e5fbf74ef2721d43e5fc53b130eaef27af0009c9
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60 #include "ada-exp.h"
61
62 /* Define whether or not the C operator '/' truncates towards zero for
63 differently signed operands (truncation direction is undefined in C).
64 Copied from valarith.c. */
65
66 #ifndef TRUNCATION_TOWARDS_ZERO
67 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 #endif
69
70 static struct type *desc_base_type (struct type *);
71
72 static struct type *desc_bounds_type (struct type *);
73
74 static struct value *desc_bounds (struct value *);
75
76 static int fat_pntr_bounds_bitpos (struct type *);
77
78 static int fat_pntr_bounds_bitsize (struct type *);
79
80 static struct type *desc_data_target_type (struct type *);
81
82 static struct value *desc_data (struct value *);
83
84 static int fat_pntr_data_bitpos (struct type *);
85
86 static int fat_pntr_data_bitsize (struct type *);
87
88 static struct value *desc_one_bound (struct value *, int, int);
89
90 static int desc_bound_bitpos (struct type *, int, int);
91
92 static int desc_bound_bitsize (struct type *, int, int);
93
94 static struct type *desc_index_type (struct type *, int);
95
96 static int desc_arity (struct type *);
97
98 static int ada_type_match (struct type *, struct type *, int);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *make_array_descriptor (struct type *, struct value *);
103
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
108
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
113
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
115
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
119
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
121
122 static const char *ada_decoded_op_name (enum exp_opcode);
123
124 static int numeric_type_p (struct type *);
125
126 static int integer_type_p (struct type *);
127
128 static int scalar_type_p (struct type *);
129
130 static int discrete_type_p (struct type *);
131
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
134
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
137
138 static int is_dynamic_field (struct type *, int);
139
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
143
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145
146 static struct type *to_fixed_range_type (struct type *, struct value *);
147
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
150
151 static struct value *unwrap_value (struct value *);
152
153 static struct type *constrained_packed_array_type (struct type *, long *);
154
155 static struct type *decode_constrained_packed_array_type (struct type *);
156
157 static long decode_packed_array_bitsize (struct type *);
158
159 static struct value *decode_constrained_packed_array (struct value *);
160
161 static int ada_is_unconstrained_packed_array_type (struct type *);
162
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
165
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
168
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
170
171 static int equiv_types (struct type *, struct type *);
172
173 static int is_name_suffix (const char *);
174
175 static int advance_wild_match (const char **, const char *, char);
176
177 static bool wild_match (const char *name, const char *patn);
178
179 static struct value *ada_coerce_ref (struct value *);
180
181 static LONGEST pos_atr (struct value *);
182
183 static struct value *val_atr (struct type *, LONGEST);
184
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
187
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
190
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
193
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
197
198 static int ada_is_direct_array_type (struct type *);
199
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
204
205
206 static struct type *ada_find_any_type (const char *name);
207
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
211 \f
212
213 /* The result of a symbol lookup to be stored in our symbol cache. */
214
215 struct cache_entry
216 {
217 /* The name used to perform the lookup. */
218 const char *name;
219 /* The namespace used during the lookup. */
220 domain_enum domain;
221 /* The symbol returned by the lookup, or NULL if no matching symbol
222 was found. */
223 struct symbol *sym;
224 /* The block where the symbol was found, or NULL if no matching
225 symbol was found. */
226 const struct block *block;
227 /* A pointer to the next entry with the same hash. */
228 struct cache_entry *next;
229 };
230
231 /* The Ada symbol cache, used to store the result of Ada-mode symbol
232 lookups in the course of executing the user's commands.
233
234 The cache is implemented using a simple, fixed-sized hash.
235 The size is fixed on the grounds that there are not likely to be
236 all that many symbols looked up during any given session, regardless
237 of the size of the symbol table. If we decide to go to a resizable
238 table, let's just use the stuff from libiberty instead. */
239
240 #define HASH_SIZE 1009
241
242 struct ada_symbol_cache
243 {
244 /* An obstack used to store the entries in our cache. */
245 struct auto_obstack cache_space;
246
247 /* The root of the hash table used to implement our symbol cache. */
248 struct cache_entry *root[HASH_SIZE] {};
249 };
250
251 /* Maximum-sized dynamic type. */
252 static unsigned int varsize_limit;
253
254 static const char ada_completer_word_break_characters[] =
255 #ifdef VMS
256 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 #else
258 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
259 #endif
260
261 /* The name of the symbol to use to get the name of the main subprogram. */
262 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
263 = "__gnat_ada_main_program_name";
264
265 /* Limit on the number of warnings to raise per expression evaluation. */
266 static int warning_limit = 2;
267
268 /* Number of warning messages issued; reset to 0 by cleanups after
269 expression evaluation. */
270 static int warnings_issued = 0;
271
272 static const char * const known_runtime_file_name_patterns[] = {
273 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
274 };
275
276 static const char * const known_auxiliary_function_name_patterns[] = {
277 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
278 };
279
280 /* Maintenance-related settings for this module. */
281
282 static struct cmd_list_element *maint_set_ada_cmdlist;
283 static struct cmd_list_element *maint_show_ada_cmdlist;
284
285 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286
287 static bool ada_ignore_descriptive_types_p = false;
288
289 /* Inferior-specific data. */
290
291 /* Per-inferior data for this module. */
292
293 struct ada_inferior_data
294 {
295 /* The ada__tags__type_specific_data type, which is used when decoding
296 tagged types. With older versions of GNAT, this type was directly
297 accessible through a component ("tsd") in the object tag. But this
298 is no longer the case, so we cache it for each inferior. */
299 struct type *tsd_type = nullptr;
300
301 /* The exception_support_info data. This data is used to determine
302 how to implement support for Ada exception catchpoints in a given
303 inferior. */
304 const struct exception_support_info *exception_info = nullptr;
305 };
306
307 /* Our key to this module's inferior data. */
308 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309
310 /* Return our inferior data for the given inferior (INF).
311
312 This function always returns a valid pointer to an allocated
313 ada_inferior_data structure. If INF's inferior data has not
314 been previously set, this functions creates a new one with all
315 fields set to zero, sets INF's inferior to it, and then returns
316 a pointer to that newly allocated ada_inferior_data. */
317
318 static struct ada_inferior_data *
319 get_ada_inferior_data (struct inferior *inf)
320 {
321 struct ada_inferior_data *data;
322
323 data = ada_inferior_data.get (inf);
324 if (data == NULL)
325 data = ada_inferior_data.emplace (inf);
326
327 return data;
328 }
329
330 /* Perform all necessary cleanups regarding our module's inferior data
331 that is required after the inferior INF just exited. */
332
333 static void
334 ada_inferior_exit (struct inferior *inf)
335 {
336 ada_inferior_data.clear (inf);
337 }
338
339
340 /* program-space-specific data. */
341
342 /* This module's per-program-space data. */
343 struct ada_pspace_data
344 {
345 /* The Ada symbol cache. */
346 std::unique_ptr<ada_symbol_cache> sym_cache;
347 };
348
349 /* Key to our per-program-space data. */
350 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351
352 /* Return this module's data for the given program space (PSPACE).
353 If not is found, add a zero'ed one now.
354
355 This function always returns a valid object. */
356
357 static struct ada_pspace_data *
358 get_ada_pspace_data (struct program_space *pspace)
359 {
360 struct ada_pspace_data *data;
361
362 data = ada_pspace_data_handle.get (pspace);
363 if (data == NULL)
364 data = ada_pspace_data_handle.emplace (pspace);
365
366 return data;
367 }
368
369 /* Utilities */
370
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398 static struct type *
399 ada_typedef_target_type (struct type *type)
400 {
401 while (type->code () == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404 }
405
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
412 {
413 const char *result;
414
415 /* If the decoded name starts with '<', it means that the encoded
416 name does not follow standard naming conventions, and thus that
417 it is not your typical Ada symbol name. Trying to unqualify it
418 is therefore pointless and possibly erroneous. */
419 if (decoded_name[0] == '<')
420 return decoded_name;
421
422 result = strrchr (decoded_name, '.');
423 if (result != NULL)
424 result++; /* Skip the dot... */
425 else
426 result = decoded_name;
427
428 return result;
429 }
430
431 /* Return a string starting with '<', followed by STR, and '>'. */
432
433 static std::string
434 add_angle_brackets (const char *str)
435 {
436 return string_printf ("<%s>", str);
437 }
438
439 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
440 suffix of FIELD_NAME beginning "___". */
441
442 static int
443 field_name_match (const char *field_name, const char *target)
444 {
445 int len = strlen (target);
446
447 return
448 (strncmp (field_name, target, len) == 0
449 && (field_name[len] == '\0'
450 || (startswith (field_name + len, "___")
451 && strcmp (field_name + strlen (field_name) - 6,
452 "___XVN") != 0)));
453 }
454
455
456 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
457 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
458 and return its index. This function also handles fields whose name
459 have ___ suffixes because the compiler sometimes alters their name
460 by adding such a suffix to represent fields with certain constraints.
461 If the field could not be found, return a negative number if
462 MAYBE_MISSING is set. Otherwise raise an error. */
463
464 int
465 ada_get_field_index (const struct type *type, const char *field_name,
466 int maybe_missing)
467 {
468 int fieldno;
469 struct type *struct_type = check_typedef ((struct type *) type);
470
471 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
472 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
473 return fieldno;
474
475 if (!maybe_missing)
476 error (_("Unable to find field %s in struct %s. Aborting"),
477 field_name, struct_type->name ());
478
479 return -1;
480 }
481
482 /* The length of the prefix of NAME prior to any "___" suffix. */
483
484 int
485 ada_name_prefix_len (const char *name)
486 {
487 if (name == NULL)
488 return 0;
489 else
490 {
491 const char *p = strstr (name, "___");
492
493 if (p == NULL)
494 return strlen (name);
495 else
496 return p - name;
497 }
498 }
499
500 /* Return non-zero if SUFFIX is a suffix of STR.
501 Return zero if STR is null. */
502
503 static int
504 is_suffix (const char *str, const char *suffix)
505 {
506 int len1, len2;
507
508 if (str == NULL)
509 return 0;
510 len1 = strlen (str);
511 len2 = strlen (suffix);
512 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
513 }
514
515 /* The contents of value VAL, treated as a value of type TYPE. The
516 result is an lval in memory if VAL is. */
517
518 static struct value *
519 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 {
521 type = ada_check_typedef (type);
522 if (value_type (val) == type)
523 return val;
524 else
525 {
526 struct value *result;
527
528 /* Make sure that the object size is not unreasonable before
529 trying to allocate some memory for it. */
530 ada_ensure_varsize_limit (type);
531
532 if (value_optimized_out (val))
533 result = allocate_optimized_out_value (type);
534 else if (value_lazy (val)
535 /* Be careful not to make a lazy not_lval value. */
536 || (VALUE_LVAL (val) != not_lval
537 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
538 result = allocate_value_lazy (type);
539 else
540 {
541 result = allocate_value (type);
542 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 }
544 set_value_component_location (result, val);
545 set_value_bitsize (result, value_bitsize (val));
546 set_value_bitpos (result, value_bitpos (val));
547 if (VALUE_LVAL (result) == lval_memory)
548 set_value_address (result, value_address (val));
549 return result;
550 }
551 }
552
553 static const gdb_byte *
554 cond_offset_host (const gdb_byte *valaddr, long offset)
555 {
556 if (valaddr == NULL)
557 return NULL;
558 else
559 return valaddr + offset;
560 }
561
562 static CORE_ADDR
563 cond_offset_target (CORE_ADDR address, long offset)
564 {
565 if (address == 0)
566 return 0;
567 else
568 return address + offset;
569 }
570
571 /* Issue a warning (as for the definition of warning in utils.c, but
572 with exactly one argument rather than ...), unless the limit on the
573 number of warnings has passed during the evaluation of the current
574 expression. */
575
576 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
577 provided by "complaint". */
578 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
579
580 static void
581 lim_warning (const char *format, ...)
582 {
583 va_list args;
584
585 va_start (args, format);
586 warnings_issued += 1;
587 if (warnings_issued <= warning_limit)
588 vwarning (format, args);
589
590 va_end (args);
591 }
592
593 /* Issue an error if the size of an object of type T is unreasonable,
594 i.e. if it would be a bad idea to allocate a value of this type in
595 GDB. */
596
597 void
598 ada_ensure_varsize_limit (const struct type *type)
599 {
600 if (TYPE_LENGTH (type) > varsize_limit)
601 error (_("object size is larger than varsize-limit"));
602 }
603
604 /* Maximum value of a SIZE-byte signed integer type. */
605 static LONGEST
606 max_of_size (int size)
607 {
608 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609
610 return top_bit | (top_bit - 1);
611 }
612
613 /* Minimum value of a SIZE-byte signed integer type. */
614 static LONGEST
615 min_of_size (int size)
616 {
617 return -max_of_size (size) - 1;
618 }
619
620 /* Maximum value of a SIZE-byte unsigned integer type. */
621 static ULONGEST
622 umax_of_size (int size)
623 {
624 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625
626 return top_bit | (top_bit - 1);
627 }
628
629 /* Maximum value of integral type T, as a signed quantity. */
630 static LONGEST
631 max_of_type (struct type *t)
632 {
633 if (t->is_unsigned ())
634 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 else
636 return max_of_size (TYPE_LENGTH (t));
637 }
638
639 /* Minimum value of integral type T, as a signed quantity. */
640 static LONGEST
641 min_of_type (struct type *t)
642 {
643 if (t->is_unsigned ())
644 return 0;
645 else
646 return min_of_size (TYPE_LENGTH (t));
647 }
648
649 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 LONGEST
651 ada_discrete_type_high_bound (struct type *type)
652 {
653 type = resolve_dynamic_type (type, {}, 0);
654 switch (type->code ())
655 {
656 case TYPE_CODE_RANGE:
657 {
658 const dynamic_prop &high = type->bounds ()->high;
659
660 if (high.kind () == PROP_CONST)
661 return high.const_val ();
662 else
663 {
664 gdb_assert (high.kind () == PROP_UNDEFINED);
665
666 /* This happens when trying to evaluate a type's dynamic bound
667 without a live target. There is nothing relevant for us to
668 return here, so return 0. */
669 return 0;
670 }
671 }
672 case TYPE_CODE_ENUM:
673 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
674 case TYPE_CODE_BOOL:
675 return 1;
676 case TYPE_CODE_CHAR:
677 case TYPE_CODE_INT:
678 return max_of_type (type);
679 default:
680 error (_("Unexpected type in ada_discrete_type_high_bound."));
681 }
682 }
683
684 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_low_bound (struct type *type)
687 {
688 type = resolve_dynamic_type (type, {}, 0);
689 switch (type->code ())
690 {
691 case TYPE_CODE_RANGE:
692 {
693 const dynamic_prop &low = type->bounds ()->low;
694
695 if (low.kind () == PROP_CONST)
696 return low.const_val ();
697 else
698 {
699 gdb_assert (low.kind () == PROP_UNDEFINED);
700
701 /* This happens when trying to evaluate a type's dynamic bound
702 without a live target. There is nothing relevant for us to
703 return here, so return 0. */
704 return 0;
705 }
706 }
707 case TYPE_CODE_ENUM:
708 return TYPE_FIELD_ENUMVAL (type, 0);
709 case TYPE_CODE_BOOL:
710 return 0;
711 case TYPE_CODE_CHAR:
712 case TYPE_CODE_INT:
713 return min_of_type (type);
714 default:
715 error (_("Unexpected type in ada_discrete_type_low_bound."));
716 }
717 }
718
719 /* The identity on non-range types. For range types, the underlying
720 non-range scalar type. */
721
722 static struct type *
723 get_base_type (struct type *type)
724 {
725 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 {
727 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 return type;
729 type = TYPE_TARGET_TYPE (type);
730 }
731 return type;
732 }
733
734 /* Return a decoded version of the given VALUE. This means returning
735 a value whose type is obtained by applying all the GNAT-specific
736 encodings, making the resulting type a static but standard description
737 of the initial type. */
738
739 struct value *
740 ada_get_decoded_value (struct value *value)
741 {
742 struct type *type = ada_check_typedef (value_type (value));
743
744 if (ada_is_array_descriptor_type (type)
745 || (ada_is_constrained_packed_array_type (type)
746 && type->code () != TYPE_CODE_PTR))
747 {
748 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
749 value = ada_coerce_to_simple_array_ptr (value);
750 else
751 value = ada_coerce_to_simple_array (value);
752 }
753 else
754 value = ada_to_fixed_value (value);
755
756 return value;
757 }
758
759 /* Same as ada_get_decoded_value, but with the given TYPE.
760 Because there is no associated actual value for this type,
761 the resulting type might be a best-effort approximation in
762 the case of dynamic types. */
763
764 struct type *
765 ada_get_decoded_type (struct type *type)
766 {
767 type = to_static_fixed_type (type);
768 if (ada_is_constrained_packed_array_type (type))
769 type = ada_coerce_to_simple_array_type (type);
770 return type;
771 }
772
773 \f
774
775 /* Language Selection */
776
777 /* If the main program is in Ada, return language_ada, otherwise return LANG
778 (the main program is in Ada iif the adainit symbol is found). */
779
780 static enum language
781 ada_update_initial_language (enum language lang)
782 {
783 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
784 return language_ada;
785
786 return lang;
787 }
788
789 /* If the main procedure is written in Ada, then return its name.
790 The result is good until the next call. Return NULL if the main
791 procedure doesn't appear to be in Ada. */
792
793 char *
794 ada_main_name (void)
795 {
796 struct bound_minimal_symbol msym;
797 static gdb::unique_xmalloc_ptr<char> main_program_name;
798
799 /* For Ada, the name of the main procedure is stored in a specific
800 string constant, generated by the binder. Look for that symbol,
801 extract its address, and then read that string. If we didn't find
802 that string, then most probably the main procedure is not written
803 in Ada. */
804 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805
806 if (msym.minsym != NULL)
807 {
808 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
809 if (main_program_name_addr == 0)
810 error (_("Invalid address for Ada main program name."));
811
812 main_program_name = target_read_string (main_program_name_addr, 1024);
813 return main_program_name.get ();
814 }
815
816 /* The main procedure doesn't seem to be in Ada. */
817 return NULL;
818 }
819 \f
820 /* Symbols */
821
822 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
823 of NULLs. */
824
825 const struct ada_opname_map ada_opname_table[] = {
826 {"Oadd", "\"+\"", BINOP_ADD},
827 {"Osubtract", "\"-\"", BINOP_SUB},
828 {"Omultiply", "\"*\"", BINOP_MUL},
829 {"Odivide", "\"/\"", BINOP_DIV},
830 {"Omod", "\"mod\"", BINOP_MOD},
831 {"Orem", "\"rem\"", BINOP_REM},
832 {"Oexpon", "\"**\"", BINOP_EXP},
833 {"Olt", "\"<\"", BINOP_LESS},
834 {"Ole", "\"<=\"", BINOP_LEQ},
835 {"Ogt", "\">\"", BINOP_GTR},
836 {"Oge", "\">=\"", BINOP_GEQ},
837 {"Oeq", "\"=\"", BINOP_EQUAL},
838 {"One", "\"/=\"", BINOP_NOTEQUAL},
839 {"Oand", "\"and\"", BINOP_BITWISE_AND},
840 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
841 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
842 {"Oconcat", "\"&\"", BINOP_CONCAT},
843 {"Oabs", "\"abs\"", UNOP_ABS},
844 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
845 {"Oadd", "\"+\"", UNOP_PLUS},
846 {"Osubtract", "\"-\"", UNOP_NEG},
847 {NULL, NULL}
848 };
849
850 /* The "encoded" form of DECODED, according to GNAT conventions. If
851 THROW_ERRORS, throw an error if invalid operator name is found.
852 Otherwise, return the empty string in that case. */
853
854 static std::string
855 ada_encode_1 (const char *decoded, bool throw_errors)
856 {
857 if (decoded == NULL)
858 return {};
859
860 std::string encoding_buffer;
861 for (const char *p = decoded; *p != '\0'; p += 1)
862 {
863 if (*p == '.')
864 encoding_buffer.append ("__");
865 else if (*p == '"')
866 {
867 const struct ada_opname_map *mapping;
868
869 for (mapping = ada_opname_table;
870 mapping->encoded != NULL
871 && !startswith (p, mapping->decoded); mapping += 1)
872 ;
873 if (mapping->encoded == NULL)
874 {
875 if (throw_errors)
876 error (_("invalid Ada operator name: %s"), p);
877 else
878 return {};
879 }
880 encoding_buffer.append (mapping->encoded);
881 break;
882 }
883 else
884 encoding_buffer.push_back (*p);
885 }
886
887 return encoding_buffer;
888 }
889
890 /* The "encoded" form of DECODED, according to GNAT conventions. */
891
892 std::string
893 ada_encode (const char *decoded)
894 {
895 return ada_encode_1 (decoded, true);
896 }
897
898 /* Return NAME folded to lower case, or, if surrounded by single
899 quotes, unfolded, but with the quotes stripped away. Result good
900 to next call. */
901
902 static const char *
903 ada_fold_name (gdb::string_view name)
904 {
905 static std::string fold_storage;
906
907 if (!name.empty () && name[0] == '\'')
908 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
909 else
910 {
911 fold_storage = gdb::to_string (name);
912 for (int i = 0; i < name.size (); i += 1)
913 fold_storage[i] = tolower (fold_storage[i]);
914 }
915
916 return fold_storage.c_str ();
917 }
918
919 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
920
921 static int
922 is_lower_alphanum (const char c)
923 {
924 return (isdigit (c) || (isalpha (c) && islower (c)));
925 }
926
927 /* ENCODED is the linkage name of a symbol and LEN contains its length.
928 This function saves in LEN the length of that same symbol name but
929 without either of these suffixes:
930 . .{DIGIT}+
931 . ${DIGIT}+
932 . ___{DIGIT}+
933 . __{DIGIT}+.
934
935 These are suffixes introduced by the compiler for entities such as
936 nested subprogram for instance, in order to avoid name clashes.
937 They do not serve any purpose for the debugger. */
938
939 static void
940 ada_remove_trailing_digits (const char *encoded, int *len)
941 {
942 if (*len > 1 && isdigit (encoded[*len - 1]))
943 {
944 int i = *len - 2;
945
946 while (i > 0 && isdigit (encoded[i]))
947 i--;
948 if (i >= 0 && encoded[i] == '.')
949 *len = i;
950 else if (i >= 0 && encoded[i] == '$')
951 *len = i;
952 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 *len = i - 2;
954 else if (i >= 1 && startswith (encoded + i - 1, "__"))
955 *len = i - 1;
956 }
957 }
958
959 /* Remove the suffix introduced by the compiler for protected object
960 subprograms. */
961
962 static void
963 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964 {
965 /* Remove trailing N. */
966
967 /* Protected entry subprograms are broken into two
968 separate subprograms: The first one is unprotected, and has
969 a 'N' suffix; the second is the protected version, and has
970 the 'P' suffix. The second calls the first one after handling
971 the protection. Since the P subprograms are internally generated,
972 we leave these names undecoded, giving the user a clue that this
973 entity is internal. */
974
975 if (*len > 1
976 && encoded[*len - 1] == 'N'
977 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
978 *len = *len - 1;
979 }
980
981 /* If ENCODED follows the GNAT entity encoding conventions, then return
982 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
983 replaced by ENCODED. */
984
985 std::string
986 ada_decode (const char *encoded)
987 {
988 int i, j;
989 int len0;
990 const char *p;
991 int at_start_name;
992 std::string decoded;
993
994 /* With function descriptors on PPC64, the value of a symbol named
995 ".FN", if it exists, is the entry point of the function "FN". */
996 if (encoded[0] == '.')
997 encoded += 1;
998
999 /* The name of the Ada main procedure starts with "_ada_".
1000 This prefix is not part of the decoded name, so skip this part
1001 if we see this prefix. */
1002 if (startswith (encoded, "_ada_"))
1003 encoded += 5;
1004
1005 /* If the name starts with '_', then it is not a properly encoded
1006 name, so do not attempt to decode it. Similarly, if the name
1007 starts with '<', the name should not be decoded. */
1008 if (encoded[0] == '_' || encoded[0] == '<')
1009 goto Suppress;
1010
1011 len0 = strlen (encoded);
1012
1013 ada_remove_trailing_digits (encoded, &len0);
1014 ada_remove_po_subprogram_suffix (encoded, &len0);
1015
1016 /* Remove the ___X.* suffix if present. Do not forget to verify that
1017 the suffix is located before the current "end" of ENCODED. We want
1018 to avoid re-matching parts of ENCODED that have previously been
1019 marked as discarded (by decrementing LEN0). */
1020 p = strstr (encoded, "___");
1021 if (p != NULL && p - encoded < len0 - 3)
1022 {
1023 if (p[3] == 'X')
1024 len0 = p - encoded;
1025 else
1026 goto Suppress;
1027 }
1028
1029 /* Remove any trailing TKB suffix. It tells us that this symbol
1030 is for the body of a task, but that information does not actually
1031 appear in the decoded name. */
1032
1033 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1034 len0 -= 3;
1035
1036 /* Remove any trailing TB suffix. The TB suffix is slightly different
1037 from the TKB suffix because it is used for non-anonymous task
1038 bodies. */
1039
1040 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1041 len0 -= 2;
1042
1043 /* Remove trailing "B" suffixes. */
1044 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1045
1046 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1047 len0 -= 1;
1048
1049 /* Make decoded big enough for possible expansion by operator name. */
1050
1051 decoded.resize (2 * len0 + 1, 'X');
1052
1053 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1054
1055 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1056 {
1057 i = len0 - 2;
1058 while ((i >= 0 && isdigit (encoded[i]))
1059 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1060 i -= 1;
1061 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1062 len0 = i - 1;
1063 else if (encoded[i] == '$')
1064 len0 = i;
1065 }
1066
1067 /* The first few characters that are not alphabetic are not part
1068 of any encoding we use, so we can copy them over verbatim. */
1069
1070 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1071 decoded[j] = encoded[i];
1072
1073 at_start_name = 1;
1074 while (i < len0)
1075 {
1076 /* Is this a symbol function? */
1077 if (at_start_name && encoded[i] == 'O')
1078 {
1079 int k;
1080
1081 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1082 {
1083 int op_len = strlen (ada_opname_table[k].encoded);
1084 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1085 op_len - 1) == 0)
1086 && !isalnum (encoded[i + op_len]))
1087 {
1088 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1089 at_start_name = 0;
1090 i += op_len;
1091 j += strlen (ada_opname_table[k].decoded);
1092 break;
1093 }
1094 }
1095 if (ada_opname_table[k].encoded != NULL)
1096 continue;
1097 }
1098 at_start_name = 0;
1099
1100 /* Replace "TK__" with "__", which will eventually be translated
1101 into "." (just below). */
1102
1103 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1104 i += 2;
1105
1106 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1107 be translated into "." (just below). These are internal names
1108 generated for anonymous blocks inside which our symbol is nested. */
1109
1110 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1111 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1112 && isdigit (encoded [i+4]))
1113 {
1114 int k = i + 5;
1115
1116 while (k < len0 && isdigit (encoded[k]))
1117 k++; /* Skip any extra digit. */
1118
1119 /* Double-check that the "__B_{DIGITS}+" sequence we found
1120 is indeed followed by "__". */
1121 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 i = k;
1123 }
1124
1125 /* Remove _E{DIGITS}+[sb] */
1126
1127 /* Just as for protected object subprograms, there are 2 categories
1128 of subprograms created by the compiler for each entry. The first
1129 one implements the actual entry code, and has a suffix following
1130 the convention above; the second one implements the barrier and
1131 uses the same convention as above, except that the 'E' is replaced
1132 by a 'B'.
1133
1134 Just as above, we do not decode the name of barrier functions
1135 to give the user a clue that the code he is debugging has been
1136 internally generated. */
1137
1138 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1139 && isdigit (encoded[i+2]))
1140 {
1141 int k = i + 3;
1142
1143 while (k < len0 && isdigit (encoded[k]))
1144 k++;
1145
1146 if (k < len0
1147 && (encoded[k] == 'b' || encoded[k] == 's'))
1148 {
1149 k++;
1150 /* Just as an extra precaution, make sure that if this
1151 suffix is followed by anything else, it is a '_'.
1152 Otherwise, we matched this sequence by accident. */
1153 if (k == len0
1154 || (k < len0 && encoded[k] == '_'))
1155 i = k;
1156 }
1157 }
1158
1159 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1160 the GNAT front-end in protected object subprograms. */
1161
1162 if (i < len0 + 3
1163 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1164 {
1165 /* Backtrack a bit up until we reach either the begining of
1166 the encoded name, or "__". Make sure that we only find
1167 digits or lowercase characters. */
1168 const char *ptr = encoded + i - 1;
1169
1170 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1171 ptr--;
1172 if (ptr < encoded
1173 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 i++;
1175 }
1176
1177 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1178 {
1179 /* This is a X[bn]* sequence not separated from the previous
1180 part of the name with a non-alpha-numeric character (in other
1181 words, immediately following an alpha-numeric character), then
1182 verify that it is placed at the end of the encoded name. If
1183 not, then the encoding is not valid and we should abort the
1184 decoding. Otherwise, just skip it, it is used in body-nested
1185 package names. */
1186 do
1187 i += 1;
1188 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 if (i < len0)
1190 goto Suppress;
1191 }
1192 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1193 {
1194 /* Replace '__' by '.'. */
1195 decoded[j] = '.';
1196 at_start_name = 1;
1197 i += 2;
1198 j += 1;
1199 }
1200 else
1201 {
1202 /* It's a character part of the decoded name, so just copy it
1203 over. */
1204 decoded[j] = encoded[i];
1205 i += 1;
1206 j += 1;
1207 }
1208 }
1209 decoded.resize (j);
1210
1211 /* Decoded names should never contain any uppercase character.
1212 Double-check this, and abort the decoding if we find one. */
1213
1214 for (i = 0; i < decoded.length(); ++i)
1215 if (isupper (decoded[i]) || decoded[i] == ' ')
1216 goto Suppress;
1217
1218 return decoded;
1219
1220 Suppress:
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1226
1227 }
1228
1229 /* Table for keeping permanent unique copies of decoded names. Once
1230 allocated, names in this table are never released. While this is a
1231 storage leak, it should not be significant unless there are massive
1232 changes in the set of decoded names in successive versions of a
1233 symbol table loaded during a single session. */
1234 static struct htab *decoded_names_store;
1235
1236 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1237 in the language-specific part of GSYMBOL, if it has not been
1238 previously computed. Tries to save the decoded name in the same
1239 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1240 in any case, the decoded symbol has a lifetime at least that of
1241 GSYMBOL).
1242 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1243 const, but nevertheless modified to a semantically equivalent form
1244 when a decoded name is cached in it. */
1245
1246 const char *
1247 ada_decode_symbol (const struct general_symbol_info *arg)
1248 {
1249 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1250 const char **resultp =
1251 &gsymbol->language_specific.demangled_name;
1252
1253 if (!gsymbol->ada_mangled)
1254 {
1255 std::string decoded = ada_decode (gsymbol->linkage_name ());
1256 struct obstack *obstack = gsymbol->language_specific.obstack;
1257
1258 gsymbol->ada_mangled = 1;
1259
1260 if (obstack != NULL)
1261 *resultp = obstack_strdup (obstack, decoded.c_str ());
1262 else
1263 {
1264 /* Sometimes, we can't find a corresponding objfile, in
1265 which case, we put the result on the heap. Since we only
1266 decode when needed, we hope this usually does not cause a
1267 significant memory leak (FIXME). */
1268
1269 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 decoded.c_str (), INSERT);
1271
1272 if (*slot == NULL)
1273 *slot = xstrdup (decoded.c_str ());
1274 *resultp = *slot;
1275 }
1276 }
1277
1278 return *resultp;
1279 }
1280
1281 static char *
1282 ada_la_decode (const char *encoded, int options)
1283 {
1284 return xstrdup (ada_decode (encoded).c_str ());
1285 }
1286
1287 \f
1288
1289 /* Arrays */
1290
1291 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1292 generated by the GNAT compiler to describe the index type used
1293 for each dimension of an array, check whether it follows the latest
1294 known encoding. If not, fix it up to conform to the latest encoding.
1295 Otherwise, do nothing. This function also does nothing if
1296 INDEX_DESC_TYPE is NULL.
1297
1298 The GNAT encoding used to describe the array index type evolved a bit.
1299 Initially, the information would be provided through the name of each
1300 field of the structure type only, while the type of these fields was
1301 described as unspecified and irrelevant. The debugger was then expected
1302 to perform a global type lookup using the name of that field in order
1303 to get access to the full index type description. Because these global
1304 lookups can be very expensive, the encoding was later enhanced to make
1305 the global lookup unnecessary by defining the field type as being
1306 the full index type description.
1307
1308 The purpose of this routine is to allow us to support older versions
1309 of the compiler by detecting the use of the older encoding, and by
1310 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1311 we essentially replace each field's meaningless type by the associated
1312 index subtype). */
1313
1314 void
1315 ada_fixup_array_indexes_type (struct type *index_desc_type)
1316 {
1317 int i;
1318
1319 if (index_desc_type == NULL)
1320 return;
1321 gdb_assert (index_desc_type->num_fields () > 0);
1322
1323 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1324 to check one field only, no need to check them all). If not, return
1325 now.
1326
1327 If our INDEX_DESC_TYPE was generated using the older encoding,
1328 the field type should be a meaningless integer type whose name
1329 is not equal to the field name. */
1330 if (index_desc_type->field (0).type ()->name () != NULL
1331 && strcmp (index_desc_type->field (0).type ()->name (),
1332 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1333 return;
1334
1335 /* Fixup each field of INDEX_DESC_TYPE. */
1336 for (i = 0; i < index_desc_type->num_fields (); i++)
1337 {
1338 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1339 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1340
1341 if (raw_type)
1342 index_desc_type->field (i).set_type (raw_type);
1343 }
1344 }
1345
1346 /* The desc_* routines return primitive portions of array descriptors
1347 (fat pointers). */
1348
1349 /* The descriptor or array type, if any, indicated by TYPE; removes
1350 level of indirection, if needed. */
1351
1352 static struct type *
1353 desc_base_type (struct type *type)
1354 {
1355 if (type == NULL)
1356 return NULL;
1357 type = ada_check_typedef (type);
1358 if (type->code () == TYPE_CODE_TYPEDEF)
1359 type = ada_typedef_target_type (type);
1360
1361 if (type != NULL
1362 && (type->code () == TYPE_CODE_PTR
1363 || type->code () == TYPE_CODE_REF))
1364 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1365 else
1366 return type;
1367 }
1368
1369 /* True iff TYPE indicates a "thin" array pointer type. */
1370
1371 static int
1372 is_thin_pntr (struct type *type)
1373 {
1374 return
1375 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1376 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1377 }
1378
1379 /* The descriptor type for thin pointer type TYPE. */
1380
1381 static struct type *
1382 thin_descriptor_type (struct type *type)
1383 {
1384 struct type *base_type = desc_base_type (type);
1385
1386 if (base_type == NULL)
1387 return NULL;
1388 if (is_suffix (ada_type_name (base_type), "___XVE"))
1389 return base_type;
1390 else
1391 {
1392 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1393
1394 if (alt_type == NULL)
1395 return base_type;
1396 else
1397 return alt_type;
1398 }
1399 }
1400
1401 /* A pointer to the array data for thin-pointer value VAL. */
1402
1403 static struct value *
1404 thin_data_pntr (struct value *val)
1405 {
1406 struct type *type = ada_check_typedef (value_type (val));
1407 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1408
1409 data_type = lookup_pointer_type (data_type);
1410
1411 if (type->code () == TYPE_CODE_PTR)
1412 return value_cast (data_type, value_copy (val));
1413 else
1414 return value_from_longest (data_type, value_address (val));
1415 }
1416
1417 /* True iff TYPE indicates a "thick" array pointer type. */
1418
1419 static int
1420 is_thick_pntr (struct type *type)
1421 {
1422 type = desc_base_type (type);
1423 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1424 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1425 }
1426
1427 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1428 pointer to one, the type of its bounds data; otherwise, NULL. */
1429
1430 static struct type *
1431 desc_bounds_type (struct type *type)
1432 {
1433 struct type *r;
1434
1435 type = desc_base_type (type);
1436
1437 if (type == NULL)
1438 return NULL;
1439 else if (is_thin_pntr (type))
1440 {
1441 type = thin_descriptor_type (type);
1442 if (type == NULL)
1443 return NULL;
1444 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 if (r != NULL)
1446 return ada_check_typedef (r);
1447 }
1448 else if (type->code () == TYPE_CODE_STRUCT)
1449 {
1450 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 if (r != NULL)
1452 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1453 }
1454 return NULL;
1455 }
1456
1457 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1458 one, a pointer to its bounds data. Otherwise NULL. */
1459
1460 static struct value *
1461 desc_bounds (struct value *arr)
1462 {
1463 struct type *type = ada_check_typedef (value_type (arr));
1464
1465 if (is_thin_pntr (type))
1466 {
1467 struct type *bounds_type =
1468 desc_bounds_type (thin_descriptor_type (type));
1469 LONGEST addr;
1470
1471 if (bounds_type == NULL)
1472 error (_("Bad GNAT array descriptor"));
1473
1474 /* NOTE: The following calculation is not really kosher, but
1475 since desc_type is an XVE-encoded type (and shouldn't be),
1476 the correct calculation is a real pain. FIXME (and fix GCC). */
1477 if (type->code () == TYPE_CODE_PTR)
1478 addr = value_as_long (arr);
1479 else
1480 addr = value_address (arr);
1481
1482 return
1483 value_from_longest (lookup_pointer_type (bounds_type),
1484 addr - TYPE_LENGTH (bounds_type));
1485 }
1486
1487 else if (is_thick_pntr (type))
1488 {
1489 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1490 _("Bad GNAT array descriptor"));
1491 struct type *p_bounds_type = value_type (p_bounds);
1492
1493 if (p_bounds_type
1494 && p_bounds_type->code () == TYPE_CODE_PTR)
1495 {
1496 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497
1498 if (target_type->is_stub ())
1499 p_bounds = value_cast (lookup_pointer_type
1500 (ada_check_typedef (target_type)),
1501 p_bounds);
1502 }
1503 else
1504 error (_("Bad GNAT array descriptor"));
1505
1506 return p_bounds;
1507 }
1508 else
1509 return NULL;
1510 }
1511
1512 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1513 position of the field containing the address of the bounds data. */
1514
1515 static int
1516 fat_pntr_bounds_bitpos (struct type *type)
1517 {
1518 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1519 }
1520
1521 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1522 size of the field containing the address of the bounds data. */
1523
1524 static int
1525 fat_pntr_bounds_bitsize (struct type *type)
1526 {
1527 type = desc_base_type (type);
1528
1529 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1530 return TYPE_FIELD_BITSIZE (type, 1);
1531 else
1532 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1533 }
1534
1535 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1536 pointer to one, the type of its array data (a array-with-no-bounds type);
1537 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1538 data. */
1539
1540 static struct type *
1541 desc_data_target_type (struct type *type)
1542 {
1543 type = desc_base_type (type);
1544
1545 /* NOTE: The following is bogus; see comment in desc_bounds. */
1546 if (is_thin_pntr (type))
1547 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1548 else if (is_thick_pntr (type))
1549 {
1550 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1551
1552 if (data_type
1553 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1554 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1555 }
1556
1557 return NULL;
1558 }
1559
1560 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1561 its array data. */
1562
1563 static struct value *
1564 desc_data (struct value *arr)
1565 {
1566 struct type *type = value_type (arr);
1567
1568 if (is_thin_pntr (type))
1569 return thin_data_pntr (arr);
1570 else if (is_thick_pntr (type))
1571 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1572 _("Bad GNAT array descriptor"));
1573 else
1574 return NULL;
1575 }
1576
1577
1578 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1579 position of the field containing the address of the data. */
1580
1581 static int
1582 fat_pntr_data_bitpos (struct type *type)
1583 {
1584 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1585 }
1586
1587 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 size of the field containing the address of the data. */
1589
1590 static int
1591 fat_pntr_data_bitsize (struct type *type)
1592 {
1593 type = desc_base_type (type);
1594
1595 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1596 return TYPE_FIELD_BITSIZE (type, 0);
1597 else
1598 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1599 }
1600
1601 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1602 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1603 bound, if WHICH is 1. The first bound is I=1. */
1604
1605 static struct value *
1606 desc_one_bound (struct value *bounds, int i, int which)
1607 {
1608 char bound_name[20];
1609 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1610 which ? 'U' : 'L', i - 1);
1611 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1612 _("Bad GNAT array descriptor bounds"));
1613 }
1614
1615 /* If BOUNDS is an array-bounds structure type, return the bit position
1616 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1617 bound, if WHICH is 1. The first bound is I=1. */
1618
1619 static int
1620 desc_bound_bitpos (struct type *type, int i, int which)
1621 {
1622 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1623 }
1624
1625 /* If BOUNDS is an array-bounds structure type, return the bit field size
1626 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1627 bound, if WHICH is 1. The first bound is I=1. */
1628
1629 static int
1630 desc_bound_bitsize (struct type *type, int i, int which)
1631 {
1632 type = desc_base_type (type);
1633
1634 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1635 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 else
1637 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1638 }
1639
1640 /* If TYPE is the type of an array-bounds structure, the type of its
1641 Ith bound (numbering from 1). Otherwise, NULL. */
1642
1643 static struct type *
1644 desc_index_type (struct type *type, int i)
1645 {
1646 type = desc_base_type (type);
1647
1648 if (type->code () == TYPE_CODE_STRUCT)
1649 {
1650 char bound_name[20];
1651 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1652 return lookup_struct_elt_type (type, bound_name, 1);
1653 }
1654 else
1655 return NULL;
1656 }
1657
1658 /* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
1661 static int
1662 desc_arity (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1667 return type->num_fields () / 2;
1668 return 0;
1669 }
1670
1671 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
1675 static int
1676 ada_is_direct_array_type (struct type *type)
1677 {
1678 if (type == NULL)
1679 return 0;
1680 type = ada_check_typedef (type);
1681 return (type->code () == TYPE_CODE_ARRAY
1682 || ada_is_array_descriptor_type (type));
1683 }
1684
1685 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1687
1688 static int
1689 ada_is_array_type (struct type *type)
1690 {
1691 while (type != NULL
1692 && (type->code () == TYPE_CODE_PTR
1693 || type->code () == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1699
1700 int
1701 ada_is_simple_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (type->code () == TYPE_CODE_ARRAY
1707 || (type->code () == TYPE_CODE_PTR
1708 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1709 == TYPE_CODE_ARRAY)));
1710 }
1711
1712 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1713
1714 int
1715 ada_is_array_descriptor_type (struct type *type)
1716 {
1717 struct type *data_type = desc_data_target_type (type);
1718
1719 if (type == NULL)
1720 return 0;
1721 type = ada_check_typedef (type);
1722 return (data_type != NULL
1723 && data_type->code () == TYPE_CODE_ARRAY
1724 && desc_arity (desc_bounds_type (type)) > 0);
1725 }
1726
1727 /* Non-zero iff type is a partially mal-formed GNAT array
1728 descriptor. FIXME: This is to compensate for some problems with
1729 debugging output from GNAT. Re-examine periodically to see if it
1730 is still needed. */
1731
1732 int
1733 ada_is_bogus_array_descriptor (struct type *type)
1734 {
1735 return
1736 type != NULL
1737 && type->code () == TYPE_CODE_STRUCT
1738 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1739 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1740 && !ada_is_array_descriptor_type (type);
1741 }
1742
1743
1744 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1745 (fat pointer) returns the type of the array data described---specifically,
1746 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1747 in from the descriptor; otherwise, they are left unspecified. If
1748 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1749 returns NULL. The result is simply the type of ARR if ARR is not
1750 a descriptor. */
1751
1752 static struct type *
1753 ada_type_of_array (struct value *arr, int bounds)
1754 {
1755 if (ada_is_constrained_packed_array_type (value_type (arr)))
1756 return decode_constrained_packed_array_type (value_type (arr));
1757
1758 if (!ada_is_array_descriptor_type (value_type (arr)))
1759 return value_type (arr);
1760
1761 if (!bounds)
1762 {
1763 struct type *array_type =
1764 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765
1766 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1767 TYPE_FIELD_BITSIZE (array_type, 0) =
1768 decode_packed_array_bitsize (value_type (arr));
1769
1770 return array_type;
1771 }
1772 else
1773 {
1774 struct type *elt_type;
1775 int arity;
1776 struct value *descriptor;
1777
1778 elt_type = ada_array_element_type (value_type (arr), -1);
1779 arity = ada_array_arity (value_type (arr));
1780
1781 if (elt_type == NULL || arity == 0)
1782 return ada_check_typedef (value_type (arr));
1783
1784 descriptor = desc_bounds (arr);
1785 if (value_as_long (descriptor) == 0)
1786 return NULL;
1787 while (arity > 0)
1788 {
1789 struct type *range_type = alloc_type_copy (value_type (arr));
1790 struct type *array_type = alloc_type_copy (value_type (arr));
1791 struct value *low = desc_one_bound (descriptor, arity, 0);
1792 struct value *high = desc_one_bound (descriptor, arity, 1);
1793
1794 arity -= 1;
1795 create_static_range_type (range_type, value_type (low),
1796 longest_to_int (value_as_long (low)),
1797 longest_to_int (value_as_long (high)));
1798 elt_type = create_array_type (array_type, elt_type, range_type);
1799
1800 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1801 {
1802 /* We need to store the element packed bitsize, as well as
1803 recompute the array size, because it was previously
1804 computed based on the unpacked element size. */
1805 LONGEST lo = value_as_long (low);
1806 LONGEST hi = value_as_long (high);
1807
1808 TYPE_FIELD_BITSIZE (elt_type, 0) =
1809 decode_packed_array_bitsize (value_type (arr));
1810 /* If the array has no element, then the size is already
1811 zero, and does not need to be recomputed. */
1812 if (lo < hi)
1813 {
1814 int array_bitsize =
1815 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1816
1817 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1818 }
1819 }
1820 }
1821
1822 return lookup_pointer_type (elt_type);
1823 }
1824 }
1825
1826 /* If ARR does not represent an array, returns ARR unchanged.
1827 Otherwise, returns either a standard GDB array with bounds set
1828 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1829 GDB array. Returns NULL if ARR is a null fat pointer. */
1830
1831 struct value *
1832 ada_coerce_to_simple_array_ptr (struct value *arr)
1833 {
1834 if (ada_is_array_descriptor_type (value_type (arr)))
1835 {
1836 struct type *arrType = ada_type_of_array (arr, 1);
1837
1838 if (arrType == NULL)
1839 return NULL;
1840 return value_cast (arrType, value_copy (desc_data (arr)));
1841 }
1842 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1843 return decode_constrained_packed_array (arr);
1844 else
1845 return arr;
1846 }
1847
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns a standard GDB array describing ARR (which may
1850 be ARR itself if it already is in the proper form). */
1851
1852 struct value *
1853 ada_coerce_to_simple_array (struct value *arr)
1854 {
1855 if (ada_is_array_descriptor_type (value_type (arr)))
1856 {
1857 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1858
1859 if (arrVal == NULL)
1860 error (_("Bounds unavailable for null array pointer."));
1861 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1862 return value_ind (arrVal);
1863 }
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1868 }
1869
1870 /* If TYPE represents a GNAT array type, return it translated to an
1871 ordinary GDB array type (possibly with BITSIZE fields indicating
1872 packing). For other types, is the identity. */
1873
1874 struct type *
1875 ada_coerce_to_simple_array_type (struct type *type)
1876 {
1877 if (ada_is_constrained_packed_array_type (type))
1878 return decode_constrained_packed_array_type (type);
1879
1880 if (ada_is_array_descriptor_type (type))
1881 return ada_check_typedef (desc_data_target_type (type));
1882
1883 return type;
1884 }
1885
1886 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1887
1888 static int
1889 ada_is_gnat_encoded_packed_array_type (struct type *type)
1890 {
1891 if (type == NULL)
1892 return 0;
1893 type = desc_base_type (type);
1894 type = ada_check_typedef (type);
1895 return
1896 ada_type_name (type) != NULL
1897 && strstr (ada_type_name (type), "___XP") != NULL;
1898 }
1899
1900 /* Non-zero iff TYPE represents a standard GNAT constrained
1901 packed-array type. */
1902
1903 int
1904 ada_is_constrained_packed_array_type (struct type *type)
1905 {
1906 return ada_is_gnat_encoded_packed_array_type (type)
1907 && !ada_is_array_descriptor_type (type);
1908 }
1909
1910 /* Non-zero iff TYPE represents an array descriptor for a
1911 unconstrained packed-array type. */
1912
1913 static int
1914 ada_is_unconstrained_packed_array_type (struct type *type)
1915 {
1916 if (!ada_is_array_descriptor_type (type))
1917 return 0;
1918
1919 if (ada_is_gnat_encoded_packed_array_type (type))
1920 return 1;
1921
1922 /* If we saw GNAT encodings, then the above code is sufficient.
