
1429 /* Non-zero iff type is a partially mal-formed GNAT array
1430 descriptor. FIXME: This is to compensate for some problems with
1431 debugging output from GNAT. Re-examine periodically to see if it
1435 ada_is_bogus_array_descriptor (struct type
*type
)
1439 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1440 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1441 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1442 && !ada_is_array_descriptor_type (type
);
1446 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1447 (fat pointer) returns the type of the array data described---specifically,
1448 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1449 in from the descriptor; otherwise, they are left unspecified. If
1450 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1451 returns NULL. The result is simply the type of ARR if ARR is not
1454 ada_type_of_array (struct value
*arr
, int bounds
)
1456 if (ada_is_packed_array_type (value_type (arr
)))
1457 return decode_packed_array_type (value_type (arr
));
1459 if (!ada_is_array_descriptor_type (value_type (arr
)))
1460 return value_type (arr
);
1464 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr
))));
1467 struct type
*elt_type
;
1469 struct value
*descriptor
;
1470 struct objfile
*objf
= TYPE_OBJFILE (value_type (arr
));
1472 elt_type
= ada_array_element_type (value_type (arr
), -1);
1473 arity
= ada_array_arity (value_type (arr
));
1475 if (elt_type
== NULL
|| arity
== 0)
1476 return ada_check_typedef (value_type (arr
));
1478 descriptor
= desc_bounds (arr
);
1479 if (value_as_long (descriptor
) == 0)
1483 struct type
*range_type
= alloc_type (objf
);
1484 struct type
*array_type
= alloc_type (objf
);
1485 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1486 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1489 create_range_type (range_type
, value_type (low
),
1490 (int) value_as_long (low
),
1491 (int) value_as_long (high
));
1492 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1495 return lookup_pointer_type (elt_type
);
1499 /* If ARR does not represent an array, returns ARR unchanged.
1500 Otherwise, returns either a standard GDB array with bounds set
1501 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1502 GDB array. Returns NULL if ARR is a null fat pointer. */
1505 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1507 if (ada_is_array_descriptor_type (value_type (arr
)))
1509 struct type
*arrType
= ada_type_of_array (arr
, 1);
1510 if (arrType
== NULL
)
1512 return value_cast (arrType
, value_copy (desc_data (arr
)));
1514 else if (ada_is_packed_array_type (value_type (arr
)))
1515 return decode_packed_array (arr
);
1520 /* If ARR does not represent an array, returns ARR unchanged.
1521 Otherwise, returns a standard GDB array describing ARR (which may
1522 be ARR itself if it already is in the proper form). */
1524 static struct value
*
1525 ada_coerce_to_simple_array (struct value
*arr
)
1527 if (ada_is_array_descriptor_type (value_type (arr
)))
1529 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1531 error (_("Bounds unavailable for null array pointer."));
1532 return value_ind (arrVal
);
1534 else if (ada_is_packed_array_type (value_type (arr
)))
1535 return decode_packed_array (arr
);
1540 /* If TYPE represents a GNAT array type, return it translated to an
1541 ordinary GDB array type (possibly with BITSIZE fields indicating
1542 packing). For other types, is the identity. */
1545 ada_coerce_to_simple_array_type (struct type
*type
)
1547 struct value
*mark
= value_mark ();
1548 struct value
*dummy
= value_from_longest (builtin_type_long
, 0);
1549 struct type
*result
;
1550 deprecated_set_value_type (dummy
, type
);
1551 result
= ada_type_of_array (dummy
, 0);
1552 value_free_to_mark (mark
);
1556 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1559 ada_is_packed_array_type (struct type
*type
)
1563 type
= desc_base_type (type
);
1564 type
= ada_check_typedef (type
);
1566 ada_type_name (type
) != NULL
1567 && strstr (ada_type_name (type
), "___XP") != NULL
;
1570 /* Given that TYPE is a standard GDB array type with all bounds filled
1571 in, and that the element size of its ultimate scalar constituents
1572 (that is, either its elements, or, if it is an array of arrays, its
1573 elements' elements, etc.) is *ELT_BITS, return an identical type,
1574 but with the bit sizes of its elements (and those of any
1575 constituent arrays) recorded in the BITSIZE components of its
1576 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1579 static struct type
*
1580 packed_array_type (struct type
*type
, long *elt_bits
)
1582 struct type
*new_elt_type
;
1583 struct type
*new_type
;
1584 LONGEST low_bound
, high_bound
;
1586 type
= ada_check_typedef (type
);
1587 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
1590 new_type
= alloc_type (TYPE_OBJFILE (type
));
1591 new_elt_type
= packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
1593 create_array_type (new_type
, new_elt_type
, TYPE_FIELD_TYPE (type
, 0));
1594 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
1595 TYPE_NAME (new_type
) = ada_type_name (type
);
1597 if (get_discrete_bounds (TYPE_FIELD_TYPE (type
, 0),
1598 &low_bound
, &high_bound
) < 0)
1599 low_bound
= high_bound
= 0;
1600 if (high_bound
< low_bound
)
1601 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
1604 *elt_bits
*= (high_bound
- low_bound
+ 1);
1605 TYPE_LENGTH (new_type
) =
1606 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
1609 TYPE_FLAGS (new_type
) |= TYPE_FLAG_FIXED_INSTANCE
;
1613 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1615 static struct type
*
1616 decode_packed_array_type (struct type
*type
)
1619 struct block
**blocks
;
1620 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
1621 char *name
= (char *) alloca (strlen (raw_name
) + 1);
1622 char *tail
= strstr (raw_name
, "___XP");
1623 struct type
*shadow_type
;
1627 type
= desc_base_type (type
);
1629 memcpy (name
, raw_name
, tail
- raw_name
);
1630 name
[tail
- raw_name
] = '\000';
1632 sym
= standard_lookup (name
, get_selected_block (0), VAR_DOMAIN
);
1633 if (sym
== NULL
|| SYMBOL_TYPE (sym
) == NULL
)
1635 lim_warning (_("could not find bounds information on packed array"));
1638 shadow_type
= SYMBOL_TYPE (sym
);
1640 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
1642 lim_warning (_("could not understand bounds information on packed array"));
1646 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
1649 (_("could not understand bit size information on packed array"));
1653 return packed_array_type (shadow_type
, &bits
);
1656 /* Given that ARR is a struct value *indicating a GNAT packed array,
1657 returns a simple array that denotes that array. Its type is a
1658 standard GDB array type except that the BITSIZEs of the array
1659 target types are set to the number of bits in each element, and the
1660 type length is set appropriately. */
1662 static struct value
*
1663 decode_packed_array (struct value
*arr
)
1667 arr
= ada_coerce_ref (arr
);
1668 if (TYPE_CODE (value_type (arr
)) == TYPE_CODE_PTR
)
1669 arr
= ada_value_ind (arr
);
1671 type
= decode_packed_array_type (value_type (arr
));
1674 error (_("can't unpack array"));
1678 if (BITS_BIG_ENDIAN
&& ada_is_modular_type (value_type (arr
)))
1680 /* This is a (right-justified) modular type representing a packed
1681 array with no wrapper. In order to interpret the value through
1682 the (left-justified) packed array type we just built, we must
1683 first left-justify it. */
1684 int bit_size
, bit_pos
;
1687 mod
= ada_modulus (value_type (arr
)) - 1;
1694 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
1695 arr
= ada_value_primitive_packed_val (arr
, NULL
,
1696 bit_pos
/ HOST_CHAR_BIT
,
1697 bit_pos
% HOST_CHAR_BIT
,
1702 return coerce_unspec_val_to_type (arr
, type
);
1706 /* The value of the element of packed array ARR at the ARITY indices
1707 given in IND. ARR must be a simple array. */
1709 static struct value
*
1710 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
1713 int bits
, elt_off
, bit_off
;
1714 long elt_total_bit_offset
;
1715 struct type
*elt_type
;
1719 elt_total_bit_offset
= 0;
1720 elt_type
= ada_check_typedef (value_type (arr
));
1721 for (i
= 0; i
< arity
; i
+= 1)
1723 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
1724 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
1726 (_("attempt to do packed indexing of something other than a packed array"));
1729 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
1730 LONGEST lowerbound
, upperbound
;
1733 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
1735 lim_warning (_("don't know bounds of array"));
1736 lowerbound
= upperbound
= 0;
1739 idx
= value_as_long (value_pos_atr (ind
[i
]));
1740 if (idx
< lowerbound
|| idx
> upperbound
)
1741 lim_warning (_("packed array index %ld out of bounds"), (long) idx
);
1742 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
1743 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
1744 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
1747 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
1748 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
1750 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
1752 if (VALUE_LVAL (arr
) == lval_internalvar
)
1753 VALUE_LVAL (v
) = lval_internalvar_component
;
1755 VALUE_LVAL (v
) = VALUE_LVAL (arr
);
1759 /* Non-zero iff TYPE includes negative integer values. */
1762 has_negatives (struct type
*type
)
1764 switch (TYPE_CODE (type
))
1769 return !TYPE_UNSIGNED (type
);
1770 case TYPE_CODE_RANGE
:
1771 return TYPE_LOW_BOUND (type
) < 0;
1776 /* Create a new value of type TYPE from the contents of OBJ starting
1777 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1778 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1779 assigning through the result will set the field fetched from.
1780 VALADDR is ignored unless OBJ is NULL, in which case,
1781 VALADDR+OFFSET must address the start of storage containing the
1782 packed value. The value returned in this case is never an lval.
1783 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1786 ada_value_primitive_packed_val (struct value
*obj
, const bfd_byte
*valaddr
,
1787 long offset
, int bit_offset
, int bit_size
,
1791 int src
, /* Index into the source area */
1792 targ
, /* Index into the target area */
1793 srcBitsLeft
, /* Number of source bits left to move */
1794 nsrc
, ntarg
, /* Number of source and target bytes */
1795 unusedLS
, /* Number of bits in next significant
1796 byte of source that are unused */
1797 accumSize
; /* Number of meaningful bits in accum */
1798 unsigned char *bytes
; /* First byte containing data to unpack */
1799 unsigned char *unpacked
;
1800 unsigned long accum
; /* Staging area for bits being transferred */
1802 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
1803 /* Transmit bytes from least to most significant; delta is the direction
1804 the indices move. */
1805 int delta
= BITS_BIG_ENDIAN
? -1 : 1;
1807 type
= ada_check_typedef (type
);
1811 v
= allocate_value (type
);
1812 bytes
= (unsigned char *) (valaddr
+ offset
);
1814 else if (value_lazy (obj
))
1817 VALUE_ADDRESS (obj
) + value_offset (obj
) + offset
);
1818 bytes
= (unsigned char *) alloca (len
);
1819 read_memory (VALUE_ADDRESS (v
), bytes
, len
);
1823 v
= allocate_value (type
);
1824 bytes
= (unsigned char *) value_contents (obj
) + offset
;
1829 VALUE_LVAL (v
) = VALUE_LVAL (obj
);
1830 if (VALUE_LVAL (obj
) == lval_internalvar
)
1831 VALUE_LVAL (v
) = lval_internalvar_component
;
1832 VALUE_ADDRESS (v
) = VALUE_ADDRESS (obj
) + value_offset (obj
) + offset
;
1833 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
1834 set_value_bitsize (v
, bit_size
);
1835 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
1837 VALUE_ADDRESS (v
) += 1;
1838 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
1842 set_value_bitsize (v
, bit_size
);
1843 unpacked
= (unsigned char *) value_contents (v
);
1845 srcBitsLeft
= bit_size
;
1847 ntarg
= TYPE_LENGTH (type
);
1851 memset (unpacked
, 0, TYPE_LENGTH (type
));
1854 else if (BITS_BIG_ENDIAN
)
1857 if (has_negatives (type
)
1858 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
1862 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
1865 switch (TYPE_CODE (type
))
1867 case TYPE_CODE_ARRAY
:
1868 case TYPE_CODE_UNION
:
1869 case TYPE_CODE_STRUCT
:
1870 /* Non-scalar values must be aligned at a byte boundary... */
1872 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
1873 /* ... And are placed at the beginning (most-significant) bytes
1879 targ
= TYPE_LENGTH (type
) - 1;
1885 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
1888 unusedLS
= bit_offset
;
1891 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
1898 /* Mask for removing bits of the next source byte that are not
1899 part of the value. */
1900 unsigned int unusedMSMask
=
1901 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
1903 /* Sign-extend bits for this byte. */
1904 unsigned int signMask
= sign
& ~unusedMSMask
;
1906 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
1907 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
1908 if (accumSize
>= HOST_CHAR_BIT
)
1910 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
1911 accumSize
-= HOST_CHAR_BIT
;
1912 accum
>>= HOST_CHAR_BIT
;
1916 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
1923 accum
|= sign
<< accumSize
;
1924 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
1925 accumSize
-= HOST_CHAR_BIT
;
1926 accum
>>= HOST_CHAR_BIT
;
1934 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1935 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1938 move_bits (bfd_byte
*target
, int targ_offset
, const bfd_byte
*source
,
1939 int src_offset
, int n
)
1941 unsigned int accum
, mask
;
1942 int accum_bits
, chunk_size
;
1944 target
+= targ_offset
/ HOST_CHAR_BIT
;
1945 targ_offset
%= HOST_CHAR_BIT
;
1946 source
+= src_offset
/ HOST_CHAR_BIT
;
1947 src_offset
%= HOST_CHAR_BIT
;
1948 if (BITS_BIG_ENDIAN
)
1950 accum
= (unsigned char) *source
;
1952 accum_bits
= HOST_CHAR_BIT
- src_offset
;
1957 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
1958 accum_bits
+= HOST_CHAR_BIT
;
1960 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
1963 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
1964 mask
= ((1 << chunk_size
) - 1) << unused_right
;
1967 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
1969 accum_bits
-= chunk_size
;
1976 accum
= (unsigned char) *source
>> src_offset
;
1978 accum_bits
= HOST_CHAR_BIT
- src_offset
;
1982 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
1983 accum_bits
+= HOST_CHAR_BIT
;
1985 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
1988 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
1989 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
1991 accum_bits
-= chunk_size
;
1992 accum
>>= chunk_size
;
2000 /* Store the contents of FROMVAL into the location of TOVAL.
2001 Return a new value with the location of TOVAL and contents of
2002 FROMVAL. Handles assignment into packed fields that have
2003 floating-point or non-scalar types. */
2005 static struct value
*
2006 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2008 struct type
*type
= value_type (toval
);
2009 int bits
= value_bitsize (toval
);
2011 if (!deprecated_value_modifiable (toval
))
2012 error (_("Left operand of assignment is not a modifiable lvalue."));
2014 toval
= coerce_ref (toval
);
2016 if (VALUE_LVAL (toval
) == lval_memory
2018 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2019 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2021 int len
= (value_bitpos (toval
)
2022 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2023 char *buffer
= (char *) alloca (len
);
2026 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2027 fromval
= value_cast (type
, fromval
);
2029 read_memory (VALUE_ADDRESS (toval
) + value_offset (toval
), buffer
, len
);
2030 if (BITS_BIG_ENDIAN
)
2031 move_bits (buffer
, value_bitpos (toval
),
2032 value_contents (fromval
),
2033 TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
-
2036 move_bits (buffer
, value_bitpos (toval
), value_contents (fromval
),
2038 write_memory (VALUE_ADDRESS (toval
) + value_offset (toval
), buffer
,
2041 val
= value_copy (toval
);
2042 memcpy (value_contents_raw (val
), value_contents (fromval
),
2043 TYPE_LENGTH (type
));
2044 deprecated_set_value_type (val
, type
);
2049 return value_assign (toval
, fromval
);
2053 /* The value of the element of array ARR at the ARITY indices given in IND.
2054 ARR may be either a simple array, GNAT array descriptor, or pointer
2058 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2062 struct type
*elt_type
;
2064 elt
= ada_coerce_to_simple_array (arr
);
2066 elt_type
= ada_check_typedef (value_type (elt
));
2067 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2068 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2069 return value_subscript_packed (elt
, arity
, ind
);
2071 for (k
= 0; k
< arity
; k
+= 1)
2073 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2074 error (_("too many subscripts (%d expected)"), k
);
2075 elt
= value_subscript (elt
, value_pos_atr (ind
[k
]));
2080 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2081 value of the element of *ARR at the ARITY indices given in
2082 IND. Does not read the entire array into memory. */
2085 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2090 for (k
= 0; k
< arity
; k
+= 1)
2095 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2096 error (_("too many subscripts (%d expected)"), k
);
2097 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2099 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2100 idx
= value_pos_atr (ind
[k
]);
2102 idx
= value_sub (idx
, value_from_longest (builtin_type_int
, lwb
));
2103 arr
= value_add (arr
, idx
);
2104 type
= TYPE_TARGET_TYPE (type
);
2107 return value_ind (arr
);
2110 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2111 actual type of ARRAY_PTR is ignored), returns a reference to
2112 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2113 bound of this array is LOW, as per Ada rules. */
2114 static struct value
*
2115 ada_value_slice_ptr (struct value
*array_ptr
, struct type
*type
,
2118 CORE_ADDR base
= value_as_address (array_ptr
)
2119 + ((low
- TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type
)))
2120 * TYPE_LENGTH (TYPE_TARGET_TYPE (type
)));
2121 struct type
*index_type
=
2122 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
)),
2124 struct type
*slice_type
=
2125 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2126 return value_from_pointer (lookup_reference_type (slice_type
), base
);
2130 static struct value
*
2131 ada_value_slice (struct value
*array
, int low
, int high
)
2133 struct type
*type
= value_type (array
);
2134 struct type
*index_type
=
2135 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2136 struct type
*slice_type
=
2137 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2138 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2141 /* If type is a record type in the form of a standard GNAT array
2142 descriptor, returns the number of dimensions for type. If arr is a
2143 simple array, returns the number of "array of"s that prefix its
2144 type designation. Otherwise, returns 0. */
2147 ada_array_arity (struct type
*type
)
2154 type
= desc_base_type (type
);
2157 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2158 return desc_arity (desc_bounds_type (type
));
2160 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2163 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2169 /* If TYPE is a record type in the form of a standard GNAT array
2170 descriptor or a simple array type, returns the element type for
2171 TYPE after indexing by NINDICES indices, or by all indices if
2172 NINDICES is -1. Otherwise, returns NULL. */
2175 ada_array_element_type (struct type
*type
, int nindices
)
2177 type
= desc_base_type (type
);
2179 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2182 struct type
*p_array_type
;
2184 p_array_type
= desc_data_type (type
);
2186 k
= ada_array_arity (type
);
2190 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2191 if (nindices
>= 0 && k
> nindices
)
2193 p_array_type
= TYPE_TARGET_TYPE (p_array_type
);
2194 while (k
> 0 && p_array_type
!= NULL
)
2196 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2199 return p_array_type
;
2201 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2203 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2205 type
= TYPE_TARGET_TYPE (type
);
2214 /* The type of nth index in arrays of given type (n numbering from 1).
2215 Does not examine memory. */
2218 ada_index_type (struct type
*type
, int n
)
2220 struct type
*result_type
;
2222 type
= desc_base_type (type
);
2224 if (n
> ada_array_arity (type
))
2227 if (ada_is_simple_array_type (type
))
2231 for (i
= 1; i
< n
; i
+= 1)
2232 type
= TYPE_TARGET_TYPE (type
);
2233 result_type
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, 0));
2234 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2235 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2236 perhaps stabsread.c would make more sense. */
2237 if (result_type
== NULL
|| TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2238 result_type
= builtin_type_int
;
2243 return desc_index_type (desc_bounds_type (type
), n
);
2246 /* Given that arr is an array type, returns the lower bound of the
2247 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2248 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2249 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2250 bounds type. It works for other arrays with bounds supplied by
2251 run-time quantities other than discriminants. */
2254 ada_array_bound_from_type (struct type
* arr_type
, int n
, int which
,
2255 struct type
** typep
)
2258 struct type
*index_type_desc
;
2260 if (ada_is_packed_array_type (arr_type
))
2261 arr_type
= decode_packed_array_type (arr_type
);
2263 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2266 *typep
= builtin_type_int
;
2267 return (LONGEST
) - which
;
2270 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2271 type
= TYPE_TARGET_TYPE (arr_type
);
2275 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2276 if (index_type_desc
== NULL
)
2278 struct type
*range_type
;
2279 struct type
*index_type
;
2283 type
= TYPE_TARGET_TYPE (type
);
2287 range_type
= TYPE_INDEX_TYPE (type
);
2288 index_type
= TYPE_TARGET_TYPE (range_type
);
2289 if (TYPE_CODE (index_type
) == TYPE_CODE_UNDEF
)
2290 index_type
= builtin_type_long
;
2292 *typep
= index_type
;
2294 (LONGEST
) (which
== 0
2295 ? TYPE_LOW_BOUND (range_type
)
2296 : TYPE_HIGH_BOUND (range_type
));
2300 struct type
*index_type
=
2301 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, n
- 1),
2302 NULL
, TYPE_OBJFILE (arr_type
));
2304 *typep
= TYPE_TARGET_TYPE (index_type
);
2306 (LONGEST
) (which
== 0
2307 ? TYPE_LOW_BOUND (index_type
)
2308 : TYPE_HIGH_BOUND (index_type
));
2312 /* Given that arr is an array value, returns the lower bound of the
2313 nth index (numbering from 1) if which is 0, and the upper bound if
2314 which is 1. This routine will also work for arrays with bounds
2315 supplied by run-time quantities other than discriminants. */
2318 ada_array_bound (struct value
*arr
, int n
, int which
)
2320 struct type
*arr_type
= value_type (arr
);
2322 if (ada_is_packed_array_type (arr_type
))
2323 return ada_array_bound (decode_packed_array (arr
), n
, which
);
2324 else if (ada_is_simple_array_type (arr_type
))
2327 LONGEST v
= ada_array_bound_from_type (arr_type
, n
, which
, &type
);
2328 return value_from_longest (type
, v
);
2331 return desc_one_bound (desc_bounds (arr
), n
, which
);
2334 /* Given that arr is an array value, returns the length of the
2335 nth index. This routine will also work for arrays with bounds
2336 supplied by run-time quantities other than discriminants.
