e7852c5b10ea5a42cdf0c17228760f13c1047413
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static struct type *ada_create_fundamental_type (struct objfile *, int);
75
76 static void modify_general_field (char *, LONGEST, int, int);
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static struct value *ensure_lval (struct value *, CORE_ADDR *);
111
112 static struct value *convert_actual (struct value *, struct type *,
113 CORE_ADDR *);
114
115 static struct value *make_array_descriptor (struct type *, struct value *,
116 CORE_ADDR *);
117
118 static void ada_add_block_symbols (struct obstack *,
119 struct block *, const char *,
120 domain_enum, struct objfile *,
121 struct symtab *, int);
122
123 static int is_nonfunction (struct ada_symbol_info *, int);
124
125 static void add_defn_to_vec (struct obstack *, struct symbol *,
126 struct block *, struct symtab *);
127
128 static int num_defns_collected (struct obstack *);
129
130 static struct ada_symbol_info *defns_collected (struct obstack *, int);
131
132 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
133 *, const char *, int,
134 domain_enum, int);
135
136 static struct symtab *symtab_for_sym (struct symbol *);
137
138 static struct value *resolve_subexp (struct expression **, int *, int,
139 struct type *);
140
141 static void replace_operator_with_call (struct expression **, int, int, int,
142 struct symbol *, struct block *);
143
144 static int possible_user_operator_p (enum exp_opcode, struct value **);
145
146 static char *ada_op_name (enum exp_opcode);
147
148 static const char *ada_decoded_op_name (enum exp_opcode);
149
150 static int numeric_type_p (struct type *);
151
152 static int integer_type_p (struct type *);
153
154 static int scalar_type_p (struct type *);
155
156 static int discrete_type_p (struct type *);
157
158 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
159 int, int, int *);
160
161 static struct value *evaluate_subexp (struct type *, struct expression *,
162 int *, enum noside);
163
164 static struct value *evaluate_subexp_type (struct expression *, int *);
165
166 static int is_dynamic_field (struct type *, int);
167
168 static struct type *to_fixed_variant_branch_type (struct type *,
169 const gdb_byte *,
170 CORE_ADDR, struct value *);
171
172 static struct type *to_fixed_array_type (struct type *, struct value *, int);
173
174 static struct type *to_fixed_range_type (char *, struct value *,
175 struct objfile *);
176
177 static struct type *to_static_fixed_type (struct type *);
178
179 static struct value *unwrap_value (struct value *);
180
181 static struct type *packed_array_type (struct type *, long *);
182
183 static struct type *decode_packed_array_type (struct type *);
184
185 static struct value *decode_packed_array (struct value *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static struct value *ada_to_fixed_value (struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static struct value *ada_coerce_to_simple_array (struct value *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249 static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254 static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260 static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271 static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
273 \f
274
275
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
278
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
282 #ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 #else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 #endif
287
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292 /* Limit on the number of warnings to raise per expression evaluation. */
293 static int warning_limit = 2;
294
295 /* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297 static int warnings_issued = 0;
298
299 static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301 };
302
303 static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305 };
306
307 /* Space for allocating results of ada_lookup_symbol_list. */
308 static struct obstack symbol_list_obstack;
309
310 /* Utilities */
311
312
313 static char *
314 ada_get_gdb_completer_word_break_characters (void)
315 {
316 return ada_completer_word_break_characters;
317 }
318
319 /* Print an array element index using the Ada syntax. */
320
321 static void
322 ada_print_array_index (struct value *index_value, struct ui_file *stream,
323 int format, enum val_prettyprint pretty)
324 {
325 LA_VALUE_PRINT (index_value, stream, format, pretty);
326 fprintf_filtered (stream, " => ");
327 }
328
329 /* Read the string located at ADDR from the inferior and store the
330 result into BUF. */
331
332 static void
333 extract_string (CORE_ADDR addr, char *buf)
334 {
335 int char_index = 0;
336
337 /* Loop, reading one byte at a time, until we reach the '\000'
338 end-of-string marker. */
339 do
340 {
341 target_read_memory (addr + char_index * sizeof (char),
342 buf + char_index * sizeof (char), sizeof (char));
343 char_index++;
344 }
345 while (buf[char_index - 1] != '\000');
346 }
347
348 /* Assuming VECT points to an array of *SIZE objects of size
349 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
350 updating *SIZE as necessary and returning the (new) array. */
351
352 void *
353 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
354 {
355 if (*size < min_size)
356 {
357 *size *= 2;
358 if (*size < min_size)
359 *size = min_size;
360 vect = xrealloc (vect, *size * element_size);
361 }
362 return vect;
363 }
364
365 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
366 suffix of FIELD_NAME beginning "___". */
367
368 static int
369 field_name_match (const char *field_name, const char *target)
370 {
371 int len = strlen (target);
372 return
373 (strncmp (field_name, target, len) == 0
374 && (field_name[len] == '\0'
375 || (strncmp (field_name + len, "___", 3) == 0
376 && strcmp (field_name + strlen (field_name) - 6,
377 "___XVN") != 0)));
378 }
379
380
381 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
382 FIELD_NAME, and return its index. This function also handles fields
383 whose name have ___ suffixes because the compiler sometimes alters
384 their name by adding such a suffix to represent fields with certain
385 constraints. If the field could not be found, return a negative
386 number if MAYBE_MISSING is set. Otherwise raise an error. */
387
388 int
389 ada_get_field_index (const struct type *type, const char *field_name,
390 int maybe_missing)
391 {
392 int fieldno;
393 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
394 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
395 return fieldno;
396
397 if (!maybe_missing)
398 error (_("Unable to find field %s in struct %s. Aborting"),
399 field_name, TYPE_NAME (type));
400
401 return -1;
402 }
403
404 /* The length of the prefix of NAME prior to any "___" suffix. */
405
406 int
407 ada_name_prefix_len (const char *name)
408 {
409 if (name == NULL)
410 return 0;
411 else
412 {
413 const char *p = strstr (name, "___");
414 if (p == NULL)
415 return strlen (name);
416 else
417 return p - name;
418 }
419 }
420
421 /* Return non-zero if SUFFIX is a suffix of STR.
422 Return zero if STR is null. */
423
424 static int
425 is_suffix (const char *str, const char *suffix)
426 {
427 int len1, len2;
428 if (str == NULL)
429 return 0;
430 len1 = strlen (str);
431 len2 = strlen (suffix);
432 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
433 }
434
435 /* Create a value of type TYPE whose contents come from VALADDR, if it
436 is non-null, and whose memory address (in the inferior) is
437 ADDRESS. */
438
439 struct value *
440 value_from_contents_and_address (struct type *type,
441 const gdb_byte *valaddr,
442 CORE_ADDR address)
443 {
444 struct value *v = allocate_value (type);
445 if (valaddr == NULL)
446 set_value_lazy (v, 1);
447 else
448 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
449 VALUE_ADDRESS (v) = address;
450 if (address != 0)
451 VALUE_LVAL (v) = lval_memory;
452 return v;
453 }
454
455 /* The contents of value VAL, treated as a value of type TYPE. The
456 result is an lval in memory if VAL is. */
457
458 static struct value *
459 coerce_unspec_val_to_type (struct value *val, struct type *type)
460 {
461 type = ada_check_typedef (type);
462 if (value_type (val) == type)
463 return val;
464 else
465 {
466 struct value *result;
467
468 /* Make sure that the object size is not unreasonable before
469 trying to allocate some memory for it. */
470 check_size (type);
471
472 result = allocate_value (type);
473 VALUE_LVAL (result) = VALUE_LVAL (val);
474 set_value_bitsize (result, value_bitsize (val));
475 set_value_bitpos (result, value_bitpos (val));
476 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
477 if (value_lazy (val)
478 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
479 set_value_lazy (result, 1);
480 else
481 memcpy (value_contents_raw (result), value_contents (val),
482 TYPE_LENGTH (type));
483 return result;
484 }
485 }
486
487 static const gdb_byte *
488 cond_offset_host (const gdb_byte *valaddr, long offset)
489 {
490 if (valaddr == NULL)
491 return NULL;
492 else
493 return valaddr + offset;
494 }
495
496 static CORE_ADDR
497 cond_offset_target (CORE_ADDR address, long offset)
498 {
499 if (address == 0)
500 return 0;
501 else
502 return address + offset;
503 }
504
505 /* Issue a warning (as for the definition of warning in utils.c, but
506 with exactly one argument rather than ...), unless the limit on the
507 number of warnings has passed during the evaluation of the current
508 expression. */
509
510 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
511 provided by "complaint". */
512 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
513
514 static void
515 lim_warning (const char *format, ...)
516 {
517 va_list args;
518 va_start (args, format);
519
520 warnings_issued += 1;
521 if (warnings_issued <= warning_limit)
522 vwarning (format, args);
523
524 va_end (args);
525 }
526
527 /* Issue an error if the size of an object of type T is unreasonable,
528 i.e. if it would be a bad idea to allocate a value of this type in
529 GDB. */
530
531 static void
532 check_size (const struct type *type)
533 {
534 if (TYPE_LENGTH (type) > varsize_limit)
535 error (_("object size is larger than varsize-limit"));
536 }
537
538
539 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
540 gdbtypes.h, but some of the necessary definitions in that file
541 seem to have gone missing. */
542
543 /* Maximum value of a SIZE-byte signed integer type. */
544 static LONGEST
545 max_of_size (int size)
546 {
547 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
548 return top_bit | (top_bit - 1);
549 }
550
551 /* Minimum value of a SIZE-byte signed integer type. */
552 static LONGEST
553 min_of_size (int size)
554 {
555 return -max_of_size (size) - 1;
556 }
557
558 /* Maximum value of a SIZE-byte unsigned integer type. */
559 static ULONGEST
560 umax_of_size (int size)
561 {
562 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
563 return top_bit | (top_bit - 1);
564 }
565
566 /* Maximum value of integral type T, as a signed quantity. */
567 static LONGEST
568 max_of_type (struct type *t)
569 {
570 if (TYPE_UNSIGNED (t))
571 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
572 else
573 return max_of_size (TYPE_LENGTH (t));
574 }
575
576 /* Minimum value of integral type T, as a signed quantity. */
577 static LONGEST
578 min_of_type (struct type *t)
579 {
580 if (TYPE_UNSIGNED (t))
581 return 0;
582 else
583 return min_of_size (TYPE_LENGTH (t));
584 }
585
586 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
587 static struct value *
588 discrete_type_high_bound (struct type *type)
589 {
590 switch (TYPE_CODE (type))
591 {
592 case TYPE_CODE_RANGE:
593 return value_from_longest (TYPE_TARGET_TYPE (type),
594 TYPE_HIGH_BOUND (type));
595 case TYPE_CODE_ENUM:
596 return
597 value_from_longest (type,
598 TYPE_FIELD_BITPOS (type,
599 TYPE_NFIELDS (type) - 1));
600 case TYPE_CODE_INT:
601 return value_from_longest (type, max_of_type (type));
602 default:
603 error (_("Unexpected type in discrete_type_high_bound."));
604 }
605 }
606
607 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
608 static struct value *
609 discrete_type_low_bound (struct type *type)
610 {
611 switch (TYPE_CODE (type))
612 {
613 case TYPE_CODE_RANGE:
614 return value_from_longest (TYPE_TARGET_TYPE (type),
615 TYPE_LOW_BOUND (type));
616 case TYPE_CODE_ENUM:
617 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
618 case TYPE_CODE_INT:
619 return value_from_longest (type, min_of_type (type));
620 default:
621 error (_("Unexpected type in discrete_type_low_bound."));
622 }
623 }
624
625 /* The identity on non-range types. For range types, the underlying
626 non-range scalar type. */
627
628 static struct type *
629 base_type (struct type *type)
630 {
631 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
632 {
633 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
634 return type;
635 type = TYPE_TARGET_TYPE (type);
636 }
637 return type;
638 }
639 \f
640
641 /* Language Selection */
642
643 /* If the main program is in Ada, return language_ada, otherwise return LANG
644 (the main program is in Ada iif the adainit symbol is found).
645
646 MAIN_PST is not used. */
647
648 enum language
649 ada_update_initial_language (enum language lang,
650 struct partial_symtab *main_pst)
651 {
652 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
653 (struct objfile *) NULL) != NULL)
654 return language_ada;
655
656 return lang;
657 }
658
659 /* If the main procedure is written in Ada, then return its name.
660 The result is good until the next call. Return NULL if the main
661 procedure doesn't appear to be in Ada. */
662
663 char *
664 ada_main_name (void)
665 {
666 struct minimal_symbol *msym;
667 CORE_ADDR main_program_name_addr;
668 static char main_program_name[1024];
669
670 /* For Ada, the name of the main procedure is stored in a specific
671 string constant, generated by the binder. Look for that symbol,
672 extract its address, and then read that string. If we didn't find
673 that string, then most probably the main procedure is not written
674 in Ada. */
675 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
676
677 if (msym != NULL)
678 {
679 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
680 if (main_program_name_addr == 0)
681 error (_("Invalid address for Ada main program name."));
682
683 extract_string (main_program_name_addr, main_program_name);
684 return main_program_name;
685 }
686
687 /* The main procedure doesn't seem to be in Ada. */
688 return NULL;
689 }
690 \f
691 /* Symbols */
692
693 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
694 of NULLs. */
695
696 const struct ada_opname_map ada_opname_table[] = {
697 {"Oadd", "\"+\"", BINOP_ADD},
698 {"Osubtract", "\"-\"", BINOP_SUB},
699 {"Omultiply", "\"*\"", BINOP_MUL},
700 {"Odivide", "\"/\"", BINOP_DIV},
701 {"Omod", "\"mod\"", BINOP_MOD},
702 {"Orem", "\"rem\"", BINOP_REM},
703 {"Oexpon", "\"**\"", BINOP_EXP},
704 {"Olt", "\"<\"", BINOP_LESS},
705 {"Ole", "\"<=\"", BINOP_LEQ},
706 {"Ogt", "\">\"", BINOP_GTR},
707 {"Oge", "\">=\"", BINOP_GEQ},
708 {"Oeq", "\"=\"", BINOP_EQUAL},
709 {"One", "\"/=\"", BINOP_NOTEQUAL},
710 {"Oand", "\"and\"", BINOP_BITWISE_AND},
711 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
712 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
713 {"Oconcat", "\"&\"", BINOP_CONCAT},
714 {"Oabs", "\"abs\"", UNOP_ABS},
715 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
716 {"Oadd", "\"+\"", UNOP_PLUS},
717 {"Osubtract", "\"-\"", UNOP_NEG},
718 {NULL, NULL}
719 };
720
721 /* Return non-zero if STR should be suppressed in info listings. */
722
723 static int
724 is_suppressed_name (const char *str)
725 {
726 if (strncmp (str, "_ada_", 5) == 0)
727 str += 5;
728 if (str[0] == '_' || str[0] == '\000')
729 return 1;
730 else
731 {
732 const char *p;
733 const char *suffix = strstr (str, "___");
734 if (suffix != NULL && suffix[3] != 'X')
735 return 1;
736 if (suffix == NULL)
737 suffix = str + strlen (str);
738 for (p = suffix - 1; p != str; p -= 1)
739 if (isupper (*p))
740 {
741 int i;
742 if (p[0] == 'X' && p[-1] != '_')
743 goto OK;
744 if (*p != 'O')
745 return 1;
746 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
747 if (strncmp (ada_opname_table[i].encoded, p,
748 strlen (ada_opname_table[i].encoded)) == 0)
749 goto OK;
750 return 1;
751 OK:;
752 }
753 return 0;
754 }
755 }
756
757 /* The "encoded" form of DECODED, according to GNAT conventions.
758 The result is valid until the next call to ada_encode. */
759
760 char *
761 ada_encode (const char *decoded)
762 {
763 static char *encoding_buffer = NULL;
764 static size_t encoding_buffer_size = 0;
765 const char *p;
766 int k;
767
768 if (decoded == NULL)
769 return NULL;
770
771 GROW_VECT (encoding_buffer, encoding_buffer_size,
772 2 * strlen (decoded) + 10);
773
774 k = 0;
775 for (p = decoded; *p != '\0'; p += 1)
776 {
777 if (!ADA_RETAIN_DOTS && *p == '.')
778 {
779 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
780 k += 2;
781 }
782 else if (*p == '"')
783 {
784 const struct ada_opname_map *mapping;
785
786 for (mapping = ada_opname_table;
787 mapping->encoded != NULL
788 && strncmp (mapping->decoded, p,
789 strlen (mapping->decoded)) != 0; mapping += 1)
790 ;
791 if (mapping->encoded == NULL)
792 error (_("invalid Ada operator name: %s"), p);
793 strcpy (encoding_buffer + k, mapping->encoded);
794 k += strlen (mapping->encoded);
795 break;
796 }
797 else
798 {
799 encoding_buffer[k] = *p;
800 k += 1;
801 }
802 }
803
804 encoding_buffer[k] = '\0';
805 return encoding_buffer;
806 }
807
808 /* Return NAME folded to lower case, or, if surrounded by single
809 quotes, unfolded, but with the quotes stripped away. Result good
810 to next call. */
811
812 char *
813 ada_fold_name (const char *name)
814 {
815 static char *fold_buffer = NULL;
816 static size_t fold_buffer_size = 0;
817
818 int len = strlen (name);
819 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
820
821 if (name[0] == '\'')
822 {
823 strncpy (fold_buffer, name + 1, len - 2);
824 fold_buffer[len - 2] = '\000';
825 }
826 else
827 {
828 int i;
829 for (i = 0; i <= len; i += 1)
830 fold_buffer[i] = tolower (name[i]);
831 }
832
833 return fold_buffer;
834 }
835
836 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
837
838 static int
839 is_lower_alphanum (const char c)
840 {
841 return (isdigit (c) || (isalpha (c) && islower (c)));
842 }
843
844 /* Decode:
845 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
846 These are suffixes introduced by GNAT5 to nested subprogram
847 names, and do not serve any purpose for the debugger.
848 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
849 . Discard final N if it follows a lowercase alphanumeric character
850 (protected object subprogram suffix)
851 . Convert other instances of embedded "__" to `.'.
852 . Discard leading _ada_.
853 . Convert operator names to the appropriate quoted symbols.
854 . Remove everything after first ___ if it is followed by
855 'X'.
856 . Replace TK__ with __, and a trailing B or TKB with nothing.
857 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
858 . Put symbols that should be suppressed in <...> brackets.
859 . Remove trailing X[bn]* suffix (indicating names in package bodies).
860
861 The resulting string is valid until the next call of ada_decode.
862 If the string is unchanged by demangling, the original string pointer
863 is returned. */
864
865 const char *
866 ada_decode (const char *encoded)
867 {
868 int i, j;
869 int len0;
870 const char *p;
871 char *decoded;
872 int at_start_name;
873 static char *decoding_buffer = NULL;
874 static size_t decoding_buffer_size = 0;
875
876 if (strncmp (encoded, "_ada_", 5) == 0)
877 encoded += 5;
878
879 if (encoded[0] == '_' || encoded[0] == '<')
880 goto Suppress;
881
882 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
883 len0 = strlen (encoded);
884 if (len0 > 1 && isdigit (encoded[len0 - 1]))
885 {
886 i = len0 - 2;
887 while (i > 0 && isdigit (encoded[i]))
888 i--;
889 if (i >= 0 && encoded[i] == '.')
890 len0 = i;
891 else if (i >= 0 && encoded[i] == '$')
892 len0 = i;
893 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
894 len0 = i - 2;
895 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
896 len0 = i - 1;
897 }
898
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (len0 > 1
910 && encoded[len0 - 1] == 'N'
911 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
912 len0--;
913
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
920 {
921 if (p[3] == 'X')
922 len0 = p - encoded;
923 else
924 goto Suppress;
925 }
926
927 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
928 len0 -= 3;
929
930 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
931 len0 -= 1;
932
933 /* Make decoded big enough for possible expansion by operator name. */
934 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
935 decoded = decoding_buffer;
936
937 if (len0 > 1 && isdigit (encoded[len0 - 1]))
938 {
939 i = len0 - 2;
940 while ((i >= 0 && isdigit (encoded[i]))
941 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
942 i -= 1;
943 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
944 len0 = i - 1;
945 else if (encoded[i] == '$')
946 len0 = i;
947 }
948
949 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
950 decoded[j] = encoded[i];
951
952 at_start_name = 1;
953 while (i < len0)
954 {
955 if (at_start_name && encoded[i] == 'O')
956 {
957 int k;
958 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
959 {
960 int op_len = strlen (ada_opname_table[k].encoded);
961 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
962 op_len - 1) == 0)
963 && !isalnum (encoded[i + op_len]))
964 {
965 strcpy (decoded + j, ada_opname_table[k].decoded);
966 at_start_name = 0;
967 i += op_len;
968 j += strlen (ada_opname_table[k].decoded);
969 break;
970 }
971 }
972 if (ada_opname_table[k].encoded != NULL)
973 continue;
974 }
975 at_start_name = 0;
976
977 /* Replace "TK__" with "__", which will eventually be translated
978 into "." (just below). */
979
980 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
981 i += 2;
982
983 /* Remove _E{DIGITS}+[sb] */
984
985 /* Just as for protected object subprograms, there are 2 categories
986 of subprograms created by the compiler for each entry. The first
987 one implements the actual entry code, and has a suffix following
988 the convention above; the second one implements the barrier and
989 uses the same convention as above, except that the 'E' is replaced
990 by a 'B'.
991
992 Just as above, we do not decode the name of barrier functions
993 to give the user a clue that the code he is debugging has been
994 internally generated. */
995
996 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
997 && isdigit (encoded[i+2]))
998 {
999 int k = i + 3;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++;
1003
1004 if (k < len0
1005 && (encoded[k] == 'b' || encoded[k] == 's'))
1006 {
1007 k++;
1008 /* Just as an extra precaution, make sure that if this
1009 suffix is followed by anything else, it is a '_'.
1010 Otherwise, we matched this sequence by accident. */
1011 if (k == len0
1012 || (k < len0 && encoded[k] == '_'))
1013 i = k;
1014 }
1015 }
1016
1017 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1018 the GNAT front-end in protected object subprograms. */
1019
1020 if (i < len0 + 3
1021 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1022 {
1023 /* Backtrack a bit up until we reach either the begining of
1024 the encoded name, or "__". Make sure that we only find
1025 digits or lowercase characters. */
1026 const char *ptr = encoded + i - 1;
1027
1028 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1029 ptr--;
1030 if (ptr < encoded
1031 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1032 i++;
1033 }
1034
1035 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1036 {
1037 do
1038 i += 1;
1039 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1040 if (i < len0)
1041 goto Suppress;
1042 }
1043 else if (!ADA_RETAIN_DOTS
1044 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1045 {
1046 decoded[j] = '.';
1047 at_start_name = 1;
1048 i += 2;
1049 j += 1;
1050 }
1051 else
1052 {
1053 decoded[j] = encoded[i];
1054 i += 1;
1055 j += 1;
1056 }
1057 }
1058 decoded[j] = '\000';
1059
1060 for (i = 0; decoded[i] != '\0'; i += 1)
1061 if (isupper (decoded[i]) || decoded[i] == ' ')
1062 goto Suppress;
1063
1064 if (strcmp (decoded, encoded) == 0)
1065 return encoded;
1066 else
1067 return decoded;
1068
1069 Suppress:
1070 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1071 decoded = decoding_buffer;
1072 if (encoded[0] == '<')
1073 strcpy (decoded, encoded);
1074 else
1075 sprintf (decoded, "<%s>", encoded);
1076 return decoded;
1077
1078 }
1079
1080 /* Table for keeping permanent unique copies of decoded names. Once
1081 allocated, names in this table are never released. While this is a
1082 storage leak, it should not be significant unless there are massive
1083 changes in the set of decoded names in successive versions of a
1084 symbol table loaded during a single session. */
1085 static struct htab *decoded_names_store;
1086
1087 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1088 in the language-specific part of GSYMBOL, if it has not been
1089 previously computed. Tries to save the decoded name in the same
1090 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1091 in any case, the decoded symbol has a lifetime at least that of
1092 GSYMBOL).
1093 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1094 const, but nevertheless modified to a semantically equivalent form
1095 when a decoded name is cached in it.
1096 */
1097
1098 char *
1099 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1100 {
1101 char **resultp =
1102 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1103 if (*resultp == NULL)
1104 {
1105 const char *decoded = ada_decode (gsymbol->name);
1106 if (gsymbol->bfd_section != NULL)
1107 {
1108 bfd *obfd = gsymbol->bfd_section->owner;
1109 if (obfd != NULL)
1110 {
1111 struct objfile *objf;
1112 ALL_OBJFILES (objf)
1113 {
1114 if (obfd == objf->obfd)
1115 {
1116 *resultp = obsavestring (decoded, strlen (decoded),
1117 &objf->objfile_obstack);
1118 break;
1119 }
1120 }
1121 }
1122 }
1123 /* Sometimes, we can't find a corresponding objfile, in which
1124 case, we put the result on the heap. Since we only decode
1125 when needed, we hope this usually does not cause a
1126 significant memory leak (FIXME). */
1127 if (*resultp == NULL)
1128 {
1129 char **slot = (char **) htab_find_slot (decoded_names_store,
1130 decoded, INSERT);
1131 if (*slot == NULL)
1132 *slot = xstrdup (decoded);
1133 *resultp = *slot;
1134 }
1135 }
1136
1137 return *resultp;
1138 }
1139
1140 char *
1141 ada_la_decode (const char *encoded, int options)
1142 {
1143 return xstrdup (ada_decode (encoded));
1144 }
1145
1146 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1147 suffixes that encode debugging information or leading _ada_ on
1148 SYM_NAME (see is_name_suffix commentary for the debugging
1149 information that is ignored). If WILD, then NAME need only match a
1150 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1151 either argument is NULL. */
1152
1153 int
1154 ada_match_name (const char *sym_name, const char *name, int wild)
1155 {
1156 if (sym_name == NULL || name == NULL)
1157 return 0;
1158 else if (wild)
1159 return wild_match (name, strlen (name), sym_name);
1160 else
1161 {
1162 int len_name = strlen (name);
1163 return (strncmp (sym_name, name, len_name) == 0
1164 && is_name_suffix (sym_name + len_name))
1165 || (strncmp (sym_name, "_ada_", 5) == 0
1166 && strncmp (sym_name + 5, name, len_name) == 0
1167 && is_name_suffix (sym_name + len_name + 5));
1168 }
1169 }
1170
1171 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1172 suppressed in info listings. */
1173
1174 int
1175 ada_suppress_symbol_printing (struct symbol *sym)
1176 {
1177 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1178 return 1;
1179 else
1180 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1181 }
1182 \f
1183
1184 /* Arrays */
1185
1186 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1187
1188 static char *bound_name[] = {
1189 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1190 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1191 };
1192
1193 /* Maximum number of array dimensions we are prepared to handle. */
1194
1195 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1196
1197 /* Like modify_field, but allows bitpos > wordlength. */
1198
1199 static void
1200 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1201 {
1202 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1203 }
1204
1205
1206 /* The desc_* routines return primitive portions of array descriptors
1207 (fat pointers). */
1208
1209 /* The descriptor or array type, if any, indicated by TYPE; removes
1210 level of indirection, if needed. */
1211
1212 static struct type *
1213 desc_base_type (struct type *type)
1214 {
1215 if (type == NULL)
1216 return NULL;
1217 type = ada_check_typedef (type);
1218 if (type != NULL
1219 && (TYPE_CODE (type) == TYPE_CODE_PTR
1220 || TYPE_CODE (type) == TYPE_CODE_REF))
1221 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1222 else
1223 return type;
1224 }
1225
1226 /* True iff TYPE indicates a "thin" array pointer type. */
1227
1228 static int
1229 is_thin_pntr (struct type *type)
1230 {
1231 return
1232 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1233 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1234 }
1235
1236 /* The descriptor type for thin pointer type TYPE. */
1237
1238 static struct type *
1239 thin_descriptor_type (struct type *type)
1240 {
1241 struct type *base_type = desc_base_type (type);
1242 if (base_type == NULL)
1243 return NULL;
1244 if (is_suffix (ada_type_name (base_type), "___XVE"))
1245 return base_type;
1246 else
1247 {
1248 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1249 if (alt_type == NULL)
1250 return base_type;
1251 else
1252 return alt_type;
1253 }
1254 }
1255
1256 /* A pointer to the array data for thin-pointer value VAL. */
1257
1258 static struct value *
1259 thin_data_pntr (struct value *val)
1260 {
1261 struct type *type = value_type (val);
1262 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1263 return value_cast (desc_data_type (thin_descriptor_type (type)),
1264 value_copy (val));
1265 else
1266 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1267 VALUE_ADDRESS (val) + value_offset (val));
1268 }
1269
1270 /* True iff TYPE indicates a "thick" array pointer type. */
1271
1272 static int
1273 is_thick_pntr (struct type *type)
1274 {
1275 type = desc_base_type (type);
1276 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1277 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1278 }
1279
1280 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1281 pointer to one, the type of its bounds data; otherwise, NULL. */
1282
1283 static struct type *
1284 desc_bounds_type (struct type *type)
1285 {
1286 struct type *r;
1287
1288 type = desc_base_type (type);
1289
1290 if (type == NULL)
1291 return NULL;
1292 else if (is_thin_pntr (type))
1293 {
1294 type = thin_descriptor_type (type);
1295 if (type == NULL)
1296 return NULL;
1297 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1298 if (r != NULL)
1299 return ada_check_typedef (r);
1300 }
1301 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1302 {
1303 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1304 if (r != NULL)
1305 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1306 }
1307 return NULL;
1308 }
1309
1310 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1311 one, a pointer to its bounds data. Otherwise NULL. */
1312
1313 static struct value *
1314 desc_bounds (struct value *arr)
1315 {
1316 struct type *type = ada_check_typedef (value_type (arr));
1317 if (is_thin_pntr (type))
1318 {
1319 struct type *bounds_type =
1320 desc_bounds_type (thin_descriptor_type (type));
1321 LONGEST addr;
1322
1323 if (bounds_type == NULL)
1324 error (_("Bad GNAT array descriptor"));
1325
1326 /* NOTE: The following calculation is not really kosher, but
1327 since desc_type is an XVE-encoded type (and shouldn't be),
1328 the correct calculation is a real pain. FIXME (and fix GCC). */
1329 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1330 addr = value_as_long (arr);
1331 else
1332 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1333
1334 return
1335 value_from_longest (lookup_pointer_type (bounds_type),
1336 addr - TYPE_LENGTH (bounds_type));
1337 }
1338
1339 else if (is_thick_pntr (type))
1340 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1341 _("Bad GNAT array descriptor"));
1342 else
1343 return NULL;
1344 }
1345
1346 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1347 position of the field containing the address of the bounds data. */
1348
1349 static int
1350 fat_pntr_bounds_bitpos (struct type *type)
1351 {
1352 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1353 }
1354
1355 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1356 size of the field containing the address of the bounds data. */
1357
1358 static int
1359 fat_pntr_bounds_bitsize (struct type *type)
1360 {
1361 type = desc_base_type (type);
1362
1363 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1364 return TYPE_FIELD_BITSIZE (type, 1);
1365 else
1366 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1367 }
1368
1369 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1370 pointer to one, the type of its array data (a
1371 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1372 ada_type_of_array to get an array type with bounds data. */
1373
1374 static struct type *
1375 desc_data_type (struct type *type)
1376 {
1377 type = desc_base_type (type);
1378
1379 /* NOTE: The following is bogus; see comment in desc_bounds. */
1380 if (is_thin_pntr (type))
1381 return lookup_pointer_type
1382 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1383 else if (is_thick_pntr (type))
1384 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1385 else
1386 return NULL;
1387 }
1388
1389 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1390 its array data. */
1391
1392 static struct value *
1393 desc_data (struct value *arr)
1394 {
1395 struct type *type = value_type (arr);
1396 if (is_thin_pntr (type))
1397 return thin_data_pntr (arr);
1398 else if (is_thick_pntr (type))
1399 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1400 _("Bad GNAT array descriptor"));
1401 else
1402 return NULL;
1403 }
1404
1405
1406 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1407 position of the field containing the address of the data. */
1408
1409 static int
1410 fat_pntr_data_bitpos (struct type *type)
1411 {
1412 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1413 }
1414
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 size of the field containing the address of the data. */
1417
1418 static int
1419 fat_pntr_data_bitsize (struct type *type)
1420 {
1421 type = desc_base_type (type);
1422
1423 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1424 return TYPE_FIELD_BITSIZE (type, 0);
1425 else
1426 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1427 }
1428
1429 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1430 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1431 bound, if WHICH is 1. The first bound is I=1. */
1432
1433 static struct value *
1434 desc_one_bound (struct value *bounds, int i, int which)
1435 {
1436 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1437 _("Bad GNAT array descriptor bounds"));
1438 }
1439
1440 /* If BOUNDS is an array-bounds structure type, return the bit position
1441 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1442 bound, if WHICH is 1. The first bound is I=1. */
1443
1444 static int
1445 desc_bound_bitpos (struct type *type, int i, int which)
1446 {
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1448 }
1449
1450 /* If BOUNDS is an array-bounds structure type, return the bit field size
1451 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1452 bound, if WHICH is 1. The first bound is I=1. */
1453
1454 static int
1455 desc_bound_bitsize (struct type *type, int i, int which)
1456 {
1457 type = desc_base_type (type);
1458
1459 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1460 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1461 else
1462 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1463 }
1464
1465 /* If TYPE is the type of an array-bounds structure, the type of its
1466 Ith bound (numbering from 1). Otherwise, NULL. */
1467
1468 static struct type *
1469 desc_index_type (struct type *type, int i)
1470 {
1471 type = desc_base_type (type);
1472
1473 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1474 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1475 else
1476 return NULL;
1477 }
1478
1479 /* The number of index positions in the array-bounds type TYPE.