1923 However, with minimal encodings, we will just have a thick
1924 pointer instead. */
1925 if (is_thick_pntr (type))
1926 {
1927 type = desc_base_type (type);
1928 /* The structure's first field is a pointer to an array, so this
1929 fetches the array type. */
1930 type = TYPE_TARGET_TYPE (type->field (0).type ());
1931 /* Now we can see if the array elements are packed. */
1932 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1933 }
1934
1935 return 0;
1936 }
1937
1938 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1939 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1940
1941 static bool
1942 ada_is_any_packed_array_type (struct type *type)
1943 {
1944 return (ada_is_constrained_packed_array_type (type)
1945 || (type->code () == TYPE_CODE_ARRAY
1946 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1947 }
1948
1949 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1950 return the size of its elements in bits. */
1951
1952 static long
1953 decode_packed_array_bitsize (struct type *type)
1954 {
1955 const char *raw_name;
1956 const char *tail;
1957 long bits;
1958
1959 /* Access to arrays implemented as fat pointers are encoded as a typedef
1960 of the fat pointer type. We need the name of the fat pointer type
1961 to do the decoding, so strip the typedef layer. */
1962 if (type->code () == TYPE_CODE_TYPEDEF)
1963 type = ada_typedef_target_type (type);
1964
1965 raw_name = ada_type_name (ada_check_typedef (type));
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1968
1969 if (!raw_name)
1970 return 0;
1971
1972 tail = strstr (raw_name, "___XP");
1973 if (tail == nullptr)
1974 {
1975 gdb_assert (is_thick_pntr (type));
1976 /* The structure's first field is a pointer to an array, so this
1977 fetches the array type. */
1978 type = TYPE_TARGET_TYPE (type->field (0).type ());
1979 /* Now we can see if the array elements are packed. */
1980 return TYPE_FIELD_BITSIZE (type, 0);
1981 }
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991 }
1992
1993 /* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits.
2001
2002 Note that, for arrays whose index type has an XA encoding where
2003 a bound references a record discriminant, getting that discriminant,
2004 and therefore the actual value of that bound, is not possible
2005 because none of the given parameters gives us access to the record.
2006 This function assumes that it is OK in the context where it is being
2007 used to return an array whose bounds are still dynamic and where
2008 the length is arbitrary. */
2009
2010 static struct type *
2011 constrained_packed_array_type (struct type *type, long *elt_bits)
2012 {
2013 struct type *new_elt_type;
2014 struct type *new_type;
2015 struct type *index_type_desc;
2016 struct type *index_type;
2017 LONGEST low_bound, high_bound;
2018
2019 type = ada_check_typedef (type);
2020 if (type->code () != TYPE_CODE_ARRAY)
2021 return type;
2022
2023 index_type_desc = ada_find_parallel_type (type, "___XA");
2024 if (index_type_desc)
2025 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2026 NULL);
2027 else
2028 index_type = type->index_type ();
2029
2030 new_type = alloc_type_copy (type);
2031 new_elt_type =
2032 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 elt_bits);
2034 create_array_type (new_type, new_elt_type, index_type);
2035 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2036 new_type->set_name (ada_type_name (type));
2037
2038 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2039 && is_dynamic_type (check_typedef (index_type)))
2040 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2041 low_bound = high_bound = 0;
2042 if (high_bound < low_bound)
2043 *elt_bits = TYPE_LENGTH (new_type) = 0;
2044 else
2045 {
2046 *elt_bits *= (high_bound - low_bound + 1);
2047 TYPE_LENGTH (new_type) =
2048 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2049 }
2050
2051 new_type->set_is_fixed_instance (true);
2052 return new_type;
2053 }
2054
2055 /* The array type encoded by TYPE, where
2056 ada_is_constrained_packed_array_type (TYPE). */
2057
2058 static struct type *
2059 decode_constrained_packed_array_type (struct type *type)
2060 {
2061 const char *raw_name = ada_type_name (ada_check_typedef (type));
2062 char *name;
2063 const char *tail;
2064 struct type *shadow_type;
2065 long bits;
2066
2067 if (!raw_name)
2068 raw_name = ada_type_name (desc_base_type (type));
2069
2070 if (!raw_name)
2071 return NULL;
2072
2073 name = (char *) alloca (strlen (raw_name) + 1);
2074 tail = strstr (raw_name, "___XP");
2075 type = desc_base_type (type);
2076
2077 memcpy (name, raw_name, tail - raw_name);
2078 name[tail - raw_name] = '\000';
2079
2080 shadow_type = ada_find_parallel_type_with_name (type, name);
2081
2082 if (shadow_type == NULL)
2083 {
2084 lim_warning (_("could not find bounds information on packed array"));
2085 return NULL;
2086 }
2087 shadow_type = check_typedef (shadow_type);
2088
2089 if (shadow_type->code () != TYPE_CODE_ARRAY)
2090 {
2091 lim_warning (_("could not understand bounds "
2092 "information on packed array"));
2093 return NULL;
2094 }
2095
2096 bits = decode_packed_array_bitsize (type);
2097 return constrained_packed_array_type (shadow_type, &bits);
2098 }
2099
2100 /* Helper function for decode_constrained_packed_array. Set the field
2101 bitsize on a series of packed arrays. Returns the number of
2102 elements in TYPE. */
2103
2104 static LONGEST
2105 recursively_update_array_bitsize (struct type *type)
2106 {
2107 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2108
2109 LONGEST low, high;
2110 if (!get_discrete_bounds (type->index_type (), &low, &high)
2111 || low > high)
2112 return 0;
2113 LONGEST our_len = high - low + 1;
2114
2115 struct type *elt_type = TYPE_TARGET_TYPE (type);
2116 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 {
2118 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2119 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2120 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121
2122 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2123 / HOST_CHAR_BIT);
2124 }
2125
2126 return our_len;
2127 }
2128
2129 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2130 array, returns a simple array that denotes that array. Its type is a
2131 standard GDB array type except that the BITSIZEs of the array
2132 target types are set to the number of bits in each element, and the
2133 type length is set appropriately. */
2134
2135 static struct value *
2136 decode_constrained_packed_array (struct value *arr)
2137 {
2138 struct type *type;
2139
2140 /* If our value is a pointer, then dereference it. Likewise if
2141 the value is a reference. Make sure that this operation does not
2142 cause the target type to be fixed, as this would indirectly cause
2143 this array to be decoded. The rest of the routine assumes that
2144 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2145 and "value_ind" routines to perform the dereferencing, as opposed
2146 to using "ada_coerce_ref" or "ada_value_ind". */
2147 arr = coerce_ref (arr);
2148 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2149 arr = value_ind (arr);
2150
2151 type = decode_constrained_packed_array_type (value_type (arr));
2152 if (type == NULL)
2153 {
2154 error (_("can't unpack array"));
2155 return NULL;
2156 }
2157
2158 /* Decoding the packed array type could not correctly set the field
2159 bitsizes for any dimension except the innermost, because the
2160 bounds may be variable and were not passed to that function. So,
2161 we further resolve the array bounds here and then update the
2162 sizes. */
2163 const gdb_byte *valaddr = value_contents_for_printing (arr);
2164 CORE_ADDR address = value_address (arr);
2165 gdb::array_view<const gdb_byte> view
2166 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2167 type = resolve_dynamic_type (type, view, address);
2168 recursively_update_array_bitsize (type);
2169
2170 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2171 && ada_is_modular_type (value_type (arr)))
2172 {
2173 /* This is a (right-justified) modular type representing a packed
2174 array with no wrapper. In order to interpret the value through
2175 the (left-justified) packed array type we just built, we must
2176 first left-justify it. */
2177 int bit_size, bit_pos;
2178 ULONGEST mod;
2179
2180 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_size = 0;
2182 while (mod > 0)
2183 {
2184 bit_size += 1;
2185 mod >>= 1;
2186 }
2187 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2188 arr = ada_value_primitive_packed_val (arr, NULL,
2189 bit_pos / HOST_CHAR_BIT,
2190 bit_pos % HOST_CHAR_BIT,
2191 bit_size,
2192 type);
2193 }
2194
2195 return coerce_unspec_val_to_type (arr, type);
2196 }
2197
2198
2199 /* The value of the element of packed array ARR at the ARITY indices
2200 given in IND. ARR must be a simple array. */
2201
2202 static struct value *
2203 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2204 {
2205 int i;
2206 int bits, elt_off, bit_off;
2207 long elt_total_bit_offset;
2208 struct type *elt_type;
2209 struct value *v;
2210
2211 bits = 0;
2212 elt_total_bit_offset = 0;
2213 elt_type = ada_check_typedef (value_type (arr));
2214 for (i = 0; i < arity; i += 1)
2215 {
2216 if (elt_type->code () != TYPE_CODE_ARRAY
2217 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 error
2219 (_("attempt to do packed indexing of "
2220 "something other than a packed array"));
2221 else
2222 {
2223 struct type *range_type = elt_type->index_type ();
2224 LONGEST lowerbound, upperbound;
2225 LONGEST idx;
2226
2227 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2228 {
2229 lim_warning (_("don't know bounds of array"));
2230 lowerbound = upperbound = 0;
2231 }
2232
2233 idx = pos_atr (ind[i]);
2234 if (idx < lowerbound || idx > upperbound)
2235 lim_warning (_("packed array index %ld out of bounds"),
2236 (long) idx);
2237 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2238 elt_total_bit_offset += (idx - lowerbound) * bits;
2239 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2240 }
2241 }
2242 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2243 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2244
2245 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2246 bits, elt_type);
2247 return v;
2248 }
2249
2250 /* Non-zero iff TYPE includes negative integer values. */
2251
2252 static int
2253 has_negatives (struct type *type)
2254 {
2255 switch (type->code ())
2256 {
2257 default:
2258 return 0;
2259 case TYPE_CODE_INT:
2260 return !type->is_unsigned ();
2261 case TYPE_CODE_RANGE:
2262 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2263 }
2264 }
2265
2266 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2267 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2268 the unpacked buffer.
2269
2270 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2271 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272
2273 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2274 zero otherwise.
2275
2276 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2277
2278 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2279
2280 static void
2281 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2282 gdb_byte *unpacked, int unpacked_len,
2283 int is_big_endian, int is_signed_type,
2284 int is_scalar)
2285 {
2286 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 int src_idx; /* Index into the source area */
2288 int src_bytes_left; /* Number of source bytes left to process. */
2289 int srcBitsLeft; /* Number of source bits left to move */
2290 int unusedLS; /* Number of bits in next significant
2291 byte of source that are unused */
2292
2293 int unpacked_idx; /* Index into the unpacked buffer */
2294 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295
2296 unsigned long accum; /* Staging area for bits being transferred */
2297 int accumSize; /* Number of meaningful bits in accum */
2298 unsigned char sign;
2299
2300 /* Transmit bytes from least to most significant; delta is the direction
2301 the indices move. */
2302 int delta = is_big_endian ? -1 : 1;
2303
2304 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 bits from SRC. .*/
2306 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2307 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2308 bit_size, unpacked_len);
2309
2310 srcBitsLeft = bit_size;
2311 src_bytes_left = src_len;
2312 unpacked_bytes_left = unpacked_len;
2313 sign = 0;
2314
2315 if (is_big_endian)
2316 {
2317 src_idx = src_len - 1;
2318 if (is_signed_type
2319 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2320 sign = ~0;
2321
2322 unusedLS =
2323 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2324 % HOST_CHAR_BIT;
2325
2326 if (is_scalar)
2327 {
2328 accumSize = 0;
2329 unpacked_idx = unpacked_len - 1;
2330 }
2331 else
2332 {
2333 /* Non-scalar values must be aligned at a byte boundary... */
2334 accumSize =
2335 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2336 /* ... And are placed at the beginning (most-significant) bytes
2337 of the target. */
2338 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2339 unpacked_bytes_left = unpacked_idx + 1;
2340 }
2341 }
2342 else
2343 {
2344 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345
2346 src_idx = unpacked_idx = 0;
2347 unusedLS = bit_offset;
2348 accumSize = 0;
2349
2350 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2351 sign = ~0;
2352 }
2353
2354 accum = 0;
2355 while (src_bytes_left > 0)
2356 {
2357 /* Mask for removing bits of the next source byte that are not
2358 part of the value. */
2359 unsigned int unusedMSMask =
2360 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 1;
2362 /* Sign-extend bits for this byte. */
2363 unsigned int signMask = sign & ~unusedMSMask;
2364
2365 accum |=
2366 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2367 accumSize += HOST_CHAR_BIT - unusedLS;
2368 if (accumSize >= HOST_CHAR_BIT)
2369 {
2370 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2371 accumSize -= HOST_CHAR_BIT;
2372 accum >>= HOST_CHAR_BIT;
2373 unpacked_bytes_left -= 1;
2374 unpacked_idx += delta;
2375 }
2376 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 unusedLS = 0;
2378 src_bytes_left -= 1;
2379 src_idx += delta;
2380 }
2381 while (unpacked_bytes_left > 0)
2382 {
2383 accum |= sign << accumSize;
2384 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2385 accumSize -= HOST_CHAR_BIT;
2386 if (accumSize < 0)
2387 accumSize = 0;
2388 accum >>= HOST_CHAR_BIT;
2389 unpacked_bytes_left -= 1;
2390 unpacked_idx += delta;
2391 }
2392 }
2393
2394 /* Create a new value of type TYPE from the contents of OBJ starting
2395 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2396 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2397 assigning through the result will set the field fetched from.
2398 VALADDR is ignored unless OBJ is NULL, in which case,
2399 VALADDR+OFFSET must address the start of storage containing the
2400 packed value. The value returned in this case is never an lval.
2401 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2402
2403 struct value *
2404 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2405 long offset, int bit_offset, int bit_size,
2406 struct type *type)
2407 {
2408 struct value *v;
2409 const gdb_byte *src; /* First byte containing data to unpack */
2410 gdb_byte *unpacked;
2411 const int is_scalar = is_scalar_type (type);
2412 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2413 gdb::byte_vector staging;
2414
2415 type = ada_check_typedef (type);
2416
2417 if (obj == NULL)
2418 src = valaddr + offset;
2419 else
2420 src = value_contents (obj) + offset;
2421
2422 if (is_dynamic_type (type))
2423 {
2424 /* The length of TYPE might by dynamic, so we need to resolve
2425 TYPE in order to know its actual size, which we then use
2426 to create the contents buffer of the value we return.
2427 The difficulty is that the data containing our object is
2428 packed, and therefore maybe not at a byte boundary. So, what
2429 we do, is unpack the data into a byte-aligned buffer, and then
2430 use that buffer as our object's value for resolving the type. */
2431 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2432 staging.resize (staging_len);
2433
2434 ada_unpack_from_contents (src, bit_offset, bit_size,
2435 staging.data (), staging.size (),
2436 is_big_endian, has_negatives (type),
2437 is_scalar);
2438 type = resolve_dynamic_type (type, staging, 0);
2439 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 {
2441 /* This happens when the length of the object is dynamic,
2442 and is actually smaller than the space reserved for it.
2443 For instance, in an array of variant records, the bit_size
2444 we're given is the array stride, which is constant and
2445 normally equal to the maximum size of its element.
2446 But, in reality, each element only actually spans a portion
2447 of that stride. */
2448 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2449 }
2450 }
2451
2452 if (obj == NULL)
2453 {
2454 v = allocate_value (type);
2455 src = valaddr + offset;
2456 }
2457 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 {
2459 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2460 gdb_byte *buf;
2461
2462 v = value_at (type, value_address (obj) + offset);
2463 buf = (gdb_byte *) alloca (src_len);
2464 read_memory (value_address (v), buf, src_len);
2465 src = buf;
2466 }
2467 else
2468 {
2469 v = allocate_value (type);
2470 src = value_contents (obj) + offset;
2471 }
2472
2473 if (obj != NULL)
2474 {
2475 long new_offset = offset;
2476
2477 set_value_component_location (v, obj);
2478 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2479 set_value_bitsize (v, bit_size);
2480 if (value_bitpos (v) >= HOST_CHAR_BIT)
2481 {
2482 ++new_offset;
2483 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 }
2485 set_value_offset (v, new_offset);
2486
2487 /* Also set the parent value. This is needed when trying to
2488 assign a new value (in inferior memory). */
2489 set_value_parent (v, obj);
2490 }
2491 else
2492 set_value_bitsize (v, bit_size);
2493 unpacked = value_contents_writeable (v);
2494
2495 if (bit_size == 0)
2496 {
2497 memset (unpacked, 0, TYPE_LENGTH (type));
2498 return v;
2499 }
2500
2501 if (staging.size () == TYPE_LENGTH (type))
2502 {
2503 /* Small short-cut: If we've unpacked the data into a buffer
2504 of the same size as TYPE's length, then we can reuse that,
2505 instead of doing the unpacking again. */
2506 memcpy (unpacked, staging.data (), staging.size ());
2507 }
2508 else
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 unpacked, TYPE_LENGTH (type),
2511 is_big_endian, has_negatives (type), is_scalar);
2512
2513 return v;
2514 }
2515
2516 /* Store the contents of FROMVAL into the location of TOVAL.
2517 Return a new value with the location of TOVAL and contents of
2518 FROMVAL. Handles assignment into packed fields that have
2519 floating-point or non-scalar types. */
2520
2521 static struct value *
2522 ada_value_assign (struct value *toval, struct value *fromval)
2523 {
2524 struct type *type = value_type (toval);
2525 int bits = value_bitsize (toval);
2526
2527 toval = ada_coerce_ref (toval);
2528 fromval = ada_coerce_ref (fromval);
2529
2530 if (ada_is_direct_array_type (value_type (toval)))
2531 toval = ada_coerce_to_simple_array (toval);
2532 if (ada_is_direct_array_type (value_type (fromval)))
2533 fromval = ada_coerce_to_simple_array (fromval);
2534
2535 if (!deprecated_value_modifiable (toval))
2536 error (_("Left operand of assignment is not a modifiable lvalue."));
2537
2538 if (VALUE_LVAL (toval) == lval_memory
2539 && bits > 0
2540 && (type->code () == TYPE_CODE_FLT
2541 || type->code () == TYPE_CODE_STRUCT))
2542 {
2543 int len = (value_bitpos (toval)
2544 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 int from_size;
2546 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 struct value *val;
2548 CORE_ADDR to_addr = value_address (toval);
2549
2550 if (type->code () == TYPE_CODE_FLT)
2551 fromval = value_cast (type, fromval);
2552
2553 read_memory (to_addr, buffer, len);
2554 from_size = value_bitsize (fromval);
2555 if (from_size == 0)
2556 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2557
2558 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2559 ULONGEST from_offset = 0;
2560 if (is_big_endian && is_scalar_type (value_type (fromval)))
2561 from_offset = from_size - bits;
2562 copy_bitwise (buffer, value_bitpos (toval),
2563 value_contents (fromval), from_offset,
2564 bits, is_big_endian);
2565 write_memory_with_notification (to_addr, buffer, len);
2566
2567 val = value_copy (toval);
2568 memcpy (value_contents_raw (val), value_contents (fromval),
2569 TYPE_LENGTH (type));
2570 deprecated_set_value_type (val, type);
2571
2572 return val;
2573 }
2574
2575 return value_assign (toval, fromval);
2576 }
2577
2578
2579 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2580 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2581 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2582 COMPONENT, and not the inferior's memory. The current contents
2583 of COMPONENT are ignored.
2584
2585 Although not part of the initial design, this function also works
2586 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2587 had a null address, and COMPONENT had an address which is equal to
2588 its offset inside CONTAINER. */
2589
2590 static void
2591 value_assign_to_component (struct value *container, struct value *component,
2592 struct value *val)
2593 {
2594 LONGEST offset_in_container =
2595 (LONGEST) (value_address (component) - value_address (container));
2596 int bit_offset_in_container =
2597 value_bitpos (component) - value_bitpos (container);
2598 int bits;
2599
2600 val = value_cast (value_type (component), val);
2601
2602 if (value_bitsize (component) == 0)
2603 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 else
2605 bits = value_bitsize (component);
2606
2607 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2608 {
2609 int src_offset;
2610
2611 if (is_scalar_type (check_typedef (value_type (component))))
2612 src_offset
2613 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2614 else
2615 src_offset = 0;
2616 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2617 value_bitpos (container) + bit_offset_in_container,
2618 value_contents (val), src_offset, bits, 1);
2619 }
2620 else
2621 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2622 value_bitpos (container) + bit_offset_in_container,
2623 value_contents (val), 0, bits, 0);
2624 }
2625
2626 /* Determine if TYPE is an access to an unconstrained array. */
2627
2628 bool
2629 ada_is_access_to_unconstrained_array (struct type *type)
2630 {
2631 return (type->code () == TYPE_CODE_TYPEDEF
2632 && is_thick_pntr (ada_typedef_target_type (type)));
2633 }
2634
2635 /* The value of the element of array ARR at the ARITY indices given in IND.
2636 ARR may be either a simple array, GNAT array descriptor, or pointer
2637 thereto. */
2638
2639 struct value *
2640 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2641 {
2642 int k;
2643 struct value *elt;
2644 struct type *elt_type;
2645
2646 elt = ada_coerce_to_simple_array (arr);
2647
2648 elt_type = ada_check_typedef (value_type (elt));
2649 if (elt_type->code () == TYPE_CODE_ARRAY
2650 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2651 return value_subscript_packed (elt, arity, ind);
2652
2653 for (k = 0; k < arity; k += 1)
2654 {
2655 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656
2657 if (elt_type->code () != TYPE_CODE_ARRAY)
2658 error (_("too many subscripts (%d expected)"), k);
2659
2660 elt = value_subscript (elt, pos_atr (ind[k]));
2661
2662 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2663 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2664 {
2665 /* The element is a typedef to an unconstrained array,
2666 except that the value_subscript call stripped the
2667 typedef layer. The typedef layer is GNAT's way to
2668 specify that the element is, at the source level, an
2669 access to the unconstrained array, rather than the
2670 unconstrained array. So, we need to restore that
2671 typedef layer, which we can do by forcing the element's
2672 type back to its original type. Otherwise, the returned
2673 value is going to be printed as the array, rather
2674 than as an access. Another symptom of the same issue
2675 would be that an expression trying to dereference the
2676 element would also be improperly rejected. */
2677 deprecated_set_value_type (elt, saved_elt_type);
2678 }
2679
2680 elt_type = ada_check_typedef (value_type (elt));
2681 }
2682
2683 return elt;
2684 }
2685
2686 /* Assuming ARR is a pointer to a GDB array, the value of the element
2687 of *ARR at the ARITY indices given in IND.
2688 Does not read the entire array into memory.
2689
2690 Note: Unlike what one would expect, this function is used instead of
2691 ada_value_subscript for basically all non-packed array types. The reason
2692 for this is that a side effect of doing our own pointer arithmetics instead
2693 of relying on value_subscript is that there is no implicit typedef peeling.
2694 This is important for arrays of array accesses, where it allows us to
2695 preserve the fact that the array's element is an array access, where the
2696 access part os encoded in a typedef layer. */
2697
2698 static struct value *
2699 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2700 {
2701 int k;
2702 struct value *array_ind = ada_value_ind (arr);
2703 struct type *type
2704 = check_typedef (value_enclosing_type (array_ind));
2705
2706 if (type->code () == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2708 return value_subscript_packed (array_ind, arity, ind);
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 LONGEST lwb, upb;
2713
2714 if (type->code () != TYPE_CODE_ARRAY)
2715 error (_("too many subscripts (%d expected)"), k);
2716 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 value_copy (arr));
2718 get_discrete_bounds (type->index_type (), &lwb, &upb);
2719 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2720 type = TYPE_TARGET_TYPE (type);
2721 }
2722
2723 return value_ind (arr);
2724 }
2725
2726 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2727 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2728 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2729 this array is LOW, as per Ada rules. */
2730 static struct value *
2731 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2732 int low, int high)
2733 {
2734 struct type *type0 = ada_check_typedef (type);
2735 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2736 struct type *index_type
2737 = create_static_range_type (NULL, base_index_type, low, high);
2738 struct type *slice_type = create_array_type_with_stride
2739 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2740 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2741 TYPE_FIELD_BITSIZE (type0, 0));
2742 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2743 gdb::optional<LONGEST> base_low_pos, low_pos;
2744 CORE_ADDR base;
2745
2746 low_pos = discrete_position (base_index_type, low);
2747 base_low_pos = discrete_position (base_index_type, base_low);
2748
2749 if (!low_pos.has_value () || !base_low_pos.has_value ())
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
2755
2756 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 if (stride == 0)
2758 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759
2760 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2761 return value_at_lazy (slice_type, base);
2762 }
2763
2764
2765 static struct value *
2766 ada_value_slice (struct value *array, int low, int high)
2767 {
2768 struct type *type = ada_check_typedef (value_type (array));
2769 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2770 struct type *index_type
2771 = create_static_range_type (NULL, type->index_type (), low, high);
2772 struct type *slice_type = create_array_type_with_stride
2773 (NULL, TYPE_TARGET_TYPE (type), index_type,
2774 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2775 TYPE_FIELD_BITSIZE (type, 0));
2776 gdb::optional<LONGEST> low_pos, high_pos;
2777
2778
2779 low_pos = discrete_position (base_index_type, low);
2780 high_pos = discrete_position (base_index_type, high);
2781
2782 if (!low_pos.has_value () || !high_pos.has_value ())
2783 {
2784 warning (_("unable to get positions in slice, use bounds instead"));
2785 low_pos = low;
2786 high_pos = high;
2787 }
2788
2789 return value_cast (slice_type,
2790 value_slice (array, low, *high_pos - *low_pos + 1));
2791 }
2792
2793 /* If type is a record type in the form of a standard GNAT array
2794 descriptor, returns the number of dimensions for type. If arr is a
2795 simple array, returns the number of "array of"s that prefix its
2796 type designation. Otherwise, returns 0. */
2797
2798 int
2799 ada_array_arity (struct type *type)
2800 {
2801 int arity;
2802
2803 if (type == NULL)
2804 return 0;
2805
2806 type = desc_base_type (type);
2807
2808 arity = 0;
2809 if (type->code () == TYPE_CODE_STRUCT)
2810 return desc_arity (desc_bounds_type (type));
2811 else
2812 while (type->code () == TYPE_CODE_ARRAY)
2813 {
2814 arity += 1;
2815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2816 }
2817
2818 return arity;
2819 }
2820
2821 /* If TYPE is a record type in the form of a standard GNAT array
2822 descriptor or a simple array type, returns the element type for
2823 TYPE after indexing by NINDICES indices, or by all indices if
2824 NINDICES is -1. Otherwise, returns NULL. */
2825
2826 struct type *
2827 ada_array_element_type (struct type *type, int nindices)
2828 {
2829 type = desc_base_type (type);
2830
2831 if (type->code () == TYPE_CODE_STRUCT)
2832 {
2833 int k;
2834 struct type *p_array_type;
2835
2836 p_array_type = desc_data_target_type (type);
2837
2838 k = ada_array_arity (type);
2839 if (k == 0)
2840 return NULL;
2841
2842 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2843 if (nindices >= 0 && k > nindices)
2844 k = nindices;
2845 while (k > 0 && p_array_type != NULL)
2846 {
2847 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2848 k -= 1;
2849 }
2850 return p_array_type;
2851 }
2852 else if (type->code () == TYPE_CODE_ARRAY)
2853 {
2854 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2855 {
2856 type = TYPE_TARGET_TYPE (type);
2857 nindices -= 1;
2858 }
2859 return type;
2860 }
2861
2862 return NULL;
2863 }
2864
2865 /* See ada-lang.h. */
2866
2867 struct type *
2868 ada_index_type (struct type *type, int n, const char *name)
2869 {
2870 struct type *result_type;
2871
2872 type = desc_base_type (type);
2873
2874 if (n < 0 || n > ada_array_arity (type))
2875 error (_("invalid dimension number to '%s"), name);
2876
2877 if (ada_is_simple_array_type (type))
2878 {
2879 int i;
2880
2881 for (i = 1; i < n; i += 1)
2882 type = TYPE_TARGET_TYPE (type);
2883 result_type = TYPE_TARGET_TYPE (type->index_type ());
2884 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2885 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2886 perhaps stabsread.c would make more sense. */
2887 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2888 result_type = NULL;
2889 }
2890 else
2891 {
2892 result_type = desc_index_type (desc_bounds_type (type), n);
2893 if (result_type == NULL)
2894 error (_("attempt to take bound of something that is not an array"));
2895 }
2896
2897 return result_type;
2898 }
2899
2900 /* Given that arr is an array type, returns the lower bound of the
2901 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2902 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2903 array-descriptor type. It works for other arrays with bounds supplied
2904 by run-time quantities other than discriminants. */
2905
2906 static LONGEST
2907 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2908 {
2909 struct type *type, *index_type_desc, *index_type;
2910 int i;
2911
2912 gdb_assert (which == 0 || which == 1);
2913
2914 if (ada_is_constrained_packed_array_type (arr_type))
2915 arr_type = decode_constrained_packed_array_type (arr_type);
2916
2917 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2918 return (LONGEST) - which;
2919
2920 if (arr_type->code () == TYPE_CODE_PTR)
2921 type = TYPE_TARGET_TYPE (arr_type);
2922 else
2923 type = arr_type;
2924
2925 if (type->is_fixed_instance ())
2926 {
2927 /* The array has already been fixed, so we do not need to
2928 check the parallel ___XA type again. That encoding has
2929 already been applied, so ignore it now. */
2930 index_type_desc = NULL;
2931 }
2932 else
2933 {
2934 index_type_desc = ada_find_parallel_type (type, "___XA");
2935 ada_fixup_array_indexes_type (index_type_desc);
2936 }
2937
2938 if (index_type_desc != NULL)
2939 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2940 NULL);
2941 else
2942 {
2943 struct type *elt_type = check_typedef (type);
2944
2945 for (i = 1; i < n; i++)
2946 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2947
2948 index_type = elt_type->index_type ();
2949 }
2950
2951 return
2952 (LONGEST) (which == 0
2953 ? ada_discrete_type_low_bound (index_type)
2954 : ada_discrete_type_high_bound (index_type));
2955 }
2956
2957 /* Given that arr is an array value, returns the lower bound of the
2958 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2959 WHICH is 1. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants. */
2961
2962 static LONGEST
2963 ada_array_bound (struct value *arr, int n, int which)
2964 {
2965 struct type *arr_type;
2966
2967 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2968 arr = value_ind (arr);
2969 arr_type = value_enclosing_type (arr);
2970
2971 if (ada_is_constrained_packed_array_type (arr_type))
2972 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2973 else if (ada_is_simple_array_type (arr_type))
2974 return ada_array_bound_from_type (arr_type, n, which);
2975 else
2976 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2977 }
2978
2979 /* Given that arr is an array value, returns the length of the
2980 nth index. This routine will also work for arrays with bounds
2981 supplied by run-time quantities other than discriminants.
2982 Does not work for arrays indexed by enumeration types with representation
2983 clauses at the moment. */
2984
2985 static LONGEST
2986 ada_array_length (struct value *arr, int n)
2987 {
2988 struct type *arr_type, *index_type;
2989 int low, high;
2990
2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_length (decode_constrained_packed_array (arr), n);
2997
2998 if (ada_is_simple_array_type (arr_type))
2999 {
3000 low = ada_array_bound_from_type (arr_type, n, 0);
3001 high = ada_array_bound_from_type (arr_type, n, 1);
3002 }
3003 else
3004 {
3005 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3006 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3007 }
3008
3009 arr_type = check_typedef (arr_type);
3010 index_type = ada_index_type (arr_type, n, "length");
3011 if (index_type != NULL)
3012 {
3013 struct type *base_type;
3014 if (index_type->code () == TYPE_CODE_RANGE)
3015 base_type = TYPE_TARGET_TYPE (index_type);
3016 else
3017 base_type = index_type;
3018
3019 low = pos_atr (value_from_longest (base_type, low));
3020 high = pos_atr (value_from_longest (base_type, high));
3021 }
3022 return high - low + 1;
3023 }
3024
3025 /* An array whose type is that of ARR_TYPE (an array type), with
3026 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3027 less than LOW, then LOW-1 is used. */
3028
3029 static struct value *
3030 empty_array (struct type *arr_type, int low, int high)
3031 {
3032 struct type *arr_type0 = ada_check_typedef (arr_type);
3033 struct type *index_type
3034 = create_static_range_type
3035 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3036 high < low ? low - 1 : high);
3037 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3038
3039 return allocate_value (create_array_type (NULL, elt_type, index_type));
3040 }
3041 \f
3042
3043 /* Name resolution */
3044
3045 /* The "decoded" name for the user-definable Ada operator corresponding
3046 to OP. */
3047
3048 static const char *
3049 ada_decoded_op_name (enum exp_opcode op)
3050 {
3051 int i;
3052
3053 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3054 {
3055 if (ada_opname_table[i].op == op)
3056 return ada_opname_table[i].decoded;
3057 }
3058 error (_("Could not find operator name for opcode"));
3059 }
3060
3061 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3062 in a listing of choices during disambiguation (see sort_choices, below).
3063 The idea is that overloadings of a subprogram name from the
3064 same package should sort in their source order. We settle for ordering
3065 such symbols by their trailing number (__N or $N). */
3066
3067 static int
3068 encoded_ordered_before (const char *N0, const char *N1)
3069 {
3070 if (N1 == NULL)
3071 return 0;
3072 else if (N0 == NULL)
3073 return 1;
3074 else
3075 {
3076 int k0, k1;
3077
3078 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3079 ;
3080 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3081 ;
3082 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3083 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3084 {
3085 int n0, n1;
3086
3087 n0 = k0;
3088 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3089 n0 -= 1;
3090 n1 = k1;
3091 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3092 n1 -= 1;
3093 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3094 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3095 }
3096 return (strcmp (N0, N1) < 0);
3097 }
3098 }
3099
3100 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3101 encoded names. */
3102
3103 static void
3104 sort_choices (struct block_symbol syms[], int nsyms)
3105 {
3106 int i;
3107
3108 for (i = 1; i < nsyms; i += 1)
3109 {
3110 struct block_symbol sym = syms[i];
3111 int j;
3112
3113 for (j = i - 1; j >= 0; j -= 1)
3114 {
3115 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3116 sym.symbol->linkage_name ()))
3117 break;
3118 syms[j + 1] = syms[j];
3119 }
3120 syms[j + 1] = sym;
3121 }
3122 }
3123
3124 /* Whether GDB should display formals and return types for functions in the
3125 overloads selection menu. */
3126 static bool print_signatures = true;
3127
3128 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3129 all but functions, the signature is just the name of the symbol. For
3130 functions, this is the name of the function, the list of types for formals
3131 and the return type (if any). */
3132
3133 static void
3134 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3135 const struct type_print_options *flags)
3136 {
3137 struct type *type = SYMBOL_TYPE (sym);
3138
3139 fprintf_filtered (stream, "%s", sym->print_name ());
3140 if (!print_signatures
3141 || type == NULL
3142 || type->code () != TYPE_CODE_FUNC)
3143 return;
3144
3145 if (type->num_fields () > 0)
3146 {
3147 int i;
3148
3149 fprintf_filtered (stream, " (");
3150 for (i = 0; i < type->num_fields (); ++i)
3151 {
3152 if (i > 0)
3153 fprintf_filtered (stream, "; ");
3154 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3155 flags);
3156 }
3157 fprintf_filtered (stream, ")");
3158 }
3159 if (TYPE_TARGET_TYPE (type) != NULL
3160 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3161 {
3162 fprintf_filtered (stream, " return ");
3163 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3164 }
3165 }
3166
3167 /* Read and validate a set of numeric choices from the user in the
3168 range 0 .. N_CHOICES-1. Place the results in increasing
3169 order in CHOICES[0 .. N-1], and return N.
3170
3171 The user types choices as a sequence of numbers on one line
3172 separated by blanks, encoding them as follows:
3173
3174 + A choice of 0 means to cancel the selection, throwing an error.
3175 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3176 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3177
3178 The user is not allowed to choose more than MAX_RESULTS values.
3179
3180 ANNOTATION_SUFFIX, if present, is used to annotate the input
3181 prompts (for use with the -f switch). */
3182
3183 static int
3184 get_selections (int *choices, int n_choices, int max_results,
3185 int is_all_choice, const char *annotation_suffix)
3186 {
3187 const char *args;
3188 const char *prompt;
3189 int n_chosen;
3190 int first_choice = is_all_choice ? 2 : 1;
3191
3192 prompt = getenv ("PS2");
3193 if (prompt == NULL)
3194 prompt = "> ";
3195
3196 args = command_line_input (prompt, annotation_suffix);
3197
3198 if (args == NULL)
3199 error_no_arg (_("one or more choice numbers"));
3200
3201 n_chosen = 0;
3202
3203 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3204 order, as given in args. Choices are validated. */
3205 while (1)
3206 {
3207 char *args2;
3208 int choice, j;
3209
3210 args = skip_spaces (args);
3211 if (*args == '\0' && n_chosen == 0)
3212 error_no_arg (_("one or more choice numbers"));
3213 else if (*args == '\0')
3214 break;
3215
3216 choice = strtol (args, &args2, 10);
3217 if (args == args2 || choice < 0
3218 || choice > n_choices + first_choice - 1)
3219 error (_("Argument must be choice number"));
3220 args = args2;
3221
3222 if (choice == 0)
3223 error (_("cancelled"));
3224
3225 if (choice < first_choice)
3226 {
3227 n_chosen = n_choices;
3228 for (j = 0; j < n_choices; j += 1)
3229 choices[j] = j;
3230 break;
3231 }
3232 choice -= first_choice;
3233
3234 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3235 {
3236 }
3237
3238 if (j < 0 || choice != choices[j])
3239 {
3240 int k;
3241
3242 for (k = n_chosen - 1; k > j; k -= 1)
3243 choices[k + 1] = choices[k];
3244 choices[j + 1] = choice;
3245 n_chosen += 1;
3246 }
3247 }
3248
3249 if (n_chosen > max_results)
3250 error (_("Select no more than %d of the above"), max_results);
3251
3252 return n_chosen;
3253 }
3254
3255 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3256 by asking the user (if necessary), returning the number selected,
3257 and setting the first elements of SYMS items. Error if no symbols
3258 selected. */
3259
3260 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3261 to be re-integrated one of these days. */
3262
3263 static int
3264 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3265 {
3266 int i;
3267 int *chosen = XALLOCAVEC (int , nsyms);
3268 int n_chosen;
3269 int first_choice = (max_results == 1) ? 1 : 2;
3270 const char *select_mode = multiple_symbols_select_mode ();
3271
3272 if (max_results < 1)
3273 error (_("Request to select 0 symbols!"));
3274 if (nsyms <= 1)
3275 return nsyms;
3276
3277 if (select_mode == multiple_symbols_cancel)
3278 error (_("\
3279 canceled because the command is ambiguous\n\
3280 See set/show multiple-symbol."));
3281
3282 /* If select_mode is "all", then return all possible symbols.
3283 Only do that if more than one symbol can be selected, of course.
3284 Otherwise, display the menu as usual. */
3285 if (select_mode == multiple_symbols_all && max_results > 1)
3286 return nsyms;
3287
3288 printf_filtered (_("[0] cancel\n"));
3289 if (max_results > 1)
3290 printf_filtered (_("[1] all\n"));
3291
3292 sort_choices (syms, nsyms);
3293
3294 for (i = 0; i < nsyms; i += 1)
3295 {
3296 if (syms[i].symbol == NULL)
3297 continue;
3298
3299 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3300 {
3301 struct symtab_and_line sal =
3302 find_function_start_sal (syms[i].symbol, 1);
3303
3304 printf_filtered ("[%d] ", i + first_choice);
3305 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3306 &type_print_raw_options);
3307 if (sal.symtab == NULL)
3308 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3309 metadata_style.style ().ptr (), nullptr, sal.line);
3310 else
3311 printf_filtered
3312 (_(" at %ps:%d\n"),
3313 styled_string (file_name_style.style (),
3314 symtab_to_filename_for_display (sal.symtab)),
3315 sal.line);
3316 continue;
3317 }
3318 else
3319 {
3320 int is_enumeral =
3321 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3322 && SYMBOL_TYPE (syms[i].symbol) != NULL
3323 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3324 struct symtab *symtab = NULL;
3325
3326 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3327 symtab = symbol_symtab (syms[i].symbol);
3328
3329 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3330 {
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 printf_filtered (_(" at %s:%d\n"),
3335 symtab_to_filename_for_display (symtab),
3336 SYMBOL_LINE (syms[i].symbol));
3337 }
3338 else if (is_enumeral
3339 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3340 {
3341 printf_filtered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3343 gdb_stdout, -1, 0, &type_print_raw_options);
3344 printf_filtered (_("'(%s) (enumeral)\n"),
3345 syms[i].symbol->print_name ());
3346 }
3347 else
3348 {
3349 printf_filtered ("[%d] ", i + first_choice);
3350 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3351 &type_print_raw_options);
3352
3353 if (symtab != NULL)
3354 printf_filtered (is_enumeral
3355 ? _(" in %s (enumeral)\n")
3356 : _(" at %s:?\n"),
3357 symtab_to_filename_for_display (symtab));
3358 else
3359 printf_filtered (is_enumeral
3360 ? _(" (enumeral)\n")
3361 : _(" at ?\n"));
3362 }
3363 }
3364 }
3365
3366 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3367 "overload-choice");
3368
3369 for (i = 0; i < n_chosen; i += 1)
3370 syms[i] = syms[chosen[i]];
3371
3372 return n_chosen;
3373 }
3374
3375 /* See ada-lang.h. */
3376
3377 block_symbol
3378 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3379 int nargs, value *argvec[])
3380 {
3381 if (possible_user_operator_p (op, argvec))
3382 {
3383 std::vector<struct block_symbol> candidates
3384 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3385 NULL, VAR_DOMAIN);
3386
3387 int i = ada_resolve_function (candidates, argvec,
3388 nargs, ada_decoded_op_name (op), NULL,
3389 parse_completion);
3390 if (i >= 0)
3391 return candidates[i];
3392 }
3393 return {};
3394 }
3395
3396 /* See ada-lang.h. */
3397
3398 block_symbol
3399 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3400 struct type *context_type,
3401 bool parse_completion,
3402 int nargs, value *argvec[],
3403 innermost_block_tracker *tracker)
3404 {
3405 std::vector<struct block_symbol> candidates
3406 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3407
3408 int i;
3409 if (candidates.size () == 1)
3410 i = 0;
3411 else
3412 {
3413 i = ada_resolve_function
3414 (candidates,
3415 argvec, nargs,
3416 sym->linkage_name (),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"), sym->print_name ());
3420 }
3421
3422 tracker->update (candidates[i]);
3423 return candidates[i];
3424 }
3425
3426 /* See ada-lang.h. */
3427
3428 block_symbol
3429 ada_resolve_variable (struct symbol *sym, const struct block *block,
3430 struct type *context_type,
3431 bool parse_completion,
3432 int deprocedure_p,
3433 innermost_block_tracker *tracker)
3434 {
3435 std::vector<struct block_symbol> candidates
3436 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3437
3438 if (std::any_of (candidates.begin (),
3439 candidates.end (),
3440 [] (block_symbol &bsym)
3441 {
3442 switch (SYMBOL_CLASS (bsym.symbol))
3443 {
3444 case LOC_REGISTER:
3445 case LOC_ARG:
3446 case LOC_REF_ARG:
3447 case LOC_REGPARM_ADDR:
3448 case LOC_LOCAL:
3449 case LOC_COMPUTED:
3450 return true;
3451 default:
3452 return false;
3453 }
3454 }))
3455 {
3456 /* Types tend to get re-introduced locally, so if there
3457 are any local symbols that are not types, first filter
3458 out all types. */
3459 candidates.erase
3460 (std::remove_if
3461 (candidates.begin (),
3462 candidates.end (),
3463 [] (block_symbol &bsym)
3464 {
3465 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3466 }),
3467 candidates.end ());
3468 }
3469
3470 int i;
3471 if (candidates.empty ())
3472 error (_("No definition found for %s"), sym->print_name ());
3473 else if (candidates.size () == 1)
3474 i = 0;
3475 else if (deprocedure_p && !is_nonfunction (candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates, NULL, 0,
3479 sym->linkage_name (),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"), sym->print_name ());
3483 }
3484 else
3485 {
3486 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3487 user_select_syms (candidates.data (), candidates.size (), 1);
3488 i = 0;
3489 }
3490
3491 tracker->update (candidates[i]);
3492 return candidates[i];
3493 }
3494
3495 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3496 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3497 a non-pointer. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3500
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3503 {
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3506
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3511
3512 switch (ftype->code ())
3513 {
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () == TYPE_CODE_PTR)
3518 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3519 TYPE_TARGET_TYPE (atype), 0);
3520 else
3521 return (may_deref
3522 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
3526 switch (atype->code ())
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535
3536 case TYPE_CODE_ARRAY:
3537 return (atype->code () == TYPE_CODE_ARRAY
3538 || ada_is_array_descriptor_type (atype));
3539
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
3544 else
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
3547
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
3550 return (atype->code () == ftype->code ());
3551 }
3552 }
3553
3554 /* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
3558
3559 static int
3560 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3561 {
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
3564
3565 if (SYMBOL_CLASS (func) == LOC_CONST
3566 && func_type->code () == TYPE_CODE_ENUM)
3567 return (n_actuals == 0);
3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3569 return 0;
3570
3571 if (func_type->num_fields () != n_actuals)
3572 return 0;
3573
3574 for (i = 0; i < n_actuals; i += 1)
3575 {
3576 if (actuals[i] == NULL)
3577 return 0;
3578 else
3579 {
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3582
3583 if (!ada_type_match (ftype, atype, 1))
3584 return 0;
3585 }
3586 }
3587 return 1;
3588 }
3589
3590 /* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3594
3595 static int
3596 return_match (struct type *func_type, struct type *context_type)
3597 {
3598 struct type *return_type;
3599
3600 if (func_type == NULL)
3601 return 1;
3602
3603 if (func_type->code () == TYPE_CODE_FUNC)
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
3609
3610 context_type = get_base_type (context_type);
3611
3612 if (return_type->code () == TYPE_CODE_ENUM)
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
3615 return return_type->code () != TYPE_CODE_VOID;
3616 else
3617 return return_type->code () == context_type->code ();
3618 }
3619
3620
3621 /* Returns the index in SYMS that contains the symbol for the
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
3627
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
3632
3633 static int
3634 ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
3636 const char *name, struct type *context_type,
3637 bool parse_completion)
3638 {
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
3642
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3648 {
3649 for (k = 0; k < syms.size (); k += 1)
3650 {
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3652
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3655 {
3656 syms[m] = syms[k];
3657 m += 1;
3658 }
3659 }
3660 }
3661
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3669 {
3670 printf_filtered (_("Multiple matches for %s\n"), name);
3671 user_select_syms (syms.data (), m, 1);
3672 return 0;
3673 }
3674 return 0;
3675 }
3676
3677 /* Type-class predicates */
3678
3679 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
3681
3682 static int
3683 numeric_type_p (struct type *type)
3684 {
3685 if (type == NULL)
3686 return 0;
3687 else
3688 {
3689 switch (type->code ())
3690 {
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 case TYPE_CODE_FIXED_POINT:
3694 return 1;
3695 case TYPE_CODE_RANGE:
3696 return (type == TYPE_TARGET_TYPE (type)
3697 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3698 default:
3699 return 0;
3700 }
3701 }
3702 }
3703
3704 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3705
3706 static int
3707 integer_type_p (struct type *type)
3708 {
3709 if (type == NULL)
3710 return 0;
3711 else
3712 {
3713 switch (type->code ())
3714 {
3715 case TYPE_CODE_INT:
3716 return 1;
3717 case TYPE_CODE_RANGE:
3718 return (type == TYPE_TARGET_TYPE (type)
3719 || integer_type_p (TYPE_TARGET_TYPE (type)));
3720 default:
3721 return 0;
3722 }
3723 }
3724 }
3725
3726 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3727
3728 static int
3729 scalar_type_p (struct type *type)
3730 {
3731 if (type == NULL)
3732 return 0;
3733 else
3734 {
3735 switch (type->code ())
3736 {
3737 case TYPE_CODE_INT:
3738 case TYPE_CODE_RANGE:
3739 case TYPE_CODE_ENUM:
3740 case TYPE_CODE_FLT:
3741 case TYPE_CODE_FIXED_POINT:
3742 return 1;
3743 default:
3744 return 0;
3745 }
3746 }
3747 }
3748
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3750
3751 static int
3752 discrete_type_p (struct type *type)
3753 {
3754 if (type == NULL)
3755 return 0;
3756 else
3757 {
3758 switch (type->code ())
3759 {
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3764 return 1;
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3774
3775 static int
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3777 {
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3782
3783 if (type0 == NULL)
3784 return 0;
3785
3786 switch (op)
3787 {
3788 default:
3789 return 0;
3790
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3796
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3803
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3811
3812 case BINOP_CONCAT:
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3814
3815 case BINOP_EXP:
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3817
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
3823
3824 }
3825 }
3826 \f
3827 /* Renaming */
3828
3829 /* NOTES:
3830
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3840
3841 /* If SYM encodes a renaming,
3842
3843 <renaming> renames <renamed entity>,
3844
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3857
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3859
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3864 {
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3872 {
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_LOCAL:
3876 case LOC_STATIC:
3877 case LOC_COMPUTED:
3878 case LOC_OPTIMIZED_OUT:
3879 info = strstr (sym->linkage_name (), "___XR");
3880 if (info == NULL)
3881 return ADA_NOT_RENAMING;
3882 switch (info[5])
3883 {
3884 case '_':
3885 kind = ADA_OBJECT_RENAMING;
3886 info += 6;
3887 break;
3888 case 'E':
3889 kind = ADA_EXCEPTION_RENAMING;
3890 info += 7;
3891 break;
3892 case 'P':
3893 kind = ADA_PACKAGE_RENAMING;
3894 info += 7;
3895 break;
3896 case 'S':
3897 kind = ADA_SUBPROGRAM_RENAMING;
3898 info += 7;
3899 break;
3900 default:
3901 return ADA_NOT_RENAMING;
3902 }
3903 }
3904
3905 if (renamed_entity != NULL)
3906 *renamed_entity = info;
3907 suffix = strstr (info, "___XE");
3908 if (suffix == NULL || suffix == info)
3909 return ADA_NOT_RENAMING;
3910 if (len != NULL)
3911 *len = strlen (info) - strlen (suffix);
3912 suffix += 5;
3913 if (renaming_expr != NULL)
3914 *renaming_expr = suffix;
3915 return kind;
3916 }
3917
3918 /* Compute the value of the given RENAMING_SYM, which is expected to
3919 be a symbol encoding a renaming expression. BLOCK is the block
3920 used to evaluate the renaming. */
3921
3922 static struct value *
3923 ada_read_renaming_var_value (struct symbol *renaming_sym,
3924 const struct block *block)
3925 {
3926 const char *sym_name;
3927
3928 sym_name = renaming_sym->linkage_name ();
3929 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3930 return evaluate_expression (expr.get ());
3931 }
3932 \f
3933
3934 /* Evaluation: Function Calls */
3935
3936 /* Return an lvalue containing the value VAL. This is the identity on
3937 lvalues, and otherwise has the side-effect of allocating memory
3938 in the inferior where a copy of the value contents is copied. */
3939
3940 static struct value *
3941 ensure_lval (struct value *val)
3942 {
3943 if (VALUE_LVAL (val) == not_lval
3944 || VALUE_LVAL (val) == lval_internalvar)
3945 {
3946 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3947 const CORE_ADDR addr =
3948 value_as_long (value_allocate_space_in_inferior (len));
3949
3950 VALUE_LVAL (val) = lval_memory;
3951 set_value_address (val, addr);
3952 write_memory (addr, value_contents (val), len);
3953 }
3954
3955 return val;
3956 }
3957
3958 /* Given ARG, a value of type (pointer or reference to a)*
3959 structure/union, extract the component named NAME from the ultimate
3960 target structure/union and return it as a value with its
3961 appropriate type.