2337 Does not work for arrays indexed by enumeration types with representation
2338 clauses at the moment. */
2341 ada_array_length (struct value
*arr
, int n
)
2343 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2345 if (ada_is_packed_array_type (arr_type
))
2346 return ada_array_length (decode_packed_array (arr
), n
);
2348 if (ada_is_simple_array_type (arr_type
))
2352 ada_array_bound_from_type (arr_type
, n
, 1, &type
) -
2353 ada_array_bound_from_type (arr_type
, n
, 0, NULL
) + 1;
2354 return value_from_longest (type
, v
);
2358 value_from_longest (builtin_type_int
,
2359 value_as_long (desc_one_bound (desc_bounds (arr
),
2361 - value_as_long (desc_one_bound (desc_bounds (arr
),
2365 /* An empty array whose type is that of ARR_TYPE (an array type),
2366 with bounds LOW to LOW-1. */
2368 static struct value
*
2369 empty_array (struct type
*arr_type
, int low
)
2371 struct type
*index_type
=
2372 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type
)),
2374 struct type
*elt_type
= ada_array_element_type (arr_type
, 1);
2375 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2379 /* Name resolution */
2381 /* The "decoded" name for the user-definable Ada operator corresponding
2385 ada_decoded_op_name (enum exp_opcode op
)
2389 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2391 if (ada_opname_table
[i
].op
== op
)
2392 return ada_opname_table
[i
].decoded
;
2394 error (_("Could not find operator name for opcode"));
2398 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2399 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2400 undefined namespace) and converts operators that are
2401 user-defined into appropriate function calls. If CONTEXT_TYPE is
2402 non-null, it provides a preferred result type [at the moment, only
2403 type void has any effect---causing procedures to be preferred over
2404 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2405 return type is preferred. May change (expand) *EXP. */
2408 resolve (struct expression
**expp
, int void_context_p
)
2412 resolve_subexp (expp
, &pc
, 1, void_context_p
? builtin_type_void
: NULL
);
2415 /* Resolve the operator of the subexpression beginning at
2416 position *POS of *EXPP. "Resolving" consists of replacing
2417 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2418 with their resolutions, replacing built-in operators with
2419 function calls to user-defined operators, where appropriate, and,
2420 when DEPROCEDURE_P is non-zero, converting function-valued variables
2421 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2422 are as in ada_resolve, above. */
2424 static struct value
*
2425 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2426 struct type
*context_type
)
2430 struct expression
*exp
; /* Convenience: == *expp. */
2431 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2432 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2433 int nargs
; /* Number of operands. */
2439 /* Pass one: resolve operands, saving their types and updating *pos. */
2443 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2444 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2449 resolve_subexp (expp
, pos
, 0, NULL
);
2451 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2456 resolve_subexp (expp
, pos
, 1, exp
->elts
[pc
+ 1].type
);
2461 resolve_subexp (expp
, pos
, 0, NULL
);
2464 case OP_ATR_MODULUS
:
2494 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
2496 resolve_subexp (expp
, pos
, 1, NULL
);
2498 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
2516 case BINOP_LOGICAL_AND
:
2517 case BINOP_LOGICAL_OR
:
2518 case BINOP_BITWISE_AND
:
2519 case BINOP_BITWISE_IOR
:
2520 case BINOP_BITWISE_XOR
:
2523 case BINOP_NOTEQUAL
:
2530 case BINOP_SUBSCRIPT
:
2538 case UNOP_LOGICAL_NOT
:
2555 case OP_INTERNALVAR
:
2564 case STRUCTOP_STRUCT
:
2565 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2571 + BYTES_TO_EXP_ELEM (longest_to_int (exp
->elts
[pc
+ 1].longconst
)
2576 case TERNOP_IN_RANGE
:
2581 case BINOP_IN_BOUNDS
:
2587 error (_("Unexpected operator during name resolution"));
2590 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
2591 for (i
= 0; i
< nargs
; i
+= 1)
2592 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
2596 /* Pass two: perform any resolution on principal operator. */
2603 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
2605 struct ada_symbol_info
*candidates
;
2609 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2610 (exp
->elts
[pc
+ 2].symbol
),
2611 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
2614 if (n_candidates
> 1)
2616 /* Types tend to get re-introduced locally, so if there
2617 are any local symbols that are not types, first filter
2620 for (j
= 0; j
< n_candidates
; j
+= 1)
2621 switch (SYMBOL_CLASS (candidates
[j
].sym
))
2627 case LOC_REGPARM_ADDR
:
2631 case LOC_BASEREG_ARG
:
2633 case LOC_COMPUTED_ARG
:
2639 if (j
< n_candidates
)
2642 while (j
< n_candidates
)
2644 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
2646 candidates
[j
] = candidates
[n_candidates
- 1];
2655 if (n_candidates
== 0)
2656 error (_("No definition found for %s"),
2657 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2658 else if (n_candidates
== 1)
2660 else if (deprocedure_p
2661 && !is_nonfunction (candidates
, n_candidates
))
2663 i
= ada_resolve_function
2664 (candidates
, n_candidates
, NULL
, 0,
2665 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
2668 error (_("Could not find a match for %s"),
2669 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2673 printf_filtered (_("Multiple matches for %s\n"),
2674 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
2675 user_select_syms (candidates
, n_candidates
, 1);
2679 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
2680 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
2681 if (innermost_block
== NULL
2682 || contained_in (candidates
[i
].block
, innermost_block
))
2683 innermost_block
= candidates
[i
].block
;
2687 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
2690 replace_operator_with_call (expp
, pc
, 0, 0,
2691 exp
->elts
[pc
+ 2].symbol
,
2692 exp
->elts
[pc
+ 1].block
);
2699 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2700 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2702 struct ada_symbol_info
*candidates
;
2706 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2707 (exp
->elts
[pc
+ 5].symbol
),
2708 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
2710 if (n_candidates
== 1)
2714 i
= ada_resolve_function
2715 (candidates
, n_candidates
,
2717 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
2720 error (_("Could not find a match for %s"),
2721 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
2724 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
2725 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
2726 if (innermost_block
== NULL
2727 || contained_in (candidates
[i
].block
, innermost_block
))
2728 innermost_block
= candidates
[i
].block
;
2739 case BINOP_BITWISE_AND
:
2740 case BINOP_BITWISE_IOR
:
2741 case BINOP_BITWISE_XOR
:
2743 case BINOP_NOTEQUAL
:
2751 case UNOP_LOGICAL_NOT
:
2753 if (possible_user_operator_p (op
, argvec
))
2755 struct ada_symbol_info
*candidates
;
2759 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
2760 (struct block
*) NULL
, VAR_DOMAIN
,
2762 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
2763 ada_decoded_op_name (op
), NULL
);
2767 replace_operator_with_call (expp
, pc
, nargs
, 1,
2768 candidates
[i
].sym
, candidates
[i
].block
);
2778 return evaluate_subexp_type (exp
, pos
);
2781 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2782 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2783 a non-pointer. A type of 'void' (which is never a valid expression type)
2784 by convention matches anything. */
2785 /* The term "match" here is rather loose. The match is heuristic and
2786 liberal. FIXME: TOO liberal, in fact. */
2789 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
2791 ftype
= ada_check_typedef (ftype
);
2792 atype
= ada_check_typedef (atype
);
2794 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
2795 ftype
= TYPE_TARGET_TYPE (ftype
);
2796 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
2797 atype
= TYPE_TARGET_TYPE (atype
);
2799 if (TYPE_CODE (ftype
) == TYPE_CODE_VOID
2800 || TYPE_CODE (atype
) == TYPE_CODE_VOID
)
2803 switch (TYPE_CODE (ftype
))
2808 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
2809 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
2810 TYPE_TARGET_TYPE (atype
), 0);
2813 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
2815 case TYPE_CODE_ENUM
:
2816 case TYPE_CODE_RANGE
:
2817 switch (TYPE_CODE (atype
))
2820 case TYPE_CODE_ENUM
:
2821 case TYPE_CODE_RANGE
:
2827 case TYPE_CODE_ARRAY
:
2828 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
2829 || ada_is_array_descriptor_type (atype
));
2831 case TYPE_CODE_STRUCT
:
2832 if (ada_is_array_descriptor_type (ftype
))
2833 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
2834 || ada_is_array_descriptor_type (atype
));
2836 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
2837 && !ada_is_array_descriptor_type (atype
));
2839 case TYPE_CODE_UNION
:
2841 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
2845 /* Return non-zero if the formals of FUNC "sufficiently match" the
2846 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2847 may also be an enumeral, in which case it is treated as a 0-
2848 argument function. */
2851 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
2854 struct type
*func_type
= SYMBOL_TYPE (func
);
2856 if (SYMBOL_CLASS (func
) == LOC_CONST
2857 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
2858 return (n_actuals
== 0);
2859 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
2862 if (TYPE_NFIELDS (func_type
) != n_actuals
)
2865 for (i
= 0; i
< n_actuals
; i
+= 1)
2867 if (actuals
[i
] == NULL
)
2871 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
, i
));
2872 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
2874 if (!ada_type_match (ftype
, atype
, 1))
2881 /* False iff function type FUNC_TYPE definitely does not produce a value
2882 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2883 FUNC_TYPE is not a valid function type with a non-null return type
2884 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2887 return_match (struct type
*func_type
, struct type
*context_type
)
2889 struct type
*return_type
;
2891 if (func_type
== NULL
)
2894 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
2895 return_type
= base_type (TYPE_TARGET_TYPE (func_type
));
2897 return_type
= base_type (func_type
);
2898 if (return_type
== NULL
)
2901 context_type
= base_type (context_type
);
2903 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
2904 return context_type
== NULL
|| return_type
== context_type
;
2905 else if (context_type
== NULL
)
2906 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
2908 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
2912 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2913 function (if any) that matches the types of the NARGS arguments in
2914 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2915 that returns that type, then eliminate matches that don't. If
2916 CONTEXT_TYPE is void and there is at least one match that does not
2917 return void, eliminate all matches that do.
2919 Asks the user if there is more than one match remaining. Returns -1
2920 if there is no such symbol or none is selected. NAME is used
2921 solely for messages. May re-arrange and modify SYMS in
2922 the process; the index returned is for the modified vector. */
2925 ada_resolve_function (struct ada_symbol_info syms
[],
2926 int nsyms
, struct value
**args
, int nargs
,
2927 const char *name
, struct type
*context_type
)
2930 int m
; /* Number of hits */
2931 struct type
*fallback
;
2932 struct type
*return_type
;
2934 return_type
= context_type
;
2935 if (context_type
== NULL
)
2936 fallback
= builtin_type_void
;
2943 for (k
= 0; k
< nsyms
; k
+= 1)
2945 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
2947 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
2948 && return_match (type
, return_type
))
2954 if (m
> 0 || return_type
== fallback
)
2957 return_type
= fallback
;
2964 printf_filtered (_("Multiple matches for %s\n"), name
);
2965 user_select_syms (syms
, m
, 1);
2971 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2972 in a listing of choices during disambiguation (see sort_choices, below).
2973 The idea is that overloadings of a subprogram name from the
2974 same package should sort in their source order. We settle for ordering
2975 such symbols by their trailing number (__N or $N). */
2978 encoded_ordered_before (char *N0
, char *N1
)
2982 else if (N0
== NULL
)
2987 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
2989 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
2991 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
2992 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
2996 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
2999 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3001 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3002 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3004 return (strcmp (N0
, N1
) < 0);
3008 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3012 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3015 for (i
= 1; i
< nsyms
; i
+= 1)
3017 struct ada_symbol_info sym
= syms
[i
];
3020 for (j
= i
- 1; j
>= 0; j
-= 1)
3022 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3023 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3025 syms
[j
+ 1] = syms
[j
];
3031 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3032 by asking the user (if necessary), returning the number selected,
3033 and setting the first elements of SYMS items. Error if no symbols
3036 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3037 to be re-integrated one of these days. */
3040 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3043 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3045 int first_choice
= (max_results
== 1) ? 1 : 2;
3047 if (max_results
< 1)
3048 error (_("Request to select 0 symbols!"));
3052 printf_unfiltered (_("[0] cancel\n"));
3053 if (max_results
> 1)
3054 printf_unfiltered (_("[1] all\n"));
3056 sort_choices (syms
, nsyms
);
3058 for (i
= 0; i
< nsyms
; i
+= 1)
3060 if (syms
[i
].sym
== NULL
)
3063 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3065 struct symtab_and_line sal
=
3066 find_function_start_sal (syms
[i
].sym
, 1);
3067 if (sal
.symtab
== NULL
)
3068 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3070 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3073 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3074 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3075 sal
.symtab
->filename
, sal
.line
);
3081 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3082 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3083 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3084 struct symtab
*symtab
= symtab_for_sym (syms
[i
].sym
);
3086 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3087 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3089 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3090 symtab
->filename
, SYMBOL_LINE (syms
[i
].sym
));
3091 else if (is_enumeral
3092 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3094 printf_unfiltered (("[%d] "), i
+ first_choice
);
3095 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3097 printf_unfiltered (_("'(%s) (enumeral)\n"),
3098 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3100 else if (symtab
!= NULL
)
3101 printf_unfiltered (is_enumeral
3102 ? _("[%d] %s in %s (enumeral)\n")
3103 : _("[%d] %s at %s:?\n"),
3105 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3108 printf_unfiltered (is_enumeral
3109 ? _("[%d] %s (enumeral)\n")
3110 : _("[%d] %s at ?\n"),
3112 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3116 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3119 for (i
= 0; i
< n_chosen
; i
+= 1)
3120 syms
[i
] = syms
[chosen
[i
]];
3125 /* Read and validate a set of numeric choices from the user in the
3126 range 0 .. N_CHOICES-1. Place the results in increasing
3127 order in CHOICES[0 .. N-1], and return N.
3129 The user types choices as a sequence of numbers on one line
3130 separated by blanks, encoding them as follows:
3132 + A choice of 0 means to cancel the selection, throwing an error.
3133 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3134 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3136 The user is not allowed to choose more than MAX_RESULTS values.