1480 Return 0 if TYPE is NULL. */
1481
1482 static int
1483 desc_arity (struct type *type)
1484 {
1485 type = desc_base_type (type);
1486
1487 if (type != NULL)
1488 return TYPE_NFIELDS (type) / 2;
1489 return 0;
1490 }
1491
1492 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1493 an array descriptor type (representing an unconstrained array
1494 type). */
1495
1496 static int
1497 ada_is_direct_array_type (struct type *type)
1498 {
1499 if (type == NULL)
1500 return 0;
1501 type = ada_check_typedef (type);
1502 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1503 || ada_is_array_descriptor_type (type));
1504 }
1505
1506 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1507 * to one. */
1508
1509 int
1510 ada_is_array_type (struct type *type)
1511 {
1512 while (type != NULL
1513 && (TYPE_CODE (type) == TYPE_CODE_PTR
1514 || TYPE_CODE (type) == TYPE_CODE_REF))
1515 type = TYPE_TARGET_TYPE (type);
1516 return ada_is_direct_array_type (type);
1517 }
1518
1519 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1520
1521 int
1522 ada_is_simple_array_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return 0;
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || (TYPE_CODE (type) == TYPE_CODE_PTR
1529 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1530 }
1531
1532 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1533
1534 int
1535 ada_is_array_descriptor_type (struct type *type)
1536 {
1537 struct type *data_type = desc_data_type (type);
1538
1539 if (type == NULL)
1540 return 0;
1541 type = ada_check_typedef (type);
1542 return
1543 data_type != NULL
1544 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1545 && TYPE_TARGET_TYPE (data_type) != NULL
1546 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1547 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1548 && desc_arity (desc_bounds_type (type)) > 0;
1549 }
1550
1551 /* Non-zero iff type is a partially mal-formed GNAT array
1552 descriptor. FIXME: This is to compensate for some problems with
1553 debugging output from GNAT. Re-examine periodically to see if it
1554 is still needed. */
1555
1556 int
1557 ada_is_bogus_array_descriptor (struct type *type)
1558 {
1559 return
1560 type != NULL
1561 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1562 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1563 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1564 && !ada_is_array_descriptor_type (type);
1565 }
1566
1567
1568 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1569 (fat pointer) returns the type of the array data described---specifically,
1570 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1571 in from the descriptor; otherwise, they are left unspecified. If
1572 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1573 returns NULL. The result is simply the type of ARR if ARR is not
1574 a descriptor. */
1575 struct type *
1576 ada_type_of_array (struct value *arr, int bounds)
1577 {
1578 if (ada_is_packed_array_type (value_type (arr)))
1579 return decode_packed_array_type (value_type (arr));
1580
1581 if (!ada_is_array_descriptor_type (value_type (arr)))
1582 return value_type (arr);
1583
1584 if (!bounds)
1585 return
1586 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1587 else
1588 {
1589 struct type *elt_type;
1590 int arity;
1591 struct value *descriptor;
1592 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1593
1594 elt_type = ada_array_element_type (value_type (arr), -1);
1595 arity = ada_array_arity (value_type (arr));
1596
1597 if (elt_type == NULL || arity == 0)
1598 return ada_check_typedef (value_type (arr));
1599
1600 descriptor = desc_bounds (arr);
1601 if (value_as_long (descriptor) == 0)
1602 return NULL;
1603 while (arity > 0)
1604 {
1605 struct type *range_type = alloc_type (objf);
1606 struct type *array_type = alloc_type (objf);
1607 struct value *low = desc_one_bound (descriptor, arity, 0);
1608 struct value *high = desc_one_bound (descriptor, arity, 1);
1609 arity -= 1;
1610
1611 create_range_type (range_type, value_type (low),
1612 longest_to_int (value_as_long (low)),
1613 longest_to_int (value_as_long (high)));
1614 elt_type = create_array_type (array_type, elt_type, range_type);
1615 }
1616
1617 return lookup_pointer_type (elt_type);
1618 }
1619 }
1620
1621 /* If ARR does not represent an array, returns ARR unchanged.
1622 Otherwise, returns either a standard GDB array with bounds set
1623 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1624 GDB array. Returns NULL if ARR is a null fat pointer. */
1625
1626 struct value *
1627 ada_coerce_to_simple_array_ptr (struct value *arr)
1628 {
1629 if (ada_is_array_descriptor_type (value_type (arr)))
1630 {
1631 struct type *arrType = ada_type_of_array (arr, 1);
1632 if (arrType == NULL)
1633 return NULL;
1634 return value_cast (arrType, value_copy (desc_data (arr)));
1635 }
1636 else if (ada_is_packed_array_type (value_type (arr)))
1637 return decode_packed_array (arr);
1638 else
1639 return arr;
1640 }
1641
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns a standard GDB array describing ARR (which may
1644 be ARR itself if it already is in the proper form). */
1645
1646 static struct value *
1647 ada_coerce_to_simple_array (struct value *arr)
1648 {
1649 if (ada_is_array_descriptor_type (value_type (arr)))
1650 {
1651 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1652 if (arrVal == NULL)
1653 error (_("Bounds unavailable for null array pointer."));
1654 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1655 return value_ind (arrVal);
1656 }
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661 }
1662
1663 /* If TYPE represents a GNAT array type, return it translated to an
1664 ordinary GDB array type (possibly with BITSIZE fields indicating
1665 packing). For other types, is the identity. */
1666
1667 struct type *
1668 ada_coerce_to_simple_array_type (struct type *type)
1669 {
1670 struct value *mark = value_mark ();
1671 struct value *dummy = value_from_longest (builtin_type_long, 0);
1672 struct type *result;
1673 deprecated_set_value_type (dummy, type);
1674 result = ada_type_of_array (dummy, 0);
1675 value_free_to_mark (mark);
1676 return result;
1677 }
1678
1679 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1680
1681 int
1682 ada_is_packed_array_type (struct type *type)
1683 {
1684 if (type == NULL)
1685 return 0;
1686 type = desc_base_type (type);
1687 type = ada_check_typedef (type);
1688 return
1689 ada_type_name (type) != NULL
1690 && strstr (ada_type_name (type), "___XP") != NULL;
1691 }
1692
1693 /* Given that TYPE is a standard GDB array type with all bounds filled
1694 in, and that the element size of its ultimate scalar constituents
1695 (that is, either its elements, or, if it is an array of arrays, its
1696 elements' elements, etc.) is *ELT_BITS, return an identical type,
1697 but with the bit sizes of its elements (and those of any
1698 constituent arrays) recorded in the BITSIZE components of its
1699 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1700 in bits. */
1701
1702 static struct type *
1703 packed_array_type (struct type *type, long *elt_bits)
1704 {
1705 struct type *new_elt_type;
1706 struct type *new_type;
1707 LONGEST low_bound, high_bound;
1708
1709 type = ada_check_typedef (type);
1710 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1711 return type;
1712
1713 new_type = alloc_type (TYPE_OBJFILE (type));
1714 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1715 elt_bits);
1716 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1717 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1718 TYPE_NAME (new_type) = ada_type_name (type);
1719
1720 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1721 &low_bound, &high_bound) < 0)
1722 low_bound = high_bound = 0;
1723 if (high_bound < low_bound)
1724 *elt_bits = TYPE_LENGTH (new_type) = 0;
1725 else
1726 {
1727 *elt_bits *= (high_bound - low_bound + 1);
1728 TYPE_LENGTH (new_type) =
1729 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1730 }
1731
1732 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1733 return new_type;
1734 }
1735
1736 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1737
1738 static struct type *
1739 decode_packed_array_type (struct type *type)
1740 {
1741 struct symbol *sym;
1742 struct block **blocks;
1743 const char *raw_name = ada_type_name (ada_check_typedef (type));
1744 char *name = (char *) alloca (strlen (raw_name) + 1);
1745 char *tail = strstr (raw_name, "___XP");
1746 struct type *shadow_type;
1747 long bits;
1748 int i, n;
1749
1750 type = desc_base_type (type);
1751
1752 memcpy (name, raw_name, tail - raw_name);
1753 name[tail - raw_name] = '\000';
1754
1755 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1756 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1757 {
1758 lim_warning (_("could not find bounds information on packed array"));
1759 return NULL;
1760 }
1761 shadow_type = SYMBOL_TYPE (sym);
1762
1763 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1764 {
1765 lim_warning (_("could not understand bounds information on packed array"));
1766 return NULL;
1767 }
1768
1769 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1770 {
1771 lim_warning
1772 (_("could not understand bit size information on packed array"));
1773 return NULL;
1774 }
1775
1776 return packed_array_type (shadow_type, &bits);
1777 }
1778
1779 /* Given that ARR is a struct value *indicating a GNAT packed array,
1780 returns a simple array that denotes that array. Its type is a
1781 standard GDB array type except that the BITSIZEs of the array
1782 target types are set to the number of bits in each element, and the
1783 type length is set appropriately. */
1784
1785 static struct value *
1786 decode_packed_array (struct value *arr)
1787 {
1788 struct type *type;
1789
1790 arr = ada_coerce_ref (arr);
1791 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1792 arr = ada_value_ind (arr);
1793
1794 type = decode_packed_array_type (value_type (arr));
1795 if (type == NULL)
1796 {
1797 error (_("can't unpack array"));
1798 return NULL;
1799 }
1800
1801 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1802 {
1803 /* This is a (right-justified) modular type representing a packed
1804 array with no wrapper. In order to interpret the value through
1805 the (left-justified) packed array type we just built, we must
1806 first left-justify it. */
1807 int bit_size, bit_pos;
1808 ULONGEST mod;
1809
1810 mod = ada_modulus (value_type (arr)) - 1;
1811 bit_size = 0;
1812 while (mod > 0)
1813 {
1814 bit_size += 1;
1815 mod >>= 1;
1816 }
1817 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1818 arr = ada_value_primitive_packed_val (arr, NULL,
1819 bit_pos / HOST_CHAR_BIT,
1820 bit_pos % HOST_CHAR_BIT,
1821 bit_size,
1822 type);
1823 }
1824
1825 return coerce_unspec_val_to_type (arr, type);
1826 }
1827
1828
1829 /* The value of the element of packed array ARR at the ARITY indices
1830 given in IND. ARR must be a simple array. */
1831
1832 static struct value *
1833 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1834 {
1835 int i;
1836 int bits, elt_off, bit_off;
1837 long elt_total_bit_offset;
1838 struct type *elt_type;
1839 struct value *v;
1840
1841 bits = 0;
1842 elt_total_bit_offset = 0;
1843 elt_type = ada_check_typedef (value_type (arr));
1844 for (i = 0; i < arity; i += 1)
1845 {
1846 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1847 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1848 error
1849 (_("attempt to do packed indexing of something other than a packed array"));
1850 else
1851 {
1852 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1853 LONGEST lowerbound, upperbound;
1854 LONGEST idx;
1855
1856 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1857 {
1858 lim_warning (_("don't know bounds of array"));
1859 lowerbound = upperbound = 0;
1860 }
1861
1862 idx = value_as_long (value_pos_atr (ind[i]));
1863 if (idx < lowerbound || idx > upperbound)
1864 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1865 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1866 elt_total_bit_offset += (idx - lowerbound) * bits;
1867 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1868 }
1869 }
1870 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1871 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1872
1873 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1874 bits, elt_type);
1875 return v;
1876 }
1877
1878 /* Non-zero iff TYPE includes negative integer values. */
1879
1880 static int
1881 has_negatives (struct type *type)
1882 {
1883 switch (TYPE_CODE (type))
1884 {
1885 default:
1886 return 0;
1887 case TYPE_CODE_INT:
1888 return !TYPE_UNSIGNED (type);
1889 case TYPE_CODE_RANGE:
1890 return TYPE_LOW_BOUND (type) < 0;
1891 }
1892 }
1893
1894
1895 /* Create a new value of type TYPE from the contents of OBJ starting
1896 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1897 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1898 assigning through the result will set the field fetched from.
1899 VALADDR is ignored unless OBJ is NULL, in which case,
1900 VALADDR+OFFSET must address the start of storage containing the
1901 packed value. The value returned in this case is never an lval.
1902 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1903
1904 struct value *
1905 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1906 long offset, int bit_offset, int bit_size,
1907 struct type *type)
1908 {
1909 struct value *v;
1910 int src, /* Index into the source area */
1911 targ, /* Index into the target area */
1912 srcBitsLeft, /* Number of source bits left to move */
1913 nsrc, ntarg, /* Number of source and target bytes */
1914 unusedLS, /* Number of bits in next significant
1915 byte of source that are unused */
1916 accumSize; /* Number of meaningful bits in accum */
1917 unsigned char *bytes; /* First byte containing data to unpack */
1918 unsigned char *unpacked;
1919 unsigned long accum; /* Staging area for bits being transferred */
1920 unsigned char sign;
1921 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1922 /* Transmit bytes from least to most significant; delta is the direction
1923 the indices move. */
1924 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1925
1926 type = ada_check_typedef (type);
1927
1928 if (obj == NULL)
1929 {
1930 v = allocate_value (type);
1931 bytes = (unsigned char *) (valaddr + offset);
1932 }
1933 else if (value_lazy (obj))
1934 {
1935 v = value_at (type,
1936 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1937 bytes = (unsigned char *) alloca (len);
1938 read_memory (VALUE_ADDRESS (v), bytes, len);
1939 }
1940 else
1941 {
1942 v = allocate_value (type);
1943 bytes = (unsigned char *) value_contents (obj) + offset;
1944 }
1945
1946 if (obj != NULL)
1947 {
1948 VALUE_LVAL (v) = VALUE_LVAL (obj);
1949 if (VALUE_LVAL (obj) == lval_internalvar)
1950 VALUE_LVAL (v) = lval_internalvar_component;
1951 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1952 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1953 set_value_bitsize (v, bit_size);
1954 if (value_bitpos (v) >= HOST_CHAR_BIT)
1955 {
1956 VALUE_ADDRESS (v) += 1;
1957 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1958 }
1959 }
1960 else
1961 set_value_bitsize (v, bit_size);
1962 unpacked = (unsigned char *) value_contents (v);
1963
1964 srcBitsLeft = bit_size;
1965 nsrc = len;
1966 ntarg = TYPE_LENGTH (type);
1967 sign = 0;
1968 if (bit_size == 0)
1969 {
1970 memset (unpacked, 0, TYPE_LENGTH (type));
1971 return v;
1972 }
1973 else if (BITS_BIG_ENDIAN)
1974 {
1975 src = len - 1;
1976 if (has_negatives (type)
1977 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1978 sign = ~0;
1979
1980 unusedLS =
1981 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1982 % HOST_CHAR_BIT;
1983
1984 switch (TYPE_CODE (type))
1985 {
1986 case TYPE_CODE_ARRAY:
1987 case TYPE_CODE_UNION:
1988 case TYPE_CODE_STRUCT:
1989 /* Non-scalar values must be aligned at a byte boundary... */
1990 accumSize =
1991 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1992 /* ... And are placed at the beginning (most-significant) bytes
1993 of the target. */
1994 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1995 break;
1996 default:
1997 accumSize = 0;
1998 targ = TYPE_LENGTH (type) - 1;
1999 break;
2000 }
2001 }
2002 else
2003 {
2004 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2005
2006 src = targ = 0;
2007 unusedLS = bit_offset;
2008 accumSize = 0;
2009
2010 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2011 sign = ~0;
2012 }
2013
2014 accum = 0;
2015 while (nsrc > 0)
2016 {
2017 /* Mask for removing bits of the next source byte that are not
2018 part of the value. */
2019 unsigned int unusedMSMask =
2020 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2021 1;
2022 /* Sign-extend bits for this byte. */
2023 unsigned int signMask = sign & ~unusedMSMask;
2024 accum |=
2025 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2026 accumSize += HOST_CHAR_BIT - unusedLS;
2027 if (accumSize >= HOST_CHAR_BIT)
2028 {
2029 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2030 accumSize -= HOST_CHAR_BIT;
2031 accum >>= HOST_CHAR_BIT;
2032 ntarg -= 1;
2033 targ += delta;
2034 }
2035 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2036 unusedLS = 0;
2037 nsrc -= 1;
2038 src += delta;
2039 }
2040 while (ntarg > 0)
2041 {
2042 accum |= sign << accumSize;
2043 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2044 accumSize -= HOST_CHAR_BIT;
2045 accum >>= HOST_CHAR_BIT;
2046 ntarg -= 1;
2047 targ += delta;
2048 }
2049
2050 return v;
2051 }
2052
2053 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2054 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2055 not overlap. */
2056 static void
2057 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2058 int src_offset, int n)
2059 {
2060 unsigned int accum, mask;
2061 int accum_bits, chunk_size;
2062
2063 target += targ_offset / HOST_CHAR_BIT;
2064 targ_offset %= HOST_CHAR_BIT;
2065 source += src_offset / HOST_CHAR_BIT;
2066 src_offset %= HOST_CHAR_BIT;
2067 if (BITS_BIG_ENDIAN)
2068 {
2069 accum = (unsigned char) *source;
2070 source += 1;
2071 accum_bits = HOST_CHAR_BIT - src_offset;
2072
2073 while (n > 0)
2074 {
2075 int unused_right;
2076 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2077 accum_bits += HOST_CHAR_BIT;
2078 source += 1;
2079 chunk_size = HOST_CHAR_BIT - targ_offset;
2080 if (chunk_size > n)
2081 chunk_size = n;
2082 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2083 mask = ((1 << chunk_size) - 1) << unused_right;
2084 *target =
2085 (*target & ~mask)
2086 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2087 n -= chunk_size;
2088 accum_bits -= chunk_size;
2089 target += 1;
2090 targ_offset = 0;
2091 }
2092 }
2093 else
2094 {
2095 accum = (unsigned char) *source >> src_offset;
2096 source += 1;
2097 accum_bits = HOST_CHAR_BIT - src_offset;
2098
2099 while (n > 0)
2100 {
2101 accum = accum + ((unsigned char) *source << accum_bits);
2102 accum_bits += HOST_CHAR_BIT;
2103 source += 1;
2104 chunk_size = HOST_CHAR_BIT - targ_offset;
2105 if (chunk_size > n)
2106 chunk_size = n;
2107 mask = ((1 << chunk_size) - 1) << targ_offset;
2108 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2109 n -= chunk_size;
2110 accum_bits -= chunk_size;
2111 accum >>= chunk_size;
2112 target += 1;
2113 targ_offset = 0;
2114 }
2115 }
2116 }
2117
2118 /* Store the contents of FROMVAL into the location of TOVAL.
2119 Return a new value with the location of TOVAL and contents of
2120 FROMVAL. Handles assignment into packed fields that have
2121 floating-point or non-scalar types. */
2122
2123 static struct value *
2124 ada_value_assign (struct value *toval, struct value *fromval)
2125 {
2126 struct type *type = value_type (toval);
2127 int bits = value_bitsize (toval);
2128
2129 toval = ada_coerce_ref (toval);
2130 fromval = ada_coerce_ref (fromval);
2131
2132 if (ada_is_direct_array_type (value_type (toval)))
2133 toval = ada_coerce_to_simple_array (toval);
2134 if (ada_is_direct_array_type (value_type (fromval)))
2135 fromval = ada_coerce_to_simple_array (fromval);
2136
2137 if (!deprecated_value_modifiable (toval))
2138 error (_("Left operand of assignment is not a modifiable lvalue."));
2139
2140 if (VALUE_LVAL (toval) == lval_memory
2141 && bits > 0
2142 && (TYPE_CODE (type) == TYPE_CODE_FLT
2143 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2144 {
2145 int len = (value_bitpos (toval)
2146 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2147 char *buffer = (char *) alloca (len);
2148 struct value *val;
2149 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2150
2151 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2152 fromval = value_cast (type, fromval);
2153
2154 read_memory (to_addr, buffer, len);
2155 if (BITS_BIG_ENDIAN)
2156 move_bits (buffer, value_bitpos (toval),
2157 value_contents (fromval),
2158 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2159 bits, bits);
2160 else
2161 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2162 0, bits);
2163 write_memory (to_addr, buffer, len);
2164 if (deprecated_memory_changed_hook)
2165 deprecated_memory_changed_hook (to_addr, len);
2166
2167 val = value_copy (toval);
2168 memcpy (value_contents_raw (val), value_contents (fromval),
2169 TYPE_LENGTH (type));
2170 deprecated_set_value_type (val, type);
2171
2172 return val;
2173 }
2174
2175 return value_assign (toval, fromval);
2176 }
2177
2178
2179 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2180 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2181 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2182 * COMPONENT, and not the inferior's memory. The current contents
2183 * of COMPONENT are ignored. */
2184 static void
2185 value_assign_to_component (struct value *container, struct value *component,
2186 struct value *val)
2187 {
2188 LONGEST offset_in_container =
2189 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2190 - VALUE_ADDRESS (container) - value_offset (container));
2191 int bit_offset_in_container =
2192 value_bitpos (component) - value_bitpos (container);
2193 int bits;
2194
2195 val = value_cast (value_type (component), val);
2196
2197 if (value_bitsize (component) == 0)
2198 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2199 else
2200 bits = value_bitsize (component);
2201
2202 if (BITS_BIG_ENDIAN)
2203 move_bits (value_contents_writeable (container) + offset_in_container,
2204 value_bitpos (container) + bit_offset_in_container,
2205 value_contents (val),
2206 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2207 bits);
2208 else
2209 move_bits (value_contents_writeable (container) + offset_in_container,
2210 value_bitpos (container) + bit_offset_in_container,
2211 value_contents (val), 0, bits);
2212 }
2213
2214 /* The value of the element of array ARR at the ARITY indices given in IND.
2215 ARR may be either a simple array, GNAT array descriptor, or pointer
2216 thereto. */
2217
2218 struct value *
2219 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2220 {
2221 int k;
2222 struct value *elt;
2223 struct type *elt_type;
2224
2225 elt = ada_coerce_to_simple_array (arr);
2226
2227 elt_type = ada_check_typedef (value_type (elt));
2228 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2229 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2230 return value_subscript_packed (elt, arity, ind);
2231
2232 for (k = 0; k < arity; k += 1)
2233 {
2234 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2235 error (_("too many subscripts (%d expected)"), k);
2236 elt = value_subscript (elt, value_pos_atr (ind[k]));
2237 }
2238 return elt;
2239 }
2240
2241 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2242 value of the element of *ARR at the ARITY indices given in
2243 IND. Does not read the entire array into memory. */
2244
2245 struct value *
2246 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2247 struct value **ind)
2248 {
2249 int k;
2250
2251 for (k = 0; k < arity; k += 1)
2252 {
2253 LONGEST lwb, upb;
2254 struct value *idx;
2255
2256 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2257 error (_("too many subscripts (%d expected)"), k);
2258 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2259 value_copy (arr));
2260 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2261 idx = value_pos_atr (ind[k]);
2262 if (lwb != 0)
2263 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2264 arr = value_add (arr, idx);
2265 type = TYPE_TARGET_TYPE (type);
2266 }
2267
2268 return value_ind (arr);
2269 }
2270
2271 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2272 actual type of ARRAY_PTR is ignored), returns a reference to
2273 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2274 bound of this array is LOW, as per Ada rules. */
2275 static struct value *
2276 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2277 int low, int high)
2278 {
2279 CORE_ADDR base = value_as_address (array_ptr)
2280 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2281 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2282 struct type *index_type =
2283 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2284 low, high);
2285 struct type *slice_type =
2286 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2287 return value_from_pointer (lookup_reference_type (slice_type), base);
2288 }
2289
2290
2291 static struct value *
2292 ada_value_slice (struct value *array, int low, int high)
2293 {
2294 struct type *type = value_type (array);
2295 struct type *index_type =
2296 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2297 struct type *slice_type =
2298 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2299 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2300 }
2301
2302 /* If type is a record type in the form of a standard GNAT array
2303 descriptor, returns the number of dimensions for type. If arr is a
2304 simple array, returns the number of "array of"s that prefix its
2305 type designation. Otherwise, returns 0. */
2306
2307 int
2308 ada_array_arity (struct type *type)
2309 {
2310 int arity;
2311
2312 if (type == NULL)
2313 return 0;
2314
2315 type = desc_base_type (type);
2316
2317 arity = 0;
2318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2319 return desc_arity (desc_bounds_type (type));
2320 else
2321 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2322 {
2323 arity += 1;
2324 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2325 }
2326
2327 return arity;
2328 }
2329
2330 /* If TYPE is a record type in the form of a standard GNAT array
2331 descriptor or a simple array type, returns the element type for
2332 TYPE after indexing by NINDICES indices, or by all indices if
2333 NINDICES is -1. Otherwise, returns NULL. */
2334
2335 struct type *
2336 ada_array_element_type (struct type *type, int nindices)
2337 {
2338 type = desc_base_type (type);
2339
2340 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2341 {
2342 int k;
2343 struct type *p_array_type;
2344
2345 p_array_type = desc_data_type (type);
2346
2347 k = ada_array_arity (type);
2348 if (k == 0)
2349 return NULL;
2350
2351 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2352 if (nindices >= 0 && k > nindices)
2353 k = nindices;
2354 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2355 while (k > 0 && p_array_type != NULL)
2356 {
2357 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2358 k -= 1;
2359 }
2360 return p_array_type;
2361 }
2362 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2363 {
2364 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2365 {
2366 type = TYPE_TARGET_TYPE (type);
2367 nindices -= 1;
2368 }
2369 return type;
2370 }
2371
2372 return NULL;
2373 }
2374
2375 /* The type of nth index in arrays of given type (n numbering from 1).