3962
3963 The routine searches for NAME among all members of the structure itself
3964 and (recursively) among all members of any wrapper members
3965 (e.g., '_parent').
3966
3967 If NO_ERR, then simply return NULL in case of error, rather than
3968 calling error. */
3969
3970 static struct value *
3971 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3972 {
3973 struct type *t, *t1;
3974 struct value *v;
3975 int check_tag;
3976
3977 v = NULL;
3978 t1 = t = ada_check_typedef (value_type (arg));
3979 if (t->code () == TYPE_CODE_REF)
3980 {
3981 t1 = TYPE_TARGET_TYPE (t);
3982 if (t1 == NULL)
3983 goto BadValue;
3984 t1 = ada_check_typedef (t1);
3985 if (t1->code () == TYPE_CODE_PTR)
3986 {
3987 arg = coerce_ref (arg);
3988 t = t1;
3989 }
3990 }
3991
3992 while (t->code () == TYPE_CODE_PTR)
3993 {
3994 t1 = TYPE_TARGET_TYPE (t);
3995 if (t1 == NULL)
3996 goto BadValue;
3997 t1 = ada_check_typedef (t1);
3998 if (t1->code () == TYPE_CODE_PTR)
3999 {
4000 arg = value_ind (arg);
4001 t = t1;
4002 }
4003 else
4004 break;
4005 }
4006
4007 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4008 goto BadValue;
4009
4010 if (t1 == t)
4011 v = ada_search_struct_field (name, arg, 0, t);
4012 else
4013 {
4014 int bit_offset, bit_size, byte_offset;
4015 struct type *field_type;
4016 CORE_ADDR address;
4017
4018 if (t->code () == TYPE_CODE_PTR)
4019 address = value_address (ada_value_ind (arg));
4020 else
4021 address = value_address (ada_coerce_ref (arg));
4022
4023 /* Check to see if this is a tagged type. We also need to handle
4024 the case where the type is a reference to a tagged type, but
4025 we have to be careful to exclude pointers to tagged types.
4026 The latter should be shown as usual (as a pointer), whereas
4027 a reference should mostly be transparent to the user. */
4028
4029 if (ada_is_tagged_type (t1, 0)
4030 || (t1->code () == TYPE_CODE_REF
4031 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4032 {
4033 /* We first try to find the searched field in the current type.
4034 If not found then let's look in the fixed type. */
4035
4036 if (!find_struct_field (name, t1, 0,
4037 &field_type, &byte_offset, &bit_offset,
4038 &bit_size, NULL))
4039 check_tag = 1;
4040 else
4041 check_tag = 0;
4042 }
4043 else
4044 check_tag = 0;
4045
4046 /* Convert to fixed type in all cases, so that we have proper
4047 offsets to each field in unconstrained record types. */
4048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4049 address, NULL, check_tag);
4050
4051 /* Resolve the dynamic type as well. */
4052 arg = value_from_contents_and_address (t1, nullptr, address);
4053 t1 = value_type (arg);
4054
4055 if (find_struct_field (name, t1, 0,
4056 &field_type, &byte_offset, &bit_offset,
4057 &bit_size, NULL))
4058 {
4059 if (bit_size != 0)
4060 {
4061 if (t->code () == TYPE_CODE_REF)
4062 arg = ada_coerce_ref (arg);
4063 else
4064 arg = ada_value_ind (arg);
4065 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4066 bit_offset, bit_size,
4067 field_type);
4068 }
4069 else
4070 v = value_at_lazy (field_type, address + byte_offset);
4071 }
4072 }
4073
4074 if (v != NULL || no_err)
4075 return v;
4076 else
4077 error (_("There is no member named %s."), name);
4078
4079 BadValue:
4080 if (no_err)
4081 return NULL;
4082 else
4083 error (_("Attempt to extract a component of "
4084 "a value that is not a record."));
4085 }
4086
4087 /* Return the value ACTUAL, converted to be an appropriate value for a
4088 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4089 allocating any necessary descriptors (fat pointers), or copies of
4090 values not residing in memory, updating it as needed. */
4091
4092 struct value *
4093 ada_convert_actual (struct value *actual, struct type *formal_type0)
4094 {
4095 struct type *actual_type = ada_check_typedef (value_type (actual));
4096 struct type *formal_type = ada_check_typedef (formal_type0);
4097 struct type *formal_target =
4098 formal_type->code () == TYPE_CODE_PTR
4099 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4100 struct type *actual_target =
4101 actual_type->code () == TYPE_CODE_PTR
4102 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4103
4104 if (ada_is_array_descriptor_type (formal_target)
4105 && actual_target->code () == TYPE_CODE_ARRAY)
4106 return make_array_descriptor (formal_type, actual);
4107 else if (formal_type->code () == TYPE_CODE_PTR
4108 || formal_type->code () == TYPE_CODE_REF)
4109 {
4110 struct value *result;
4111
4112 if (formal_target->code () == TYPE_CODE_ARRAY
4113 && ada_is_array_descriptor_type (actual_target))
4114 result = desc_data (actual);
4115 else if (formal_type->code () != TYPE_CODE_PTR)
4116 {
4117 if (VALUE_LVAL (actual) != lval_memory)
4118 {
4119 struct value *val;
4120
4121 actual_type = ada_check_typedef (value_type (actual));
4122 val = allocate_value (actual_type);
4123 memcpy ((char *) value_contents_raw (val),
4124 (char *) value_contents (actual),
4125 TYPE_LENGTH (actual_type));
4126 actual = ensure_lval (val);
4127 }
4128 result = value_addr (actual);
4129 }
4130 else
4131 return actual;
4132 return value_cast_pointers (formal_type, result, 0);
4133 }
4134 else if (actual_type->code () == TYPE_CODE_PTR)
4135 return ada_value_ind (actual);
4136 else if (ada_is_aligner_type (formal_type))
4137 {
4138 /* We need to turn this parameter into an aligner type
4139 as well. */
4140 struct value *aligner = allocate_value (formal_type);
4141 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4142
4143 value_assign_to_component (aligner, component, actual);
4144 return aligner;
4145 }
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = (gdb_byte *) alloca (len);
4160 CORE_ADDR addr;
4161
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4165 return addr;
4166 }
4167
4168
4169 /* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
4174
4175 static struct value *
4176 make_array_descriptor (struct type *type, struct value *arr)
4177 {
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
4182 int i;
4183
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
4186 {
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
4195 }
4196
4197 bounds = ensure_lval (bounds);
4198
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 desc_type->field (0).type ()),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4205
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 desc_type->field (1).type ()),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
4212
4213 descriptor = ensure_lval (descriptor);
4214
4215 if (type->code () == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4219 }
4220 \f
4221 /* Symbol Cache Module */
4222
4223 /* Performance measurements made as of 2010-01-15 indicate that
4224 this cache does bring some noticeable improvements. Depending
4225 on the type of entity being printed, the cache can make it as much
4226 as an order of magnitude faster than without it.
4227
4228 The descriptive type DWARF extension has significantly reduced
4229 the need for this cache, at least when DWARF is being used. However,
4230 even in this case, some expensive name-based symbol searches are still
4231 sometimes necessary - to find an XVZ variable, mostly. */
4232
4233 /* Return the symbol cache associated to the given program space PSPACE.
4234 If not allocated for this PSPACE yet, allocate and initialize one. */
4235
4236 static struct ada_symbol_cache *
4237 ada_get_symbol_cache (struct program_space *pspace)
4238 {
4239 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4240
4241 if (pspace_data->sym_cache == nullptr)
4242 pspace_data->sym_cache.reset (new ada_symbol_cache);
4243
4244 return pspace_data->sym_cache.get ();
4245 }
4246
4247 /* Clear all entries from the symbol cache. */
4248
4249 static void
4250 ada_clear_symbol_cache ()
4251 {
4252 struct ada_pspace_data *pspace_data
4253 = get_ada_pspace_data (current_program_space);
4254
4255 if (pspace_data->sym_cache != nullptr)
4256 pspace_data->sym_cache.reset ();
4257 }
4258
4259 /* Search our cache for an entry matching NAME and DOMAIN.
4260 Return it if found, or NULL otherwise. */
4261
4262 static struct cache_entry **
4263 find_entry (const char *name, domain_enum domain)
4264 {
4265 struct ada_symbol_cache *sym_cache
4266 = ada_get_symbol_cache (current_program_space);
4267 int h = msymbol_hash (name) % HASH_SIZE;
4268 struct cache_entry **e;
4269
4270 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4271 {
4272 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4273 return e;
4274 }
4275 return NULL;
4276 }
4277
4278 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4279 Return 1 if found, 0 otherwise.
4280
4281 If an entry was found and SYM is not NULL, set *SYM to the entry's
4282 SYM. Same principle for BLOCK if not NULL. */
4283
4284 static int
4285 lookup_cached_symbol (const char *name, domain_enum domain,
4286 struct symbol **sym, const struct block **block)
4287 {
4288 struct cache_entry **e = find_entry (name, domain);
4289
4290 if (e == NULL)
4291 return 0;
4292 if (sym != NULL)
4293 *sym = (*e)->sym;
4294 if (block != NULL)
4295 *block = (*e)->block;
4296 return 1;
4297 }
4298
4299 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4300 in domain DOMAIN, save this result in our symbol cache. */
4301
4302 static void
4303 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4304 const struct block *block)
4305 {
4306 struct ada_symbol_cache *sym_cache
4307 = ada_get_symbol_cache (current_program_space);
4308 int h;
4309 struct cache_entry *e;
4310
4311 /* Symbols for builtin types don't have a block.
4312 For now don't cache such symbols. */
4313 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4314 return;
4315
4316 /* If the symbol is a local symbol, then do not cache it, as a search
4317 for that symbol depends on the context. To determine whether
4318 the symbol is local or not, we check the block where we found it
4319 against the global and static blocks of its associated symtab. */
4320 if (sym
4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4322 GLOBAL_BLOCK) != block
4323 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4324 STATIC_BLOCK) != block)
4325 return;
4326
4327 h = msymbol_hash (name) % HASH_SIZE;
4328 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4329 e->next = sym_cache->root[h];
4330 sym_cache->root[h] = e;
4331 e->name = obstack_strdup (&sym_cache->cache_space, name);
4332 e->sym = sym;
4333 e->domain = domain;
4334 e->block = block;
4335 }
4336 \f
4337 /* Symbol Lookup */
4338
4339 /* Return the symbol name match type that should be used used when
4340 searching for all symbols matching LOOKUP_NAME.
4341
4342 LOOKUP_NAME is expected to be a symbol name after transformation
4343 for Ada lookups. */
4344
4345 static symbol_name_match_type
4346 name_match_type_from_name (const char *lookup_name)
4347 {
4348 return (strstr (lookup_name, "__") == NULL
4349 ? symbol_name_match_type::WILD
4350 : symbol_name_match_type::FULL);
4351 }
4352
4353 /* Return the result of a standard (literal, C-like) lookup of NAME in
4354 given DOMAIN, visible from lexical block BLOCK. */
4355
4356 static struct symbol *
4357 standard_lookup (const char *name, const struct block *block,
4358 domain_enum domain)
4359 {
4360 /* Initialize it just to avoid a GCC false warning. */
4361 struct block_symbol sym = {};
4362
4363 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4364 return sym.symbol;
4365 ada_lookup_encoded_symbol (name, block, domain, &sym);
4366 cache_symbol (name, domain, sym.symbol, sym.block);
4367 return sym.symbol;
4368 }
4369
4370
4371 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4372 in the symbol fields of SYMS. We treat enumerals as functions,
4373 since they contend in overloading in the same way. */
4374 static int
4375 is_nonfunction (const std::vector<struct block_symbol> &syms)
4376 {
4377 for (const block_symbol &sym : syms)
4378 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4379 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4380 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4381 return 1;
4382
4383 return 0;
4384 }
4385
4386 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4387 struct types. Otherwise, they may not. */
4388
4389 static int
4390 equiv_types (struct type *type0, struct type *type1)
4391 {
4392 if (type0 == type1)
4393 return 1;
4394 if (type0 == NULL || type1 == NULL
4395 || type0->code () != type1->code ())
4396 return 0;
4397 if ((type0->code () == TYPE_CODE_STRUCT
4398 || type0->code () == TYPE_CODE_ENUM)
4399 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4400 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4401 return 1;
4402
4403 return 0;
4404 }
4405
4406 /* True iff SYM0 represents the same entity as SYM1, or one that is
4407 no more defined than that of SYM1. */
4408
4409 static int
4410 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4411 {
4412 if (sym0 == sym1)
4413 return 1;
4414 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4415 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4416 return 0;
4417
4418 switch (SYMBOL_CLASS (sym0))
4419 {
4420 case LOC_UNDEF:
4421 return 1;
4422 case LOC_TYPEDEF:
4423 {
4424 struct type *type0 = SYMBOL_TYPE (sym0);
4425 struct type *type1 = SYMBOL_TYPE (sym1);
4426 const char *name0 = sym0->linkage_name ();
4427 const char *name1 = sym1->linkage_name ();
4428 int len0 = strlen (name0);
4429
4430 return
4431 type0->code () == type1->code ()
4432 && (equiv_types (type0, type1)
4433 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4434 && startswith (name1 + len0, "___XV")));
4435 }
4436 case LOC_CONST:
4437 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4438 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4439
4440 case LOC_STATIC:
4441 {
4442 const char *name0 = sym0->linkage_name ();
4443 const char *name1 = sym1->linkage_name ();
4444 return (strcmp (name0, name1) == 0
4445 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4446 }
4447
4448 default:
4449 return 0;
4450 }
4451 }
4452
4453 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4454 records in RESULT. Do nothing if SYM is a duplicate. */
4455
4456 static void
4457 add_defn_to_vec (std::vector<struct block_symbol> &result,
4458 struct symbol *sym,
4459 const struct block *block)
4460 {
4461 /* Do not try to complete stub types, as the debugger is probably
4462 already scanning all symbols matching a certain name at the
4463 time when this function is called. Trying to replace the stub
4464 type by its associated full type will cause us to restart a scan
4465 which may lead to an infinite recursion. Instead, the client
4466 collecting the matching symbols will end up collecting several
4467 matches, with at least one of them complete. It can then filter
4468 out the stub ones if needed. */
4469
4470 for (int i = result.size () - 1; i >= 0; i -= 1)
4471 {
4472 if (lesseq_defined_than (sym, result[i].symbol))
4473 return;
4474 else if (lesseq_defined_than (result[i].symbol, sym))
4475 {
4476 result[i].symbol = sym;
4477 result[i].block = block;
4478 return;
4479 }
4480 }
4481
4482 struct block_symbol info;
4483 info.symbol = sym;
4484 info.block = block;
4485 result.push_back (info);
4486 }
4487
4488 /* Return a bound minimal symbol matching NAME according to Ada
4489 decoding rules. Returns an invalid symbol if there is no such
4490 minimal symbol. Names prefixed with "standard__" are handled
4491 specially: "standard__" is first stripped off, and only static and
4492 global symbols are searched. */
4493
4494 struct bound_minimal_symbol
4495 ada_lookup_simple_minsym (const char *name)
4496 {
4497 struct bound_minimal_symbol result;
4498
4499 memset (&result, 0, sizeof (result));
4500
4501 symbol_name_match_type match_type = name_match_type_from_name (name);
4502 lookup_name_info lookup_name (name, match_type);
4503
4504 symbol_name_matcher_ftype *match_name
4505 = ada_get_symbol_name_matcher (lookup_name);
4506
4507 for (objfile *objfile : current_program_space->objfiles ())
4508 {
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4510 {
4511 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4512 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4513 {
4514 result.minsym = msymbol;
4515 result.objfile = objfile;
4516 break;
4517 }
4518 }
4519 }
4520
4521 return result;
4522 }
4523
4524 /* For all subprograms that statically enclose the subprogram of the
4525 selected frame, add symbols matching identifier NAME in DOMAIN
4526 and their blocks to the list of data in RESULT, as for
4527 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4528 with a wildcard prefix. */
4529
4530 static void
4531 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4532 const lookup_name_info &lookup_name,
4533 domain_enum domain)
4534 {
4535 }
4536
4537 /* True if TYPE is definitely an artificial type supplied to a symbol
4538 for which no debugging information was given in the symbol file. */
4539
4540 static int
4541 is_nondebugging_type (struct type *type)
4542 {
4543 const char *name = ada_type_name (type);
4544
4545 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4546 }
4547
4548 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4549 that are deemed "identical" for practical purposes.
4550
4551 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4552 types and that their number of enumerals is identical (in other
4553 words, type1->num_fields () == type2->num_fields ()). */
4554
4555 static int
4556 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4557 {
4558 int i;
4559
4560 /* The heuristic we use here is fairly conservative. We consider
4561 that 2 enumerate types are identical if they have the same
4562 number of enumerals and that all enumerals have the same
4563 underlying value and name. */
4564
4565 /* All enums in the type should have an identical underlying value. */
4566 for (i = 0; i < type1->num_fields (); i++)
4567 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4568 return 0;
4569
4570 /* All enumerals should also have the same name (modulo any numerical
4571 suffix). */
4572 for (i = 0; i < type1->num_fields (); i++)
4573 {
4574 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4575 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4576 int len_1 = strlen (name_1);
4577 int len_2 = strlen (name_2);
4578
4579 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4581 if (len_1 != len_2
4582 || strncmp (TYPE_FIELD_NAME (type1, i),
4583 TYPE_FIELD_NAME (type2, i),
4584 len_1) != 0)
4585 return 0;
4586 }
4587
4588 return 1;
4589 }
4590
4591 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4592 that are deemed "identical" for practical purposes. Sometimes,
4593 enumerals are not strictly identical, but their types are so similar
4594 that they can be considered identical.
4595
4596 For instance, consider the following code:
4597
4598 type Color is (Black, Red, Green, Blue, White);
4599 type RGB_Color is new Color range Red .. Blue;
4600
4601 Type RGB_Color is a subrange of an implicit type which is a copy
4602 of type Color. If we call that implicit type RGB_ColorB ("B" is
4603 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4604 As a result, when an expression references any of the enumeral
4605 by name (Eg. "print green"), the expression is technically
4606 ambiguous and the user should be asked to disambiguate. But
4607 doing so would only hinder the user, since it wouldn't matter
4608 what choice he makes, the outcome would always be the same.
4609 So, for practical purposes, we consider them as the same. */
4610
4611 static int
4612 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4613 {
4614 int i;
4615
4616 /* Before performing a thorough comparison check of each type,
4617 we perform a series of inexpensive checks. We expect that these
4618 checks will quickly fail in the vast majority of cases, and thus
4619 help prevent the unnecessary use of a more expensive comparison.
4620 Said comparison also expects us to make some of these checks
4621 (see ada_identical_enum_types_p). */
4622
4623 /* Quick check: All symbols should have an enum type. */
4624 for (i = 0; i < syms.size (); i++)
4625 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4626 return 0;
4627
4628 /* Quick check: They should all have the same value. */
4629 for (i = 1; i < syms.size (); i++)
4630 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4631 return 0;
4632
4633 /* Quick check: They should all have the same number of enumerals. */
4634 for (i = 1; i < syms.size (); i++)
4635 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4636 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4637 return 0;
4638
4639 /* All the sanity checks passed, so we might have a set of
4640 identical enumeration types. Perform a more complete
4641 comparison of the type of each symbol. */
4642 for (i = 1; i < syms.size (); i++)
4643 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4644 SYMBOL_TYPE (syms[0].symbol)))
4645 return 0;
4646
4647 return 1;
4648 }
4649
4650 /* Remove any non-debugging symbols in SYMS that definitely
4651 duplicate other symbols in the list (The only case I know of where
4652 this happens is when object files containing stabs-in-ecoff are
4653 linked with files containing ordinary ecoff debugging symbols (or no
4654 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4655
4656 static void
4657 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4658 {
4659 int i, j;
4660
4661 /* We should never be called with less than 2 symbols, as there
4662 cannot be any extra symbol in that case. But it's easy to
4663 handle, since we have nothing to do in that case. */
4664 if (syms->size () < 2)
4665 return;
4666
4667 i = 0;
4668 while (i < syms->size ())
4669 {
4670 int remove_p = 0;
4671
4672 /* If two symbols have the same name and one of them is a stub type,
4673 the get rid of the stub. */
4674
4675 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4676 && (*syms)[i].symbol->linkage_name () != NULL)
4677 {
4678 for (j = 0; j < syms->size (); j++)
4679 {
4680 if (j != i
4681 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4682 && (*syms)[j].symbol->linkage_name () != NULL
4683 && strcmp ((*syms)[i].symbol->linkage_name (),
4684 (*syms)[j].symbol->linkage_name ()) == 0)
4685 remove_p = 1;
4686 }
4687 }
4688
4689 /* Two symbols with the same name, same class and same address
4690 should be identical. */
4691
4692 else if ((*syms)[i].symbol->linkage_name () != NULL
4693 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4694 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4695 {
4696 for (j = 0; j < syms->size (); j += 1)
4697 {
4698 if (i != j
4699 && (*syms)[j].symbol->linkage_name () != NULL
4700 && strcmp ((*syms)[i].symbol->linkage_name (),
4701 (*syms)[j].symbol->linkage_name ()) == 0
4702 && SYMBOL_CLASS ((*syms)[i].symbol)
4703 == SYMBOL_CLASS ((*syms)[j].symbol)
4704 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4705 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4706 remove_p = 1;
4707 }
4708 }
4709
4710 if (remove_p)
4711 syms->erase (syms->begin () + i);
4712 else
4713 i += 1;
4714 }
4715
4716 /* If all the remaining symbols are identical enumerals, then
4717 just keep the first one and discard the rest.
4718
4719 Unlike what we did previously, we do not discard any entry
4720 unless they are ALL identical. This is because the symbol
4721 comparison is not a strict comparison, but rather a practical
4722 comparison. If all symbols are considered identical, then
4723 we can just go ahead and use the first one and discard the rest.
4724 But if we cannot reduce the list to a single element, we have
4725 to ask the user to disambiguate anyways. And if we have to
4726 present a multiple-choice menu, it's less confusing if the list
4727 isn't missing some choices that were identical and yet distinct. */
4728 if (symbols_are_identical_enums (*syms))
4729 syms->resize (1);
4730 }
4731
4732 /* Given a type that corresponds to a renaming entity, use the type name
4733 to extract the scope (package name or function name, fully qualified,
4734 and following the GNAT encoding convention) where this renaming has been
4735 defined. */
4736
4737 static std::string
4738 xget_renaming_scope (struct type *renaming_type)
4739 {
4740 /* The renaming types adhere to the following convention:
4741 <scope>__<rename>___<XR extension>.
4742 So, to extract the scope, we search for the "___XR" extension,
4743 and then backtrack until we find the first "__". */
4744
4745 const char *name = renaming_type->name ();
4746 const char *suffix = strstr (name, "___XR");
4747 const char *last;
4748
4749 /* Now, backtrack a bit until we find the first "__". Start looking
4750 at suffix - 3, as the <rename> part is at least one character long. */
4751
4752 for (last = suffix - 3; last > name; last--)
4753 if (last[0] == '_' && last[1] == '_')
4754 break;
4755
4756 /* Make a copy of scope and return it. */
4757 return std::string (name, last);
4758 }
4759
4760 /* Return nonzero if NAME corresponds to a package name. */
4761
4762 static int
4763 is_package_name (const char *name)
4764 {
4765 /* Here, We take advantage of the fact that no symbols are generated
4766 for packages, while symbols are generated for each function.
4767 So the condition for NAME represent a package becomes equivalent
4768 to NAME not existing in our list of symbols. There is only one
4769 small complication with library-level functions (see below). */
4770
4771 /* If it is a function that has not been defined at library level,
4772 then we should be able to look it up in the symbols. */
4773 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4774 return 0;
4775
4776 /* Library-level function names start with "_ada_". See if function
4777 "_ada_" followed by NAME can be found. */
4778
4779 /* Do a quick check that NAME does not contain "__", since library-level
4780 functions names cannot contain "__" in them. */
4781 if (strstr (name, "__") != NULL)
4782 return 0;
4783
4784 std::string fun_name = string_printf ("_ada_%s", name);
4785
4786 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4787 }
4788
4789 /* Return nonzero if SYM corresponds to a renaming entity that is
4790 not visible from FUNCTION_NAME. */
4791
4792 static int
4793 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4794 {
4795 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4796 return 0;
4797
4798 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4799
4800 /* If the rename has been defined in a package, then it is visible. */
4801 if (is_package_name (scope.c_str ()))
4802 return 0;
4803
4804 /* Check that the rename is in the current function scope by checking
4805 that its name starts with SCOPE. */
4806
4807 /* If the function name starts with "_ada_", it means that it is
4808 a library-level function. Strip this prefix before doing the
4809 comparison, as the encoding for the renaming does not contain
4810 this prefix. */
4811 if (startswith (function_name, "_ada_"))
4812 function_name += 5;
4813
4814 return !startswith (function_name, scope.c_str ());
4815 }
4816
4817 /* Remove entries from SYMS that corresponds to a renaming entity that
4818 is not visible from the function associated with CURRENT_BLOCK or
4819 that is superfluous due to the presence of more specific renaming
4820 information. Places surviving symbols in the initial entries of
4821 SYMS.
4822
4823 Rationale:
4824 First, in cases where an object renaming is implemented as a
4825 reference variable, GNAT may produce both the actual reference
4826 variable and the renaming encoding. In this case, we discard the
4827 latter.
4828
4829 Second, GNAT emits a type following a specified encoding for each renaming
4830 entity. Unfortunately, STABS currently does not support the definition
4831 of types that are local to a given lexical block, so all renamings types
4832 are emitted at library level. As a consequence, if an application
4833 contains two renaming entities using the same name, and a user tries to
4834 print the value of one of these entities, the result of the ada symbol
4835 lookup will also contain the wrong renaming type.
4836
4837 This function partially covers for this limitation by attempting to
4838 remove from the SYMS list renaming symbols that should be visible
4839 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4840 method with the current information available. The implementation
4841 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4842
4843 - When the user tries to print a rename in a function while there
4844 is another rename entity defined in a package: Normally, the
4845 rename in the function has precedence over the rename in the
4846 package, so the latter should be removed from the list. This is
4847 currently not the case.
4848
4849 - This function will incorrectly remove valid renames if
4850 the CURRENT_BLOCK corresponds to a function which symbol name
4851 has been changed by an "Export" pragma. As a consequence,
4852 the user will be unable to print such rename entities. */
4853
4854 static void
4855 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4856 const struct block *current_block)
4857 {
4858 struct symbol *current_function;
4859 const char *current_function_name;
4860 int i;
4861 int is_new_style_renaming;
4862
4863 /* If there is both a renaming foo___XR... encoded as a variable and
4864 a simple variable foo in the same block, discard the latter.
4865 First, zero out such symbols, then compress. */
4866 is_new_style_renaming = 0;
4867 for (i = 0; i < syms->size (); i += 1)
4868 {
4869 struct symbol *sym = (*syms)[i].symbol;
4870 const struct block *block = (*syms)[i].block;
4871 const char *name;
4872 const char *suffix;
4873
4874 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4875 continue;
4876 name = sym->linkage_name ();
4877 suffix = strstr (name, "___XR");
4878
4879 if (suffix != NULL)
4880 {
4881 int name_len = suffix - name;
4882 int j;
4883
4884 is_new_style_renaming = 1;
4885 for (j = 0; j < syms->size (); j += 1)
4886 if (i != j && (*syms)[j].symbol != NULL
4887 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4888 name_len) == 0
4889 && block == (*syms)[j].block)
4890 (*syms)[j].symbol = NULL;
4891 }
4892 }
4893 if (is_new_style_renaming)
4894 {
4895 int j, k;
4896
4897 for (j = k = 0; j < syms->size (); j += 1)
4898 if ((*syms)[j].symbol != NULL)
4899 {
4900 (*syms)[k] = (*syms)[j];
4901 k += 1;
4902 }
4903 syms->resize (k);
4904 return;
4905 }
4906
4907 /* Extract the function name associated to CURRENT_BLOCK.
4908 Abort if unable to do so. */
4909
4910 if (current_block == NULL)
4911 return;
4912
4913 current_function = block_linkage_function (current_block);
4914 if (current_function == NULL)
4915 return;
4916
4917 current_function_name = current_function->linkage_name ();
4918 if (current_function_name == NULL)
4919 return;
4920
4921 /* Check each of the symbols, and remove it from the list if it is
4922 a type corresponding to a renaming that is out of the scope of
4923 the current block. */
4924
4925 i = 0;
4926 while (i < syms->size ())
4927 {
4928 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4929 == ADA_OBJECT_RENAMING
4930 && old_renaming_is_invisible ((*syms)[i].symbol,
4931 current_function_name))
4932 syms->erase (syms->begin () + i);
4933 else
4934 i += 1;
4935 }
4936 }
4937
4938 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4939 whose name and domain match NAME and DOMAIN respectively.
4940 If no match was found, then extend the search to "enclosing"
4941 routines (in other words, if we're inside a nested function,
4942 search the symbols defined inside the enclosing functions).
4943 If WILD_MATCH_P is nonzero, perform the naming matching in
4944 "wild" mode (see function "wild_match" for more info).
4945
4946 Note: This function assumes that RESULT has 0 (zero) element in it. */
4947
4948 static void
4949 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4950 const lookup_name_info &lookup_name,
4951 const struct block *block, domain_enum domain)
4952 {
4953 int block_depth = 0;
4954
4955 while (block != NULL)
4956 {
4957 block_depth += 1;
4958 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4959
4960 /* If we found a non-function match, assume that's the one. */
4961 if (is_nonfunction (result))
4962 return;
4963
4964 block = BLOCK_SUPERBLOCK (block);
4965 }
4966
4967 /* If no luck so far, try to find NAME as a local symbol in some lexically
4968 enclosing subprogram. */
4969 if (result.empty () && block_depth > 2)
4970 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4971 }
4972
4973 /* An object of this type is used as the callback argument when
4974 calling the map_matching_symbols method. */
4975
4976 struct match_data
4977 {
4978 explicit match_data (std::vector<struct block_symbol> *rp)
4979 : resultp (rp)
4980 {
4981 }
4982 DISABLE_COPY_AND_ASSIGN (match_data);
4983
4984 bool operator() (struct block_symbol *bsym);
4985
4986 struct objfile *objfile = nullptr;
4987 std::vector<struct block_symbol> *resultp;
4988 struct symbol *arg_sym = nullptr;
4989 bool found_sym = false;
4990 };
4991
4992 /* A callback for add_nonlocal_symbols that adds symbol, found in
4993 BSYM, to a list of symbols. */
4994
4995 bool
4996 match_data::operator() (struct block_symbol *bsym)
4997 {
4998 const struct block *block = bsym->block;
4999 struct symbol *sym = bsym->symbol;
5000
5001 if (sym == NULL)
5002 {
5003 if (!found_sym && arg_sym != NULL)
5004 add_defn_to_vec (*resultp,
5005 fixup_symbol_section (arg_sym, objfile),
5006 block);
5007 found_sym = false;
5008 arg_sym = NULL;
5009 }
5010 else
5011 {
5012 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5013 return true;
5014 else if (SYMBOL_IS_ARGUMENT (sym))
5015 arg_sym = sym;
5016 else
5017 {
5018 found_sym = true;
5019 add_defn_to_vec (*resultp,
5020 fixup_symbol_section (sym, objfile),
5021 block);
5022 }
5023 }
5024 return true;
5025 }
5026
5027 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5028 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5029 symbols to RESULT. Return whether we found such symbols. */
5030
5031 static int
5032 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5033 const struct block *block,
5034 const lookup_name_info &lookup_name,
5035 domain_enum domain)
5036 {
5037 struct using_direct *renaming;
5038 int defns_mark = result.size ();
5039
5040 symbol_name_matcher_ftype *name_match
5041 = ada_get_symbol_name_matcher (lookup_name);
5042
5043 for (renaming = block_using (block);
5044 renaming != NULL;
5045 renaming = renaming->next)
5046 {
5047 const char *r_name;
5048
5049 /* Avoid infinite recursions: skip this renaming if we are actually
5050 already traversing it.
5051
5052 Currently, symbol lookup in Ada don't use the namespace machinery from
5053 C++/Fortran support: skip namespace imports that use them. */
5054 if (renaming->searched
5055 || (renaming->import_src != NULL
5056 && renaming->import_src[0] != '\0')
5057 || (renaming->import_dest != NULL
5058 && renaming->import_dest[0] != '\0'))
5059 continue;
5060 renaming->searched = 1;
5061
5062 /* TODO: here, we perform another name-based symbol lookup, which can
5063 pull its own multiple overloads. In theory, we should be able to do
5064 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5065 not a simple name. But in order to do this, we would need to enhance
5066 the DWARF reader to associate a symbol to this renaming, instead of a
5067 name. So, for now, we do something simpler: re-use the C++/Fortran
5068 namespace machinery. */
5069 r_name = (renaming->alias != NULL
5070 ? renaming->alias
5071 : renaming->declaration);
5072 if (name_match (r_name, lookup_name, NULL))
5073 {
5074 lookup_name_info decl_lookup_name (renaming->declaration,
5075 lookup_name.match_type ());
5076 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5077 1, NULL);
5078 }
5079 renaming->searched = 0;
5080 }
5081 return result.size () != defns_mark;
5082 }
5083
5084 /* Implements compare_names, but only applying the comparision using
5085 the given CASING. */
5086
5087 static int
5088 compare_names_with_case (const char *string1, const char *string2,
5089 enum case_sensitivity casing)
5090 {
5091 while (*string1 != '\0' && *string2 != '\0')
5092 {
5093 char c1, c2;
5094
5095 if (isspace (*string1) || isspace (*string2))
5096 return strcmp_iw_ordered (string1, string2);
5097
5098 if (casing == case_sensitive_off)
5099 {
5100 c1 = tolower (*string1);
5101 c2 = tolower (*string2);
5102 }
5103 else
5104 {
5105 c1 = *string1;
5106 c2 = *string2;
5107 }
5108 if (c1 != c2)
5109 break;
5110
5111 string1 += 1;
5112 string2 += 1;
5113 }
5114
5115 switch (*string1)
5116 {
5117 case '(':
5118 return strcmp_iw_ordered (string1, string2);
5119 case '_':
5120 if (*string2 == '\0')
5121 {
5122 if (is_name_suffix (string1))
5123 return 0;
5124 else
5125 return 1;
5126 }
5127 /* FALLTHROUGH */
5128 default:
5129 if (*string2 == '(')
5130 return strcmp_iw_ordered (string1, string2);
5131 else
5132 {
5133 if (casing == case_sensitive_off)
5134 return tolower (*string1) - tolower (*string2);
5135 else
5136 return *string1 - *string2;
5137 }
5138 }
5139 }
5140
5141 /* Compare STRING1 to STRING2, with results as for strcmp.
5142 Compatible with strcmp_iw_ordered in that...
5143
5144 strcmp_iw_ordered (STRING1, STRING2) <= 0
5145
5146 ... implies...
5147
5148 compare_names (STRING1, STRING2) <= 0
5149
5150 (they may differ as to what symbols compare equal). */
5151
5152 static int
5153 compare_names (const char *string1, const char *string2)
5154 {
5155 int result;
5156
5157 /* Similar to what strcmp_iw_ordered does, we need to perform
5158 a case-insensitive comparison first, and only resort to
5159 a second, case-sensitive, comparison if the first one was
5160 not sufficient to differentiate the two strings. */
5161
5162 result = compare_names_with_case (string1, string2, case_sensitive_off);
5163 if (result == 0)
5164 result = compare_names_with_case (string1, string2, case_sensitive_on);
5165
5166 return result;
5167 }
5168
5169 /* Convenience function to get at the Ada encoded lookup name for
5170 LOOKUP_NAME, as a C string. */
5171
5172 static const char *
5173 ada_lookup_name (const lookup_name_info &lookup_name)
5174 {
5175 return lookup_name.ada ().lookup_name ().c_str ();
5176 }
5177
5178 /* Add to RESULT all non-local symbols whose name and domain match
5179 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5180 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5181 symbols otherwise. */
5182
5183 static void
5184 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5185 const lookup_name_info &lookup_name,
5186 domain_enum domain, int global)
5187 {
5188 struct match_data data (&result);
5189
5190 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5191
5192 for (objfile *objfile : current_program_space->objfiles ())
5193 {
5194 data.objfile = objfile;
5195
5196 objfile->map_matching_symbols (lookup_name, domain, global, data,
5197 is_wild_match ? NULL : compare_names);
5198
5199 for (compunit_symtab *cu : objfile->compunits ())
5200 {
5201 const struct block *global_block
5202 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5203
5204 if (ada_add_block_renamings (result, global_block, lookup_name,
5205 domain))
5206 data.found_sym = true;
5207 }
5208 }
5209
5210 if (result.empty () && global && !is_wild_match)
5211 {
5212 const char *name = ada_lookup_name (lookup_name);
5213 std::string bracket_name = std::string ("<_ada_") + name + '>';
5214 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5215
5216 for (objfile *objfile : current_program_space->objfiles ())
5217 {
5218 data.objfile = objfile;
5219 objfile->map_matching_symbols (name1, domain, global, data,
5220 compare_names);
5221 }
5222 }
5223 }
5224
5225 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5226 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5227 returning the number of matches. Add these to RESULT.
5228
5229 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5230 symbol match within the nest of blocks whose innermost member is BLOCK,
5231 is the one match returned (no other matches in that or
5232 enclosing blocks is returned). If there are any matches in or
5233 surrounding BLOCK, then these alone are returned.
5234
5235 Names prefixed with "standard__" are handled specially:
5236 "standard__" is first stripped off (by the lookup_name
5237 constructor), and only static and global symbols are searched.
5238
5239 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5240 to lookup global symbols. */
5241
5242 static void
5243 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5244 const struct block *block,
5245 const lookup_name_info &lookup_name,
5246 domain_enum domain,
5247 int full_search,
5248 int *made_global_lookup_p)
5249 {
5250 struct symbol *sym;
5251
5252 if (made_global_lookup_p)
5253 *made_global_lookup_p = 0;
5254
5255 /* Special case: If the user specifies a symbol name inside package
5256 Standard, do a non-wild matching of the symbol name without
5257 the "standard__" prefix. This was primarily introduced in order
5258 to allow the user to specifically access the standard exceptions
5259 using, for instance, Standard.Constraint_Error when Constraint_Error
5260 is ambiguous (due to the user defining its own Constraint_Error
5261 entity inside its program). */
5262 if (lookup_name.ada ().standard_p ())
5263 block = NULL;
5264
5265 /* Check the non-global symbols. If we have ANY match, then we're done. */
5266
5267 if (block != NULL)
5268 {
5269 if (full_search)
5270 ada_add_local_symbols (result, lookup_name, block, domain);
5271 else
5272 {
5273 /* In the !full_search case we're are being called by
5274 iterate_over_symbols, and we don't want to search
5275 superblocks. */
5276 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5277 }
5278 if (!result.empty () || !full_search)
5279 return;
5280 }
5281
5282 /* No non-global symbols found. Check our cache to see if we have
5283 already performed this search before. If we have, then return
5284 the same result. */
5285
5286 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5287 domain, &sym, &block))
5288 {
5289 if (sym != NULL)
5290 add_defn_to_vec (result, sym, block);
5291 return;
5292 }
5293
5294 if (made_global_lookup_p)
5295 *made_global_lookup_p = 1;
5296
5297 /* Search symbols from all global blocks. */
5298
5299 add_nonlocal_symbols (result, lookup_name, domain, 1);
5300
5301 /* Now add symbols from all per-file blocks if we've gotten no hits
5302 (not strictly correct, but perhaps better than an error). */
5303
5304 if (result.empty ())
5305 add_nonlocal_symbols (result, lookup_name, domain, 0);
5306 }
5307
5308 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5309 is non-zero, enclosing scope and in global scopes.
5310
5311 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5312 blocks and symbol tables (if any) in which they were found.
5313
5314 When full_search is non-zero, any non-function/non-enumeral
5315 symbol match within the nest of blocks whose innermost member is BLOCK,
5316 is the one match returned (no other matches in that or
5317 enclosing blocks is returned). If there are any matches in or
5318 surrounding BLOCK, then these alone are returned.
5319
5320 Names prefixed with "standard__" are handled specially: "standard__"
5321 is first stripped off, and only static and global symbols are searched. */
5322
5323 static std::vector<struct block_symbol>
5324 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5325 const struct block *block,
5326 domain_enum domain,
5327 int full_search)
5328 {
5329 int syms_from_global_search;
5330 std::vector<struct block_symbol> results;
5331
5332 ada_add_all_symbols (results, block, lookup_name,
5333 domain, full_search, &syms_from_global_search);
5334
5335 remove_extra_symbols (&results);
5336
5337 if (results.empty () && full_search && syms_from_global_search)
5338 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5339
5340 if (results.size () == 1 && full_search && syms_from_global_search)
5341 cache_symbol (ada_lookup_name (lookup_name), domain,
5342 results[0].symbol, results[0].block);
5343
5344 remove_irrelevant_renamings (&results, block);
5345 return results;
5346 }
5347
5348 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5349 in global scopes, returning (SYM,BLOCK) tuples.
5350
5351 See ada_lookup_symbol_list_worker for further details. */
5352
5353 std::vector<struct block_symbol>
5354 ada_lookup_symbol_list (const char *name, const struct block *block,
5355 domain_enum domain)
5356 {
5357 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5358 lookup_name_info lookup_name (name, name_match_type);
5359
5360 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5361 }
5362
5363 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5364 to 1, but choosing the first symbol found if there are multiple
5365 choices.
5366
5367 The result is stored in *INFO, which must be non-NULL.
5368 If no match is found, INFO->SYM is set to NULL. */
5369
5370 void
5371 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5372 domain_enum domain,
5373 struct block_symbol *info)
5374 {
5375 /* Since we already have an encoded name, wrap it in '<>' to force a
5376 verbatim match. Otherwise, if the name happens to not look like
5377 an encoded name (because it doesn't include a "__"),
5378 ada_lookup_name_info would re-encode/fold it again, and that
5379 would e.g., incorrectly lowercase object renaming names like
5380 "R28b" -> "r28b". */
5381 std::string verbatim = add_angle_brackets (name);
5382
5383 gdb_assert (info != NULL);
5384 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5385 }
5386
5387 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5388 scope and in global scopes, or NULL if none. NAME is folded and
5389 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5390 choosing the first symbol if there are multiple choices. */
5391
5392 struct block_symbol
5393 ada_lookup_symbol (const char *name, const struct block *block0,
5394 domain_enum domain)
5395 {
5396 std::vector<struct block_symbol> candidates
5397 = ada_lookup_symbol_list (name, block0, domain);
5398
5399 if (candidates.empty ())
5400 return {};
5401
5402 block_symbol info = candidates[0];
5403 info.symbol = fixup_symbol_section (info.symbol, NULL);
5404 return info;
5405 }
5406
5407
5408 /* True iff STR is a possible encoded suffix of a normal Ada name
5409 that is to be ignored for matching purposes. Suffixes of parallel
5410 names (e.g., XVE) are not included here. Currently, the possible suffixes
5411 are given by any of the regular expressions:
5412
5413 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5414 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5415 TKB [subprogram suffix for task bodies]
5416 _E[0-9]+[bs]$ [protected object entry suffixes]
5417 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5418
5419 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5420 match is performed. This sequence is used to differentiate homonyms,
5421 is an optional part of a valid name suffix. */
5422
5423 static int
5424 is_name_suffix (const char *str)
5425 {
5426 int k;
5427 const char *matching;
5428 const int len = strlen (str);
5429
5430 /* Skip optional leading __[0-9]+. */
5431
5432 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5433 {
5434 str += 3;
5435 while (isdigit (str[0]))
5436 str += 1;
5437 }
5438
5439 /* [.$][0-9]+ */
5440
5441 if (str[0] == '.' || str[0] == '$')
5442 {
5443 matching = str + 1;
5444 while (isdigit (matching[0]))
5445 matching += 1;
5446 if (matching[0] == '\0')
5447 return 1;
5448 }
5449
5450 /* ___[0-9]+ */
5451
5452 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5453 {
5454 matching = str + 3;
5455 while (isdigit (matching[0]))
5456 matching += 1;
5457 if (matching[0] == '\0')
5458 return 1;
5459 }
5460
5461 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5462
5463 if (strcmp (str, "TKB") == 0)
5464 return 1;
5465
5466 #if 0
5467 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5468 with a N at the end. Unfortunately, the compiler uses the same
5469 convention for other internal types it creates. So treating
5470 all entity names that end with an "N" as a name suffix causes
5471 some regressions. For instance, consider the case of an enumerated
5472 type. To support the 'Image attribute, it creates an array whose
5473 name ends with N.