3138 ANNOTATION_SUFFIX, if present, is used to annotate the input
3139 prompts (for use with the -f switch). */
3142 get_selections (int *choices
, int n_choices
, int max_results
,
3143 int is_all_choice
, char *annotation_suffix
)
3148 int first_choice
= is_all_choice
? 2 : 1;
3150 prompt
= getenv ("PS2");
3154 printf_unfiltered (("%s "), prompt
);
3155 gdb_flush (gdb_stdout
);
3157 args
= command_line_input ((char *) NULL
, 0, annotation_suffix
);
3160 error_no_arg (_("one or more choice numbers"));
3164 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3165 order, as given in args. Choices are validated. */
3171 while (isspace (*args
))
3173 if (*args
== '\0' && n_chosen
== 0)
3174 error_no_arg (_("one or more choice numbers"));
3175 else if (*args
== '\0')
3178 choice
= strtol (args
, &args2
, 10);
3179 if (args
== args2
|| choice
< 0
3180 || choice
> n_choices
+ first_choice
- 1)
3181 error (_("Argument must be choice number"));
3185 error (_("cancelled"));
3187 if (choice
< first_choice
)
3189 n_chosen
= n_choices
;
3190 for (j
= 0; j
< n_choices
; j
+= 1)
3194 choice
-= first_choice
;
3196 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3200 if (j
< 0 || choice
!= choices
[j
])
3203 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3204 choices
[k
+ 1] = choices
[k
];
3205 choices
[j
+ 1] = choice
;
3210 if (n_chosen
> max_results
)
3211 error (_("Select no more than %d of the above"), max_results
);
3216 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3217 on the function identified by SYM and BLOCK, and taking NARGS
3218 arguments. Update *EXPP as needed to hold more space. */
3221 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3222 int oplen
, struct symbol
*sym
,
3223 struct block
*block
)
3225 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3226 symbol, -oplen for operator being replaced). */
3227 struct expression
*newexp
= (struct expression
*)
3228 xmalloc (sizeof (struct expression
)
3229 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3230 struct expression
*exp
= *expp
;
3232 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3233 newexp
->language_defn
= exp
->language_defn
;
3234 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3235 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3236 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3238 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3239 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3241 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3242 newexp
->elts
[pc
+ 4].block
= block
;
3243 newexp
->elts
[pc
+ 5].symbol
= sym
;
3249 /* Type-class predicates */
3251 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3255 numeric_type_p (struct type
*type
)
3261 switch (TYPE_CODE (type
))
3266 case TYPE_CODE_RANGE
:
3267 return (type
== TYPE_TARGET_TYPE (type
)
3268 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3275 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3278 integer_type_p (struct type
*type
)
3284 switch (TYPE_CODE (type
))
3288 case TYPE_CODE_RANGE
:
3289 return (type
== TYPE_TARGET_TYPE (type
)
3290 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3297 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3300 scalar_type_p (struct type
*type
)
3306 switch (TYPE_CODE (type
))
3309 case TYPE_CODE_RANGE
:
3310 case TYPE_CODE_ENUM
:
3319 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3322 discrete_type_p (struct type
*type
)
3328 switch (TYPE_CODE (type
))
3331 case TYPE_CODE_RANGE
:
3332 case TYPE_CODE_ENUM
:
3340 /* Returns non-zero if OP with operands in the vector ARGS could be
3341 a user-defined function. Errs on the side of pre-defined operators
3342 (i.e., result 0). */
3345 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3347 struct type
*type0
=
3348 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3349 struct type
*type1
=
3350 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3364 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3368 case BINOP_BITWISE_AND
:
3369 case BINOP_BITWISE_IOR
:
3370 case BINOP_BITWISE_XOR
:
3371 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3374 case BINOP_NOTEQUAL
:
3379 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3383 ((TYPE_CODE (type0
) != TYPE_CODE_ARRAY
3384 && (TYPE_CODE (type0
) != TYPE_CODE_PTR
3385 || TYPE_CODE (TYPE_TARGET_TYPE (type0
)) != TYPE_CODE_ARRAY
))
3386 || (TYPE_CODE (type1
) != TYPE_CODE_ARRAY
3387 && (TYPE_CODE (type1
) != TYPE_CODE_PTR
3388 || (TYPE_CODE (TYPE_TARGET_TYPE (type1
))
3389 != TYPE_CODE_ARRAY
))));
3392 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3396 case UNOP_LOGICAL_NOT
:
3398 return (!numeric_type_p (type0
));
3405 /* NOTE: In the following, we assume that a renaming type's name may
3406 have an ___XD suffix. It would be nice if this went away at some
3409 /* If TYPE encodes a renaming, returns the renaming suffix, which
3410 is XR for an object renaming, XRP for a procedure renaming, XRE for
3411 an exception renaming, and XRS for a subprogram renaming. Returns
3412 NULL if NAME encodes none of these. */
3415 ada_renaming_type (struct type
*type
)
3417 if (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_ENUM
)
3419 const char *name
= type_name_no_tag (type
);
3420 const char *suffix
= (name
== NULL
) ? NULL
: strstr (name
, "___XR");
3422 || (suffix
[5] != '\000' && strchr ("PES_", suffix
[5]) == NULL
))
3431 /* Return non-zero iff SYM encodes an object renaming. */
3434 ada_is_object_renaming (struct symbol
*sym
)
3436 const char *renaming_type
= ada_renaming_type (SYMBOL_TYPE (sym
));
3437 return renaming_type
!= NULL
3438 && (renaming_type
[2] == '\0' || renaming_type
[2] == '_');
3441 /* Assuming that SYM encodes a non-object renaming, returns the original
3442 name of the renamed entity. The name is good until the end of
3446 ada_simple_renamed_entity (struct symbol
*sym
)
3449 const char *raw_name
;
3453 type
= SYMBOL_TYPE (sym
);
3454 if (type
== NULL
|| TYPE_NFIELDS (type
) < 1)
3455 error (_("Improperly encoded renaming."));
3457 raw_name
= TYPE_FIELD_NAME (type
, 0);
3458 len
= (raw_name
== NULL
? 0 : strlen (raw_name
)) - 5;
3460 error (_("Improperly encoded renaming."));
3462 result
= xmalloc (len
+ 1);
3463 strncpy (result
, raw_name
, len
);
3464 result
[len
] = '\000';
3469 /* Evaluation: Function Calls */
3471 /* Return an lvalue containing the value VAL. This is the identity on
3472 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3473 on the stack, using and updating *SP as the stack pointer, and
3474 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3476 static struct value
*
3477 ensure_lval (struct value
*val
, CORE_ADDR
*sp
)
3479 if (! VALUE_LVAL (val
))
3481 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
3483 /* The following is taken from the structure-return code in
3484 call_function_by_hand. FIXME: Therefore, some refactoring seems
3486 if (INNER_THAN (1, 2))
3488 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3489 reserving sufficient space. */
3491 if (gdbarch_frame_align_p (current_gdbarch
))
3492 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3493 VALUE_ADDRESS (val
) = *sp
;
3497 /* Stack grows upward. Align the frame, allocate space, and
3498 then again, re-align the frame. */
3499 if (gdbarch_frame_align_p (current_gdbarch
))
3500 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3501 VALUE_ADDRESS (val
) = *sp
;
3503 if (gdbarch_frame_align_p (current_gdbarch
))
3504 *sp
= gdbarch_frame_align (current_gdbarch
, *sp
);
3507 write_memory (VALUE_ADDRESS (val
), value_contents_raw (val
), len
);
3513 /* Return the value ACTUAL, converted to be an appropriate value for a
3514 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3515 allocating any necessary descriptors (fat pointers), or copies of
3516 values not residing in memory, updating it as needed. */
3518 static struct value
*
3519 convert_actual (struct value
*actual
, struct type
*formal_type0
,
3522 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
3523 struct type
*formal_type
= ada_check_typedef (formal_type0
);
3524 struct type
*formal_target
=
3525 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3526 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
3527 struct type
*actual_target
=
3528 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
3529 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
3531 if (ada_is_array_descriptor_type (formal_target
)
3532 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
3533 return make_array_descriptor (formal_type
, actual
, sp
);
3534 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
)
3536 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
3537 && ada_is_array_descriptor_type (actual_target
))
3538 return desc_data (actual
);
3539 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
3541 if (VALUE_LVAL (actual
) != lval_memory
)
3544 actual_type
= ada_check_typedef (value_type (actual
));
3545 val
= allocate_value (actual_type
);
3546 memcpy ((char *) value_contents_raw (val
),
3547 (char *) value_contents (actual
),
3548 TYPE_LENGTH (actual_type
));
3549 actual
= ensure_lval (val
, sp
);
3551 return value_addr (actual
);
3554 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
3555 return ada_value_ind (actual
);
3561 /* Push a descriptor of type TYPE for array value ARR on the stack at
3562 *SP, updating *SP to reflect the new descriptor. Return either
3563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3564 to-descriptor type rather than a descriptor type), a struct value *
3565 representing a pointer to this descriptor. */
3567 static struct value
*
3568 make_array_descriptor (struct type
*type
, struct value
*arr
, CORE_ADDR
*sp
)
3570 struct type
*bounds_type
= desc_bounds_type (type
);
3571 struct type
*desc_type
= desc_base_type (type
);
3572 struct value
*descriptor
= allocate_value (desc_type
);
3573 struct value
*bounds
= allocate_value (bounds_type
);
3576 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
))); i
> 0; i
-= 1)
3578 modify_general_field (value_contents_writeable (bounds
),
3579 value_as_long (ada_array_bound (arr
, i
, 0)),
3580 desc_bound_bitpos (bounds_type
, i
, 0),
3581 desc_bound_bitsize (bounds_type
, i
, 0));
3582 modify_general_field (value_contents_writeable (bounds
),
3583 value_as_long (ada_array_bound (arr
, i
, 1)),
3584 desc_bound_bitpos (bounds_type
, i
, 1),
3585 desc_bound_bitsize (bounds_type
, i
, 1));
3588 bounds
= ensure_lval (bounds
, sp
);
3590 modify_general_field (value_contents_writeable (descriptor
),
3591 VALUE_ADDRESS (ensure_lval (arr
, sp
)),
3592 fat_pntr_data_bitpos (desc_type
),
3593 fat_pntr_data_bitsize (desc_type
));
3595 modify_general_field (value_contents_writeable (descriptor
),
3596 VALUE_ADDRESS (bounds
),
3597 fat_pntr_bounds_bitpos (desc_type
),
3598 fat_pntr_bounds_bitsize (desc_type
));
3600 descriptor
= ensure_lval (descriptor
, sp
);
3602 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
3603 return value_addr (descriptor
);
3609 /* Assuming a dummy frame has been established on the target, perform any
3610 conversions needed for calling function FUNC on the NARGS actual
3611 parameters in ARGS, other than standard C conversions. Does
3612 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3613 does not match the number of arguments expected. Use *SP as a
3614 stack pointer for additional data that must be pushed, updating its
3618 ada_convert_actuals (struct value
*func
, int nargs
, struct value
*args
[],
3623 if (TYPE_NFIELDS (value_type (func
)) == 0
3624 || nargs
!= TYPE_NFIELDS (value_type (func
)))
3627 for (i
= 0; i
< nargs
; i
+= 1)
3629 convert_actual (args
[i
], TYPE_FIELD_TYPE (value_type (func
), i
), sp
);
3632 /* Dummy definitions for an experimental caching module that is not
3633 * used in the public sources. */
3636 lookup_cached_symbol (const char *name
, domain_enum
namespace,
3637 struct symbol
**sym
, struct block
**block
,
3638 struct symtab
**symtab
)
3644 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
3645 struct block
*block
, struct symtab
*symtab
)
3651 /* Return the result of a standard (literal, C-like) lookup of NAME in
3652 given DOMAIN, visible from lexical block BLOCK. */
3654 static struct symbol
*
3655 standard_lookup (const char *name
, const struct block
*block
,
3659 struct symtab
*symtab
;
3661 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
, NULL
))
3664 lookup_symbol_in_language (name
, block
, domain
, language_c
, 0, &symtab
);
3665 cache_symbol (name
, domain
, sym
, block_found
, symtab
);
3670 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3671 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3672 since they contend in overloading in the same way. */
3674 is_nonfunction (struct ada_symbol_info syms
[], int n
)
3678 for (i
= 0; i
< n
; i
+= 1)
3679 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
3680 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
3681 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
3687 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3688 struct types. Otherwise, they may not. */
3691 equiv_types (struct type
*type0
, struct type
*type1
)
3695 if (type0
== NULL
|| type1
== NULL
3696 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
3698 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
3699 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
3700 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
3701 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
3707 /* True iff SYM0 represents the same entity as SYM1, or one that is
3708 no more defined than that of SYM1. */
3711 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
3715 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
3716 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
3719 switch (SYMBOL_CLASS (sym0
))
3725 struct type
*type0
= SYMBOL_TYPE (sym0
);
3726 struct type
*type1
= SYMBOL_TYPE (sym1
);
3727 char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
3728 char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
3729 int len0
= strlen (name0
);
3731 TYPE_CODE (type0
) == TYPE_CODE (type1
)
3732 && (equiv_types (type0
, type1
)
3733 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
3734 && strncmp (name1
+ len0
, "___XV", 5) == 0));
3737 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
3738 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
3744 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3745 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3748 add_defn_to_vec (struct obstack
*obstackp
,
3750 struct block
*block
, struct symtab
*symtab
)
3754 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
3756 if (SYMBOL_TYPE (sym
) != NULL
)
3757 SYMBOL_TYPE (sym
) = ada_check_typedef (SYMBOL_TYPE (sym
));
3758 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
3760 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
3762 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
3764 prevDefns
[i
].sym
= sym
;
3765 prevDefns
[i
].block
= block
;
3766 prevDefns
[i
].symtab
= symtab
;
3772 struct ada_symbol_info info
;
3776 info
.symtab
= symtab
;
3777 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
3781 /* Number of ada_symbol_info structures currently collected in
3782 current vector in *OBSTACKP. */
3785 num_defns_collected (struct obstack
*obstackp
)
3787 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
3790 /* Vector of ada_symbol_info structures currently collected in current
3791 vector in *OBSTACKP. If FINISH, close off the vector and return
3792 its final address. */
3794 static struct ada_symbol_info
*
3795 defns_collected (struct obstack
*obstackp
, int finish
)
3798 return obstack_finish (obstackp
);
3800 return (struct ada_symbol_info
*) obstack_base (obstackp
);
3803 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3804 Check the global symbols if GLOBAL, the static symbols if not.
3805 Do wild-card match if WILD. */
3807 static struct partial_symbol
*
3808 ada_lookup_partial_symbol (struct partial_symtab
*pst
, const char *name
,
3809 int global
, domain_enum
namespace, int wild
)
3811 struct partial_symbol
**start
;
3812 int name_len
= strlen (name
);
3813 int length
= (global
? pst
->n_global_syms
: pst
->n_static_syms
);
3822 pst
->objfile
->global_psymbols
.list
+ pst
->globals_offset
:
3823 pst
->objfile
->static_psymbols
.list
+ pst
->statics_offset
);
3827 for (i
= 0; i
< length
; i
+= 1)
3829 struct partial_symbol
*psym
= start
[i
];
3831 if (SYMBOL_DOMAIN (psym
) == namespace
3832 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (psym
)))
3846 int M
= (U
+ i
) >> 1;
3847 struct partial_symbol
*psym
= start
[M
];
3848 if (SYMBOL_LINKAGE_NAME (psym
)[0] < name
[0])
3850 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > name
[0])
3852 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), name
) < 0)
3863 struct partial_symbol
*psym
= start
[i
];
3865 if (SYMBOL_DOMAIN (psym
) == namespace)
3867 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
), name_len
);
3875 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
3889 int M
= (U
+ i
) >> 1;
3890 struct partial_symbol
*psym
= start
[M
];
3891 if (SYMBOL_LINKAGE_NAME (psym
)[0] < '_')
3893 else if (SYMBOL_LINKAGE_NAME (psym
)[0] > '_')
3895 else if (strcmp (SYMBOL_LINKAGE_NAME (psym
), "_ada_") < 0)
3906 struct partial_symbol
*psym
= start
[i
];
3908 if (SYMBOL_DOMAIN (psym
) == namespace)
3912 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym
)[0];
3915 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym
), 5);
3917 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (psym
) + 5,
3927 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym
)
3937 /* Find a symbol table containing symbol SYM or NULL if none. */
3939 static struct symtab
*
3940 symtab_for_sym (struct symbol
*sym
)
3943 struct objfile
*objfile
;
3945 struct symbol
*tmp_sym
;
3946 struct dict_iterator iter
;
3949 ALL_SYMTABS (objfile
, s
)
3951 switch (SYMBOL_CLASS (sym
))
3959 case LOC_CONST_BYTES
:
3960 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
3961 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
3963 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
3964 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
3970 switch (SYMBOL_CLASS (sym
))
3976 case LOC_REGPARM_ADDR
:
3981 case LOC_BASEREG_ARG
:
3983 case LOC_COMPUTED_ARG
:
3984 for (j
= FIRST_LOCAL_BLOCK
;
3985 j
< BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s
)); j
+= 1)
3987 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), j
);
3988 ALL_BLOCK_SYMBOLS (b
, iter
, tmp_sym
) if (sym
== tmp_sym
)
3999 /* Return a minimal symbol matching NAME according to Ada decoding
4000 rules. Returns NULL if there is no such minimal symbol. Names
4001 prefixed with "standard__" are handled specially: "standard__" is
4002 first stripped off, and only static and global symbols are searched. */
4004 struct minimal_symbol
*
4005 ada_lookup_simple_minsym (const char *name
)
4007 struct objfile
*objfile
;
4008 struct minimal_symbol
*msymbol
;
4011 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4013 name
+= sizeof ("standard__") - 1;
4017 wild_match
= (strstr (name
, "__") == NULL
);
4019 ALL_MSYMBOLS (objfile
, msymbol
)
4021 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
)
4022 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4029 /* For all subprograms that statically enclose the subprogram of the
4030 selected frame, add symbols matching identifier NAME in DOMAIN
4031 and their blocks to the list of data in OBSTACKP, as for
4032 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4036 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4037 const char *name
, domain_enum
namespace,
4042 /* FIXME: The next two routines belong in symtab.c */
4045 restore_language (void *lang
)
4047 set_language ((enum language
) lang
);
4050 /* As for lookup_symbol, but performed as if the current language
4054 lookup_symbol_in_language (const char *name
, const struct block
*block
,
4055 domain_enum domain
, enum language lang
,
4056 int *is_a_field_of_this
, struct symtab
**symtab
)
4058 struct cleanup
*old_chain
4059 = make_cleanup (restore_language
, (void *) current_language
->la_language
);
4060 struct symbol
*result
;
4061 set_language (lang
);
4062 result
= lookup_symbol (name
, block
, domain
, is_a_field_of_this
, symtab
);
4063 do_cleanups (old_chain
);
4067 /* True if TYPE is definitely an artificial type supplied to a symbol
4068 for which no debugging information was given in the symbol file. */
4071 is_nondebugging_type (struct type
*type
)
4073 char *name
= ada_type_name (type
);
4074 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4077 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4078 duplicate other symbols in the list (The only case I know of where
4079 this happens is when object files containing stabs-in-ecoff are
4080 linked with files containing ordinary ecoff debugging symbols (or no
4081 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4082 Returns the number of items in the modified list. */
4085 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4092 if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4093 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4094 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4096 for (j
= 0; j
< nsyms
; j
+= 1)
4099 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4100 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4101 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4102 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4103 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4104 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4107 for (k
= i
+ 1; k
< nsyms
; k
+= 1)
4108 syms
[k
- 1] = syms
[k
];
4121 /* Given a type that corresponds to a renaming entity, use the type name
4122 to extract the scope (package name or function name, fully qualified,
4123 and following the GNAT encoding convention) where this renaming has been
4124 defined. The string returned needs to be deallocated after use. */
4127 xget_renaming_scope (struct type
*renaming_type
)
4129 /* The renaming types adhere to the following convention:
4130 <scope>__<rename>___<XR extension>.
4131 So, to extract the scope, we search for the "___XR" extension,
4132 and then backtrack until we find the first "__". */
4134 const char *name
= type_name_no_tag (renaming_type
);
4135 char *suffix
= strstr (name
, "___XR");
4140 /* Now, backtrack a bit until we find the first "__". Start looking
4141 at suffix - 3, as the <rename> part is at least one character long. */
4143 for (last
= suffix
- 3; last
> name
; last
--)
4144 if (last
[0] == '_' && last
[1] == '_')
4147 /* Make a copy of scope and return it. */
4149 scope_len
= last
- name
;
4150 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4152 strncpy (scope
, name
, scope_len
);
4153 scope
[scope_len
] = '\0';
4158 /* Return nonzero if NAME corresponds to a package name. */
4161 is_package_name (const char *name
)
4163 /* Here, We take advantage of the fact that no symbols are generated
4164 for packages, while symbols are generated for each function.
4165 So the condition for NAME represent a package becomes equivalent
4166 to NAME not existing in our list of symbols. There is only one
4167 small complication with library-level functions (see below). */
4171 /* If it is a function that has not been defined at library level,
4172 then we should be able to look it up in the symbols. */
4173 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4176 /* Library-level function names start with "_ada_". See if function
4177 "_ada_" followed by NAME can be found. */
4179 /* Do a quick check that NAME does not contain "__", since library-level
4180 functions names can not contain "__" in them. */
4181 if (strstr (name
, "__") != NULL
)
4184 fun_name
= xstrprintf ("_ada_%s", name
);
4186 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4189 /* Return nonzero if SYM corresponds to a renaming entity that is
4190 visible from FUNCTION_NAME. */
4193 renaming_is_visible (const struct symbol
*sym
, char *function_name
)
4195 char *scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4197 make_cleanup (xfree
, scope
);
4199 /* If the rename has been defined in a package, then it is visible. */
4200 if (is_package_name (scope
))
4203 /* Check that the rename is in the current function scope by checking
4204 that its name starts with SCOPE. */
4206 /* If the function name starts with "_ada_", it means that it is
4207 a library-level function. Strip this prefix before doing the
4208 comparison, as the encoding for the renaming does not contain
4210 if (strncmp (function_name
, "_ada_", 5) == 0)
4213 return (strncmp (function_name
, scope
, strlen (scope
)) == 0);
4216 /* Iterates over the SYMS list and remove any entry that corresponds to
4217 a renaming entity that is not visible from the function associated
4221 GNAT emits a type following a specified encoding for each renaming
4222 entity. Unfortunately, STABS currently does not support the definition
4223 of types that are local to a given lexical block, so all renamings types
4224 are emitted at library level. As a consequence, if an application
4225 contains two renaming entities using the same name, and a user tries to
4226 print the value of one of these entities, the result of the ada symbol
4227 lookup will also contain the wrong renaming type.
4229 This function partially covers for this limitation by attempting to
4230 remove from the SYMS list renaming symbols that should be visible
4231 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4232 method with the current information available. The implementation
4233 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4235 - When the user tries to print a rename in a function while there
4236 is another rename entity defined in a package: Normally, the
4237 rename in the function has precedence over the rename in the
4238 package, so the latter should be removed from the list. This is
4239 currently not the case.
4241 - This function will incorrectly remove valid renames if
4242 the CURRENT_BLOCK corresponds to a function which symbol name
4243 has been changed by an "Export" pragma. As a consequence,
4244 the user will be unable to print such rename entities. */
4247 remove_out_of_scope_renamings (struct ada_symbol_info
*syms
,
4248 int nsyms
, struct block
*current_block
)
4250 struct symbol
*current_function
;
4251 char *current_function_name
;
4254 /* Extract the function name associated to CURRENT_BLOCK.
4255 Abort if unable to do so. */
4257 if (current_block
== NULL
)
4260 current_function
= block_function (current_block
);
4261 if (current_function
== NULL
)
4264 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4265 if (current_function_name
== NULL
)
4268 /* Check each of the symbols, and remove it from the list if it is
4269 a type corresponding to a renaming that is out of the scope of
4270 the current block. */
4275 if (ada_is_object_renaming (syms
[i
].sym
)
4276 && !renaming_is_visible (syms
[i
].sym
, current_function_name
))
4279 for (j
= i
+ 1; j
< nsyms
; j
++)
4280 syms
[j
- 1] = syms
[j
];
4290 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4291 scope and in global scopes, returning the number of matches. Sets
4292 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4293 indicating the symbols found and the blocks and symbol tables (if
4294 any) in which they were found. This vector are transient---good only to
4295 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4296 symbol match within the nest of blocks whose innermost member is BLOCK0,
4297 is the one match returned (no other matches in that or
4298 enclosing blocks is returned). If there are any matches in or
4299 surrounding BLOCK0, then these alone are returned. Otherwise, the
4300 search extends to global and file-scope (static) symbol tables.