2376 Does not examine memory. */
2377
2378 struct type *
2379 ada_index_type (struct type *type, int n)
2380 {
2381 struct type *result_type;
2382
2383 type = desc_base_type (type);
2384
2385 if (n > ada_array_arity (type))
2386 return NULL;
2387
2388 if (ada_is_simple_array_type (type))
2389 {
2390 int i;
2391
2392 for (i = 1; i < n; i += 1)
2393 type = TYPE_TARGET_TYPE (type);
2394 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2395 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2396 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2397 perhaps stabsread.c would make more sense. */
2398 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2399 result_type = builtin_type_int;
2400
2401 return result_type;
2402 }
2403 else
2404 return desc_index_type (desc_bounds_type (type), n);
2405 }
2406
2407 /* Given that arr is an array type, returns the lower bound of the
2408 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2409 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2410 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2411 bounds type. It works for other arrays with bounds supplied by
2412 run-time quantities other than discriminants. */
2413
2414 LONGEST
2415 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2416 struct type ** typep)
2417 {
2418 struct type *type;
2419 struct type *index_type_desc;
2420
2421 if (ada_is_packed_array_type (arr_type))
2422 arr_type = decode_packed_array_type (arr_type);
2423
2424 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2425 {
2426 if (typep != NULL)
2427 *typep = builtin_type_int;
2428 return (LONGEST) - which;
2429 }
2430
2431 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2432 type = TYPE_TARGET_TYPE (arr_type);
2433 else
2434 type = arr_type;
2435
2436 index_type_desc = ada_find_parallel_type (type, "___XA");
2437 if (index_type_desc == NULL)
2438 {
2439 struct type *range_type;
2440 struct type *index_type;
2441
2442 while (n > 1)
2443 {
2444 type = TYPE_TARGET_TYPE (type);
2445 n -= 1;
2446 }
2447
2448 range_type = TYPE_INDEX_TYPE (type);
2449 index_type = TYPE_TARGET_TYPE (range_type);
2450 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2451 index_type = builtin_type_long;
2452 if (typep != NULL)
2453 *typep = index_type;
2454 return
2455 (LONGEST) (which == 0
2456 ? TYPE_LOW_BOUND (range_type)
2457 : TYPE_HIGH_BOUND (range_type));
2458 }
2459 else
2460 {
2461 struct type *index_type =
2462 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2463 NULL, TYPE_OBJFILE (arr_type));
2464 if (typep != NULL)
2465 *typep = TYPE_TARGET_TYPE (index_type);
2466 return
2467 (LONGEST) (which == 0
2468 ? TYPE_LOW_BOUND (index_type)
2469 : TYPE_HIGH_BOUND (index_type));
2470 }
2471 }
2472
2473 /* Given that arr is an array value, returns the lower bound of the
2474 nth index (numbering from 1) if which is 0, and the upper bound if
2475 which is 1. This routine will also work for arrays with bounds
2476 supplied by run-time quantities other than discriminants. */
2477
2478 struct value *
2479 ada_array_bound (struct value *arr, int n, int which)
2480 {
2481 struct type *arr_type = value_type (arr);
2482
2483 if (ada_is_packed_array_type (arr_type))
2484 return ada_array_bound (decode_packed_array (arr), n, which);
2485 else if (ada_is_simple_array_type (arr_type))
2486 {
2487 struct type *type;
2488 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2489 return value_from_longest (type, v);
2490 }
2491 else
2492 return desc_one_bound (desc_bounds (arr), n, which);
2493 }
2494
2495 /* Given that arr is an array value, returns the length of the
2496 nth index. This routine will also work for arrays with bounds
2497 supplied by run-time quantities other than discriminants.
2498 Does not work for arrays indexed by enumeration types with representation
2499 clauses at the moment. */
2500
2501 struct value *
2502 ada_array_length (struct value *arr, int n)
2503 {
2504 struct type *arr_type = ada_check_typedef (value_type (arr));
2505
2506 if (ada_is_packed_array_type (arr_type))
2507 return ada_array_length (decode_packed_array (arr), n);
2508
2509 if (ada_is_simple_array_type (arr_type))
2510 {
2511 struct type *type;
2512 LONGEST v =
2513 ada_array_bound_from_type (arr_type, n, 1, &type) -
2514 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2515 return value_from_longest (type, v);
2516 }
2517 else
2518 return
2519 value_from_longest (builtin_type_int,
2520 value_as_long (desc_one_bound (desc_bounds (arr),
2521 n, 1))
2522 - value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 0)) + 1);
2524 }
2525
2526 /* An empty array whose type is that of ARR_TYPE (an array type),
2527 with bounds LOW to LOW-1. */
2528
2529 static struct value *
2530 empty_array (struct type *arr_type, int low)
2531 {
2532 struct type *index_type =
2533 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2534 low, low - 1);
2535 struct type *elt_type = ada_array_element_type (arr_type, 1);
2536 return allocate_value (create_array_type (NULL, elt_type, index_type));
2537 }
2538 \f
2539
2540 /* Name resolution */
2541
2542 /* The "decoded" name for the user-definable Ada operator corresponding
2543 to OP. */
2544
2545 static const char *
2546 ada_decoded_op_name (enum exp_opcode op)
2547 {
2548 int i;
2549
2550 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2551 {
2552 if (ada_opname_table[i].op == op)
2553 return ada_opname_table[i].decoded;
2554 }
2555 error (_("Could not find operator name for opcode"));
2556 }
2557
2558
2559 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2560 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2561 undefined namespace) and converts operators that are
2562 user-defined into appropriate function calls. If CONTEXT_TYPE is
2563 non-null, it provides a preferred result type [at the moment, only
2564 type void has any effect---causing procedures to be preferred over
2565 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2566 return type is preferred. May change (expand) *EXP. */
2567
2568 static void
2569 resolve (struct expression **expp, int void_context_p)
2570 {
2571 int pc;
2572 pc = 0;
2573 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2574 }
2575
2576 /* Resolve the operator of the subexpression beginning at
2577 position *POS of *EXPP. "Resolving" consists of replacing
2578 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2579 with their resolutions, replacing built-in operators with
2580 function calls to user-defined operators, where appropriate, and,
2581 when DEPROCEDURE_P is non-zero, converting function-valued variables
2582 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2583 are as in ada_resolve, above. */
2584
2585 static struct value *
2586 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2587 struct type *context_type)
2588 {
2589 int pc = *pos;
2590 int i;
2591 struct expression *exp; /* Convenience: == *expp. */
2592 enum exp_opcode op = (*expp)->elts[pc].opcode;
2593 struct value **argvec; /* Vector of operand types (alloca'ed). */
2594 int nargs; /* Number of operands. */
2595 int oplen;
2596
2597 argvec = NULL;
2598 nargs = 0;
2599 exp = *expp;
2600
2601 /* Pass one: resolve operands, saving their types and updating *pos,
2602 if needed. */
2603 switch (op)
2604 {
2605 case OP_FUNCALL:
2606 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2608 *pos += 7;
2609 else
2610 {
2611 *pos += 3;
2612 resolve_subexp (expp, pos, 0, NULL);
2613 }
2614 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2615 break;
2616
2617 case UNOP_ADDR:
2618 *pos += 1;
2619 resolve_subexp (expp, pos, 0, NULL);
2620 break;
2621
2622 case UNOP_QUAL:
2623 *pos += 3;
2624 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2625 break;
2626
2627 case OP_ATR_MODULUS:
2628 case OP_ATR_SIZE:
2629 case OP_ATR_TAG:
2630 case OP_ATR_FIRST:
2631 case OP_ATR_LAST:
2632 case OP_ATR_LENGTH:
2633 case OP_ATR_POS:
2634 case OP_ATR_VAL:
2635 case OP_ATR_MIN:
2636 case OP_ATR_MAX:
2637 case TERNOP_IN_RANGE:
2638 case BINOP_IN_BOUNDS:
2639 case UNOP_IN_RANGE:
2640 case OP_AGGREGATE:
2641 case OP_OTHERS:
2642 case OP_CHOICES:
2643 case OP_POSITIONAL:
2644 case OP_DISCRETE_RANGE:
2645 case OP_NAME:
2646 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2647 *pos += oplen;
2648 break;
2649
2650 case BINOP_ASSIGN:
2651 {
2652 struct value *arg1;
2653
2654 *pos += 1;
2655 arg1 = resolve_subexp (expp, pos, 0, NULL);
2656 if (arg1 == NULL)
2657 resolve_subexp (expp, pos, 1, NULL);
2658 else
2659 resolve_subexp (expp, pos, 1, value_type (arg1));
2660 break;
2661 }
2662
2663 case UNOP_CAST:
2664 *pos += 3;
2665 nargs = 1;
2666 break;
2667
2668 case BINOP_ADD:
2669 case BINOP_SUB:
2670 case BINOP_MUL:
2671 case BINOP_DIV:
2672 case BINOP_REM:
2673 case BINOP_MOD:
2674 case BINOP_EXP:
2675 case BINOP_CONCAT:
2676 case BINOP_LOGICAL_AND:
2677 case BINOP_LOGICAL_OR:
2678 case BINOP_BITWISE_AND:
2679 case BINOP_BITWISE_IOR:
2680 case BINOP_BITWISE_XOR:
2681
2682 case BINOP_EQUAL:
2683 case BINOP_NOTEQUAL:
2684 case BINOP_LESS:
2685 case BINOP_GTR:
2686 case BINOP_LEQ:
2687 case BINOP_GEQ:
2688
2689 case BINOP_REPEAT:
2690 case BINOP_SUBSCRIPT:
2691 case BINOP_COMMA:
2692 *pos += 1;
2693 nargs = 2;
2694 break;
2695
2696 case UNOP_NEG:
2697 case UNOP_PLUS:
2698 case UNOP_LOGICAL_NOT:
2699 case UNOP_ABS:
2700 case UNOP_IND:
2701 *pos += 1;
2702 nargs = 1;
2703 break;
2704
2705 case OP_LONG:
2706 case OP_DOUBLE:
2707 case OP_VAR_VALUE:
2708 *pos += 4;
2709 break;
2710
2711 case OP_TYPE:
2712 case OP_BOOL:
2713 case OP_LAST:
2714 case OP_INTERNALVAR:
2715 *pos += 3;
2716 break;
2717
2718 case UNOP_MEMVAL:
2719 *pos += 3;
2720 nargs = 1;
2721 break;
2722
2723 case OP_REGISTER:
2724 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2725 break;
2726
2727 case STRUCTOP_STRUCT:
2728 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2729 nargs = 1;
2730 break;
2731
2732 case TERNOP_SLICE:
2733 *pos += 1;
2734 nargs = 3;
2735 break;
2736
2737 case OP_STRING:
2738 break;
2739
2740 default:
2741 error (_("Unexpected operator during name resolution"));
2742 }
2743
2744 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2745 for (i = 0; i < nargs; i += 1)
2746 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2747 argvec[i] = NULL;
2748 exp = *expp;
2749
2750 /* Pass two: perform any resolution on principal operator. */
2751 switch (op)
2752 {
2753 default:
2754 break;
2755
2756 case OP_VAR_VALUE:
2757 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2758 {
2759 struct ada_symbol_info *candidates;
2760 int n_candidates;
2761
2762 n_candidates =
2763 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2764 (exp->elts[pc + 2].symbol),
2765 exp->elts[pc + 1].block, VAR_DOMAIN,
2766 &candidates);
2767
2768 if (n_candidates > 1)
2769 {
2770 /* Types tend to get re-introduced locally, so if there
2771 are any local symbols that are not types, first filter
2772 out all types. */
2773 int j;
2774 for (j = 0; j < n_candidates; j += 1)
2775 switch (SYMBOL_CLASS (candidates[j].sym))
2776 {
2777 case LOC_REGISTER:
2778 case LOC_ARG:
2779 case LOC_REF_ARG:
2780 case LOC_REGPARM:
2781 case LOC_REGPARM_ADDR:
2782 case LOC_LOCAL:
2783 case LOC_LOCAL_ARG:
2784 case LOC_BASEREG:
2785 case LOC_BASEREG_ARG:
2786 case LOC_COMPUTED:
2787 case LOC_COMPUTED_ARG:
2788 goto FoundNonType;
2789 default:
2790 break;
2791 }
2792 FoundNonType:
2793 if (j < n_candidates)
2794 {
2795 j = 0;
2796 while (j < n_candidates)
2797 {
2798 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2799 {
2800 candidates[j] = candidates[n_candidates - 1];
2801 n_candidates -= 1;
2802 }
2803 else
2804 j += 1;
2805 }
2806 }
2807 }
2808
2809 if (n_candidates == 0)
2810 error (_("No definition found for %s"),
2811 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2812 else if (n_candidates == 1)
2813 i = 0;
2814 else if (deprocedure_p
2815 && !is_nonfunction (candidates, n_candidates))
2816 {
2817 i = ada_resolve_function
2818 (candidates, n_candidates, NULL, 0,
2819 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2820 context_type);
2821 if (i < 0)
2822 error (_("Could not find a match for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 }
2825 else
2826 {
2827 printf_filtered (_("Multiple matches for %s\n"),
2828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2829 user_select_syms (candidates, n_candidates, 1);
2830 i = 0;
2831 }
2832
2833 exp->elts[pc + 1].block = candidates[i].block;
2834 exp->elts[pc + 2].symbol = candidates[i].sym;
2835 if (innermost_block == NULL
2836 || contained_in (candidates[i].block, innermost_block))
2837 innermost_block = candidates[i].block;
2838 }
2839
2840 if (deprocedure_p
2841 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2842 == TYPE_CODE_FUNC))
2843 {
2844 replace_operator_with_call (expp, pc, 0, 0,
2845 exp->elts[pc + 2].symbol,
2846 exp->elts[pc + 1].block);
2847 exp = *expp;
2848 }
2849 break;
2850
2851 case OP_FUNCALL:
2852 {
2853 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2854 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2855 {
2856 struct ada_symbol_info *candidates;
2857 int n_candidates;
2858
2859 n_candidates =
2860 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2861 (exp->elts[pc + 5].symbol),
2862 exp->elts[pc + 4].block, VAR_DOMAIN,
2863 &candidates);
2864 if (n_candidates == 1)
2865 i = 0;
2866 else
2867 {
2868 i = ada_resolve_function
2869 (candidates, n_candidates,
2870 argvec, nargs,
2871 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2872 context_type);
2873 if (i < 0)
2874 error (_("Could not find a match for %s"),
2875 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2876 }
2877
2878 exp->elts[pc + 4].block = candidates[i].block;
2879 exp->elts[pc + 5].symbol = candidates[i].sym;
2880 if (innermost_block == NULL
2881 || contained_in (candidates[i].block, innermost_block))
2882 innermost_block = candidates[i].block;
2883 }
2884 }
2885 break;
2886 case BINOP_ADD:
2887 case BINOP_SUB:
2888 case BINOP_MUL:
2889 case BINOP_DIV:
2890 case BINOP_REM:
2891 case BINOP_MOD:
2892 case BINOP_CONCAT:
2893 case BINOP_BITWISE_AND:
2894 case BINOP_BITWISE_IOR:
2895 case BINOP_BITWISE_XOR:
2896 case BINOP_EQUAL:
2897 case BINOP_NOTEQUAL:
2898 case BINOP_LESS:
2899 case BINOP_GTR:
2900 case BINOP_LEQ:
2901 case BINOP_GEQ:
2902 case BINOP_EXP:
2903 case UNOP_NEG:
2904 case UNOP_PLUS:
2905 case UNOP_LOGICAL_NOT:
2906 case UNOP_ABS:
2907 if (possible_user_operator_p (op, argvec))
2908 {
2909 struct ada_symbol_info *candidates;
2910 int n_candidates;
2911
2912 n_candidates =
2913 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2914 (struct block *) NULL, VAR_DOMAIN,
2915 &candidates);
2916 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2917 ada_decoded_op_name (op), NULL);
2918 if (i < 0)
2919 break;
2920
2921 replace_operator_with_call (expp, pc, nargs, 1,
2922 candidates[i].sym, candidates[i].block);
2923 exp = *expp;
2924 }
2925 break;
2926
2927 case OP_TYPE:
2928 return NULL;
2929 }
2930
2931 *pos = pc;
2932 return evaluate_subexp_type (exp, pos);
2933 }
2934
2935 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2936 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2937 a non-pointer. A type of 'void' (which is never a valid expression type)
2938 by convention matches anything. */
2939 /* The term "match" here is rather loose. The match is heuristic and
2940 liberal. FIXME: TOO liberal, in fact. */
2941
2942 static int
2943 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2944 {
2945 ftype = ada_check_typedef (ftype);
2946 atype = ada_check_typedef (atype);
2947
2948 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2949 ftype = TYPE_TARGET_TYPE (ftype);
2950 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2951 atype = TYPE_TARGET_TYPE (atype);
2952
2953 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2954 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2955 return 1;
2956
2957 switch (TYPE_CODE (ftype))
2958 {
2959 default:
2960 return 1;
2961 case TYPE_CODE_PTR:
2962 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2963 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2964 TYPE_TARGET_TYPE (atype), 0);
2965 else
2966 return (may_deref
2967 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2968 case TYPE_CODE_INT:
2969 case TYPE_CODE_ENUM:
2970 case TYPE_CODE_RANGE:
2971 switch (TYPE_CODE (atype))
2972 {
2973 case TYPE_CODE_INT:
2974 case TYPE_CODE_ENUM:
2975 case TYPE_CODE_RANGE:
2976 return 1;
2977 default:
2978 return 0;
2979 }
2980
2981 case TYPE_CODE_ARRAY:
2982 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2983 || ada_is_array_descriptor_type (atype));
2984
2985 case TYPE_CODE_STRUCT:
2986 if (ada_is_array_descriptor_type (ftype))
2987 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2988 || ada_is_array_descriptor_type (atype));
2989 else
2990 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2991 && !ada_is_array_descriptor_type (atype));
2992
2993 case TYPE_CODE_UNION:
2994 case TYPE_CODE_FLT:
2995 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2996 }
2997 }
2998
2999 /* Return non-zero if the formals of FUNC "sufficiently match" the
3000 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3001 may also be an enumeral, in which case it is treated as a 0-
3002 argument function. */
3003
3004 static int
3005 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3006 {
3007 int i;
3008 struct type *func_type = SYMBOL_TYPE (func);
3009
3010 if (SYMBOL_CLASS (func) == LOC_CONST
3011 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3012 return (n_actuals == 0);
3013 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3014 return 0;
3015
3016 if (TYPE_NFIELDS (func_type) != n_actuals)
3017 return 0;
3018
3019 for (i = 0; i < n_actuals; i += 1)
3020 {
3021 if (actuals[i] == NULL)
3022 return 0;
3023 else
3024 {
3025 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3026 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3027
3028 if (!ada_type_match (ftype, atype, 1))
3029 return 0;
3030 }
3031 }
3032 return 1;
3033 }
3034
3035 /* False iff function type FUNC_TYPE definitely does not produce a value
3036 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3037 FUNC_TYPE is not a valid function type with a non-null return type
3038 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3039
3040 static int
3041 return_match (struct type *func_type, struct type *context_type)
3042 {
3043 struct type *return_type;
3044
3045 if (func_type == NULL)
3046 return 1;
3047
3048 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3049 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3050 else
3051 return_type = base_type (func_type);
3052 if (return_type == NULL)
3053 return 1;
3054
3055 context_type = base_type (context_type);
3056
3057 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3058 return context_type == NULL || return_type == context_type;
3059 else if (context_type == NULL)
3060 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3061 else
3062 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3063 }
3064
3065
3066 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3067 function (if any) that matches the types of the NARGS arguments in
3068 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3069 that returns that type, then eliminate matches that don't. If
3070 CONTEXT_TYPE is void and there is at least one match that does not
3071 return void, eliminate all matches that do.
3072
3073 Asks the user if there is more than one match remaining. Returns -1
3074 if there is no such symbol or none is selected. NAME is used
3075 solely for messages. May re-arrange and modify SYMS in
3076 the process; the index returned is for the modified vector. */
3077
3078 static int
3079 ada_resolve_function (struct ada_symbol_info syms[],
3080 int nsyms, struct value **args, int nargs,
3081 const char *name, struct type *context_type)
3082 {
3083 int k;
3084 int m; /* Number of hits */
3085 struct type *fallback;
3086 struct type *return_type;
3087
3088 return_type = context_type;
3089 if (context_type == NULL)
3090 fallback = builtin_type_void;
3091 else
3092 fallback = NULL;
3093
3094 m = 0;
3095 while (1)
3096 {
3097 for (k = 0; k < nsyms; k += 1)
3098 {
3099 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3100
3101 if (ada_args_match (syms[k].sym, args, nargs)
3102 && return_match (type, return_type))
3103 {
3104 syms[m] = syms[k];
3105 m += 1;
3106 }
3107 }
3108 if (m > 0 || return_type == fallback)
3109 break;
3110 else
3111 return_type = fallback;
3112 }
3113
3114 if (m == 0)
3115 return -1;
3116 else if (m > 1)
3117 {
3118 printf_filtered (_("Multiple matches for %s\n"), name);
3119 user_select_syms (syms, m, 1);
3120 return 0;
3121 }
3122 return 0;
3123 }
3124
3125 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3126 in a listing of choices during disambiguation (see sort_choices, below).
3127 The idea is that overloadings of a subprogram name from the
3128 same package should sort in their source order. We settle for ordering
3129 such symbols by their trailing number (__N or $N). */
3130
3131 static int
3132 encoded_ordered_before (char *N0, char *N1)
3133 {
3134 if (N1 == NULL)
3135 return 0;
3136 else if (N0 == NULL)
3137 return 1;
3138 else
3139 {
3140 int k0, k1;
3141 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3142 ;
3143 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3144 ;
3145 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3146 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3147 {
3148 int n0, n1;
3149 n0 = k0;
3150 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3151 n0 -= 1;
3152 n1 = k1;
3153 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3154 n1 -= 1;
3155 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3156 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3157 }
3158 return (strcmp (N0, N1) < 0);
3159 }
3160 }
3161
3162 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3163 encoded names. */
3164
3165 static void
3166 sort_choices (struct ada_symbol_info syms[], int nsyms)
3167 {
3168 int i;
3169 for (i = 1; i < nsyms; i += 1)
3170 {
3171 struct ada_symbol_info sym = syms[i];
3172 int j;
3173
3174 for (j = i - 1; j >= 0; j -= 1)
3175 {
3176 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3177 SYMBOL_LINKAGE_NAME (sym.sym)))
3178 break;
3179 syms[j + 1] = syms[j];
3180 }
3181 syms[j + 1] = sym;
3182 }
3183 }
3184
3185 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3186 by asking the user (if necessary), returning the number selected,
3187 and setting the first elements of SYMS items. Error if no symbols
3188 selected. */
3189
3190 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3191 to be re-integrated one of these days. */
3192
3193 int
3194 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3195 {
3196 int i;
3197 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3198 int n_chosen;
3199 int first_choice = (max_results == 1) ? 1 : 2;
3200
3201 if (max_results < 1)
3202 error (_("Request to select 0 symbols!"));
3203 if (nsyms <= 1)
3204 return nsyms;
3205
3206 printf_unfiltered (_("[0] cancel\n"));
3207 if (max_results > 1)
3208 printf_unfiltered (_("[1] all\n"));
3209
3210 sort_choices (syms, nsyms);
3211
3212 for (i = 0; i < nsyms; i += 1)
3213 {
3214 if (syms[i].sym == NULL)
3215 continue;
3216
3217 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3218 {
3219 struct symtab_and_line sal =
3220 find_function_start_sal (syms[i].sym, 1);
3221 if (sal.symtab == NULL)
3222 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3223 i + first_choice,
3224 SYMBOL_PRINT_NAME (syms[i].sym),
3225 sal.line);
3226 else
3227 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3228 SYMBOL_PRINT_NAME (syms[i].sym),
3229 sal.symtab->filename, sal.line);
3230 continue;
3231 }
3232 else
3233 {
3234 int is_enumeral =
3235 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3236 && SYMBOL_TYPE (syms[i].sym) != NULL
3237 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3238 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3239
3240 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3241 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3242 i + first_choice,
3243 SYMBOL_PRINT_NAME (syms[i].sym),
3244 symtab->filename, SYMBOL_LINE (syms[i].sym));
3245 else if (is_enumeral
3246 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3247 {
3248 printf_unfiltered (("[%d] "), i + first_choice);
3249 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3250 gdb_stdout, -1, 0);
3251 printf_unfiltered (_("'(%s) (enumeral)\n"),
3252 SYMBOL_PRINT_NAME (syms[i].sym));
3253 }
3254 else if (symtab != NULL)
3255 printf_unfiltered (is_enumeral
3256 ? _("[%d] %s in %s (enumeral)\n")
3257 : _("[%d] %s at %s:?\n"),
3258 i + first_choice,
3259 SYMBOL_PRINT_NAME (syms[i].sym),
3260 symtab->filename);
3261 else
3262 printf_unfiltered (is_enumeral
3263 ? _("[%d] %s (enumeral)\n")
3264 : _("[%d] %s at ?\n"),
3265 i + first_choice,
3266 SYMBOL_PRINT_NAME (syms[i].sym));
3267 }
3268 }
3269
3270 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3271 "overload-choice");
3272
3273 for (i = 0; i < n_chosen; i += 1)
3274 syms[i] = syms[chosen[i]];
3275
3276 return n_chosen;
3277 }
3278
3279 /* Read and validate a set of numeric choices from the user in the
3280 range 0 .. N_CHOICES-1. Place the results in increasing
3281 order in CHOICES[0 .. N-1], and return N.
3282
3283 The user types choices as a sequence of numbers on one line
3284 separated by blanks, encoding them as follows:
3285
3286 + A choice of 0 means to cancel the selection, throwing an error.