5474 Having a single character like this as a suffix carrying some
5475 information is a bit risky. Perhaps we should change the encoding
5476 to be something like "_N" instead. In the meantime, do not do
5477 the following check. */
5478 /* Protected Object Subprograms */
5479 if (len == 1 && str [0] == 'N')
5480 return 1;
5481 #endif
5482
5483 /* _E[0-9]+[bs]$ */
5484 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5485 {
5486 matching = str + 3;
5487 while (isdigit (matching[0]))
5488 matching += 1;
5489 if ((matching[0] == 'b' || matching[0] == 's')
5490 && matching [1] == '\0')
5491 return 1;
5492 }
5493
5494 /* ??? We should not modify STR directly, as we are doing below. This
5495 is fine in this case, but may become problematic later if we find
5496 that this alternative did not work, and want to try matching
5497 another one from the begining of STR. Since we modified it, we
5498 won't be able to find the begining of the string anymore! */
5499 if (str[0] == 'X')
5500 {
5501 str += 1;
5502 while (str[0] != '_' && str[0] != '\0')
5503 {
5504 if (str[0] != 'n' && str[0] != 'b')
5505 return 0;
5506 str += 1;
5507 }
5508 }
5509
5510 if (str[0] == '\000')
5511 return 1;
5512
5513 if (str[0] == '_')
5514 {
5515 if (str[1] != '_' || str[2] == '\000')
5516 return 0;
5517 if (str[2] == '_')
5518 {
5519 if (strcmp (str + 3, "JM") == 0)
5520 return 1;
5521 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5522 the LJM suffix in favor of the JM one. But we will
5523 still accept LJM as a valid suffix for a reasonable
5524 amount of time, just to allow ourselves to debug programs
5525 compiled using an older version of GNAT. */
5526 if (strcmp (str + 3, "LJM") == 0)
5527 return 1;
5528 if (str[3] != 'X')
5529 return 0;
5530 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5531 || str[4] == 'U' || str[4] == 'P')
5532 return 1;
5533 if (str[4] == 'R' && str[5] != 'T')
5534 return 1;
5535 return 0;
5536 }
5537 if (!isdigit (str[2]))
5538 return 0;
5539 for (k = 3; str[k] != '\0'; k += 1)
5540 if (!isdigit (str[k]) && str[k] != '_')
5541 return 0;
5542 return 1;
5543 }
5544 if (str[0] == '$' && isdigit (str[1]))
5545 {
5546 for (k = 2; str[k] != '\0'; k += 1)
5547 if (!isdigit (str[k]) && str[k] != '_')
5548 return 0;
5549 return 1;
5550 }
5551 return 0;
5552 }
5553
5554 /* Return non-zero if the string starting at NAME and ending before
5555 NAME_END contains no capital letters. */
5556
5557 static int
5558 is_valid_name_for_wild_match (const char *name0)
5559 {
5560 std::string decoded_name = ada_decode (name0);
5561 int i;
5562
5563 /* If the decoded name starts with an angle bracket, it means that
5564 NAME0 does not follow the GNAT encoding format. It should then
5565 not be allowed as a possible wild match. */
5566 if (decoded_name[0] == '<')
5567 return 0;
5568
5569 for (i=0; decoded_name[i] != '\0'; i++)
5570 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5571 return 0;
5572
5573 return 1;
5574 }
5575
5576 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5577 character which could start a simple name. Assumes that *NAMEP points
5578 somewhere inside the string beginning at NAME0. */
5579
5580 static int
5581 advance_wild_match (const char **namep, const char *name0, char target0)
5582 {
5583 const char *name = *namep;
5584
5585 while (1)
5586 {
5587 char t0, t1;
5588
5589 t0 = *name;
5590 if (t0 == '_')
5591 {
5592 t1 = name[1];
5593 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5594 {
5595 name += 1;
5596 if (name == name0 + 5 && startswith (name0, "_ada"))
5597 break;
5598 else
5599 name += 1;
5600 }
5601 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5602 || name[2] == target0))
5603 {
5604 name += 2;
5605 break;
5606 }
5607 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5608 {
5609 /* Names like "pkg__B_N__name", where N is a number, are
5610 block-local. We can handle these by simply skipping
5611 the "B_" here. */
5612 name += 4;
5613 }
5614 else
5615 return 0;
5616 }
5617 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5618 name += 1;
5619 else
5620 return 0;
5621 }
5622
5623 *namep = name;
5624 return 1;
5625 }
5626
5627 /* Return true iff NAME encodes a name of the form prefix.PATN.
5628 Ignores any informational suffixes of NAME (i.e., for which
5629 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5630 simple name. */
5631
5632 static bool
5633 wild_match (const char *name, const char *patn)
5634 {
5635 const char *p;
5636 const char *name0 = name;
5637
5638 while (1)
5639 {
5640 const char *match = name;
5641
5642 if (*name == *patn)
5643 {
5644 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5645 if (*p != *name)
5646 break;
5647 if (*p == '\0' && is_name_suffix (name))
5648 return match == name0 || is_valid_name_for_wild_match (name0);
5649
5650 if (name[-1] == '_')
5651 name -= 1;
5652 }
5653 if (!advance_wild_match (&name, name0, *patn))
5654 return false;
5655 }
5656 }
5657
5658 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5659 necessary). OBJFILE is the section containing BLOCK. */
5660
5661 static void
5662 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5663 const struct block *block,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, struct objfile *objfile)
5666 {
5667 struct block_iterator iter;
5668 /* A matching argument symbol, if any. */
5669 struct symbol *arg_sym;
5670 /* Set true when we find a matching non-argument symbol. */
5671 bool found_sym;
5672 struct symbol *sym;
5673
5674 arg_sym = NULL;
5675 found_sym = false;
5676 for (sym = block_iter_match_first (block, lookup_name, &iter);
5677 sym != NULL;
5678 sym = block_iter_match_next (lookup_name, &iter))
5679 {
5680 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5681 {
5682 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5683 {
5684 if (SYMBOL_IS_ARGUMENT (sym))
5685 arg_sym = sym;
5686 else
5687 {
5688 found_sym = true;
5689 add_defn_to_vec (result,
5690 fixup_symbol_section (sym, objfile),
5691 block);
5692 }
5693 }
5694 }
5695 }
5696
5697 /* Handle renamings. */
5698
5699 if (ada_add_block_renamings (result, block, lookup_name, domain))
5700 found_sym = true;
5701
5702 if (!found_sym && arg_sym != NULL)
5703 {
5704 add_defn_to_vec (result,
5705 fixup_symbol_section (arg_sym, objfile),
5706 block);
5707 }
5708
5709 if (!lookup_name.ada ().wild_match_p ())
5710 {
5711 arg_sym = NULL;
5712 found_sym = false;
5713 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5714 const char *name = ada_lookup_name.c_str ();
5715 size_t name_len = ada_lookup_name.size ();
5716
5717 ALL_BLOCK_SYMBOLS (block, iter, sym)
5718 {
5719 if (symbol_matches_domain (sym->language (),
5720 SYMBOL_DOMAIN (sym), domain))
5721 {
5722 int cmp;
5723
5724 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5725 if (cmp == 0)
5726 {
5727 cmp = !startswith (sym->linkage_name (), "_ada_");
5728 if (cmp == 0)
5729 cmp = strncmp (name, sym->linkage_name () + 5,
5730 name_len);
5731 }
5732
5733 if (cmp == 0
5734 && is_name_suffix (sym->linkage_name () + name_len + 5))
5735 {
5736 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5737 {
5738 if (SYMBOL_IS_ARGUMENT (sym))
5739 arg_sym = sym;
5740 else
5741 {
5742 found_sym = true;
5743 add_defn_to_vec (result,
5744 fixup_symbol_section (sym, objfile),
5745 block);
5746 }
5747 }
5748 }
5749 }
5750 }
5751
5752 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5753 They aren't parameters, right? */
5754 if (!found_sym && arg_sym != NULL)
5755 {
5756 add_defn_to_vec (result,
5757 fixup_symbol_section (arg_sym, objfile),
5758 block);
5759 }
5760 }
5761 }
5762 \f
5763
5764 /* Symbol Completion */
5765
5766 /* See symtab.h. */
5767
5768 bool
5769 ada_lookup_name_info::matches
5770 (const char *sym_name,
5771 symbol_name_match_type match_type,
5772 completion_match_result *comp_match_res) const
5773 {
5774 bool match = false;
5775 const char *text = m_encoded_name.c_str ();
5776 size_t text_len = m_encoded_name.size ();
5777
5778 /* First, test against the fully qualified name of the symbol. */
5779
5780 if (strncmp (sym_name, text, text_len) == 0)
5781 match = true;
5782
5783 std::string decoded_name = ada_decode (sym_name);
5784 if (match && !m_encoded_p)
5785 {
5786 /* One needed check before declaring a positive match is to verify
5787 that iff we are doing a verbatim match, the decoded version
5788 of the symbol name starts with '<'. Otherwise, this symbol name
5789 is not a suitable completion. */
5790
5791 bool has_angle_bracket = (decoded_name[0] == '<');
5792 match = (has_angle_bracket == m_verbatim_p);
5793 }
5794
5795 if (match && !m_verbatim_p)
5796 {
5797 /* When doing non-verbatim match, another check that needs to
5798 be done is to verify that the potentially matching symbol name
5799 does not include capital letters, because the ada-mode would
5800 not be able to understand these symbol names without the
5801 angle bracket notation. */
5802 const char *tmp;
5803
5804 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5805 if (*tmp != '\0')
5806 match = false;
5807 }
5808
5809 /* Second: Try wild matching... */
5810
5811 if (!match && m_wild_match_p)
5812 {
5813 /* Since we are doing wild matching, this means that TEXT
5814 may represent an unqualified symbol name. We therefore must
5815 also compare TEXT against the unqualified name of the symbol. */
5816 sym_name = ada_unqualified_name (decoded_name.c_str ());
5817
5818 if (strncmp (sym_name, text, text_len) == 0)
5819 match = true;
5820 }
5821
5822 /* Finally: If we found a match, prepare the result to return. */
5823
5824 if (!match)
5825 return false;
5826
5827 if (comp_match_res != NULL)
5828 {
5829 std::string &match_str = comp_match_res->match.storage ();
5830
5831 if (!m_encoded_p)
5832 match_str = ada_decode (sym_name);
5833 else
5834 {
5835 if (m_verbatim_p)
5836 match_str = add_angle_brackets (sym_name);
5837 else
5838 match_str = sym_name;
5839
5840 }
5841
5842 comp_match_res->set_match (match_str.c_str ());
5843 }
5844
5845 return true;
5846 }
5847
5848 /* Field Access */
5849
5850 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5851 for tagged types. */
5852
5853 static int
5854 ada_is_dispatch_table_ptr_type (struct type *type)
5855 {
5856 const char *name;
5857
5858 if (type->code () != TYPE_CODE_PTR)
5859 return 0;
5860
5861 name = TYPE_TARGET_TYPE (type)->name ();
5862 if (name == NULL)
5863 return 0;
5864
5865 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5866 }
5867
5868 /* Return non-zero if TYPE is an interface tag. */
5869
5870 static int
5871 ada_is_interface_tag (struct type *type)
5872 {
5873 const char *name = type->name ();
5874
5875 if (name == NULL)
5876 return 0;
5877
5878 return (strcmp (name, "ada__tags__interface_tag") == 0);
5879 }
5880
5881 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5882 to be invisible to users. */
5883
5884 int
5885 ada_is_ignored_field (struct type *type, int field_num)
5886 {
5887 if (field_num < 0 || field_num > type->num_fields ())
5888 return 1;
5889
5890 /* Check the name of that field. */
5891 {
5892 const char *name = TYPE_FIELD_NAME (type, field_num);
5893
5894 /* Anonymous field names should not be printed.
5895 brobecker/2007-02-20: I don't think this can actually happen
5896 but we don't want to print the value of anonymous fields anyway. */
5897 if (name == NULL)
5898 return 1;
5899
5900 /* Normally, fields whose name start with an underscore ("_")
5901 are fields that have been internally generated by the compiler,
5902 and thus should not be printed. The "_parent" field is special,
5903 however: This is a field internally generated by the compiler
5904 for tagged types, and it contains the components inherited from
5905 the parent type. This field should not be printed as is, but
5906 should not be ignored either. */
5907 if (name[0] == '_' && !startswith (name, "_parent"))
5908 return 1;
5909 }
5910
5911 /* If this is the dispatch table of a tagged type or an interface tag,
5912 then ignore. */
5913 if (ada_is_tagged_type (type, 1)
5914 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5915 || ada_is_interface_tag (type->field (field_num).type ())))
5916 return 1;
5917
5918 /* Not a special field, so it should not be ignored. */
5919 return 0;
5920 }
5921
5922 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5923 pointer or reference type whose ultimate target has a tag field. */
5924
5925 int
5926 ada_is_tagged_type (struct type *type, int refok)
5927 {
5928 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5929 }
5930
5931 /* True iff TYPE represents the type of X'Tag */
5932
5933 int
5934 ada_is_tag_type (struct type *type)
5935 {
5936 type = ada_check_typedef (type);
5937
5938 if (type == NULL || type->code () != TYPE_CODE_PTR)
5939 return 0;
5940 else
5941 {
5942 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5943
5944 return (name != NULL
5945 && strcmp (name, "ada__tags__dispatch_table") == 0);
5946 }
5947 }
5948
5949 /* The type of the tag on VAL. */
5950
5951 static struct type *
5952 ada_tag_type (struct value *val)
5953 {
5954 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5955 }
5956
5957 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5958 retired at Ada 05). */
5959
5960 static int
5961 is_ada95_tag (struct value *tag)
5962 {
5963 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5964 }
5965
5966 /* The value of the tag on VAL. */
5967
5968 static struct value *
5969 ada_value_tag (struct value *val)
5970 {
5971 return ada_value_struct_elt (val, "_tag", 0);
5972 }
5973
5974 /* The value of the tag on the object of type TYPE whose contents are
5975 saved at VALADDR, if it is non-null, or is at memory address
5976 ADDRESS. */
5977
5978 static struct value *
5979 value_tag_from_contents_and_address (struct type *type,
5980 const gdb_byte *valaddr,
5981 CORE_ADDR address)
5982 {
5983 int tag_byte_offset;
5984 struct type *tag_type;
5985
5986 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5987 NULL, NULL, NULL))
5988 {
5989 const gdb_byte *valaddr1 = ((valaddr == NULL)
5990 ? NULL
5991 : valaddr + tag_byte_offset);
5992 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5993
5994 return value_from_contents_and_address (tag_type, valaddr1, address1);
5995 }
5996 return NULL;
5997 }
5998
5999 static struct type *
6000 type_from_tag (struct value *tag)
6001 {
6002 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6003
6004 if (type_name != NULL)
6005 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6006 return NULL;
6007 }
6008
6009 /* Given a value OBJ of a tagged type, return a value of this
6010 type at the base address of the object. The base address, as
6011 defined in Ada.Tags, it is the address of the primary tag of
6012 the object, and therefore where the field values of its full
6013 view can be fetched. */
6014
6015 struct value *
6016 ada_tag_value_at_base_address (struct value *obj)
6017 {
6018 struct value *val;
6019 LONGEST offset_to_top = 0;
6020 struct type *ptr_type, *obj_type;
6021 struct value *tag;
6022 CORE_ADDR base_address;
6023
6024 obj_type = value_type (obj);
6025
6026 /* It is the responsability of the caller to deref pointers. */
6027
6028 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6029 return obj;
6030
6031 tag = ada_value_tag (obj);
6032 if (!tag)
6033 return obj;
6034
6035 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6036
6037 if (is_ada95_tag (tag))
6038 return obj;
6039
6040 ptr_type = language_lookup_primitive_type
6041 (language_def (language_ada), target_gdbarch(), "storage_offset");
6042 ptr_type = lookup_pointer_type (ptr_type);
6043 val = value_cast (ptr_type, tag);
6044 if (!val)
6045 return obj;
6046
6047 /* It is perfectly possible that an exception be raised while
6048 trying to determine the base address, just like for the tag;
6049 see ada_tag_name for more details. We do not print the error
6050 message for the same reason. */
6051
6052 try
6053 {
6054 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6055 }
6056
6057 catch (const gdb_exception_error &e)
6058 {
6059 return obj;
6060 }
6061
6062 /* If offset is null, nothing to do. */
6063
6064 if (offset_to_top == 0)
6065 return obj;
6066
6067 /* -1 is a special case in Ada.Tags; however, what should be done
6068 is not quite clear from the documentation. So do nothing for
6069 now. */
6070
6071 if (offset_to_top == -1)
6072 return obj;
6073
6074 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6075 from the base address. This was however incompatible with
6076 C++ dispatch table: C++ uses a *negative* value to *add*
6077 to the base address. Ada's convention has therefore been
6078 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6079 use the same convention. Here, we support both cases by
6080 checking the sign of OFFSET_TO_TOP. */
6081
6082 if (offset_to_top > 0)
6083 offset_to_top = -offset_to_top;
6084
6085 base_address = value_address (obj) + offset_to_top;
6086 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6087
6088 /* Make sure that we have a proper tag at the new address.
6089 Otherwise, offset_to_top is bogus (which can happen when
6090 the object is not initialized yet). */
6091
6092 if (!tag)
6093 return obj;
6094
6095 obj_type = type_from_tag (tag);
6096
6097 if (!obj_type)
6098 return obj;
6099
6100 return value_from_contents_and_address (obj_type, NULL, base_address);
6101 }
6102
6103 /* Return the "ada__tags__type_specific_data" type. */
6104
6105 static struct type *
6106 ada_get_tsd_type (struct inferior *inf)
6107 {
6108 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6109
6110 if (data->tsd_type == 0)
6111 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6112 return data->tsd_type;
6113 }
6114
6115 /* Return the TSD (type-specific data) associated to the given TAG.
6116 TAG is assumed to be the tag of a tagged-type entity.
6117
6118 May return NULL if we are unable to get the TSD. */
6119
6120 static struct value *
6121 ada_get_tsd_from_tag (struct value *tag)
6122 {
6123 struct value *val;
6124 struct type *type;
6125
6126 /* First option: The TSD is simply stored as a field of our TAG.
6127 Only older versions of GNAT would use this format, but we have
6128 to test it first, because there are no visible markers for
6129 the current approach except the absence of that field. */
6130
6131 val = ada_value_struct_elt (tag, "tsd", 1);
6132 if (val)
6133 return val;
6134
6135 /* Try the second representation for the dispatch table (in which
6136 there is no explicit 'tsd' field in the referent of the tag pointer,
6137 and instead the tsd pointer is stored just before the dispatch
6138 table. */
6139
6140 type = ada_get_tsd_type (current_inferior());
6141 if (type == NULL)
6142 return NULL;
6143 type = lookup_pointer_type (lookup_pointer_type (type));
6144 val = value_cast (type, tag);
6145 if (val == NULL)
6146 return NULL;
6147 return value_ind (value_ptradd (val, -1));
6148 }
6149
6150 /* Given the TSD of a tag (type-specific data), return a string
6151 containing the name of the associated type.
6152
6153 May return NULL if we are unable to determine the tag name. */
6154
6155 static gdb::unique_xmalloc_ptr<char>
6156 ada_tag_name_from_tsd (struct value *tsd)
6157 {
6158 char *p;
6159 struct value *val;
6160
6161 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6162 if (val == NULL)
6163 return NULL;
6164 gdb::unique_xmalloc_ptr<char> buffer
6165 = target_read_string (value_as_address (val), INT_MAX);
6166 if (buffer == nullptr)
6167 return nullptr;
6168
6169 for (p = buffer.get (); *p != '\0'; ++p)
6170 {
6171 if (isalpha (*p))
6172 *p = tolower (*p);
6173 }
6174
6175 return buffer;
6176 }
6177
6178 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6179 a C string.
6180
6181 Return NULL if the TAG is not an Ada tag, or if we were unable to
6182 determine the name of that tag. */
6183
6184 gdb::unique_xmalloc_ptr<char>
6185 ada_tag_name (struct value *tag)
6186 {
6187 gdb::unique_xmalloc_ptr<char> name;
6188
6189 if (!ada_is_tag_type (value_type (tag)))
6190 return NULL;
6191
6192 /* It is perfectly possible that an exception be raised while trying
6193 to determine the TAG's name, even under normal circumstances:
6194 The associated variable may be uninitialized or corrupted, for
6195 instance. We do not let any exception propagate past this point.
6196 instead we return NULL.
6197
6198 We also do not print the error message either (which often is very
6199 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6200 the caller print a more meaningful message if necessary. */
6201 try
6202 {
6203 struct value *tsd = ada_get_tsd_from_tag (tag);
6204
6205 if (tsd != NULL)
6206 name = ada_tag_name_from_tsd (tsd);
6207 }
6208 catch (const gdb_exception_error &e)
6209 {
6210 }
6211
6212 return name;
6213 }
6214
6215 /* The parent type of TYPE, or NULL if none. */
6216
6217 struct type *
6218 ada_parent_type (struct type *type)
6219 {
6220 int i;
6221
6222 type = ada_check_typedef (type);
6223
6224 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6225 return NULL;
6226
6227 for (i = 0; i < type->num_fields (); i += 1)
6228 if (ada_is_parent_field (type, i))
6229 {
6230 struct type *parent_type = type->field (i).type ();
6231
6232 /* If the _parent field is a pointer, then dereference it. */
6233 if (parent_type->code () == TYPE_CODE_PTR)
6234 parent_type = TYPE_TARGET_TYPE (parent_type);
6235 /* If there is a parallel XVS type, get the actual base type. */
6236 parent_type = ada_get_base_type (parent_type);
6237
6238 return ada_check_typedef (parent_type);
6239 }
6240
6241 return NULL;
6242 }
6243
6244 /* True iff field number FIELD_NUM of structure type TYPE contains the
6245 parent-type (inherited) fields of a derived type. Assumes TYPE is
6246 a structure type with at least FIELD_NUM+1 fields. */
6247
6248 int
6249 ada_is_parent_field (struct type *type, int field_num)
6250 {
6251 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6252
6253 return (name != NULL
6254 && (startswith (name, "PARENT")
6255 || startswith (name, "_parent")));
6256 }
6257
6258 /* True iff field number FIELD_NUM of structure type TYPE is a
6259 transparent wrapper field (which should be silently traversed when doing
6260 field selection and flattened when printing). Assumes TYPE is a
6261 structure type with at least FIELD_NUM+1 fields. Such fields are always
6262 structures. */
6263
6264 int
6265 ada_is_wrapper_field (struct type *type, int field_num)
6266 {
6267 const char *name = TYPE_FIELD_NAME (type, field_num);
6268
6269 if (name != NULL && strcmp (name, "RETVAL") == 0)
6270 {
6271 /* This happens in functions with "out" or "in out" parameters
6272 which are passed by copy. For such functions, GNAT describes
6273 the function's return type as being a struct where the return
6274 value is in a field called RETVAL, and where the other "out"
6275 or "in out" parameters are fields of that struct. This is not
6276 a wrapper. */
6277 return 0;
6278 }
6279
6280 return (name != NULL
6281 && (startswith (name, "PARENT")
6282 || strcmp (name, "REP") == 0
6283 || startswith (name, "_parent")
6284 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6285 }
6286
6287 /* True iff field number FIELD_NUM of structure or union type TYPE
6288 is a variant wrapper. Assumes TYPE is a structure type with at least
6289 FIELD_NUM+1 fields. */
6290
6291 int
6292 ada_is_variant_part (struct type *type, int field_num)
6293 {
6294 /* Only Ada types are eligible. */
6295 if (!ADA_TYPE_P (type))
6296 return 0;
6297
6298 struct type *field_type = type->field (field_num).type ();
6299
6300 return (field_type->code () == TYPE_CODE_UNION
6301 || (is_dynamic_field (type, field_num)
6302 && (TYPE_TARGET_TYPE (field_type)->code ()
6303 == TYPE_CODE_UNION)));
6304 }
6305
6306 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6307 whose discriminants are contained in the record type OUTER_TYPE,
6308 returns the type of the controlling discriminant for the variant.
6309 May return NULL if the type could not be found. */
6310
6311 struct type *
6312 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6313 {
6314 const char *name = ada_variant_discrim_name (var_type);
6315
6316 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6317 }
6318
6319 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6320 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6321 represents a 'when others' clause; otherwise 0. */
6322
6323 static int
6324 ada_is_others_clause (struct type *type, int field_num)
6325 {
6326 const char *name = TYPE_FIELD_NAME (type, field_num);
6327
6328 return (name != NULL && name[0] == 'O');
6329 }
6330
6331 /* Assuming that TYPE0 is the type of the variant part of a record,
6332 returns the name of the discriminant controlling the variant.
6333 The value is valid until the next call to ada_variant_discrim_name. */
6334
6335 const char *
6336 ada_variant_discrim_name (struct type *type0)
6337 {
6338 static std::string result;
6339 struct type *type;
6340 const char *name;
6341 const char *discrim_end;
6342 const char *discrim_start;
6343
6344 if (type0->code () == TYPE_CODE_PTR)
6345 type = TYPE_TARGET_TYPE (type0);
6346 else
6347 type = type0;
6348
6349 name = ada_type_name (type);
6350
6351 if (name == NULL || name[0] == '\000')
6352 return "";
6353
6354 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6355 discrim_end -= 1)
6356 {
6357 if (startswith (discrim_end, "___XVN"))
6358 break;
6359 }
6360 if (discrim_end == name)
6361 return "";
6362
6363 for (discrim_start = discrim_end; discrim_start != name + 3;
6364 discrim_start -= 1)
6365 {
6366 if (discrim_start == name + 1)
6367 return "";
6368 if ((discrim_start > name + 3
6369 && startswith (discrim_start - 3, "___"))
6370 || discrim_start[-1] == '.')
6371 break;
6372 }
6373
6374 result = std::string (discrim_start, discrim_end - discrim_start);
6375 return result.c_str ();
6376 }
6377
6378 /* Scan STR for a subtype-encoded number, beginning at position K.
6379 Put the position of the character just past the number scanned in
6380 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6381 Return 1 if there was a valid number at the given position, and 0
6382 otherwise. A "subtype-encoded" number consists of the absolute value
6383 in decimal, followed by the letter 'm' to indicate a negative number.
6384 Assumes 0m does not occur. */
6385
6386 int
6387 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6388 {
6389 ULONGEST RU;
6390
6391 if (!isdigit (str[k]))
6392 return 0;
6393
6394 /* Do it the hard way so as not to make any assumption about
6395 the relationship of unsigned long (%lu scan format code) and
6396 LONGEST. */
6397 RU = 0;
6398 while (isdigit (str[k]))
6399 {
6400 RU = RU * 10 + (str[k] - '0');
6401 k += 1;
6402 }
6403
6404 if (str[k] == 'm')
6405 {
6406 if (R != NULL)
6407 *R = (-(LONGEST) (RU - 1)) - 1;
6408 k += 1;
6409 }
6410 else if (R != NULL)
6411 *R = (LONGEST) RU;
6412
6413 /* NOTE on the above: Technically, C does not say what the results of
6414 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6415 number representable as a LONGEST (although either would probably work
6416 in most implementations). When RU>0, the locution in the then branch
6417 above is always equivalent to the negative of RU. */
6418
6419 if (new_k != NULL)
6420 *new_k = k;
6421 return 1;
6422 }
6423
6424 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6425 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6426 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6427
6428 static int
6429 ada_in_variant (LONGEST val, struct type *type, int field_num)
6430 {
6431 const char *name = TYPE_FIELD_NAME (type, field_num);
6432 int p;
6433
6434 p = 0;
6435 while (1)
6436 {
6437 switch (name[p])
6438 {
6439 case '\0':
6440 return 0;
6441 case 'S':
6442 {
6443 LONGEST W;
6444
6445 if (!ada_scan_number (name, p + 1, &W, &p))
6446 return 0;
6447 if (val == W)
6448 return 1;
6449 break;
6450 }
6451 case 'R':
6452 {
6453 LONGEST L, U;
6454
6455 if (!ada_scan_number (name, p + 1, &L, &p)
6456 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6457 return 0;
6458 if (val >= L && val <= U)
6459 return 1;
6460 break;
6461 }
6462 case 'O':
6463 return 1;
6464 default:
6465 return 0;
6466 }
6467 }
6468 }
6469
6470 /* FIXME: Lots of redundancy below. Try to consolidate. */
6471
6472 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6473 ARG_TYPE, extract and return the value of one of its (non-static)
6474 fields. FIELDNO says which field. Differs from value_primitive_field
6475 only in that it can handle packed values of arbitrary type. */
6476
6477 struct value *
6478 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6479 struct type *arg_type)
6480 {
6481 struct type *type;
6482
6483 arg_type = ada_check_typedef (arg_type);
6484 type = arg_type->field (fieldno).type ();
6485
6486 /* Handle packed fields. It might be that the field is not packed
6487 relative to its containing structure, but the structure itself is
6488 packed; in this case we must take the bit-field path. */
6489 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6490 {
6491 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6492 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6493
6494 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6495 offset + bit_pos / 8,
6496 bit_pos % 8, bit_size, type);
6497 }
6498 else
6499 return value_primitive_field (arg1, offset, fieldno, arg_type);
6500 }
6501
6502 /* Find field with name NAME in object of type TYPE. If found,
6503 set the following for each argument that is non-null:
6504 - *FIELD_TYPE_P to the field's type;
6505 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6506 an object of that type;
6507 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6508 - *BIT_SIZE_P to its size in bits if the field is packed, and
6509 0 otherwise;
6510 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6511 fields up to but not including the desired field, or by the total
6512 number of fields if not found. A NULL value of NAME never
6513 matches; the function just counts visible fields in this case.
6514
6515 Notice that we need to handle when a tagged record hierarchy
6516 has some components with the same name, like in this scenario:
6517
6518 type Top_T is tagged record
6519 N : Integer := 1;
6520 U : Integer := 974;
6521 A : Integer := 48;
6522 end record;
6523
6524 type Middle_T is new Top.Top_T with record
6525 N : Character := 'a';
6526 C : Integer := 3;
6527 end record;
6528
6529 type Bottom_T is new Middle.Middle_T with record
6530 N : Float := 4.0;
6531 C : Character := '5';
6532 X : Integer := 6;
6533 A : Character := 'J';
6534 end record;
6535
6536 Let's say we now have a variable declared and initialized as follow:
6537
6538 TC : Top_A := new Bottom_T;
6539
6540 And then we use this variable to call this function
6541
6542 procedure Assign (Obj: in out Top_T; TV : Integer);
6543
6544 as follow:
6545
6546 Assign (Top_T (B), 12);
6547
6548 Now, we're in the debugger, and we're inside that procedure
6549 then and we want to print the value of obj.c:
6550
6551 Usually, the tagged record or one of the parent type owns the
6552 component to print and there's no issue but in this particular
6553 case, what does it mean to ask for Obj.C? Since the actual
6554 type for object is type Bottom_T, it could mean two things: type
6555 component C from the Middle_T view, but also component C from
6556 Bottom_T. So in that "undefined" case, when the component is
6557 not found in the non-resolved type (which includes all the
6558 components of the parent type), then resolve it and see if we
6559 get better luck once expanded.
6560
6561 In the case of homonyms in the derived tagged type, we don't
6562 guaranty anything, and pick the one that's easiest for us
6563 to program.
6564
6565 Returns 1 if found, 0 otherwise. */
6566
6567 static int
6568 find_struct_field (const char *name, struct type *type, int offset,
6569 struct type **field_type_p,
6570 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6571 int *index_p)
6572 {
6573 int i;
6574 int parent_offset = -1;
6575
6576 type = ada_check_typedef (type);
6577
6578 if (field_type_p != NULL)
6579 *field_type_p = NULL;
6580 if (byte_offset_p != NULL)
6581 *byte_offset_p = 0;
6582 if (bit_offset_p != NULL)
6583 *bit_offset_p = 0;
6584 if (bit_size_p != NULL)
6585 *bit_size_p = 0;
6586
6587 for (i = 0; i < type->num_fields (); i += 1)
6588 {
6589 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6590 int fld_offset = offset + bit_pos / 8;
6591 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6592
6593 if (t_field_name == NULL)
6594 continue;
6595
6596 else if (ada_is_parent_field (type, i))
6597 {
6598 /* This is a field pointing us to the parent type of a tagged
6599 type. As hinted in this function's documentation, we give
6600 preference to fields in the current record first, so what
6601 we do here is just record the index of this field before
6602 we skip it. If it turns out we couldn't find our field
6603 in the current record, then we'll get back to it and search
6604 inside it whether the field might exist in the parent. */
6605
6606 parent_offset = i;
6607 continue;
6608 }
6609
6610 else if (name != NULL && field_name_match (t_field_name, name))
6611 {
6612 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6613
6614 if (field_type_p != NULL)
6615 *field_type_p = type->field (i).type ();
6616 if (byte_offset_p != NULL)
6617 *byte_offset_p = fld_offset;
6618 if (bit_offset_p != NULL)
6619 *bit_offset_p = bit_pos % 8;
6620 if (bit_size_p != NULL)
6621 *bit_size_p = bit_size;
6622 return 1;
6623 }
6624 else if (ada_is_wrapper_field (type, i))
6625 {
6626 if (find_struct_field (name, type->field (i).type (), fld_offset,
6627 field_type_p, byte_offset_p, bit_offset_p,
6628 bit_size_p, index_p))
6629 return 1;
6630 }
6631 else if (ada_is_variant_part (type, i))
6632 {
6633 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6634 fixed type?? */
6635 int j;
6636 struct type *field_type
6637 = ada_check_typedef (type->field (i).type ());
6638
6639 for (j = 0; j < field_type->num_fields (); j += 1)
6640 {
6641 if (find_struct_field (name, field_type->field (j).type (),
6642 fld_offset
6643 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6644 field_type_p, byte_offset_p,
6645 bit_offset_p, bit_size_p, index_p))
6646 return 1;
6647 }
6648 }
6649 else if (index_p != NULL)
6650 *index_p += 1;
6651 }
6652
6653 /* Field not found so far. If this is a tagged type which
6654 has a parent, try finding that field in the parent now. */
6655
6656 if (parent_offset != -1)
6657 {
6658 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6659 int fld_offset = offset + bit_pos / 8;
6660
6661 if (find_struct_field (name, type->field (parent_offset).type (),
6662 fld_offset, field_type_p, byte_offset_p,
6663 bit_offset_p, bit_size_p, index_p))
6664 return 1;
6665 }
6666
6667 return 0;
6668 }
6669
6670 /* Number of user-visible fields in record type TYPE. */
6671
6672 static int
6673 num_visible_fields (struct type *type)
6674 {
6675 int n;
6676
6677 n = 0;
6678 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6679 return n;
6680 }
6681
6682 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6683 and search in it assuming it has (class) type TYPE.
6684 If found, return value, else return NULL.
6685
6686 Searches recursively through wrapper fields (e.g., '_parent').
6687
6688 In the case of homonyms in the tagged types, please refer to the
6689 long explanation in find_struct_field's function documentation. */
6690
6691 static struct value *
6692 ada_search_struct_field (const char *name, struct value *arg, int offset,
6693 struct type *type)
6694 {
6695 int i;
6696 int parent_offset = -1;
6697
6698 type = ada_check_typedef (type);
6699 for (i = 0; i < type->num_fields (); i += 1)
6700 {
6701 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6702
6703 if (t_field_name == NULL)
6704 continue;
6705
6706 else if (ada_is_parent_field (type, i))
6707 {
6708 /* This is a field pointing us to the parent type of a tagged
6709 type. As hinted in this function's documentation, we give
6710 preference to fields in the current record first, so what
6711 we do here is just record the index of this field before
6712 we skip it. If it turns out we couldn't find our field
6713 in the current record, then we'll get back to it and search
6714 inside it whether the field might exist in the parent. */
6715
6716 parent_offset = i;
6717 continue;
6718 }
6719
6720 else if (field_name_match (t_field_name, name))
6721 return ada_value_primitive_field (arg, offset, i, type);
6722
6723 else if (ada_is_wrapper_field (type, i))
6724 {
6725 struct value *v = /* Do not let indent join lines here. */
6726 ada_search_struct_field (name, arg,
6727 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6728 type->field (i).type ());
6729
6730 if (v != NULL)
6731 return v;
6732 }
6733
6734 else if (ada_is_variant_part (type, i))
6735 {
6736 /* PNH: Do we ever get here? See find_struct_field. */
6737 int j;
6738 struct type *field_type = ada_check_typedef (type->field (i).type ());
6739 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6740
6741 for (j = 0; j < field_type->num_fields (); j += 1)
6742 {
6743 struct value *v = ada_search_struct_field /* Force line
6744 break. */
6745 (name, arg,
6746 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6747 field_type->field (j).type ());
6748
6749 if (v != NULL)
6750 return v;
6751 }
6752 }
6753 }
6754
6755 /* Field not found so far. If this is a tagged type which
6756 has a parent, try finding that field in the parent now. */
6757
6758 if (parent_offset != -1)
6759 {
6760 struct value *v = ada_search_struct_field (
6761 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6762 type->field (parent_offset).type ());
6763
6764 if (v != NULL)
6765 return v;
6766 }
6767
6768 return NULL;
6769 }
6770
6771 static struct value *ada_index_struct_field_1 (int *, struct value *,
6772 int, struct type *);
6773
6774
6775 /* Return field #INDEX in ARG, where the index is that returned by
6776 * find_struct_field through its INDEX_P argument. Adjust the address
6777 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6778 * If found, return value, else return NULL. */
6779
6780 static struct value *
6781 ada_index_struct_field (int index, struct value *arg, int offset,
6782 struct type *type)
6783 {
6784 return ada_index_struct_field_1 (&index, arg, offset, type);
6785 }
6786
6787
6788 /* Auxiliary function for ada_index_struct_field. Like
6789 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6790 * *INDEX_P. */
6791
6792 static struct value *
6793 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6794 struct type *type)
6795 {
6796 int i;
6797 type = ada_check_typedef (type);
6798
6799 for (i = 0; i < type->num_fields (); i += 1)
6800 {
6801 if (TYPE_FIELD_NAME (type, i) == NULL)
6802 continue;
6803 else if (ada_is_wrapper_field (type, i))
6804 {
6805 struct value *v = /* Do not let indent join lines here. */
6806 ada_index_struct_field_1 (index_p, arg,
6807 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6808 type->field (i).type ());
6809
6810 if (v != NULL)
6811 return v;
6812 }
6813
6814 else if (ada_is_variant_part (type, i))
6815 {
6816 /* PNH: Do we ever get here? See ada_search_struct_field,
6817 find_struct_field. */
6818 error (_("Cannot assign this kind of variant record"));
6819 }
6820 else if (*index_p == 0)
6821 return ada_value_primitive_field (arg, offset, i, type);
6822 else
6823 *index_p -= 1;
6824 }
6825 return NULL;
6826 }
6827
6828 /* Return a string representation of type TYPE. */
6829
6830 static std::string
6831 type_as_string (struct type *type)
6832 {
6833 string_file tmp_stream;
6834
6835 type_print (type, "", &tmp_stream, -1);
6836
6837 return std::move (tmp_stream.string ());
6838 }
6839
6840 /* Given a type TYPE, look up the type of the component of type named NAME.
6841 If DISPP is non-null, add its byte displacement from the beginning of a
6842 structure (pointed to by a value) of type TYPE to *DISPP (does not
6843 work for packed fields).
6844
6845 Matches any field whose name has NAME as a prefix, possibly
6846 followed by "___".
6847
6848 TYPE can be either a struct or union. If REFOK, TYPE may also
6849 be a (pointer or reference)+ to a struct or union, and the
6850 ultimate target type will be searched.
6851
6852 Looks recursively into variant clauses and parent types.
6853
6854 In the case of homonyms in the tagged types, please refer to the
6855 long explanation in find_struct_field's function documentation.
6856
6857 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6858 TYPE is not a type of the right kind. */
6859
6860 static struct type *
6861 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6862 int noerr)
6863 {
6864 int i;
6865 int parent_offset = -1;
6866
6867 if (name == NULL)
6868 goto BadName;
6869
6870 if (refok && type != NULL)
6871 while (1)
6872 {
6873 type = ada_check_typedef (type);
6874 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6875 break;
6876 type = TYPE_TARGET_TYPE (type);
6877 }
6878
6879 if (type == NULL
6880 || (type->code () != TYPE_CODE_STRUCT
6881 && type->code () != TYPE_CODE_UNION))
6882 {
6883 if (noerr)
6884 return NULL;
6885
6886 error (_("Type %s is not a structure or union type"),
6887 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6888 }
6889
6890 type = to_static_fixed_type (type);
6891
6892 for (i = 0; i < type->num_fields (); i += 1)
6893 {
6894 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6895 struct type *t;
6896
6897 if (t_field_name == NULL)
6898 continue;
6899
6900 else if (ada_is_parent_field (type, i))
6901 {
6902 /* This is a field pointing us to the parent type of a tagged
6903 type. As hinted in this function's documentation, we give
6904 preference to fields in the current record first, so what
6905 we do here is just record the index of this field before
6906 we skip it. If it turns out we couldn't find our field
6907 in the current record, then we'll get back to it and search
6908 inside it whether the field might exist in the parent. */
6909
6910 parent_offset = i;
6911 continue;
6912 }
6913
6914 else if (field_name_match (t_field_name, name))
6915 return type->field (i).type ();
6916
6917 else if (ada_is_wrapper_field (type, i))
6918 {
6919 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6920 0, 1);
6921 if (t != NULL)
6922 return t;
6923 }
6924
6925 else if (ada_is_variant_part (type, i))
6926 {
6927 int j;
6928 struct type *field_type = ada_check_typedef (type->field (i).type ());
6929
6930 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6931 {
6932 /* FIXME pnh 2008/01/26: We check for a field that is
6933 NOT wrapped in a struct, since the compiler sometimes
6934 generates these for unchecked variant types. Revisit
6935 if the compiler changes this practice. */
6936 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6937
6938 if (v_field_name != NULL
6939 && field_name_match (v_field_name, name))
6940 t = field_type->field (j).type ();
6941 else
6942 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6943 name, 0, 1);
6944
6945 if (t != NULL)
6946 return t;
6947 }
6948 }
6949
6950 }
6951
6952 /* Field not found so far. If this is a tagged type which
6953 has a parent, try finding that field in the parent now. */
6954
6955 if (parent_offset != -1)
6956 {
6957 struct type *t;
6958
6959 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6960 name, 0, 1);
6961 if (t != NULL)
6962 return t;
6963 }
6964
6965 BadName:
6966 if (!noerr)
6967 {
6968 const char *name_str = name != NULL ? name : _("<null>");
6969
6970 error (_("Type %s has no component named %s"),
6971 type_as_string (type).c_str (), name_str);
6972 }
6973
6974 return NULL;
6975 }
6976
6977 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6978 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6979 represents an unchecked union (that is, the variant part of a
6980 record that is named in an Unchecked_Union pragma). */
6981
6982 static int
6983 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6984 {
6985 const char *discrim_name = ada_variant_discrim_name (var_type);
6986
6987 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
6988 }
6989
6990
6991 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6992 within OUTER, determine which variant clause (field number in VAR_TYPE,
6993 numbering from 0) is applicable. Returns -1 if none are. */
6994
6995 int
6996 ada_which_variant_applies (struct type *var_type, struct value *outer)
6997 {
6998 int others_clause;
6999 int i;
7000 const char *discrim_name = ada_variant_discrim_name (var_type);
7001 struct value *discrim;
7002 LONGEST discrim_val;
7003
7004 /* Using plain value_from_contents_and_address here causes problems
7005 because we will end up trying to resolve a type that is currently
7006 being constructed. */
7007 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7008 if (discrim == NULL)
7009 return -1;
7010 discrim_val = value_as_long (discrim);
7011
7012 others_clause = -1;
7013 for (i = 0; i < var_type->num_fields (); i += 1)
7014 {
7015 if (ada_is_others_clause (var_type, i))
7016 others_clause = i;
7017 else if (ada_in_variant (discrim_val, var_type, i))
7018 return i;
7019 }
7020
7021 return others_clause;
7022 }
7023 \f
7024
7025
7026 /* Dynamic-Sized Records */
7027
7028 /* Strategy: The type ostensibly attached to a value with dynamic size
7029 (i.e., a size that is not statically recorded in the debugging
7030 data) does not accurately reflect the size or layout of the value.
7031 Our strategy is to convert these values to values with accurate,
7032 conventional types that are constructed on the fly. */
7033
7034 /* There is a subtle and tricky problem here. In general, we cannot
7035 determine the size of dynamic records without its data. However,
7036 the 'struct value' data structure, which GDB uses to represent
7037 quantities in the inferior process (the target), requires the size
7038 of the type at the time of its allocation in order to reserve space
7039 for GDB's internal copy of the data. That's why the
7040 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7041 rather than struct value*s.
7042
7043 However, GDB's internal history variables ($1, $2, etc.) are
7044 struct value*s containing internal copies of the data that are not, in
7045 general, the same as the data at their corresponding addresses in
7046 the target. Fortunately, the types we give to these values are all
7047 conventional, fixed-size types (as per the strategy described
7048 above), so that we don't usually have to perform the
7049 'to_fixed_xxx_type' conversions to look at their values.
7050 Unfortunately, there is one exception: if one of the internal
7051 history variables is an array whose elements are unconstrained
7052 records, then we will need to create distinct fixed types for each
7053 element selected. */
7054
7055 /* The upshot of all of this is that many routines take a (type, host
7056 address, target address) triple as arguments to represent a value.
7057 The host address, if non-null, is supposed to contain an internal
7058 copy of the relevant data; otherwise, the program is to consult the
7059 target at the target address. */
7060
7061 /* Assuming that VAL0 represents a pointer value, the result of
7062 dereferencing it. Differs from value_ind in its treatment of
7063 dynamic-sized types. */
7064
7065 struct value *
7066 ada_value_ind (struct value *val0)
7067 {
7068 struct value *val = value_ind (val0);
7069
7070 if (ada_is_tagged_type (value_type (val), 0))
7071 val = ada_tag_value_at_base_address (val);
7072
7073 return ada_to_fixed_value (val);
7074 }
7075
7076 /* The value resulting from dereferencing any "reference to"
7077 qualifiers on VAL0. */
7078
7079 static struct value *
7080 ada_coerce_ref (struct value *val0)
7081 {
7082 if (value_type (val0)->code () == TYPE_CODE_REF)
7083 {
7084 struct value *val = val0;
7085
7086 val = coerce_ref (val);
7087
7088 if (ada_is_tagged_type (value_type (val), 0))
7089 val = ada_tag_value_at_base_address (val);
7090
7091 return ada_to_fixed_value (val);
7092 }
7093 else
7094 return val0;
7095 }
7096
7097 /* Return the bit alignment required for field #F of template type TYPE. */
7098
7099 static unsigned int
7100 field_alignment (struct type *type, int f)
7101 {
7102 const char *name = TYPE_FIELD_NAME (type, f);
7103 int len;
7104 int align_offset;
7105
7106 /* The field name should never be null, unless the debugging information
7107 is somehow malformed. In this case, we assume the field does not
7108 require any alignment. */
7109 if (name == NULL)
7110 return 1;
7111
7112 len = strlen (name);
7113
7114 if (!isdigit (name[len - 1]))
7115 return 1;
7116
7117 if (isdigit (name[len - 2]))
7118 align_offset = len - 2;
7119 else
7120 align_offset = len - 1;
7121
7122 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7123 return TARGET_CHAR_BIT;
7124
7125 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7126 }
7127
7128 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7129
7130 static struct symbol *
7131 ada_find_any_type_symbol (const char *name)
7132 {
7133 struct symbol *sym;
7134
7135 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7136 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7137 return sym;
7138
7139 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7140 return sym;
7141 }
7142
7143 /* Find a type named NAME. Ignores ambiguity. This routine will look
7144 solely for types defined by debug info, it will not search the GDB
7145 primitive types. */
7146
7147 static struct type *
7148 ada_find_any_type (const char *name)
7149 {
7150 struct symbol *sym = ada_find_any_type_symbol (name);
7151
7152 if (sym != NULL)
7153 return SYMBOL_TYPE (sym);
7154
7155 return NULL;
7156 }
7157
7158 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7159 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7160 symbol, in which case it is returned. Otherwise, this looks for
7161 symbols whose name is that of NAME_SYM suffixed with "___XR".