4301 Names prefixed with "standard__" are handled specially: "standard__"
4302 is first stripped off, and only static and global symbols are searched. */
4305 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
4306 domain_enum
namespace,
4307 struct ada_symbol_info
**results
)
4311 struct partial_symtab
*ps
;
4312 struct blockvector
*bv
;
4313 struct objfile
*objfile
;
4314 struct block
*block
;
4316 struct minimal_symbol
*msymbol
;
4322 obstack_free (&symbol_list_obstack
, NULL
);
4323 obstack_init (&symbol_list_obstack
);
4327 /* Search specified block and its superiors. */
4329 wild_match
= (strstr (name0
, "__") == NULL
);
4331 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
4332 needed, but adding const will
4333 have a cascade effect. */
4334 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
4338 name
= name0
+ sizeof ("standard__") - 1;
4342 while (block
!= NULL
)
4345 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4346 namespace, NULL
, NULL
, wild_match
);
4348 /* If we found a non-function match, assume that's the one. */
4349 if (is_nonfunction (defns_collected (&symbol_list_obstack
, 0),
4350 num_defns_collected (&symbol_list_obstack
)))
4353 block
= BLOCK_SUPERBLOCK (block
);
4356 /* If no luck so far, try to find NAME as a local symbol in some lexically
4357 enclosing subprogram. */
4358 if (num_defns_collected (&symbol_list_obstack
) == 0 && block_depth
> 2)
4359 add_symbols_from_enclosing_procs (&symbol_list_obstack
,
4360 name
, namespace, wild_match
);
4362 /* If we found ANY matches among non-global symbols, we're done. */
4364 if (num_defns_collected (&symbol_list_obstack
) > 0)
4368 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
, &s
))
4371 add_defn_to_vec (&symbol_list_obstack
, sym
, block
, s
);
4375 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4376 tables, and psymtab's. */
4378 ALL_SYMTABS (objfile
, s
)
4383 bv
= BLOCKVECTOR (s
);
4384 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4385 ada_add_block_symbols (&symbol_list_obstack
, block
, name
, namespace,
4386 objfile
, s
, wild_match
);
4389 if (namespace == VAR_DOMAIN
)
4391 ALL_MSYMBOLS (objfile
, msymbol
)
4393 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
))
4395 switch (MSYMBOL_TYPE (msymbol
))
4397 case mst_solib_trampoline
:
4400 s
= find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol
));
4403 int ndefns0
= num_defns_collected (&symbol_list_obstack
);
4405 bv
= BLOCKVECTOR (s
);
4406 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4407 ada_add_block_symbols (&symbol_list_obstack
, block
,
4408 SYMBOL_LINKAGE_NAME (msymbol
),
4409 namespace, objfile
, s
, wild_match
);
4411 if (num_defns_collected (&symbol_list_obstack
) == ndefns0
)
4413 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4414 ada_add_block_symbols (&symbol_list_obstack
, block
,
4415 SYMBOL_LINKAGE_NAME (msymbol
),
4416 namespace, objfile
, s
,
4425 ALL_PSYMTABS (objfile
, ps
)
4429 && ada_lookup_partial_symbol (ps
, name
, 1, namespace, wild_match
))
4431 s
= PSYMTAB_TO_SYMTAB (ps
);
4434 bv
= BLOCKVECTOR (s
);
4435 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4436 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4437 namespace, objfile
, s
, wild_match
);
4441 /* Now add symbols from all per-file blocks if we've gotten no hits
4442 (Not strictly correct, but perhaps better than an error).
4443 Do the symtabs first, then check the psymtabs. */
4445 if (num_defns_collected (&symbol_list_obstack
) == 0)
4448 ALL_SYMTABS (objfile
, s
)
4453 bv
= BLOCKVECTOR (s
);
4454 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4455 ada_add_block_symbols (&symbol_list_obstack
, block
, name
, namespace,
4456 objfile
, s
, wild_match
);
4459 ALL_PSYMTABS (objfile
, ps
)
4463 && ada_lookup_partial_symbol (ps
, name
, 0, namespace, wild_match
))
4465 s
= PSYMTAB_TO_SYMTAB (ps
);
4466 bv
= BLOCKVECTOR (s
);
4469 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
4470 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
4471 namespace, objfile
, s
, wild_match
);
4477 ndefns
= num_defns_collected (&symbol_list_obstack
);
4478 *results
= defns_collected (&symbol_list_obstack
, 1);
4480 ndefns
= remove_extra_symbols (*results
, ndefns
);
4483 cache_symbol (name0
, namespace, NULL
, NULL
, NULL
);
4485 if (ndefns
== 1 && cacheIfUnique
)
4486 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
,
4487 (*results
)[0].symtab
);
4489 ndefns
= remove_out_of_scope_renamings (*results
, ndefns
,
4490 (struct block
*) block0
);
4495 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4496 scope and in global scopes, or NULL if none. NAME is folded and
4497 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4498 choosing the first symbol if there are multiple choices.
4499 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4500 table in which the symbol was found (in both cases, these
4501 assignments occur only if the pointers are non-null). */
4504 ada_lookup_symbol (const char *name
, const struct block
*block0
,
4505 domain_enum
namespace, int *is_a_field_of_this
,
4506 struct symtab
**symtab
)
4508 struct ada_symbol_info
*candidates
;
4511 n_candidates
= ada_lookup_symbol_list (ada_encode (ada_fold_name (name
)),
4512 block0
, namespace, &candidates
);
4514 if (n_candidates
== 0)
4517 if (is_a_field_of_this
!= NULL
)
4518 *is_a_field_of_this
= 0;
4522 *symtab
= candidates
[0].symtab
;
4523 if (*symtab
== NULL
&& candidates
[0].block
!= NULL
)
4525 struct objfile
*objfile
;
4528 struct blockvector
*bv
;
4530 /* Search the list of symtabs for one which contains the
4531 address of the start of this block. */
4532 ALL_SYMTABS (objfile
, s
)
4534 bv
= BLOCKVECTOR (s
);
4535 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
4536 if (BLOCK_START (b
) <= BLOCK_START (candidates
[0].block
)
4537 && BLOCK_END (b
) > BLOCK_START (candidates
[0].block
))
4540 return fixup_symbol_section (candidates
[0].sym
, objfile
);
4542 return fixup_symbol_section (candidates
[0].sym
, NULL
);
4546 return candidates
[0].sym
;
4549 static struct symbol
*
4550 ada_lookup_symbol_nonlocal (const char *name
,
4551 const char *linkage_name
,
4552 const struct block
*block
,
4553 const domain_enum domain
, struct symtab
**symtab
)
4555 if (linkage_name
== NULL
)
4556 linkage_name
= name
;
4557 return ada_lookup_symbol (linkage_name
, block_static_block (block
), domain
,
4562 /* True iff STR is a possible encoded suffix of a normal Ada name
4563 that is to be ignored for matching purposes. Suffixes of parallel
4564 names (e.g., XVE) are not included here. Currently, the possible suffixes
4565 are given by either of the regular expression:
4567 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such
4569 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4570 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4574 is_name_suffix (const char *str
)
4577 const char *matching
;
4578 const int len
= strlen (str
);
4580 /* (__[0-9]+)?\.[0-9]+ */
4582 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
4585 while (isdigit (matching
[0]))
4587 if (matching
[0] == '\0')
4591 if (matching
[0] == '.')
4594 while (isdigit (matching
[0]))
4596 if (matching
[0] == '\0')
4601 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
4604 while (isdigit (matching
[0]))
4606 if (matching
[0] == '\0')
4610 /* ??? We should not modify STR directly, as we are doing below. This
4611 is fine in this case, but may become problematic later if we find
4612 that this alternative did not work, and want to try matching
4613 another one from the begining of STR. Since we modified it, we
4614 won't be able to find the begining of the string anymore! */
4618 while (str
[0] != '_' && str
[0] != '\0')
4620 if (str
[0] != 'n' && str
[0] != 'b')
4625 if (str
[0] == '\000')
4629 if (str
[1] != '_' || str
[2] == '\000')
4633 if (strcmp (str
+ 3, "JM") == 0)
4635 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4636 the LJM suffix in favor of the JM one. But we will
4637 still accept LJM as a valid suffix for a reasonable
4638 amount of time, just to allow ourselves to debug programs
4639 compiled using an older version of GNAT. */
4640 if (strcmp (str
+ 3, "LJM") == 0)
4644 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
4645 || str
[4] == 'U' || str
[4] == 'P')
4647 if (str
[4] == 'R' && str
[5] != 'T')
4651 if (!isdigit (str
[2]))
4653 for (k
= 3; str
[k
] != '\0'; k
+= 1)
4654 if (!isdigit (str
[k
]) && str
[k
] != '_')
4658 if (str
[0] == '$' && isdigit (str
[1]))
4660 for (k
= 2; str
[k
] != '\0'; k
+= 1)
4661 if (!isdigit (str
[k
]) && str
[k
] != '_')
4668 /* Return nonzero if the given string starts with a dot ('.')
4669 followed by zero or more digits.
4671 Note: brobecker/2003-11-10: A forward declaration has not been
4672 added at the begining of this file yet, because this function
4673 is only used to work around a problem found during wild matching
4674 when trying to match minimal symbol names against symbol names
4675 obtained from dwarf-2 data. This function is therefore currently
4676 only used in wild_match() and is likely to be deleted when the
4677 problem in dwarf-2 is fixed. */
4680 is_dot_digits_suffix (const char *str
)
4686 while (isdigit (str
[0]))
4688 return (str
[0] == '\0');
4691 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4692 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4693 informational suffixes of NAME (i.e., for which is_name_suffix is
4697 wild_match (const char *patn0
, int patn_len
, const char *name0
)
4703 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4704 stored in the symbol table for nested function names is sometimes
4705 different from the name of the associated entity stored in
4706 the dwarf-2 data: This is the case for nested subprograms, where
4707 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4708 while the symbol name from the dwarf-2 data does not.
4710 Although the DWARF-2 standard documents that entity names stored
4711 in the dwarf-2 data should be identical to the name as seen in
4712 the source code, GNAT takes a different approach as we already use
4713 a special encoding mechanism to convey the information so that
4714 a C debugger can still use the information generated to debug
4715 Ada programs. A corollary is that the symbol names in the dwarf-2
4716 data should match the names found in the symbol table. I therefore
4717 consider this issue as a compiler defect.
4719 Until the compiler is properly fixed, we work-around the problem
4720 by ignoring such suffixes during the match. We do so by making
4721 a copy of PATN0 and NAME0, and then by stripping such a suffix
4722 if present. We then perform the match on the resulting strings. */
4725 name_len
= strlen (name0
);
4727 name
= (char *) alloca ((name_len
+ 1) * sizeof (char));
4728 strcpy (name
, name0
);
4729 dot
= strrchr (name
, '.');
4730 if (dot
!= NULL
&& is_dot_digits_suffix (dot
))
4733 patn
= (char *) alloca ((patn_len
+ 1) * sizeof (char));
4734 strncpy (patn
, patn0
, patn_len
);
4735 patn
[patn_len
] = '\0';
4736 dot
= strrchr (patn
, '.');
4737 if (dot
!= NULL
&& is_dot_digits_suffix (dot
))
4740 patn_len
= dot
- patn
;
4744 /* Now perform the wild match. */
4746 name_len
= strlen (name
);
4747 if (name_len
>= patn_len
+ 5 && strncmp (name
, "_ada_", 5) == 0
4748 && strncmp (patn
, name
+ 5, patn_len
) == 0
4749 && is_name_suffix (name
+ patn_len
+ 5))
4752 while (name_len
>= patn_len
)
4754 if (strncmp (patn
, name
, patn_len
) == 0
4755 && is_name_suffix (name
+ patn_len
))
4763 && name
[0] != '.' && (name
[0] != '_' || name
[1] != '_'));
4768 if (!islower (name
[2]))
4775 if (!islower (name
[1]))
4786 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4787 vector *defn_symbols, updating the list of symbols in OBSTACKP
4788 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4789 OBJFILE is the section containing BLOCK.
4790 SYMTAB is recorded with each symbol added. */
4793 ada_add_block_symbols (struct obstack
*obstackp
,
4794 struct block
*block
, const char *name
,
4795 domain_enum domain
, struct objfile
*objfile
,
4796 struct symtab
*symtab
, int wild
)
4798 struct dict_iterator iter
;
4799 int name_len
= strlen (name
);
4800 /* A matching argument symbol, if any. */
4801 struct symbol
*arg_sym
;
4802 /* Set true when we find a matching non-argument symbol. */
4811 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
4813 if (SYMBOL_DOMAIN (sym
) == domain
4814 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (sym
)))
4816 switch (SYMBOL_CLASS (sym
))
4822 case LOC_REGPARM_ADDR
:
4823 case LOC_BASEREG_ARG
:
4824 case LOC_COMPUTED_ARG
:
4827 case LOC_UNRESOLVED
:
4831 add_defn_to_vec (obstackp
,
4832 fixup_symbol_section (sym
, objfile
),
4841 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
4843 if (SYMBOL_DOMAIN (sym
) == domain
)
4845 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
), name_len
);
4847 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
))
4849 switch (SYMBOL_CLASS (sym
))
4855 case LOC_REGPARM_ADDR
:
4856 case LOC_BASEREG_ARG
:
4857 case LOC_COMPUTED_ARG
:
4860 case LOC_UNRESOLVED
:
4864 add_defn_to_vec (obstackp
,
4865 fixup_symbol_section (sym
, objfile
),
4874 if (!found_sym
&& arg_sym
!= NULL
)
4876 add_defn_to_vec (obstackp
,
4877 fixup_symbol_section (arg_sym
, objfile
),
4886 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
4888 if (SYMBOL_DOMAIN (sym
) == domain
)
4892 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
4895 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
4897 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
4902 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
4904 switch (SYMBOL_CLASS (sym
))
4910 case LOC_REGPARM_ADDR
:
4911 case LOC_BASEREG_ARG
:
4912 case LOC_COMPUTED_ARG
:
4915 case LOC_UNRESOLVED
:
4919 add_defn_to_vec (obstackp
,
4920 fixup_symbol_section (sym
, objfile
),
4928 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4929 They aren't parameters, right? */
4930 if (!found_sym
&& arg_sym
!= NULL
)
4932 add_defn_to_vec (obstackp
,
4933 fixup_symbol_section (arg_sym
, objfile
),
4941 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
4942 to be invisible to users. */
4945 ada_is_ignored_field (struct type
*type
, int field_num
)
4947 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
4951 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
4952 return (name
== NULL
4953 || (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0));
4957 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
4958 pointer or reference type whose ultimate target has a tag field. */
4961 ada_is_tagged_type (struct type
*type
, int refok
)
4963 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
4966 /* True iff TYPE represents the type of X'Tag */
4969 ada_is_tag_type (struct type
*type
)
4971 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
4975 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
4976 return (name
!= NULL
4977 && strcmp (name
, "ada__tags__dispatch_table") == 0);
4981 /* The type of the tag on VAL. */
4984 ada_tag_type (struct value
*val
)
4986 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
4989 /* The value of the tag on VAL. */
4992 ada_value_tag (struct value
*val
)
4994 return ada_value_struct_elt (val
, "_tag", "record");
4997 /* The value of the tag on the object of type TYPE whose contents are
4998 saved at VALADDR, if it is non-null, or is at memory address
5001 static struct value
*
5002 value_tag_from_contents_and_address (struct type
*type
,
5003 const bfd_byte
*valaddr
,
5006 int tag_byte_offset
, dummy1
, dummy2
;
5007 struct type
*tag_type
;
5008 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
5011 const bfd_byte
*valaddr1
= ((valaddr
== NULL
)
5013 : valaddr
+ tag_byte_offset
);
5014 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
5016 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
5021 static struct type
*
5022 type_from_tag (struct value
*tag
)
5024 const char *type_name
= ada_tag_name (tag
);
5025 if (type_name
!= NULL
)
5026 return ada_find_any_type (ada_encode (type_name
));
5036 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5037 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5038 The value stored in ARGS->name is valid until the next call to
5042 ada_tag_name_1 (void *args0
)
5044 struct tag_args
*args
= (struct tag_args
*) args0
;
5045 static char name
[1024];
5049 val
= ada_value_struct_elt (args
->tag
, "tsd", NULL
);
5052 val
= ada_value_struct_elt (val
, "expanded_name", NULL
);
5055 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5056 for (p
= name
; *p
!= '\0'; p
+= 1)
5063 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5067 ada_tag_name (struct value
*tag
)
5069 struct tag_args args
;
5070 if (!ada_is_tag_type (value_type (tag
)))
5074 catch_errors (ada_tag_name_1
, &args
, NULL
, RETURN_MASK_ALL
);
5078 /* The parent type of TYPE, or NULL if none. */
5081 ada_parent_type (struct type
*type
)
5085 type
= ada_check_typedef (type
);
5087 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
5090 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5091 if (ada_is_parent_field (type
, i
))
5092 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5097 /* True iff field number FIELD_NUM of structure type TYPE contains the
5098 parent-type (inherited) fields of a derived type. Assumes TYPE is
5099 a structure type with at least FIELD_NUM+1 fields. */
5102 ada_is_parent_field (struct type
*type
, int field_num
)
5104 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
5105 return (name
!= NULL
5106 && (strncmp (name
, "PARENT", 6) == 0
5107 || strncmp (name
, "_parent", 7) == 0));
5110 /* True iff field number FIELD_NUM of structure type TYPE is a
5111 transparent wrapper field (which should be silently traversed when doing
5112 field selection and flattened when printing). Assumes TYPE is a
5113 structure type with at least FIELD_NUM+1 fields. Such fields are always
5117 ada_is_wrapper_field (struct type
*type
, int field_num
)
5119 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5120 return (name
!= NULL
5121 && (strncmp (name
, "PARENT", 6) == 0
5122 || strcmp (name
, "REP") == 0
5123 || strncmp (name
, "_parent", 7) == 0
5124 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
5127 /* True iff field number FIELD_NUM of structure or union type TYPE
5128 is a variant wrapper. Assumes TYPE is a structure type with at least
5129 FIELD_NUM+1 fields. */
5132 ada_is_variant_part (struct type
*type
, int field_num
)
5134 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
5135 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
5136 || (is_dynamic_field (type
, field_num
)
5137 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
5138 == TYPE_CODE_UNION
)));
5141 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5142 whose discriminants are contained in the record type OUTER_TYPE,
5143 returns the type of the controlling discriminant for the variant. */
5146 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
5148 char *name
= ada_variant_discrim_name (var_type
);
5150 ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
5152 return builtin_type_int
;
5157 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5158 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5159 represents a 'when others' clause; otherwise 0. */
5162 ada_is_others_clause (struct type
*type
, int field_num
)
5164 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5165 return (name
!= NULL
&& name
[0] == 'O');
5168 /* Assuming that TYPE0 is the type of the variant part of a record,
5169 returns the name of the discriminant controlling the variant.
5170 The value is valid until the next call to ada_variant_discrim_name. */
5173 ada_variant_discrim_name (struct type
*type0
)
5175 static char *result
= NULL
;
5176 static size_t result_len
= 0;
5179 const char *discrim_end
;
5180 const char *discrim_start
;
5182 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
5183 type
= TYPE_TARGET_TYPE (type0
);
5187 name
= ada_type_name (type
);
5189 if (name
== NULL
|| name
[0] == '\000')
5192 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
5195 if (strncmp (discrim_end
, "___XVN", 6) == 0)
5198 if (discrim_end
== name
)
5201 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
5204 if (discrim_start
== name
+ 1)
5206 if ((discrim_start
> name
+ 3
5207 && strncmp (discrim_start
- 3, "___", 3) == 0)
5208 || discrim_start
[-1] == '.')
5212 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
5213 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
5214 result
[discrim_end
- discrim_start
] = '\0';
5218 /* Scan STR for a subtype-encoded number, beginning at position K.
5219 Put the position of the character just past the number scanned in
5220 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5221 Return 1 if there was a valid number at the given position, and 0
5222 otherwise. A "subtype-encoded" number consists of the absolute value
5223 in decimal, followed by the letter 'm' to indicate a negative number.
5224 Assumes 0m does not occur. */
5227 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
5231 if (!isdigit (str
[k
]))
5234 /* Do it the hard way so as not to make any assumption about
5235 the relationship of unsigned long (%lu scan format code) and
5238 while (isdigit (str
[k
]))
5240 RU
= RU
* 10 + (str
[k
] - '0');
5247 *R
= (-(LONGEST
) (RU
- 1)) - 1;
5253 /* NOTE on the above: Technically, C does not say what the results of
5254 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5255 number representable as a LONGEST (although either would probably work
5256 in most implementations). When RU>0, the locution in the then branch
5257 above is always equivalent to the negative of RU. */
5264 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5265 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5266 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5269 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
5271 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5284 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
5293 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
5294 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
5296 if (val
>= L
&& val
<= U
)
5308 /* FIXME: Lots of redundancy below. Try to consolidate. */
5310 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5311 ARG_TYPE, extract and return the value of one of its (non-static)
5312 fields. FIELDNO says which field. Differs from value_primitive_field
5313 only in that it can handle packed values of arbitrary type. */
5315 static struct value
*
5316 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
5317 struct type
*arg_type
)
5321 arg_type
= ada_check_typedef (arg_type
);
5322 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
5324 /* Handle packed fields. */
5326 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
5328 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
5329 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
5331 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
5332 offset
+ bit_pos
/ 8,
5333 bit_pos
% 8, bit_size
, type
);
5336 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
5339 /* Find field with name NAME in object of type TYPE. If found, return 1
5340 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
5341 OFFSET + the byte offset of the field within an object of that type,
5342 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
5343 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
5344 Looks inside wrappers for the field. Returns 0 if field not
5347 find_struct_field (char *name
, struct type
*type
, int offset
,
5348 struct type
**field_type_p
,
5349 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
)
5353 type
= ada_check_typedef (type
);
5354 *field_type_p
= NULL
;
5355 *byte_offset_p
= *bit_offset_p
= *bit_size_p
= 0;
5357 for (i
= TYPE_NFIELDS (type
) - 1; i
>= 0; i
-= 1)
5359 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
5360 int fld_offset
= offset
+ bit_pos
/ 8;
5361 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5363 if (t_field_name
== NULL
)
5366 else if (field_name_match (t_field_name
, name
))
5368 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
5369 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
5370 *byte_offset_p
= fld_offset
;
5371 *bit_offset_p
= bit_pos
% 8;
5372 *bit_size_p
= bit_size
;
5375 else if (ada_is_wrapper_field (type
, i
))
5377 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
5378 field_type_p
, byte_offset_p
, bit_offset_p
,
5382 else if (ada_is_variant_part (type
, i
))
5385 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5387 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
5389 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
5391 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5392 field_type_p
, byte_offset_p
,
5393 bit_offset_p
, bit_size_p
))
5403 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5404 and search in it assuming it has (class) type TYPE.