3287 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3288 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3289
3290 The user is not allowed to choose more than MAX_RESULTS values.
3291
3292 ANNOTATION_SUFFIX, if present, is used to annotate the input
3293 prompts (for use with the -f switch). */
3294
3295 int
3296 get_selections (int *choices, int n_choices, int max_results,
3297 int is_all_choice, char *annotation_suffix)
3298 {
3299 char *args;
3300 const char *prompt;
3301 int n_chosen;
3302 int first_choice = is_all_choice ? 2 : 1;
3303
3304 prompt = getenv ("PS2");
3305 if (prompt == NULL)
3306 prompt = ">";
3307
3308 printf_unfiltered (("%s "), prompt);
3309 gdb_flush (gdb_stdout);
3310
3311 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3312
3313 if (args == NULL)
3314 error_no_arg (_("one or more choice numbers"));
3315
3316 n_chosen = 0;
3317
3318 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3319 order, as given in args. Choices are validated. */
3320 while (1)
3321 {
3322 char *args2;
3323 int choice, j;
3324
3325 while (isspace (*args))
3326 args += 1;
3327 if (*args == '\0' && n_chosen == 0)
3328 error_no_arg (_("one or more choice numbers"));
3329 else if (*args == '\0')
3330 break;
3331
3332 choice = strtol (args, &args2, 10);
3333 if (args == args2 || choice < 0
3334 || choice > n_choices + first_choice - 1)
3335 error (_("Argument must be choice number"));
3336 args = args2;
3337
3338 if (choice == 0)
3339 error (_("cancelled"));
3340
3341 if (choice < first_choice)
3342 {
3343 n_chosen = n_choices;
3344 for (j = 0; j < n_choices; j += 1)
3345 choices[j] = j;
3346 break;
3347 }
3348 choice -= first_choice;
3349
3350 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3351 {
3352 }
3353
3354 if (j < 0 || choice != choices[j])
3355 {
3356 int k;
3357 for (k = n_chosen - 1; k > j; k -= 1)
3358 choices[k + 1] = choices[k];
3359 choices[j + 1] = choice;
3360 n_chosen += 1;
3361 }
3362 }
3363
3364 if (n_chosen > max_results)
3365 error (_("Select no more than %d of the above"), max_results);
3366
3367 return n_chosen;
3368 }
3369
3370 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3371 on the function identified by SYM and BLOCK, and taking NARGS
3372 arguments. Update *EXPP as needed to hold more space. */
3373
3374 static void
3375 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3376 int oplen, struct symbol *sym,
3377 struct block *block)
3378 {
3379 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3380 symbol, -oplen for operator being replaced). */
3381 struct expression *newexp = (struct expression *)
3382 xmalloc (sizeof (struct expression)
3383 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3384 struct expression *exp = *expp;
3385
3386 newexp->nelts = exp->nelts + 7 - oplen;
3387 newexp->language_defn = exp->language_defn;
3388 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3389 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3390 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3391
3392 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3393 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3394
3395 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3396 newexp->elts[pc + 4].block = block;
3397 newexp->elts[pc + 5].symbol = sym;
3398
3399 *expp = newexp;
3400 xfree (exp);
3401 }
3402
3403 /* Type-class predicates */
3404
3405 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3406 or FLOAT). */
3407
3408 static int
3409 numeric_type_p (struct type *type)
3410 {
3411 if (type == NULL)
3412 return 0;
3413 else
3414 {
3415 switch (TYPE_CODE (type))
3416 {
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_FLT:
3419 return 1;
3420 case TYPE_CODE_RANGE:
3421 return (type == TYPE_TARGET_TYPE (type)
3422 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3423 default:
3424 return 0;
3425 }
3426 }
3427 }
3428
3429 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3430
3431 static int
3432 integer_type_p (struct type *type)
3433 {
3434 if (type == NULL)
3435 return 0;
3436 else
3437 {
3438 switch (TYPE_CODE (type))
3439 {
3440 case TYPE_CODE_INT:
3441 return 1;
3442 case TYPE_CODE_RANGE:
3443 return (type == TYPE_TARGET_TYPE (type)
3444 || integer_type_p (TYPE_TARGET_TYPE (type)));
3445 default:
3446 return 0;
3447 }
3448 }
3449 }
3450
3451 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3452
3453 static int
3454 scalar_type_p (struct type *type)
3455 {
3456 if (type == NULL)
3457 return 0;
3458 else
3459 {
3460 switch (TYPE_CODE (type))
3461 {
3462 case TYPE_CODE_INT:
3463 case TYPE_CODE_RANGE:
3464 case TYPE_CODE_ENUM:
3465 case TYPE_CODE_FLT:
3466 return 1;
3467 default:
3468 return 0;
3469 }
3470 }
3471 }
3472
3473 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3474
3475 static int
3476 discrete_type_p (struct type *type)
3477 {
3478 if (type == NULL)
3479 return 0;
3480 else
3481 {
3482 switch (TYPE_CODE (type))
3483 {
3484 case TYPE_CODE_INT:
3485 case TYPE_CODE_RANGE:
3486 case TYPE_CODE_ENUM:
3487 return 1;
3488 default:
3489 return 0;
3490 }
3491 }
3492 }
3493
3494 /* Returns non-zero if OP with operands in the vector ARGS could be
3495 a user-defined function. Errs on the side of pre-defined operators
3496 (i.e., result 0). */
3497
3498 static int
3499 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3500 {
3501 struct type *type0 =
3502 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3503 struct type *type1 =
3504 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3505
3506 if (type0 == NULL)
3507 return 0;
3508
3509 switch (op)
3510 {
3511 default:
3512 return 0;
3513
3514 case BINOP_ADD:
3515 case BINOP_SUB:
3516 case BINOP_MUL:
3517 case BINOP_DIV:
3518 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3519
3520 case BINOP_REM:
3521 case BINOP_MOD:
3522 case BINOP_BITWISE_AND:
3523 case BINOP_BITWISE_IOR:
3524 case BINOP_BITWISE_XOR:
3525 return (!(integer_type_p (type0) && integer_type_p (type1)));
3526
3527 case BINOP_EQUAL:
3528 case BINOP_NOTEQUAL:
3529 case BINOP_LESS:
3530 case BINOP_GTR:
3531 case BINOP_LEQ:
3532 case BINOP_GEQ:
3533 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3534
3535 case BINOP_CONCAT:
3536 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3537
3538 case BINOP_EXP:
3539 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3540
3541 case UNOP_NEG:
3542 case UNOP_PLUS:
3543 case UNOP_LOGICAL_NOT:
3544 case UNOP_ABS:
3545 return (!numeric_type_p (type0));
3546
3547 }
3548 }
3549 \f
3550 /* Renaming */
3551
3552 /* NOTE: In the following, we assume that a renaming type's name may
3553 have an ___XD suffix. It would be nice if this went away at some
3554 point. */
3555
3556 /* If TYPE encodes a renaming, returns the renaming suffix, which
3557 is XR for an object renaming, XRP for a procedure renaming, XRE for
3558 an exception renaming, and XRS for a subprogram renaming. Returns
3559 NULL if NAME encodes none of these. */
3560
3561 const char *
3562 ada_renaming_type (struct type *type)
3563 {
3564 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3565 {
3566 const char *name = type_name_no_tag (type);
3567 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3568 if (suffix == NULL
3569 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3570 return NULL;
3571 else
3572 return suffix + 3;
3573 }
3574 else
3575 return NULL;
3576 }
3577
3578 /* Return non-zero iff SYM encodes an object renaming. */
3579
3580 int
3581 ada_is_object_renaming (struct symbol *sym)
3582 {
3583 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3584 return renaming_type != NULL
3585 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3586 }
3587
3588 /* Assuming that SYM encodes a non-object renaming, returns the original
3589 name of the renamed entity. The name is good until the end of
3590 parsing. */
3591
3592 char *
3593 ada_simple_renamed_entity (struct symbol *sym)
3594 {
3595 struct type *type;
3596 const char *raw_name;
3597 int len;
3598 char *result;
3599
3600 type = SYMBOL_TYPE (sym);
3601 if (type == NULL || TYPE_NFIELDS (type) < 1)
3602 error (_("Improperly encoded renaming."));
3603
3604 raw_name = TYPE_FIELD_NAME (type, 0);
3605 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3606 if (len <= 0)
3607 error (_("Improperly encoded renaming."));
3608
3609 result = xmalloc (len + 1);
3610 strncpy (result, raw_name, len);
3611 result[len] = '\000';
3612 return result;
3613 }
3614
3615 \f
3616
3617 /* Evaluation: Function Calls */
3618
3619 /* Return an lvalue containing the value VAL. This is the identity on
3620 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3621 on the stack, using and updating *SP as the stack pointer, and
3622 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3623
3624 static struct value *
3625 ensure_lval (struct value *val, CORE_ADDR *sp)
3626 {
3627 if (! VALUE_LVAL (val))
3628 {
3629 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3630
3631 /* The following is taken from the structure-return code in
3632 call_function_by_hand. FIXME: Therefore, some refactoring seems
3633 indicated. */
3634 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3635 {
3636 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3637 reserving sufficient space. */
3638 *sp -= len;
3639 if (gdbarch_frame_align_p (current_gdbarch))
3640 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3641 VALUE_ADDRESS (val) = *sp;
3642 }
3643 else
3644 {
3645 /* Stack grows upward. Align the frame, allocate space, and
3646 then again, re-align the frame. */
3647 if (gdbarch_frame_align_p (current_gdbarch))
3648 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3649 VALUE_ADDRESS (val) = *sp;
3650 *sp += len;
3651 if (gdbarch_frame_align_p (current_gdbarch))
3652 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3653 }
3654
3655 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3656 }
3657
3658 return val;
3659 }
3660
3661 /* Return the value ACTUAL, converted to be an appropriate value for a
3662 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3663 allocating any necessary descriptors (fat pointers), or copies of
3664 values not residing in memory, updating it as needed. */
3665
3666 static struct value *
3667 convert_actual (struct value *actual, struct type *formal_type0,
3668 CORE_ADDR *sp)
3669 {
3670 struct type *actual_type = ada_check_typedef (value_type (actual));
3671 struct type *formal_type = ada_check_typedef (formal_type0);
3672 struct type *formal_target =
3673 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3674 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3675 struct type *actual_target =
3676 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3677 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3678
3679 if (ada_is_array_descriptor_type (formal_target)
3680 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3681 return make_array_descriptor (formal_type, actual, sp);
3682 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3683 {
3684 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3685 && ada_is_array_descriptor_type (actual_target))
3686 return desc_data (actual);
3687 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3688 {
3689 if (VALUE_LVAL (actual) != lval_memory)
3690 {
3691 struct value *val;
3692 actual_type = ada_check_typedef (value_type (actual));
3693 val = allocate_value (actual_type);
3694 memcpy ((char *) value_contents_raw (val),
3695 (char *) value_contents (actual),
3696 TYPE_LENGTH (actual_type));
3697 actual = ensure_lval (val, sp);
3698 }
3699 return value_addr (actual);
3700 }
3701 }
3702 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3703 return ada_value_ind (actual);
3704
3705 return actual;
3706 }
3707
3708
3709 /* Push a descriptor of type TYPE for array value ARR on the stack at
3710 *SP, updating *SP to reflect the new descriptor. Return either
3711 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3712 to-descriptor type rather than a descriptor type), a struct value *
3713 representing a pointer to this descriptor. */
3714
3715 static struct value *
3716 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3717 {
3718 struct type *bounds_type = desc_bounds_type (type);
3719 struct type *desc_type = desc_base_type (type);
3720 struct value *descriptor = allocate_value (desc_type);
3721 struct value *bounds = allocate_value (bounds_type);
3722 int i;
3723
3724 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3725 {
3726 modify_general_field (value_contents_writeable (bounds),
3727 value_as_long (ada_array_bound (arr, i, 0)),
3728 desc_bound_bitpos (bounds_type, i, 0),
3729 desc_bound_bitsize (bounds_type, i, 0));
3730 modify_general_field (value_contents_writeable (bounds),
3731 value_as_long (ada_array_bound (arr, i, 1)),
3732 desc_bound_bitpos (bounds_type, i, 1),
3733 desc_bound_bitsize (bounds_type, i, 1));
3734 }
3735
3736 bounds = ensure_lval (bounds, sp);
3737
3738 modify_general_field (value_contents_writeable (descriptor),
3739 VALUE_ADDRESS (ensure_lval (arr, sp)),
3740 fat_pntr_data_bitpos (desc_type),
3741 fat_pntr_data_bitsize (desc_type));
3742
3743 modify_general_field (value_contents_writeable (descriptor),
3744 VALUE_ADDRESS (bounds),
3745 fat_pntr_bounds_bitpos (desc_type),
3746 fat_pntr_bounds_bitsize (desc_type));
3747
3748 descriptor = ensure_lval (descriptor, sp);
3749
3750 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3751 return value_addr (descriptor);
3752 else
3753 return descriptor;
3754 }
3755
3756
3757 /* Assuming a dummy frame has been established on the target, perform any
3758 conversions needed for calling function FUNC on the NARGS actual
3759 parameters in ARGS, other than standard C conversions. Does
3760 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3761 does not match the number of arguments expected. Use *SP as a
3762 stack pointer for additional data that must be pushed, updating its
3763 value as needed. */
3764
3765 void
3766 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3767 CORE_ADDR *sp)
3768 {
3769 int i;
3770
3771 if (TYPE_NFIELDS (value_type (func)) == 0
3772 || nargs != TYPE_NFIELDS (value_type (func)))
3773 return;
3774
3775 for (i = 0; i < nargs; i += 1)
3776 args[i] =
3777 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3778 }
3779 \f
3780 /* Dummy definitions for an experimental caching module that is not
3781 * used in the public sources. */
3782
3783 static int
3784 lookup_cached_symbol (const char *name, domain_enum namespace,
3785 struct symbol **sym, struct block **block,
3786 struct symtab **symtab)
3787 {
3788 return 0;
3789 }
3790
3791 static void
3792 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3793 struct block *block, struct symtab *symtab)
3794 {
3795 }
3796 \f
3797 /* Symbol Lookup */
3798
3799 /* Return the result of a standard (literal, C-like) lookup of NAME in
3800 given DOMAIN, visible from lexical block BLOCK. */
3801
3802 static struct symbol *
3803 standard_lookup (const char *name, const struct block *block,
3804 domain_enum domain)
3805 {
3806 struct symbol *sym;
3807 struct symtab *symtab;
3808
3809 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3810 return sym;
3811 sym =
3812 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3813 cache_symbol (name, domain, sym, block_found, symtab);
3814 return sym;
3815 }
3816
3817
3818 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3819 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3820 since they contend in overloading in the same way. */
3821 static int
3822 is_nonfunction (struct ada_symbol_info syms[], int n)
3823 {
3824 int i;
3825
3826 for (i = 0; i < n; i += 1)
3827 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3828 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3829 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3830 return 1;
3831
3832 return 0;
3833 }
3834
3835 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3836 struct types. Otherwise, they may not. */
3837
3838 static int
3839 equiv_types (struct type *type0, struct type *type1)
3840 {
3841 if (type0 == type1)
3842 return 1;
3843 if (type0 == NULL || type1 == NULL
3844 || TYPE_CODE (type0) != TYPE_CODE (type1))
3845 return 0;
3846 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3847 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3848 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3849 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3850 return 1;
3851
3852 return 0;
3853 }
3854
3855 /* True iff SYM0 represents the same entity as SYM1, or one that is
3856 no more defined than that of SYM1. */
3857
3858 static int
3859 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3860 {
3861 if (sym0 == sym1)
3862 return 1;
3863 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3864 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3865 return 0;
3866
3867 switch (SYMBOL_CLASS (sym0))
3868 {
3869 case LOC_UNDEF:
3870 return 1;
3871 case LOC_TYPEDEF:
3872 {
3873 struct type *type0 = SYMBOL_TYPE (sym0);
3874 struct type *type1 = SYMBOL_TYPE (sym1);
3875 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3876 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3877 int len0 = strlen (name0);
3878 return
3879 TYPE_CODE (type0) == TYPE_CODE (type1)
3880 && (equiv_types (type0, type1)
3881 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3882 && strncmp (name1 + len0, "___XV", 5) == 0));
3883 }
3884 case LOC_CONST:
3885 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3886 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3887 default:
3888 return 0;
3889 }
3890 }
3891
3892 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3893 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3894
3895 static void
3896 add_defn_to_vec (struct obstack *obstackp,
3897 struct symbol *sym,
3898 struct block *block, struct symtab *symtab)
3899 {
3900 int i;
3901 size_t tmp;
3902 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3903
3904 /* Do not try to complete stub types, as the debugger is probably
3905 already scanning all symbols matching a certain name at the
3906 time when this function is called. Trying to replace the stub
3907 type by its associated full type will cause us to restart a scan
3908 which may lead to an infinite recursion. Instead, the client
3909 collecting the matching symbols will end up collecting several
3910 matches, with at least one of them complete. It can then filter
3911 out the stub ones if needed. */
3912
3913 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3914 {
3915 if (lesseq_defined_than (sym, prevDefns[i].sym))
3916 return;
3917 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3918 {
3919 prevDefns[i].sym = sym;
3920 prevDefns[i].block = block;
3921 prevDefns[i].symtab = symtab;
3922 return;
3923 }
3924 }
3925
3926 {
3927 struct ada_symbol_info info;
3928
3929 info.sym = sym;
3930 info.block = block;
3931 info.symtab = symtab;
3932 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3933 }
3934 }
3935
3936 /* Number of ada_symbol_info structures currently collected in
3937 current vector in *OBSTACKP. */
3938
3939 static int
3940 num_defns_collected (struct obstack *obstackp)
3941 {
3942 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3943 }
3944
3945 /* Vector of ada_symbol_info structures currently collected in current
3946 vector in *OBSTACKP. If FINISH, close off the vector and return
3947 its final address. */
3948
3949 static struct ada_symbol_info *
3950 defns_collected (struct obstack *obstackp, int finish)
3951 {
3952 if (finish)
3953 return obstack_finish (obstackp);
3954 else
3955 return (struct ada_symbol_info *) obstack_base (obstackp);
3956 }
3957
3958 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3959 Check the global symbols if GLOBAL, the static symbols if not.
3960 Do wild-card match if WILD. */
3961
3962 static struct partial_symbol *
3963 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3964 int global, domain_enum namespace, int wild)
3965 {
3966 struct partial_symbol **start;
3967 int name_len = strlen (name);
3968 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3969 int i;
3970
3971 if (length == 0)
3972 {
3973 return (NULL);
3974 }
3975
3976 start = (global ?
3977 pst->objfile->global_psymbols.list + pst->globals_offset :
3978 pst->objfile->static_psymbols.list + pst->statics_offset);
3979
3980 if (wild)
3981 {
3982 for (i = 0; i < length; i += 1)
3983 {
3984 struct partial_symbol *psym = start[i];
3985
3986 if (SYMBOL_DOMAIN (psym) == namespace
3987 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3988 return psym;
3989 }
3990 return NULL;
3991 }
3992 else
3993 {
3994 if (global)
3995 {
3996 int U;
3997 i = 0;
3998 U = length - 1;
3999 while (U - i > 4)
4000 {
4001 int M = (U + i) >> 1;
4002 struct partial_symbol *psym = start[M];
4003 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4004 i = M + 1;
4005 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4006 U = M - 1;
4007 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4008 i = M + 1;
4009 else
4010 U = M;
4011 }
4012 }
4013 else
4014 i = 0;
4015
4016 while (i < length)
4017 {
4018 struct partial_symbol *psym = start[i];
4019
4020 if (SYMBOL_DOMAIN (psym) == namespace)
4021 {
4022 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4023
4024 if (cmp < 0)
4025 {
4026 if (global)
4027 break;
4028 }
4029 else if (cmp == 0
4030 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4031 + name_len))
4032 return psym;
4033 }
4034 i += 1;
4035 }
4036
4037 if (global)
4038 {
4039 int U;
4040 i = 0;
4041 U = length - 1;
4042 while (U - i > 4)
4043 {
4044 int M = (U + i) >> 1;
4045 struct partial_symbol *psym = start[M];
4046 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4047 i = M + 1;
4048 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4049 U = M - 1;
4050 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4051 i = M + 1;
4052 else
4053 U = M;
4054 }
4055 }
4056 else
4057 i = 0;
4058
4059 while (i < length)
4060 {
4061 struct partial_symbol *psym = start[i];
4062
4063 if (SYMBOL_DOMAIN (psym) == namespace)
4064 {
4065 int cmp;
4066
4067 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4068 if (cmp == 0)
4069 {
4070 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4071 if (cmp == 0)
4072 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4073 name_len);
4074 }
4075
4076 if (cmp < 0)
4077 {
4078 if (global)
4079 break;
4080 }
4081 else if (cmp == 0
4082 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4083 + name_len + 5))
4084 return psym;
4085 }
4086 i += 1;
4087 }
4088 }
4089 return NULL;
4090 }
4091
4092 /* Find a symbol table containing symbol SYM or NULL if none. */
4093
4094 static struct symtab *
4095 symtab_for_sym (struct symbol *sym)
4096 {
4097 struct symtab *s;
4098 struct objfile *objfile;
4099 struct block *b;
4100 struct symbol *tmp_sym;
4101 struct dict_iterator iter;
4102 int j;
4103
4104 ALL_PRIMARY_SYMTABS (objfile, s)
4105 {
4106 switch (SYMBOL_CLASS (sym))
4107 {
4108 case LOC_CONST:
4109 case LOC_STATIC:
4110 case LOC_TYPEDEF:
4111 case LOC_REGISTER:
4112 case LOC_LABEL:
4113 case LOC_BLOCK:
4114 case LOC_CONST_BYTES:
4115 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4116 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4117 return s;
4118 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4119 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4120 return s;
4121 break;
4122 default:
4123 break;
4124 }
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_REGISTER:
4128 case LOC_ARG:
4129 case LOC_REF_ARG:
4130 case LOC_REGPARM:
4131 case LOC_REGPARM_ADDR:
4132 case LOC_LOCAL:
4133 case LOC_TYPEDEF:
4134 case LOC_LOCAL_ARG:
4135 case LOC_BASEREG:
4136 case LOC_BASEREG_ARG:
4137 case LOC_COMPUTED:
4138 case LOC_COMPUTED_ARG:
4139 for (j = FIRST_LOCAL_BLOCK;
4140 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4141 {
4142 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4143 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4144 return s;
4145 }
4146 break;
4147 default:
4148 break;
4149 }
4150 }
4151 return NULL;
4152 }
4153
4154 /* Return a minimal symbol matching NAME according to Ada decoding
4155 rules. Returns NULL if there is no such minimal symbol. Names
4156 prefixed with "standard__" are handled specially: "standard__" is
4157 first stripped off, and only static and global symbols are searched. */
4158
4159 struct minimal_symbol *
4160 ada_lookup_simple_minsym (const char *name)
4161 {
4162 struct objfile *objfile;
4163 struct minimal_symbol *msymbol;
4164 int wild_match;
4165
4166 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4167 {
4168 name += sizeof ("standard__") - 1;
4169 wild_match = 0;
4170 }
4171 else
4172 wild_match = (strstr (name, "__") == NULL);
4173
4174 ALL_MSYMBOLS (objfile, msymbol)
4175 {
4176 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4177 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4178 return msymbol;
4179 }
4180
4181 return NULL;
4182 }
4183
4184 /* For all subprograms that statically enclose the subprogram of the
4185 selected frame, add symbols matching identifier NAME in DOMAIN
4186 and their blocks to the list of data in OBSTACKP, as for
4187 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4188 wildcard prefix. */
4189
4190 static void
4191 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4192 const char *name, domain_enum namespace,
4193 int wild_match)
4194 {
4195 }
4196
4197 /* True if TYPE is definitely an artificial type supplied to a symbol
4198 for which no debugging information was given in the symbol file. */
4199
4200 static int
4201 is_nondebugging_type (struct type *type)
4202 {
4203 char *name = ada_type_name (type);
4204 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4205 }
4206
4207 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4208 duplicate other symbols in the list (The only case I know of where
4209 this happens is when object files containing stabs-in-ecoff are
4210 linked with files containing ordinary ecoff debugging symbols (or no
4211 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4212 Returns the number of items in the modified list. */
4213
4214 static int
4215 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4216 {
4217 int i, j;
4218
4219 i = 0;
4220 while (i < nsyms)
4221 {
4222 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4223 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4224 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4225 {
4226 for (j = 0; j < nsyms; j += 1)
4227 {
4228 if (i != j
4229 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4230 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4231 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4232 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4233 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4234 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4235 {
4236 int k;
4237 for (k = i + 1; k < nsyms; k += 1)
4238 syms[k - 1] = syms[k];
4239 nsyms -= 1;
4240 goto NextSymbol;
4241 }
4242 }
4243 }
4244 i += 1;
4245 NextSymbol:
4246 ;
4247 }
4248 return nsyms;
4249 }
4250
4251 /* Given a type that corresponds to a renaming entity, use the type name
4252 to extract the scope (package name or function name, fully qualified,
4253 and following the GNAT encoding convention) where this renaming has been
4254 defined. The string returned needs to be deallocated after use. */
4255
4256 static char *
4257 xget_renaming_scope (struct type *renaming_type)
4258 {
4259 /* The renaming types adhere to the following convention:
4260 <scope>__<rename>___<XR extension>.
4261 So, to extract the scope, we search for the "___XR" extension,
4262 and then backtrack until we find the first "__". */
4263
4264 const char *name = type_name_no_tag (renaming_type);
4265 char *suffix = strstr (name, "___XR");
4266 char *last;
4267 int scope_len;
4268 char *scope;
4269
4270 /* Now, backtrack a bit until we find the first "__". Start looking
4271 at suffix - 3, as the <rename> part is at least one character long. */
4272
4273 for (last = suffix - 3; last > name; last--)
4274 if (last[0] == '_' && last[1] == '_')
4275 break;
4276
4277 /* Make a copy of scope and return it. */
4278
4279 scope_len = last - name;
4280 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4281
4282 strncpy (scope, name, scope_len);
4283 scope[scope_len] = '\0';
4284
4285 return scope;
4286 }
4287
4288 /* Return nonzero if NAME corresponds to a package name. */
4289
4290 static int
4291 is_package_name (const char *name)
4292 {
4293 /* Here, We take advantage of the fact that no symbols are generated
4294 for packages, while symbols are generated for each function.
4295 So the condition for NAME represent a package becomes equivalent
4296 to NAME not existing in our list of symbols. There is only one
4297 small complication with library-level functions (see below). */
4298
4299 char *fun_name;
4300
4301 /* If it is a function that has not been defined at library level,
4302 then we should be able to look it up in the symbols. */
4303 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4304 return 0;
4305
4306 /* Library-level function names start with "_ada_". See if function
4307 "_ada_" followed by NAME can be found. */
4308
4309 /* Do a quick check that NAME does not contain "__", since library-level
4310 functions names cannot contain "__" in them. */
4311 if (strstr (name, "__") != NULL)
4312 return 0;
4313
4314 fun_name = xstrprintf ("_ada_%s", name);
4315
4316 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4317 }
4318
4319 /* Return nonzero if SYM corresponds to a renaming entity that is
4320 visible from FUNCTION_NAME. */
4321
4322 static int
4323 renaming_is_visible (const struct symbol *sym, char *function_name)
4324 {
4325 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4326
4327 make_cleanup (xfree, scope);
4328
4329 /* If the rename has been defined in a package, then it is visible. */
4330 if (is_package_name (scope))
4331 return 1;
4332
4333 /* Check that the rename is in the current function scope by checking
4334 that its name starts with SCOPE. */
4335
4336 /* If the function name starts with "_ada_", it means that it is
4337 a library-level function. Strip this prefix before doing the
4338 comparison, as the encoding for the renaming does not contain
4339 this prefix. */
4340 if (strncmp (function_name, "_ada_", 5) == 0)
4341 function_name += 5;
4342
4343 return (strncmp (function_name, scope, strlen (scope)) == 0);
4344 }
4345
4346 /* Iterates over the SYMS list and remove any entry that corresponds to
4347 a renaming entity that is not visible from the function associated
4348 with CURRENT_BLOCK.
4349
4350 Rationale:
4351 GNAT emits a type following a specified encoding for each renaming
4352 entity. Unfortunately, STABS currently does not support the definition
4353 of types that are local to a given lexical block, so all renamings types
4354 are emitted at library level. As a consequence, if an application
4355 contains two renaming entities using the same name, and a user tries to
4356 print the value of one of these entities, the result of the ada symbol
4357 lookup will also contain the wrong renaming type.
4358
4359 This function partially covers for this limitation by attempting to
4360 remove from the SYMS list renaming symbols that should be visible
4361 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4362 method with the current information available. The implementation
4363 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4364
4365 - When the user tries to print a rename in a function while there
4366 is another rename entity defined in a package: Normally, the
4367 rename in the function has precedence over the rename in the
4368 package, so the latter should be removed from the list. This is
4369 currently not the case.
4370
4371 - This function will incorrectly remove valid renames if
4372 the CURRENT_BLOCK corresponds to a function which symbol name
4373 has been changed by an "Export" pragma. As a consequence,
4374 the user will be unable to print such rename entities. */
4375
4376 static int
4377 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4378 int nsyms, const struct block *current_block)
4379 {
4380 struct symbol *current_function;
4381 char *current_function_name;
4382 int i;
4383
4384 /* Extract the function name associated to CURRENT_BLOCK.
4385 Abort if unable to do so. */
4386
4387 if (current_block == NULL)
4388 return nsyms;
4389
4390 current_function = block_function (current_block);
4391 if (current_function == NULL)
4392 return nsyms;
4393
4394 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4395 if (current_function_name == NULL)
4396 return nsyms;
4397
4398 /* Check each of the symbols, and remove it from the list if it is
4399 a type corresponding to a renaming that is out of the scope of
4400 the current block. */
4401
4402 i = 0;
4403 while (i < nsyms)
4404 {
4405 if (ada_is_object_renaming (syms[i].sym)
4406 && !renaming_is_visible (syms[i].sym, current_function_name))
4407 {
4408 int j;
4409 for (j = i + 1; j < nsyms; j++)
4410 syms[j - 1] = syms[j];
4411 nsyms -= 1;
4412 }
4413 else
4414 i += 1;
4415 }
4416
4417 return nsyms;
4418 }
4419
4420 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4421 scope and in global scopes, returning the number of matches. Sets
4422 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4423 indicating the symbols found and the blocks and symbol tables (if
4424 any) in which they were found. This vector are transient---good only to
4425 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4426 symbol match within the nest of blocks whose innermost member is BLOCK0,
4427 is the one match returned (no other matches in that or
4428 enclosing blocks is returned). If there are any matches in or
4429 surrounding BLOCK0, then these alone are returned. Otherwise, the
4430 search extends to global and file-scope (static) symbol tables.