7162 Return symbol if found, and NULL otherwise. */
7163
7164 static bool
7165 ada_is_renaming_symbol (struct symbol *name_sym)
7166 {
7167 const char *name = name_sym->linkage_name ();
7168 return strstr (name, "___XR") != NULL;
7169 }
7170
7171 /* Because of GNAT encoding conventions, several GDB symbols may match a
7172 given type name. If the type denoted by TYPE0 is to be preferred to
7173 that of TYPE1 for purposes of type printing, return non-zero;
7174 otherwise return 0. */
7175
7176 int
7177 ada_prefer_type (struct type *type0, struct type *type1)
7178 {
7179 if (type1 == NULL)
7180 return 1;
7181 else if (type0 == NULL)
7182 return 0;
7183 else if (type1->code () == TYPE_CODE_VOID)
7184 return 1;
7185 else if (type0->code () == TYPE_CODE_VOID)
7186 return 0;
7187 else if (type1->name () == NULL && type0->name () != NULL)
7188 return 1;
7189 else if (ada_is_constrained_packed_array_type (type0))
7190 return 1;
7191 else if (ada_is_array_descriptor_type (type0)
7192 && !ada_is_array_descriptor_type (type1))
7193 return 1;
7194 else
7195 {
7196 const char *type0_name = type0->name ();
7197 const char *type1_name = type1->name ();
7198
7199 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7200 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7201 return 1;
7202 }
7203 return 0;
7204 }
7205
7206 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7207 null. */
7208
7209 const char *
7210 ada_type_name (struct type *type)
7211 {
7212 if (type == NULL)
7213 return NULL;
7214 return type->name ();
7215 }
7216
7217 /* Search the list of "descriptive" types associated to TYPE for a type
7218 whose name is NAME. */
7219
7220 static struct type *
7221 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7222 {
7223 struct type *result, *tmp;
7224
7225 if (ada_ignore_descriptive_types_p)
7226 return NULL;
7227
7228 /* If there no descriptive-type info, then there is no parallel type
7229 to be found. */
7230 if (!HAVE_GNAT_AUX_INFO (type))
7231 return NULL;
7232
7233 result = TYPE_DESCRIPTIVE_TYPE (type);
7234 while (result != NULL)
7235 {
7236 const char *result_name = ada_type_name (result);
7237
7238 if (result_name == NULL)
7239 {
7240 warning (_("unexpected null name on descriptive type"));
7241 return NULL;
7242 }
7243
7244 /* If the names match, stop. */
7245 if (strcmp (result_name, name) == 0)
7246 break;
7247
7248 /* Otherwise, look at the next item on the list, if any. */
7249 if (HAVE_GNAT_AUX_INFO (result))
7250 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7251 else
7252 tmp = NULL;
7253
7254 /* If not found either, try after having resolved the typedef. */
7255 if (tmp != NULL)
7256 result = tmp;
7257 else
7258 {
7259 result = check_typedef (result);
7260 if (HAVE_GNAT_AUX_INFO (result))
7261 result = TYPE_DESCRIPTIVE_TYPE (result);
7262 else
7263 result = NULL;
7264 }
7265 }
7266
7267 /* If we didn't find a match, see whether this is a packed array. With
7268 older compilers, the descriptive type information is either absent or
7269 irrelevant when it comes to packed arrays so the above lookup fails.
7270 Fall back to using a parallel lookup by name in this case. */
7271 if (result == NULL && ada_is_constrained_packed_array_type (type))
7272 return ada_find_any_type (name);
7273
7274 return result;
7275 }
7276
7277 /* Find a parallel type to TYPE with the specified NAME, using the
7278 descriptive type taken from the debugging information, if available,
7279 and otherwise using the (slower) name-based method. */
7280
7281 static struct type *
7282 ada_find_parallel_type_with_name (struct type *type, const char *name)
7283 {
7284 struct type *result = NULL;
7285
7286 if (HAVE_GNAT_AUX_INFO (type))
7287 result = find_parallel_type_by_descriptive_type (type, name);
7288 else
7289 result = ada_find_any_type (name);
7290
7291 return result;
7292 }
7293
7294 /* Same as above, but specify the name of the parallel type by appending
7295 SUFFIX to the name of TYPE. */
7296
7297 struct type *
7298 ada_find_parallel_type (struct type *type, const char *suffix)
7299 {
7300 char *name;
7301 const char *type_name = ada_type_name (type);
7302 int len;
7303
7304 if (type_name == NULL)
7305 return NULL;
7306
7307 len = strlen (type_name);
7308
7309 name = (char *) alloca (len + strlen (suffix) + 1);
7310
7311 strcpy (name, type_name);
7312 strcpy (name + len, suffix);
7313
7314 return ada_find_parallel_type_with_name (type, name);
7315 }
7316
7317 /* If TYPE is a variable-size record type, return the corresponding template
7318 type describing its fields. Otherwise, return NULL. */
7319
7320 static struct type *
7321 dynamic_template_type (struct type *type)
7322 {
7323 type = ada_check_typedef (type);
7324
7325 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7326 || ada_type_name (type) == NULL)
7327 return NULL;
7328 else
7329 {
7330 int len = strlen (ada_type_name (type));
7331
7332 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7333 return type;
7334 else
7335 return ada_find_parallel_type (type, "___XVE");
7336 }
7337 }
7338
7339 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7340 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7341
7342 static int
7343 is_dynamic_field (struct type *templ_type, int field_num)
7344 {
7345 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7346
7347 return name != NULL
7348 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7349 && strstr (name, "___XVL") != NULL;
7350 }
7351
7352 /* The index of the variant field of TYPE, or -1 if TYPE does not
7353 represent a variant record type. */
7354
7355 static int
7356 variant_field_index (struct type *type)
7357 {
7358 int f;
7359
7360 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7361 return -1;
7362
7363 for (f = 0; f < type->num_fields (); f += 1)
7364 {
7365 if (ada_is_variant_part (type, f))
7366 return f;
7367 }
7368 return -1;
7369 }
7370
7371 /* A record type with no fields. */
7372
7373 static struct type *
7374 empty_record (struct type *templ)
7375 {
7376 struct type *type = alloc_type_copy (templ);
7377
7378 type->set_code (TYPE_CODE_STRUCT);
7379 INIT_NONE_SPECIFIC (type);
7380 type->set_name ("<empty>");
7381 TYPE_LENGTH (type) = 0;
7382 return type;
7383 }
7384
7385 /* An ordinary record type (with fixed-length fields) that describes
7386 the value of type TYPE at VALADDR or ADDRESS (see comments at
7387 the beginning of this section) VAL according to GNAT conventions.
7388 DVAL0 should describe the (portion of a) record that contains any
7389 necessary discriminants. It should be NULL if value_type (VAL) is
7390 an outer-level type (i.e., as opposed to a branch of a variant.) A
7391 variant field (unless unchecked) is replaced by a particular branch
7392 of the variant.
7393
7394 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7395 length are not statically known are discarded. As a consequence,
7396 VALADDR, ADDRESS and DVAL0 are ignored.
7397
7398 NOTE: Limitations: For now, we assume that dynamic fields and
7399 variants occupy whole numbers of bytes. However, they need not be
7400 byte-aligned. */
7401
7402 struct type *
7403 ada_template_to_fixed_record_type_1 (struct type *type,
7404 const gdb_byte *valaddr,
7405 CORE_ADDR address, struct value *dval0,
7406 int keep_dynamic_fields)
7407 {
7408 struct value *mark = value_mark ();
7409 struct value *dval;
7410 struct type *rtype;
7411 int nfields, bit_len;
7412 int variant_field;
7413 long off;
7414 int fld_bit_len;
7415 int f;
7416
7417 /* Compute the number of fields in this record type that are going
7418 to be processed: unless keep_dynamic_fields, this includes only
7419 fields whose position and length are static will be processed. */
7420 if (keep_dynamic_fields)
7421 nfields = type->num_fields ();
7422 else
7423 {
7424 nfields = 0;
7425 while (nfields < type->num_fields ()
7426 && !ada_is_variant_part (type, nfields)
7427 && !is_dynamic_field (type, nfields))
7428 nfields++;
7429 }
7430
7431 rtype = alloc_type_copy (type);
7432 rtype->set_code (TYPE_CODE_STRUCT);
7433 INIT_NONE_SPECIFIC (rtype);
7434 rtype->set_num_fields (nfields);
7435 rtype->set_fields
7436 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7437 rtype->set_name (ada_type_name (type));
7438 rtype->set_is_fixed_instance (true);
7439
7440 off = 0;
7441 bit_len = 0;
7442 variant_field = -1;
7443
7444 for (f = 0; f < nfields; f += 1)
7445 {
7446 off = align_up (off, field_alignment (type, f))
7447 + TYPE_FIELD_BITPOS (type, f);
7448 SET_FIELD_BITPOS (rtype->field (f), off);
7449 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7450
7451 if (ada_is_variant_part (type, f))
7452 {
7453 variant_field = f;
7454 fld_bit_len = 0;
7455 }
7456 else if (is_dynamic_field (type, f))
7457 {
7458 const gdb_byte *field_valaddr = valaddr;
7459 CORE_ADDR field_address = address;
7460 struct type *field_type =
7461 TYPE_TARGET_TYPE (type->field (f).type ());
7462
7463 if (dval0 == NULL)
7464 {
7465 /* rtype's length is computed based on the run-time
7466 value of discriminants. If the discriminants are not
7467 initialized, the type size may be completely bogus and
7468 GDB may fail to allocate a value for it. So check the
7469 size first before creating the value. */
7470 ada_ensure_varsize_limit (rtype);
7471 /* Using plain value_from_contents_and_address here
7472 causes problems because we will end up trying to
7473 resolve a type that is currently being
7474 constructed. */
7475 dval = value_from_contents_and_address_unresolved (rtype,
7476 valaddr,
7477 address);
7478 rtype = value_type (dval);
7479 }
7480 else
7481 dval = dval0;
7482
7483 /* If the type referenced by this field is an aligner type, we need
7484 to unwrap that aligner type, because its size might not be set.
7485 Keeping the aligner type would cause us to compute the wrong
7486 size for this field, impacting the offset of the all the fields
7487 that follow this one. */
7488 if (ada_is_aligner_type (field_type))
7489 {
7490 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7491
7492 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7493 field_address = cond_offset_target (field_address, field_offset);
7494 field_type = ada_aligned_type (field_type);
7495 }
7496
7497 field_valaddr = cond_offset_host (field_valaddr,
7498 off / TARGET_CHAR_BIT);
7499 field_address = cond_offset_target (field_address,
7500 off / TARGET_CHAR_BIT);
7501
7502 /* Get the fixed type of the field. Note that, in this case,
7503 we do not want to get the real type out of the tag: if
7504 the current field is the parent part of a tagged record,
7505 we will get the tag of the object. Clearly wrong: the real
7506 type of the parent is not the real type of the child. We
7507 would end up in an infinite loop. */
7508 field_type = ada_get_base_type (field_type);
7509 field_type = ada_to_fixed_type (field_type, field_valaddr,
7510 field_address, dval, 0);
7511 /* If the field size is already larger than the maximum
7512 object size, then the record itself will necessarily
7513 be larger than the maximum object size. We need to make
7514 this check now, because the size might be so ridiculously
7515 large (due to an uninitialized variable in the inferior)
7516 that it would cause an overflow when adding it to the
7517 record size. */
7518 ada_ensure_varsize_limit (field_type);
7519
7520 rtype->field (f).set_type (field_type);
7521 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7522 /* The multiplication can potentially overflow. But because
7523 the field length has been size-checked just above, and
7524 assuming that the maximum size is a reasonable value,
7525 an overflow should not happen in practice. So rather than
7526 adding overflow recovery code to this already complex code,
7527 we just assume that it's not going to happen. */
7528 fld_bit_len =
7529 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7530 }
7531 else
7532 {
7533 /* Note: If this field's type is a typedef, it is important
7534 to preserve the typedef layer.
7535
7536 Otherwise, we might be transforming a typedef to a fat
7537 pointer (encoding a pointer to an unconstrained array),
7538 into a basic fat pointer (encoding an unconstrained
7539 array). As both types are implemented using the same
7540 structure, the typedef is the only clue which allows us
7541 to distinguish between the two options. Stripping it
7542 would prevent us from printing this field appropriately. */
7543 rtype->field (f).set_type (type->field (f).type ());
7544 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7545 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7546 fld_bit_len =
7547 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7548 else
7549 {
7550 struct type *field_type = type->field (f).type ();
7551
7552 /* We need to be careful of typedefs when computing
7553 the length of our field. If this is a typedef,
7554 get the length of the target type, not the length
7555 of the typedef. */
7556 if (field_type->code () == TYPE_CODE_TYPEDEF)
7557 field_type = ada_typedef_target_type (field_type);
7558
7559 fld_bit_len =
7560 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7561 }
7562 }
7563 if (off + fld_bit_len > bit_len)
7564 bit_len = off + fld_bit_len;
7565 off += fld_bit_len;
7566 TYPE_LENGTH (rtype) =
7567 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7568 }
7569
7570 /* We handle the variant part, if any, at the end because of certain
7571 odd cases in which it is re-ordered so as NOT to be the last field of
7572 the record. This can happen in the presence of representation
7573 clauses. */
7574 if (variant_field >= 0)
7575 {
7576 struct type *branch_type;
7577
7578 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7579
7580 if (dval0 == NULL)
7581 {
7582 /* Using plain value_from_contents_and_address here causes
7583 problems because we will end up trying to resolve a type
7584 that is currently being constructed. */
7585 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7586 address);
7587 rtype = value_type (dval);
7588 }
7589 else
7590 dval = dval0;
7591
7592 branch_type =
7593 to_fixed_variant_branch_type
7594 (type->field (variant_field).type (),
7595 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7596 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7597 if (branch_type == NULL)
7598 {
7599 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7600 rtype->field (f - 1) = rtype->field (f);
7601 rtype->set_num_fields (rtype->num_fields () - 1);
7602 }
7603 else
7604 {
7605 rtype->field (variant_field).set_type (branch_type);
7606 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7607 fld_bit_len =
7608 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7609 TARGET_CHAR_BIT;
7610 if (off + fld_bit_len > bit_len)
7611 bit_len = off + fld_bit_len;
7612 TYPE_LENGTH (rtype) =
7613 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7614 }
7615 }
7616
7617 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7618 should contain the alignment of that record, which should be a strictly
7619 positive value. If null or negative, then something is wrong, most
7620 probably in the debug info. In that case, we don't round up the size
7621 of the resulting type. If this record is not part of another structure,
7622 the current RTYPE length might be good enough for our purposes. */
7623 if (TYPE_LENGTH (type) <= 0)
7624 {
7625 if (rtype->name ())
7626 warning (_("Invalid type size for `%s' detected: %s."),
7627 rtype->name (), pulongest (TYPE_LENGTH (type)));
7628 else
7629 warning (_("Invalid type size for <unnamed> detected: %s."),
7630 pulongest (TYPE_LENGTH (type)));
7631 }
7632 else
7633 {
7634 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7635 TYPE_LENGTH (type));
7636 }
7637
7638 value_free_to_mark (mark);
7639 if (TYPE_LENGTH (rtype) > varsize_limit)
7640 error (_("record type with dynamic size is larger than varsize-limit"));
7641 return rtype;
7642 }
7643
7644 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7645 of 1. */
7646
7647 static struct type *
7648 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7649 CORE_ADDR address, struct value *dval0)
7650 {
7651 return ada_template_to_fixed_record_type_1 (type, valaddr,
7652 address, dval0, 1);
7653 }
7654
7655 /* An ordinary record type in which ___XVL-convention fields and
7656 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7657 static approximations, containing all possible fields. Uses
7658 no runtime values. Useless for use in values, but that's OK,
7659 since the results are used only for type determinations. Works on both
7660 structs and unions. Representation note: to save space, we memorize
7661 the result of this function in the TYPE_TARGET_TYPE of the
7662 template type. */
7663
7664 static struct type *
7665 template_to_static_fixed_type (struct type *type0)
7666 {
7667 struct type *type;
7668 int nfields;
7669 int f;
7670
7671 /* No need no do anything if the input type is already fixed. */
7672 if (type0->is_fixed_instance ())
7673 return type0;
7674
7675 /* Likewise if we already have computed the static approximation. */
7676 if (TYPE_TARGET_TYPE (type0) != NULL)
7677 return TYPE_TARGET_TYPE (type0);
7678
7679 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7680 type = type0;
7681 nfields = type0->num_fields ();
7682
7683 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7684 recompute all over next time. */
7685 TYPE_TARGET_TYPE (type0) = type;
7686
7687 for (f = 0; f < nfields; f += 1)
7688 {
7689 struct type *field_type = type0->field (f).type ();
7690 struct type *new_type;
7691
7692 if (is_dynamic_field (type0, f))
7693 {
7694 field_type = ada_check_typedef (field_type);
7695 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7696 }
7697 else
7698 new_type = static_unwrap_type (field_type);
7699
7700 if (new_type != field_type)
7701 {
7702 /* Clone TYPE0 only the first time we get a new field type. */
7703 if (type == type0)
7704 {
7705 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7706 type->set_code (type0->code ());
7707 INIT_NONE_SPECIFIC (type);
7708 type->set_num_fields (nfields);
7709
7710 field *fields =
7711 ((struct field *)
7712 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7713 memcpy (fields, type0->fields (),
7714 sizeof (struct field) * nfields);
7715 type->set_fields (fields);
7716
7717 type->set_name (ada_type_name (type0));
7718 type->set_is_fixed_instance (true);
7719 TYPE_LENGTH (type) = 0;
7720 }
7721 type->field (f).set_type (new_type);
7722 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7723 }
7724 }
7725
7726 return type;
7727 }
7728
7729 /* Given an object of type TYPE whose contents are at VALADDR and
7730 whose address in memory is ADDRESS, returns a revision of TYPE,
7731 which should be a non-dynamic-sized record, in which the variant
7732 part, if any, is replaced with the appropriate branch. Looks
7733 for discriminant values in DVAL0, which can be NULL if the record
7734 contains the necessary discriminant values. */
7735
7736 static struct type *
7737 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7738 CORE_ADDR address, struct value *dval0)
7739 {
7740 struct value *mark = value_mark ();
7741 struct value *dval;
7742 struct type *rtype;
7743 struct type *branch_type;
7744 int nfields = type->num_fields ();
7745 int variant_field = variant_field_index (type);
7746
7747 if (variant_field == -1)
7748 return type;
7749
7750 if (dval0 == NULL)
7751 {
7752 dval = value_from_contents_and_address (type, valaddr, address);
7753 type = value_type (dval);
7754 }
7755 else
7756 dval = dval0;
7757
7758 rtype = alloc_type_copy (type);
7759 rtype->set_code (TYPE_CODE_STRUCT);
7760 INIT_NONE_SPECIFIC (rtype);
7761 rtype->set_num_fields (nfields);
7762
7763 field *fields =
7764 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7765 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7766 rtype->set_fields (fields);
7767
7768 rtype->set_name (ada_type_name (type));
7769 rtype->set_is_fixed_instance (true);
7770 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7771
7772 branch_type = to_fixed_variant_branch_type
7773 (type->field (variant_field).type (),
7774 cond_offset_host (valaddr,
7775 TYPE_FIELD_BITPOS (type, variant_field)
7776 / TARGET_CHAR_BIT),
7777 cond_offset_target (address,
7778 TYPE_FIELD_BITPOS (type, variant_field)
7779 / TARGET_CHAR_BIT), dval);
7780 if (branch_type == NULL)
7781 {
7782 int f;
7783
7784 for (f = variant_field + 1; f < nfields; f += 1)
7785 rtype->field (f - 1) = rtype->field (f);
7786 rtype->set_num_fields (rtype->num_fields () - 1);
7787 }
7788 else
7789 {
7790 rtype->field (variant_field).set_type (branch_type);
7791 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7792 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7793 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7794 }
7795 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7796
7797 value_free_to_mark (mark);
7798 return rtype;
7799 }
7800
7801 /* An ordinary record type (with fixed-length fields) that describes
7802 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7803 beginning of this section]. Any necessary discriminants' values
7804 should be in DVAL, a record value; it may be NULL if the object
7805 at ADDR itself contains any necessary discriminant values.
7806 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7807 values from the record are needed. Except in the case that DVAL,
7808 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7809 unchecked) is replaced by a particular branch of the variant.
7810
7811 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7812 is questionable and may be removed. It can arise during the
7813 processing of an unconstrained-array-of-record type where all the
7814 variant branches have exactly the same size. This is because in
7815 such cases, the compiler does not bother to use the XVS convention
7816 when encoding the record. I am currently dubious of this
7817 shortcut and suspect the compiler should be altered. FIXME. */
7818
7819 static struct type *
7820 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7821 CORE_ADDR address, struct value *dval)
7822 {
7823 struct type *templ_type;
7824
7825 if (type0->is_fixed_instance ())
7826 return type0;
7827
7828 templ_type = dynamic_template_type (type0);
7829
7830 if (templ_type != NULL)
7831 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7832 else if (variant_field_index (type0) >= 0)
7833 {
7834 if (dval == NULL && valaddr == NULL && address == 0)
7835 return type0;
7836 return to_record_with_fixed_variant_part (type0, valaddr, address,
7837 dval);
7838 }
7839 else
7840 {
7841 type0->set_is_fixed_instance (true);
7842 return type0;
7843 }
7844
7845 }
7846
7847 /* An ordinary record type (with fixed-length fields) that describes
7848 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7849 union type. Any necessary discriminants' values should be in DVAL,
7850 a record value. That is, this routine selects the appropriate
7851 branch of the union at ADDR according to the discriminant value
7852 indicated in the union's type name. Returns VAR_TYPE0 itself if
7853 it represents a variant subject to a pragma Unchecked_Union. */
7854
7855 static struct type *
7856 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7857 CORE_ADDR address, struct value *dval)
7858 {
7859 int which;
7860 struct type *templ_type;
7861 struct type *var_type;
7862
7863 if (var_type0->code () == TYPE_CODE_PTR)
7864 var_type = TYPE_TARGET_TYPE (var_type0);
7865 else
7866 var_type = var_type0;
7867
7868 templ_type = ada_find_parallel_type (var_type, "___XVU");
7869
7870 if (templ_type != NULL)
7871 var_type = templ_type;
7872
7873 if (is_unchecked_variant (var_type, value_type (dval)))
7874 return var_type0;
7875 which = ada_which_variant_applies (var_type, dval);
7876
7877 if (which < 0)
7878 return empty_record (var_type);
7879 else if (is_dynamic_field (var_type, which))
7880 return to_fixed_record_type
7881 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7882 valaddr, address, dval);
7883 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7884 return
7885 to_fixed_record_type
7886 (var_type->field (which).type (), valaddr, address, dval);
7887 else
7888 return var_type->field (which).type ();
7889 }
7890
7891 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7892 ENCODING_TYPE, a type following the GNAT conventions for discrete
7893 type encodings, only carries redundant information. */
7894
7895 static int
7896 ada_is_redundant_range_encoding (struct type *range_type,
7897 struct type *encoding_type)
7898 {
7899 const char *bounds_str;
7900 int n;
7901 LONGEST lo, hi;
7902
7903 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7904
7905 if (get_base_type (range_type)->code ()
7906 != get_base_type (encoding_type)->code ())
7907 {
7908 /* The compiler probably used a simple base type to describe
7909 the range type instead of the range's actual base type,
7910 expecting us to get the real base type from the encoding
7911 anyway. In this situation, the encoding cannot be ignored
7912 as redundant. */
7913 return 0;
7914 }
7915
7916 if (is_dynamic_type (range_type))
7917 return 0;
7918
7919 if (encoding_type->name () == NULL)
7920 return 0;
7921
7922 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7923 if (bounds_str == NULL)
7924 return 0;
7925
7926 n = 8; /* Skip "___XDLU_". */
7927 if (!ada_scan_number (bounds_str, n, &lo, &n))
7928 return 0;
7929 if (range_type->bounds ()->low.const_val () != lo)
7930 return 0;
7931
7932 n += 2; /* Skip the "__" separator between the two bounds. */
7933 if (!ada_scan_number (bounds_str, n, &hi, &n))
7934 return 0;
7935 if (range_type->bounds ()->high.const_val () != hi)
7936 return 0;
7937
7938 return 1;
7939 }
7940
7941 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7942 a type following the GNAT encoding for describing array type
7943 indices, only carries redundant information. */
7944
7945 static int
7946 ada_is_redundant_index_type_desc (struct type *array_type,
7947 struct type *desc_type)
7948 {
7949 struct type *this_layer = check_typedef (array_type);
7950 int i;
7951
7952 for (i = 0; i < desc_type->num_fields (); i++)
7953 {
7954 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7955 desc_type->field (i).type ()))
7956 return 0;
7957 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7958 }
7959
7960 return 1;
7961 }
7962
7963 /* Assuming that TYPE0 is an array type describing the type of a value
7964 at ADDR, and that DVAL describes a record containing any
7965 discriminants used in TYPE0, returns a type for the value that
7966 contains no dynamic components (that is, no components whose sizes
7967 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7968 true, gives an error message if the resulting type's size is over
7969 varsize_limit. */
7970
7971 static struct type *
7972 to_fixed_array_type (struct type *type0, struct value *dval,
7973 int ignore_too_big)
7974 {
7975 struct type *index_type_desc;
7976 struct type *result;
7977 int constrained_packed_array_p;
7978 static const char *xa_suffix = "___XA";
7979
7980 type0 = ada_check_typedef (type0);
7981 if (type0->is_fixed_instance ())
7982 return type0;
7983
7984 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7985 if (constrained_packed_array_p)
7986 {
7987 type0 = decode_constrained_packed_array_type (type0);
7988 if (type0 == nullptr)
7989 error (_("could not decode constrained packed array type"));
7990 }
7991
7992 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
7993
7994 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
7995 encoding suffixed with 'P' may still be generated. If so,
7996 it should be used to find the XA type. */
7997
7998 if (index_type_desc == NULL)
7999 {
8000 const char *type_name = ada_type_name (type0);
8001
8002 if (type_name != NULL)
8003 {
8004 const int len = strlen (type_name);
8005 char *name = (char *) alloca (len + strlen (xa_suffix));
8006
8007 if (type_name[len - 1] == 'P')
8008 {
8009 strcpy (name, type_name);
8010 strcpy (name + len - 1, xa_suffix);
8011 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8012 }
8013 }
8014 }
8015
8016 ada_fixup_array_indexes_type (index_type_desc);
8017 if (index_type_desc != NULL
8018 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8019 {
8020 /* Ignore this ___XA parallel type, as it does not bring any
8021 useful information. This allows us to avoid creating fixed
8022 versions of the array's index types, which would be identical
8023 to the original ones. This, in turn, can also help avoid
8024 the creation of fixed versions of the array itself. */
8025 index_type_desc = NULL;
8026 }
8027
8028 if (index_type_desc == NULL)
8029 {
8030 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8031
8032 /* NOTE: elt_type---the fixed version of elt_type0---should never
8033 depend on the contents of the array in properly constructed
8034 debugging data. */
8035 /* Create a fixed version of the array element type.
8036 We're not providing the address of an element here,
8037 and thus the actual object value cannot be inspected to do
8038 the conversion. This should not be a problem, since arrays of
8039 unconstrained objects are not allowed. In particular, all
8040 the elements of an array of a tagged type should all be of
8041 the same type specified in the debugging info. No need to
8042 consult the object tag. */
8043 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8044
8045 /* Make sure we always create a new array type when dealing with
8046 packed array types, since we're going to fix-up the array
8047 type length and element bitsize a little further down. */
8048 if (elt_type0 == elt_type && !constrained_packed_array_p)
8049 result = type0;
8050 else
8051 result = create_array_type (alloc_type_copy (type0),
8052 elt_type, type0->index_type ());
8053 }
8054 else
8055 {
8056 int i;
8057 struct type *elt_type0;
8058
8059 elt_type0 = type0;
8060 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8061 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8062
8063 /* NOTE: result---the fixed version of elt_type0---should never
8064 depend on the contents of the array in properly constructed
8065 debugging data. */
8066 /* Create a fixed version of the array element type.
8067 We're not providing the address of an element here,
8068 and thus the actual object value cannot be inspected to do
8069 the conversion. This should not be a problem, since arrays of
8070 unconstrained objects are not allowed. In particular, all
8071 the elements of an array of a tagged type should all be of
8072 the same type specified in the debugging info. No need to
8073 consult the object tag. */
8074 result =
8075 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8076
8077 elt_type0 = type0;
8078 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8079 {
8080 struct type *range_type =
8081 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8082
8083 result = create_array_type (alloc_type_copy (elt_type0),
8084 result, range_type);
8085 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8086 }
8087 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8088 error (_("array type with dynamic size is larger than varsize-limit"));
8089 }
8090
8091 /* We want to preserve the type name. This can be useful when
8092 trying to get the type name of a value that has already been
8093 printed (for instance, if the user did "print VAR; whatis $". */
8094 result->set_name (type0->name ());
8095
8096 if (constrained_packed_array_p)
8097 {
8098 /* So far, the resulting type has been created as if the original
8099 type was a regular (non-packed) array type. As a result, the
8100 bitsize of the array elements needs to be set again, and the array
8101 length needs to be recomputed based on that bitsize. */
8102 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8103 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8104
8105 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8106 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8107 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8108 TYPE_LENGTH (result)++;
8109 }
8110
8111 result->set_is_fixed_instance (true);
8112 return result;
8113 }
8114
8115
8116 /* A standard type (containing no dynamically sized components)
8117 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8118 DVAL describes a record containing any discriminants used in TYPE0,
8119 and may be NULL if there are none, or if the object of type TYPE at
8120 ADDRESS or in VALADDR contains these discriminants.
8121
8122 If CHECK_TAG is not null, in the case of tagged types, this function
8123 attempts to locate the object's tag and use it to compute the actual
8124 type. However, when ADDRESS is null, we cannot use it to determine the
8125 location of the tag, and therefore compute the tagged type's actual type.
8126 So we return the tagged type without consulting the tag. */
8127
8128 static struct type *
8129 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8130 CORE_ADDR address, struct value *dval, int check_tag)
8131 {
8132 type = ada_check_typedef (type);
8133
8134 /* Only un-fixed types need to be handled here. */
8135 if (!HAVE_GNAT_AUX_INFO (type))
8136 return type;
8137
8138 switch (type->code ())
8139 {
8140 default:
8141 return type;
8142 case TYPE_CODE_STRUCT:
8143 {
8144 struct type *static_type = to_static_fixed_type (type);
8145 struct type *fixed_record_type =
8146 to_fixed_record_type (type, valaddr, address, NULL);
8147
8148 /* If STATIC_TYPE is a tagged type and we know the object's address,
8149 then we can determine its tag, and compute the object's actual
8150 type from there. Note that we have to use the fixed record
8151 type (the parent part of the record may have dynamic fields
8152 and the way the location of _tag is expressed may depend on
8153 them). */
8154
8155 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8156 {
8157 struct value *tag =
8158 value_tag_from_contents_and_address
8159 (fixed_record_type,
8160 valaddr,
8161 address);
8162 struct type *real_type = type_from_tag (tag);
8163 struct value *obj =
8164 value_from_contents_and_address (fixed_record_type,
8165 valaddr,
8166 address);
8167 fixed_record_type = value_type (obj);
8168 if (real_type != NULL)
8169 return to_fixed_record_type
8170 (real_type, NULL,
8171 value_address (ada_tag_value_at_base_address (obj)), NULL);
8172 }
8173
8174 /* Check to see if there is a parallel ___XVZ variable.
8175 If there is, then it provides the actual size of our type. */
8176 else if (ada_type_name (fixed_record_type) != NULL)
8177 {
8178 const char *name = ada_type_name (fixed_record_type);
8179 char *xvz_name
8180 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8181 bool xvz_found = false;
8182 LONGEST size;
8183
8184 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8185 try
8186 {
8187 xvz_found = get_int_var_value (xvz_name, size);
8188 }
8189 catch (const gdb_exception_error &except)
8190 {
8191 /* We found the variable, but somehow failed to read
8192 its value. Rethrow the same error, but with a little
8193 bit more information, to help the user understand
8194 what went wrong (Eg: the variable might have been
8195 optimized out). */
8196 throw_error (except.error,
8197 _("unable to read value of %s (%s)"),
8198 xvz_name, except.what ());
8199 }
8200
8201 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8202 {
8203 fixed_record_type = copy_type (fixed_record_type);
8204 TYPE_LENGTH (fixed_record_type) = size;
8205
8206 /* The FIXED_RECORD_TYPE may have be a stub. We have
8207 observed this when the debugging info is STABS, and
8208 apparently it is something that is hard to fix.
8209
8210 In practice, we don't need the actual type definition
8211 at all, because the presence of the XVZ variable allows us
8212 to assume that there must be a XVS type as well, which we
8213 should be able to use later, when we need the actual type
8214 definition.
8215
8216 In the meantime, pretend that the "fixed" type we are
8217 returning is NOT a stub, because this can cause trouble
8218 when using this type to create new types targeting it.
8219 Indeed, the associated creation routines often check
8220 whether the target type is a stub and will try to replace
8221 it, thus using a type with the wrong size. This, in turn,
8222 might cause the new type to have the wrong size too.
8223 Consider the case of an array, for instance, where the size
8224 of the array is computed from the number of elements in
8225 our array multiplied by the size of its element. */
8226 fixed_record_type->set_is_stub (false);
8227 }
8228 }
8229 return fixed_record_type;
8230 }
8231 case TYPE_CODE_ARRAY:
8232 return to_fixed_array_type (type, dval, 1);
8233 case TYPE_CODE_UNION:
8234 if (dval == NULL)
8235 return type;
8236 else
8237 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8238 }
8239 }
8240
8241 /* The same as ada_to_fixed_type_1, except that it preserves the type
8242 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8243
8244 The typedef layer needs be preserved in order to differentiate between
8245 arrays and array pointers when both types are implemented using the same
8246 fat pointer. In the array pointer case, the pointer is encoded as
8247 a typedef of the pointer type. For instance, considering:
8248
8249 type String_Access is access String;
8250 S1 : String_Access := null;
8251
8252 To the debugger, S1 is defined as a typedef of type String. But
8253 to the user, it is a pointer. So if the user tries to print S1,
8254 we should not dereference the array, but print the array address
8255 instead.
8256
8257 If we didn't preserve the typedef layer, we would lose the fact that
8258 the type is to be presented as a pointer (needs de-reference before
8259 being printed). And we would also use the source-level type name. */
8260
8261 struct type *
8262 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8263 CORE_ADDR address, struct value *dval, int check_tag)
8264
8265 {
8266 struct type *fixed_type =
8267 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8268
8269 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8270 then preserve the typedef layer.
8271
8272 Implementation note: We can only check the main-type portion of
8273 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8274 from TYPE now returns a type that has the same instance flags
8275 as TYPE. For instance, if TYPE is a "typedef const", and its
8276 target type is a "struct", then the typedef elimination will return
8277 a "const" version of the target type. See check_typedef for more
8278 details about how the typedef layer elimination is done.
8279
8280 brobecker/2010-11-19: It seems to me that the only case where it is
8281 useful to preserve the typedef layer is when dealing with fat pointers.
8282 Perhaps, we could add a check for that and preserve the typedef layer
8283 only in that situation. But this seems unnecessary so far, probably
8284 because we call check_typedef/ada_check_typedef pretty much everywhere.
8285 */
8286 if (type->code () == TYPE_CODE_TYPEDEF
8287 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8288 == TYPE_MAIN_TYPE (fixed_type)))
8289 return type;
8290
8291 return fixed_type;
8292 }
8293
8294 /* A standard (static-sized) type corresponding as well as possible to
8295 TYPE0, but based on no runtime data. */
8296
8297 static struct type *
8298 to_static_fixed_type (struct type *type0)
8299 {
8300 struct type *type;
8301
8302 if (type0 == NULL)
8303 return NULL;
8304
8305 if (type0->is_fixed_instance ())
8306 return type0;
8307
8308 type0 = ada_check_typedef (type0);
8309
8310 switch (type0->code ())
8311 {
8312 default:
8313 return type0;
8314 case TYPE_CODE_STRUCT:
8315 type = dynamic_template_type (type0);
8316 if (type != NULL)
8317 return template_to_static_fixed_type (type);
8318 else
8319 return template_to_static_fixed_type (type0);
8320 case TYPE_CODE_UNION:
8321 type = ada_find_parallel_type (type0, "___XVU");
8322 if (type != NULL)
8323 return template_to_static_fixed_type (type);
8324 else
8325 return template_to_static_fixed_type (type0);
8326 }
8327 }
8328
8329 /* A static approximation of TYPE with all type wrappers removed. */
8330
8331 static struct type *
8332 static_unwrap_type (struct type *type)
8333 {
8334 if (ada_is_aligner_type (type))
8335 {
8336 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8337 if (ada_type_name (type1) == NULL)
8338 type1->set_name (ada_type_name (type));
8339
8340 return static_unwrap_type (type1);
8341 }
8342 else
8343 {
8344 struct type *raw_real_type = ada_get_base_type (type);
8345
8346 if (raw_real_type == type)
8347 return type;
8348 else
8349 return to_static_fixed_type (raw_real_type);
8350 }
8351 }
8352
8353 /* In some cases, incomplete and private types require
8354 cross-references that are not resolved as records (for example,
8355 type Foo;
8356 type FooP is access Foo;
8357 V: FooP;
8358 type Foo is array ...;
8359 ). In these cases, since there is no mechanism for producing
8360 cross-references to such types, we instead substitute for FooP a
8361 stub enumeration type that is nowhere resolved, and whose tag is
8362 the name of the actual type. Call these types "non-record stubs". */
8363
8364 /* A type equivalent to TYPE that is not a non-record stub, if one
8365 exists, otherwise TYPE. */
8366
8367 struct type *
8368 ada_check_typedef (struct type *type)
8369 {
8370 if (type == NULL)
8371 return NULL;
8372
8373 /* If our type is an access to an unconstrained array, which is encoded
8374 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8375 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8376 what allows us to distinguish between fat pointers that represent
8377 array types, and fat pointers that represent array access types
8378 (in both cases, the compiler implements them as fat pointers). */
8379 if (ada_is_access_to_unconstrained_array (type))
8380 return type;
8381
8382 type = check_typedef (type);
8383 if (type == NULL || type->code () != TYPE_CODE_ENUM
8384 || !type->is_stub ()
8385 || type->name () == NULL)
8386 return type;
8387 else
8388 {
8389 const char *name = type->name ();
8390 struct type *type1 = ada_find_any_type (name);
8391
8392 if (type1 == NULL)
8393 return type;
8394
8395 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8396 stubs pointing to arrays, as we don't create symbols for array
8397 types, only for the typedef-to-array types). If that's the case,
8398 strip the typedef layer. */
8399 if (type1->code () == TYPE_CODE_TYPEDEF)
8400 type1 = ada_check_typedef (type1);
8401
8402 return type1;
8403 }
8404 }
8405
8406 /* A value representing the data at VALADDR/ADDRESS as described by
8407 type TYPE0, but with a standard (static-sized) type that correctly
8408 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8409 type, then return VAL0 [this feature is simply to avoid redundant
8410 creation of struct values]. */
8411
8412 static struct value *
8413 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8414 struct value *val0)
8415 {
8416 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8417
8418 if (type == type0 && val0 != NULL)
8419 return val0;
8420
8421 if (VALUE_LVAL (val0) != lval_memory)
8422 {
8423 /* Our value does not live in memory; it could be a convenience
8424 variable, for instance. Create a not_lval value using val0's
8425 contents. */
8426 return value_from_contents (type, value_contents (val0));
8427 }
8428
8429 return value_from_contents_and_address (type, 0, address);
8430 }
8431
8432 /* A value representing VAL, but with a standard (static-sized) type
8433 that correctly describes it. Does not necessarily create a new
8434 value. */
8435
8436 struct value *
8437 ada_to_fixed_value (struct value *val)
8438 {
8439 val = unwrap_value (val);
8440 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8441 return val;
8442 }
8443 \f
8444
8445 /* Attributes */
8446
8447 /* Table mapping attribute numbers to names.
8448 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8449
8450 static const char * const attribute_names[] = {
8451 "<?>",
8452
8453 "first",
8454 "last",
8455 "length",
8456 "image",
8457 "max",
8458 "min",
8459 "modulus",
8460 "pos",
8461 "size",
8462 "tag",
8463 "val",
8464 0
8465 };
8466
8467 static const char *
8468 ada_attribute_name (enum exp_opcode n)
8469 {
8470 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8471 return attribute_names[n - OP_ATR_FIRST + 1];
8472 else
8473 return attribute_names[0];
8474 }
8475
8476 /* Evaluate the 'POS attribute applied to ARG. */
8477
8478 static LONGEST
8479 pos_atr (struct value *arg)
8480 {
8481 struct value *val = coerce_ref (arg);
8482 struct type *type = value_type (val);
8483
8484 if (!discrete_type_p (type))
8485 error (_("'POS only defined on discrete types"));
8486
8487 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8488 if (!result.has_value ())
8489 error (_("enumeration value is invalid: can't find 'POS"));
8490
8491 return *result;
8492 }
8493
8494 struct value *
8495 ada_pos_atr (struct type *expect_type,
8496 struct expression *exp,
8497 enum noside noside, enum exp_opcode op,
8498 struct value *arg)
8499 {
8500 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8502 return value_zero (type, not_lval);
8503 return value_from_longest (type, pos_atr (arg));
8504 }
8505
8506 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8507
8508 static struct value *
8509 val_atr (struct type *type, LONGEST val)
8510 {
8511 gdb_assert (discrete_type_p (type));
8512 if (type->code () == TYPE_CODE_RANGE)
8513 type = TYPE_TARGET_TYPE (type);
8514 if (type->code () == TYPE_CODE_ENUM)
8515 {
8516 if (val < 0 || val >= type->num_fields ())
8517 error (_("argument to 'VAL out of range"));
8518 val = TYPE_FIELD_ENUMVAL (type, val);
8519 }
8520 return value_from_longest (type, val);
8521 }
8522
8523 struct value *
8524 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8525 {
8526 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8527 return value_zero (type, not_lval);
8528
8529 if (!discrete_type_p (type))
8530 error (_("'VAL only defined on discrete types"));
8531 if (!integer_type_p (value_type (arg)))
8532 error (_("'VAL requires integral argument"));
8533
8534 return val_atr (type, value_as_long (arg));
8535 }
8536 \f
8537
8538 /* Evaluation */
8539
8540 /* True if TYPE appears to be an Ada character type.
8541 [At the moment, this is true only for Character and Wide_Character;
8542 It is a heuristic test that could stand improvement]. */
8543
8544 bool
8545 ada_is_character_type (struct type *type)
8546 {
8547 const char *name;
8548
8549 /* If the type code says it's a character, then assume it really is,
8550 and don't check any further. */
8551 if (type->code () == TYPE_CODE_CHAR)
8552 return true;
8553
8554 /* Otherwise, assume it's a character type iff it is a discrete type
8555 with a known character type name. */
8556 name = ada_type_name (type);
8557 return (name != NULL
8558 && (type->code () == TYPE_CODE_INT
8559 || type->code () == TYPE_CODE_RANGE)
8560 && (strcmp (name, "character") == 0
8561 || strcmp (name, "wide_character") == 0
8562 || strcmp (name, "wide_wide_character") == 0
8563 || strcmp (name, "unsigned char") == 0));
8564 }
8565
8566 /* True if TYPE appears to be an Ada string type. */
8567
8568 bool
8569 ada_is_string_type (struct type *type)
8570 {
8571 type = ada_check_typedef (type);
8572 if (type != NULL
8573 && type->code () != TYPE_CODE_PTR
8574 && (ada_is_simple_array_type (type)
8575 || ada_is_array_descriptor_type (type))
8576 && ada_array_arity (type) == 1)
8577 {
8578 struct type *elttype = ada_array_element_type (type, 1);
8579
8580 return ada_is_character_type (elttype);
8581 }
8582 else
8583 return false;
8584 }
8585
8586 /* The compiler sometimes provides a parallel XVS type for a given
8587 PAD type. Normally, it is safe to follow the PAD type directly,
8588 but older versions of the compiler have a bug that causes the offset
8589 of its "F" field to be wrong. Following that field in that case
8590 would lead to incorrect results, but this can be worked around
8591 by ignoring the PAD type and using the associated XVS type instead.
8592
8593 Set to True if the debugger should trust the contents of PAD types.
8594 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8595 static bool trust_pad_over_xvs = true;
8596
8597 /* True if TYPE is a struct type introduced by the compiler to force the
8598 alignment of a value. Such types have a single field with a
8599 distinctive name. */
8600
8601 int
8602 ada_is_aligner_type (struct type *type)
8603 {
8604 type = ada_check_typedef (type);
8605
8606 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8607 return 0;
8608
8609 return (type->code () == TYPE_CODE_STRUCT
8610 && type->num_fields () == 1
8611 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8612 }
8613
8614 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8615 the parallel type. */
8616
8617 struct type *
8618 ada_get_base_type (struct type *raw_type)
8619 {
8620 struct type *real_type_namer;
8621 struct type *raw_real_type;
8622
8623 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8624 return raw_type;
8625
8626 if (ada_is_aligner_type (raw_type))
8627 /* The encoding specifies that we should always use the aligner type.
8628 So, even if this aligner type has an associated XVS type, we should
8629 simply ignore it.
8630
8631 According to the compiler gurus, an XVS type parallel to an aligner
8632 type may exist because of a stabs limitation. In stabs, aligner
8633 types are empty because the field has a variable-sized type, and
8634 thus cannot actually be used as an aligner type. As a result,
8635 we need the associated parallel XVS type to decode the type.
8636 Since the policy in the compiler is to not change the internal
8637 representation based on the debugging info format, we sometimes
8638 end up having a redundant XVS type parallel to the aligner type. */
8639 return raw_type;
8640
8641 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8642 if (real_type_namer == NULL
8643 || real_type_namer->code () != TYPE_CODE_STRUCT
8644 || real_type_namer->num_fields () != 1)
8645 return raw_type;
8646
8647 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8648 {
8649 /* This is an older encoding form where the base type needs to be
8650 looked up by name. We prefer the newer encoding because it is
8651 more efficient. */
8652 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8653 if (raw_real_type == NULL)
8654 return raw_type;
8655 else
8656 return raw_real_type;
8657 }
8658
8659 /* The field in our XVS type is a reference to the base type. */
8660 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8661 }
8662
8663 /* The type of value designated by TYPE, with all aligners removed. */
8664
8665 struct type *
8666 ada_aligned_type (struct type *type)
8667 {
8668 if (ada_is_aligner_type (type))
8669 return ada_aligned_type (type->field (0).type ());
8670 else
8671 return ada_get_base_type (type);
8672 }
8673
8674
8675 /* The address of the aligned value in an object at address VALADDR
8676 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8677
8678 const gdb_byte *
8679 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8680 {
8681 if (ada_is_aligner_type (type))
8682 return ada_aligned_value_addr (type->field (0).type (),
8683 valaddr +
8684 TYPE_FIELD_BITPOS (type,
8685 0) / TARGET_CHAR_BIT);
8686 else
8687 return valaddr;
8688 }
8689
8690
8691
8692 /* The printed representation of an enumeration literal with encoded
8693 name NAME. The value is good to the next call of ada_enum_name. */
8694 const char *
8695 ada_enum_name (const char *name)
8696 {
8697 static std::string storage;
8698 const char *tmp;
8699
8700 /* First, unqualify the enumeration name:
8701 1. Search for the last '.' character. If we find one, then skip
8702 all the preceding characters, the unqualified name starts
8703 right after that dot.