5405 If found, return value, else return NULL.
5407 Searches recursively through wrapper fields (e.g., '_parent'). */
5409 static struct value
*
5410 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
5414 type
= ada_check_typedef (type
);
5416 for (i
= TYPE_NFIELDS (type
) - 1; i
>= 0; i
-= 1)
5418 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5420 if (t_field_name
== NULL
)
5423 else if (field_name_match (t_field_name
, name
))
5424 return ada_value_primitive_field (arg
, offset
, i
, type
);
5426 else if (ada_is_wrapper_field (type
, i
))
5428 struct value
*v
= /* Do not let indent join lines here. */
5429 ada_search_struct_field (name
, arg
,
5430 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
5431 TYPE_FIELD_TYPE (type
, i
));
5436 else if (ada_is_variant_part (type
, i
))
5439 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5440 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
5442 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
5444 struct value
*v
= ada_search_struct_field
/* Force line break. */
5446 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
5447 TYPE_FIELD_TYPE (field_type
, j
));
5456 /* Given ARG, a value of type (pointer or reference to a)*
5457 structure/union, extract the component named NAME from the ultimate
5458 target structure/union and return it as a value with its
5459 appropriate type. If ARG is a pointer or reference and the field
5460 is not packed, returns a reference to the field, otherwise the
5461 value of the field (an lvalue if ARG is an lvalue).
5463 The routine searches for NAME among all members of the structure itself
5464 and (recursively) among all members of any wrapper members
5467 ERR is a name (for use in error messages) that identifies the class
5468 of entity that ARG is supposed to be. ERR may be null, indicating
5469 that on error, the function simply returns NULL, and does not
5470 throw an error. (FIXME: True only if ARG is a pointer or reference
5474 ada_value_struct_elt (struct value
*arg
, char *name
, char *err
)
5476 struct type
*t
, *t1
;
5480 t1
= t
= ada_check_typedef (value_type (arg
));
5481 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
5483 t1
= TYPE_TARGET_TYPE (t
);
5489 error (_("Bad value type in a %s."), err
);
5491 t1
= ada_check_typedef (t1
);
5492 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
5494 arg
= coerce_ref (arg
);
5499 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
5501 t1
= TYPE_TARGET_TYPE (t
);
5507 error (_("Bad value type in a %s."), err
);
5509 t1
= ada_check_typedef (t1
);
5510 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
5512 arg
= value_ind (arg
);
5519 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
5524 error (_("Attempt to extract a component of a value that is not a %s."),
5529 v
= ada_search_struct_field (name
, arg
, 0, t
);
5532 int bit_offset
, bit_size
, byte_offset
;
5533 struct type
*field_type
;
5536 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
5537 address
= value_as_address (arg
);
5539 address
= unpack_pointer (t
, value_contents (arg
));
5541 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
);
5542 if (find_struct_field (name
, t1
, 0,
5543 &field_type
, &byte_offset
, &bit_offset
,
5548 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
5549 arg
= ada_coerce_ref (arg
);
5551 arg
= ada_value_ind (arg
);
5552 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
5553 bit_offset
, bit_size
,
5557 v
= value_from_pointer (lookup_reference_type (field_type
),
5558 address
+ byte_offset
);
5562 if (v
== NULL
&& err
!= NULL
)
5563 error (_("There is no member named %s."), name
);
5568 /* Given a type TYPE, look up the type of the component of type named NAME.
5569 If DISPP is non-null, add its byte displacement from the beginning of a
5570 structure (pointed to by a value) of type TYPE to *DISPP (does not
5571 work for packed fields).
5573 Matches any field whose name has NAME as a prefix, possibly
5576 TYPE can be either a struct or union. If REFOK, TYPE may also
5577 be a (pointer or reference)+ to a struct or union, and the
5578 ultimate target type will be searched.
5580 Looks recursively into variant clauses and parent types.
5582 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5583 TYPE is not a type of the right kind. */
5585 static struct type
*
5586 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
5587 int noerr
, int *dispp
)
5594 if (refok
&& type
!= NULL
)
5597 type
= ada_check_typedef (type
);
5598 if (TYPE_CODE (type
) != TYPE_CODE_PTR
5599 && TYPE_CODE (type
) != TYPE_CODE_REF
)
5601 type
= TYPE_TARGET_TYPE (type
);
5605 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
5606 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
5612 target_terminal_ours ();
5613 gdb_flush (gdb_stdout
);
5615 error (_("Type (null) is not a structure or union type"));
5618 /* XXX: type_sprint */
5619 fprintf_unfiltered (gdb_stderr
, _("Type "));
5620 type_print (type
, "", gdb_stderr
, -1);
5621 error (_(" is not a structure or union type"));
5626 type
= to_static_fixed_type (type
);
5628 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5630 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
5634 if (t_field_name
== NULL
)
5637 else if (field_name_match (t_field_name
, name
))
5640 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
5641 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5644 else if (ada_is_wrapper_field (type
, i
))
5647 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
5652 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
5657 else if (ada_is_variant_part (type
, i
))
5660 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
5662 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
5665 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
, j
),
5670 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
5681 target_terminal_ours ();
5682 gdb_flush (gdb_stdout
);
5685 /* XXX: type_sprint */
5686 fprintf_unfiltered (gdb_stderr
, _("Type "));
5687 type_print (type
, "", gdb_stderr
, -1);
5688 error (_(" has no component named <null>"));
5692 /* XXX: type_sprint */
5693 fprintf_unfiltered (gdb_stderr
, _("Type "));
5694 type_print (type
, "", gdb_stderr
, -1);
5695 error (_(" has no component named %s"), name
);
5702 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5703 within a value of type OUTER_TYPE that is stored in GDB at
5704 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5705 numbering from 0) is applicable. Returns -1 if none are. */
5708 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
5709 const bfd_byte
*outer_valaddr
)
5714 struct type
*discrim_type
;
5715 char *discrim_name
= ada_variant_discrim_name (var_type
);
5716 LONGEST discrim_val
;
5720 ada_lookup_struct_elt_type (outer_type
, discrim_name
, 1, 1, &disp
);
5721 if (discrim_type
== NULL
)
5723 discrim_val
= unpack_long (discrim_type
, outer_valaddr
+ disp
);
5726 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
5728 if (ada_is_others_clause (var_type
, i
))
5730 else if (ada_in_variant (discrim_val
, var_type
, i
))
5734 return others_clause
;
5739 /* Dynamic-Sized Records */
5741 /* Strategy: The type ostensibly attached to a value with dynamic size
5742 (i.e., a size that is not statically recorded in the debugging
5743 data) does not accurately reflect the size or layout of the value.
5744 Our strategy is to convert these values to values with accurate,
5745 conventional types that are constructed on the fly. */
5747 /* There is a subtle and tricky problem here. In general, we cannot
5748 determine the size of dynamic records without its data. However,
5749 the 'struct value' data structure, which GDB uses to represent
5750 quantities in the inferior process (the target), requires the size
5751 of the type at the time of its allocation in order to reserve space
5752 for GDB's internal copy of the data. That's why the
5753 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5754 rather than struct value*s.
5756 However, GDB's internal history variables ($1, $2, etc.) are
5757 struct value*s containing internal copies of the data that are not, in
5758 general, the same as the data at their corresponding addresses in
5759 the target. Fortunately, the types we give to these values are all
5760 conventional, fixed-size types (as per the strategy described
5761 above), so that we don't usually have to perform the
5762 'to_fixed_xxx_type' conversions to look at their values.
5763 Unfortunately, there is one exception: if one of the internal
5764 history variables is an array whose elements are unconstrained
5765 records, then we will need to create distinct fixed types for each
5766 element selected. */
5768 /* The upshot of all of this is that many routines take a (type, host
5769 address, target address) triple as arguments to represent a value.
5770 The host address, if non-null, is supposed to contain an internal
5771 copy of the relevant data; otherwise, the program is to consult the
5772 target at the target address. */
5774 /* Assuming that VAL0 represents a pointer value, the result of
5775 dereferencing it. Differs from value_ind in its treatment of
5776 dynamic-sized types. */
5779 ada_value_ind (struct value
*val0
)
5781 struct value
*val
= unwrap_value (value_ind (val0
));
5782 return ada_to_fixed_value (val
);
5785 /* The value resulting from dereferencing any "reference to"
5786 qualifiers on VAL0. */
5788 static struct value
*
5789 ada_coerce_ref (struct value
*val0
)
5791 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
5793 struct value
*val
= val0
;
5794 val
= coerce_ref (val
);
5795 val
= unwrap_value (val
);
5796 return ada_to_fixed_value (val
);
5802 /* Return OFF rounded upward if necessary to a multiple of
5803 ALIGNMENT (a power of 2). */
5806 align_value (unsigned int off
, unsigned int alignment
)
5808 return (off
+ alignment
- 1) & ~(alignment
- 1);
5811 /* Return the bit alignment required for field #F of template type TYPE. */
5814 field_alignment (struct type
*type
, int f
)
5816 const char *name
= TYPE_FIELD_NAME (type
, f
);
5817 int len
= (name
== NULL
) ? 0 : strlen (name
);
5820 if (!isdigit (name
[len
- 1]))
5823 if (isdigit (name
[len
- 2]))
5824 align_offset
= len
- 2;
5826 align_offset
= len
- 1;
5828 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
5829 return TARGET_CHAR_BIT
;
5831 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
5834 /* Find a symbol named NAME. Ignores ambiguity. */
5837 ada_find_any_symbol (const char *name
)
5841 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
5842 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5845 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
5849 /* Find a type named NAME. Ignores ambiguity. */
5852 ada_find_any_type (const char *name
)
5854 struct symbol
*sym
= ada_find_any_symbol (name
);
5857 return SYMBOL_TYPE (sym
);
5862 /* Given a symbol NAME and its associated BLOCK, search all symbols
5863 for its ___XR counterpart, which is the ``renaming'' symbol
5864 associated to NAME. Return this symbol if found, return
5868 ada_find_renaming_symbol (const char *name
, struct block
*block
)
5870 const struct symbol
*function_sym
= block_function (block
);
5873 if (function_sym
!= NULL
)
5875 /* If the symbol is defined inside a function, NAME is not fully
5876 qualified. This means we need to prepend the function name
5877 as well as adding the ``___XR'' suffix to build the name of
5878 the associated renaming symbol. */
5879 char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
5880 const int function_name_len
= strlen (function_name
);
5881 const int rename_len
= function_name_len
+ 2 /* "__" */
5882 + strlen (name
) + 6 /* "___XR\0" */ ;
5884 /* Library-level functions are a special case, as GNAT adds
5885 a ``_ada_'' prefix to the function name to avoid namespace
5886 pollution. However, the renaming symbol themselves do not
5887 have this prefix, so we need to skip this prefix if present. */
5888 if (function_name_len
> 5 /* "_ada_" */
5889 && strstr (function_name
, "_ada_") == function_name
)
5890 function_name
= function_name
+ 5;
5892 rename
= (char *) alloca (rename_len
* sizeof (char));
5893 sprintf (rename
, "%s__%s___XR", function_name
, name
);
5897 const int rename_len
= strlen (name
) + 6;
5898 rename
= (char *) alloca (rename_len
* sizeof (char));
5899 sprintf (rename
, "%s___XR", name
);
5902 return ada_find_any_symbol (rename
);
5905 /* Because of GNAT encoding conventions, several GDB symbols may match a
5906 given type name. If the type denoted by TYPE0 is to be preferred to
5907 that of TYPE1 for purposes of type printing, return non-zero;
5908 otherwise return 0. */
5911 ada_prefer_type (struct type
*type0
, struct type
*type1
)
5915 else if (type0
== NULL
)
5917 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
5919 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
5921 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
5923 else if (ada_is_packed_array_type (type0
))
5925 else if (ada_is_array_descriptor_type (type0
)
5926 && !ada_is_array_descriptor_type (type1
))
5928 else if (ada_renaming_type (type0
) != NULL
5929 && ada_renaming_type (type1
) == NULL
)
5934 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5935 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5938 ada_type_name (struct type
*type
)
5942 else if (TYPE_NAME (type
) != NULL
)
5943 return TYPE_NAME (type
);
5945 return TYPE_TAG_NAME (type
);
5948 /* Find a parallel type to TYPE whose name is formed by appending
5949 SUFFIX to the name of TYPE. */
5952 ada_find_parallel_type (struct type
*type
, const char *suffix
)
5955 static size_t name_len
= 0;
5957 char *typename
= ada_type_name (type
);
5959 if (typename
== NULL
)
5962 len
= strlen (typename
);
5964 GROW_VECT (name
, name_len
, len
+ strlen (suffix
) + 1);
5966 strcpy (name
, typename
);
5967 strcpy (name
+ len
, suffix
);
5969 return ada_find_any_type (name
);
5973 /* If TYPE is a variable-size record type, return the corresponding template
5974 type describing its fields. Otherwise, return NULL. */
5976 static struct type
*
5977 dynamic_template_type (struct type
*type
)
5979 type
= ada_check_typedef (type
);
5981 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
5982 || ada_type_name (type
) == NULL
)
5986 int len
= strlen (ada_type_name (type
));
5987 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
5990 return ada_find_parallel_type (type
, "___XVE");
5994 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5995 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5998 is_dynamic_field (struct type
*templ_type
, int field_num
)
6000 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
6002 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
6003 && strstr (name
, "___XVL") != NULL
;
6006 /* The index of the variant field of TYPE, or -1 if TYPE does not
6007 represent a variant record type. */
6010 variant_field_index (struct type
*type
)
6014 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6017 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
6019 if (ada_is_variant_part (type
, f
))
6025 /* A record type with no fields. */
6027 static struct type
*
6028 empty_record (struct objfile
*objfile
)
6030 struct type
*type
= alloc_type (objfile
);
6031 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
6032 TYPE_NFIELDS (type
) = 0;
6033 TYPE_FIELDS (type
) = NULL
;
6034 TYPE_NAME (type
) = "<empty>";
6035 TYPE_TAG_NAME (type
) = NULL
;
6036 TYPE_FLAGS (type
) = 0;
6037 TYPE_LENGTH (type
) = 0;
6041 /* An ordinary record type (with fixed-length fields) that describes
6042 the value of type TYPE at VALADDR or ADDRESS (see comments at
6043 the beginning of this section) VAL according to GNAT conventions.
6044 DVAL0 should describe the (portion of a) record that contains any
6045 necessary discriminants. It should be NULL if value_type (VAL) is
6046 an outer-level type (i.e., as opposed to a branch of a variant.) A
6047 variant field (unless unchecked) is replaced by a particular branch
6050 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6051 length are not statically known are discarded. As a consequence,
6052 VALADDR, ADDRESS and DVAL0 are ignored.
6054 NOTE: Limitations: For now, we assume that dynamic fields and
6055 variants occupy whole numbers of bytes. However, they need not be
6059 ada_template_to_fixed_record_type_1 (struct type
*type
,
6060 const bfd_byte
*valaddr
,
6061 CORE_ADDR address
, struct value
*dval0
,
6062 int keep_dynamic_fields
)
6064 struct value
*mark
= value_mark ();
6067 int nfields
, bit_len
;
6070 int fld_bit_len
, bit_incr
;
6073 /* Compute the number of fields in this record type that are going
6074 to be processed: unless keep_dynamic_fields, this includes only
6075 fields whose position and length are static will be processed. */
6076 if (keep_dynamic_fields
)
6077 nfields
= TYPE_NFIELDS (type
);
6081 while (nfields
< TYPE_NFIELDS (type
)
6082 && !ada_is_variant_part (type
, nfields
)
6083 && !is_dynamic_field (type
, nfields
))
6087 rtype
= alloc_type (TYPE_OBJFILE (type
));
6088 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6089 INIT_CPLUS_SPECIFIC (rtype
);
6090 TYPE_NFIELDS (rtype
) = nfields
;
6091 TYPE_FIELDS (rtype
) = (struct field
*)
6092 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6093 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
6094 TYPE_NAME (rtype
) = ada_type_name (type
);
6095 TYPE_TAG_NAME (rtype
) = NULL
;
6096 TYPE_FLAGS (rtype
) |= TYPE_FLAG_FIXED_INSTANCE
;
6102 for (f
= 0; f
< nfields
; f
+= 1)
6104 off
= align_value (off
, field_alignment (type
, f
))
6105 + TYPE_FIELD_BITPOS (type
, f
);
6106 TYPE_FIELD_BITPOS (rtype
, f
) = off
;
6107 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
6109 if (ada_is_variant_part (type
, f
))
6112 fld_bit_len
= bit_incr
= 0;
6114 else if (is_dynamic_field (type
, f
))
6117 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6121 TYPE_FIELD_TYPE (rtype
, f
) =
6124 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
))),
6125 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
6126 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
6127 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6128 bit_incr
= fld_bit_len
=
6129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
6133 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
6134 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
6135 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
6136 bit_incr
= fld_bit_len
=
6137 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
6139 bit_incr
= fld_bit_len
=
6140 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, f
)) * TARGET_CHAR_BIT
;
6142 if (off
+ fld_bit_len
> bit_len
)
6143 bit_len
= off
+ fld_bit_len
;
6145 TYPE_LENGTH (rtype
) =
6146 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6149 /* We handle the variant part, if any, at the end because of certain
6150 odd cases in which it is re-ordered so as NOT the last field of
6151 the record. This can happen in the presence of representation
6153 if (variant_field
>= 0)
6155 struct type
*branch_type
;
6157 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
6160 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6165 to_fixed_variant_branch_type
6166 (TYPE_FIELD_TYPE (type
, variant_field
),
6167 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
6168 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
6169 if (branch_type
== NULL
)
6171 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
6172 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
6173 TYPE_NFIELDS (rtype
) -= 1;
6177 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
6178 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
6180 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
6182 if (off
+ fld_bit_len
> bit_len
)
6183 bit_len
= off
+ fld_bit_len
;
6184 TYPE_LENGTH (rtype
) =
6185 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
6189 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6190 should contain the alignment of that record, which should be a strictly
6191 positive value. If null or negative, then something is wrong, most
6192 probably in the debug info. In that case, we don't round up the size
6193 of the resulting type. If this record is not part of another structure,
6194 the current RTYPE length might be good enough for our purposes. */
6195 if (TYPE_LENGTH (type
) <= 0)
6197 if (TYPE_NAME (rtype
))
6198 warning (_("Invalid type size for `%s' detected: %d."),
6199 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
6201 warning (_("Invalid type size for <unnamed> detected: %d."),
6202 TYPE_LENGTH (type
));
6206 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
6207 TYPE_LENGTH (type
));
6210 value_free_to_mark (mark
);
6211 if (TYPE_LENGTH (rtype
) > varsize_limit
)
6212 error (_("record type with dynamic size is larger than varsize-limit"));
6216 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6219 static struct type
*
6220 template_to_fixed_record_type (struct type
*type
, const bfd_byte
*valaddr
,
6221 CORE_ADDR address
, struct value
*dval0
)
6223 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
6227 /* An ordinary record type in which ___XVL-convention fields and
6228 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6229 static approximations, containing all possible fields. Uses
6230 no runtime values. Useless for use in values, but that's OK,
6231 since the results are used only for type determinations. Works on both
6232 structs and unions. Representation note: to save space, we memorize
6233 the result of this function in the TYPE_TARGET_TYPE of the
6236 static struct type
*
6237 template_to_static_fixed_type (struct type
*type0
)
6243 if (TYPE_TARGET_TYPE (type0
) != NULL
)
6244 return TYPE_TARGET_TYPE (type0
);
6246 nfields
= TYPE_NFIELDS (type0
);
6249 for (f
= 0; f
< nfields
; f
+= 1)
6251 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
6252 struct type
*new_type
;
6254 if (is_dynamic_field (type0
, f
))
6255 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
6257 new_type
= to_static_fixed_type (field_type
);
6258 if (type
== type0
&& new_type
!= field_type
)
6260 TYPE_TARGET_TYPE (type0
) = type
= alloc_type (TYPE_OBJFILE (type0
));
6261 TYPE_CODE (type
) = TYPE_CODE (type0
);
6262 INIT_CPLUS_SPECIFIC (type
);
6263 TYPE_NFIELDS (type
) = nfields
;
6264 TYPE_FIELDS (type
) = (struct field
*)
6265 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
6266 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
6267 sizeof (struct field
) * nfields
);
6268 TYPE_NAME (type
) = ada_type_name (type0
);
6269 TYPE_TAG_NAME (type
) = NULL
;
6270 TYPE_FLAGS (type
) |= TYPE_FLAG_FIXED_INSTANCE
;
6271 TYPE_LENGTH (type
) = 0;
6273 TYPE_FIELD_TYPE (type
, f
) = new_type
;
6274 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
6279 /* Given an object of type TYPE whose contents are at VALADDR and
6280 whose address in memory is ADDRESS, returns a revision of TYPE --
6281 a non-dynamic-sized record with a variant part -- in which
6282 the variant part is replaced with the appropriate branch. Looks
6283 for discriminant values in DVAL0, which can be NULL if the record
6284 contains the necessary discriminant values. */
6286 static struct type
*
6287 to_record_with_fixed_variant_part (struct type
*type
, const bfd_byte
*valaddr
,
6288 CORE_ADDR address
, struct value
*dval0
)
6290 struct value
*mark
= value_mark ();
6293 struct type
*branch_type
;
6294 int nfields
= TYPE_NFIELDS (type
);
6295 int variant_field
= variant_field_index (type
);
6297 if (variant_field
== -1)
6301 dval
= value_from_contents_and_address (type
, valaddr
, address
);
6305 rtype
= alloc_type (TYPE_OBJFILE (type
));
6306 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6307 INIT_CPLUS_SPECIFIC (rtype
);
6308 TYPE_NFIELDS (rtype
) = nfields
;
6309 TYPE_FIELDS (rtype
) =
6310 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6311 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
6312 sizeof (struct field
) * nfields
);
6313 TYPE_NAME (rtype
) = ada_type_name (type
);
6314 TYPE_TAG_NAME (rtype
) = NULL
;
6315 TYPE_FLAGS (rtype
) |= TYPE_FLAG_FIXED_INSTANCE
;
6316 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
6318 branch_type
= to_fixed_variant_branch_type
6319 (TYPE_FIELD_TYPE (type
, variant_field
),
6320 cond_offset_host (valaddr
,
6321 TYPE_FIELD_BITPOS (type
, variant_field
)
6323 cond_offset_target (address
,
6324 TYPE_FIELD_BITPOS (type
, variant_field
)
6325 / TARGET_CHAR_BIT
), dval
);
6326 if (branch_type
== NULL
)
6329 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
6330 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
6331 TYPE_NFIELDS (rtype
) -= 1;
6335 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
6336 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
6337 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
6338 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
6340 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
6342 value_free_to_mark (mark
);
6346 /* An ordinary record type (with fixed-length fields) that describes
6347 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6348 beginning of this section]. Any necessary discriminants' values
6349 should be in DVAL, a record value; it may be NULL if the object
6350 at ADDR itself contains any necessary discriminant values.