4431 Names prefixed with "standard__" are handled specially: "standard__"
4432 is first stripped off, and only static and global symbols are searched. */
4433
4434 int
4435 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4436 domain_enum namespace,
4437 struct ada_symbol_info **results)
4438 {
4439 struct symbol *sym;
4440 struct symtab *s;
4441 struct partial_symtab *ps;
4442 struct blockvector *bv;
4443 struct objfile *objfile;
4444 struct block *block;
4445 const char *name;
4446 struct minimal_symbol *msymbol;
4447 int wild_match;
4448 int cacheIfUnique;
4449 int block_depth;
4450 int ndefns;
4451
4452 obstack_free (&symbol_list_obstack, NULL);
4453 obstack_init (&symbol_list_obstack);
4454
4455 cacheIfUnique = 0;
4456
4457 /* Search specified block and its superiors. */
4458
4459 wild_match = (strstr (name0, "__") == NULL);
4460 name = name0;
4461 block = (struct block *) block0; /* FIXME: No cast ought to be
4462 needed, but adding const will
4463 have a cascade effect. */
4464 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4465 {
4466 wild_match = 0;
4467 block = NULL;
4468 name = name0 + sizeof ("standard__") - 1;
4469 }
4470
4471 block_depth = 0;
4472 while (block != NULL)
4473 {
4474 block_depth += 1;
4475 ada_add_block_symbols (&symbol_list_obstack, block, name,
4476 namespace, NULL, NULL, wild_match);
4477
4478 /* If we found a non-function match, assume that's the one. */
4479 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4480 num_defns_collected (&symbol_list_obstack)))
4481 goto done;
4482
4483 block = BLOCK_SUPERBLOCK (block);
4484 }
4485
4486 /* If no luck so far, try to find NAME as a local symbol in some lexically
4487 enclosing subprogram. */
4488 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4489 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4490 name, namespace, wild_match);
4491
4492 /* If we found ANY matches among non-global symbols, we're done. */
4493
4494 if (num_defns_collected (&symbol_list_obstack) > 0)
4495 goto done;
4496
4497 cacheIfUnique = 1;
4498 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4499 {
4500 if (sym != NULL)
4501 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4502 goto done;
4503 }
4504
4505 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4506 tables, and psymtab's. */
4507
4508 ALL_PRIMARY_SYMTABS (objfile, s)
4509 {
4510 QUIT;
4511 bv = BLOCKVECTOR (s);
4512 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4513 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4514 objfile, s, wild_match);
4515 }
4516
4517 if (namespace == VAR_DOMAIN)
4518 {
4519 ALL_MSYMBOLS (objfile, msymbol)
4520 {
4521 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4522 {
4523 switch (MSYMBOL_TYPE (msymbol))
4524 {
4525 case mst_solib_trampoline:
4526 break;
4527 default:
4528 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4529 if (s != NULL)
4530 {
4531 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4532 QUIT;
4533 bv = BLOCKVECTOR (s);
4534 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4535 ada_add_block_symbols (&symbol_list_obstack, block,
4536 SYMBOL_LINKAGE_NAME (msymbol),
4537 namespace, objfile, s, wild_match);
4538
4539 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4540 {
4541 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4542 ada_add_block_symbols (&symbol_list_obstack, block,
4543 SYMBOL_LINKAGE_NAME (msymbol),
4544 namespace, objfile, s,
4545 wild_match);
4546 }
4547 }
4548 }
4549 }
4550 }
4551 }
4552
4553 ALL_PSYMTABS (objfile, ps)
4554 {
4555 QUIT;
4556 if (!ps->readin
4557 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4558 {
4559 s = PSYMTAB_TO_SYMTAB (ps);
4560 if (!s->primary)
4561 continue;
4562 bv = BLOCKVECTOR (s);
4563 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4564 ada_add_block_symbols (&symbol_list_obstack, block, name,
4565 namespace, objfile, s, wild_match);
4566 }
4567 }
4568
4569 /* Now add symbols from all per-file blocks if we've gotten no hits
4570 (Not strictly correct, but perhaps better than an error).
4571 Do the symtabs first, then check the psymtabs. */
4572
4573 if (num_defns_collected (&symbol_list_obstack) == 0)
4574 {
4575
4576 ALL_PRIMARY_SYMTABS (objfile, s)
4577 {
4578 QUIT;
4579 bv = BLOCKVECTOR (s);
4580 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4581 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4582 objfile, s, wild_match);
4583 }
4584
4585 ALL_PSYMTABS (objfile, ps)
4586 {
4587 QUIT;
4588 if (!ps->readin
4589 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4590 {
4591 s = PSYMTAB_TO_SYMTAB (ps);
4592 bv = BLOCKVECTOR (s);
4593 if (!s->primary)
4594 continue;
4595 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4596 ada_add_block_symbols (&symbol_list_obstack, block, name,
4597 namespace, objfile, s, wild_match);
4598 }
4599 }
4600 }
4601
4602 done:
4603 ndefns = num_defns_collected (&symbol_list_obstack);
4604 *results = defns_collected (&symbol_list_obstack, 1);
4605
4606 ndefns = remove_extra_symbols (*results, ndefns);
4607
4608 if (ndefns == 0)
4609 cache_symbol (name0, namespace, NULL, NULL, NULL);
4610
4611 if (ndefns == 1 && cacheIfUnique)
4612 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4613 (*results)[0].symtab);
4614
4615 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4616
4617 return ndefns;
4618 }
4619
4620 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4621 scope and in global scopes, or NULL if none. NAME is folded and
4622 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4623 choosing the first symbol if there are multiple choices.
4624 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4625 table in which the symbol was found (in both cases, these
4626 assignments occur only if the pointers are non-null). */
4627
4628 struct symbol *
4629 ada_lookup_symbol (const char *name, const struct block *block0,
4630 domain_enum namespace, int *is_a_field_of_this,
4631 struct symtab **symtab)
4632 {
4633 struct ada_symbol_info *candidates;
4634 int n_candidates;
4635
4636 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4637 block0, namespace, &candidates);
4638
4639 if (n_candidates == 0)
4640 return NULL;
4641
4642 if (is_a_field_of_this != NULL)
4643 *is_a_field_of_this = 0;
4644
4645 if (symtab != NULL)
4646 {
4647 *symtab = candidates[0].symtab;
4648 if (*symtab == NULL && candidates[0].block != NULL)
4649 {
4650 struct objfile *objfile;
4651 struct symtab *s;
4652 struct block *b;
4653 struct blockvector *bv;
4654
4655 /* Search the list of symtabs for one which contains the
4656 address of the start of this block. */
4657 ALL_PRIMARY_SYMTABS (objfile, s)
4658 {
4659 bv = BLOCKVECTOR (s);
4660 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4661 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4662 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4663 {
4664 *symtab = s;
4665 return fixup_symbol_section (candidates[0].sym, objfile);
4666 }
4667 }
4668 /* FIXME: brobecker/2004-11-12: I think that we should never
4669 reach this point. I don't see a reason why we would not
4670 find a symtab for a given block, so I suggest raising an
4671 internal_error exception here. Otherwise, we end up
4672 returning a symbol but no symtab, which certain parts of
4673 the code that rely (indirectly) on this function do not
4674 expect, eventually causing a SEGV. */
4675 return fixup_symbol_section (candidates[0].sym, NULL);
4676 }
4677 }
4678 return candidates[0].sym;
4679 }
4680
4681 static struct symbol *
4682 ada_lookup_symbol_nonlocal (const char *name,
4683 const char *linkage_name,
4684 const struct block *block,
4685 const domain_enum domain, struct symtab **symtab)
4686 {
4687 if (linkage_name == NULL)
4688 linkage_name = name;
4689 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4690 NULL, symtab);
4691 }
4692
4693
4694 /* True iff STR is a possible encoded suffix of a normal Ada name
4695 that is to be ignored for matching purposes. Suffixes of parallel
4696 names (e.g., XVE) are not included here. Currently, the possible suffixes
4697 are given by either of the regular expression:
4698
4699 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4700 as GNU/Linux]
4701 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4702 _E[0-9]+[bs]$ [protected object entry suffixes]
4703 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4704 */
4705
4706 static int
4707 is_name_suffix (const char *str)
4708 {
4709 int k;
4710 const char *matching;
4711 const int len = strlen (str);
4712
4713 /* (__[0-9]+)?\.[0-9]+ */
4714 matching = str;
4715 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4716 {
4717 matching += 3;
4718 while (isdigit (matching[0]))
4719 matching += 1;
4720 if (matching[0] == '\0')
4721 return 1;
4722 }
4723
4724 if (matching[0] == '.' || matching[0] == '$')
4725 {
4726 matching += 1;
4727 while (isdigit (matching[0]))
4728 matching += 1;
4729 if (matching[0] == '\0')
4730 return 1;
4731 }
4732
4733 /* ___[0-9]+ */
4734 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4735 {
4736 matching = str + 3;
4737 while (isdigit (matching[0]))
4738 matching += 1;
4739 if (matching[0] == '\0')
4740 return 1;
4741 }
4742
4743 #if 0
4744 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4745 with a N at the end. Unfortunately, the compiler uses the same
4746 convention for other internal types it creates. So treating
4747 all entity names that end with an "N" as a name suffix causes
4748 some regressions. For instance, consider the case of an enumerated
4749 type. To support the 'Image attribute, it creates an array whose
4750 name ends with N.
4751 Having a single character like this as a suffix carrying some
4752 information is a bit risky. Perhaps we should change the encoding
4753 to be something like "_N" instead. In the meantime, do not do
4754 the following check. */
4755 /* Protected Object Subprograms */
4756 if (len == 1 && str [0] == 'N')
4757 return 1;
4758 #endif
4759
4760 /* _E[0-9]+[bs]$ */
4761 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4762 {
4763 matching = str + 3;
4764 while (isdigit (matching[0]))
4765 matching += 1;
4766 if ((matching[0] == 'b' || matching[0] == 's')
4767 && matching [1] == '\0')
4768 return 1;
4769 }
4770
4771 /* ??? We should not modify STR directly, as we are doing below. This
4772 is fine in this case, but may become problematic later if we find
4773 that this alternative did not work, and want to try matching
4774 another one from the begining of STR. Since we modified it, we
4775 won't be able to find the begining of the string anymore! */
4776 if (str[0] == 'X')
4777 {
4778 str += 1;
4779 while (str[0] != '_' && str[0] != '\0')
4780 {
4781 if (str[0] != 'n' && str[0] != 'b')
4782 return 0;
4783 str += 1;
4784 }
4785 }
4786 if (str[0] == '\000')
4787 return 1;
4788 if (str[0] == '_')
4789 {
4790 if (str[1] != '_' || str[2] == '\000')
4791 return 0;
4792 if (str[2] == '_')
4793 {
4794 if (strcmp (str + 3, "JM") == 0)
4795 return 1;
4796 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4797 the LJM suffix in favor of the JM one. But we will
4798 still accept LJM as a valid suffix for a reasonable
4799 amount of time, just to allow ourselves to debug programs
4800 compiled using an older version of GNAT. */
4801 if (strcmp (str + 3, "LJM") == 0)
4802 return 1;
4803 if (str[3] != 'X')
4804 return 0;
4805 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4806 || str[4] == 'U' || str[4] == 'P')
4807 return 1;
4808 if (str[4] == 'R' && str[5] != 'T')
4809 return 1;
4810 return 0;
4811 }
4812 if (!isdigit (str[2]))
4813 return 0;
4814 for (k = 3; str[k] != '\0'; k += 1)
4815 if (!isdigit (str[k]) && str[k] != '_')
4816 return 0;
4817 return 1;
4818 }
4819 if (str[0] == '$' && isdigit (str[1]))
4820 {
4821 for (k = 2; str[k] != '\0'; k += 1)
4822 if (!isdigit (str[k]) && str[k] != '_')
4823 return 0;
4824 return 1;
4825 }
4826 return 0;
4827 }
4828
4829 /* Return nonzero if the given string starts with a dot ('.')
4830 followed by zero or more digits.
4831
4832 Note: brobecker/2003-11-10: A forward declaration has not been
4833 added at the begining of this file yet, because this function
4834 is only used to work around a problem found during wild matching
4835 when trying to match minimal symbol names against symbol names
4836 obtained from dwarf-2 data. This function is therefore currently
4837 only used in wild_match() and is likely to be deleted when the
4838 problem in dwarf-2 is fixed. */
4839
4840 static int
4841 is_dot_digits_suffix (const char *str)
4842 {
4843 if (str[0] != '.')
4844 return 0;
4845
4846 str++;
4847 while (isdigit (str[0]))
4848 str++;
4849 return (str[0] == '\0');
4850 }
4851
4852 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4853 Certain symbols appear at first to match, except that they turn out
4854 not to follow the Ada encoding and hence should not be used as a wild
4855 match of a given pattern. */
4856
4857 static int
4858 is_valid_name_for_wild_match (const char *name0)
4859 {
4860 const char *decoded_name = ada_decode (name0);
4861 int i;
4862
4863 for (i=0; decoded_name[i] != '\0'; i++)
4864 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4865 return 0;
4866
4867 return 1;
4868 }
4869
4870 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4871 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4872 informational suffixes of NAME (i.e., for which is_name_suffix is
4873 true). */
4874
4875 static int
4876 wild_match (const char *patn0, int patn_len, const char *name0)
4877 {
4878 int name_len;
4879 char *name;
4880 char *patn;
4881
4882 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4883 stored in the symbol table for nested function names is sometimes
4884 different from the name of the associated entity stored in
4885 the dwarf-2 data: This is the case for nested subprograms, where
4886 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4887 while the symbol name from the dwarf-2 data does not.
4888
4889 Although the DWARF-2 standard documents that entity names stored
4890 in the dwarf-2 data should be identical to the name as seen in
4891 the source code, GNAT takes a different approach as we already use
4892 a special encoding mechanism to convey the information so that
4893 a C debugger can still use the information generated to debug
4894 Ada programs. A corollary is that the symbol names in the dwarf-2
4895 data should match the names found in the symbol table. I therefore
4896 consider this issue as a compiler defect.
4897
4898 Until the compiler is properly fixed, we work-around the problem
4899 by ignoring such suffixes during the match. We do so by making
4900 a copy of PATN0 and NAME0, and then by stripping such a suffix
4901 if present. We then perform the match on the resulting strings. */
4902 {
4903 char *dot;
4904 name_len = strlen (name0);
4905
4906 name = (char *) alloca ((name_len + 1) * sizeof (char));
4907 strcpy (name, name0);
4908 dot = strrchr (name, '.');
4909 if (dot != NULL && is_dot_digits_suffix (dot))
4910 *dot = '\0';
4911
4912 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4913 strncpy (patn, patn0, patn_len);
4914 patn[patn_len] = '\0';
4915 dot = strrchr (patn, '.');
4916 if (dot != NULL && is_dot_digits_suffix (dot))
4917 {
4918 *dot = '\0';
4919 patn_len = dot - patn;
4920 }
4921 }
4922
4923 /* Now perform the wild match. */
4924
4925 name_len = strlen (name);
4926 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4927 && strncmp (patn, name + 5, patn_len) == 0
4928 && is_name_suffix (name + patn_len + 5))
4929 return 1;
4930
4931 while (name_len >= patn_len)
4932 {
4933 if (strncmp (patn, name, patn_len) == 0
4934 && is_name_suffix (name + patn_len))
4935 return (is_valid_name_for_wild_match (name0));
4936 do
4937 {
4938 name += 1;
4939 name_len -= 1;
4940 }
4941 while (name_len > 0
4942 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4943 if (name_len <= 0)
4944 return 0;
4945 if (name[0] == '_')
4946 {
4947 if (!islower (name[2]))
4948 return 0;
4949 name += 2;
4950 name_len -= 2;
4951 }
4952 else
4953 {
4954 if (!islower (name[1]))
4955 return 0;
4956 name += 1;
4957 name_len -= 1;
4958 }
4959 }
4960
4961 return 0;
4962 }
4963
4964
4965 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4966 vector *defn_symbols, updating the list of symbols in OBSTACKP
4967 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4968 OBJFILE is the section containing BLOCK.
4969 SYMTAB is recorded with each symbol added. */
4970
4971 static void
4972 ada_add_block_symbols (struct obstack *obstackp,
4973 struct block *block, const char *name,
4974 domain_enum domain, struct objfile *objfile,
4975 struct symtab *symtab, int wild)
4976 {
4977 struct dict_iterator iter;
4978 int name_len = strlen (name);
4979 /* A matching argument symbol, if any. */
4980 struct symbol *arg_sym;
4981 /* Set true when we find a matching non-argument symbol. */
4982 int found_sym;
4983 struct symbol *sym;
4984
4985 arg_sym = NULL;
4986 found_sym = 0;
4987 if (wild)
4988 {
4989 struct symbol *sym;
4990 ALL_BLOCK_SYMBOLS (block, iter, sym)
4991 {
4992 if (SYMBOL_DOMAIN (sym) == domain
4993 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4994 {
4995 switch (SYMBOL_CLASS (sym))
4996 {
4997 case LOC_ARG:
4998 case LOC_LOCAL_ARG:
4999 case LOC_REF_ARG:
5000 case LOC_REGPARM:
5001 case LOC_REGPARM_ADDR:
5002 case LOC_BASEREG_ARG:
5003 case LOC_COMPUTED_ARG:
5004 arg_sym = sym;
5005 break;
5006 case LOC_UNRESOLVED:
5007 continue;
5008 default:
5009 found_sym = 1;
5010 add_defn_to_vec (obstackp,
5011 fixup_symbol_section (sym, objfile),
5012 block, symtab);
5013 break;
5014 }
5015 }
5016 }
5017 }
5018 else
5019 {
5020 ALL_BLOCK_SYMBOLS (block, iter, sym)
5021 {
5022 if (SYMBOL_DOMAIN (sym) == domain)
5023 {
5024 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5025 if (cmp == 0
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5027 {
5028 switch (SYMBOL_CLASS (sym))
5029 {
5030 case LOC_ARG:
5031 case LOC_LOCAL_ARG:
5032 case LOC_REF_ARG:
5033 case LOC_REGPARM:
5034 case LOC_REGPARM_ADDR:
5035 case LOC_BASEREG_ARG:
5036 case LOC_COMPUTED_ARG:
5037 arg_sym = sym;
5038 break;
5039 case LOC_UNRESOLVED:
5040 break;
5041 default:
5042 found_sym = 1;
5043 add_defn_to_vec (obstackp,
5044 fixup_symbol_section (sym, objfile),
5045 block, symtab);
5046 break;
5047 }
5048 }
5049 }
5050 }
5051 }
5052
5053 if (!found_sym && arg_sym != NULL)
5054 {
5055 add_defn_to_vec (obstackp,
5056 fixup_symbol_section (arg_sym, objfile),
5057 block, symtab);
5058 }
5059
5060 if (!wild)
5061 {
5062 arg_sym = NULL;
5063 found_sym = 0;
5064
5065 ALL_BLOCK_SYMBOLS (block, iter, sym)
5066 {
5067 if (SYMBOL_DOMAIN (sym) == domain)
5068 {
5069 int cmp;
5070
5071 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5072 if (cmp == 0)
5073 {
5074 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5075 if (cmp == 0)
5076 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5077 name_len);
5078 }
5079
5080 if (cmp == 0
5081 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5082 {
5083 switch (SYMBOL_CLASS (sym))
5084 {
5085 case LOC_ARG:
5086 case LOC_LOCAL_ARG:
5087 case LOC_REF_ARG:
5088 case LOC_REGPARM:
5089 case LOC_REGPARM_ADDR:
5090 case LOC_BASEREG_ARG:
5091 case LOC_COMPUTED_ARG:
5092 arg_sym = sym;
5093 break;
5094 case LOC_UNRESOLVED:
5095 break;
5096 default:
5097 found_sym = 1;
5098 add_defn_to_vec (obstackp,
5099 fixup_symbol_section (sym, objfile),
5100 block, symtab);
5101 break;
5102 }
5103 }
5104 }
5105 }
5106
5107 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5108 They aren't parameters, right? */
5109 if (!found_sym && arg_sym != NULL)
5110 {
5111 add_defn_to_vec (obstackp,
5112 fixup_symbol_section (arg_sym, objfile),
5113 block, symtab);
5114 }
5115 }
5116 }
5117 \f
5118 /* Field Access */
5119
5120 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5121 to be invisible to users. */
5122
5123 int
5124 ada_is_ignored_field (struct type *type, int field_num)
5125 {
5126 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5127 return 1;
5128 else
5129 {
5130 const char *name = TYPE_FIELD_NAME (type, field_num);
5131 return (name == NULL
5132 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5133 }
5134 }
5135
5136 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5137 pointer or reference type whose ultimate target has a tag field. */
5138
5139 int
5140 ada_is_tagged_type (struct type *type, int refok)
5141 {
5142 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5143 }
5144
5145 /* True iff TYPE represents the type of X'Tag */
5146
5147 int
5148 ada_is_tag_type (struct type *type)
5149 {
5150 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5151 return 0;
5152 else
5153 {
5154 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5155 return (name != NULL
5156 && strcmp (name, "ada__tags__dispatch_table") == 0);
5157 }
5158 }
5159
5160 /* The type of the tag on VAL. */
5161
5162 struct type *
5163 ada_tag_type (struct value *val)
5164 {
5165 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5166 }
5167
5168 /* The value of the tag on VAL. */
5169
5170 struct value *
5171 ada_value_tag (struct value *val)
5172 {
5173 return ada_value_struct_elt (val, "_tag", 0);
5174 }
5175
5176 /* The value of the tag on the object of type TYPE whose contents are
5177 saved at VALADDR, if it is non-null, or is at memory address
5178 ADDRESS. */
5179
5180 static struct value *
5181 value_tag_from_contents_and_address (struct type *type,
5182 const gdb_byte *valaddr,
5183 CORE_ADDR address)
5184 {
5185 int tag_byte_offset, dummy1, dummy2;
5186 struct type *tag_type;
5187 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5188 NULL, NULL, NULL))
5189 {
5190 const gdb_byte *valaddr1 = ((valaddr == NULL)
5191 ? NULL
5192 : valaddr + tag_byte_offset);
5193 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5194
5195 return value_from_contents_and_address (tag_type, valaddr1, address1);
5196 }
5197 return NULL;
5198 }
5199
5200 static struct type *
5201 type_from_tag (struct value *tag)
5202 {
5203 const char *type_name = ada_tag_name (tag);
5204 if (type_name != NULL)
5205 return ada_find_any_type (ada_encode (type_name));
5206 return NULL;
5207 }
5208
5209 struct tag_args
5210 {
5211 struct value *tag;
5212 char *name;
5213 };
5214
5215
5216 static int ada_tag_name_1 (void *);
5217 static int ada_tag_name_2 (struct tag_args *);
5218
5219 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5220 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5221 The value stored in ARGS->name is valid until the next call to
5222 ada_tag_name_1. */
5223
5224 static int
5225 ada_tag_name_1 (void *args0)
5226 {
5227 struct tag_args *args = (struct tag_args *) args0;
5228 static char name[1024];
5229 char *p;
5230 struct value *val;
5231 args->name = NULL;
5232 val = ada_value_struct_elt (args->tag, "tsd", 1);
5233 if (val == NULL)
5234 return ada_tag_name_2 (args);
5235 val = ada_value_struct_elt (val, "expanded_name", 1);
5236 if (val == NULL)
5237 return 0;
5238 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5239 for (p = name; *p != '\0'; p += 1)
5240 if (isalpha (*p))
5241 *p = tolower (*p);
5242 args->name = name;
5243 return 0;
5244 }
5245
5246 /* Utility function for ada_tag_name_1 that tries the second
5247 representation for the dispatch table (in which there is no
5248 explicit 'tsd' field in the referent of the tag pointer, and instead
5249 the tsd pointer is stored just before the dispatch table. */
5250
5251 static int
5252 ada_tag_name_2 (struct tag_args *args)
5253 {
5254 struct type *info_type;
5255 static char name[1024];
5256 char *p;
5257 struct value *val, *valp;
5258
5259 args->name = NULL;
5260 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5261 if (info_type == NULL)
5262 return 0;
5263 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5264 valp = value_cast (info_type, args->tag);
5265 if (valp == NULL)
5266 return 0;
5267 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5268 if (val == NULL)
5269 return 0;
5270 val = ada_value_struct_elt (val, "expanded_name", 1);
5271 if (val == NULL)
5272 return 0;
5273 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5274 for (p = name; *p != '\0'; p += 1)
5275 if (isalpha (*p))
5276 *p = tolower (*p);
5277 args->name = name;
5278 return 0;
5279 }
5280
5281 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5282 * a C string. */
5283
5284 const char *
5285 ada_tag_name (struct value *tag)
5286 {
5287 struct tag_args args;
5288 if (!ada_is_tag_type (value_type (tag)))
5289 return NULL;
5290 args.tag = tag;
5291 args.name = NULL;
5292 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5293 return args.name;
5294 }
5295
5296 /* The parent type of TYPE, or NULL if none. */
5297
5298 struct type *
5299 ada_parent_type (struct type *type)
5300 {
5301 int i;
5302
5303 type = ada_check_typedef (type);
5304
5305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5306 return NULL;
5307
5308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5309 if (ada_is_parent_field (type, i))
5310 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5311
5312 return NULL;
5313 }
5314
5315 /* True iff field number FIELD_NUM of structure type TYPE contains the
5316 parent-type (inherited) fields of a derived type. Assumes TYPE is
5317 a structure type with at least FIELD_NUM+1 fields. */
5318
5319 int
5320 ada_is_parent_field (struct type *type, int field_num)
5321 {
5322 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5323 return (name != NULL
5324 && (strncmp (name, "PARENT", 6) == 0
5325 || strncmp (name, "_parent", 7) == 0));
5326 }
5327
5328 /* True iff field number FIELD_NUM of structure type TYPE is a
5329 transparent wrapper field (which should be silently traversed when doing
5330 field selection and flattened when printing). Assumes TYPE is a
5331 structure type with at least FIELD_NUM+1 fields. Such fields are always
5332 structures. */
5333
5334 int
5335 ada_is_wrapper_field (struct type *type, int field_num)
5336 {
5337 const char *name = TYPE_FIELD_NAME (type, field_num);
5338 return (name != NULL
5339 && (strncmp (name, "PARENT", 6) == 0
5340 || strcmp (name, "REP") == 0
5341 || strncmp (name, "_parent", 7) == 0
5342 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5343 }
5344
5345 /* True iff field number FIELD_NUM of structure or union type TYPE
5346 is a variant wrapper. Assumes TYPE is a structure type with at least
5347 FIELD_NUM+1 fields. */
5348
5349 int
5350 ada_is_variant_part (struct type *type, int field_num)
5351 {
5352 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5353 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5354 || (is_dynamic_field (type, field_num)
5355 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5356 == TYPE_CODE_UNION)));
5357 }
5358
5359 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5360 whose discriminants are contained in the record type OUTER_TYPE,
5361 returns the type of the controlling discriminant for the variant. */
5362
5363 struct type *
5364 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5365 {
5366 char *name = ada_variant_discrim_name (var_type);
5367 struct type *type =
5368 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5369 if (type == NULL)
5370 return builtin_type_int;
5371 else
5372 return type;
5373 }
5374
5375 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5376 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5377 represents a 'when others' clause; otherwise 0. */
5378
5379 int
5380 ada_is_others_clause (struct type *type, int field_num)
5381 {
5382 const char *name = TYPE_FIELD_NAME (type, field_num);
5383 return (name != NULL && name[0] == 'O');
5384 }
5385
5386 /* Assuming that TYPE0 is the type of the variant part of a record,
5387 returns the name of the discriminant controlling the variant.
5388 The value is valid until the next call to ada_variant_discrim_name. */
5389
5390 char *
5391 ada_variant_discrim_name (struct type *type0)
5392 {
5393 static char *result = NULL;
5394 static size_t result_len = 0;
5395 struct type *type;
5396 const char *name;
5397 const char *discrim_end;
5398 const char *discrim_start;
5399
5400 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5401 type = TYPE_TARGET_TYPE (type0);
5402 else
5403 type = type0;
5404
5405 name = ada_type_name (type);
5406
5407 if (name == NULL || name[0] == '\000')
5408 return "";
5409
5410 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5411 discrim_end -= 1)
5412 {
5413 if (strncmp (discrim_end, "___XVN", 6) == 0)
5414 break;
5415 }
5416 if (discrim_end == name)
5417 return "";
5418
5419 for (discrim_start = discrim_end; discrim_start != name + 3;
5420 discrim_start -= 1)
5421 {
5422 if (discrim_start == name + 1)
5423 return "";
5424 if ((discrim_start > name + 3
5425 && strncmp (discrim_start - 3, "___", 3) == 0)
5426 || discrim_start[-1] == '.')
5427 break;
5428 }
5429
5430 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5431 strncpy (result, discrim_start, discrim_end - discrim_start);
5432 result[discrim_end - discrim_start] = '\0';
5433 return result;
5434 }
5435
5436 /* Scan STR for a subtype-encoded number, beginning at position K.
5437 Put the position of the character just past the number scanned in
5438 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5439 Return 1 if there was a valid number at the given position, and 0
5440 otherwise. A "subtype-encoded" number consists of the absolute value
5441 in decimal, followed by the letter 'm' to indicate a negative number.