8704 2. Otherwise, we may be debugging on a target where the compiler
8705 translates dots into "__". Search forward for double underscores,
8706 but stop searching when we hit an overloading suffix, which is
8707 of the form "__" followed by digits. */
8708
8709 tmp = strrchr (name, '.');
8710 if (tmp != NULL)
8711 name = tmp + 1;
8712 else
8713 {
8714 while ((tmp = strstr (name, "__")) != NULL)
8715 {
8716 if (isdigit (tmp[2]))
8717 break;
8718 else
8719 name = tmp + 2;
8720 }
8721 }
8722
8723 if (name[0] == 'Q')
8724 {
8725 int v;
8726
8727 if (name[1] == 'U' || name[1] == 'W')
8728 {
8729 if (sscanf (name + 2, "%x", &v) != 1)
8730 return name;
8731 }
8732 else if (((name[1] >= '0' && name[1] <= '9')
8733 || (name[1] >= 'a' && name[1] <= 'z'))
8734 && name[2] == '\0')
8735 {
8736 storage = string_printf ("'%c'", name[1]);
8737 return storage.c_str ();
8738 }
8739 else
8740 return name;
8741
8742 if (isascii (v) && isprint (v))
8743 storage = string_printf ("'%c'", v);
8744 else if (name[1] == 'U')
8745 storage = string_printf ("[\"%02x\"]", v);
8746 else
8747 storage = string_printf ("[\"%04x\"]", v);
8748
8749 return storage.c_str ();
8750 }
8751 else
8752 {
8753 tmp = strstr (name, "__");
8754 if (tmp == NULL)
8755 tmp = strstr (name, "$");
8756 if (tmp != NULL)
8757 {
8758 storage = std::string (name, tmp - name);
8759 return storage.c_str ();
8760 }
8761
8762 return name;
8763 }
8764 }
8765
8766 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8767 value it wraps. */
8768
8769 static struct value *
8770 unwrap_value (struct value *val)
8771 {
8772 struct type *type = ada_check_typedef (value_type (val));
8773
8774 if (ada_is_aligner_type (type))
8775 {
8776 struct value *v = ada_value_struct_elt (val, "F", 0);
8777 struct type *val_type = ada_check_typedef (value_type (v));
8778
8779 if (ada_type_name (val_type) == NULL)
8780 val_type->set_name (ada_type_name (type));
8781
8782 return unwrap_value (v);
8783 }
8784 else
8785 {
8786 struct type *raw_real_type =
8787 ada_check_typedef (ada_get_base_type (type));
8788
8789 /* If there is no parallel XVS or XVE type, then the value is
8790 already unwrapped. Return it without further modification. */
8791 if ((type == raw_real_type)
8792 && ada_find_parallel_type (type, "___XVE") == NULL)
8793 return val;
8794
8795 return
8796 coerce_unspec_val_to_type
8797 (val, ada_to_fixed_type (raw_real_type, 0,
8798 value_address (val),
8799 NULL, 1));
8800 }
8801 }
8802
8803 /* Given two array types T1 and T2, return nonzero iff both arrays
8804 contain the same number of elements. */
8805
8806 static int
8807 ada_same_array_size_p (struct type *t1, struct type *t2)
8808 {
8809 LONGEST lo1, hi1, lo2, hi2;
8810
8811 /* Get the array bounds in order to verify that the size of
8812 the two arrays match. */
8813 if (!get_array_bounds (t1, &lo1, &hi1)
8814 || !get_array_bounds (t2, &lo2, &hi2))
8815 error (_("unable to determine array bounds"));
8816
8817 /* To make things easier for size comparison, normalize a bit
8818 the case of empty arrays by making sure that the difference
8819 between upper bound and lower bound is always -1. */
8820 if (lo1 > hi1)
8821 hi1 = lo1 - 1;
8822 if (lo2 > hi2)
8823 hi2 = lo2 - 1;
8824
8825 return (hi1 - lo1 == hi2 - lo2);
8826 }
8827
8828 /* Assuming that VAL is an array of integrals, and TYPE represents
8829 an array with the same number of elements, but with wider integral
8830 elements, return an array "casted" to TYPE. In practice, this
8831 means that the returned array is built by casting each element
8832 of the original array into TYPE's (wider) element type. */
8833
8834 static struct value *
8835 ada_promote_array_of_integrals (struct type *type, struct value *val)
8836 {
8837 struct type *elt_type = TYPE_TARGET_TYPE (type);
8838 LONGEST lo, hi;
8839 struct value *res;
8840 LONGEST i;
8841
8842 /* Verify that both val and type are arrays of scalars, and
8843 that the size of val's elements is smaller than the size
8844 of type's element. */
8845 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8846 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8847 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8848 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8849 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8850 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8851
8852 if (!get_array_bounds (type, &lo, &hi))
8853 error (_("unable to determine array bounds"));
8854
8855 res = allocate_value (type);
8856
8857 /* Promote each array element. */
8858 for (i = 0; i < hi - lo + 1; i++)
8859 {
8860 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8861
8862 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8863 value_contents_all (elt), TYPE_LENGTH (elt_type));
8864 }
8865
8866 return res;
8867 }
8868
8869 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8870 return the converted value. */
8871
8872 static struct value *
8873 coerce_for_assign (struct type *type, struct value *val)
8874 {
8875 struct type *type2 = value_type (val);
8876
8877 if (type == type2)
8878 return val;
8879
8880 type2 = ada_check_typedef (type2);
8881 type = ada_check_typedef (type);
8882
8883 if (type2->code () == TYPE_CODE_PTR
8884 && type->code () == TYPE_CODE_ARRAY)
8885 {
8886 val = ada_value_ind (val);
8887 type2 = value_type (val);
8888 }
8889
8890 if (type2->code () == TYPE_CODE_ARRAY
8891 && type->code () == TYPE_CODE_ARRAY)
8892 {
8893 if (!ada_same_array_size_p (type, type2))
8894 error (_("cannot assign arrays of different length"));
8895
8896 if (is_integral_type (TYPE_TARGET_TYPE (type))
8897 && is_integral_type (TYPE_TARGET_TYPE (type2))
8898 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8899 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8900 {
8901 /* Allow implicit promotion of the array elements to
8902 a wider type. */
8903 return ada_promote_array_of_integrals (type, val);
8904 }
8905
8906 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8907 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8908 error (_("Incompatible types in assignment"));
8909 deprecated_set_value_type (val, type);
8910 }
8911 return val;
8912 }
8913
8914 static struct value *
8915 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8916 {
8917 struct value *val;
8918 struct type *type1, *type2;
8919 LONGEST v, v1, v2;
8920
8921 arg1 = coerce_ref (arg1);
8922 arg2 = coerce_ref (arg2);
8923 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8924 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8925
8926 if (type1->code () != TYPE_CODE_INT
8927 || type2->code () != TYPE_CODE_INT)
8928 return value_binop (arg1, arg2, op);
8929
8930 switch (op)
8931 {
8932 case BINOP_MOD:
8933 case BINOP_DIV:
8934 case BINOP_REM:
8935 break;
8936 default:
8937 return value_binop (arg1, arg2, op);
8938 }
8939
8940 v2 = value_as_long (arg2);
8941 if (v2 == 0)
8942 {
8943 const char *name;
8944 if (op == BINOP_MOD)
8945 name = "mod";
8946 else if (op == BINOP_DIV)
8947 name = "/";
8948 else
8949 {
8950 gdb_assert (op == BINOP_REM);
8951 name = "rem";
8952 }
8953
8954 error (_("second operand of %s must not be zero."), name);
8955 }
8956
8957 if (type1->is_unsigned () || op == BINOP_MOD)
8958 return value_binop (arg1, arg2, op);
8959
8960 v1 = value_as_long (arg1);
8961 switch (op)
8962 {
8963 case BINOP_DIV:
8964 v = v1 / v2;
8965 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8966 v += v > 0 ? -1 : 1;
8967 break;
8968 case BINOP_REM:
8969 v = v1 % v2;
8970 if (v * v1 < 0)
8971 v -= v2;
8972 break;
8973 default:
8974 /* Should not reach this point. */
8975 v = 0;
8976 }
8977
8978 val = allocate_value (type1);
8979 store_unsigned_integer (value_contents_raw (val),
8980 TYPE_LENGTH (value_type (val)),
8981 type_byte_order (type1), v);
8982 return val;
8983 }
8984
8985 static int
8986 ada_value_equal (struct value *arg1, struct value *arg2)
8987 {
8988 if (ada_is_direct_array_type (value_type (arg1))
8989 || ada_is_direct_array_type (value_type (arg2)))
8990 {
8991 struct type *arg1_type, *arg2_type;
8992
8993 /* Automatically dereference any array reference before
8994 we attempt to perform the comparison. */
8995 arg1 = ada_coerce_ref (arg1);
8996 arg2 = ada_coerce_ref (arg2);
8997
8998 arg1 = ada_coerce_to_simple_array (arg1);
8999 arg2 = ada_coerce_to_simple_array (arg2);
9000
9001 arg1_type = ada_check_typedef (value_type (arg1));
9002 arg2_type = ada_check_typedef (value_type (arg2));
9003
9004 if (arg1_type->code () != TYPE_CODE_ARRAY
9005 || arg2_type->code () != TYPE_CODE_ARRAY)
9006 error (_("Attempt to compare array with non-array"));
9007 /* FIXME: The following works only for types whose
9008 representations use all bits (no padding or undefined bits)
9009 and do not have user-defined equality. */
9010 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9011 && memcmp (value_contents (arg1), value_contents (arg2),
9012 TYPE_LENGTH (arg1_type)) == 0);
9013 }
9014 return value_equal (arg1, arg2);
9015 }
9016
9017 namespace expr
9018 {
9019
9020 bool
9021 check_objfile (const std::unique_ptr<ada_component> &comp,
9022 struct objfile *objfile)
9023 {
9024 return comp->uses_objfile (objfile);
9025 }
9026
9027 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9028 component of LHS (a simple array or a record). Does not modify the
9029 inferior's memory, nor does it modify LHS (unless LHS ==
9030 CONTAINER). */
9031
9032 static void
9033 assign_component (struct value *container, struct value *lhs, LONGEST index,
9034 struct expression *exp, operation_up &arg)
9035 {
9036 scoped_value_mark mark;
9037
9038 struct value *elt;
9039 struct type *lhs_type = check_typedef (value_type (lhs));
9040
9041 if (lhs_type->code () == TYPE_CODE_ARRAY)
9042 {
9043 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9044 struct value *index_val = value_from_longest (index_type, index);
9045
9046 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9047 }
9048 else
9049 {
9050 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9051 elt = ada_to_fixed_value (elt);
9052 }
9053
9054 ada_aggregate_operation *ag_op
9055 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9056 if (ag_op != nullptr)
9057 ag_op->assign_aggregate (container, elt, exp);
9058 else
9059 value_assign_to_component (container, elt,
9060 arg->evaluate (nullptr, exp,
9061 EVAL_NORMAL));
9062 }
9063
9064 bool
9065 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9066 {
9067 for (const auto &item : m_components)
9068 if (item->uses_objfile (objfile))
9069 return true;
9070 return false;
9071 }
9072
9073 void
9074 ada_aggregate_component::dump (ui_file *stream, int depth)
9075 {
9076 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9077 for (const auto &item : m_components)
9078 item->dump (stream, depth + 1);
9079 }
9080
9081 void
9082 ada_aggregate_component::assign (struct value *container,
9083 struct value *lhs, struct expression *exp,
9084 std::vector<LONGEST> &indices,
9085 LONGEST low, LONGEST high)
9086 {
9087 for (auto &item : m_components)
9088 item->assign (container, lhs, exp, indices, low, high);
9089 }
9090
9091 /* See ada-exp.h. */
9092
9093 value *
9094 ada_aggregate_operation::assign_aggregate (struct value *container,
9095 struct value *lhs,
9096 struct expression *exp)
9097 {
9098 struct type *lhs_type;
9099 LONGEST low_index, high_index;
9100
9101 container = ada_coerce_ref (container);
9102 if (ada_is_direct_array_type (value_type (container)))
9103 container = ada_coerce_to_simple_array (container);
9104 lhs = ada_coerce_ref (lhs);
9105 if (!deprecated_value_modifiable (lhs))
9106 error (_("Left operand of assignment is not a modifiable lvalue."));
9107
9108 lhs_type = check_typedef (value_type (lhs));
9109 if (ada_is_direct_array_type (lhs_type))
9110 {
9111 lhs = ada_coerce_to_simple_array (lhs);
9112 lhs_type = check_typedef (value_type (lhs));
9113 low_index = lhs_type->bounds ()->low.const_val ();
9114 high_index = lhs_type->bounds ()->high.const_val ();
9115 }
9116 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9117 {
9118 low_index = 0;
9119 high_index = num_visible_fields (lhs_type) - 1;
9120 }
9121 else
9122 error (_("Left-hand side must be array or record."));
9123
9124 std::vector<LONGEST> indices (4);
9125 indices[0] = indices[1] = low_index - 1;
9126 indices[2] = indices[3] = high_index + 1;
9127
9128 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9129 low_index, high_index);
9130
9131 return container;
9132 }
9133
9134 bool
9135 ada_positional_component::uses_objfile (struct objfile *objfile)
9136 {
9137 return m_op->uses_objfile (objfile);
9138 }
9139
9140 void
9141 ada_positional_component::dump (ui_file *stream, int depth)
9142 {
9143 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9144 depth, "", m_index);
9145 m_op->dump (stream, depth + 1);
9146 }
9147
9148 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9149 construct, given that the positions are relative to lower bound
9150 LOW, where HIGH is the upper bound. Record the position in
9151 INDICES. CONTAINER is as for assign_aggregate. */
9152 void
9153 ada_positional_component::assign (struct value *container,
9154 struct value *lhs, struct expression *exp,
9155 std::vector<LONGEST> &indices,
9156 LONGEST low, LONGEST high)
9157 {
9158 LONGEST ind = m_index + low;
9159
9160 if (ind - 1 == high)
9161 warning (_("Extra components in aggregate ignored."));
9162 if (ind <= high)
9163 {
9164 add_component_interval (ind, ind, indices);
9165 assign_component (container, lhs, ind, exp, m_op);
9166 }
9167 }
9168
9169 bool
9170 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9171 {
9172 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9173 }
9174
9175 void
9176 ada_discrete_range_association::dump (ui_file *stream, int depth)
9177 {
9178 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9179 m_low->dump (stream, depth + 1);
9180 m_high->dump (stream, depth + 1);
9181 }
9182
9183 void
9184 ada_discrete_range_association::assign (struct value *container,
9185 struct value *lhs,
9186 struct expression *exp,
9187 std::vector<LONGEST> &indices,
9188 LONGEST low, LONGEST high,
9189 operation_up &op)
9190 {
9191 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9192 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9193
9194 if (lower <= upper && (lower < low || upper > high))
9195 error (_("Index in component association out of bounds."));
9196
9197 add_component_interval (lower, upper, indices);
9198 while (lower <= upper)
9199 {
9200 assign_component (container, lhs, lower, exp, op);
9201 lower += 1;
9202 }
9203 }
9204
9205 bool
9206 ada_name_association::uses_objfile (struct objfile *objfile)
9207 {
9208 return m_val->uses_objfile (objfile);
9209 }
9210
9211 void
9212 ada_name_association::dump (ui_file *stream, int depth)
9213 {
9214 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9215 m_val->dump (stream, depth + 1);
9216 }
9217
9218 void
9219 ada_name_association::assign (struct value *container,
9220 struct value *lhs,
9221 struct expression *exp,
9222 std::vector<LONGEST> &indices,
9223 LONGEST low, LONGEST high,
9224 operation_up &op)
9225 {
9226 int index;
9227
9228 if (ada_is_direct_array_type (value_type (lhs)))
9229 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9230 EVAL_NORMAL)));
9231 else
9232 {
9233 ada_string_operation *strop
9234 = dynamic_cast<ada_string_operation *> (m_val.get ());
9235
9236 const char *name;
9237 if (strop != nullptr)
9238 name = strop->get_name ();
9239 else
9240 {
9241 ada_var_value_operation *vvo
9242 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9243 if (vvo != nullptr)
9244 error (_("Invalid record component association."));
9245 name = vvo->get_symbol ()->natural_name ();
9246 }
9247
9248 index = 0;
9249 if (! find_struct_field (name, value_type (lhs), 0,
9250 NULL, NULL, NULL, NULL, &index))
9251 error (_("Unknown component name: %s."), name);
9252 }
9253
9254 add_component_interval (index, index, indices);
9255 assign_component (container, lhs, index, exp, op);
9256 }
9257
9258 bool
9259 ada_choices_component::uses_objfile (struct objfile *objfile)
9260 {
9261 if (m_op->uses_objfile (objfile))
9262 return true;
9263 for (const auto &item : m_assocs)
9264 if (item->uses_objfile (objfile))
9265 return true;
9266 return false;
9267 }
9268
9269 void
9270 ada_choices_component::dump (ui_file *stream, int depth)
9271 {
9272 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9273 m_op->dump (stream, depth + 1);
9274 for (const auto &item : m_assocs)
9275 item->dump (stream, depth + 1);
9276 }
9277
9278 /* Assign into the components of LHS indexed by the OP_CHOICES
9279 construct at *POS, updating *POS past the construct, given that
9280 the allowable indices are LOW..HIGH. Record the indices assigned
9281 to in INDICES. CONTAINER is as for assign_aggregate. */
9282 void
9283 ada_choices_component::assign (struct value *container,
9284 struct value *lhs, struct expression *exp,
9285 std::vector<LONGEST> &indices,
9286 LONGEST low, LONGEST high)
9287 {
9288 for (auto &item : m_assocs)
9289 item->assign (container, lhs, exp, indices, low, high, m_op);
9290 }
9291
9292 bool
9293 ada_others_component::uses_objfile (struct objfile *objfile)
9294 {
9295 return m_op->uses_objfile (objfile);
9296 }
9297
9298 void
9299 ada_others_component::dump (ui_file *stream, int depth)
9300 {
9301 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9302 m_op->dump (stream, depth + 1);
9303 }
9304
9305 /* Assign the value of the expression in the OP_OTHERS construct in
9306 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9307 have not been previously assigned. The index intervals already assigned
9308 are in INDICES. CONTAINER is as for assign_aggregate. */
9309 void
9310 ada_others_component::assign (struct value *container,
9311 struct value *lhs, struct expression *exp,
9312 std::vector<LONGEST> &indices,
9313 LONGEST low, LONGEST high)
9314 {
9315 int num_indices = indices.size ();
9316 for (int i = 0; i < num_indices - 2; i += 2)
9317 {
9318 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9319 assign_component (container, lhs, ind, exp, m_op);
9320 }
9321 }
9322
9323 struct value *
9324 ada_assign_operation::evaluate (struct type *expect_type,
9325 struct expression *exp,
9326 enum noside noside)
9327 {
9328 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9329
9330 ada_aggregate_operation *ag_op
9331 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9332 if (ag_op != nullptr)
9333 {
9334 if (noside != EVAL_NORMAL)
9335 return arg1;
9336
9337 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9338 return ada_value_assign (arg1, arg1);
9339 }
9340 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9341 except if the lhs of our assignment is a convenience variable.
9342 In the case of assigning to a convenience variable, the lhs
9343 should be exactly the result of the evaluation of the rhs. */
9344 struct type *type = value_type (arg1);
9345 if (VALUE_LVAL (arg1) == lval_internalvar)
9346 type = NULL;
9347 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9348 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9349 return arg1;
9350 if (VALUE_LVAL (arg1) == lval_internalvar)
9351 {
9352 /* Nothing. */
9353 }
9354 else
9355 arg2 = coerce_for_assign (value_type (arg1), arg2);
9356 return ada_value_assign (arg1, arg2);
9357 }
9358
9359 } /* namespace expr */
9360
9361 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9362 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9363 overlap. */
9364 static void
9365 add_component_interval (LONGEST low, LONGEST high,
9366 std::vector<LONGEST> &indices)
9367 {
9368 int i, j;
9369
9370 int size = indices.size ();
9371 for (i = 0; i < size; i += 2) {
9372 if (high >= indices[i] && low <= indices[i + 1])
9373 {
9374 int kh;
9375
9376 for (kh = i + 2; kh < size; kh += 2)
9377 if (high < indices[kh])
9378 break;
9379 if (low < indices[i])
9380 indices[i] = low;
9381 indices[i + 1] = indices[kh - 1];
9382 if (high > indices[i + 1])
9383 indices[i + 1] = high;
9384 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9385 indices.resize (kh - i - 2);
9386 return;
9387 }
9388 else if (high < indices[i])
9389 break;
9390 }
9391
9392 indices.resize (indices.size () + 2);
9393 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9394 indices[j] = indices[j - 2];
9395 indices[i] = low;
9396 indices[i + 1] = high;
9397 }
9398
9399 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9400 is different. */
9401
9402 static struct value *
9403 ada_value_cast (struct type *type, struct value *arg2)
9404 {
9405 if (type == ada_check_typedef (value_type (arg2)))
9406 return arg2;
9407
9408 return value_cast (type, arg2);
9409 }
9410
9411 /* Evaluating Ada expressions, and printing their result.
9412 ------------------------------------------------------
9413
9414 1. Introduction:
9415 ----------------
9416
9417 We usually evaluate an Ada expression in order to print its value.
9418 We also evaluate an expression in order to print its type, which
9419 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9420 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9421 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9422 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9423 similar.
9424
9425 Evaluating expressions is a little more complicated for Ada entities
9426 than it is for entities in languages such as C. The main reason for
9427 this is that Ada provides types whose definition might be dynamic.
9428 One example of such types is variant records. Or another example
9429 would be an array whose bounds can only be known at run time.
9430
9431 The following description is a general guide as to what should be
9432 done (and what should NOT be done) in order to evaluate an expression
9433 involving such types, and when. This does not cover how the semantic
9434 information is encoded by GNAT as this is covered separatly. For the
9435 document used as the reference for the GNAT encoding, see exp_dbug.ads
9436 in the GNAT sources.
9437
9438 Ideally, we should embed each part of this description next to its
9439 associated code. Unfortunately, the amount of code is so vast right
9440 now that it's hard to see whether the code handling a particular
9441 situation might be duplicated or not. One day, when the code is
9442 cleaned up, this guide might become redundant with the comments
9443 inserted in the code, and we might want to remove it.
9444
9445 2. ``Fixing'' an Entity, the Simple Case:
9446 -----------------------------------------
9447
9448 When evaluating Ada expressions, the tricky issue is that they may
9449 reference entities whose type contents and size are not statically
9450 known. Consider for instance a variant record:
9451
9452 type Rec (Empty : Boolean := True) is record
9453 case Empty is
9454 when True => null;
9455 when False => Value : Integer;
9456 end case;
9457 end record;
9458 Yes : Rec := (Empty => False, Value => 1);
9459 No : Rec := (empty => True);
9460
9461 The size and contents of that record depends on the value of the
9462 descriminant (Rec.Empty). At this point, neither the debugging
9463 information nor the associated type structure in GDB are able to
9464 express such dynamic types. So what the debugger does is to create
9465 "fixed" versions of the type that applies to the specific object.
9466 We also informally refer to this operation as "fixing" an object,
9467 which means creating its associated fixed type.
9468
9469 Example: when printing the value of variable "Yes" above, its fixed
9470 type would look like this:
9471
9472 type Rec is record
9473 Empty : Boolean;
9474 Value : Integer;
9475 end record;
9476
9477 On the other hand, if we printed the value of "No", its fixed type
9478 would become:
9479
9480 type Rec is record
9481 Empty : Boolean;
9482 end record;
9483
9484 Things become a little more complicated when trying to fix an entity
9485 with a dynamic type that directly contains another dynamic type,
9486 such as an array of variant records, for instance. There are
9487 two possible cases: Arrays, and records.
9488
9489 3. ``Fixing'' Arrays:
9490 ---------------------
9491
9492 The type structure in GDB describes an array in terms of its bounds,
9493 and the type of its elements. By design, all elements in the array
9494 have the same type and we cannot represent an array of variant elements
9495 using the current type structure in GDB. When fixing an array,
9496 we cannot fix the array element, as we would potentially need one
9497 fixed type per element of the array. As a result, the best we can do
9498 when fixing an array is to produce an array whose bounds and size
9499 are correct (allowing us to read it from memory), but without having
9500 touched its element type. Fixing each element will be done later,
9501 when (if) necessary.
9502
9503 Arrays are a little simpler to handle than records, because the same
9504 amount of memory is allocated for each element of the array, even if
9505 the amount of space actually used by each element differs from element
9506 to element. Consider for instance the following array of type Rec:
9507
9508 type Rec_Array is array (1 .. 2) of Rec;
9509
9510 The actual amount of memory occupied by each element might be different
9511 from element to element, depending on the value of their discriminant.
9512 But the amount of space reserved for each element in the array remains
9513 fixed regardless. So we simply need to compute that size using
9514 the debugging information available, from which we can then determine
9515 the array size (we multiply the number of elements of the array by
9516 the size of each element).
9517
9518 The simplest case is when we have an array of a constrained element
9519 type. For instance, consider the following type declarations:
9520
9521 type Bounded_String (Max_Size : Integer) is
9522 Length : Integer;
9523 Buffer : String (1 .. Max_Size);
9524 end record;
9525 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9526
9527 In this case, the compiler describes the array as an array of
9528 variable-size elements (identified by its XVS suffix) for which
9529 the size can be read in the parallel XVZ variable.
9530
9531 In the case of an array of an unconstrained element type, the compiler
9532 wraps the array element inside a private PAD type. This type should not
9533 be shown to the user, and must be "unwrap"'ed before printing. Note
9534 that we also use the adjective "aligner" in our code to designate
9535 these wrapper types.
9536
9537 In some cases, the size allocated for each element is statically
9538 known. In that case, the PAD type already has the correct size,
9539 and the array element should remain unfixed.
9540
9541 But there are cases when this size is not statically known.
9542 For instance, assuming that "Five" is an integer variable:
9543
9544 type Dynamic is array (1 .. Five) of Integer;
9545 type Wrapper (Has_Length : Boolean := False) is record
9546 Data : Dynamic;
9547 case Has_Length is
9548 when True => Length : Integer;
9549 when False => null;
9550 end case;
9551 end record;
9552 type Wrapper_Array is array (1 .. 2) of Wrapper;
9553
9554 Hello : Wrapper_Array := (others => (Has_Length => True,
9555 Data => (others => 17),
9556 Length => 1));
9557
9558
9559 The debugging info would describe variable Hello as being an
9560 array of a PAD type. The size of that PAD type is not statically
9561 known, but can be determined using a parallel XVZ variable.
9562 In that case, a copy of the PAD type with the correct size should
9563 be used for the fixed array.
9564
9565 3. ``Fixing'' record type objects:
9566 ----------------------------------
9567
9568 Things are slightly different from arrays in the case of dynamic
9569 record types. In this case, in order to compute the associated
9570 fixed type, we need to determine the size and offset of each of
9571 its components. This, in turn, requires us to compute the fixed
9572 type of each of these components.
9573
9574 Consider for instance the example:
9575
9576 type Bounded_String (Max_Size : Natural) is record
9577 Str : String (1 .. Max_Size);
9578 Length : Natural;
9579 end record;
9580 My_String : Bounded_String (Max_Size => 10);
9581
9582 In that case, the position of field "Length" depends on the size
9583 of field Str, which itself depends on the value of the Max_Size
9584 discriminant. In order to fix the type of variable My_String,
9585 we need to fix the type of field Str. Therefore, fixing a variant
9586 record requires us to fix each of its components.
9587
9588 However, if a component does not have a dynamic size, the component
9589 should not be fixed. In particular, fields that use a PAD type
9590 should not fixed. Here is an example where this might happen
9591 (assuming type Rec above):
9592
9593 type Container (Big : Boolean) is record
9594 First : Rec;
9595 After : Integer;
9596 case Big is
9597 when True => Another : Integer;
9598 when False => null;
9599 end case;
9600 end record;
9601 My_Container : Container := (Big => False,
9602 First => (Empty => True),
9603 After => 42);
9604
9605 In that example, the compiler creates a PAD type for component First,
9606 whose size is constant, and then positions the component After just
9607 right after it. The offset of component After is therefore constant
9608 in this case.
9609
9610 The debugger computes the position of each field based on an algorithm
9611 that uses, among other things, the actual position and size of the field
9612 preceding it. Let's now imagine that the user is trying to print
9613 the value of My_Container. If the type fixing was recursive, we would
9614 end up computing the offset of field After based on the size of the
9615 fixed version of field First. And since in our example First has
9616 only one actual field, the size of the fixed type is actually smaller
9617 than the amount of space allocated to that field, and thus we would
9618 compute the wrong offset of field After.
9619
9620 To make things more complicated, we need to watch out for dynamic
9621 components of variant records (identified by the ___XVL suffix in
9622 the component name). Even if the target type is a PAD type, the size
9623 of that type might not be statically known. So the PAD type needs
9624 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9625 we might end up with the wrong size for our component. This can be
9626 observed with the following type declarations:
9627
9628 type Octal is new Integer range 0 .. 7;
9629 type Octal_Array is array (Positive range <>) of Octal;
9630 pragma Pack (Octal_Array);
9631
9632 type Octal_Buffer (Size : Positive) is record
9633 Buffer : Octal_Array (1 .. Size);
9634 Length : Integer;
9635 end record;
9636
9637 In that case, Buffer is a PAD type whose size is unset and needs
9638 to be computed by fixing the unwrapped type.
9639
9640 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9641 ----------------------------------------------------------
9642
9643 Lastly, when should the sub-elements of an entity that remained unfixed
9644 thus far, be actually fixed?
9645
9646 The answer is: Only when referencing that element. For instance
9647 when selecting one component of a record, this specific component
9648 should be fixed at that point in time. Or when printing the value
9649 of a record, each component should be fixed before its value gets
9650 printed. Similarly for arrays, the element of the array should be
9651 fixed when printing each element of the array, or when extracting
9652 one element out of that array. On the other hand, fixing should
9653 not be performed on the elements when taking a slice of an array!
9654
9655 Note that one of the side effects of miscomputing the offset and
9656 size of each field is that we end up also miscomputing the size
9657 of the containing type. This can have adverse results when computing
9658 the value of an entity. GDB fetches the value of an entity based
9659 on the size of its type, and thus a wrong size causes GDB to fetch
9660 the wrong amount of memory. In the case where the computed size is
9661 too small, GDB fetches too little data to print the value of our
9662 entity. Results in this case are unpredictable, as we usually read
9663 past the buffer containing the data =:-o. */
9664
9665 /* A helper function for TERNOP_IN_RANGE. */
9666
9667 static value *
9668 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9669 enum noside noside,
9670 value *arg1, value *arg2, value *arg3)
9671 {
9672 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9673 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9674 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9675 return
9676 value_from_longest (type,
9677 (value_less (arg1, arg3)
9678 || value_equal (arg1, arg3))
9679 && (value_less (arg2, arg1)
9680 || value_equal (arg2, arg1)));
9681 }
9682
9683 /* A helper function for UNOP_NEG. */
9684
9685 value *
9686 ada_unop_neg (struct type *expect_type,
9687 struct expression *exp,
9688 enum noside noside, enum exp_opcode op,
9689 struct value *arg1)
9690 {
9691 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9692 return value_neg (arg1);
9693 }
9694
9695 /* A helper function for UNOP_IN_RANGE. */
9696
9697 value *
9698 ada_unop_in_range (struct type *expect_type,
9699 struct expression *exp,
9700 enum noside noside, enum exp_opcode op,
9701 struct value *arg1, struct type *type)
9702 {
9703 struct value *arg2, *arg3;
9704 switch (type->code ())
9705 {
9706 default:
9707 lim_warning (_("Membership test incompletely implemented; "
9708 "always returns true"));
9709 type = language_bool_type (exp->language_defn, exp->gdbarch);
9710 return value_from_longest (type, (LONGEST) 1);
9711
9712 case TYPE_CODE_RANGE:
9713 arg2 = value_from_longest (type,
9714 type->bounds ()->low.const_val ());
9715 arg3 = value_from_longest (type,
9716 type->bounds ()->high.const_val ());
9717 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9718 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9719 type = language_bool_type (exp->language_defn, exp->gdbarch);
9720 return
9721 value_from_longest (type,
9722 (value_less (arg1, arg3)
9723 || value_equal (arg1, arg3))
9724 && (value_less (arg2, arg1)
9725 || value_equal (arg2, arg1)));
9726 }
9727 }
9728
9729 /* A helper function for OP_ATR_TAG. */
9730
9731 value *
9732 ada_atr_tag (struct type *expect_type,
9733 struct expression *exp,
9734 enum noside noside, enum exp_opcode op,
9735 struct value *arg1)
9736 {
9737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9738 return value_zero (ada_tag_type (arg1), not_lval);
9739
9740 return ada_value_tag (arg1);
9741 }
9742
9743 /* A helper function for OP_ATR_SIZE. */
9744
9745 value *
9746 ada_atr_size (struct type *expect_type,
9747 struct expression *exp,
9748 enum noside noside, enum exp_opcode op,
9749 struct value *arg1)
9750 {
9751 struct type *type = value_type (arg1);
9752
9753 /* If the argument is a reference, then dereference its type, since
9754 the user is really asking for the size of the actual object,
9755 not the size of the pointer. */
9756 if (type->code () == TYPE_CODE_REF)
9757 type = TYPE_TARGET_TYPE (type);
9758
9759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9760 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9761 else
9762 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9763 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9764 }
9765
9766 /* A helper function for UNOP_ABS. */
9767
9768 value *
9769 ada_abs (struct type *expect_type,
9770 struct expression *exp,
9771 enum noside noside, enum exp_opcode op,
9772 struct value *arg1)
9773 {
9774 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9775 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9776 return value_neg (arg1);
9777 else
9778 return arg1;
9779 }
9780
9781 /* A helper function for BINOP_MUL. */
9782
9783 value *
9784 ada_mult_binop (struct type *expect_type,
9785 struct expression *exp,
9786 enum noside noside, enum exp_opcode op,
9787 struct value *arg1, struct value *arg2)
9788 {
9789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9790 {
9791 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9792 return value_zero (value_type (arg1), not_lval);
9793 }
9794 else
9795 {
9796 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9797 return ada_value_binop (arg1, arg2, op);
9798 }
9799 }
9800
9801 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9802
9803 value *
9804 ada_equal_binop (struct type *expect_type,
9805 struct expression *exp,
9806 enum noside noside, enum exp_opcode op,
9807 struct value *arg1, struct value *arg2)
9808 {
9809 int tem;
9810 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9811 tem = 0;
9812 else
9813 {
9814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9815 tem = ada_value_equal (arg1, arg2);
9816 }
9817 if (op == BINOP_NOTEQUAL)
9818 tem = !tem;
9819 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9820 return value_from_longest (type, (LONGEST) tem);
9821 }
9822
9823 /* A helper function for TERNOP_SLICE. */
9824
9825 value *
9826 ada_ternop_slice (struct expression *exp,
9827 enum noside noside,
9828 struct value *array, struct value *low_bound_val,
9829 struct value *high_bound_val)
9830 {
9831 LONGEST low_bound;
9832 LONGEST high_bound;
9833
9834 low_bound_val = coerce_ref (low_bound_val);
9835 high_bound_val = coerce_ref (high_bound_val);
9836 low_bound = value_as_long (low_bound_val);
9837 high_bound = value_as_long (high_bound_val);
9838
9839 /* If this is a reference to an aligner type, then remove all
9840 the aligners. */
9841 if (value_type (array)->code () == TYPE_CODE_REF
9842 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9843 TYPE_TARGET_TYPE (value_type (array)) =
9844 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9845
9846 if (ada_is_any_packed_array_type (value_type (array)))
9847 error (_("cannot slice a packed array"));
9848
9849 /* If this is a reference to an array or an array lvalue,
9850 convert to a pointer. */
9851 if (value_type (array)->code () == TYPE_CODE_REF
9852 || (value_type (array)->code () == TYPE_CODE_ARRAY
9853 && VALUE_LVAL (array) == lval_memory))
9854 array = value_addr (array);
9855
9856 if (noside == EVAL_AVOID_SIDE_EFFECTS
9857 && ada_is_array_descriptor_type (ada_check_typedef
9858 (value_type (array))))
9859 return empty_array (ada_type_of_array (array, 0), low_bound,
9860 high_bound);
9861
9862 array = ada_coerce_to_simple_array_ptr (array);
9863
9864 /* If we have more than one level of pointer indirection,
9865 dereference the value until we get only one level. */
9866 while (value_type (array)->code () == TYPE_CODE_PTR
9867 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9868 == TYPE_CODE_PTR))
9869 array = value_ind (array);
9870
9871 /* Make sure we really do have an array type before going further,
9872 to avoid a SEGV when trying to get the index type or the target
9873 type later down the road if the debug info generated by
9874 the compiler is incorrect or incomplete. */
9875 if (!ada_is_simple_array_type (value_type (array)))
9876 error (_("cannot take slice of non-array"));
9877
9878 if (ada_check_typedef (value_type (array))->code ()
9879 == TYPE_CODE_PTR)
9880 {
9881 struct type *type0 = ada_check_typedef (value_type (array));
9882
9883 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9884 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9885 else
9886 {
9887 struct type *arr_type0 =
9888 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9889
9890 return ada_value_slice_from_ptr (array, arr_type0,
9891 longest_to_int (low_bound),
9892 longest_to_int (high_bound));
9893 }
9894 }
9895 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9896 return array;
9897 else if (high_bound < low_bound)
9898 return empty_array (value_type (array), low_bound, high_bound);
9899 else
9900 return ada_value_slice (array, longest_to_int (low_bound),
9901 longest_to_int (high_bound));
9902 }
9903
9904 /* A helper function for BINOP_IN_BOUNDS. */
9905
9906 value *
9907 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9908 struct value *arg1, struct value *arg2, int n)
9909 {
9910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9911 {
9912 struct type *type = language_bool_type (exp->language_defn,
9913 exp->gdbarch);
9914 return value_zero (type, not_lval);
9915 }
9916
9917 struct type *type = ada_index_type (value_type (arg2), n, "range");
9918 if (!type)
9919 type = value_type (arg1);
9920
9921 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9922 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9923
9924 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9925 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9926 type = language_bool_type (exp->language_defn, exp->gdbarch);
9927 return value_from_longest (type,
9928 (value_less (arg1, arg3)
9929 || value_equal (arg1, arg3))
9930 && (value_less (arg2, arg1)
9931 || value_equal (arg2, arg1)));
9932 }
9933
9934 /* A helper function for some attribute operations. */
9935
9936 static value *
9937 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9938 struct value *arg1, struct type *type_arg, int tem)
9939 {
9940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9941 {
9942 if (type_arg == NULL)
9943 type_arg = value_type (arg1);
9944
9945 if (ada_is_constrained_packed_array_type (type_arg))
9946 type_arg = decode_constrained_packed_array_type (type_arg);
9947
9948 if (!discrete_type_p (type_arg))
9949 {
9950 switch (op)
9951 {
9952 default: /* Should never happen. */
9953 error (_("unexpected attribute encountered"));
9954 case OP_ATR_FIRST:
9955 case OP_ATR_LAST:
9956 type_arg = ada_index_type (type_arg, tem,
9957 ada_attribute_name (op));
9958 break;
9959 case OP_ATR_LENGTH:
9960 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9961 break;
9962 }
9963 }
9964
9965 return value_zero (type_arg, not_lval);
9966 }
9967 else if (type_arg == NULL)
9968 {
9969 arg1 = ada_coerce_ref (arg1);
9970
9971 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9972 arg1 = ada_coerce_to_simple_array (arg1);
9973
9974 struct type *type;
9975 if (op == OP_ATR_LENGTH)
9976 type = builtin_type (exp->gdbarch)->builtin_int;
9977 else
9978 {
9979 type = ada_index_type (value_type (arg1), tem,
9980 ada_attribute_name (op));
9981 if (type == NULL)
9982 type = builtin_type (exp->gdbarch)->builtin_int;
9983 }
9984
9985 switch (op)
9986 {
9987 default: /* Should never happen. */
9988 error (_("unexpected attribute encountered"));
9989 case OP_ATR_FIRST:
9990 return value_from_longest
9991 (type, ada_array_bound (arg1, tem, 0));
9992 case OP_ATR_LAST:
9993 return value_from_longest
9994 (type, ada_array_bound (arg1, tem, 1));
9995 case OP_ATR_LENGTH:
9996 return value_from_longest
9997 (type, ada_array_length (arg1, tem));
9998 }
9999 }
10000 else if (discrete_type_p (type_arg))
10001 {
10002 struct type *range_type;
10003 const char *name = ada_type_name (type_arg);
10004
10005 range_type = NULL;
10006 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10007 range_type = to_fixed_range_type (type_arg, NULL);
10008 if (range_type == NULL)
10009 range_type = type_arg;
10010 switch (op)
10011 {
10012 default:
10013 error (_("unexpected attribute encountered"));
10014 case OP_ATR_FIRST:
10015 return value_from_longest
10016 (range_type, ada_discrete_type_low_bound (range_type));
10017 case OP_ATR_LAST:
10018 return value_from_longest
10019 (range_type, ada_discrete_type_high_bound (range_type));
10020 case OP_ATR_LENGTH:
10021 error (_("the 'length attribute applies only to array types"));
10022 }
10023 }
10024 else if (type_arg->code () == TYPE_CODE_FLT)
10025 error (_("unimplemented type attribute"));
10026 else
10027 {
10028 LONGEST low, high;
10029
10030 if (ada_is_constrained_packed_array_type (type_arg))
10031 type_arg = decode_constrained_packed_array_type (type_arg);
10032
10033 struct type *type;
10034 if (op == OP_ATR_LENGTH)
10035 type = builtin_type (exp->gdbarch)->builtin_int;
10036 else
10037 {
10038 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10039 if (type == NULL)
10040 type = builtin_type (exp->gdbarch)->builtin_int;
10041 }
10042
10043 switch (op)
10044 {
10045 default:
10046 error (_("unexpected attribute encountered"));
10047 case OP_ATR_FIRST:
10048 low = ada_array_bound_from_type (type_arg, tem, 0);
10049 return value_from_longest (type, low);
10050 case OP_ATR_LAST:
10051 high = ada_array_bound_from_type (type_arg, tem, 1);
10052 return value_from_longest (type, high);
10053 case OP_ATR_LENGTH:
10054 low = ada_array_bound_from_type (type_arg, tem, 0);
10055 high = ada_array_bound_from_type (type_arg, tem, 1);
10056 return value_from_longest (type, high - low + 1);
10057 }
10058 }
10059 }
10060
10061 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10062
10063 struct value *
10064 ada_binop_minmax (struct type *expect_type,
10065 struct expression *exp,
10066 enum noside noside, enum exp_opcode op,
10067 struct value *arg1, struct value *arg2)
10068 {
10069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10070 return value_zero (value_type (arg1), not_lval);
10071 else
10072 {
10073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10074 return value_binop (arg1, arg2, op);
10075 }
10076 }
10077
10078 /* A helper function for BINOP_EXP. */
10079
10080 struct value *
10081 ada_binop_exp (struct type *expect_type,
10082 struct expression *exp,
10083 enum noside noside, enum exp_opcode op,
10084 struct value *arg1, struct value *arg2)
10085 {
10086 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10087 return value_zero (value_type (arg1), not_lval);
10088 else
10089 {
10090 /* For integer exponentiation operations,
10091 only promote the first argument. */
10092 if (is_integral_type (value_type (arg2)))
10093 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10094 else
10095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10096
10097 return value_binop (arg1, arg2, op);
10098 }
10099 }
10100
10101 namespace expr
10102 {
10103
10104 value *
10105 ada_wrapped_operation::evaluate (struct type *expect_type,
10106 struct expression *exp,
10107 enum noside noside)
10108 {
10109 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10110 if (noside == EVAL_NORMAL)
10111 result = unwrap_value (result);
10112
10113 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10114 then we need to perform the conversion manually, because
10115 evaluate_subexp_standard doesn't do it. This conversion is
10116 necessary in Ada because the different kinds of float/fixed
10117 types in Ada have different representations.
10118
10119 Similarly, we need to perform the conversion from OP_LONG
10120 ourselves. */
10121 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10122 result = ada_value_cast (expect_type, result);
10123
10124 return result;
10125 }
10126
10127 value *
10128 ada_string_operation::evaluate (struct type *expect_type,
10129 struct expression *exp,
10130 enum noside noside)
10131 {
10132 value *result = string_operation::evaluate (expect_type, exp, noside);
10133 /* The result type will have code OP_STRING, bashed there from
10134 OP_ARRAY. Bash it back. */
10135 if (value_type (result)->code () == TYPE_CODE_STRING)
10136 value_type (result)->set_code (TYPE_CODE_ARRAY);
10137 return result;
10138 }
10139
10140 value *
10141 ada_qual_operation::evaluate (struct type *expect_type,
10142 struct expression *exp,
10143 enum noside noside)
10144 {
10145 struct type *type = std::get<1> (m_storage);
10146 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10147 }
10148
10149 value *
10150 ada_ternop_range_operation::evaluate (struct type *expect_type,
10151 struct expression *exp,
10152 enum noside noside)
10153 {
10154 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10155 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10156 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10157 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10158 }
10159
10160 value *
10161 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10162 struct expression *exp,
10163 enum noside noside)
10164 {
10165 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10166 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10167
10168 auto do_op = [=] (LONGEST x, LONGEST y)
10169 {
10170 if (std::get<0> (m_storage) == BINOP_ADD)
10171 return x + y;
10172 return x - y;
10173 };
10174
10175 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10176 return (value_from_longest
10177 (value_type (arg1),
10178 do_op (value_as_long (arg1), value_as_long (arg2))));
10179 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10180 return (value_from_longest
10181 (value_type (arg2),
10182 do_op (value_as_long (arg1), value_as_long (arg2))));
10183 /* Preserve the original type for use by the range case below.
10184 We cannot cast the result to a reference type, so if ARG1 is
10185 a reference type, find its underlying type. */
10186 struct type *type = value_type (arg1);
10187 while (type->code () == TYPE_CODE_REF)
10188 type = TYPE_TARGET_TYPE (type);
10189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10190 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10191 /* We need to special-case the result with a range.
10192 This is done for the benefit of "ptype". gdb's Ada support
10193 historically used the LHS to set the result type here, so
10194 preserve this behavior. */
10195 if (type->code () == TYPE_CODE_RANGE)
10196 arg1 = value_cast (type, arg1);
10197 return arg1;
10198 }
10199
10200 value *
10201 ada_unop_atr_operation::evaluate (struct type *expect_type,
10202 struct expression *exp,
10203 enum noside noside)
10204 {
10205 struct type *type_arg = nullptr;
10206 value *val = nullptr;
10207
10208 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10209 {
10210 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10211 EVAL_AVOID_SIDE_EFFECTS);
10212 type_arg = value_type (tem);
10213 }
10214 else
10215 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10216
10217 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10218 val, type_arg, std::get<2> (m_storage));
10219 }
10220
10221 value *
10222 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10223 struct expression *exp,
10224 enum noside noside)
10225 {
10226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10227 return value_zero (expect_type, not_lval);
10228
10229 const bound_minimal_symbol &b = std::get<0> (m_storage);
10230 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10231
10232 val = ada_value_cast (expect_type, val);
10233
10234 /* Follow the Ada language semantics that do not allow taking
10235 an address of the result of a cast (view conversion in Ada). */
10236 if (VALUE_LVAL (val) == lval_memory)
10237 {
10238 if (value_lazy (val))
10239 value_fetch_lazy (val);
10240 VALUE_LVAL (val) = not_lval;
10241 }
10242 return val;
10243 }
10244
10245 value *
10246 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10247 struct expression *exp,
10248 enum noside noside)
10249 {
10250 value *val = evaluate_var_value (noside,
10251 std::get<1> (m_storage),
10252 std::get<0> (m_storage));
10253
10254 val = ada_value_cast (expect_type, val);
10255
10256 /* Follow the Ada language semantics that do not allow taking
10257 an address of the result of a cast (view conversion in Ada). */
10258 if (VALUE_LVAL (val) == lval_memory)
10259 {
10260 if (value_lazy (val))
10261 value_fetch_lazy (val);
10262 VALUE_LVAL (val) = not_lval;
10263 }
10264 return val;
10265 }
10266
10267 value *
10268 ada_var_value_operation::evaluate (struct type *expect_type,
10269 struct expression *exp,
10270 enum noside noside)
10271 {
10272 symbol *sym = std::get<0> (m_storage);
10273
10274 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10275 /* Only encountered when an unresolved symbol occurs in a
10276 context other than a function call, in which case, it is
10277 invalid. */
10278 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10279 sym->print_name ());
10280
10281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10282 {
10283 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10284 /* Check to see if this is a tagged type. We also need to handle
10285 the case where the type is a reference to a tagged type, but
10286 we have to be careful to exclude pointers to tagged types.