6351 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6352 values from the record are needed. Except in the case that DVAL,
6353 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6354 unchecked) is replaced by a particular branch of the variant.
6356 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6357 is questionable and may be removed. It can arise during the
6358 processing of an unconstrained-array-of-record type where all the
6359 variant branches have exactly the same size. This is because in
6360 such cases, the compiler does not bother to use the XVS convention
6361 when encoding the record. I am currently dubious of this
6362 shortcut and suspect the compiler should be altered. FIXME. */
6364 static struct type
*
6365 to_fixed_record_type (struct type
*type0
, const bfd_byte
*valaddr
,
6366 CORE_ADDR address
, struct value
*dval
)
6368 struct type
*templ_type
;
6370 if (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
)
6373 templ_type
= dynamic_template_type (type0
);
6375 if (templ_type
!= NULL
)
6376 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
6377 else if (variant_field_index (type0
) >= 0)
6379 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
6381 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
6386 TYPE_FLAGS (type0
) |= TYPE_FLAG_FIXED_INSTANCE
;
6392 /* An ordinary record type (with fixed-length fields) that describes
6393 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6394 union type. Any necessary discriminants' values should be in DVAL,
6395 a record value. That is, this routine selects the appropriate
6396 branch of the union at ADDR according to the discriminant value
6397 indicated in the union's type name. */
6399 static struct type
*
6400 to_fixed_variant_branch_type (struct type
*var_type0
, const bfd_byte
*valaddr
,
6401 CORE_ADDR address
, struct value
*dval
)
6404 struct type
*templ_type
;
6405 struct type
*var_type
;
6407 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
6408 var_type
= TYPE_TARGET_TYPE (var_type0
);
6410 var_type
= var_type0
;
6412 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
6414 if (templ_type
!= NULL
)
6415 var_type
= templ_type
;
6418 ada_which_variant_applies (var_type
,
6419 value_type (dval
), value_contents (dval
));
6422 return empty_record (TYPE_OBJFILE (var_type
));
6423 else if (is_dynamic_field (var_type
, which
))
6424 return to_fixed_record_type
6425 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
6426 valaddr
, address
, dval
);
6427 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
6429 to_fixed_record_type
6430 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
6432 return TYPE_FIELD_TYPE (var_type
, which
);
6435 /* Assuming that TYPE0 is an array type describing the type of a value
6436 at ADDR, and that DVAL describes a record containing any
6437 discriminants used in TYPE0, returns a type for the value that
6438 contains no dynamic components (that is, no components whose sizes
6439 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6440 true, gives an error message if the resulting type's size is over
6443 static struct type
*
6444 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
6447 struct type
*index_type_desc
;
6448 struct type
*result
;
6450 if (ada_is_packed_array_type (type0
) /* revisit? */
6451 || (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
))
6454 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
6455 if (index_type_desc
== NULL
)
6457 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
6458 /* NOTE: elt_type---the fixed version of elt_type0---should never
6459 depend on the contents of the array in properly constructed
6461 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
);
6463 if (elt_type0
== elt_type
)
6466 result
= create_array_type (alloc_type (TYPE_OBJFILE (type0
)),
6467 elt_type
, TYPE_INDEX_TYPE (type0
));
6472 struct type
*elt_type0
;
6475 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
6476 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
6478 /* NOTE: result---the fixed version of elt_type0---should never
6479 depend on the contents of the array in properly constructed
6481 result
= ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
);
6482 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
6484 struct type
*range_type
=
6485 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc
, i
),
6486 dval
, TYPE_OBJFILE (type0
));
6487 result
= create_array_type (alloc_type (TYPE_OBJFILE (type0
)),
6488 result
, range_type
);
6490 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
6491 error (_("array type with dynamic size is larger than varsize-limit"));
6494 TYPE_FLAGS (result
) |= TYPE_FLAG_FIXED_INSTANCE
;
6499 /* A standard type (containing no dynamically sized components)
6500 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6501 DVAL describes a record containing any discriminants used in TYPE0,
6502 and may be NULL if there are none, or if the object of type TYPE at
6503 ADDRESS or in VALADDR contains these discriminants. */
6506 ada_to_fixed_type (struct type
*type
, const bfd_byte
*valaddr
,
6507 CORE_ADDR address
, struct value
*dval
)
6509 type
= ada_check_typedef (type
);
6510 switch (TYPE_CODE (type
))
6514 case TYPE_CODE_STRUCT
:
6516 struct type
*static_type
= to_static_fixed_type (type
);
6517 if (ada_is_tagged_type (static_type
, 0))
6519 struct type
*real_type
=
6520 type_from_tag (value_tag_from_contents_and_address (static_type
,
6523 if (real_type
!= NULL
)
6526 return to_fixed_record_type (type
, valaddr
, address
, NULL
);
6528 case TYPE_CODE_ARRAY
:
6529 return to_fixed_array_type (type
, dval
, 1);
6530 case TYPE_CODE_UNION
:
6534 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
6538 /* A standard (static-sized) type corresponding as well as possible to
6539 TYPE0, but based on no runtime data. */
6541 static struct type
*
6542 to_static_fixed_type (struct type
*type0
)
6549 if (TYPE_FLAGS (type0
) & TYPE_FLAG_FIXED_INSTANCE
)
6552 type0
= ada_check_typedef (type0
);
6554 switch (TYPE_CODE (type0
))
6558 case TYPE_CODE_STRUCT
:
6559 type
= dynamic_template_type (type0
);
6561 return template_to_static_fixed_type (type
);
6563 return template_to_static_fixed_type (type0
);
6564 case TYPE_CODE_UNION
:
6565 type
= ada_find_parallel_type (type0
, "___XVU");
6567 return template_to_static_fixed_type (type
);
6569 return template_to_static_fixed_type (type0
);
6573 /* A static approximation of TYPE with all type wrappers removed. */
6575 static struct type
*
6576 static_unwrap_type (struct type
*type
)
6578 if (ada_is_aligner_type (type
))
6580 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
6581 if (ada_type_name (type1
) == NULL
)
6582 TYPE_NAME (type1
) = ada_type_name (type
);
6584 return static_unwrap_type (type1
);
6588 struct type
*raw_real_type
= ada_get_base_type (type
);
6589 if (raw_real_type
== type
)
6592 return to_static_fixed_type (raw_real_type
);
6596 /* In some cases, incomplete and private types require
6597 cross-references that are not resolved as records (for example,
6599 type FooP is access Foo;
6601 type Foo is array ...;
6602 ). In these cases, since there is no mechanism for producing
6603 cross-references to such types, we instead substitute for FooP a
6604 stub enumeration type that is nowhere resolved, and whose tag is
6605 the name of the actual type. Call these types "non-record stubs". */
6607 /* A type equivalent to TYPE that is not a non-record stub, if one
6608 exists, otherwise TYPE. */
6611 ada_check_typedef (struct type
*type
)
6613 CHECK_TYPEDEF (type
);
6614 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
6615 || (TYPE_FLAGS (type
) & TYPE_FLAG_STUB
) == 0
6616 || TYPE_TAG_NAME (type
) == NULL
)
6620 char *name
= TYPE_TAG_NAME (type
);
6621 struct type
*type1
= ada_find_any_type (name
);
6622 return (type1
== NULL
) ? type
: type1
;
6626 /* A value representing the data at VALADDR/ADDRESS as described by
6627 type TYPE0, but with a standard (static-sized) type that correctly
6628 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6629 type, then return VAL0 [this feature is simply to avoid redundant
6630 creation of struct values]. */
6632 static struct value
*
6633 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
6636 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
);
6637 if (type
== type0
&& val0
!= NULL
)
6640 return value_from_contents_and_address (type
, 0, address
);
6643 /* A value representing VAL, but with a standard (static-sized) type
6644 that correctly describes it. Does not necessarily create a new
6647 static struct value
*
6648 ada_to_fixed_value (struct value
*val
)
6650 return ada_to_fixed_value_create (value_type (val
),
6651 VALUE_ADDRESS (val
) + value_offset (val
),
6655 /* A value representing VAL, but with a standard (static-sized) type
6656 chosen to approximate the real type of VAL as well as possible, but
6657 without consulting any runtime values. For Ada dynamic-sized
6658 types, therefore, the type of the result is likely to be inaccurate. */
6661 ada_to_static_fixed_value (struct value
*val
)
6664 to_static_fixed_type (static_unwrap_type (value_type (val
)));
6665 if (type
== value_type (val
))
6668 return coerce_unspec_val_to_type (val
, type
);
6674 /* Table mapping attribute numbers to names.
6675 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
6677 static const char *attribute_names
[] = {
6695 ada_attribute_name (enum exp_opcode n
)
6697 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
6698 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
6700 return attribute_names
[0];
6703 /* Evaluate the 'POS attribute applied to ARG. */
6706 pos_atr (struct value
*arg
)
6708 struct type
*type
= value_type (arg
);
6710 if (!discrete_type_p (type
))
6711 error (_("'POS only defined on discrete types"));
6713 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
6716 LONGEST v
= value_as_long (arg
);
6718 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6720 if (v
== TYPE_FIELD_BITPOS (type
, i
))
6723 error (_("enumeration value is invalid: can't find 'POS"));
6726 return value_as_long (arg
);
6729 static struct value
*
6730 value_pos_atr (struct value
*arg
)
6732 return value_from_longest (builtin_type_int
, pos_atr (arg
));
6735 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6737 static struct value
*
6738 value_val_atr (struct type
*type
, struct value
*arg
)
6740 if (!discrete_type_p (type
))
6741 error (_("'VAL only defined on discrete types"));
6742 if (!integer_type_p (value_type (arg
)))
6743 error (_("'VAL requires integral argument"));
6745 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
6747 long pos
= value_as_long (arg
);
6748 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
6749 error (_("argument to 'VAL out of range"));
6750 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, pos
));
6753 return value_from_longest (type
, value_as_long (arg
));
6759 /* True if TYPE appears to be an Ada character type.
6760 [At the moment, this is true only for Character and Wide_Character;
6761 It is a heuristic test that could stand improvement]. */
6764 ada_is_character_type (struct type
*type
)
6766 const char *name
= ada_type_name (type
);
6769 && (TYPE_CODE (type
) == TYPE_CODE_CHAR
6770 || TYPE_CODE (type
) == TYPE_CODE_INT
6771 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
6772 && (strcmp (name
, "character") == 0
6773 || strcmp (name
, "wide_character") == 0
6774 || strcmp (name
, "unsigned char") == 0);
6777 /* True if TYPE appears to be an Ada string type. */
6780 ada_is_string_type (struct type
*type
)
6782 type
= ada_check_typedef (type
);
6784 && TYPE_CODE (type
) != TYPE_CODE_PTR
6785 && (ada_is_simple_array_type (type
)
6786 || ada_is_array_descriptor_type (type
))
6787 && ada_array_arity (type
) == 1)
6789 struct type
*elttype
= ada_array_element_type (type
, 1);
6791 return ada_is_character_type (elttype
);
6798 /* True if TYPE is a struct type introduced by the compiler to force the
6799 alignment of a value. Such types have a single field with a
6800 distinctive name. */
6803 ada_is_aligner_type (struct type
*type
)
6805 type
= ada_check_typedef (type
);
6807 /* If we can find a parallel XVS type, then the XVS type should
6808 be used instead of this type. And hence, this is not an aligner
6810 if (ada_find_parallel_type (type
, "___XVS") != NULL
)
6813 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
6814 && TYPE_NFIELDS (type
) == 1
6815 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
6818 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6819 the parallel type. */
6822 ada_get_base_type (struct type
*raw_type
)
6824 struct type
*real_type_namer
;
6825 struct type
*raw_real_type
;
6827 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
6830 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
6831 if (real_type_namer
== NULL
6832 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
6833 || TYPE_NFIELDS (real_type_namer
) != 1)
6836 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
6837 if (raw_real_type
== NULL
)
6840 return raw_real_type
;
6843 /* The type of value designated by TYPE, with all aligners removed. */
6846 ada_aligned_type (struct type
*type
)
6848 if (ada_is_aligner_type (type
))
6849 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
6851 return ada_get_base_type (type
);
6855 /* The address of the aligned value in an object at address VALADDR
6856 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6859 ada_aligned_value_addr (struct type
*type
, const bfd_byte
*valaddr
)
6861 if (ada_is_aligner_type (type
))
6862 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
6864 TYPE_FIELD_BITPOS (type
,
6865 0) / TARGET_CHAR_BIT
);
6872 /* The printed representation of an enumeration literal with encoded
6873 name NAME. The value is good to the next call of ada_enum_name. */
6875 ada_enum_name (const char *name
)
6877 static char *result
;
6878 static size_t result_len
= 0;
6881 /* First, unqualify the enumeration name:
6882 1. Search for the last '.' character. If we find one, then skip
6883 all the preceeding characters, the unqualified name starts
6884 right after that dot.
6885 2. Otherwise, we may be debugging on a target where the compiler
6886 translates dots into "__". Search forward for double underscores,
6887 but stop searching when we hit an overloading suffix, which is
6888 of the form "__" followed by digits. */
6890 tmp
= strrchr (name
, '.');
6895 while ((tmp
= strstr (name
, "__")) != NULL
)
6897 if (isdigit (tmp
[2]))
6907 if (name
[1] == 'U' || name
[1] == 'W')
6909 if (sscanf (name
+ 2, "%x", &v
) != 1)
6915 GROW_VECT (result
, result_len
, 16);
6916 if (isascii (v
) && isprint (v
))
6917 sprintf (result
, "'%c'", v
);
6918 else if (name
[1] == 'U')
6919 sprintf (result
, "[\"%02x\"]", v
);
6921 sprintf (result
, "[\"%04x\"]", v
);
6927 tmp
= strstr (name
, "__");
6929 tmp
= strstr (name
, "$");
6932 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
6933 strncpy (result
, name
, tmp
- name
);
6934 result
[tmp
- name
] = '\0';
6942 static struct value
*
6943 evaluate_subexp (struct type
*expect_type
, struct expression
*exp
, int *pos
,
6946 return (*exp
->language_defn
->la_exp_desc
->evaluate_exp
)
6947 (expect_type
, exp
, pos
, noside
);
6950 /* Evaluate the subexpression of EXP starting at *POS as for
6951 evaluate_type, updating *POS to point just past the evaluated
6954 static struct value
*
6955 evaluate_subexp_type (struct expression
*exp
, int *pos
)
6957 return (*exp
->language_defn
->la_exp_desc
->evaluate_exp
)
6958 (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
6961 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6964 static struct value
*
6965 unwrap_value (struct value
*val
)
6967 struct type
*type
= ada_check_typedef (value_type (val
));
6968 if (ada_is_aligner_type (type
))
6970 struct value
*v
= value_struct_elt (&val
, NULL
, "F",
6971 NULL
, "internal structure");
6972 struct type
*val_type
= ada_check_typedef (value_type (v
));
6973 if (ada_type_name (val_type
) == NULL
)
6974 TYPE_NAME (val_type
) = ada_type_name (type
);
6976 return unwrap_value (v
);
6980 struct type
*raw_real_type
=
6981 ada_check_typedef (ada_get_base_type (type
));
6983 if (type
== raw_real_type
)
6987 coerce_unspec_val_to_type
6988 (val
, ada_to_fixed_type (raw_real_type
, 0,
6989 VALUE_ADDRESS (val
) + value_offset (val
),
6994 static struct value
*
6995 cast_to_fixed (struct type
*type
, struct value
*arg
)
6999 if (type
== value_type (arg
))
7001 else if (ada_is_fixed_point_type (value_type (arg
)))
7002 val
= ada_float_to_fixed (type
,
7003 ada_fixed_to_float (value_type (arg
),
7004 value_as_long (arg
)));
7008 value_as_double (value_cast (builtin_type_double
, value_copy (arg
)));
7009 val
= ada_float_to_fixed (type
, argd
);
7012 return value_from_longest (type
, val
);
7015 static struct value
*
7016 cast_from_fixed_to_double (struct value
*arg
)
7018 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
7019 value_as_long (arg
));
7020 return value_from_double (builtin_type_double
, val
);
7023 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7024 return the converted value. */
7026 static struct value
*
7027 coerce_for_assign (struct type
*type
, struct value
*val
)
7029 struct type
*type2
= value_type (val
);
7033 type2
= ada_check_typedef (type2
);
7034 type
= ada_check_typedef (type
);
7036 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
7037 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7039 val
= ada_value_ind (val
);
7040 type2
= value_type (val
);
7043 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
7044 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7046 if (TYPE_LENGTH (type2
) != TYPE_LENGTH (type
)
7047 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
7048 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2
)))
7049 error (_("Incompatible types in assignment"));
7050 deprecated_set_value_type (val
, type
);
7055 static struct value
*
7056 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
7059 struct type
*type1
, *type2
;
7062 arg1
= coerce_ref (arg1
);
7063 arg2
= coerce_ref (arg2
);
7064 type1
= base_type (ada_check_typedef (value_type (arg1
)));
7065 type2
= base_type (ada_check_typedef (value_type (arg2
)));
7067 if (TYPE_CODE (type1
) != TYPE_CODE_INT
7068 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
7069 return value_binop (arg1
, arg2
, op
);
7078 return value_binop (arg1
, arg2
, op
);
7081 v2
= value_as_long (arg2
);
7083 error (_("second operand of %s must not be zero."), op_string (op
));
7085 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
7086 return value_binop (arg1
, arg2
, op
);
7088 v1
= value_as_long (arg1
);
7093 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
7094 v
+= v
> 0 ? -1 : 1;
7102 /* Should not reach this point. */
7106 val
= allocate_value (type1
);
7107 store_unsigned_integer (value_contents_raw (val
),
7108 TYPE_LENGTH (value_type (val
)), v
);
7113 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
7115 if (ada_is_direct_array_type (value_type (arg1
))
7116 || ada_is_direct_array_type (value_type (arg2
)))
7118 arg1
= ada_coerce_to_simple_array (arg1
);
7119 arg2
= ada_coerce_to_simple_array (arg2
);
7120 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
7121 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
7122 error (_("Attempt to compare array with non-array"));
7123 /* FIXME: The following works only for types whose
7124 representations use all bits (no padding or undefined bits)
7125 and do not have user-defined equality. */
7127 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
7128 && memcmp (value_contents (arg1
), value_contents (arg2
),
7129 TYPE_LENGTH (value_type (arg1
))) == 0;
7131 return value_equal (arg1
, arg2
);
7135 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
7136 int *pos
, enum noside noside
)
7139 int tem
, tem2
, tem3
;
7141 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
7144 struct value
**argvec
;
7148 op
= exp
->elts
[pc
].opcode
;
7155 unwrap_value (evaluate_subexp_standard
7156 (expect_type
, exp
, pos
, noside
));
7160 struct value
*result
;
7162 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
7163 /* The result type will have code OP_STRING, bashed there from
7164 OP_ARRAY. Bash it back. */
7165 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
7166 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
7172 type
= exp
->elts
[pc
+ 1].type
;
7173 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
7174 if (noside
== EVAL_SKIP
)
7176 if (type
!= ada_check_typedef (value_type (arg1
)))
7178 if (ada_is_fixed_point_type (type
))
7179 arg1
= cast_to_fixed (type
, arg1
);
7180 else if (ada_is_fixed_point_type (value_type (arg1
)))
7181 arg1
= value_cast (type
, cast_from_fixed_to_double (arg1
));
7182 else if (VALUE_LVAL (arg1
) == lval_memory
)
7184 /* This is in case of the really obscure (and undocumented,
7185 but apparently expected) case of (Foo) Bar.all, where Bar
7186 is an integer constant and Foo is a dynamic-sized type.