5442 Assumes 0m does not occur. */
5443
5444 int
5445 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5446 {
5447 ULONGEST RU;
5448
5449 if (!isdigit (str[k]))
5450 return 0;
5451
5452 /* Do it the hard way so as not to make any assumption about
5453 the relationship of unsigned long (%lu scan format code) and
5454 LONGEST. */
5455 RU = 0;
5456 while (isdigit (str[k]))
5457 {
5458 RU = RU * 10 + (str[k] - '0');
5459 k += 1;
5460 }
5461
5462 if (str[k] == 'm')
5463 {
5464 if (R != NULL)
5465 *R = (-(LONGEST) (RU - 1)) - 1;
5466 k += 1;
5467 }
5468 else if (R != NULL)
5469 *R = (LONGEST) RU;
5470
5471 /* NOTE on the above: Technically, C does not say what the results of
5472 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5473 number representable as a LONGEST (although either would probably work
5474 in most implementations). When RU>0, the locution in the then branch
5475 above is always equivalent to the negative of RU. */
5476
5477 if (new_k != NULL)
5478 *new_k = k;
5479 return 1;
5480 }
5481
5482 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5483 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5484 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5485
5486 int
5487 ada_in_variant (LONGEST val, struct type *type, int field_num)
5488 {
5489 const char *name = TYPE_FIELD_NAME (type, field_num);
5490 int p;
5491
5492 p = 0;
5493 while (1)
5494 {
5495 switch (name[p])
5496 {
5497 case '\0':
5498 return 0;
5499 case 'S':
5500 {
5501 LONGEST W;
5502 if (!ada_scan_number (name, p + 1, &W, &p))
5503 return 0;
5504 if (val == W)
5505 return 1;
5506 break;
5507 }
5508 case 'R':
5509 {
5510 LONGEST L, U;
5511 if (!ada_scan_number (name, p + 1, &L, &p)
5512 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5513 return 0;
5514 if (val >= L && val <= U)
5515 return 1;
5516 break;
5517 }
5518 case 'O':
5519 return 1;
5520 default:
5521 return 0;
5522 }
5523 }
5524 }
5525
5526 /* FIXME: Lots of redundancy below. Try to consolidate. */
5527
5528 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5529 ARG_TYPE, extract and return the value of one of its (non-static)
5530 fields. FIELDNO says which field. Differs from value_primitive_field
5531 only in that it can handle packed values of arbitrary type. */
5532
5533 static struct value *
5534 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5535 struct type *arg_type)
5536 {
5537 struct type *type;
5538
5539 arg_type = ada_check_typedef (arg_type);
5540 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5541
5542 /* Handle packed fields. */
5543
5544 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5545 {
5546 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5547 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5548
5549 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5550 offset + bit_pos / 8,
5551 bit_pos % 8, bit_size, type);
5552 }
5553 else
5554 return value_primitive_field (arg1, offset, fieldno, arg_type);
5555 }
5556
5557 /* Find field with name NAME in object of type TYPE. If found,
5558 set the following for each argument that is non-null:
5559 - *FIELD_TYPE_P to the field's type;
5560 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5561 an object of that type;
5562 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5563 - *BIT_SIZE_P to its size in bits if the field is packed, and
5564 0 otherwise;
5565 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5566 fields up to but not including the desired field, or by the total
5567 number of fields if not found. A NULL value of NAME never
5568 matches; the function just counts visible fields in this case.
5569
5570 Returns 1 if found, 0 otherwise. */
5571
5572 static int
5573 find_struct_field (char *name, struct type *type, int offset,
5574 struct type **field_type_p,
5575 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5576 int *index_p)
5577 {
5578 int i;
5579
5580 type = ada_check_typedef (type);
5581
5582 if (field_type_p != NULL)
5583 *field_type_p = NULL;
5584 if (byte_offset_p != NULL)
5585 *byte_offset_p = 0;
5586 if (bit_offset_p != NULL)
5587 *bit_offset_p = 0;
5588 if (bit_size_p != NULL)
5589 *bit_size_p = 0;
5590
5591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5592 {
5593 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5594 int fld_offset = offset + bit_pos / 8;
5595 char *t_field_name = TYPE_FIELD_NAME (type, i);
5596
5597 if (t_field_name == NULL)
5598 continue;
5599
5600 else if (name != NULL && field_name_match (t_field_name, name))
5601 {
5602 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5603 if (field_type_p != NULL)
5604 *field_type_p = TYPE_FIELD_TYPE (type, i);
5605 if (byte_offset_p != NULL)
5606 *byte_offset_p = fld_offset;
5607 if (bit_offset_p != NULL)
5608 *bit_offset_p = bit_pos % 8;
5609 if (bit_size_p != NULL)
5610 *bit_size_p = bit_size;
5611 return 1;
5612 }
5613 else if (ada_is_wrapper_field (type, i))
5614 {
5615 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5616 field_type_p, byte_offset_p, bit_offset_p,
5617 bit_size_p, index_p))
5618 return 1;
5619 }
5620 else if (ada_is_variant_part (type, i))
5621 {
5622 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5623 fixed type?? */
5624 int j;
5625 struct type *field_type
5626 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5627
5628 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5629 {
5630 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5631 fld_offset
5632 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5633 field_type_p, byte_offset_p,
5634 bit_offset_p, bit_size_p, index_p))
5635 return 1;
5636 }
5637 }
5638 else if (index_p != NULL)
5639 *index_p += 1;
5640 }
5641 return 0;
5642 }
5643
5644 /* Number of user-visible fields in record type TYPE. */
5645
5646 static int
5647 num_visible_fields (struct type *type)
5648 {
5649 int n;
5650 n = 0;
5651 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5652 return n;
5653 }
5654
5655 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5656 and search in it assuming it has (class) type TYPE.
5657 If found, return value, else return NULL.
5658
5659 Searches recursively through wrapper fields (e.g., '_parent'). */
5660
5661 static struct value *
5662 ada_search_struct_field (char *name, struct value *arg, int offset,
5663 struct type *type)
5664 {
5665 int i;
5666 type = ada_check_typedef (type);
5667
5668 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5669 {
5670 char *t_field_name = TYPE_FIELD_NAME (type, i);
5671
5672 if (t_field_name == NULL)
5673 continue;
5674
5675 else if (field_name_match (t_field_name, name))
5676 return ada_value_primitive_field (arg, offset, i, type);
5677
5678 else if (ada_is_wrapper_field (type, i))
5679 {
5680 struct value *v = /* Do not let indent join lines here. */
5681 ada_search_struct_field (name, arg,
5682 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5683 TYPE_FIELD_TYPE (type, i));
5684 if (v != NULL)
5685 return v;
5686 }
5687
5688 else if (ada_is_variant_part (type, i))
5689 {
5690 /* PNH: Do we ever get here? See find_struct_field. */
5691 int j;
5692 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5693 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5694
5695 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5696 {
5697 struct value *v = ada_search_struct_field /* Force line break. */
5698 (name, arg,
5699 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5700 TYPE_FIELD_TYPE (field_type, j));
5701 if (v != NULL)
5702 return v;
5703 }
5704 }
5705 }
5706 return NULL;
5707 }
5708
5709 static struct value *ada_index_struct_field_1 (int *, struct value *,
5710 int, struct type *);
5711
5712
5713 /* Return field #INDEX in ARG, where the index is that returned by
5714 * find_struct_field through its INDEX_P argument. Adjust the address
5715 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5716 * If found, return value, else return NULL. */
5717
5718 static struct value *
5719 ada_index_struct_field (int index, struct value *arg, int offset,
5720 struct type *type)
5721 {
5722 return ada_index_struct_field_1 (&index, arg, offset, type);
5723 }
5724
5725
5726 /* Auxiliary function for ada_index_struct_field. Like
5727 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5728 * *INDEX_P. */
5729
5730 static struct value *
5731 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5732 struct type *type)
5733 {
5734 int i;
5735 type = ada_check_typedef (type);
5736
5737 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5738 {
5739 if (TYPE_FIELD_NAME (type, i) == NULL)
5740 continue;
5741 else if (ada_is_wrapper_field (type, i))
5742 {
5743 struct value *v = /* Do not let indent join lines here. */
5744 ada_index_struct_field_1 (index_p, arg,
5745 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5746 TYPE_FIELD_TYPE (type, i));
5747 if (v != NULL)
5748 return v;
5749 }
5750
5751 else if (ada_is_variant_part (type, i))
5752 {
5753 /* PNH: Do we ever get here? See ada_search_struct_field,
5754 find_struct_field. */
5755 error (_("Cannot assign this kind of variant record"));
5756 }
5757 else if (*index_p == 0)
5758 return ada_value_primitive_field (arg, offset, i, type);
5759 else
5760 *index_p -= 1;
5761 }
5762 return NULL;
5763 }
5764
5765 /* Given ARG, a value of type (pointer or reference to a)*
5766 structure/union, extract the component named NAME from the ultimate
5767 target structure/union and return it as a value with its
5768 appropriate type. If ARG is a pointer or reference and the field
5769 is not packed, returns a reference to the field, otherwise the
5770 value of the field (an lvalue if ARG is an lvalue).
5771
5772 The routine searches for NAME among all members of the structure itself
5773 and (recursively) among all members of any wrapper members
5774 (e.g., '_parent').
5775
5776 If NO_ERR, then simply return NULL in case of error, rather than
5777 calling error. */
5778
5779 struct value *
5780 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5781 {
5782 struct type *t, *t1;
5783 struct value *v;
5784
5785 v = NULL;
5786 t1 = t = ada_check_typedef (value_type (arg));
5787 if (TYPE_CODE (t) == TYPE_CODE_REF)
5788 {
5789 t1 = TYPE_TARGET_TYPE (t);
5790 if (t1 == NULL)
5791 goto BadValue;
5792 t1 = ada_check_typedef (t1);
5793 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5794 {
5795 arg = coerce_ref (arg);
5796 t = t1;
5797 }
5798 }
5799
5800 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5801 {
5802 t1 = TYPE_TARGET_TYPE (t);
5803 if (t1 == NULL)
5804 goto BadValue;
5805 t1 = ada_check_typedef (t1);
5806 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5807 {
5808 arg = value_ind (arg);
5809 t = t1;
5810 }
5811 else
5812 break;
5813 }
5814
5815 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5816 goto BadValue;
5817
5818 if (t1 == t)
5819 v = ada_search_struct_field (name, arg, 0, t);
5820 else
5821 {
5822 int bit_offset, bit_size, byte_offset;
5823 struct type *field_type;
5824 CORE_ADDR address;
5825
5826 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5827 address = value_as_address (arg);
5828 else
5829 address = unpack_pointer (t, value_contents (arg));
5830
5831 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5832 if (find_struct_field (name, t1, 0,
5833 &field_type, &byte_offset, &bit_offset,
5834 &bit_size, NULL))
5835 {
5836 if (bit_size != 0)
5837 {
5838 if (TYPE_CODE (t) == TYPE_CODE_REF)
5839 arg = ada_coerce_ref (arg);
5840 else
5841 arg = ada_value_ind (arg);
5842 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5843 bit_offset, bit_size,
5844 field_type);
5845 }
5846 else
5847 v = value_from_pointer (lookup_reference_type (field_type),
5848 address + byte_offset);
5849 }
5850 }
5851
5852 if (v != NULL || no_err)
5853 return v;
5854 else
5855 error (_("There is no member named %s."), name);
5856
5857 BadValue:
5858 if (no_err)
5859 return NULL;
5860 else
5861 error (_("Attempt to extract a component of a value that is not a record."));
5862 }
5863
5864 /* Given a type TYPE, look up the type of the component of type named NAME.
5865 If DISPP is non-null, add its byte displacement from the beginning of a
5866 structure (pointed to by a value) of type TYPE to *DISPP (does not
5867 work for packed fields).
5868
5869 Matches any field whose name has NAME as a prefix, possibly
5870 followed by "___".
5871
5872 TYPE can be either a struct or union. If REFOK, TYPE may also
5873 be a (pointer or reference)+ to a struct or union, and the
5874 ultimate target type will be searched.
5875
5876 Looks recursively into variant clauses and parent types.
5877
5878 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5879 TYPE is not a type of the right kind. */
5880
5881 static struct type *
5882 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5883 int noerr, int *dispp)
5884 {
5885 int i;
5886
5887 if (name == NULL)
5888 goto BadName;
5889
5890 if (refok && type != NULL)
5891 while (1)
5892 {
5893 type = ada_check_typedef (type);
5894 if (TYPE_CODE (type) != TYPE_CODE_PTR
5895 && TYPE_CODE (type) != TYPE_CODE_REF)
5896 break;
5897 type = TYPE_TARGET_TYPE (type);
5898 }
5899
5900 if (type == NULL
5901 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5902 && TYPE_CODE (type) != TYPE_CODE_UNION))
5903 {
5904 if (noerr)
5905 return NULL;
5906 else
5907 {
5908 target_terminal_ours ();
5909 gdb_flush (gdb_stdout);
5910 if (type == NULL)
5911 error (_("Type (null) is not a structure or union type"));
5912 else
5913 {
5914 /* XXX: type_sprint */
5915 fprintf_unfiltered (gdb_stderr, _("Type "));
5916 type_print (type, "", gdb_stderr, -1);
5917 error (_(" is not a structure or union type"));
5918 }
5919 }
5920 }
5921
5922 type = to_static_fixed_type (type);
5923
5924 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5925 {
5926 char *t_field_name = TYPE_FIELD_NAME (type, i);
5927 struct type *t;
5928 int disp;
5929
5930 if (t_field_name == NULL)
5931 continue;
5932
5933 else if (field_name_match (t_field_name, name))
5934 {
5935 if (dispp != NULL)
5936 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5937 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5938 }
5939
5940 else if (ada_is_wrapper_field (type, i))
5941 {
5942 disp = 0;
5943 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5944 0, 1, &disp);
5945 if (t != NULL)
5946 {
5947 if (dispp != NULL)
5948 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5949 return t;
5950 }
5951 }
5952
5953 else if (ada_is_variant_part (type, i))
5954 {
5955 int j;
5956 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5957
5958 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5959 {
5960 disp = 0;
5961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5962 name, 0, 1, &disp);
5963 if (t != NULL)
5964 {
5965 if (dispp != NULL)
5966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5967 return t;
5968 }
5969 }
5970 }
5971
5972 }
5973
5974 BadName:
5975 if (!noerr)
5976 {
5977 target_terminal_ours ();
5978 gdb_flush (gdb_stdout);
5979 if (name == NULL)
5980 {
5981 /* XXX: type_sprint */
5982 fprintf_unfiltered (gdb_stderr, _("Type "));
5983 type_print (type, "", gdb_stderr, -1);
5984 error (_(" has no component named <null>"));
5985 }
5986 else
5987 {
5988 /* XXX: type_sprint */
5989 fprintf_unfiltered (gdb_stderr, _("Type "));
5990 type_print (type, "", gdb_stderr, -1);
5991 error (_(" has no component named %s"), name);
5992 }
5993 }
5994
5995 return NULL;
5996 }
5997
5998 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5999 within a value of type OUTER_TYPE that is stored in GDB at
6000 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6001 numbering from 0) is applicable. Returns -1 if none are. */
6002
6003 int
6004 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6005 const gdb_byte *outer_valaddr)
6006 {
6007 int others_clause;
6008 int i;
6009 int disp;
6010 struct type *discrim_type;
6011 char *discrim_name = ada_variant_discrim_name (var_type);
6012 LONGEST discrim_val;
6013
6014 disp = 0;
6015 discrim_type =
6016 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6017 if (discrim_type == NULL)
6018 return -1;
6019 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6020
6021 others_clause = -1;
6022 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6023 {
6024 if (ada_is_others_clause (var_type, i))
6025 others_clause = i;
6026 else if (ada_in_variant (discrim_val, var_type, i))
6027 return i;
6028 }
6029
6030 return others_clause;
6031 }
6032 \f
6033
6034
6035 /* Dynamic-Sized Records */
6036
6037 /* Strategy: The type ostensibly attached to a value with dynamic size
6038 (i.e., a size that is not statically recorded in the debugging
6039 data) does not accurately reflect the size or layout of the value.
6040 Our strategy is to convert these values to values with accurate,
6041 conventional types that are constructed on the fly. */
6042
6043 /* There is a subtle and tricky problem here. In general, we cannot
6044 determine the size of dynamic records without its data. However,
6045 the 'struct value' data structure, which GDB uses to represent
6046 quantities in the inferior process (the target), requires the size
6047 of the type at the time of its allocation in order to reserve space
6048 for GDB's internal copy of the data. That's why the
6049 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6050 rather than struct value*s.
6051
6052 However, GDB's internal history variables ($1, $2, etc.) are
6053 struct value*s containing internal copies of the data that are not, in
6054 general, the same as the data at their corresponding addresses in
6055 the target. Fortunately, the types we give to these values are all
6056 conventional, fixed-size types (as per the strategy described
6057 above), so that we don't usually have to perform the
6058 'to_fixed_xxx_type' conversions to look at their values.
6059 Unfortunately, there is one exception: if one of the internal
6060 history variables is an array whose elements are unconstrained
6061 records, then we will need to create distinct fixed types for each
6062 element selected. */
6063
6064 /* The upshot of all of this is that many routines take a (type, host
6065 address, target address) triple as arguments to represent a value.
6066 The host address, if non-null, is supposed to contain an internal
6067 copy of the relevant data; otherwise, the program is to consult the
6068 target at the target address. */
6069
6070 /* Assuming that VAL0 represents a pointer value, the result of
6071 dereferencing it. Differs from value_ind in its treatment of
6072 dynamic-sized types. */
6073
6074 struct value *
6075 ada_value_ind (struct value *val0)
6076 {
6077 struct value *val = unwrap_value (value_ind (val0));
6078 return ada_to_fixed_value (val);
6079 }
6080
6081 /* The value resulting from dereferencing any "reference to"
6082 qualifiers on VAL0. */
6083
6084 static struct value *
6085 ada_coerce_ref (struct value *val0)
6086 {
6087 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6088 {
6089 struct value *val = val0;
6090 val = coerce_ref (val);
6091 val = unwrap_value (val);
6092 return ada_to_fixed_value (val);
6093 }
6094 else
6095 return val0;
6096 }
6097
6098 /* Return OFF rounded upward if necessary to a multiple of
6099 ALIGNMENT (a power of 2). */
6100
6101 static unsigned int
6102 align_value (unsigned int off, unsigned int alignment)
6103 {
6104 return (off + alignment - 1) & ~(alignment - 1);
6105 }
6106
6107 /* Return the bit alignment required for field #F of template type TYPE. */
6108
6109 static unsigned int
6110 field_alignment (struct type *type, int f)
6111 {
6112 const char *name = TYPE_FIELD_NAME (type, f);
6113 int len;
6114 int align_offset;
6115
6116 /* The field name should never be null, unless the debugging information
6117 is somehow malformed. In this case, we assume the field does not
6118 require any alignment. */
6119 if (name == NULL)
6120 return 1;
6121
6122 len = strlen (name);
6123
6124 if (!isdigit (name[len - 1]))
6125 return 1;
6126
6127 if (isdigit (name[len - 2]))
6128 align_offset = len - 2;
6129 else
6130 align_offset = len - 1;
6131
6132 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6133 return TARGET_CHAR_BIT;
6134
6135 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6136 }
6137
6138 /* Find a symbol named NAME. Ignores ambiguity. */
6139
6140 struct symbol *
6141 ada_find_any_symbol (const char *name)
6142 {
6143 struct symbol *sym;
6144
6145 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6147 return sym;
6148
6149 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6150 return sym;
6151 }
6152
6153 /* Find a type named NAME. Ignores ambiguity. */
6154
6155 struct type *
6156 ada_find_any_type (const char *name)
6157 {
6158 struct symbol *sym = ada_find_any_symbol (name);
6159
6160 if (sym != NULL)
6161 return SYMBOL_TYPE (sym);
6162
6163 return NULL;
6164 }
6165
6166 /* Given a symbol NAME and its associated BLOCK, search all symbols
6167 for its ___XR counterpart, which is the ``renaming'' symbol
6168 associated to NAME. Return this symbol if found, return
6169 NULL otherwise. */
6170
6171 struct symbol *
6172 ada_find_renaming_symbol (const char *name, struct block *block)
6173 {
6174 const struct symbol *function_sym = block_function (block);
6175 char *rename;
6176
6177 if (function_sym != NULL)
6178 {
6179 /* If the symbol is defined inside a function, NAME is not fully
6180 qualified. This means we need to prepend the function name
6181 as well as adding the ``___XR'' suffix to build the name of
6182 the associated renaming symbol. */
6183 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6184 /* Function names sometimes contain suffixes used
6185 for instance to qualify nested subprograms. When building
6186 the XR type name, we need to make sure that this suffix is
6187 not included. So do not include any suffix in the function
6188 name length below. */
6189 const int function_name_len = ada_name_prefix_len (function_name);
6190 const int rename_len = function_name_len + 2 /* "__" */
6191 + strlen (name) + 6 /* "___XR\0" */ ;
6192
6193 /* Strip the suffix if necessary. */
6194 function_name[function_name_len] = '\0';
6195
6196 /* Library-level functions are a special case, as GNAT adds
6197 a ``_ada_'' prefix to the function name to avoid namespace
6198 pollution. However, the renaming symbol themselves do not
6199 have this prefix, so we need to skip this prefix if present. */
6200 if (function_name_len > 5 /* "_ada_" */
6201 && strstr (function_name, "_ada_") == function_name)
6202 function_name = function_name + 5;
6203
6204 rename = (char *) alloca (rename_len * sizeof (char));
6205 sprintf (rename, "%s__%s___XR", function_name, name);
6206 }
6207 else
6208 {
6209 const int rename_len = strlen (name) + 6;
6210 rename = (char *) alloca (rename_len * sizeof (char));
6211 sprintf (rename, "%s___XR", name);
6212 }
6213
6214 return ada_find_any_symbol (rename);
6215 }
6216
6217 /* Because of GNAT encoding conventions, several GDB symbols may match a
6218 given type name. If the type denoted by TYPE0 is to be preferred to
6219 that of TYPE1 for purposes of type printing, return non-zero;
6220 otherwise return 0. */
6221
6222 int
6223 ada_prefer_type (struct type *type0, struct type *type1)
6224 {
6225 if (type1 == NULL)
6226 return 1;
6227 else if (type0 == NULL)
6228 return 0;
6229 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6230 return 1;
6231 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6232 return 0;
6233 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6234 return 1;
6235 else if (ada_is_packed_array_type (type0))
6236 return 1;
6237 else if (ada_is_array_descriptor_type (type0)
6238 && !ada_is_array_descriptor_type (type1))
6239 return 1;
6240 else if (ada_renaming_type (type0) != NULL
6241 && ada_renaming_type (type1) == NULL)
6242 return 1;
6243 return 0;
6244 }
6245
6246 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6247 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6248
6249 char *
6250 ada_type_name (struct type *type)
6251 {
6252 if (type == NULL)
6253 return NULL;
6254 else if (TYPE_NAME (type) != NULL)
6255 return TYPE_NAME (type);
6256 else
6257 return TYPE_TAG_NAME (type);
6258 }
6259
6260 /* Find a parallel type to TYPE whose name is formed by appending
6261 SUFFIX to the name of TYPE. */
6262
6263 struct type *
6264 ada_find_parallel_type (struct type *type, const char *suffix)
6265 {
6266 static char *name;
6267 static size_t name_len = 0;
6268 int len;
6269 char *typename = ada_type_name (type);
6270
6271 if (typename == NULL)
6272 return NULL;
6273
6274 len = strlen (typename);
6275
6276 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6277
6278 strcpy (name, typename);
6279 strcpy (name + len, suffix);
6280
6281 return ada_find_any_type (name);
6282 }
6283
6284
6285 /* If TYPE is a variable-size record type, return the corresponding template
6286 type describing its fields. Otherwise, return NULL. */
6287
6288 static struct type *
6289 dynamic_template_type (struct type *type)
6290 {
6291 type = ada_check_typedef (type);
6292
6293 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6294 || ada_type_name (type) == NULL)
6295 return NULL;
6296 else
6297 {
6298 int len = strlen (ada_type_name (type));
6299 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6300 return type;
6301 else
6302 return ada_find_parallel_type (type, "___XVE");
6303 }
6304 }
6305
6306 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6307 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6308
6309 static int
6310 is_dynamic_field (struct type *templ_type, int field_num)
6311 {
6312 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6313 return name != NULL
6314 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6315 && strstr (name, "___XVL") != NULL;
6316 }
6317
6318 /* The index of the variant field of TYPE, or -1 if TYPE does not
6319 represent a variant record type. */
6320
6321 static int
6322 variant_field_index (struct type *type)
6323 {
6324 int f;
6325
6326 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6327 return -1;
6328
6329 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6330 {
6331 if (ada_is_variant_part (type, f))
6332 return f;
6333 }
6334 return -1;
6335 }
6336
6337 /* A record type with no fields. */
6338
6339 static struct type *
6340 empty_record (struct objfile *objfile)
6341 {
6342 struct type *type = alloc_type (objfile);
6343 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6344 TYPE_NFIELDS (type) = 0;
6345 TYPE_FIELDS (type) = NULL;
6346 TYPE_NAME (type) = "<empty>";
6347 TYPE_TAG_NAME (type) = NULL;
6348 TYPE_FLAGS (type) = 0;
6349 TYPE_LENGTH (type) = 0;
6350 return type;
6351 }
6352
6353 /* An ordinary record type (with fixed-length fields) that describes
6354 the value of type TYPE at VALADDR or ADDRESS (see comments at
6355 the beginning of this section) VAL according to GNAT conventions.
6356 DVAL0 should describe the (portion of a) record that contains any
6357 necessary discriminants. It should be NULL if value_type (VAL) is
6358 an outer-level type (i.e., as opposed to a branch of a variant.) A
6359 variant field (unless unchecked) is replaced by a particular branch
6360 of the variant.