10287 The latter should be shown as usual (as a pointer), whereas
10288 a reference should mostly be transparent to the user. */
10289 if (ada_is_tagged_type (type, 0)
10290 || (type->code () == TYPE_CODE_REF
10291 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10292 {
10293 /* Tagged types are a little special in the fact that the real
10294 type is dynamic and can only be determined by inspecting the
10295 object's tag. This means that we need to get the object's
10296 value first (EVAL_NORMAL) and then extract the actual object
10297 type from its tag.
10298
10299 Note that we cannot skip the final step where we extract
10300 the object type from its tag, because the EVAL_NORMAL phase
10301 results in dynamic components being resolved into fixed ones.
10302 This can cause problems when trying to print the type
10303 description of tagged types whose parent has a dynamic size:
10304 We use the type name of the "_parent" component in order
10305 to print the name of the ancestor type in the type description.
10306 If that component had a dynamic size, the resolution into
10307 a fixed type would result in the loss of that type name,
10308 thus preventing us from printing the name of the ancestor
10309 type in the type description. */
10310 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10311
10312 if (type->code () != TYPE_CODE_REF)
10313 {
10314 struct type *actual_type;
10315
10316 actual_type = type_from_tag (ada_value_tag (arg1));
10317 if (actual_type == NULL)
10318 /* If, for some reason, we were unable to determine
10319 the actual type from the tag, then use the static
10320 approximation that we just computed as a fallback.
10321 This can happen if the debugging information is
10322 incomplete, for instance. */
10323 actual_type = type;
10324 return value_zero (actual_type, not_lval);
10325 }
10326 else
10327 {
10328 /* In the case of a ref, ada_coerce_ref takes care
10329 of determining the actual type. But the evaluation
10330 should return a ref as it should be valid to ask
10331 for its address; so rebuild a ref after coerce. */
10332 arg1 = ada_coerce_ref (arg1);
10333 return value_ref (arg1, TYPE_CODE_REF);
10334 }
10335 }
10336
10337 /* Records and unions for which GNAT encodings have been
10338 generated need to be statically fixed as well.
10339 Otherwise, non-static fixing produces a type where
10340 all dynamic properties are removed, which prevents "ptype"
10341 from being able to completely describe the type.
10342 For instance, a case statement in a variant record would be
10343 replaced by the relevant components based on the actual
10344 value of the discriminants. */
10345 if ((type->code () == TYPE_CODE_STRUCT
10346 && dynamic_template_type (type) != NULL)
10347 || (type->code () == TYPE_CODE_UNION
10348 && ada_find_parallel_type (type, "___XVU") != NULL))
10349 return value_zero (to_static_fixed_type (type), not_lval);
10350 }
10351
10352 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10353 return ada_to_fixed_value (arg1);
10354 }
10355
10356 bool
10357 ada_var_value_operation::resolve (struct expression *exp,
10358 bool deprocedure_p,
10359 bool parse_completion,
10360 innermost_block_tracker *tracker,
10361 struct type *context_type)
10362 {
10363 symbol *sym = std::get<0> (m_storage);
10364 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10365 {
10366 block_symbol resolved
10367 = ada_resolve_variable (sym, std::get<1> (m_storage),
10368 context_type, parse_completion,
10369 deprocedure_p, tracker);
10370 std::get<0> (m_storage) = resolved.symbol;
10371 std::get<1> (m_storage) = resolved.block;
10372 }
10373
10374 if (deprocedure_p
10375 && SYMBOL_TYPE (std::get<0> (m_storage))->code () == TYPE_CODE_FUNC)
10376 return true;
10377
10378 return false;
10379 }
10380
10381 value *
10382 ada_atr_val_operation::evaluate (struct type *expect_type,
10383 struct expression *exp,
10384 enum noside noside)
10385 {
10386 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10387 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10388 }
10389
10390 value *
10391 ada_unop_ind_operation::evaluate (struct type *expect_type,
10392 struct expression *exp,
10393 enum noside noside)
10394 {
10395 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10396
10397 struct type *type = ada_check_typedef (value_type (arg1));
10398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10399 {
10400 if (ada_is_array_descriptor_type (type))
10401 /* GDB allows dereferencing GNAT array descriptors. */
10402 {
10403 struct type *arrType = ada_type_of_array (arg1, 0);
10404
10405 if (arrType == NULL)
10406 error (_("Attempt to dereference null array pointer."));
10407 return value_at_lazy (arrType, 0);
10408 }
10409 else if (type->code () == TYPE_CODE_PTR
10410 || type->code () == TYPE_CODE_REF
10411 /* In C you can dereference an array to get the 1st elt. */
10412 || type->code () == TYPE_CODE_ARRAY)
10413 {
10414 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10415 only be determined by inspecting the object's tag.
10416 This means that we need to evaluate completely the
10417 expression in order to get its type. */
10418
10419 if ((type->code () == TYPE_CODE_REF
10420 || type->code () == TYPE_CODE_PTR)
10421 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10422 {
10423 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10424 EVAL_NORMAL);
10425 type = value_type (ada_value_ind (arg1));
10426 }
10427 else
10428 {
10429 type = to_static_fixed_type
10430 (ada_aligned_type
10431 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10432 }
10433 ada_ensure_varsize_limit (type);
10434 return value_zero (type, lval_memory);
10435 }
10436 else if (type->code () == TYPE_CODE_INT)
10437 {
10438 /* GDB allows dereferencing an int. */
10439 if (expect_type == NULL)
10440 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10441 lval_memory);
10442 else
10443 {
10444 expect_type =
10445 to_static_fixed_type (ada_aligned_type (expect_type));
10446 return value_zero (expect_type, lval_memory);
10447 }
10448 }
10449 else
10450 error (_("Attempt to take contents of a non-pointer value."));
10451 }
10452 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10453 type = ada_check_typedef (value_type (arg1));
10454
10455 if (type->code () == TYPE_CODE_INT)
10456 /* GDB allows dereferencing an int. If we were given
10457 the expect_type, then use that as the target type.
10458 Otherwise, assume that the target type is an int. */
10459 {
10460 if (expect_type != NULL)
10461 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10462 arg1));
10463 else
10464 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10465 (CORE_ADDR) value_as_address (arg1));
10466 }
10467
10468 struct type *target_type = (to_static_fixed_type
10469 (ada_aligned_type
10470 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10471 ada_ensure_varsize_limit (target_type);
10472
10473 if (ada_is_array_descriptor_type (type))
10474 /* GDB allows dereferencing GNAT array descriptors. */
10475 return ada_coerce_to_simple_array (arg1);
10476 else
10477 return ada_value_ind (arg1);
10478 }
10479
10480 value *
10481 ada_structop_operation::evaluate (struct type *expect_type,
10482 struct expression *exp,
10483 enum noside noside)
10484 {
10485 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10486 const char *str = std::get<1> (m_storage).c_str ();
10487 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10488 {
10489 struct type *type;
10490 struct type *type1 = value_type (arg1);
10491
10492 if (ada_is_tagged_type (type1, 1))
10493 {
10494 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10495
10496 /* If the field is not found, check if it exists in the
10497 extension of this object's type. This means that we
10498 need to evaluate completely the expression. */
10499
10500 if (type == NULL)
10501 {
10502 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10503 EVAL_NORMAL);
10504 arg1 = ada_value_struct_elt (arg1, str, 0);
10505 arg1 = unwrap_value (arg1);
10506 type = value_type (ada_to_fixed_value (arg1));
10507 }
10508 }
10509 else
10510 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10511
10512 return value_zero (ada_aligned_type (type), lval_memory);
10513 }
10514 else
10515 {
10516 arg1 = ada_value_struct_elt (arg1, str, 0);
10517 arg1 = unwrap_value (arg1);
10518 return ada_to_fixed_value (arg1);
10519 }
10520 }
10521
10522 value *
10523 ada_funcall_operation::evaluate (struct type *expect_type,
10524 struct expression *exp,
10525 enum noside noside)
10526 {
10527 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10528 int nargs = args_up.size ();
10529 std::vector<value *> argvec (nargs);
10530 operation_up &callee_op = std::get<0> (m_storage);
10531
10532 ada_var_value_operation *avv
10533 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10534 if (avv != nullptr
10535 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10536 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10537 avv->get_symbol ()->print_name ());
10538
10539 value *callee = callee_op->evaluate (nullptr, exp, noside);
10540 for (int i = 0; i < args_up.size (); ++i)
10541 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10542
10543 if (ada_is_constrained_packed_array_type
10544 (desc_base_type (value_type (callee))))
10545 callee = ada_coerce_to_simple_array (callee);
10546 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10547 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10548 /* This is a packed array that has already been fixed, and
10549 therefore already coerced to a simple array. Nothing further
10550 to do. */
10551 ;
10552 else if (value_type (callee)->code () == TYPE_CODE_REF)
10553 {
10554 /* Make sure we dereference references so that all the code below
10555 feels like it's really handling the referenced value. Wrapping
10556 types (for alignment) may be there, so make sure we strip them as
10557 well. */
10558 callee = ada_to_fixed_value (coerce_ref (callee));
10559 }
10560 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10561 && VALUE_LVAL (callee) == lval_memory)
10562 callee = value_addr (callee);
10563
10564 struct type *type = ada_check_typedef (value_type (callee));
10565
10566 /* Ada allows us to implicitly dereference arrays when subscripting
10567 them. So, if this is an array typedef (encoding use for array
10568 access types encoded as fat pointers), strip it now. */
10569 if (type->code () == TYPE_CODE_TYPEDEF)
10570 type = ada_typedef_target_type (type);
10571
10572 if (type->code () == TYPE_CODE_PTR)
10573 {
10574 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10575 {
10576 case TYPE_CODE_FUNC:
10577 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10578 break;
10579 case TYPE_CODE_ARRAY:
10580 break;
10581 case TYPE_CODE_STRUCT:
10582 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10583 callee = ada_value_ind (callee);
10584 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10585 break;
10586 default:
10587 error (_("cannot subscript or call something of type `%s'"),
10588 ada_type_name (value_type (callee)));
10589 break;
10590 }
10591 }
10592
10593 switch (type->code ())
10594 {
10595 case TYPE_CODE_FUNC:
10596 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10597 {
10598 if (TYPE_TARGET_TYPE (type) == NULL)
10599 error_call_unknown_return_type (NULL);
10600 return allocate_value (TYPE_TARGET_TYPE (type));
10601 }
10602 return call_function_by_hand (callee, NULL, argvec);
10603 case TYPE_CODE_INTERNAL_FUNCTION:
10604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10605 /* We don't know anything about what the internal
10606 function might return, but we have to return
10607 something. */
10608 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10609 not_lval);
10610 else
10611 return call_internal_function (exp->gdbarch, exp->language_defn,
10612 callee, nargs,
10613 argvec.data ());
10614
10615 case TYPE_CODE_STRUCT:
10616 {
10617 int arity;
10618
10619 arity = ada_array_arity (type);
10620 type = ada_array_element_type (type, nargs);
10621 if (type == NULL)
10622 error (_("cannot subscript or call a record"));
10623 if (arity != nargs)
10624 error (_("wrong number of subscripts; expecting %d"), arity);
10625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 return value_zero (ada_aligned_type (type), lval_memory);
10627 return
10628 unwrap_value (ada_value_subscript
10629 (callee, nargs, argvec.data ()));
10630 }
10631 case TYPE_CODE_ARRAY:
10632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10633 {
10634 type = ada_array_element_type (type, nargs);
10635 if (type == NULL)
10636 error (_("element type of array unknown"));
10637 else
10638 return value_zero (ada_aligned_type (type), lval_memory);
10639 }
10640 return
10641 unwrap_value (ada_value_subscript
10642 (ada_coerce_to_simple_array (callee),
10643 nargs, argvec.data ()));
10644 case TYPE_CODE_PTR: /* Pointer to array */
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 {
10647 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10648 type = ada_array_element_type (type, nargs);
10649 if (type == NULL)
10650 error (_("element type of array unknown"));
10651 else
10652 return value_zero (ada_aligned_type (type), lval_memory);
10653 }
10654 return
10655 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10656 argvec.data ()));
10657
10658 default:
10659 error (_("Attempt to index or call something other than an "
10660 "array or function"));
10661 }
10662 }
10663
10664 bool
10665 ada_funcall_operation::resolve (struct expression *exp,
10666 bool deprocedure_p,
10667 bool parse_completion,
10668 innermost_block_tracker *tracker,
10669 struct type *context_type)
10670 {
10671 operation_up &callee_op = std::get<0> (m_storage);
10672
10673 ada_var_value_operation *avv
10674 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10675 if (avv == nullptr)
10676 return false;
10677
10678 symbol *sym = avv->get_symbol ();
10679 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10680 return false;
10681
10682 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10683 int nargs = args_up.size ();
10684 std::vector<value *> argvec (nargs);
10685
10686 for (int i = 0; i < args_up.size (); ++i)
10687 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10688
10689 const block *block = avv->get_block ();
10690 block_symbol resolved
10691 = ada_resolve_funcall (sym, block,
10692 context_type, parse_completion,
10693 nargs, argvec.data (),
10694 tracker);
10695
10696 std::get<0> (m_storage)
10697 = make_operation<ada_var_value_operation> (resolved.symbol,
10698 resolved.block);
10699 return false;
10700 }
10701
10702 bool
10703 ada_ternop_slice_operation::resolve (struct expression *exp,
10704 bool deprocedure_p,
10705 bool parse_completion,
10706 innermost_block_tracker *tracker,
10707 struct type *context_type)
10708 {
10709 /* Historically this check was done during resolution, so we
10710 continue that here. */
10711 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10712 EVAL_AVOID_SIDE_EFFECTS);
10713 if (ada_is_any_packed_array_type (value_type (v)))
10714 error (_("cannot slice a packed array"));
10715 return false;
10716 }
10717
10718 }
10719
10720 \f
10721
10722 /* Return non-zero iff TYPE represents a System.Address type. */
10723
10724 int
10725 ada_is_system_address_type (struct type *type)
10726 {
10727 return (type->name () && strcmp (type->name (), "system__address") == 0);
10728 }
10729
10730 \f
10731
10732 /* Range types */
10733
10734 /* Scan STR beginning at position K for a discriminant name, and
10735 return the value of that discriminant field of DVAL in *PX. If
10736 PNEW_K is not null, put the position of the character beyond the
10737 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10738 not alter *PX and *PNEW_K if unsuccessful. */
10739
10740 static int
10741 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10742 int *pnew_k)
10743 {
10744 static std::string storage;
10745 const char *pstart, *pend, *bound;
10746 struct value *bound_val;
10747
10748 if (dval == NULL || str == NULL || str[k] == '\0')
10749 return 0;
10750
10751 pstart = str + k;
10752 pend = strstr (pstart, "__");
10753 if (pend == NULL)
10754 {
10755 bound = pstart;
10756 k += strlen (bound);
10757 }
10758 else
10759 {
10760 int len = pend - pstart;
10761
10762 /* Strip __ and beyond. */
10763 storage = std::string (pstart, len);
10764 bound = storage.c_str ();
10765 k = pend - str;
10766 }
10767
10768 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10769 if (bound_val == NULL)
10770 return 0;
10771
10772 *px = value_as_long (bound_val);
10773 if (pnew_k != NULL)
10774 *pnew_k = k;
10775 return 1;
10776 }
10777
10778 /* Value of variable named NAME. Only exact matches are considered.
10779 If no such variable found, then if ERR_MSG is null, returns 0, and
10780 otherwise causes an error with message ERR_MSG. */
10781
10782 static struct value *
10783 get_var_value (const char *name, const char *err_msg)
10784 {
10785 std::string quoted_name = add_angle_brackets (name);
10786
10787 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10788
10789 std::vector<struct block_symbol> syms
10790 = ada_lookup_symbol_list_worker (lookup_name,
10791 get_selected_block (0),
10792 VAR_DOMAIN, 1);
10793
10794 if (syms.size () != 1)
10795 {
10796 if (err_msg == NULL)
10797 return 0;
10798 else
10799 error (("%s"), err_msg);
10800 }
10801
10802 return value_of_variable (syms[0].symbol, syms[0].block);
10803 }
10804
10805 /* Value of integer variable named NAME in the current environment.
10806 If no such variable is found, returns false. Otherwise, sets VALUE
10807 to the variable's value and returns true. */
10808
10809 bool
10810 get_int_var_value (const char *name, LONGEST &value)
10811 {
10812 struct value *var_val = get_var_value (name, 0);
10813
10814 if (var_val == 0)
10815 return false;
10816
10817 value = value_as_long (var_val);
10818 return true;
10819 }
10820
10821
10822 /* Return a range type whose base type is that of the range type named
10823 NAME in the current environment, and whose bounds are calculated
10824 from NAME according to the GNAT range encoding conventions.
10825 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10826 corresponding range type from debug information; fall back to using it
10827 if symbol lookup fails. If a new type must be created, allocate it
10828 like ORIG_TYPE was. The bounds information, in general, is encoded
10829 in NAME, the base type given in the named range type. */
10830
10831 static struct type *
10832 to_fixed_range_type (struct type *raw_type, struct value *dval)
10833 {
10834 const char *name;
10835 struct type *base_type;
10836 const char *subtype_info;
10837
10838 gdb_assert (raw_type != NULL);
10839 gdb_assert (raw_type->name () != NULL);
10840
10841 if (raw_type->code () == TYPE_CODE_RANGE)
10842 base_type = TYPE_TARGET_TYPE (raw_type);
10843 else
10844 base_type = raw_type;
10845
10846 name = raw_type->name ();
10847 subtype_info = strstr (name, "___XD");
10848 if (subtype_info == NULL)
10849 {
10850 LONGEST L = ada_discrete_type_low_bound (raw_type);
10851 LONGEST U = ada_discrete_type_high_bound (raw_type);
10852
10853 if (L < INT_MIN || U > INT_MAX)
10854 return raw_type;
10855 else
10856 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10857 L, U);
10858 }
10859 else
10860 {
10861 int prefix_len = subtype_info - name;
10862 LONGEST L, U;
10863 struct type *type;
10864 const char *bounds_str;
10865 int n;
10866
10867 subtype_info += 5;
10868 bounds_str = strchr (subtype_info, '_');
10869 n = 1;
10870
10871 if (*subtype_info == 'L')
10872 {
10873 if (!ada_scan_number (bounds_str, n, &L, &n)
10874 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10875 return raw_type;
10876 if (bounds_str[n] == '_')
10877 n += 2;
10878 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10879 n += 1;
10880 subtype_info += 1;
10881 }
10882 else
10883 {
10884 std::string name_buf = std::string (name, prefix_len) + "___L";
10885 if (!get_int_var_value (name_buf.c_str (), L))
10886 {
10887 lim_warning (_("Unknown lower bound, using 1."));
10888 L = 1;
10889 }
10890 }
10891
10892 if (*subtype_info == 'U')
10893 {
10894 if (!ada_scan_number (bounds_str, n, &U, &n)
10895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10896 return raw_type;
10897 }
10898 else
10899 {
10900 std::string name_buf = std::string (name, prefix_len) + "___U";
10901 if (!get_int_var_value (name_buf.c_str (), U))
10902 {
10903 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10904 U = L;
10905 }
10906 }
10907
10908 type = create_static_range_type (alloc_type_copy (raw_type),
10909 base_type, L, U);
10910 /* create_static_range_type alters the resulting type's length
10911 to match the size of the base_type, which is not what we want.
10912 Set it back to the original range type's length. */
10913 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10914 type->set_name (name);
10915 return type;
10916 }
10917 }
10918
10919 /* True iff NAME is the name of a range type. */
10920
10921 int
10922 ada_is_range_type_name (const char *name)
10923 {
10924 return (name != NULL && strstr (name, "___XD"));
10925 }
10926 \f
10927
10928 /* Modular types */
10929
10930 /* True iff TYPE is an Ada modular type. */
10931
10932 int
10933 ada_is_modular_type (struct type *type)
10934 {
10935 struct type *subranged_type = get_base_type (type);
10936
10937 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10938 && subranged_type->code () == TYPE_CODE_INT
10939 && subranged_type->is_unsigned ());
10940 }
10941
10942 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10943
10944 ULONGEST
10945 ada_modulus (struct type *type)
10946 {
10947 const dynamic_prop &high = type->bounds ()->high;
10948
10949 if (high.kind () == PROP_CONST)
10950 return (ULONGEST) high.const_val () + 1;
10951
10952 /* If TYPE is unresolved, the high bound might be a location list. Return
10953 0, for lack of a better value to return. */
10954 return 0;
10955 }
10956 \f
10957
10958 /* Ada exception catchpoint support:
10959 ---------------------------------
10960
10961 We support 3 kinds of exception catchpoints:
10962 . catchpoints on Ada exceptions
10963 . catchpoints on unhandled Ada exceptions
10964 . catchpoints on failed assertions
10965
10966 Exceptions raised during failed assertions, or unhandled exceptions
10967 could perfectly be caught with the general catchpoint on Ada exceptions.
10968 However, we can easily differentiate these two special cases, and having
10969 the option to distinguish these two cases from the rest can be useful
10970 to zero-in on certain situations.
10971
10972 Exception catchpoints are a specialized form of breakpoint,
10973 since they rely on inserting breakpoints inside known routines
10974 of the GNAT runtime. The implementation therefore uses a standard
10975 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10976 of breakpoint_ops.
10977
10978 Support in the runtime for exception catchpoints have been changed
10979 a few times already, and these changes affect the implementation
10980 of these catchpoints. In order to be able to support several
10981 variants of the runtime, we use a sniffer that will determine
10982 the runtime variant used by the program being debugged. */
10983
10984 /* Ada's standard exceptions.
10985
10986 The Ada 83 standard also defined Numeric_Error. But there so many
10987 situations where it was unclear from the Ada 83 Reference Manual
10988 (RM) whether Constraint_Error or Numeric_Error should be raised,
10989 that the ARG (Ada Rapporteur Group) eventually issued a Binding
10990 Interpretation saying that anytime the RM says that Numeric_Error
10991 should be raised, the implementation may raise Constraint_Error.
10992 Ada 95 went one step further and pretty much removed Numeric_Error
10993 from the list of standard exceptions (it made it a renaming of
10994 Constraint_Error, to help preserve compatibility when compiling
10995 an Ada83 compiler). As such, we do not include Numeric_Error from
10996 this list of standard exceptions. */
10997
10998 static const char * const standard_exc[] = {
10999 "constraint_error",
11000 "program_error",
11001 "storage_error",
11002 "tasking_error"
11003 };
11004
11005 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11006
11007 /* A structure that describes how to support exception catchpoints
11008 for a given executable. */
11009
11010 struct exception_support_info
11011 {
11012 /* The name of the symbol to break on in order to insert
11013 a catchpoint on exceptions. */
11014 const char *catch_exception_sym;
11015
11016 /* The name of the symbol to break on in order to insert
11017 a catchpoint on unhandled exceptions. */
11018 const char *catch_exception_unhandled_sym;
11019
11020 /* The name of the symbol to break on in order to insert
11021 a catchpoint on failed assertions. */
11022 const char *catch_assert_sym;
11023
11024 /* The name of the symbol to break on in order to insert
11025 a catchpoint on exception handling. */
11026 const char *catch_handlers_sym;
11027
11028 /* Assuming that the inferior just triggered an unhandled exception
11029 catchpoint, this function is responsible for returning the address
11030 in inferior memory where the name of that exception is stored.
11031 Return zero if the address could not be computed. */
11032 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11033 };
11034
11035 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11036 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11037
11038 /* The following exception support info structure describes how to
11039 implement exception catchpoints with the latest version of the
11040 Ada runtime (as of 2019-08-??). */
11041
11042 static const struct exception_support_info default_exception_support_info =
11043 {
11044 "__gnat_debug_raise_exception", /* catch_exception_sym */
11045 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11046 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11047 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11048 ada_unhandled_exception_name_addr
11049 };
11050
11051 /* The following exception support info structure describes how to
11052 implement exception catchpoints with an earlier version of the
11053 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11054
11055 static const struct exception_support_info exception_support_info_v0 =
11056 {
11057 "__gnat_debug_raise_exception", /* catch_exception_sym */
11058 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11059 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11060 "__gnat_begin_handler", /* catch_handlers_sym */
11061 ada_unhandled_exception_name_addr
11062 };
11063
11064 /* The following exception support info structure describes how to
11065 implement exception catchpoints with a slightly older version
11066 of the Ada runtime. */
11067
11068 static const struct exception_support_info exception_support_info_fallback =
11069 {
11070 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11071 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11072 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11073 "__gnat_begin_handler", /* catch_handlers_sym */
11074 ada_unhandled_exception_name_addr_from_raise
11075 };
11076
11077 /* Return nonzero if we can detect the exception support routines
11078 described in EINFO.
11079
11080 This function errors out if an abnormal situation is detected
11081 (for instance, if we find the exception support routines, but
11082 that support is found to be incomplete). */
11083
11084 static int
11085 ada_has_this_exception_support (const struct exception_support_info *einfo)
11086 {
11087 struct symbol *sym;
11088
11089 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11090 that should be compiled with debugging information. As a result, we
11091 expect to find that symbol in the symtabs. */
11092
11093 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11094 if (sym == NULL)
11095 {
11096 /* Perhaps we did not find our symbol because the Ada runtime was
11097 compiled without debugging info, or simply stripped of it.
11098 It happens on some GNU/Linux distributions for instance, where
11099 users have to install a separate debug package in order to get
11100 the runtime's debugging info. In that situation, let the user
11101 know why we cannot insert an Ada exception catchpoint.
11102
11103 Note: Just for the purpose of inserting our Ada exception
11104 catchpoint, we could rely purely on the associated minimal symbol.
11105 But we would be operating in degraded mode anyway, since we are
11106 still lacking the debugging info needed later on to extract
11107 the name of the exception being raised (this name is printed in
11108 the catchpoint message, and is also used when trying to catch
11109 a specific exception). We do not handle this case for now. */
11110 struct bound_minimal_symbol msym
11111 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11112
11113 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11114 error (_("Your Ada runtime appears to be missing some debugging "
11115 "information.\nCannot insert Ada exception catchpoint "
11116 "in this configuration."));
11117
11118 return 0;
11119 }
11120
11121 /* Make sure that the symbol we found corresponds to a function. */
11122
11123 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11124 {
11125 error (_("Symbol \"%s\" is not a function (class = %d)"),
11126 sym->linkage_name (), SYMBOL_CLASS (sym));
11127 return 0;
11128 }
11129
11130 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11131 if (sym == NULL)
11132 {
11133 struct bound_minimal_symbol msym
11134 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11135
11136 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11137 error (_("Your Ada runtime appears to be missing some debugging "
11138 "information.\nCannot insert Ada exception catchpoint "
11139 "in this configuration."));
11140
11141 return 0;
11142 }
11143
11144 /* Make sure that the symbol we found corresponds to a function. */
11145
11146 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11147 {
11148 error (_("Symbol \"%s\" is not a function (class = %d)"),
11149 sym->linkage_name (), SYMBOL_CLASS (sym));
11150 return 0;
11151 }
11152
11153 return 1;
11154 }
11155
11156 /* Inspect the Ada runtime and determine which exception info structure
11157 should be used to provide support for exception catchpoints.
11158
11159 This function will always set the per-inferior exception_info,
11160 or raise an error. */
11161
11162 static void
11163 ada_exception_support_info_sniffer (void)
11164 {
11165 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11166
11167 /* If the exception info is already known, then no need to recompute it. */
11168 if (data->exception_info != NULL)
11169 return;
11170
11171 /* Check the latest (default) exception support info. */
11172 if (ada_has_this_exception_support (&default_exception_support_info))
11173 {
11174 data->exception_info = &default_exception_support_info;
11175 return;
11176 }
11177
11178 /* Try the v0 exception suport info. */
11179 if (ada_has_this_exception_support (&exception_support_info_v0))
11180 {
11181 data->exception_info = &exception_support_info_v0;
11182 return;
11183 }
11184
11185 /* Try our fallback exception suport info. */
11186 if (ada_has_this_exception_support (&exception_support_info_fallback))
11187 {
11188 data->exception_info = &exception_support_info_fallback;
11189 return;
11190 }
11191
11192 /* Sometimes, it is normal for us to not be able to find the routine
11193 we are looking for. This happens when the program is linked with
11194 the shared version of the GNAT runtime, and the program has not been
11195 started yet. Inform the user of these two possible causes if
11196 applicable. */
11197
11198 if (ada_update_initial_language (language_unknown) != language_ada)
11199 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11200
11201 /* If the symbol does not exist, then check that the program is
11202 already started, to make sure that shared libraries have been
11203 loaded. If it is not started, this may mean that the symbol is
11204 in a shared library. */
11205
11206 if (inferior_ptid.pid () == 0)
11207 error (_("Unable to insert catchpoint. Try to start the program first."));
11208
11209 /* At this point, we know that we are debugging an Ada program and
11210 that the inferior has been started, but we still are not able to
11211 find the run-time symbols. That can mean that we are in
11212 configurable run time mode, or that a-except as been optimized
11213 out by the linker... In any case, at this point it is not worth
11214 supporting this feature. */
11215
11216 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11217 }
11218
11219 /* True iff FRAME is very likely to be that of a function that is
11220 part of the runtime system. This is all very heuristic, but is
11221 intended to be used as advice as to what frames are uninteresting
11222 to most users. */
11223
11224 static int
11225 is_known_support_routine (struct frame_info *frame)
11226 {
11227 enum language func_lang;
11228 int i;
11229 const char *fullname;
11230
11231 /* If this code does not have any debugging information (no symtab),
11232 This cannot be any user code. */
11233
11234 symtab_and_line sal = find_frame_sal (frame);
11235 if (sal.symtab == NULL)
11236 return 1;
11237
11238 /* If there is a symtab, but the associated source file cannot be
11239 located, then assume this is not user code: Selecting a frame
11240 for which we cannot display the code would not be very helpful
11241 for the user. This should also take care of case such as VxWorks
11242 where the kernel has some debugging info provided for a few units. */
11243
11244 fullname = symtab_to_fullname (sal.symtab);
11245 if (access (fullname, R_OK) != 0)
11246 return 1;
11247
11248 /* Check the unit filename against the Ada runtime file naming.
11249 We also check the name of the objfile against the name of some
11250 known system libraries that sometimes come with debugging info
11251 too. */
11252
11253 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11254 {
11255 re_comp (known_runtime_file_name_patterns[i]);
11256 if (re_exec (lbasename (sal.symtab->filename)))
11257 return 1;
11258 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11259 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11260 return 1;
11261 }
11262
11263 /* Check whether the function is a GNAT-generated entity. */
11264
11265 gdb::unique_xmalloc_ptr<char> func_name
11266 = find_frame_funname (frame, &func_lang, NULL);
11267 if (func_name == NULL)
11268 return 1;
11269
11270 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11271 {
11272 re_comp (known_auxiliary_function_name_patterns[i]);
11273 if (re_exec (func_name.get ()))
11274 return 1;
11275 }
11276
11277 return 0;
11278 }
11279
11280 /* Find the first frame that contains debugging information and that is not
11281 part of the Ada run-time, starting from FI and moving upward. */
11282
11283 void
11284 ada_find_printable_frame (struct frame_info *fi)
11285 {
11286 for (; fi != NULL; fi = get_prev_frame (fi))
11287 {
11288 if (!is_known_support_routine (fi))
11289 {
11290 select_frame (fi);
11291 break;
11292 }
11293 }
11294
11295 }
11296
11297 /* Assuming that the inferior just triggered an unhandled exception
11298 catchpoint, return the address in inferior memory where the name
11299 of the exception is stored.
11300
11301 Return zero if the address could not be computed. */
11302
11303 static CORE_ADDR
11304 ada_unhandled_exception_name_addr (void)
11305 {
11306 return parse_and_eval_address ("e.full_name");
11307 }
11308
11309 /* Same as ada_unhandled_exception_name_addr, except that this function
11310 should be used when the inferior uses an older version of the runtime,
11311 where the exception name needs to be extracted from a specific frame
11312 several frames up in the callstack. */
11313
11314 static CORE_ADDR
11315 ada_unhandled_exception_name_addr_from_raise (void)
11316 {
11317 int frame_level;
11318 struct frame_info *fi;
11319 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11320
11321 /* To determine the name of this exception, we need to select
11322 the frame corresponding to RAISE_SYM_NAME. This frame is
11323 at least 3 levels up, so we simply skip the first 3 frames
11324 without checking the name of their associated function. */
11325 fi = get_current_frame ();
11326 for (frame_level = 0; frame_level < 3; frame_level += 1)
11327 if (fi != NULL)
11328 fi = get_prev_frame (fi);
11329
11330 while (fi != NULL)
11331 {
11332 enum language func_lang;
11333
11334 gdb::unique_xmalloc_ptr<char> func_name
11335 = find_frame_funname (fi, &func_lang, NULL);
11336 if (func_name != NULL)
11337 {
11338 if (strcmp (func_name.get (),
11339 data->exception_info->catch_exception_sym) == 0)
11340 break; /* We found the frame we were looking for... */
11341 }
11342 fi = get_prev_frame (fi);
11343 }
11344
11345 if (fi == NULL)
11346 return 0;
11347
11348 select_frame (fi);
11349 return parse_and_eval_address ("id.full_name");
11350 }
11351
11352 /* Assuming the inferior just triggered an Ada exception catchpoint
11353 (of any type), return the address in inferior memory where the name
11354 of the exception is stored, if applicable.
11355
11356 Assumes the selected frame is the current frame.
11357
11358 Return zero if the address could not be computed, or if not relevant. */
11359
11360 static CORE_ADDR
11361 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11362 struct breakpoint *b)
11363 {
11364 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11365
11366 switch (ex)
11367 {
11368 case ada_catch_exception:
11369 return (parse_and_eval_address ("e.full_name"));
11370 break;
11371
11372 case ada_catch_exception_unhandled:
11373 return data->exception_info->unhandled_exception_name_addr ();
11374 break;
11375
11376 case ada_catch_handlers:
11377 return 0; /* The runtimes does not provide access to the exception
11378 name. */
11379 break;
11380
11381 case ada_catch_assert:
11382 return 0; /* Exception name is not relevant in this case. */
11383 break;
11384
11385 default:
11386 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11387 break;
11388 }
11389
11390 return 0; /* Should never be reached. */
11391 }
11392
11393 /* Assuming the inferior is stopped at an exception catchpoint,
11394 return the message which was associated to the exception, if
11395 available. Return NULL if the message could not be retrieved.
11396
11397 Note: The exception message can be associated to an exception
11398 either through the use of the Raise_Exception function, or
11399 more simply (Ada 2005 and later), via:
11400
11401 raise Exception_Name with "exception message";
11402
11403 */
11404
11405 static gdb::unique_xmalloc_ptr<char>
11406 ada_exception_message_1 (void)
11407 {
11408 struct value *e_msg_val;
11409 int e_msg_len;
11410
11411 /* For runtimes that support this feature, the exception message
11412 is passed as an unbounded string argument called "message". */
11413 e_msg_val = parse_and_eval ("message");
11414 if (e_msg_val == NULL)
11415 return NULL; /* Exception message not supported. */
11416
11417 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11418 gdb_assert (e_msg_val != NULL);
11419 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11420
11421 /* If the message string is empty, then treat it as if there was
11422 no exception message. */
11423 if (e_msg_len <= 0)
11424 return NULL;
11425
11426 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11427 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11428 e_msg_len);
11429 e_msg.get ()[e_msg_len] = '\0';
11430
11431 return e_msg;
11432 }
11433
11434 /* Same as ada_exception_message_1, except that all exceptions are
11435 contained here (returning NULL instead). */
11436
11437 static gdb::unique_xmalloc_ptr<char>
11438 ada_exception_message (void)
11439 {
11440 gdb::unique_xmalloc_ptr<char> e_msg;
11441
11442 try
11443 {
11444 e_msg = ada_exception_message_1 ();
11445 }
11446 catch (const gdb_exception_error &e)
11447 {
11448 e_msg.reset (nullptr);
11449 }
11450
11451 return e_msg;
11452 }
11453
11454 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11455 any error that ada_exception_name_addr_1 might cause to be thrown.
11456 When an error is intercepted, a warning with the error message is printed,
11457 and zero is returned. */
11458
11459 static CORE_ADDR
11460 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11461 struct breakpoint *b)
11462 {
11463 CORE_ADDR result = 0;
11464
11465 try
11466 {
11467 result = ada_exception_name_addr_1 (ex, b);
11468 }
11469
11470 catch (const gdb_exception_error &e)
11471 {
11472 warning (_("failed to get exception name: %s"), e.what ());
11473 return 0;
11474 }
11475
11476 return result;
11477 }
11478
11479 static std::string ada_exception_catchpoint_cond_string
11480 (const char *excep_string,
11481 enum ada_exception_catchpoint_kind ex);
11482
11483 /* Ada catchpoints.
11484
11485 In the case of catchpoints on Ada exceptions, the catchpoint will
11486 stop the target on every exception the program throws. When a user
11487 specifies the name of a specific exception, we translate this
11488 request into a condition expression (in text form), and then parse
11489 it into an expression stored in each of the catchpoint's locations.
11490 We then use this condition to check whether the exception that was
11491 raised is the one the user is interested in. If not, then the
11492 target is resumed again. We store the name of the requested
11493 exception, in order to be able to re-set the condition expression
11494 when symbols change. */
11495
11496 /* An instance of this type is used to represent an Ada catchpoint
11497 breakpoint location. */
11498
11499 class ada_catchpoint_location : public bp_location
11500 {
11501 public:
11502 ada_catchpoint_location (breakpoint *owner)
11503 : bp_location (owner, bp_loc_software_breakpoint)
11504 {}
11505
11506 /* The condition that checks whether the exception that was raised
11507 is the specific exception the user specified on catchpoint
11508 creation. */
11509 expression_up excep_cond_expr;
11510 };
11511
11512 /* An instance of this type is used to represent an Ada catchpoint. */
11513
11514 struct ada_catchpoint : public breakpoint
11515 {
11516 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11517 : m_kind (kind)
11518 {
11519 }
11520
11521 /* The name of the specific exception the user specified. */
11522 std::string excep_string;
11523
11524 /* What kind of catchpoint this is. */
11525 enum ada_exception_catchpoint_kind m_kind;
11526 };
11527
11528 /* Parse the exception condition string in the context of each of the
11529 catchpoint's locations, and store them for later evaluation. */
11530
11531 static void
11532 create_excep_cond_exprs (struct ada_catchpoint *c,
11533 enum ada_exception_catchpoint_kind ex)
11534 {
11535 struct bp_location *bl;
11536
11537 /* Nothing to do if there's no specific exception to catch. */
11538 if (c->excep_string.empty ())
11539 return;
11540
11541 /* Same if there are no locations... */
11542 if (c->loc == NULL)
11543 return;
11544
11545 /* Compute the condition expression in text form, from the specific
11546 expection we want to catch. */
11547 std::string cond_string
11548 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11549
11550 /* Iterate over all the catchpoint's locations, and parse an
11551 expression for each. */
11552 for (bl = c->loc; bl != NULL; bl = bl->next)
11553 {
11554 struct ada_catchpoint_location *ada_loc
11555 = (struct ada_catchpoint_location *) bl;
11556 expression_up exp;
11557
11558 if (!bl->shlib_disabled)
11559 {
11560 const char *s;
11561
11562 s = cond_string.c_str ();
11563 try
11564 {
11565 exp = parse_exp_1 (&s, bl->address,
11566 block_for_pc (bl->address),
11567 0);
11568 }
11569 catch (const gdb_exception_error &e)
11570 {
11571 warning (_("failed to reevaluate internal exception condition "
11572 "for catchpoint %d: %s"),
11573 c->number, e.what ());
11574 }
11575 }
11576
11577 ada_loc->excep_cond_expr = std::move (exp);
11578 }
11579 }
11580
11581 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11582 structure for all exception catchpoint kinds. */
11583
11584 static struct bp_location *
11585 allocate_location_exception (struct breakpoint *self)
11586 {
11587 return new ada_catchpoint_location (self);
11588 }
11589
11590 /* Implement the RE_SET method in the breakpoint_ops structure for all
11591 exception catchpoint kinds. */
11592
11593 static void
11594 re_set_exception (struct breakpoint *b)
11595 {
11596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11597
11598 /* Call the base class's method. This updates the catchpoint's
11599 locations. */
11600 bkpt_breakpoint_ops.re_set (b);
11601
11602 /* Reparse the exception conditional expressions. One for each
11603 location. */
11604 create_excep_cond_exprs (c, c->m_kind);
11605 }
11606
11607 /* Returns true if we should stop for this breakpoint hit. If the
11608 user specified a specific exception, we only want to cause a stop
11609 if the program thrown that exception. */
11610
11611 static int
11612 should_stop_exception (const struct bp_location *bl)
11613 {
11614 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11615 const struct ada_catchpoint_location *ada_loc
11616 = (const struct ada_catchpoint_location *) bl;
11617 int stop;
11618
11619 struct internalvar *var = lookup_internalvar ("_ada_exception");
11620 if (c->m_kind == ada_catch_assert)
11621 clear_internalvar (var);
11622 else
11623 {
11624 try
11625 {
11626 const char *expr;
11627
11628 if (c->m_kind == ada_catch_handlers)
11629 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11630 ".all.occurrence.id");
11631 else
11632 expr = "e";
11633
11634 struct value *exc = parse_and_eval (expr);
11635 set_internalvar (var, exc);
11636 }
11637 catch (const gdb_exception_error &ex)
11638 {
11639 clear_internalvar (var);
11640 }
11641 }
11642
11643 /* With no specific exception, should always stop. */
11644 if (c->excep_string.empty ())
11645 return 1;
11646
11647 if (ada_loc->excep_cond_expr == NULL)
11648 {
11649 /* We will have a NULL expression if back when we were creating
11650 the expressions, this location's had failed to parse. */
11651 return 1;
11652 }
11653
11654 stop = 1;
11655 try
11656 {
11657 struct value *mark;
11658
11659 mark = value_mark ();
11660 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11661 value_free_to_mark (mark);
11662 }
11663 catch (const gdb_exception &ex)
11664 {
11665 exception_fprintf (gdb_stderr, ex,
11666 _("Error in testing exception condition:\n"));
11667 }
11668
11669 return stop;
11670 }
11671
11672 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11673 for all exception catchpoint kinds. */
11674
11675 static void
11676 check_status_exception (bpstat bs)
11677 {
11678 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11679 }
11680
11681 /* Implement the PRINT_IT method in the breakpoint_ops structure
11682 for all exception catchpoint kinds. */
11683
11684 static enum print_stop_action
11685 print_it_exception (bpstat bs)
11686 {
11687 struct ui_out *uiout = current_uiout;
11688 struct breakpoint *b = bs->breakpoint_at;
11689
11690 annotate_catchpoint (b->number);
11691
11692 if (uiout->is_mi_like_p ())
11693 {
11694 uiout->field_string ("reason",
11695 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11696 uiout->field_string ("disp", bpdisp_text (b->disposition));
11697 }
11698
11699 uiout->text (b->disposition == disp_del
11700 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11701 uiout->field_signed ("bkptno", b->number);
11702 uiout->text (", ");
11703
11704 /* ada_exception_name_addr relies on the selected frame being the
11705 current frame. Need to do this here because this function may be
11706 called more than once when printing a stop, and below, we'll
11707 select the first frame past the Ada run-time (see
11708 ada_find_printable_frame). */
11709 select_frame (get_current_frame ());
11710
11711 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11712 switch (c->m_kind)
11713 {
11714 case ada_catch_exception:
11715 case ada_catch_exception_unhandled:
11716 case ada_catch_handlers:
11717 {
11718 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11719 char exception_name[256];
11720
11721 if (addr != 0)
11722 {
11723 read_memory (addr, (gdb_byte *) exception_name,
11724 sizeof (exception_name) - 1);
11725 exception_name [sizeof (exception_name) - 1] = '\0';
11726 }
11727 else
11728 {
11729 /* For some reason, we were unable to read the exception
11730 name. This could happen if the Runtime was compiled
11731 without debugging info, for instance. In that case,
11732 just replace the exception name by the generic string
11733 "exception" - it will read as "an exception" in the
11734 notification we are about to print. */
11735 memcpy (exception_name, "exception", sizeof ("exception"));
11736 }
11737 /* In the case of unhandled exception breakpoints, we print
11738 the exception name as "unhandled EXCEPTION_NAME", to make
11739 it clearer to the user which kind of catchpoint just got
11740 hit. We used ui_out_text to make sure that this extra
11741 info does not pollute the exception name in the MI case. */
11742 if (c->m_kind == ada_catch_exception_unhandled)
11743 uiout->text ("unhandled ");
11744 uiout->field_string ("exception-name", exception_name);
11745 }
11746 break;
11747 case ada_catch_assert:
11748 /* In this case, the name of the exception is not really
11749 important. Just print "failed assertion" to make it clearer
11750 that his program just hit an assertion-failure catchpoint.
11751 We used ui_out_text because this info does not belong in
11752 the MI output. */
11753 uiout->text ("failed assertion");
11754 break;
11755 }
11756
11757 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11758 if (exception_message != NULL)
11759 {
11760 uiout->text (" (");
11761 uiout->field_string ("exception-message", exception_message.get ());
11762 uiout->text (")");
11763 }
11764
11765 uiout->text (" at ");
11766 ada_find_printable_frame (get_current_frame ());
11767
11768 return PRINT_SRC_AND_LOC;
11769 }
11770
11771 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11772 for all exception catchpoint kinds. */
11773
11774 static void
11775 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11776 {
11777 struct ui_out *uiout = current_uiout;
11778 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11779 struct value_print_options opts;
11780
11781 get_user_print_options (&opts);
11782
11783 if (opts.addressprint)
11784 uiout->field_skip ("addr");
11785
11786 annotate_field (5);
11787 switch (c->m_kind)
11788 {
11789 case ada_catch_exception:
11790 if (!c->excep_string.empty ())
11791 {
11792 std::string msg = string_printf (_("`%s' Ada exception"),
11793 c->excep_string.c_str ());
11794
11795 uiout->field_string ("what", msg);
11796 }
11797 else
11798 uiout->field_string ("what", "all Ada exceptions");
11799
11800 break;
11801
11802 case ada_catch_exception_unhandled:
11803 uiout->field_string ("what", "unhandled Ada exceptions");
11804 break;
11805
11806 case ada_catch_handlers:
11807 if (!c->excep_string.empty ())
11808 {
11809 uiout->field_fmt ("what",
11810 _("`%s' Ada exception handlers"),
11811 c->excep_string.c_str ());
11812 }
11813 else
11814 uiout->field_string ("what", "all Ada exceptions handlers");
11815 break;
11816
11817 case ada_catch_assert:
11818 uiout->field_string ("what", "failed Ada assertions");
11819 break;
11820
11821 default:
11822 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11823 break;
11824 }
11825 }
11826
11827 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11828 for all exception catchpoint kinds. */
11829
11830 static void
11831 print_mention_exception (struct breakpoint *b)
11832 {
11833 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11834 struct ui_out *uiout = current_uiout;
11835
11836 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11837 : _("Catchpoint "));
11838 uiout->field_signed ("bkptno", b->number);
11839 uiout->text (": ");
11840
11841 switch (c->m_kind)
11842 {
11843 case ada_catch_exception:
11844 if (!c->excep_string.empty ())
11845 {
11846 std::string info = string_printf (_("`%s' Ada exception"),
11847 c->excep_string.c_str ());
11848 uiout->text (info.c_str ());
11849 }
11850 else
11851 uiout->text (_("all Ada exceptions"));
11852 break;
11853
11854 case ada_catch_exception_unhandled:
11855 uiout->text (_("unhandled Ada exceptions"));
11856 break;
11857
11858 case ada_catch_handlers:
11859 if (!c->excep_string.empty ())
11860 {
11861 std::string info
11862 = string_printf (_("`%s' Ada exception handlers"),
11863 c->excep_string.c_str ());
11864 uiout->text (info.c_str ());
11865 }
11866 else
11867 uiout->text (_("all Ada exceptions handlers"));
11868 break;
11869
11870 case ada_catch_assert:
11871 uiout->text (_("failed Ada assertions"));
11872 break;
11873
11874 default:
11875 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11876 break;
11877 }
11878 }
11879
11880 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11881 for all exception catchpoint kinds. */
11882
11883 static void
11884 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11885 {
11886 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11887
11888 switch (c->m_kind)
11889 {
11890 case ada_catch_exception:
11891 fprintf_filtered (fp, "catch exception");
11892 if (!c->excep_string.empty ())
11893 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11894 break;
11895
11896 case ada_catch_exception_unhandled:
11897 fprintf_filtered (fp, "catch exception unhandled");
11898 break;
11899
11900 case ada_catch_handlers:
11901 fprintf_filtered (fp, "catch handlers");
11902 break;
11903
11904 case ada_catch_assert:
11905 fprintf_filtered (fp, "catch assert");
11906 break;
11907
11908 default:
11909 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11910 }
11911 print_recreate_thread (b, fp);
11912 }
11913
11914 /* Virtual tables for various breakpoint types. */
11915 static struct breakpoint_ops catch_exception_breakpoint_ops;
11916 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11917 static struct breakpoint_ops catch_assert_breakpoint_ops;
11918 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11919
11920 /* See ada-lang.h. */
11921
11922 bool
11923 is_ada_exception_catchpoint (breakpoint *bp)
11924 {
11925 return (bp->ops == &catch_exception_breakpoint_ops
11926 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11927 || bp->ops == &catch_assert_breakpoint_ops
11928 || bp->ops == &catch_handlers_breakpoint_ops);
11929 }
11930
11931 /* Split the arguments specified in a "catch exception" command.