7187 If we don't do this, ARG1 will simply be relabeled with
7189 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7190 return value_zero (to_static_fixed_type (type
), not_lval
);
7192 ada_to_fixed_value_create
7193 (type
, VALUE_ADDRESS (arg1
) + value_offset (arg1
), 0);
7196 arg1
= value_cast (type
, arg1
);
7202 type
= exp
->elts
[pc
+ 1].type
;
7203 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
7206 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7207 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
7208 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
7210 if (ada_is_fixed_point_type (value_type (arg1
)))
7211 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
7212 else if (ada_is_fixed_point_type (value_type (arg2
)))
7214 (_("Fixed-point values must be assigned to fixed-point variables"));
7216 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
7217 return ada_value_assign (arg1
, arg2
);
7220 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7221 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7222 if (noside
== EVAL_SKIP
)
7224 if ((ada_is_fixed_point_type (value_type (arg1
))
7225 || ada_is_fixed_point_type (value_type (arg2
)))
7226 && value_type (arg1
) != value_type (arg2
))
7227 error (_("Operands of fixed-point addition must have the same type"));
7228 return value_cast (value_type (arg1
), value_add (arg1
, arg2
));
7231 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7232 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
7233 if (noside
== EVAL_SKIP
)
7235 if ((ada_is_fixed_point_type (value_type (arg1
))
7236 || ada_is_fixed_point_type (value_type (arg2
)))
7237 && value_type (arg1
) != value_type (arg2
))
7238 error (_("Operands of fixed-point subtraction must have the same type"));
7239 return value_cast (value_type (arg1
), value_sub (arg1
, arg2
));
7243 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7244 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7245 if (noside
== EVAL_SKIP
)
7247 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
7248 && (op
== BINOP_DIV
|| op
== BINOP_REM
|| op
== BINOP_MOD
))
7249 return value_zero (value_type (arg1
), not_lval
);
7252 if (ada_is_fixed_point_type (value_type (arg1
)))
7253 arg1
= cast_from_fixed_to_double (arg1
);
7254 if (ada_is_fixed_point_type (value_type (arg2
)))
7255 arg2
= cast_from_fixed_to_double (arg2
);
7256 return ada_value_binop (arg1
, arg2
, op
);
7261 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7262 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7263 if (noside
== EVAL_SKIP
)
7265 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
7266 && (op
== BINOP_DIV
|| op
== BINOP_REM
|| op
== BINOP_MOD
))
7267 return value_zero (value_type (arg1
), not_lval
);
7269 return ada_value_binop (arg1
, arg2
, op
);
7272 case BINOP_NOTEQUAL
:
7273 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7274 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
7275 if (noside
== EVAL_SKIP
)
7277 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7280 tem
= ada_value_equal (arg1
, arg2
);
7281 if (op
== BINOP_NOTEQUAL
)
7283 return value_from_longest (LA_BOOL_TYPE
, (LONGEST
) tem
);
7286 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7287 if (noside
== EVAL_SKIP
)
7289 else if (ada_is_fixed_point_type (value_type (arg1
)))
7290 return value_cast (value_type (arg1
), value_neg (arg1
));
7292 return value_neg (arg1
);
7296 if (noside
== EVAL_SKIP
)
7301 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
7302 /* Only encountered when an unresolved symbol occurs in a
7303 context other than a function call, in which case, it is
7305 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7306 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
7307 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7311 (to_static_fixed_type
7312 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
7318 unwrap_value (evaluate_subexp_standard
7319 (expect_type
, exp
, pos
, noside
));
7320 return ada_to_fixed_value (arg1
);
7326 /* Allocate arg vector, including space for the function to be
7327 called in argvec[0] and a terminating NULL. */
7328 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
7330 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
7332 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
7333 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
7334 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7335 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
7338 for (tem
= 0; tem
<= nargs
; tem
+= 1)
7339 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7342 if (noside
== EVAL_SKIP
)
7346 if (ada_is_packed_array_type (desc_base_type (value_type (argvec
[0]))))
7347 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
7348 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
7349 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
7350 && VALUE_LVAL (argvec
[0]) == lval_memory
))
7351 argvec
[0] = value_addr (argvec
[0]);
7353 type
= ada_check_typedef (value_type (argvec
[0]));
7354 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
7356 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
7358 case TYPE_CODE_FUNC
:
7359 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
7361 case TYPE_CODE_ARRAY
:
7363 case TYPE_CODE_STRUCT
:
7364 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
7365 argvec
[0] = ada_value_ind (argvec
[0]);
7366 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
7369 error (_("cannot subscript or call something of type `%s'"),
7370 ada_type_name (value_type (argvec
[0])));
7375 switch (TYPE_CODE (type
))
7377 case TYPE_CODE_FUNC
:
7378 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7379 return allocate_value (TYPE_TARGET_TYPE (type
));
7380 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
7381 case TYPE_CODE_STRUCT
:
7385 arity
= ada_array_arity (type
);
7386 type
= ada_array_element_type (type
, nargs
);
7388 error (_("cannot subscript or call a record"));
7390 error (_("wrong number of subscripts; expecting %d"), arity
);
7391 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7392 return allocate_value (ada_aligned_type (type
));
7394 unwrap_value (ada_value_subscript
7395 (argvec
[0], nargs
, argvec
+ 1));
7397 case TYPE_CODE_ARRAY
:
7398 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7400 type
= ada_array_element_type (type
, nargs
);
7402 error (_("element type of array unknown"));
7404 return allocate_value (ada_aligned_type (type
));
7407 unwrap_value (ada_value_subscript
7408 (ada_coerce_to_simple_array (argvec
[0]),
7409 nargs
, argvec
+ 1));
7410 case TYPE_CODE_PTR
: /* Pointer to array */
7411 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
7412 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7414 type
= ada_array_element_type (type
, nargs
);
7416 error (_("element type of array unknown"));
7418 return allocate_value (ada_aligned_type (type
));
7421 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
7422 nargs
, argvec
+ 1));
7425 error (_("Attempt to index or call something other than an \
7426 array or function"));
7431 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7432 struct value
*low_bound_val
=
7433 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7434 struct value
*high_bound_val
=
7435 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7438 low_bound_val
= coerce_ref (low_bound_val
);
7439 high_bound_val
= coerce_ref (high_bound_val
);
7440 low_bound
= pos_atr (low_bound_val
);
7441 high_bound
= pos_atr (high_bound_val
);
7443 if (noside
== EVAL_SKIP
)
7446 /* If this is a reference to an aligner type, then remove all
7448 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
7449 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
7450 TYPE_TARGET_TYPE (value_type (array
)) =
7451 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
7453 if (ada_is_packed_array_type (value_type (array
)))
7454 error (_("cannot slice a packed array"));
7456 /* If this is a reference to an array or an array lvalue,
7457 convert to a pointer. */
7458 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
7459 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
7460 && VALUE_LVAL (array
) == lval_memory
))
7461 array
= value_addr (array
);
7463 if (noside
== EVAL_AVOID_SIDE_EFFECTS
7464 && ada_is_array_descriptor_type (ada_check_typedef
7465 (value_type (array
))))
7466 return empty_array (ada_type_of_array (array
, 0), low_bound
);
7468 array
= ada_coerce_to_simple_array_ptr (array
);
7470 /* If we have more than one level of pointer indirection,
7471 dereference the value until we get only one level. */
7472 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
7473 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
7475 array
= value_ind (array
);
7477 /* Make sure we really do have an array type before going further,
7478 to avoid a SEGV when trying to get the index type or the target
7479 type later down the road if the debug info generated by
7480 the compiler is incorrect or incomplete. */
7481 if (!ada_is_simple_array_type (value_type (array
)))
7482 error (_("cannot take slice of non-array"));
7484 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
)
7486 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
7487 return empty_array (TYPE_TARGET_TYPE (value_type (array
)),
7491 struct type
*arr_type0
=
7492 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array
)),
7494 return ada_value_slice_ptr (array
, arr_type0
,
7499 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7501 else if (high_bound
< low_bound
)
7502 return empty_array (value_type (array
), low_bound
);
7504 return ada_value_slice (array
, (int) low_bound
, (int) high_bound
);
7509 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7510 type
= exp
->elts
[pc
+ 1].type
;
7512 if (noside
== EVAL_SKIP
)
7515 switch (TYPE_CODE (type
))
7518 lim_warning (_("Membership test incompletely implemented; \
7519 always returns true"));
7520 return value_from_longest (builtin_type_int
, (LONGEST
) 1);
7522 case TYPE_CODE_RANGE
:
7523 arg2
= value_from_longest (builtin_type_int
, TYPE_LOW_BOUND (type
));
7524 arg3
= value_from_longest (builtin_type_int
,
7525 TYPE_HIGH_BOUND (type
));
7527 value_from_longest (builtin_type_int
,
7528 (value_less (arg1
, arg3
)
7529 || value_equal (arg1
, arg3
))
7530 && (value_less (arg2
, arg1
)
7531 || value_equal (arg2
, arg1
)));
7534 case BINOP_IN_BOUNDS
:
7536 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7537 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7539 if (noside
== EVAL_SKIP
)
7542 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7543 return value_zero (builtin_type_int
, not_lval
);
7545 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
7547 if (tem
< 1 || tem
> ada_array_arity (value_type (arg2
)))
7548 error (_("invalid dimension number to 'range"));
7550 arg3
= ada_array_bound (arg2
, tem
, 1);
7551 arg2
= ada_array_bound (arg2
, tem
, 0);
7554 value_from_longest (builtin_type_int
,
7555 (value_less (arg1
, arg3
)
7556 || value_equal (arg1
, arg3
))
7557 && (value_less (arg2
, arg1
)
7558 || value_equal (arg2
, arg1
)));
7560 case TERNOP_IN_RANGE
:
7561 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7562 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7563 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7565 if (noside
== EVAL_SKIP
)
7569 value_from_longest (builtin_type_int
,
7570 (value_less (arg1
, arg3
)
7571 || value_equal (arg1
, arg3
))
7572 && (value_less (arg2
, arg1
)
7573 || value_equal (arg2
, arg1
)));
7579 struct type
*type_arg
;
7580 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
7582 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
7584 type_arg
= exp
->elts
[pc
+ 2].type
;
7588 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7592 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
7593 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
7594 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
7597 if (noside
== EVAL_SKIP
)
7600 if (type_arg
== NULL
)
7602 arg1
= ada_coerce_ref (arg1
);
7604 if (ada_is_packed_array_type (value_type (arg1
)))
7605 arg1
= ada_coerce_to_simple_array (arg1
);
7607 if (tem
< 1 || tem
> ada_array_arity (value_type (arg1
)))
7608 error (_("invalid dimension number to '%s"),
7609 ada_attribute_name (op
));
7611 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7613 type
= ada_index_type (value_type (arg1
), tem
);
7616 (_("attempt to take bound of something that is not an array"));
7617 return allocate_value (type
);
7622 default: /* Should never happen. */
7623 error (_("unexpected attribute encountered"));
7625 return ada_array_bound (arg1
, tem
, 0);
7627 return ada_array_bound (arg1
, tem
, 1);
7629 return ada_array_length (arg1
, tem
);
7632 else if (discrete_type_p (type_arg
))
7634 struct type
*range_type
;
7635 char *name
= ada_type_name (type_arg
);
7637 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
7639 to_fixed_range_type (name
, NULL
, TYPE_OBJFILE (type_arg
));
7640 if (range_type
== NULL
)
7641 range_type
= type_arg
;
7645 error (_("unexpected attribute encountered"));
7647 return discrete_type_low_bound (range_type
);
7649 return discrete_type_high_bound (range_type
);
7651 error (_("the 'length attribute applies only to array types"));
7654 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
7655 error (_("unimplemented type attribute"));
7660 if (ada_is_packed_array_type (type_arg
))
7661 type_arg
= decode_packed_array_type (type_arg
);
7663 if (tem
< 1 || tem
> ada_array_arity (type_arg
))
7664 error (_("invalid dimension number to '%s"),
7665 ada_attribute_name (op
));
7667 type
= ada_index_type (type_arg
, tem
);
7670 (_("attempt to take bound of something that is not an array"));
7671 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7672 return allocate_value (type
);
7677 error (_("unexpected attribute encountered"));
7679 low
= ada_array_bound_from_type (type_arg
, tem
, 0, &type
);
7680 return value_from_longest (type
, low
);
7682 high
= ada_array_bound_from_type (type_arg
, tem
, 1, &type
);
7683 return value_from_longest (type
, high
);
7685 low
= ada_array_bound_from_type (type_arg
, tem
, 0, &type
);
7686 high
= ada_array_bound_from_type (type_arg
, tem
, 1, NULL
);
7687 return value_from_longest (type
, high
- low
+ 1);
7693 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7694 if (noside
== EVAL_SKIP
)
7697 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7698 return value_zero (ada_tag_type (arg1
), not_lval
);
7700 return ada_value_tag (arg1
);
7704 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
7705 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7706 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7707 if (noside
== EVAL_SKIP
)
7709 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7710 return value_zero (value_type (arg1
), not_lval
);
7712 return value_binop (arg1
, arg2
,
7713 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
7715 case OP_ATR_MODULUS
:
7717 struct type
*type_arg
= exp
->elts
[pc
+ 2].type
;
7718 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
7720 if (noside
== EVAL_SKIP
)
7723 if (!ada_is_modular_type (type_arg
))
7724 error (_("'modulus must be applied to modular type"));
7726 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
7727 ada_modulus (type_arg
));
7732 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
7733 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7734 if (noside
== EVAL_SKIP
)
7736 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7737 return value_zero (builtin_type_int
, not_lval
);
7739 return value_pos_atr (arg1
);
7742 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7743 if (noside
== EVAL_SKIP
)
7745 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7746 return value_zero (builtin_type_int
, not_lval
);
7748 return value_from_longest (builtin_type_int
,
7750 * TYPE_LENGTH (value_type (arg1
)));
7753 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
7754 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7755 type
= exp
->elts
[pc
+ 2].type
;
7756 if (noside
== EVAL_SKIP
)
7758 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7759 return value_zero (type
, not_lval
);
7761 return value_val_atr (type
, arg1
);
7764 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7765 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7766 if (noside
== EVAL_SKIP
)
7768 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7769 return value_zero (value_type (arg1
), not_lval
);
7771 return value_binop (arg1
, arg2
, op
);
7774 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7775 if (noside
== EVAL_SKIP
)
7781 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7782 if (noside
== EVAL_SKIP
)
7784 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
7785 return value_neg (arg1
);
7790 if (expect_type
&& TYPE_CODE (expect_type
) == TYPE_CODE_PTR
)
7791 expect_type
= TYPE_TARGET_TYPE (ada_check_typedef (expect_type
));
7792 arg1
= evaluate_subexp (expect_type
, exp
, pos
, noside
);
7793 if (noside
== EVAL_SKIP
)
7795 type
= ada_check_typedef (value_type (arg1
));
7796 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7798 if (ada_is_array_descriptor_type (type
))
7799 /* GDB allows dereferencing GNAT array descriptors. */
7801 struct type
*arrType
= ada_type_of_array (arg1
, 0);
7802 if (arrType
== NULL
)
7803 error (_("Attempt to dereference null array pointer."));
7804 return value_at_lazy (arrType
, 0);
7806 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
7807 || TYPE_CODE (type
) == TYPE_CODE_REF
7808 /* In C you can dereference an array to get the 1st elt. */
7809 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
7811 type
= to_static_fixed_type
7813 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
7815 return value_zero (type
, lval_memory
);
7817 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
7818 /* GDB allows dereferencing an int. */
7819 return value_zero (builtin_type_int
, lval_memory
);
7821 error (_("Attempt to take contents of a non-pointer value."));
7823 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
7824 type
= ada_check_typedef (value_type (arg1
));
7826 if (ada_is_array_descriptor_type (type
))
7827 /* GDB allows dereferencing GNAT array descriptors. */
7828 return ada_coerce_to_simple_array (arg1
);
7830 return ada_value_ind (arg1
);
7832 case STRUCTOP_STRUCT
:
7833 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
7834 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
7835 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
7836 if (noside
== EVAL_SKIP
)
7838 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7840 struct type
*type1
= value_type (arg1
);
7841 if (ada_is_tagged_type (type1
, 1))
7843 type
= ada_lookup_struct_elt_type (type1
,
7844 &exp
->elts
[pc
+ 2].string
,
7847 /* In this case, we assume that the field COULD exist
7848 in some extension of the type. Return an object of
7849 "type" void, which will match any formal
7850 (see ada_type_match). */
7851 return value_zero (builtin_type_void
, lval_memory
);
7855 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
7858 return value_zero (ada_aligned_type (type
), lval_memory
);
7862 ada_to_fixed_value (unwrap_value
7863 (ada_value_struct_elt
7864 (arg1
, &exp
->elts
[pc
+ 2].string
, "record")));
7866 /* The value is not supposed to be used. This is here to make it
7867 easier to accommodate expressions that contain types. */
7869 if (noside
== EVAL_SKIP
)
7871 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
7872 return allocate_value (builtin_type_void
);
7874 error (_("Attempt to use a type name as an expression"));
7878 return value_from_longest (builtin_type_long
, (LONGEST
) 1);
7884 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7885 type name that encodes the 'small and 'delta information.