6361
6362 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6363 length are not statically known are discarded. As a consequence,
6364 VALADDR, ADDRESS and DVAL0 are ignored.
6365
6366 NOTE: Limitations: For now, we assume that dynamic fields and
6367 variants occupy whole numbers of bytes. However, they need not be
6368 byte-aligned. */
6369
6370 struct type *
6371 ada_template_to_fixed_record_type_1 (struct type *type,
6372 const gdb_byte *valaddr,
6373 CORE_ADDR address, struct value *dval0,
6374 int keep_dynamic_fields)
6375 {
6376 struct value *mark = value_mark ();
6377 struct value *dval;
6378 struct type *rtype;
6379 int nfields, bit_len;
6380 int variant_field;
6381 long off;
6382 int fld_bit_len, bit_incr;
6383 int f;
6384
6385 /* Compute the number of fields in this record type that are going
6386 to be processed: unless keep_dynamic_fields, this includes only
6387 fields whose position and length are static will be processed. */
6388 if (keep_dynamic_fields)
6389 nfields = TYPE_NFIELDS (type);
6390 else
6391 {
6392 nfields = 0;
6393 while (nfields < TYPE_NFIELDS (type)
6394 && !ada_is_variant_part (type, nfields)
6395 && !is_dynamic_field (type, nfields))
6396 nfields++;
6397 }
6398
6399 rtype = alloc_type (TYPE_OBJFILE (type));
6400 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6401 INIT_CPLUS_SPECIFIC (rtype);
6402 TYPE_NFIELDS (rtype) = nfields;
6403 TYPE_FIELDS (rtype) = (struct field *)
6404 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6405 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6406 TYPE_NAME (rtype) = ada_type_name (type);
6407 TYPE_TAG_NAME (rtype) = NULL;
6408 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6409
6410 off = 0;
6411 bit_len = 0;
6412 variant_field = -1;
6413
6414 for (f = 0; f < nfields; f += 1)
6415 {
6416 off = align_value (off, field_alignment (type, f))
6417 + TYPE_FIELD_BITPOS (type, f);
6418 TYPE_FIELD_BITPOS (rtype, f) = off;
6419 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6420
6421 if (ada_is_variant_part (type, f))
6422 {
6423 variant_field = f;
6424 fld_bit_len = bit_incr = 0;
6425 }
6426 else if (is_dynamic_field (type, f))
6427 {
6428 if (dval0 == NULL)
6429 dval = value_from_contents_and_address (rtype, valaddr, address);
6430 else
6431 dval = dval0;
6432
6433 TYPE_FIELD_TYPE (rtype, f) =
6434 ada_to_fixed_type
6435 (ada_get_base_type
6436 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6437 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6438 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6439 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6440 bit_incr = fld_bit_len =
6441 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6442 }
6443 else
6444 {
6445 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6446 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6447 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6448 bit_incr = fld_bit_len =
6449 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6450 else
6451 bit_incr = fld_bit_len =
6452 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6453 }
6454 if (off + fld_bit_len > bit_len)
6455 bit_len = off + fld_bit_len;
6456 off += bit_incr;
6457 TYPE_LENGTH (rtype) =
6458 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6459 }
6460
6461 /* We handle the variant part, if any, at the end because of certain
6462 odd cases in which it is re-ordered so as NOT the last field of
6463 the record. This can happen in the presence of representation
6464 clauses. */
6465 if (variant_field >= 0)
6466 {
6467 struct type *branch_type;
6468
6469 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6470
6471 if (dval0 == NULL)
6472 dval = value_from_contents_and_address (rtype, valaddr, address);
6473 else
6474 dval = dval0;
6475
6476 branch_type =
6477 to_fixed_variant_branch_type
6478 (TYPE_FIELD_TYPE (type, variant_field),
6479 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6480 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6481 if (branch_type == NULL)
6482 {
6483 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6484 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6485 TYPE_NFIELDS (rtype) -= 1;
6486 }
6487 else
6488 {
6489 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6490 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6491 fld_bit_len =
6492 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6493 TARGET_CHAR_BIT;
6494 if (off + fld_bit_len > bit_len)
6495 bit_len = off + fld_bit_len;
6496 TYPE_LENGTH (rtype) =
6497 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6498 }
6499 }
6500
6501 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6502 should contain the alignment of that record, which should be a strictly
6503 positive value. If null or negative, then something is wrong, most
6504 probably in the debug info. In that case, we don't round up the size
6505 of the resulting type. If this record is not part of another structure,
6506 the current RTYPE length might be good enough for our purposes. */
6507 if (TYPE_LENGTH (type) <= 0)
6508 {
6509 if (TYPE_NAME (rtype))
6510 warning (_("Invalid type size for `%s' detected: %d."),
6511 TYPE_NAME (rtype), TYPE_LENGTH (type));
6512 else
6513 warning (_("Invalid type size for <unnamed> detected: %d."),
6514 TYPE_LENGTH (type));
6515 }
6516 else
6517 {
6518 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6519 TYPE_LENGTH (type));
6520 }
6521
6522 value_free_to_mark (mark);
6523 if (TYPE_LENGTH (rtype) > varsize_limit)
6524 error (_("record type with dynamic size is larger than varsize-limit"));
6525 return rtype;
6526 }
6527
6528 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6529 of 1. */
6530
6531 static struct type *
6532 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6533 CORE_ADDR address, struct value *dval0)
6534 {
6535 return ada_template_to_fixed_record_type_1 (type, valaddr,
6536 address, dval0, 1);
6537 }
6538
6539 /* An ordinary record type in which ___XVL-convention fields and
6540 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6541 static approximations, containing all possible fields. Uses
6542 no runtime values. Useless for use in values, but that's OK,
6543 since the results are used only for type determinations. Works on both
6544 structs and unions. Representation note: to save space, we memorize
6545 the result of this function in the TYPE_TARGET_TYPE of the
6546 template type. */
6547
6548 static struct type *
6549 template_to_static_fixed_type (struct type *type0)
6550 {
6551 struct type *type;
6552 int nfields;
6553 int f;
6554
6555 if (TYPE_TARGET_TYPE (type0) != NULL)
6556 return TYPE_TARGET_TYPE (type0);
6557
6558 nfields = TYPE_NFIELDS (type0);
6559 type = type0;
6560
6561 for (f = 0; f < nfields; f += 1)
6562 {
6563 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6564 struct type *new_type;
6565
6566 if (is_dynamic_field (type0, f))
6567 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6568 else
6569 new_type = to_static_fixed_type (field_type);
6570 if (type == type0 && new_type != field_type)
6571 {
6572 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6573 TYPE_CODE (type) = TYPE_CODE (type0);
6574 INIT_CPLUS_SPECIFIC (type);
6575 TYPE_NFIELDS (type) = nfields;
6576 TYPE_FIELDS (type) = (struct field *)
6577 TYPE_ALLOC (type, nfields * sizeof (struct field));
6578 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6579 sizeof (struct field) * nfields);
6580 TYPE_NAME (type) = ada_type_name (type0);
6581 TYPE_TAG_NAME (type) = NULL;
6582 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6583 TYPE_LENGTH (type) = 0;
6584 }
6585 TYPE_FIELD_TYPE (type, f) = new_type;
6586 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6587 }
6588 return type;
6589 }
6590
6591 /* Given an object of type TYPE whose contents are at VALADDR and
6592 whose address in memory is ADDRESS, returns a revision of TYPE --
6593 a non-dynamic-sized record with a variant part -- in which
6594 the variant part is replaced with the appropriate branch. Looks
6595 for discriminant values in DVAL0, which can be NULL if the record
6596 contains the necessary discriminant values. */
6597
6598 static struct type *
6599 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6600 CORE_ADDR address, struct value *dval0)
6601 {
6602 struct value *mark = value_mark ();
6603 struct value *dval;
6604 struct type *rtype;
6605 struct type *branch_type;
6606 int nfields = TYPE_NFIELDS (type);
6607 int variant_field = variant_field_index (type);
6608
6609 if (variant_field == -1)
6610 return type;
6611
6612 if (dval0 == NULL)
6613 dval = value_from_contents_and_address (type, valaddr, address);
6614 else
6615 dval = dval0;
6616
6617 rtype = alloc_type (TYPE_OBJFILE (type));
6618 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6619 INIT_CPLUS_SPECIFIC (rtype);
6620 TYPE_NFIELDS (rtype) = nfields;
6621 TYPE_FIELDS (rtype) =
6622 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6623 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6624 sizeof (struct field) * nfields);
6625 TYPE_NAME (rtype) = ada_type_name (type);
6626 TYPE_TAG_NAME (rtype) = NULL;
6627 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6628 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6629
6630 branch_type = to_fixed_variant_branch_type
6631 (TYPE_FIELD_TYPE (type, variant_field),
6632 cond_offset_host (valaddr,
6633 TYPE_FIELD_BITPOS (type, variant_field)
6634 / TARGET_CHAR_BIT),
6635 cond_offset_target (address,
6636 TYPE_FIELD_BITPOS (type, variant_field)
6637 / TARGET_CHAR_BIT), dval);
6638 if (branch_type == NULL)
6639 {
6640 int f;
6641 for (f = variant_field + 1; f < nfields; f += 1)
6642 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6643 TYPE_NFIELDS (rtype) -= 1;
6644 }
6645 else
6646 {
6647 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6648 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6649 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6650 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6651 }
6652 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6653
6654 value_free_to_mark (mark);
6655 return rtype;
6656 }
6657
6658 /* An ordinary record type (with fixed-length fields) that describes
6659 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6660 beginning of this section]. Any necessary discriminants' values
6661 should be in DVAL, a record value; it may be NULL if the object
6662 at ADDR itself contains any necessary discriminant values.
6663 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6664 values from the record are needed. Except in the case that DVAL,
6665 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6666 unchecked) is replaced by a particular branch of the variant.
6667
6668 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6669 is questionable and may be removed. It can arise during the
6670 processing of an unconstrained-array-of-record type where all the
6671 variant branches have exactly the same size. This is because in
6672 such cases, the compiler does not bother to use the XVS convention
6673 when encoding the record. I am currently dubious of this
6674 shortcut and suspect the compiler should be altered. FIXME. */
6675
6676 static struct type *
6677 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6678 CORE_ADDR address, struct value *dval)
6679 {
6680 struct type *templ_type;
6681
6682 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6683 return type0;
6684
6685 templ_type = dynamic_template_type (type0);
6686
6687 if (templ_type != NULL)
6688 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6689 else if (variant_field_index (type0) >= 0)
6690 {
6691 if (dval == NULL && valaddr == NULL && address == 0)
6692 return type0;
6693 return to_record_with_fixed_variant_part (type0, valaddr, address,
6694 dval);
6695 }
6696 else
6697 {
6698 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6699 return type0;
6700 }
6701
6702 }
6703
6704 /* An ordinary record type (with fixed-length fields) that describes
6705 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6706 union type. Any necessary discriminants' values should be in DVAL,
6707 a record value. That is, this routine selects the appropriate
6708 branch of the union at ADDR according to the discriminant value
6709 indicated in the union's type name. */
6710
6711 static struct type *
6712 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6713 CORE_ADDR address, struct value *dval)
6714 {
6715 int which;
6716 struct type *templ_type;
6717 struct type *var_type;
6718
6719 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6720 var_type = TYPE_TARGET_TYPE (var_type0);
6721 else
6722 var_type = var_type0;
6723
6724 templ_type = ada_find_parallel_type (var_type, "___XVU");
6725
6726 if (templ_type != NULL)
6727 var_type = templ_type;
6728
6729 which =
6730 ada_which_variant_applies (var_type,
6731 value_type (dval), value_contents (dval));
6732
6733 if (which < 0)
6734 return empty_record (TYPE_OBJFILE (var_type));
6735 else if (is_dynamic_field (var_type, which))
6736 return to_fixed_record_type
6737 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6738 valaddr, address, dval);
6739 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6740 return
6741 to_fixed_record_type
6742 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6743 else
6744 return TYPE_FIELD_TYPE (var_type, which);
6745 }
6746
6747 /* Assuming that TYPE0 is an array type describing the type of a value
6748 at ADDR, and that DVAL describes a record containing any
6749 discriminants used in TYPE0, returns a type for the value that
6750 contains no dynamic components (that is, no components whose sizes
6751 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6752 true, gives an error message if the resulting type's size is over
6753 varsize_limit. */
6754
6755 static struct type *
6756 to_fixed_array_type (struct type *type0, struct value *dval,
6757 int ignore_too_big)
6758 {
6759 struct type *index_type_desc;
6760 struct type *result;
6761
6762 if (ada_is_packed_array_type (type0) /* revisit? */
6763 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6764 return type0;
6765
6766 index_type_desc = ada_find_parallel_type (type0, "___XA");
6767 if (index_type_desc == NULL)
6768 {
6769 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6770 /* NOTE: elt_type---the fixed version of elt_type0---should never
6771 depend on the contents of the array in properly constructed
6772 debugging data. */
6773 /* Create a fixed version of the array element type.
6774 We're not providing the address of an element here,
6775 and thus the actual object value cannot be inspected to do
6776 the conversion. This should not be a problem, since arrays of
6777 unconstrained objects are not allowed. In particular, all
6778 the elements of an array of a tagged type should all be of
6779 the same type specified in the debugging info. No need to
6780 consult the object tag. */
6781 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6782
6783 if (elt_type0 == elt_type)
6784 result = type0;
6785 else
6786 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6787 elt_type, TYPE_INDEX_TYPE (type0));
6788 }
6789 else
6790 {
6791 int i;
6792 struct type *elt_type0;
6793
6794 elt_type0 = type0;
6795 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6796 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6797
6798 /* NOTE: result---the fixed version of elt_type0---should never
6799 depend on the contents of the array in properly constructed
6800 debugging data. */
6801 /* Create a fixed version of the array element type.
6802 We're not providing the address of an element here,
6803 and thus the actual object value cannot be inspected to do
6804 the conversion. This should not be a problem, since arrays of
6805 unconstrained objects are not allowed. In particular, all
6806 the elements of an array of a tagged type should all be of
6807 the same type specified in the debugging info. No need to
6808 consult the object tag. */
6809 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6810 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6811 {
6812 struct type *range_type =
6813 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6814 dval, TYPE_OBJFILE (type0));
6815 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6816 result, range_type);
6817 }
6818 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6819 error (_("array type with dynamic size is larger than varsize-limit"));
6820 }
6821
6822 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6823 return result;
6824 }
6825
6826
6827 /* A standard type (containing no dynamically sized components)
6828 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6829 DVAL describes a record containing any discriminants used in TYPE0,
6830 and may be NULL if there are none, or if the object of type TYPE at
6831 ADDRESS or in VALADDR contains these discriminants.
6832
6833 In the case of tagged types, this function attempts to locate the object's
6834 tag and use it to compute the actual type. However, when ADDRESS is null,
6835 we cannot use it to determine the location of the tag, and therefore
6836 compute the tagged type's actual type. So we return the tagged type
6837 without consulting the tag. */
6838
6839 struct type *
6840 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6841 CORE_ADDR address, struct value *dval)
6842 {
6843 type = ada_check_typedef (type);
6844 switch (TYPE_CODE (type))
6845 {
6846 default:
6847 return type;
6848 case TYPE_CODE_STRUCT:
6849 {
6850 struct type *static_type = to_static_fixed_type (type);
6851
6852 /* If STATIC_TYPE is a tagged type and we know the object's address,
6853 then we can determine its tag, and compute the object's actual
6854 type from there. */
6855
6856 if (address != 0 && ada_is_tagged_type (static_type, 0))
6857 {
6858 struct type *real_type =
6859 type_from_tag (value_tag_from_contents_and_address (static_type,
6860 valaddr,
6861 address));
6862 if (real_type != NULL)
6863 type = real_type;
6864 }
6865 return to_fixed_record_type (type, valaddr, address, NULL);
6866 }
6867 case TYPE_CODE_ARRAY:
6868 return to_fixed_array_type (type, dval, 1);
6869 case TYPE_CODE_UNION:
6870 if (dval == NULL)
6871 return type;
6872 else
6873 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6874 }
6875 }
6876
6877 /* A standard (static-sized) type corresponding as well as possible to
6878 TYPE0, but based on no runtime data. */
6879
6880 static struct type *
6881 to_static_fixed_type (struct type *type0)
6882 {
6883 struct type *type;
6884
6885 if (type0 == NULL)
6886 return NULL;
6887
6888 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6889 return type0;
6890
6891 type0 = ada_check_typedef (type0);
6892
6893 switch (TYPE_CODE (type0))
6894 {
6895 default:
6896 return type0;
6897 case TYPE_CODE_STRUCT:
6898 type = dynamic_template_type (type0);
6899 if (type != NULL)
6900 return template_to_static_fixed_type (type);
6901 else
6902 return template_to_static_fixed_type (type0);
6903 case TYPE_CODE_UNION:
6904 type = ada_find_parallel_type (type0, "___XVU");
6905 if (type != NULL)
6906 return template_to_static_fixed_type (type);
6907 else
6908 return template_to_static_fixed_type (type0);
6909 }
6910 }
6911
6912 /* A static approximation of TYPE with all type wrappers removed. */
6913
6914 static struct type *
6915 static_unwrap_type (struct type *type)
6916 {
6917 if (ada_is_aligner_type (type))
6918 {
6919 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6920 if (ada_type_name (type1) == NULL)
6921 TYPE_NAME (type1) = ada_type_name (type);
6922
6923 return static_unwrap_type (type1);
6924 }
6925 else
6926 {
6927 struct type *raw_real_type = ada_get_base_type (type);
6928 if (raw_real_type == type)
6929 return type;
6930 else
6931 return to_static_fixed_type (raw_real_type);
6932 }
6933 }
6934
6935 /* In some cases, incomplete and private types require
6936 cross-references that are not resolved as records (for example,
6937 type Foo;
6938 type FooP is access Foo;
6939 V: FooP;
6940 type Foo is array ...;
6941 ). In these cases, since there is no mechanism for producing
6942 cross-references to such types, we instead substitute for FooP a
6943 stub enumeration type that is nowhere resolved, and whose tag is
6944 the name of the actual type. Call these types "non-record stubs". */
6945
6946 /* A type equivalent to TYPE that is not a non-record stub, if one
6947 exists, otherwise TYPE. */
6948
6949 struct type *
6950 ada_check_typedef (struct type *type)
6951 {
6952 CHECK_TYPEDEF (type);
6953 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6954 || !TYPE_STUB (type)
6955 || TYPE_TAG_NAME (type) == NULL)
6956 return type;
6957 else
6958 {
6959 char *name = TYPE_TAG_NAME (type);
6960 struct type *type1 = ada_find_any_type (name);
6961 return (type1 == NULL) ? type : type1;
6962 }
6963 }
6964
6965 /* A value representing the data at VALADDR/ADDRESS as described by
6966 type TYPE0, but with a standard (static-sized) type that correctly
6967 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6968 type, then return VAL0 [this feature is simply to avoid redundant
6969 creation of struct values]. */
6970
6971 static struct value *
6972 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6973 struct value *val0)
6974 {
6975 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6976 if (type == type0 && val0 != NULL)
6977 return val0;
6978 else
6979 return value_from_contents_and_address (type, 0, address);
6980 }
6981
6982 /* A value representing VAL, but with a standard (static-sized) type
6983 that correctly describes it. Does not necessarily create a new
6984 value. */
6985
6986 static struct value *
6987 ada_to_fixed_value (struct value *val)
6988 {
6989 return ada_to_fixed_value_create (value_type (val),
6990 VALUE_ADDRESS (val) + value_offset (val),
6991 val);
6992 }
6993
6994 /* A value representing VAL, but with a standard (static-sized) type
6995 chosen to approximate the real type of VAL as well as possible, but
6996 without consulting any runtime values. For Ada dynamic-sized
6997 types, therefore, the type of the result is likely to be inaccurate. */
6998
6999 struct value *
7000 ada_to_static_fixed_value (struct value *val)
7001 {
7002 struct type *type =
7003 to_static_fixed_type (static_unwrap_type (value_type (val)));
7004 if (type == value_type (val))
7005 return val;
7006 else
7007 return coerce_unspec_val_to_type (val, type);
7008 }
7009 \f
7010
7011 /* Attributes */
7012
7013 /* Table mapping attribute numbers to names.
7014 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7015
7016 static const char *attribute_names[] = {
7017 "<?>",
7018
7019 "first",
7020 "last",
7021 "length",
7022 "image",
7023 "max",
7024 "min",
7025 "modulus",
7026 "pos",
7027 "size",
7028 "tag",
7029 "val",
7030 0
7031 };
7032
7033 const char *
7034 ada_attribute_name (enum exp_opcode n)
7035 {
7036 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7037 return attribute_names[n - OP_ATR_FIRST + 1];
7038 else
7039 return attribute_names[0];
7040 }
7041
7042 /* Evaluate the 'POS attribute applied to ARG. */
7043
7044 static LONGEST
7045 pos_atr (struct value *arg)
7046 {
7047 struct type *type = value_type (arg);
7048
7049 if (!discrete_type_p (type))
7050 error (_("'POS only defined on discrete types"));
7051
7052 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7053 {
7054 int i;
7055 LONGEST v = value_as_long (arg);
7056
7057 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7058 {
7059 if (v == TYPE_FIELD_BITPOS (type, i))
7060 return i;
7061 }
7062 error (_("enumeration value is invalid: can't find 'POS"));
7063 }
7064 else
7065 return value_as_long (arg);
7066 }
7067
7068 static struct value *
7069 value_pos_atr (struct value *arg)
7070 {
7071 return value_from_longest (builtin_type_int, pos_atr (arg));
7072 }
7073
7074 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7075
7076 static struct value *
7077 value_val_atr (struct type *type, struct value *arg)
7078 {
7079 if (!discrete_type_p (type))
7080 error (_("'VAL only defined on discrete types"));
7081 if (!integer_type_p (value_type (arg)))
7082 error (_("'VAL requires integral argument"));
7083
7084 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7085 {
7086 long pos = value_as_long (arg);
7087 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7088 error (_("argument to 'VAL out of range"));
7089 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7090 }
7091 else
7092 return value_from_longest (type, value_as_long (arg));
7093 }
7094 \f
7095
7096 /* Evaluation */
7097
7098 /* True if TYPE appears to be an Ada character type.
7099 [At the moment, this is true only for Character and Wide_Character;
7100 It is a heuristic test that could stand improvement]. */
7101
7102 int
7103 ada_is_character_type (struct type *type)
7104 {
7105 const char *name = ada_type_name (type);
7106 return
7107 name != NULL
7108 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7109 || TYPE_CODE (type) == TYPE_CODE_INT
7110 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7111 && (strcmp (name, "character") == 0
7112 || strcmp (name, "wide_character") == 0
7113 || strcmp (name, "unsigned char") == 0);
7114 }
7115
7116 /* True if TYPE appears to be an Ada string type. */
7117
7118 int
7119 ada_is_string_type (struct type *type)
7120 {
7121 type = ada_check_typedef (type);
7122 if (type != NULL
7123 && TYPE_CODE (type) != TYPE_CODE_PTR
7124 && (ada_is_simple_array_type (type)
7125 || ada_is_array_descriptor_type (type))
7126 && ada_array_arity (type) == 1)
7127 {
7128 struct type *elttype = ada_array_element_type (type, 1);
7129
7130 return ada_is_character_type (elttype);
7131 }
7132 else
7133 return 0;
7134 }
7135
7136
7137 /* True if TYPE is a struct type introduced by the compiler to force the
7138 alignment of a value. Such types have a single field with a
7139 distinctive name. */
7140
7141 int
7142 ada_is_aligner_type (struct type *type)
7143 {
7144 type = ada_check_typedef (type);
7145
7146 /* If we can find a parallel XVS type, then the XVS type should
7147 be used instead of this type. And hence, this is not an aligner
7148 type. */
7149 if (ada_find_parallel_type (type, "___XVS") != NULL)
7150 return 0;
7151
7152 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7153 && TYPE_NFIELDS (type) == 1
7154 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7155 }
7156
7157 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7158 the parallel type. */
7159
7160 struct type *
7161 ada_get_base_type (struct type *raw_type)
7162 {
7163 struct type *real_type_namer;
7164 struct type *raw_real_type;
7165
7166 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7167 return raw_type;
7168
7169 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7170 if (real_type_namer == NULL
7171 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7172 || TYPE_NFIELDS (real_type_namer) != 1)
7173 return raw_type;
7174
7175 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7176 if (raw_real_type == NULL)
7177 return raw_type;
7178 else
7179 return raw_real_type;
7180 }
7181
7182 /* The type of value designated by TYPE, with all aligners removed. */
7183
7184 struct type *
7185 ada_aligned_type (struct type *type)
7186 {
7187 if (ada_is_aligner_type (type))
7188 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7189 else
7190 return ada_get_base_type (type);
7191 }
7192
7193
7194 /* The address of the aligned value in an object at address VALADDR
7195 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7196
7197 const gdb_byte *
7198 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7199 {
7200 if (ada_is_aligner_type (type))
7201 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7202 valaddr +
7203 TYPE_FIELD_BITPOS (type,
7204 0) / TARGET_CHAR_BIT);
7205 else
7206 return valaddr;
7207 }
7208
7209
7210
7211 /* The printed representation of an enumeration literal with encoded
7212 name NAME. The value is good to the next call of ada_enum_name. */
7213 const char *
7214 ada_enum_name (const char *name)
7215 {
7216 static char *result;
7217 static size_t result_len = 0;
7218 char *tmp;
7219
7220 /* First, unqualify the enumeration name:
7221 1. Search for the last '.' character. If we find one, then skip
7222 all the preceeding characters, the unqualified name starts
7223 right after that dot.