11932 Set EX to the appropriate catchpoint type.
11933 Set EXCEP_STRING to the name of the specific exception if
11934 specified by the user.
11935 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11936 "catch handlers" command. False otherwise.
11937 If a condition is found at the end of the arguments, the condition
11938 expression is stored in COND_STRING (memory must be deallocated
11939 after use). Otherwise COND_STRING is set to NULL. */
11940
11941 static void
11942 catch_ada_exception_command_split (const char *args,
11943 bool is_catch_handlers_cmd,
11944 enum ada_exception_catchpoint_kind *ex,
11945 std::string *excep_string,
11946 std::string *cond_string)
11947 {
11948 std::string exception_name;
11949
11950 exception_name = extract_arg (&args);
11951 if (exception_name == "if")
11952 {
11953 /* This is not an exception name; this is the start of a condition
11954 expression for a catchpoint on all exceptions. So, "un-get"
11955 this token, and set exception_name to NULL. */
11956 exception_name.clear ();
11957 args -= 2;
11958 }
11959
11960 /* Check to see if we have a condition. */
11961
11962 args = skip_spaces (args);
11963 if (startswith (args, "if")
11964 && (isspace (args[2]) || args[2] == '\0'))
11965 {
11966 args += 2;
11967 args = skip_spaces (args);
11968
11969 if (args[0] == '\0')
11970 error (_("Condition missing after `if' keyword"));
11971 *cond_string = args;
11972
11973 args += strlen (args);
11974 }
11975
11976 /* Check that we do not have any more arguments. Anything else
11977 is unexpected. */
11978
11979 if (args[0] != '\0')
11980 error (_("Junk at end of expression"));
11981
11982 if (is_catch_handlers_cmd)
11983 {
11984 /* Catch handling of exceptions. */
11985 *ex = ada_catch_handlers;
11986 *excep_string = exception_name;
11987 }
11988 else if (exception_name.empty ())
11989 {
11990 /* Catch all exceptions. */
11991 *ex = ada_catch_exception;
11992 excep_string->clear ();
11993 }
11994 else if (exception_name == "unhandled")
11995 {
11996 /* Catch unhandled exceptions. */
11997 *ex = ada_catch_exception_unhandled;
11998 excep_string->clear ();
11999 }
12000 else
12001 {
12002 /* Catch a specific exception. */
12003 *ex = ada_catch_exception;
12004 *excep_string = exception_name;
12005 }
12006 }
12007
12008 /* Return the name of the symbol on which we should break in order to
12009 implement a catchpoint of the EX kind. */
12010
12011 static const char *
12012 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12013 {
12014 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12015
12016 gdb_assert (data->exception_info != NULL);
12017
12018 switch (ex)
12019 {
12020 case ada_catch_exception:
12021 return (data->exception_info->catch_exception_sym);
12022 break;
12023 case ada_catch_exception_unhandled:
12024 return (data->exception_info->catch_exception_unhandled_sym);
12025 break;
12026 case ada_catch_assert:
12027 return (data->exception_info->catch_assert_sym);
12028 break;
12029 case ada_catch_handlers:
12030 return (data->exception_info->catch_handlers_sym);
12031 break;
12032 default:
12033 internal_error (__FILE__, __LINE__,
12034 _("unexpected catchpoint kind (%d)"), ex);
12035 }
12036 }
12037
12038 /* Return the breakpoint ops "virtual table" used for catchpoints
12039 of the EX kind. */
12040
12041 static const struct breakpoint_ops *
12042 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12043 {
12044 switch (ex)
12045 {
12046 case ada_catch_exception:
12047 return (&catch_exception_breakpoint_ops);
12048 break;
12049 case ada_catch_exception_unhandled:
12050 return (&catch_exception_unhandled_breakpoint_ops);
12051 break;
12052 case ada_catch_assert:
12053 return (&catch_assert_breakpoint_ops);
12054 break;
12055 case ada_catch_handlers:
12056 return (&catch_handlers_breakpoint_ops);
12057 break;
12058 default:
12059 internal_error (__FILE__, __LINE__,
12060 _("unexpected catchpoint kind (%d)"), ex);
12061 }
12062 }
12063
12064 /* Return the condition that will be used to match the current exception
12065 being raised with the exception that the user wants to catch. This
12066 assumes that this condition is used when the inferior just triggered
12067 an exception catchpoint.
12068 EX: the type of catchpoints used for catching Ada exceptions. */
12069
12070 static std::string
12071 ada_exception_catchpoint_cond_string (const char *excep_string,
12072 enum ada_exception_catchpoint_kind ex)
12073 {
12074 int i;
12075 bool is_standard_exc = false;
12076 std::string result;
12077
12078 if (ex == ada_catch_handlers)
12079 {
12080 /* For exception handlers catchpoints, the condition string does
12081 not use the same parameter as for the other exceptions. */
12082 result = ("long_integer (GNAT_GCC_exception_Access"
12083 "(gcc_exception).all.occurrence.id)");
12084 }
12085 else
12086 result = "long_integer (e)";
12087
12088 /* The standard exceptions are a special case. They are defined in
12089 runtime units that have been compiled without debugging info; if
12090 EXCEP_STRING is the not-fully-qualified name of a standard
12091 exception (e.g. "constraint_error") then, during the evaluation
12092 of the condition expression, the symbol lookup on this name would
12093 *not* return this standard exception. The catchpoint condition
12094 may then be set only on user-defined exceptions which have the
12095 same not-fully-qualified name (e.g. my_package.constraint_error).
12096
12097 To avoid this unexcepted behavior, these standard exceptions are
12098 systematically prefixed by "standard". This means that "catch
12099 exception constraint_error" is rewritten into "catch exception
12100 standard.constraint_error".
12101
12102 If an exception named constraint_error is defined in another package of
12103 the inferior program, then the only way to specify this exception as a
12104 breakpoint condition is to use its fully-qualified named:
12105 e.g. my_package.constraint_error. */
12106
12107 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12108 {
12109 if (strcmp (standard_exc [i], excep_string) == 0)
12110 {
12111 is_standard_exc = true;
12112 break;
12113 }
12114 }
12115
12116 result += " = ";
12117
12118 if (is_standard_exc)
12119 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12120 else
12121 string_appendf (result, "long_integer (&%s)", excep_string);
12122
12123 return result;
12124 }
12125
12126 /* Return the symtab_and_line that should be used to insert an exception
12127 catchpoint of the TYPE kind.
12128
12129 ADDR_STRING returns the name of the function where the real
12130 breakpoint that implements the catchpoints is set, depending on the
12131 type of catchpoint we need to create. */
12132
12133 static struct symtab_and_line
12134 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12135 std::string *addr_string, const struct breakpoint_ops **ops)
12136 {
12137 const char *sym_name;
12138 struct symbol *sym;
12139
12140 /* First, find out which exception support info to use. */
12141 ada_exception_support_info_sniffer ();
12142
12143 /* Then lookup the function on which we will break in order to catch
12144 the Ada exceptions requested by the user. */
12145 sym_name = ada_exception_sym_name (ex);
12146 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12147
12148 if (sym == NULL)
12149 error (_("Catchpoint symbol not found: %s"), sym_name);
12150
12151 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12152 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12153
12154 /* Set ADDR_STRING. */
12155 *addr_string = sym_name;
12156
12157 /* Set OPS. */
12158 *ops = ada_exception_breakpoint_ops (ex);
12159
12160 return find_function_start_sal (sym, 1);
12161 }
12162
12163 /* Create an Ada exception catchpoint.
12164
12165 EX_KIND is the kind of exception catchpoint to be created.
12166
12167 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12168 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12169 of the exception to which this catchpoint applies.
12170
12171 COND_STRING, if not empty, is the catchpoint condition.
12172
12173 TEMPFLAG, if nonzero, means that the underlying breakpoint
12174 should be temporary.
12175
12176 FROM_TTY is the usual argument passed to all commands implementations. */
12177
12178 void
12179 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12180 enum ada_exception_catchpoint_kind ex_kind,
12181 const std::string &excep_string,
12182 const std::string &cond_string,
12183 int tempflag,
12184 int disabled,
12185 int from_tty)
12186 {
12187 std::string addr_string;
12188 const struct breakpoint_ops *ops = NULL;
12189 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12190
12191 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12192 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12193 ops, tempflag, disabled, from_tty);
12194 c->excep_string = excep_string;
12195 create_excep_cond_exprs (c.get (), ex_kind);
12196 if (!cond_string.empty ())
12197 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12198 install_breakpoint (0, std::move (c), 1);
12199 }
12200
12201 /* Implement the "catch exception" command. */
12202
12203 static void
12204 catch_ada_exception_command (const char *arg_entry, int from_tty,
12205 struct cmd_list_element *command)
12206 {
12207 const char *arg = arg_entry;
12208 struct gdbarch *gdbarch = get_current_arch ();
12209 int tempflag;
12210 enum ada_exception_catchpoint_kind ex_kind;
12211 std::string excep_string;
12212 std::string cond_string;
12213
12214 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12215
12216 if (!arg)
12217 arg = "";
12218 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12219 &cond_string);
12220 create_ada_exception_catchpoint (gdbarch, ex_kind,
12221 excep_string, cond_string,
12222 tempflag, 1 /* enabled */,
12223 from_tty);
12224 }
12225
12226 /* Implement the "catch handlers" command. */
12227
12228 static void
12229 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12230 struct cmd_list_element *command)
12231 {
12232 const char *arg = arg_entry;
12233 struct gdbarch *gdbarch = get_current_arch ();
12234 int tempflag;
12235 enum ada_exception_catchpoint_kind ex_kind;
12236 std::string excep_string;
12237 std::string cond_string;
12238
12239 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12240
12241 if (!arg)
12242 arg = "";
12243 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12244 &cond_string);
12245 create_ada_exception_catchpoint (gdbarch, ex_kind,
12246 excep_string, cond_string,
12247 tempflag, 1 /* enabled */,
12248 from_tty);
12249 }
12250
12251 /* Completion function for the Ada "catch" commands. */
12252
12253 static void
12254 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12255 const char *text, const char *word)
12256 {
12257 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12258
12259 for (const ada_exc_info &info : exceptions)
12260 {
12261 if (startswith (info.name, word))
12262 tracker.add_completion (make_unique_xstrdup (info.name));
12263 }
12264 }
12265
12266 /* Split the arguments specified in a "catch assert" command.
12267
12268 ARGS contains the command's arguments (or the empty string if
12269 no arguments were passed).
12270
12271 If ARGS contains a condition, set COND_STRING to that condition
12272 (the memory needs to be deallocated after use). */
12273
12274 static void
12275 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12276 {
12277 args = skip_spaces (args);
12278
12279 /* Check whether a condition was provided. */
12280 if (startswith (args, "if")
12281 && (isspace (args[2]) || args[2] == '\0'))
12282 {
12283 args += 2;
12284 args = skip_spaces (args);
12285 if (args[0] == '\0')
12286 error (_("condition missing after `if' keyword"));
12287 cond_string.assign (args);
12288 }
12289
12290 /* Otherwise, there should be no other argument at the end of
12291 the command. */
12292 else if (args[0] != '\0')
12293 error (_("Junk at end of arguments."));
12294 }
12295
12296 /* Implement the "catch assert" command. */
12297
12298 static void
12299 catch_assert_command (const char *arg_entry, int from_tty,
12300 struct cmd_list_element *command)
12301 {
12302 const char *arg = arg_entry;
12303 struct gdbarch *gdbarch = get_current_arch ();
12304 int tempflag;
12305 std::string cond_string;
12306
12307 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12308
12309 if (!arg)
12310 arg = "";
12311 catch_ada_assert_command_split (arg, cond_string);
12312 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12313 "", cond_string,
12314 tempflag, 1 /* enabled */,
12315 from_tty);
12316 }
12317
12318 /* Return non-zero if the symbol SYM is an Ada exception object. */
12319
12320 static int
12321 ada_is_exception_sym (struct symbol *sym)
12322 {
12323 const char *type_name = SYMBOL_TYPE (sym)->name ();
12324
12325 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12326 && SYMBOL_CLASS (sym) != LOC_BLOCK
12327 && SYMBOL_CLASS (sym) != LOC_CONST
12328 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12329 && type_name != NULL && strcmp (type_name, "exception") == 0);
12330 }
12331
12332 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12333 Ada exception object. This matches all exceptions except the ones
12334 defined by the Ada language. */
12335
12336 static int
12337 ada_is_non_standard_exception_sym (struct symbol *sym)
12338 {
12339 int i;
12340
12341 if (!ada_is_exception_sym (sym))
12342 return 0;
12343
12344 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12345 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12346 return 0; /* A standard exception. */
12347
12348 /* Numeric_Error is also a standard exception, so exclude it.
12349 See the STANDARD_EXC description for more details as to why
12350 this exception is not listed in that array. */
12351 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12352 return 0;
12353
12354 return 1;
12355 }
12356
12357 /* A helper function for std::sort, comparing two struct ada_exc_info
12358 objects.
12359
12360 The comparison is determined first by exception name, and then
12361 by exception address. */
12362
12363 bool
12364 ada_exc_info::operator< (const ada_exc_info &other) const
12365 {
12366 int result;
12367
12368 result = strcmp (name, other.name);
12369 if (result < 0)
12370 return true;
12371 if (result == 0 && addr < other.addr)
12372 return true;
12373 return false;
12374 }
12375
12376 bool
12377 ada_exc_info::operator== (const ada_exc_info &other) const
12378 {
12379 return addr == other.addr && strcmp (name, other.name) == 0;
12380 }
12381
12382 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12383 routine, but keeping the first SKIP elements untouched.
12384
12385 All duplicates are also removed. */
12386
12387 static void
12388 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12389 int skip)
12390 {
12391 std::sort (exceptions->begin () + skip, exceptions->end ());
12392 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12393 exceptions->end ());
12394 }
12395
12396 /* Add all exceptions defined by the Ada standard whose name match
12397 a regular expression.
12398
12399 If PREG is not NULL, then this regexp_t object is used to
12400 perform the symbol name matching. Otherwise, no name-based
12401 filtering is performed.
12402
12403 EXCEPTIONS is a vector of exceptions to which matching exceptions
12404 gets pushed. */
12405
12406 static void
12407 ada_add_standard_exceptions (compiled_regex *preg,
12408 std::vector<ada_exc_info> *exceptions)
12409 {
12410 int i;
12411
12412 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12413 {
12414 if (preg == NULL
12415 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12416 {
12417 struct bound_minimal_symbol msymbol
12418 = ada_lookup_simple_minsym (standard_exc[i]);
12419
12420 if (msymbol.minsym != NULL)
12421 {
12422 struct ada_exc_info info
12423 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12424
12425 exceptions->push_back (info);
12426 }
12427 }
12428 }
12429 }
12430
12431 /* Add all Ada exceptions defined locally and accessible from the given
12432 FRAME.
12433
12434 If PREG is not NULL, then this regexp_t object is used to
12435 perform the symbol name matching. Otherwise, no name-based
12436 filtering is performed.
12437
12438 EXCEPTIONS is a vector of exceptions to which matching exceptions
12439 gets pushed. */
12440
12441 static void
12442 ada_add_exceptions_from_frame (compiled_regex *preg,
12443 struct frame_info *frame,
12444 std::vector<ada_exc_info> *exceptions)
12445 {
12446 const struct block *block = get_frame_block (frame, 0);
12447
12448 while (block != 0)
12449 {
12450 struct block_iterator iter;
12451 struct symbol *sym;
12452
12453 ALL_BLOCK_SYMBOLS (block, iter, sym)
12454 {
12455 switch (SYMBOL_CLASS (sym))
12456 {
12457 case LOC_TYPEDEF:
12458 case LOC_BLOCK:
12459 case LOC_CONST:
12460 break;
12461 default:
12462 if (ada_is_exception_sym (sym))
12463 {
12464 struct ada_exc_info info = {sym->print_name (),
12465 SYMBOL_VALUE_ADDRESS (sym)};
12466
12467 exceptions->push_back (info);
12468 }
12469 }
12470 }
12471 if (BLOCK_FUNCTION (block) != NULL)
12472 break;
12473 block = BLOCK_SUPERBLOCK (block);
12474 }
12475 }
12476
12477 /* Return true if NAME matches PREG or if PREG is NULL. */
12478
12479 static bool
12480 name_matches_regex (const char *name, compiled_regex *preg)
12481 {
12482 return (preg == NULL
12483 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12484 }
12485
12486 /* Add all exceptions defined globally whose name name match
12487 a regular expression, excluding standard exceptions.
12488
12489 The reason we exclude standard exceptions is that they need
12490 to be handled separately: Standard exceptions are defined inside
12491 a runtime unit which is normally not compiled with debugging info,
12492 and thus usually do not show up in our symbol search. However,
12493 if the unit was in fact built with debugging info, we need to
12494 exclude them because they would duplicate the entry we found
12495 during the special loop that specifically searches for those
12496 standard exceptions.
12497
12498 If PREG is not NULL, then this regexp_t object is used to
12499 perform the symbol name matching. Otherwise, no name-based
12500 filtering is performed.
12501
12502 EXCEPTIONS is a vector of exceptions to which matching exceptions
12503 gets pushed. */
12504
12505 static void
12506 ada_add_global_exceptions (compiled_regex *preg,
12507 std::vector<ada_exc_info> *exceptions)
12508 {
12509 /* In Ada, the symbol "search name" is a linkage name, whereas the
12510 regular expression used to do the matching refers to the natural
12511 name. So match against the decoded name. */
12512 expand_symtabs_matching (NULL,
12513 lookup_name_info::match_any (),
12514 [&] (const char *search_name)
12515 {
12516 std::string decoded = ada_decode (search_name);
12517 return name_matches_regex (decoded.c_str (), preg);
12518 },
12519 NULL,
12520 VARIABLES_DOMAIN);
12521
12522 for (objfile *objfile : current_program_space->objfiles ())
12523 {
12524 for (compunit_symtab *s : objfile->compunits ())
12525 {
12526 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12527 int i;
12528
12529 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12530 {
12531 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12532 struct block_iterator iter;
12533 struct symbol *sym;
12534
12535 ALL_BLOCK_SYMBOLS (b, iter, sym)
12536 if (ada_is_non_standard_exception_sym (sym)
12537 && name_matches_regex (sym->natural_name (), preg))
12538 {
12539 struct ada_exc_info info
12540 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12541
12542 exceptions->push_back (info);
12543 }
12544 }
12545 }
12546 }
12547 }
12548
12549 /* Implements ada_exceptions_list with the regular expression passed
12550 as a regex_t, rather than a string.
12551
12552 If not NULL, PREG is used to filter out exceptions whose names
12553 do not match. Otherwise, all exceptions are listed. */
12554
12555 static std::vector<ada_exc_info>
12556 ada_exceptions_list_1 (compiled_regex *preg)
12557 {
12558 std::vector<ada_exc_info> result;
12559 int prev_len;
12560
12561 /* First, list the known standard exceptions. These exceptions
12562 need to be handled separately, as they are usually defined in
12563 runtime units that have been compiled without debugging info. */
12564
12565 ada_add_standard_exceptions (preg, &result);
12566
12567 /* Next, find all exceptions whose scope is local and accessible
12568 from the currently selected frame. */
12569
12570 if (has_stack_frames ())
12571 {
12572 prev_len = result.size ();
12573 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12574 &result);
12575 if (result.size () > prev_len)
12576 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12577 }
12578
12579 /* Add all exceptions whose scope is global. */
12580
12581 prev_len = result.size ();
12582 ada_add_global_exceptions (preg, &result);
12583 if (result.size () > prev_len)
12584 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12585
12586 return result;
12587 }
12588
12589 /* Return a vector of ada_exc_info.
12590
12591 If REGEXP is NULL, all exceptions are included in the result.
12592 Otherwise, it should contain a valid regular expression,
12593 and only the exceptions whose names match that regular expression
12594 are included in the result.
12595
12596 The exceptions are sorted in the following order:
12597 - Standard exceptions (defined by the Ada language), in
12598 alphabetical order;
12599 - Exceptions only visible from the current frame, in
12600 alphabetical order;
12601 - Exceptions whose scope is global, in alphabetical order. */
12602
12603 std::vector<ada_exc_info>
12604 ada_exceptions_list (const char *regexp)
12605 {
12606 if (regexp == NULL)
12607 return ada_exceptions_list_1 (NULL);
12608
12609 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12610 return ada_exceptions_list_1 (&reg);
12611 }
12612
12613 /* Implement the "info exceptions" command. */
12614
12615 static void
12616 info_exceptions_command (const char *regexp, int from_tty)
12617 {
12618 struct gdbarch *gdbarch = get_current_arch ();
12619
12620 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12621
12622 if (regexp != NULL)
12623 printf_filtered
12624 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12625 else
12626 printf_filtered (_("All defined Ada exceptions:\n"));
12627
12628 for (const ada_exc_info &info : exceptions)
12629 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12630 }
12631
12632 \f
12633 /* Language vector */
12634
12635 /* symbol_name_matcher_ftype adapter for wild_match. */
12636
12637 static bool
12638 do_wild_match (const char *symbol_search_name,
12639 const lookup_name_info &lookup_name,
12640 completion_match_result *comp_match_res)
12641 {
12642 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12643 }
12644
12645 /* symbol_name_matcher_ftype adapter for full_match. */
12646
12647 static bool
12648 do_full_match (const char *symbol_search_name,
12649 const lookup_name_info &lookup_name,
12650 completion_match_result *comp_match_res)
12651 {
12652 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12653
12654 /* If both symbols start with "_ada_", just let the loop below
12655 handle the comparison. However, if only the symbol name starts
12656 with "_ada_", skip the prefix and let the match proceed as
12657 usual. */
12658 if (startswith (symbol_search_name, "_ada_")
12659 && !startswith (lname, "_ada"))
12660 symbol_search_name += 5;
12661
12662 int uscore_count = 0;
12663 while (*lname != '\0')
12664 {
12665 if (*symbol_search_name != *lname)
12666 {
12667 if (*symbol_search_name == 'B' && uscore_count == 2
12668 && symbol_search_name[1] == '_')
12669 {
12670 symbol_search_name += 2;
12671 while (isdigit (*symbol_search_name))
12672 ++symbol_search_name;
12673 if (symbol_search_name[0] == '_'
12674 && symbol_search_name[1] == '_')
12675 {
12676 symbol_search_name += 2;
12677 continue;
12678 }
12679 }
12680 return false;
12681 }
12682
12683 if (*symbol_search_name == '_')
12684 ++uscore_count;
12685 else
12686 uscore_count = 0;
12687
12688 ++symbol_search_name;
12689 ++lname;
12690 }
12691
12692 return is_name_suffix (symbol_search_name);
12693 }
12694
12695 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12696
12697 static bool
12698 do_exact_match (const char *symbol_search_name,
12699 const lookup_name_info &lookup_name,
12700 completion_match_result *comp_match_res)
12701 {
12702 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12703 }
12704
12705 /* Build the Ada lookup name for LOOKUP_NAME. */
12706
12707 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12708 {
12709 gdb::string_view user_name = lookup_name.name ();
12710
12711 if (!user_name.empty () && user_name[0] == '<')
12712 {
12713 if (user_name.back () == '>')
12714 m_encoded_name
12715 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12716 else
12717 m_encoded_name
12718 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12719 m_encoded_p = true;
12720 m_verbatim_p = true;
12721 m_wild_match_p = false;
12722 m_standard_p = false;
12723 }
12724 else
12725 {
12726 m_verbatim_p = false;
12727
12728 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12729
12730 if (!m_encoded_p)
12731 {
12732 const char *folded = ada_fold_name (user_name);
12733 m_encoded_name = ada_encode_1 (folded, false);
12734 if (m_encoded_name.empty ())
12735 m_encoded_name = gdb::to_string (user_name);
12736 }
12737 else
12738 m_encoded_name = gdb::to_string (user_name);
12739
12740 /* Handle the 'package Standard' special case. See description
12741 of m_standard_p. */
12742 if (startswith (m_encoded_name.c_str (), "standard__"))
12743 {
12744 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12745 m_standard_p = true;
12746 }
12747 else
12748 m_standard_p = false;
12749
12750 /* If the name contains a ".", then the user is entering a fully
12751 qualified entity name, and the match must not be done in wild
12752 mode. Similarly, if the user wants to complete what looks
12753 like an encoded name, the match must not be done in wild
12754 mode. Also, in the standard__ special case always do
12755 non-wild matching. */
12756 m_wild_match_p
12757 = (lookup_name.match_type () != symbol_name_match_type::FULL
12758 && !m_encoded_p
12759 && !m_standard_p
12760 && user_name.find ('.') == std::string::npos);
12761 }
12762 }
12763
12764 /* symbol_name_matcher_ftype method for Ada. This only handles
12765 completion mode. */
12766
12767 static bool
12768 ada_symbol_name_matches (const char *symbol_search_name,
12769 const lookup_name_info &lookup_name,
12770 completion_match_result *comp_match_res)
12771 {
12772 return lookup_name.ada ().matches (symbol_search_name,
12773 lookup_name.match_type (),
12774 comp_match_res);
12775 }
12776
12777 /* A name matcher that matches the symbol name exactly, with
12778 strcmp. */
12779
12780 static bool
12781 literal_symbol_name_matcher (const char *symbol_search_name,
12782 const lookup_name_info &lookup_name,
12783 completion_match_result *comp_match_res)
12784 {
12785 gdb::string_view name_view = lookup_name.name ();
12786
12787 if (lookup_name.completion_mode ()
12788 ? (strncmp (symbol_search_name, name_view.data (),
12789 name_view.size ()) == 0)
12790 : symbol_search_name == name_view)
12791 {
12792 if (comp_match_res != NULL)
12793 comp_match_res->set_match (symbol_search_name);
12794 return true;
12795 }
12796 else
12797 return false;
12798 }
12799
12800 /* Implement the "get_symbol_name_matcher" language_defn method for
12801 Ada. */
12802
12803 static symbol_name_matcher_ftype *
12804 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12805 {
12806 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12807 return literal_symbol_name_matcher;
12808
12809 if (lookup_name.completion_mode ())
12810 return ada_symbol_name_matches;
12811 else
12812 {
12813 if (lookup_name.ada ().wild_match_p ())
12814 return do_wild_match;
12815 else if (lookup_name.ada ().verbatim_p ())
12816 return do_exact_match;
12817 else
12818 return do_full_match;
12819 }
12820 }
12821
12822 /* Class representing the Ada language. */
12823
12824 class ada_language : public language_defn
12825 {
12826 public:
12827 ada_language ()
12828 : language_defn (language_ada)
12829 { /* Nothing. */ }
12830
12831 /* See language.h. */
12832
12833 const char *name () const override
12834 { return "ada"; }
12835
12836 /* See language.h. */
12837
12838 const char *natural_name () const override
12839 { return "Ada"; }
12840
12841 /* See language.h. */
12842
12843 const std::vector<const char *> &filename_extensions () const override
12844 {
12845 static const std::vector<const char *> extensions
12846 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12847 return extensions;
12848 }
12849
12850 /* Print an array element index using the Ada syntax. */
12851
12852 void print_array_index (struct type *index_type,
12853 LONGEST index,
12854 struct ui_file *stream,
12855 const value_print_options *options) const override
12856 {
12857 struct value *index_value = val_atr (index_type, index);
12858
12859 value_print (index_value, stream, options);
12860 fprintf_filtered (stream, " => ");
12861 }
12862
12863 /* Implement the "read_var_value" language_defn method for Ada. */
12864
12865 struct value *read_var_value (struct symbol *var,
12866 const struct block *var_block,
12867 struct frame_info *frame) const override
12868 {
12869 /* The only case where default_read_var_value is not sufficient
12870 is when VAR is a renaming... */
12871 if (frame != nullptr)
12872 {
12873 const struct block *frame_block = get_frame_block (frame, NULL);
12874 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12875 return ada_read_renaming_var_value (var, frame_block);
12876 }
12877
12878 /* This is a typical case where we expect the default_read_var_value
12879 function to work. */
12880 return language_defn::read_var_value (var, var_block, frame);
12881 }
12882
12883 /* See language.h. */
12884 void language_arch_info (struct gdbarch *gdbarch,
12885 struct language_arch_info *lai) const override
12886 {
12887 const struct builtin_type *builtin = builtin_type (gdbarch);
12888
12889 /* Helper function to allow shorter lines below. */
12890 auto add = [&] (struct type *t)
12891 {
12892 lai->add_primitive_type (t);
12893 };
12894
12895 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12896 0, "integer"));
12897 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12898 0, "long_integer"));
12899 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12900 0, "short_integer"));
12901 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12902 0, "character");
12903 lai->set_string_char_type (char_type);
12904 add (char_type);
12905 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12906 "float", gdbarch_float_format (gdbarch)));
12907 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12908 "long_float", gdbarch_double_format (gdbarch)));
12909 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12910 0, "long_long_integer"));
12911 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12912 "long_long_float",
12913 gdbarch_long_double_format (gdbarch)));
12914 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12915 0, "natural"));
12916 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12917 0, "positive"));
12918 add (builtin->builtin_void);
12919
12920 struct type *system_addr_ptr
12921 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12922 "void"));
12923 system_addr_ptr->set_name ("system__address");
12924 add (system_addr_ptr);
12925
12926 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12927 type. This is a signed integral type whose size is the same as
12928 the size of addresses. */
12929 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12930 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12931 "storage_offset"));
12932
12933 lai->set_bool_type (builtin->builtin_bool);
12934 }
12935
12936 /* See language.h. */
12937
12938 bool iterate_over_symbols
12939 (const struct block *block, const lookup_name_info &name,
12940 domain_enum domain,
12941 gdb::function_view<symbol_found_callback_ftype> callback) const override
12942 {
12943 std::vector<struct block_symbol> results
12944 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12945 for (block_symbol &sym : results)
12946 {
12947 if (!callback (&sym))
12948 return false;
12949 }
12950
12951 return true;
12952 }
12953
12954 /* See language.h. */
12955 bool sniff_from_mangled_name (const char *mangled,
12956 char **out) const override
12957 {
12958 std::string demangled = ada_decode (mangled);
12959
12960 *out = NULL;
12961
12962 if (demangled != mangled && demangled[0] != '<')
12963 {
12964 /* Set the gsymbol language to Ada, but still return 0.
12965 Two reasons for that:
12966
12967 1. For Ada, we prefer computing the symbol's decoded name
12968 on the fly rather than pre-compute it, in order to save
12969 memory (Ada projects are typically very large).
12970
12971 2. There are some areas in the definition of the GNAT
12972 encoding where, with a bit of bad luck, we might be able
12973 to decode a non-Ada symbol, generating an incorrect
12974 demangled name (Eg: names ending with "TB" for instance
12975 are identified as task bodies and so stripped from
12976 the decoded name returned).
12977
12978 Returning true, here, but not setting *DEMANGLED, helps us get
12979 a little bit of the best of both worlds. Because we're last,
12980 we should not affect any of the other languages that were
12981 able to demangle the symbol before us; we get to correctly
12982 tag Ada symbols as such; and even if we incorrectly tagged a
12983 non-Ada symbol, which should be rare, any routing through the
12984 Ada language should be transparent (Ada tries to behave much
12985 like C/C++ with non-Ada symbols). */
12986 return true;
12987 }
12988
12989 return false;
12990 }
12991
12992 /* See language.h. */
12993
12994 char *demangle_symbol (const char *mangled, int options) const override
12995 {
12996 return ada_la_decode (mangled, options);
12997 }
12998
12999 /* See language.h. */
13000
13001 void print_type (struct type *type, const char *varstring,
13002 struct ui_file *stream, int show, int level,
13003 const struct type_print_options *flags) const override
13004 {
13005 ada_print_type (type, varstring, stream, show, level, flags);
13006 }
13007
13008 /* See language.h. */
13009
13010 const char *word_break_characters (void) const override
13011 {
13012 return ada_completer_word_break_characters;
13013 }
13014
13015 /* See language.h. */
13016
13017 void collect_symbol_completion_matches (completion_tracker &tracker,
13018 complete_symbol_mode mode,
13019 symbol_name_match_type name_match_type,
13020 const char *text, const char *word,
13021 enum type_code code) const override
13022 {
13023 struct symbol *sym;
13024 const struct block *b, *surrounding_static_block = 0;
13025 struct block_iterator iter;
13026
13027 gdb_assert (code == TYPE_CODE_UNDEF);
13028
13029 lookup_name_info lookup_name (text, name_match_type, true);
13030
13031 /* First, look at the partial symtab symbols. */
13032 expand_symtabs_matching (NULL,
13033 lookup_name,
13034 NULL,
13035 NULL,
13036 ALL_DOMAIN);
13037
13038 /* At this point scan through the misc symbol vectors and add each
13039 symbol you find to the list. Eventually we want to ignore
13040 anything that isn't a text symbol (everything else will be
13041 handled by the psymtab code above). */
13042
13043 for (objfile *objfile : current_program_space->objfiles ())
13044 {
13045 for (minimal_symbol *msymbol : objfile->msymbols ())
13046 {
13047 QUIT;
13048
13049 if (completion_skip_symbol (mode, msymbol))
13050 continue;
13051
13052 language symbol_language = msymbol->language ();
13053
13054 /* Ada minimal symbols won't have their language set to Ada. If
13055 we let completion_list_add_name compare using the
13056 default/C-like matcher, then when completing e.g., symbols in a
13057 package named "pck", we'd match internal Ada symbols like
13058 "pckS", which are invalid in an Ada expression, unless you wrap
13059 them in '<' '>' to request a verbatim match.
13060
13061 Unfortunately, some Ada encoded names successfully demangle as
13062 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13063 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13064 with the wrong language set. Paper over that issue here. */
13065 if (symbol_language == language_auto
13066 || symbol_language == language_cplus)
13067 symbol_language = language_ada;
13068
13069 completion_list_add_name (tracker,
13070 symbol_language,
13071 msymbol->linkage_name (),
13072 lookup_name, text, word);
13073 }
13074 }
13075
13076 /* Search upwards from currently selected frame (so that we can
13077 complete on local vars. */
13078
13079 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13080 {
13081 if (!BLOCK_SUPERBLOCK (b))
13082 surrounding_static_block = b; /* For elmin of dups */
13083
13084 ALL_BLOCK_SYMBOLS (b, iter, sym)
13085 {
13086 if (completion_skip_symbol (mode, sym))
13087 continue;
13088
13089 completion_list_add_name (tracker,
13090 sym->language (),
13091 sym->linkage_name (),
13092 lookup_name, text, word);
13093 }
13094 }
13095
13096 /* Go through the symtabs and check the externs and statics for
13097 symbols which match. */
13098
13099 for (objfile *objfile : current_program_space->objfiles ())
13100 {
13101 for (compunit_symtab *s : objfile->compunits ())
13102 {
13103 QUIT;
13104 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13105 ALL_BLOCK_SYMBOLS (b, iter, sym)
13106 {
13107 if (completion_skip_symbol (mode, sym))
13108 continue;
13109
13110 completion_list_add_name (tracker,
13111 sym->language (),
13112 sym->linkage_name (),
13113 lookup_name, text, word);
13114 }
13115 }
13116 }
13117
13118 for (objfile *objfile : current_program_space->objfiles ())
13119 {
13120 for (compunit_symtab *s : objfile->compunits ())
13121 {
13122 QUIT;
13123 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13124 /* Don't do this block twice. */
13125 if (b == surrounding_static_block)
13126 continue;
13127 ALL_BLOCK_SYMBOLS (b, iter, sym)
13128 {
13129 if (completion_skip_symbol (mode, sym))
13130 continue;
13131
13132 completion_list_add_name (tracker,
13133 sym->language (),
13134 sym->linkage_name (),
13135 lookup_name, text, word);
13136 }
13137 }
13138 }
13139 }
13140
13141 /* See language.h. */
13142
13143 gdb::unique_xmalloc_ptr<char> watch_location_expression
13144 (struct type *type, CORE_ADDR addr) const override
13145 {
13146 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13147 std::string name = type_to_string (type);
13148 return gdb::unique_xmalloc_ptr<char>
13149 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13150 }
13151
13152 /* See language.h. */
13153
13154 void value_print (struct value *val, struct ui_file *stream,
13155 const struct value_print_options *options) const override
13156 {
13157 return ada_value_print (val, stream, options);
13158 }
13159
13160 /* See language.h. */
13161
13162 void value_print_inner
13163 (struct value *val, struct ui_file *stream, int recurse,
13164 const struct value_print_options *options) const override
13165 {
13166 return ada_value_print_inner (val, stream, recurse, options);
13167 }
13168
13169 /* See language.h. */
13170
13171 struct block_symbol lookup_symbol_nonlocal
13172 (const char *name, const struct block *block,
13173 const domain_enum domain) const override
13174 {
13175 struct block_symbol sym;
13176
13177 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13178 if (sym.symbol != NULL)
13179 return sym;
13180
13181 /* If we haven't found a match at this point, try the primitive
13182 types. In other languages, this search is performed before
13183 searching for global symbols in order to short-circuit that
13184 global-symbol search if it happens that the name corresponds
13185 to a primitive type. But we cannot do the same in Ada, because
13186 it is perfectly legitimate for a program to declare a type which
13187 has the same name as a standard type. If looking up a type in
13188 that situation, we have traditionally ignored the primitive type
13189 in favor of user-defined types. This is why, unlike most other
13190 languages, we search the primitive types this late and only after
13191 having searched the global symbols without success. */
13192
13193 if (domain == VAR_DOMAIN)
13194 {
13195 struct gdbarch *gdbarch;
13196
13197 if (block == NULL)
13198 gdbarch = target_gdbarch ();
13199 else
13200 gdbarch = block_gdbarch (block);
13201 sym.symbol
13202 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13203 if (sym.symbol != NULL)
13204 return sym;
13205 }
13206
13207 return {};
13208 }
13209
13210 /* See language.h. */
13211
13212 int parser (struct parser_state *ps) const override
13213 {
13214 warnings_issued = 0;
13215 return ada_parse (ps);
13216 }
13217
13218 /* See language.h. */
13219
13220 void emitchar (int ch, struct type *chtype,
13221 struct ui_file *stream, int quoter) const override
13222 {
13223 ada_emit_char (ch, chtype, stream, quoter, 1);
13224 }
13225
13226 /* See language.h. */
13227
13228 void printchar (int ch, struct type *chtype,
13229 struct ui_file *stream) const override
13230 {
13231 ada_printchar (ch, chtype, stream);
13232 }
13233
13234 /* See language.h. */
13235
13236 void printstr (struct ui_file *stream, struct type *elttype,
13237 const gdb_byte *string, unsigned int length,
13238 const char *encoding, int force_ellipses,
13239 const struct value_print_options *options) const override
13240 {
13241 ada_printstr (stream, elttype, string, length, encoding,
13242 force_ellipses, options);
13243 }
13244
13245 /* See language.h. */
13246
13247 void print_typedef (struct type *type, struct symbol *new_symbol,
13248 struct ui_file *stream) const override
13249 {
13250 ada_print_typedef (type, new_symbol, stream);
13251 }
13252
13253 /* See language.h. */
13254
13255 bool is_string_type_p (struct type *type) const override
13256 {
13257 return ada_is_string_type (type);
13258 }
13259
13260 /* See language.h. */
13261
13262 const char *struct_too_deep_ellipsis () const override
13263 { return "(...)"; }
13264
13265 /* See language.h. */
13266
13267 bool c_style_arrays_p () const override
13268 { return false; }
13269
13270 /* See language.h. */
13271
13272 bool store_sym_names_in_linkage_form_p () const override
13273 { return true; }
13274
13275 /* See language.h. */
13276
13277 const struct lang_varobj_ops *varobj_ops () const override
13278 { return &ada_varobj_ops; }
13279
13280 protected:
13281 /* See language.h. */
13282
13283 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13284 (const lookup_name_info &lookup_name) const override
13285 {
13286 return ada_get_symbol_name_matcher (lookup_name);
13287 }
13288 };
13289
13290 /* Single instance of the Ada language class. */
13291
13292 static ada_language ada_language_defn;
13293
13294 /* Command-list for the "set/show ada" prefix command. */
13295 static struct cmd_list_element *set_ada_list;
13296 static struct cmd_list_element *show_ada_list;
13297
13298 static void
13299 initialize_ada_catchpoint_ops (void)
13300 {
13301 struct breakpoint_ops *ops;
13302
13303 initialize_breakpoint_ops ();
13304
13305 ops = &catch_exception_breakpoint_ops;
13306 *ops = bkpt_breakpoint_ops;
13307 ops->allocate_location = allocate_location_exception;
13308 ops->re_set = re_set_exception;
13309 ops->check_status = check_status_exception;
13310 ops->print_it = print_it_exception;
13311 ops->print_one = print_one_exception;
13312 ops->print_mention = print_mention_exception;
13313 ops->print_recreate = print_recreate_exception;
13314
13315 ops = &catch_exception_unhandled_breakpoint_ops;
13316 *ops = bkpt_breakpoint_ops;
13317 ops->allocate_location = allocate_location_exception;
13318 ops->re_set = re_set_exception;
13319 ops->check_status = check_status_exception;
13320 ops->print_it = print_it_exception;
13321 ops->print_one = print_one_exception;
13322 ops->print_mention = print_mention_exception;
13323 ops->print_recreate = print_recreate_exception;
13324
13325 ops = &catch_assert_breakpoint_ops;
13326 *ops = bkpt_breakpoint_ops;
13327 ops->allocate_location = allocate_location_exception;
13328 ops->re_set = re_set_exception;
13329 ops->check_status = check_status_exception;
13330 ops->print_it = print_it_exception;
13331 ops->print_one = print_one_exception;
13332 ops->print_mention = print_mention_exception;
13333 ops->print_recreate = print_recreate_exception;
13334
13335 ops = &catch_handlers_breakpoint_ops;
13336 *ops = bkpt_breakpoint_ops;
13337 ops->allocate_location = allocate_location_exception;
13338 ops->re_set = re_set_exception;
13339 ops->check_status = check_status_exception;
13340 ops->print_it = print_it_exception;
13341 ops->print_one = print_one_exception;
13342 ops->print_mention = print_mention_exception;
13343 ops->print_recreate = print_recreate_exception;
13344 }
13345
13346 /* This module's 'new_objfile' observer. */
13347
13348 static void
13349 ada_new_objfile_observer (struct objfile *objfile)
13350 {
13351 ada_clear_symbol_cache ();
13352 }
13353
13354 /* This module's 'free_objfile' observer. */
13355
13356 static void
13357 ada_free_objfile_observer (struct objfile *objfile)
13358 {
13359 ada_clear_symbol_cache ();
13360 }
13361
13362 void _initialize_ada_language ();
13363 void
13364 _initialize_ada_language ()
13365 {
13366 initialize_ada_catchpoint_ops ();
13367
13368 add_basic_prefix_cmd ("ada", no_class,
13369 _("Prefix command for changing Ada-specific settings."),
13370 &set_ada_list, "set ada ", 0, &setlist);
13371
13372 add_show_prefix_cmd ("ada", no_class,
13373 _("Generic command for showing Ada-specific settings."),
13374 &show_ada_list, "show ada ", 0, &showlist);
13375
13376 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13377 &trust_pad_over_xvs, _("\
13378 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13379 Show whether an optimization trusting PAD types over XVS types is activated."),
13380 _("\
13381 This is related to the encoding used by the GNAT compiler. The debugger\n\
13382 should normally trust the contents of PAD types, but certain older versions\n\
13383 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13384 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13385 work around this bug. It is always safe to turn this option \"off\", but\n\
13386 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13387 this option to \"off\" unless necessary."),
13388 NULL, NULL, &set_ada_list, &show_ada_list);
13389
13390 add_setshow_boolean_cmd ("print-signatures", class_vars,
13391 &print_signatures, _("\
13392 Enable or disable the output of formal and return types for functions in the \
13393 overloads selection menu."), _("\
13394 Show whether the output of formal and return types for functions in the \
13395 overloads selection menu is activated."),
13396 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13397
13398 add_catch_command ("exception", _("\
13399 Catch Ada exceptions, when raised.\n\
13400 Usage: catch exception [ARG] [if CONDITION]\n\
13401 Without any argument, stop when any Ada exception is raised.\n\
13402 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13403 being raised does not have a handler (and will therefore lead to the task's\n\
13404 termination).\n\
13405 Otherwise, the catchpoint only stops when the name of the exception being\n\
13406 raised is the same as ARG.\n\
13407 CONDITION is a boolean expression that is evaluated to see whether the\n\
13408 exception should cause a stop."),
13409 catch_ada_exception_command,
13410 catch_ada_completer,
13411 CATCH_PERMANENT,
13412 CATCH_TEMPORARY);
13413
13414 add_catch_command ("handlers", _("\
13415 Catch Ada exceptions, when handled.\n\
13416 Usage: catch handlers [ARG] [if CONDITION]\n\
13417 Without any argument, stop when any Ada exception is handled.\n\
13418 With an argument, catch only exceptions with the given name.\n\
13419 CONDITION is a boolean expression that is evaluated to see whether the\n\
13420 exception should cause a stop."),
13421 catch_ada_handlers_command,
13422 catch_ada_completer,
13423 CATCH_PERMANENT,
13424 CATCH_TEMPORARY);
13425 add_catch_command ("assert", _("\
13426 Catch failed Ada assertions, when raised.\n\
13427 Usage: catch assert [if CONDITION]\n\
13428 CONDITION is a boolean expression that is evaluated to see whether the\n\
13429 exception should cause a stop."),
13430 catch_assert_command,
13431 NULL,
13432 CATCH_PERMANENT,
13433 CATCH_TEMPORARY);
13434
13435 varsize_limit = 65536;
13436 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13437 &varsize_limit, _("\
13438 Set the maximum number of bytes allowed in a variable-size object."), _("\
13439 Show the maximum number of bytes allowed in a variable-size object."), _("\
13440 Attempts to access an object whose size is not a compile-time constant\n\
13441 and exceeds this limit will cause an error."),
13442 NULL, NULL, &setlist, &showlist);
13443
13444 add_info ("exceptions", info_exceptions_command,
13445 _("\
13446 List all Ada exception names.\n\
13447 Usage: info exceptions [REGEXP]\n\
13448 If a regular expression is passed as an argument, only those matching\n\
13449 the regular expression are listed."));
13450
13451 add_basic_prefix_cmd ("ada", class_maintenance,
13452 _("Set Ada maintenance-related variables."),
13453 &maint_set_ada_cmdlist, "maintenance set ada ",
13454 0/*allow-unknown*/, &maintenance_set_cmdlist);
13455
13456 add_show_prefix_cmd ("ada", class_maintenance,
13457 _("Show Ada maintenance-related variables."),
13458 &maint_show_ada_cmdlist, "maintenance show ada ",
13459 0/*allow-unknown*/, &maintenance_show_cmdlist);
13460
13461 add_setshow_boolean_cmd
13462 ("ignore-descriptive-types", class_maintenance,
13463 &ada_ignore_descriptive_types_p,
13464 _("Set whether descriptive types generated by GNAT should be ignored."),
13465 _("Show whether descriptive types generated by GNAT should be ignored."),
13466 _("\
13467 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13468 DWARF attribute."),
13469 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13470
13471 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
13472 NULL, xcalloc, xfree);
13473
13474 /* The ada-lang observers. */
13475 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
13476 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
13477 gdb::observers::inferior_exit.attach (ada_inferior_exit);
13478 }
This page took 0.306496 seconds and 4 git commands to generate.