7886 Otherwise, return NULL. */
7889 fixed_type_info (struct type
*type
)
7891 const char *name
= ada_type_name (type
);
7892 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
7894 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
7896 const char *tail
= strstr (name
, "___XF_");
7902 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
7903 return fixed_type_info (TYPE_TARGET_TYPE (type
));
7908 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7911 ada_is_fixed_point_type (struct type
*type
)
7913 return fixed_type_info (type
) != NULL
;
7916 /* Return non-zero iff TYPE represents a System.Address type. */
7919 ada_is_system_address_type (struct type
*type
)
7921 return (TYPE_NAME (type
)
7922 && strcmp (TYPE_NAME (type
), "system__address") == 0);
7925 /* Assuming that TYPE is the representation of an Ada fixed-point
7926 type, return its delta, or -1 if the type is malformed and the
7927 delta cannot be determined. */
7930 ada_delta (struct type
*type
)
7932 const char *encoding
= fixed_type_info (type
);
7935 if (sscanf (encoding
, "_%ld_%ld", &num
, &den
) < 2)
7938 return (DOUBLEST
) num
/ (DOUBLEST
) den
;
7941 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7942 factor ('SMALL value) associated with the type. */
7945 scaling_factor (struct type
*type
)
7947 const char *encoding
= fixed_type_info (type
);
7948 unsigned long num0
, den0
, num1
, den1
;
7951 n
= sscanf (encoding
, "_%lu_%lu_%lu_%lu", &num0
, &den0
, &num1
, &den1
);
7956 return (DOUBLEST
) num1
/ (DOUBLEST
) den1
;
7958 return (DOUBLEST
) num0
/ (DOUBLEST
) den0
;
7962 /* Assuming that X is the representation of a value of fixed-point
7963 type TYPE, return its floating-point equivalent. */
7966 ada_fixed_to_float (struct type
*type
, LONGEST x
)
7968 return (DOUBLEST
) x
*scaling_factor (type
);
7971 /* The representation of a fixed-point value of type TYPE
7972 corresponding to the value X. */
7975 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
7977 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
7981 /* VAX floating formats */
7983 /* Non-zero iff TYPE represents one of the special VAX floating-point
7987 ada_is_vax_floating_type (struct type
*type
)
7990 (ada_type_name (type
) == NULL
) ? 0 : strlen (ada_type_name (type
));
7993 && (TYPE_CODE (type
) == TYPE_CODE_INT
7994 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
7995 && strncmp (ada_type_name (type
) + name_len
- 6, "___XF", 5) == 0;
7998 /* The type of special VAX floating-point type this is, assuming
7999 ada_is_vax_floating_point. */
8002 ada_vax_float_type_suffix (struct type
*type
)
8004 return ada_type_name (type
)[strlen (ada_type_name (type
)) - 1];
8007 /* A value representing the special debugging function that outputs
8008 VAX floating-point values of the type represented by TYPE. Assumes
8009 ada_is_vax_floating_type (TYPE). */
8012 ada_vax_float_print_function (struct type
*type
)
8014 switch (ada_vax_float_type_suffix (type
))
8017 return get_var_value ("DEBUG_STRING_F", 0);
8019 return get_var_value ("DEBUG_STRING_D", 0);
8021 return get_var_value ("DEBUG_STRING_G", 0);
8023 error (_("invalid VAX floating-point type"));
8030 /* Scan STR beginning at position K for a discriminant name, and
8031 return the value of that discriminant field of DVAL in *PX. If
8032 PNEW_K is not null, put the position of the character beyond the
8033 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8034 not alter *PX and *PNEW_K if unsuccessful. */
8037 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
8040 static char *bound_buffer
= NULL
;
8041 static size_t bound_buffer_len
= 0;
8044 struct value
*bound_val
;
8046 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
8049 pend
= strstr (str
+ k
, "__");
8053 k
+= strlen (bound
);
8057 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
8058 bound
= bound_buffer
;
8059 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
8060 bound
[pend
- (str
+ k
)] = '\0';
8064 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
8065 if (bound_val
== NULL
)
8068 *px
= value_as_long (bound_val
);
8074 /* Value of variable named NAME in the current environment. If
8075 no such variable found, then if ERR_MSG is null, returns 0, and
8076 otherwise causes an error with message ERR_MSG. */
8078 static struct value
*
8079 get_var_value (char *name
, char *err_msg
)
8081 struct ada_symbol_info
*syms
;
8084 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
8089 if (err_msg
== NULL
)
8092 error (("%s"), err_msg
);
8095 return value_of_variable (syms
[0].sym
, syms
[0].block
);
8098 /* Value of integer variable named NAME in the current environment. If
8099 no such variable found, returns 0, and sets *FLAG to 0. If
8100 successful, sets *FLAG to 1. */
8103 get_int_var_value (char *name
, int *flag
)
8105 struct value
*var_val
= get_var_value (name
, 0);
8117 return value_as_long (var_val
);
8122 /* Return a range type whose base type is that of the range type named
8123 NAME in the current environment, and whose bounds are calculated
8124 from NAME according to the GNAT range encoding conventions.
8125 Extract discriminant values, if needed, from DVAL. If a new type
8126 must be created, allocate in OBJFILE's space. The bounds
8127 information, in general, is encoded in NAME, the base type given in
8128 the named range type. */
8130 static struct type
*
8131 to_fixed_range_type (char *name
, struct value
*dval
, struct objfile
*objfile
)
8133 struct type
*raw_type
= ada_find_any_type (name
);
8134 struct type
*base_type
;
8137 if (raw_type
== NULL
)
8138 base_type
= builtin_type_int
;
8139 else if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
8140 base_type
= TYPE_TARGET_TYPE (raw_type
);
8142 base_type
= raw_type
;
8144 subtype_info
= strstr (name
, "___XD");
8145 if (subtype_info
== NULL
)
8149 static char *name_buf
= NULL
;
8150 static size_t name_len
= 0;
8151 int prefix_len
= subtype_info
- name
;
8157 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
8158 strncpy (name_buf
, name
, prefix_len
);
8159 name_buf
[prefix_len
] = '\0';
8162 bounds_str
= strchr (subtype_info
, '_');
8165 if (*subtype_info
== 'L')
8167 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
8168 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
8170 if (bounds_str
[n
] == '_')
8172 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
8179 strcpy (name_buf
+ prefix_len
, "___L");
8180 L
= get_int_var_value (name_buf
, &ok
);
8183 lim_warning (_("Unknown lower bound, using 1."));
8188 if (*subtype_info
== 'U')
8190 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
8191 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
8197 strcpy (name_buf
+ prefix_len
, "___U");
8198 U
= get_int_var_value (name_buf
, &ok
);
8201 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
8206 if (objfile
== NULL
)
8207 objfile
= TYPE_OBJFILE (base_type
);
8208 type
= create_range_type (alloc_type (objfile
), base_type
, L
, U
);
8209 TYPE_NAME (type
) = name
;
8214 /* True iff NAME is the name of a range type. */
8217 ada_is_range_type_name (const char *name
)
8219 return (name
!= NULL
&& strstr (name
, "___XD"));
8225 /* True iff TYPE is an Ada modular type. */
8228 ada_is_modular_type (struct type
*type
)
8230 struct type
*subranged_type
= base_type (type
);
8232 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
8233 && TYPE_CODE (subranged_type
) != TYPE_CODE_ENUM
8234 && TYPE_UNSIGNED (subranged_type
));
8237 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8240 ada_modulus (struct type
* type
)
8242 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
8246 /* Information about operators given special treatment in functions
8248 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8250 #define ADA_OPERATORS \
8251 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8252 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8253 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8254 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8255 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8256 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8257 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8258 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8259 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8260 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8261 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8262 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8263 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8264 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
8265 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
8266 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
8269 ada_operator_length (struct expression
*exp
, int pc
, int *oplenp
, int *argsp
)
8271 switch (exp
->elts
[pc
- 1].opcode
)
8274 operator_length_standard (exp
, pc
, oplenp
, argsp
);
8277 #define OP_DEFN(op, len, args, binop) \
8278 case op: *oplenp = len; *argsp = args; break;
8285 ada_op_name (enum exp_opcode opcode
)
8290 return op_name_standard (opcode
);
8291 #define OP_DEFN(op, len, args, binop) case op: return #op;
8297 /* As for operator_length, but assumes PC is pointing at the first
8298 element of the operator, and gives meaningful results only for the
8299 Ada-specific operators. */
8302 ada_forward_operator_length (struct expression
*exp
, int pc
,
8303 int *oplenp
, int *argsp
)
8305 switch (exp
->elts
[pc
].opcode
)
8308 *oplenp
= *argsp
= 0;
8310 #define OP_DEFN(op, len, args, binop) \
8311 case op: *oplenp = len; *argsp = args; break;
8318 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
8320 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
8325 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
8329 /* Ada attributes ('Foo). */
8336 case OP_ATR_MODULUS
:
8345 /* XXX: gdb_sprint_host_address, type_sprint */
8346 fprintf_filtered (stream
, _("Type @"));
8347 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
8348 fprintf_filtered (stream
, " (");
8349 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
8350 fprintf_filtered (stream
, ")");
8352 case BINOP_IN_BOUNDS
:
8353 fprintf_filtered (stream
, " (%d)", (int) exp
->elts
[pc
+ 2].longconst
);
8355 case TERNOP_IN_RANGE
:
8359 return dump_subexp_body_standard (exp
, stream
, elt
);
8363 for (i
= 0; i
< nargs
; i
+= 1)
8364 elt
= dump_subexp (exp
, stream
, elt
);
8369 /* The Ada extension of print_subexp (q.v.). */
8372 ada_print_subexp (struct expression
*exp
, int *pos
,
8373 struct ui_file
*stream
, enum precedence prec
)
8377 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
8379 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
8384 print_subexp_standard (exp
, pos
, stream
, prec
);
8389 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
8392 case BINOP_IN_BOUNDS
:
8393 /* XXX: sprint_subexp */
8395 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
8396 fputs_filtered (" in ", stream
);
8397 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
8398 fputs_filtered ("'range", stream
);
8399 if (exp
->elts
[pc
+ 1].longconst
> 1)
8400 fprintf_filtered (stream
, "(%ld)",
8401 (long) exp
->elts
[pc
+ 1].longconst
);
8404 case TERNOP_IN_RANGE
:
8406 if (prec
>= PREC_EQUAL
)
8407 fputs_filtered ("(", stream
);
8408 /* XXX: sprint_subexp */
8409 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
8410 fputs_filtered (" in ", stream
);
8411 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
8412 fputs_filtered (" .. ", stream
);
8413 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
8414 if (prec
>= PREC_EQUAL
)
8415 fputs_filtered (")", stream
);
8424 case OP_ATR_MODULUS
:
8430 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
8432 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
8433 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0);
8437 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
8438 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
8442 for (tem
= 1; tem
< nargs
; tem
+= 1)
8444 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
8445 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
8447 fputs_filtered (")", stream
);
8453 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
8454 fputs_filtered ("'(", stream
);
8455 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
8456 fputs_filtered (")", stream
);
8461 /* XXX: sprint_subexp */
8462 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
8463 fputs_filtered (" in ", stream
);
8464 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0);
8469 /* Table mapping opcodes into strings for printing operators
8470 and precedences of the operators. */
8472 static const struct op_print ada_op_print_tab
[] = {
8473 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
8474 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
8475 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
8476 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
8477 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
8478 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
8479 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
8480 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
8481 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
8482 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
8483 {">", BINOP_GTR
, PREC_ORDER
, 0},
8484 {"<", BINOP_LESS
, PREC_ORDER
, 0},
8485 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
8486 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
8487 {"+", BINOP_ADD
, PREC_ADD
, 0},
8488 {"-", BINOP_SUB
, PREC_ADD
, 0},
8489 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
8490 {"*", BINOP_MUL
, PREC_MUL
, 0},
8491 {"/", BINOP_DIV
, PREC_MUL
, 0},
8492 {"rem", BINOP_REM
, PREC_MUL
, 0},
8493 {"mod", BINOP_MOD
, PREC_MUL
, 0},
8494 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
8495 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
8496 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
8497 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
8498 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
8499 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
8500 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
8501 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
8502 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
8503 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
8507 /* Fundamental Ada Types */
8509 /* Create a fundamental Ada type using default reasonable for the current
8512 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8513 define fundamental types such as "int" or "double". Others (stabs or
8514 DWARF version 2, etc) do define fundamental types. For the formats which
8515 don't provide fundamental types, gdb can create such types using this
8518 FIXME: Some compilers distinguish explicitly signed integral types
8519 (signed short, signed int, signed long) from "regular" integral types
8520 (short, int, long) in the debugging information. There is some dis-
8521 agreement as to how useful this feature is. In particular, gcc does
8522 not support this. Also, only some debugging formats allow the
8523 distinction to be passed on to a debugger. For now, we always just
8524 use "short", "int", or "long" as the type name, for both the implicit
8525 and explicitly signed types. This also makes life easier for the
8526 gdb test suite since we don't have to account for the differences
8527 in output depending upon what the compiler and debugging format
8528 support. We will probably have to re-examine the issue when gdb
8529 starts taking it's fundamental type information directly from the
8530 debugging information supplied by the compiler. fnf@cygnus.com */
8532 static struct type
*
8533 ada_create_fundamental_type (struct objfile
*objfile
, int typeid)
8535 struct type
*type
= NULL
;
8540 /* FIXME: For now, if we are asked to produce a type not in this
8541 language, create the equivalent of a C integer type with the
8542 name "<?type?>". When all the dust settles from the type
8543 reconstruction work, this should probably become an error. */
8544 type
= init_type (TYPE_CODE_INT
,
8545 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8546 0, "<?type?>", objfile
);
8547 warning (_("internal error: no Ada fundamental type %d"), typeid);
8550 type
= init_type (TYPE_CODE_VOID
,
8551 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
8552 0, "void", objfile
);
8555 type
= init_type (TYPE_CODE_INT
,
8556 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
8557 0, "character", objfile
);
8559 case FT_SIGNED_CHAR
:
8560 type
= init_type (TYPE_CODE_INT
,
8561 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
8562 0, "signed char", objfile
);
8564 case FT_UNSIGNED_CHAR
:
8565 type
= init_type (TYPE_CODE_INT
,
8566 TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
8567 TYPE_FLAG_UNSIGNED
, "unsigned char", objfile
);
8570 type
= init_type (TYPE_CODE_INT
,
8571 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
8572 0, "short_integer", objfile
);
8574 case FT_SIGNED_SHORT
:
8575 type
= init_type (TYPE_CODE_INT
,
8576 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
8577 0, "short_integer", objfile
);
8579 case FT_UNSIGNED_SHORT
:
8580 type
= init_type (TYPE_CODE_INT
,
8581 TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
8582 TYPE_FLAG_UNSIGNED
, "unsigned short", objfile
);
8585 type
= init_type (TYPE_CODE_INT
,
8586 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8587 0, "integer", objfile
);
8589 case FT_SIGNED_INTEGER
:
8590 type
= init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/
8592 0, "integer", objfile
); /* FIXME -fnf */
8594 case FT_UNSIGNED_INTEGER
:
8595 type
= init_type (TYPE_CODE_INT
,
8596 TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8597 TYPE_FLAG_UNSIGNED
, "unsigned int", objfile
);
8600 type
= init_type (TYPE_CODE_INT
,
8601 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
8602 0, "long_integer", objfile
);
8604 case FT_SIGNED_LONG
:
8605 type
= init_type (TYPE_CODE_INT
,
8606 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
8607 0, "long_integer", objfile
);
8609 case FT_UNSIGNED_LONG
:
8610 type
= init_type (TYPE_CODE_INT
,
8611 TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
8612 TYPE_FLAG_UNSIGNED
, "unsigned long", objfile
);
8615 type
= init_type (TYPE_CODE_INT
,
8616 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
8617 0, "long_long_integer", objfile
);
8619 case FT_SIGNED_LONG_LONG
:
8620 type
= init_type (TYPE_CODE_INT
,
8621 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
8622 0, "long_long_integer", objfile
);
8624 case FT_UNSIGNED_LONG_LONG
:
8625 type
= init_type (TYPE_CODE_INT
,
8626 TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
8627 TYPE_FLAG_UNSIGNED
, "unsigned long long", objfile
);
8630 type
= init_type (TYPE_CODE_FLT
,
8631 TARGET_FLOAT_BIT
/ TARGET_CHAR_BIT
,
8632 0, "float", objfile
);
8634 case FT_DBL_PREC_FLOAT
:
8635 type
= init_type (TYPE_CODE_FLT
,
8636 TARGET_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
8637 0, "long_float", objfile
);
8639 case FT_EXT_PREC_FLOAT
:
8640 type
= init_type (TYPE_CODE_FLT
,
8641 TARGET_LONG_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
8642 0, "long_long_float", objfile
);
8648 enum ada_primitive_types
{
8649 ada_primitive_type_int
,
8650 ada_primitive_type_long
,
8651 ada_primitive_type_short
,
8652 ada_primitive_type_char
,
8653 ada_primitive_type_float
,
8654 ada_primitive_type_double
,
8655 ada_primitive_type_void
,
8656 ada_primitive_type_long_long
,
8657 ada_primitive_type_long_double
,
8658 ada_primitive_type_natural
,
8659 ada_primitive_type_positive
,
8660 ada_primitive_type_system_address
,
8661 nr_ada_primitive_types
8665 ada_language_arch_info (struct gdbarch
*current_gdbarch
,
8666 struct language_arch_info
*lai
)
8668 const struct builtin_type
*builtin
= builtin_type (current_gdbarch
);
8669 lai
->primitive_type_vector
8670 = GDBARCH_OBSTACK_CALLOC (current_gdbarch
, nr_ada_primitive_types
+ 1,
8672 lai
->primitive_type_vector
[ada_primitive_type_int
] =
8673 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8674 0, "integer", (struct objfile
*) NULL
);
8675 lai
->primitive_type_vector
[ada_primitive_type_long
] =
8676 init_type (TYPE_CODE_INT
, TARGET_LONG_BIT
/ TARGET_CHAR_BIT
,
8677 0, "long_integer", (struct objfile
*) NULL
);
8678 lai
->primitive_type_vector
[ada_primitive_type_short
] =
8679 init_type (TYPE_CODE_INT
, TARGET_SHORT_BIT
/ TARGET_CHAR_BIT
,
8680 0, "short_integer", (struct objfile
*) NULL
);
8681 lai
->string_char_type
=
8682 lai
->primitive_type_vector
[ada_primitive_type_char
] =
8683 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
8684 0, "character", (struct objfile
*) NULL
);
8685 lai
->primitive_type_vector
[ada_primitive_type_float
] =
8686 init_type (TYPE_CODE_FLT
, TARGET_FLOAT_BIT
/ TARGET_CHAR_BIT
,
8687 0, "float", (struct objfile
*) NULL
);
8688 lai
->primitive_type_vector
[ada_primitive_type_double
] =
8689 init_type (TYPE_CODE_FLT
, TARGET_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
8690 0, "long_float", (struct objfile
*) NULL
);
8691 lai
->primitive_type_vector
[ada_primitive_type_long_long
] =
8692 init_type (TYPE_CODE_INT
, TARGET_LONG_LONG_BIT
/ TARGET_CHAR_BIT
,
8693 0, "long_long_integer", (struct objfile
*) NULL
);
8694 lai
->primitive_type_vector
[ada_primitive_type_long_double
] =
8695 init_type (TYPE_CODE_FLT
, TARGET_LONG_DOUBLE_BIT
/ TARGET_CHAR_BIT
,
8696 0, "long_long_float", (struct objfile
*) NULL
);
8697 lai
->primitive_type_vector
[ada_primitive_type_natural
] =
8698 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8699 0, "natural", (struct objfile
*) NULL
);
8700 lai
->primitive_type_vector
[ada_primitive_type_positive
] =
8701 init_type (TYPE_CODE_INT
, TARGET_INT_BIT
/ TARGET_CHAR_BIT
,
8702 0, "positive", (struct objfile
*) NULL
);
8703 lai
->primitive_type_vector
[ada_primitive_type_void
] = builtin
->builtin_void
;
8705 lai
->primitive_type_vector
[ada_primitive_type_system_address
] =
8706 lookup_pointer_type (init_type (TYPE_CODE_VOID
, 1, 0, "void",
8707 (struct objfile
*) NULL
));
8708 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
8709 = "system__address";
8712 /* Language vector */
8714 /* Not really used, but needed in the ada_language_defn. */
8717 emit_char (int c
, struct ui_file
*stream
, int quoter
)
8719 ada_emit_char (c
, stream
, quoter
, 1);
8725 warnings_issued
= 0;
8726 return ada_parse ();
8729 static const struct exp_descriptor ada_exp_descriptor
= {
8731 ada_operator_length
,
8733 ada_dump_subexp_body
,
8737 const struct language_defn ada_language_defn
= {
8738 "ada", /* Language name */
8743 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
8744 that's not quite what this means. */
8746 &ada_exp_descriptor
,
8750 ada_printchar
, /* Print a character constant */
8751 ada_printstr
, /* Function to print string constant */
8752 emit_char
, /* Function to print single char (not used) */
8753 ada_create_fundamental_type
, /* Create fundamental type in this language */
8754 ada_print_type
, /* Print a type using appropriate syntax */
8755 ada_val_print
, /* Print a value using appropriate syntax */
8756 ada_value_print
, /* Print a top-level value */
8757 NULL
, /* Language specific skip_trampoline */
8758 NULL
, /* value_of_this */
8759 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
8760 basic_lookup_transparent_type
, /* lookup_transparent_type */
8761 ada_la_decode
, /* Language specific symbol demangler */
8762 NULL
, /* Language specific class_name_from_physname */
8763 ada_op_print_tab
, /* expression operators for printing */
8764 0, /* c-style arrays */
8765 1, /* String lower bound */
8767 ada_get_gdb_completer_word_break_characters
,
8768 ada_language_arch_info
,
8773 _initialize_ada_language (void)
8775 add_language (&ada_language_defn
);
8777 varsize_limit
= 65536;
8779 obstack_init (&symbol_list_obstack
);
8781 decoded_names_store
= htab_create_alloc
8782 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
8783 NULL
, xcalloc
, xfree
);