7224 2. Otherwise, we may be debugging on a target where the compiler
7225 translates dots into "__". Search forward for double underscores,
7226 but stop searching when we hit an overloading suffix, which is
7227 of the form "__" followed by digits. */
7228
7229 tmp = strrchr (name, '.');
7230 if (tmp != NULL)
7231 name = tmp + 1;
7232 else
7233 {
7234 while ((tmp = strstr (name, "__")) != NULL)
7235 {
7236 if (isdigit (tmp[2]))
7237 break;
7238 else
7239 name = tmp + 2;
7240 }
7241 }
7242
7243 if (name[0] == 'Q')
7244 {
7245 int v;
7246 if (name[1] == 'U' || name[1] == 'W')
7247 {
7248 if (sscanf (name + 2, "%x", &v) != 1)
7249 return name;
7250 }
7251 else
7252 return name;
7253
7254 GROW_VECT (result, result_len, 16);
7255 if (isascii (v) && isprint (v))
7256 sprintf (result, "'%c'", v);
7257 else if (name[1] == 'U')
7258 sprintf (result, "[\"%02x\"]", v);
7259 else
7260 sprintf (result, "[\"%04x\"]", v);
7261
7262 return result;
7263 }
7264 else
7265 {
7266 tmp = strstr (name, "__");
7267 if (tmp == NULL)
7268 tmp = strstr (name, "$");
7269 if (tmp != NULL)
7270 {
7271 GROW_VECT (result, result_len, tmp - name + 1);
7272 strncpy (result, name, tmp - name);
7273 result[tmp - name] = '\0';
7274 return result;
7275 }
7276
7277 return name;
7278 }
7279 }
7280
7281 static struct value *
7282 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7283 enum noside noside)
7284 {
7285 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7286 (expect_type, exp, pos, noside);
7287 }
7288
7289 /* Evaluate the subexpression of EXP starting at *POS as for
7290 evaluate_type, updating *POS to point just past the evaluated
7291 expression. */
7292
7293 static struct value *
7294 evaluate_subexp_type (struct expression *exp, int *pos)
7295 {
7296 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7297 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7298 }
7299
7300 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7301 value it wraps. */
7302
7303 static struct value *
7304 unwrap_value (struct value *val)
7305 {
7306 struct type *type = ada_check_typedef (value_type (val));
7307 if (ada_is_aligner_type (type))
7308 {
7309 struct value *v = value_struct_elt (&val, NULL, "F",
7310 NULL, "internal structure");
7311 struct type *val_type = ada_check_typedef (value_type (v));
7312 if (ada_type_name (val_type) == NULL)
7313 TYPE_NAME (val_type) = ada_type_name (type);
7314
7315 return unwrap_value (v);
7316 }
7317 else
7318 {
7319 struct type *raw_real_type =
7320 ada_check_typedef (ada_get_base_type (type));
7321
7322 if (type == raw_real_type)
7323 return val;
7324
7325 return
7326 coerce_unspec_val_to_type
7327 (val, ada_to_fixed_type (raw_real_type, 0,
7328 VALUE_ADDRESS (val) + value_offset (val),
7329 NULL));
7330 }
7331 }
7332
7333 static struct value *
7334 cast_to_fixed (struct type *type, struct value *arg)
7335 {
7336 LONGEST val;
7337
7338 if (type == value_type (arg))
7339 return arg;
7340 else if (ada_is_fixed_point_type (value_type (arg)))
7341 val = ada_float_to_fixed (type,
7342 ada_fixed_to_float (value_type (arg),
7343 value_as_long (arg)));
7344 else
7345 {
7346 DOUBLEST argd =
7347 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7348 val = ada_float_to_fixed (type, argd);
7349 }
7350
7351 return value_from_longest (type, val);
7352 }
7353
7354 static struct value *
7355 cast_from_fixed_to_double (struct value *arg)
7356 {
7357 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7358 value_as_long (arg));
7359 return value_from_double (builtin_type_double, val);
7360 }
7361
7362 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7363 return the converted value. */
7364
7365 static struct value *
7366 coerce_for_assign (struct type *type, struct value *val)
7367 {
7368 struct type *type2 = value_type (val);
7369 if (type == type2)
7370 return val;
7371
7372 type2 = ada_check_typedef (type2);
7373 type = ada_check_typedef (type);
7374
7375 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7376 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7377 {
7378 val = ada_value_ind (val);
7379 type2 = value_type (val);
7380 }
7381
7382 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7383 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7384 {
7385 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7386 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7387 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7388 error (_("Incompatible types in assignment"));
7389 deprecated_set_value_type (val, type);
7390 }
7391 return val;
7392 }
7393
7394 static struct value *
7395 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7396 {
7397 struct value *val;
7398 struct type *type1, *type2;
7399 LONGEST v, v1, v2;
7400
7401 arg1 = coerce_ref (arg1);
7402 arg2 = coerce_ref (arg2);
7403 type1 = base_type (ada_check_typedef (value_type (arg1)));
7404 type2 = base_type (ada_check_typedef (value_type (arg2)));
7405
7406 if (TYPE_CODE (type1) != TYPE_CODE_INT
7407 || TYPE_CODE (type2) != TYPE_CODE_INT)
7408 return value_binop (arg1, arg2, op);
7409
7410 switch (op)
7411 {
7412 case BINOP_MOD:
7413 case BINOP_DIV:
7414 case BINOP_REM:
7415 break;
7416 default:
7417 return value_binop (arg1, arg2, op);
7418 }
7419
7420 v2 = value_as_long (arg2);
7421 if (v2 == 0)
7422 error (_("second operand of %s must not be zero."), op_string (op));
7423
7424 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7425 return value_binop (arg1, arg2, op);
7426
7427 v1 = value_as_long (arg1);
7428 switch (op)
7429 {
7430 case BINOP_DIV:
7431 v = v1 / v2;
7432 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7433 v += v > 0 ? -1 : 1;
7434 break;
7435 case BINOP_REM:
7436 v = v1 % v2;
7437 if (v * v1 < 0)
7438 v -= v2;
7439 break;
7440 default:
7441 /* Should not reach this point. */
7442 v = 0;
7443 }
7444
7445 val = allocate_value (type1);
7446 store_unsigned_integer (value_contents_raw (val),
7447 TYPE_LENGTH (value_type (val)), v);
7448 return val;
7449 }
7450
7451 static int
7452 ada_value_equal (struct value *arg1, struct value *arg2)
7453 {
7454 if (ada_is_direct_array_type (value_type (arg1))
7455 || ada_is_direct_array_type (value_type (arg2)))
7456 {
7457 arg1 = ada_coerce_to_simple_array (arg1);
7458 arg2 = ada_coerce_to_simple_array (arg2);
7459 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7460 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7461 error (_("Attempt to compare array with non-array"));
7462 /* FIXME: The following works only for types whose
7463 representations use all bits (no padding or undefined bits)
7464 and do not have user-defined equality. */
7465 return
7466 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7467 && memcmp (value_contents (arg1), value_contents (arg2),
7468 TYPE_LENGTH (value_type (arg1))) == 0;
7469 }
7470 return value_equal (arg1, arg2);
7471 }
7472
7473 /* Total number of component associations in the aggregate starting at
7474 index PC in EXP. Assumes that index PC is the start of an
7475 OP_AGGREGATE. */
7476
7477 static int
7478 num_component_specs (struct expression *exp, int pc)
7479 {
7480 int n, m, i;
7481 m = exp->elts[pc + 1].longconst;
7482 pc += 3;
7483 n = 0;
7484 for (i = 0; i < m; i += 1)
7485 {
7486 switch (exp->elts[pc].opcode)
7487 {
7488 default:
7489 n += 1;
7490 break;
7491 case OP_CHOICES:
7492 n += exp->elts[pc + 1].longconst;
7493 break;
7494 }
7495 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7496 }
7497 return n;
7498 }
7499
7500 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7501 component of LHS (a simple array or a record), updating *POS past
7502 the expression, assuming that LHS is contained in CONTAINER. Does
7503 not modify the inferior's memory, nor does it modify LHS (unless
7504 LHS == CONTAINER). */
7505
7506 static void
7507 assign_component (struct value *container, struct value *lhs, LONGEST index,
7508 struct expression *exp, int *pos)
7509 {
7510 struct value *mark = value_mark ();
7511 struct value *elt;
7512 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7513 {
7514 struct value *index_val = value_from_longest (builtin_type_int, index);
7515 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7516 }
7517 else
7518 {
7519 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7520 elt = ada_to_fixed_value (unwrap_value (elt));
7521 }
7522
7523 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7524 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7525 else
7526 value_assign_to_component (container, elt,
7527 ada_evaluate_subexp (NULL, exp, pos,
7528 EVAL_NORMAL));
7529
7530 value_free_to_mark (mark);
7531 }
7532
7533 /* Assuming that LHS represents an lvalue having a record or array
7534 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7535 of that aggregate's value to LHS, advancing *POS past the
7536 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7537 lvalue containing LHS (possibly LHS itself). Does not modify
7538 the inferior's memory, nor does it modify the contents of
7539 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7540
7541 static struct value *
7542 assign_aggregate (struct value *container,
7543 struct value *lhs, struct expression *exp,
7544 int *pos, enum noside noside)
7545 {
7546 struct type *lhs_type;
7547 int n = exp->elts[*pos+1].longconst;
7548 LONGEST low_index, high_index;
7549 int num_specs;
7550 LONGEST *indices;
7551 int max_indices, num_indices;
7552 int is_array_aggregate;
7553 int i;
7554 struct value *mark = value_mark ();
7555
7556 *pos += 3;
7557 if (noside != EVAL_NORMAL)
7558 {
7559 int i;
7560 for (i = 0; i < n; i += 1)
7561 ada_evaluate_subexp (NULL, exp, pos, noside);
7562 return container;
7563 }
7564
7565 container = ada_coerce_ref (container);
7566 if (ada_is_direct_array_type (value_type (container)))
7567 container = ada_coerce_to_simple_array (container);
7568 lhs = ada_coerce_ref (lhs);
7569 if (!deprecated_value_modifiable (lhs))
7570 error (_("Left operand of assignment is not a modifiable lvalue."));
7571
7572 lhs_type = value_type (lhs);
7573 if (ada_is_direct_array_type (lhs_type))
7574 {
7575 lhs = ada_coerce_to_simple_array (lhs);
7576 lhs_type = value_type (lhs);
7577 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7578 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7579 is_array_aggregate = 1;
7580 }
7581 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7582 {
7583 low_index = 0;
7584 high_index = num_visible_fields (lhs_type) - 1;
7585 is_array_aggregate = 0;
7586 }
7587 else
7588 error (_("Left-hand side must be array or record."));
7589
7590 num_specs = num_component_specs (exp, *pos - 3);
7591 max_indices = 4 * num_specs + 4;
7592 indices = alloca (max_indices * sizeof (indices[0]));
7593 indices[0] = indices[1] = low_index - 1;
7594 indices[2] = indices[3] = high_index + 1;
7595 num_indices = 4;
7596
7597 for (i = 0; i < n; i += 1)
7598 {
7599 switch (exp->elts[*pos].opcode)
7600 {
7601 case OP_CHOICES:
7602 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7603 &num_indices, max_indices,
7604 low_index, high_index);
7605 break;
7606 case OP_POSITIONAL:
7607 aggregate_assign_positional (container, lhs, exp, pos, indices,
7608 &num_indices, max_indices,
7609 low_index, high_index);
7610 break;
7611 case OP_OTHERS:
7612 if (i != n-1)
7613 error (_("Misplaced 'others' clause"));
7614 aggregate_assign_others (container, lhs, exp, pos, indices,
7615 num_indices, low_index, high_index);
7616 break;
7617 default:
7618 error (_("Internal error: bad aggregate clause"));
7619 }
7620 }
7621
7622 return container;
7623 }
7624
7625 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7626 construct at *POS, updating *POS past the construct, given that
7627 the positions are relative to lower bound LOW, where HIGH is the
7628 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7629 updating *NUM_INDICES as needed. CONTAINER is as for
7630 assign_aggregate. */
7631 static void
7632 aggregate_assign_positional (struct value *container,
7633 struct value *lhs, struct expression *exp,
7634 int *pos, LONGEST *indices, int *num_indices,
7635 int max_indices, LONGEST low, LONGEST high)
7636 {
7637 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7638
7639 if (ind - 1 == high)
7640 warning (_("Extra components in aggregate ignored."));
7641 if (ind <= high)
7642 {
7643 add_component_interval (ind, ind, indices, num_indices, max_indices);
7644 *pos += 3;
7645 assign_component (container, lhs, ind, exp, pos);
7646 }
7647 else
7648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7649 }
7650
7651 /* Assign into the components of LHS indexed by the OP_CHOICES
7652 construct at *POS, updating *POS past the construct, given that
7653 the allowable indices are LOW..HIGH. Record the indices assigned
7654 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7655 needed. CONTAINER is as for assign_aggregate. */
7656 static void
7657 aggregate_assign_from_choices (struct value *container,
7658 struct value *lhs, struct expression *exp,
7659 int *pos, LONGEST *indices, int *num_indices,
7660 int max_indices, LONGEST low, LONGEST high)
7661 {
7662 int j;
7663 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7664 int choice_pos, expr_pc;
7665 int is_array = ada_is_direct_array_type (value_type (lhs));
7666
7667 choice_pos = *pos += 3;
7668
7669 for (j = 0; j < n_choices; j += 1)
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7671 expr_pc = *pos;
7672 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7673
7674 for (j = 0; j < n_choices; j += 1)
7675 {
7676 LONGEST lower, upper;
7677 enum exp_opcode op = exp->elts[choice_pos].opcode;
7678 if (op == OP_DISCRETE_RANGE)
7679 {
7680 choice_pos += 1;
7681 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7682 EVAL_NORMAL));
7683 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7684 EVAL_NORMAL));
7685 }
7686 else if (is_array)
7687 {
7688 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7689 EVAL_NORMAL));
7690 upper = lower;
7691 }
7692 else
7693 {
7694 int ind;
7695 char *name;
7696 switch (op)
7697 {
7698 case OP_NAME:
7699 name = &exp->elts[choice_pos + 2].string;
7700 break;
7701 case OP_VAR_VALUE:
7702 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7703 break;
7704 default:
7705 error (_("Invalid record component association."));
7706 }
7707 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7708 ind = 0;
7709 if (! find_struct_field (name, value_type (lhs), 0,
7710 NULL, NULL, NULL, NULL, &ind))
7711 error (_("Unknown component name: %s."), name);
7712 lower = upper = ind;
7713 }
7714
7715 if (lower <= upper && (lower < low || upper > high))
7716 error (_("Index in component association out of bounds."));
7717
7718 add_component_interval (lower, upper, indices, num_indices,
7719 max_indices);
7720 while (lower <= upper)
7721 {
7722 int pos1;
7723 pos1 = expr_pc;
7724 assign_component (container, lhs, lower, exp, &pos1);
7725 lower += 1;
7726 }
7727 }
7728 }
7729
7730 /* Assign the value of the expression in the OP_OTHERS construct in
7731 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7732 have not been previously assigned. The index intervals already assigned
7733 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7734 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7735 static void
7736 aggregate_assign_others (struct value *container,
7737 struct value *lhs, struct expression *exp,
7738 int *pos, LONGEST *indices, int num_indices,
7739 LONGEST low, LONGEST high)
7740 {
7741 int i;
7742 int expr_pc = *pos+1;
7743
7744 for (i = 0; i < num_indices - 2; i += 2)
7745 {
7746 LONGEST ind;
7747 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7748 {
7749 int pos;
7750 pos = expr_pc;
7751 assign_component (container, lhs, ind, exp, &pos);
7752 }
7753 }
7754 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7755 }
7756
7757 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7758 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7759 modifying *SIZE as needed. It is an error if *SIZE exceeds
7760 MAX_SIZE. The resulting intervals do not overlap. */
7761 static void
7762 add_component_interval (LONGEST low, LONGEST high,
7763 LONGEST* indices, int *size, int max_size)
7764 {
7765 int i, j;
7766 for (i = 0; i < *size; i += 2) {
7767 if (high >= indices[i] && low <= indices[i + 1])
7768 {
7769 int kh;
7770 for (kh = i + 2; kh < *size; kh += 2)
7771 if (high < indices[kh])
7772 break;
7773 if (low < indices[i])
7774 indices[i] = low;
7775 indices[i + 1] = indices[kh - 1];
7776 if (high > indices[i + 1])
7777 indices[i + 1] = high;
7778 memcpy (indices + i + 2, indices + kh, *size - kh);
7779 *size -= kh - i - 2;
7780 return;
7781 }
7782 else if (high < indices[i])
7783 break;
7784 }
7785
7786 if (*size == max_size)
7787 error (_("Internal error: miscounted aggregate components."));
7788 *size += 2;
7789 for (j = *size-1; j >= i+2; j -= 1)
7790 indices[j] = indices[j - 2];
7791 indices[i] = low;
7792 indices[i + 1] = high;
7793 }
7794
7795 static struct value *
7796 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7797 int *pos, enum noside noside)
7798 {
7799 enum exp_opcode op;
7800 int tem, tem2, tem3;
7801 int pc;
7802 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7803 struct type *type;
7804 int nargs, oplen;
7805 struct value **argvec;
7806
7807 pc = *pos;
7808 *pos += 1;
7809 op = exp->elts[pc].opcode;
7810
7811 switch (op)
7812 {
7813 default:
7814 *pos -= 1;
7815 return
7816 unwrap_value (evaluate_subexp_standard
7817 (expect_type, exp, pos, noside));
7818
7819 case OP_STRING:
7820 {
7821 struct value *result;
7822 *pos -= 1;
7823 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7824 /* The result type will have code OP_STRING, bashed there from
7825 OP_ARRAY. Bash it back. */
7826 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7827 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7828 return result;
7829 }
7830
7831 case UNOP_CAST:
7832 (*pos) += 2;
7833 type = exp->elts[pc + 1].type;
7834 arg1 = evaluate_subexp (type, exp, pos, noside);
7835 if (noside == EVAL_SKIP)
7836 goto nosideret;
7837 if (type != ada_check_typedef (value_type (arg1)))
7838 {
7839 if (ada_is_fixed_point_type (type))
7840 arg1 = cast_to_fixed (type, arg1);
7841 else if (ada_is_fixed_point_type (value_type (arg1)))
7842 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7843 else if (VALUE_LVAL (arg1) == lval_memory)
7844 {
7845 /* This is in case of the really obscure (and undocumented,
7846 but apparently expected) case of (Foo) Bar.all, where Bar
7847 is an integer constant and Foo is a dynamic-sized type.
7848 If we don't do this, ARG1 will simply be relabeled with
7849 TYPE. */
7850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7851 return value_zero (to_static_fixed_type (type), not_lval);
7852 arg1 =
7853 ada_to_fixed_value_create
7854 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7855 }
7856 else
7857 arg1 = value_cast (type, arg1);
7858 }
7859 return arg1;
7860
7861 case UNOP_QUAL:
7862 (*pos) += 2;
7863 type = exp->elts[pc + 1].type;
7864 return ada_evaluate_subexp (type, exp, pos, noside);
7865
7866 case BINOP_ASSIGN:
7867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7868 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7869 {
7870 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7872 return arg1;
7873 return ada_value_assign (arg1, arg1);
7874 }
7875 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7876 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7877 return arg1;
7878 if (ada_is_fixed_point_type (value_type (arg1)))
7879 arg2 = cast_to_fixed (value_type (arg1), arg2);
7880 else if (ada_is_fixed_point_type (value_type (arg2)))
7881 error
7882 (_("Fixed-point values must be assigned to fixed-point variables"));
7883 else
7884 arg2 = coerce_for_assign (value_type (arg1), arg2);
7885 return ada_value_assign (arg1, arg2);
7886
7887 case BINOP_ADD:
7888 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7889 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7890 if (noside == EVAL_SKIP)
7891 goto nosideret;
7892 if ((ada_is_fixed_point_type (value_type (arg1))
7893 || ada_is_fixed_point_type (value_type (arg2)))
7894 && value_type (arg1) != value_type (arg2))
7895 error (_("Operands of fixed-point addition must have the same type"));
7896 return value_cast (value_type (arg1), value_add (arg1, arg2));
7897
7898 case BINOP_SUB:
7899 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7900 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7901 if (noside == EVAL_SKIP)
7902 goto nosideret;
7903 if ((ada_is_fixed_point_type (value_type (arg1))
7904 || ada_is_fixed_point_type (value_type (arg2)))
7905 && value_type (arg1) != value_type (arg2))
7906 error (_("Operands of fixed-point subtraction must have the same type"));
7907 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7908
7909 case BINOP_MUL:
7910 case BINOP_DIV:
7911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7912 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7913 if (noside == EVAL_SKIP)
7914 goto nosideret;
7915 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7916 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7917 return value_zero (value_type (arg1), not_lval);
7918 else
7919 {
7920 if (ada_is_fixed_point_type (value_type (arg1)))
7921 arg1 = cast_from_fixed_to_double (arg1);
7922 if (ada_is_fixed_point_type (value_type (arg2)))
7923 arg2 = cast_from_fixed_to_double (arg2);
7924 return ada_value_binop (arg1, arg2, op);
7925 }
7926
7927 case BINOP_REM:
7928 case BINOP_MOD:
7929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7930 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7931 if (noside == EVAL_SKIP)
7932 goto nosideret;
7933 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7934 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7935 return value_zero (value_type (arg1), not_lval);
7936 else
7937 return ada_value_binop (arg1, arg2, op);
7938
7939 case BINOP_EQUAL:
7940 case BINOP_NOTEQUAL:
7941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7942 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7943 if (noside == EVAL_SKIP)
7944 goto nosideret;
7945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7946 tem = 0;
7947 else
7948 tem = ada_value_equal (arg1, arg2);
7949 if (op == BINOP_NOTEQUAL)
7950 tem = !tem;
7951 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7952
7953 case UNOP_NEG:
7954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7955 if (noside == EVAL_SKIP)
7956 goto nosideret;
7957 else if (ada_is_fixed_point_type (value_type (arg1)))
7958 return value_cast (value_type (arg1), value_neg (arg1));
7959 else
7960 return value_neg (arg1);
7961
7962 case OP_VAR_VALUE:
7963 *pos -= 1;
7964 if (noside == EVAL_SKIP)
7965 {
7966 *pos += 4;
7967 goto nosideret;
7968 }
7969 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7970 /* Only encountered when an unresolved symbol occurs in a
7971 context other than a function call, in which case, it is
7972 invalid. */
7973 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7974 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7976 {
7977 *pos += 4;
7978 return value_zero
7979 (to_static_fixed_type
7980 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7981 not_lval);
7982 }
7983 else
7984 {
7985 arg1 =
7986 unwrap_value (evaluate_subexp_standard
7987 (expect_type, exp, pos, noside));
7988 return ada_to_fixed_value (arg1);
7989 }
7990
7991 case OP_FUNCALL:
7992 (*pos) += 2;
7993
7994 /* Allocate arg vector, including space for the function to be
7995 called in argvec[0] and a terminating NULL. */
7996 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7997 argvec =
7998 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7999
8000 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8001 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8002 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8003 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8004 else
8005 {
8006 for (tem = 0; tem <= nargs; tem += 1)
8007 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008 argvec[tem] = 0;
8009
8010 if (noside == EVAL_SKIP)
8011 goto nosideret;
8012 }
8013
8014 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8015 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8016 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8017 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8018 && VALUE_LVAL (argvec[0]) == lval_memory))
8019 argvec[0] = value_addr (argvec[0]);
8020
8021 type = ada_check_typedef (value_type (argvec[0]));
8022 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8023 {
8024 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8025 {
8026 case TYPE_CODE_FUNC:
8027 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8028 break;
8029 case TYPE_CODE_ARRAY:
8030 break;
8031 case TYPE_CODE_STRUCT:
8032 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8033 argvec[0] = ada_value_ind (argvec[0]);
8034 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8035 break;
8036 default:
8037 error (_("cannot subscript or call something of type `%s'"),
8038 ada_type_name (value_type (argvec[0])));
8039 break;
8040 }
8041 }
8042
8043 switch (TYPE_CODE (type))
8044 {
8045 case TYPE_CODE_FUNC:
8046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8047 return allocate_value (TYPE_TARGET_TYPE (type));
8048 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8049 case TYPE_CODE_STRUCT:
8050 {
8051 int arity;
8052
8053 arity = ada_array_arity (type);
8054 type = ada_array_element_type (type, nargs);
8055 if (type == NULL)
8056 error (_("cannot subscript or call a record"));
8057 if (arity != nargs)
8058 error (_("wrong number of subscripts; expecting %d"), arity);
8059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8060 return allocate_value (ada_aligned_type (type));
8061 return
8062 unwrap_value (ada_value_subscript
8063 (argvec[0], nargs, argvec + 1));
8064 }
8065 case TYPE_CODE_ARRAY:
8066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8067 {
8068 type = ada_array_element_type (type, nargs);
8069 if (type == NULL)
8070 error (_("element type of array unknown"));
8071 else
8072 return allocate_value (ada_aligned_type (type));
8073 }
8074 return
8075 unwrap_value (ada_value_subscript
8076 (ada_coerce_to_simple_array (argvec[0]),
8077 nargs, argvec + 1));
8078 case TYPE_CODE_PTR: /* Pointer to array */
8079 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8080 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8081 {
8082 type = ada_array_element_type (type, nargs);
8083 if (type == NULL)
8084 error (_("element type of array unknown"));
8085 else
8086 return allocate_value (ada_aligned_type (type));
8087 }
8088 return
8089 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8090 nargs, argvec + 1));
8091
8092 default:
8093 error (_("Attempt to index or call something other than an "
8094 "array or function"));
8095 }
8096
8097 case TERNOP_SLICE:
8098 {
8099 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *low_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8102 struct value *high_bound_val =
8103 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8104 LONGEST low_bound;
8105 LONGEST high_bound;
8106 low_bound_val = coerce_ref (low_bound_val);
8107 high_bound_val = coerce_ref (high_bound_val);
8108 low_bound = pos_atr (low_bound_val);
8109 high_bound = pos_atr (high_bound_val);
8110
8111 if (noside == EVAL_SKIP)
8112 goto nosideret;
8113
8114 /* If this is a reference to an aligner type, then remove all
8115 the aligners. */
8116 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8117 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8118 TYPE_TARGET_TYPE (value_type (array)) =
8119 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8120
8121 if (ada_is_packed_array_type (value_type (array)))
8122 error (_("cannot slice a packed array"));
8123
8124 /* If this is a reference to an array or an array lvalue,
8125 convert to a pointer. */
8126 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8127 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8128 && VALUE_LVAL (array) == lval_memory))
8129 array = value_addr (array);
8130
8131 if (noside == EVAL_AVOID_SIDE_EFFECTS
8132 && ada_is_array_descriptor_type (ada_check_typedef
8133 (value_type (array))))
8134 return empty_array (ada_type_of_array (array, 0), low_bound);
8135
8136 array = ada_coerce_to_simple_array_ptr (array);
8137
8138 /* If we have more than one level of pointer indirection,
8139 dereference the value until we get only one level. */
8140 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8141 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8142 == TYPE_CODE_PTR))
8143 array = value_ind (array);
8144
8145 /* Make sure we really do have an array type before going further,
8146 to avoid a SEGV when trying to get the index type or the target
8147 type later down the road if the debug info generated by
8148 the compiler is incorrect or incomplete. */
8149 if (!ada_is_simple_array_type (value_type (array)))
8150 error (_("cannot take slice of non-array"));
8151
8152 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8153 {
8154 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8155 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8156 low_bound);
8157 else
8158 {
8159 struct type *arr_type0 =
8160 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8161 NULL, 1);
8162 return ada_value_slice_ptr (array, arr_type0,
8163 longest_to_int (low_bound),
8164 longest_to_int (high_bound));
8165 }
8166 }
8167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8168 return array;
8169 else if (high_bound < low_bound)
8170 return empty_array (value_type (array), low_bound);
8171 else
8172 return ada_value_slice (array, longest_to_int (low_bound),
8173 longest_to_int (high_bound));
8174 }
8175
8176 case UNOP_IN_RANGE:
8177 (*pos) += 2;
8178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8179 type = exp->elts[pc + 1].type;
8180
8181 if (noside == EVAL_SKIP)
8182 goto nosideret;
8183
8184 switch (TYPE_CODE (type))
8185 {
8186 default:
8187 lim_warning (_("Membership test incompletely implemented; "
8188 "always returns true"));
8189 return value_from_longest (builtin_type_int, (LONGEST) 1);
8190
8191 case TYPE_CODE_RANGE:
8192 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8193 arg3 = value_from_longest (builtin_type_int,
8194 TYPE_HIGH_BOUND (type));
8195 return
8196 value_from_longest (builtin_type_int,
8197 (value_less (arg1, arg3)
8198 || value_equal (arg1, arg3))
8199 && (value_less (arg2, arg1)
8200 || value_equal (arg2, arg1)));
8201 }
8202
8203 case BINOP_IN_BOUNDS:
8204 (*pos) += 2;
8205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8207
8208 if (noside == EVAL_SKIP)
8209 goto nosideret;
8210
8211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8212 return value_zero (builtin_type_int, not_lval);
8213
8214 tem = longest_to_int (exp->elts[pc + 1].longconst);
8215
8216 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8217 error (_("invalid dimension number to 'range"));
8218
8219 arg3 = ada_array_bound (arg2, tem, 1);
8220 arg2 = ada_array_bound (arg2, tem, 0);
8221
8222 return
8223 value_from_longest (builtin_type_int,
8224 (value_less (arg1, arg3)
8225 || value_equal (arg1, arg3))
8226 && (value_less (arg2, arg1)
8227 || value_equal (arg2, arg1)));
8228
8229 case TERNOP_IN_RANGE:
8230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8232 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8233
8234 if (noside == EVAL_SKIP)
8235 goto nosideret;
8236
8237 return
8238 value_from_longest (builtin_type_int,
8239 (value_less (arg1, arg3)
8240 || value_equal (arg1, arg3))
8241 && (value_less (arg2, arg1)
8242 || value_equal (arg2, arg1)));
8243
8244 case OP_ATR_FIRST:
8245 case OP_ATR_LAST:
8246 case OP_ATR_LENGTH:
8247 {
8248 struct type *type_arg;
8249 if (exp->elts[*pos].opcode == OP_TYPE)
8250 {
8251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8252 arg1 = NULL;
8253 type_arg = exp->elts[pc + 2].type;
8254 }
8255 else
8256 {
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8258 type_arg = NULL;
8259 }
8260
8261 if (exp->elts[*pos].opcode != OP_LONG)
8262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8264 *pos += 4;
8265
8266 if (noside == EVAL_SKIP)
8267 goto nosideret;
8268
8269 if (type_arg == NULL)
8270 {
8271 arg1 = ada_coerce_ref (arg1);
8272
8273 if (ada_is_packed_array_type (value_type (arg1)))
8274 arg1 = ada_coerce_to_simple_array (arg1);
8275
8276 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8277 error (_("invalid dimension number to '%s"),
8278 ada_attribute_name (op));
8279
8280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8281 {
8282 type = ada_index_type (value_type (arg1), tem);
8283 if (type == NULL)
8284 error
8285 (_("attempt to take bound of something that is not an array"));
8286 return allocate_value (type);
8287 }
8288
8289 switch (op)
8290 {
8291 default: /* Should never happen. */
8292 error (_("unexpected attribute encountered"));
8293 case OP_ATR_FIRST:
8294 return ada_array_bound (arg1, tem, 0);
8295 case OP_ATR_LAST:
8296 return ada_array_bound (arg1, tem, 1);
8297 case OP_ATR_LENGTH:
8298 return ada_array_length (arg1, tem);
8299 }
8300 }
8301 else if (discrete_type_p (type_arg))
8302 {
8303 struct type *range_type;
8304 char *name = ada_type_name (type_arg);
8305 range_type = NULL;
8306 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8307 range_type =
8308 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8309 if (range_type == NULL)
8310 range_type = type_arg;
8311 switch (op)
8312 {
8313 default:
8314 error (_("unexpected attribute encountered"));
8315 case OP_ATR_FIRST:
8316 return discrete_type_low_bound (range_type);
8317 case OP_ATR_LAST:
8318 return discrete_type_high_bound (range_type);
8319 case OP_ATR_LENGTH:
8320 error (_("the 'length attribute applies only to array types"));
8321 }
8322 }
8323 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8324 error (_("unimplemented type attribute"));
8325 else
8326 {
8327 LONGEST low, high;
8328
8329 if (ada_is_packed_array_type (type_arg))
8330 type_arg = decode_packed_array_type (type_arg);
8331
8332 if (tem < 1 || tem > ada_array_arity (type_arg))
8333 error (_("invalid dimension number to '%s"),
8334 ada_attribute_name (op));
8335
8336 type = ada_index_type (type_arg, tem);
8337 if (type == NULL)
8338 error
8339 (_("attempt to take bound of something that is not an array"));
8340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8341 return allocate_value (type);
8342
8343 switch (op)
8344 {
8345 default:
8346 error (_("unexpected attribute encountered"));
8347 case OP_ATR_FIRST:
8348 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8349 return value_from_longest (type, low);
8350 case OP_ATR_LAST:
8351 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8352 return value_from_longest (type, high);
8353 case OP_ATR_LENGTH:
8354 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8355 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8356 return value_from_longest (type, high - low + 1);
8357 }
8358 }
8359 }
8360
8361 case OP_ATR_TAG:
8362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8363 if (noside == EVAL_SKIP)
8364 goto nosideret;
8365
8366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8367 return value_zero (ada_tag_type (arg1), not_lval);
8368
8369 return ada_value_tag (arg1);
8370
8371 case OP_ATR_MIN:
8372 case OP_ATR_MAX:
8373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8376 if (noside == EVAL_SKIP)
8377 goto nosideret;
8378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8379 return value_zero (value_type (arg1), not_lval);
8380 else
8381 return value_binop (arg1, arg2,
8382 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8383
8384 case OP_ATR_MODULUS:
8385 {
8386 struct type *type_arg = exp->elts[pc + 2].type;
8387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8388
8389 if (noside == EVAL_SKIP)
8390 goto nosideret;
8391
8392 if (!ada_is_modular_type (type_arg))
8393 error (_("'modulus must be applied to modular type"));
8394
8395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8396 ada_modulus (type_arg));
8397 }
8398
8399
8400 case OP_ATR_POS:
8401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8403 if (noside == EVAL_SKIP)
8404 goto nosideret;
8405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8406 return value_zero (builtin_type_int, not_lval);
8407 else
8408 return value_pos_atr (arg1);
8409
8410 case OP_ATR_SIZE:
8411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 if (noside == EVAL_SKIP)
8413 goto nosideret;
8414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8415 return value_zero (builtin_type_int, not_lval);
8416 else
8417 return value_from_longest (builtin_type_int,
8418 TARGET_CHAR_BIT
8419 * TYPE_LENGTH (value_type (arg1)));
8420
8421 case OP_ATR_VAL:
8422 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8424 type = exp->elts[pc + 2].type;
8425 if (noside == EVAL_SKIP)
8426 goto nosideret;
8427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8428 return value_zero (type, not_lval);
8429 else
8430 return value_val_atr (type, arg1);
8431
8432 case BINOP_EXP:
8433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8435 if (noside == EVAL_SKIP)
8436 goto nosideret;
8437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8438 return value_zero (value_type (arg1), not_lval);
8439 else
8440 return value_binop (arg1, arg2, op);
8441
8442 case UNOP_PLUS:
8443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8444 if (noside == EVAL_SKIP)
8445 goto nosideret;
8446 else
8447 return arg1;
8448
8449 case UNOP_ABS:
8450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8451 if (noside == EVAL_SKIP)
8452 goto nosideret;
8453 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8454 return value_neg (arg1);
8455 else
8456 return arg1;
8457
8458 case UNOP_IND:
8459 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8460 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8461 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8462 if (noside == EVAL_SKIP)
8463 goto nosideret;
8464 type = ada_check_typedef (value_type (arg1));
8465 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8466 {
8467 if (ada_is_array_descriptor_type (type))
8468 /* GDB allows dereferencing GNAT array descriptors. */
8469 {
8470 struct type *arrType = ada_type_of_array (arg1, 0);
8471 if (arrType == NULL)
8472 error (_("Attempt to dereference null array pointer."));
8473 return value_at_lazy (arrType, 0);
8474 }
8475 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8476 || TYPE_CODE (type) == TYPE_CODE_REF
8477 /* In C you can dereference an array to get the 1st elt. */
8478 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8479 {
8480 type = to_static_fixed_type
8481 (ada_aligned_type
8482 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8483 check_size (type);
8484 return value_zero (type, lval_memory);
8485 }
8486 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8487 /* GDB allows dereferencing an int. */
8488 return value_zero (builtin_type_int, lval_memory);
8489 else
8490 error (_("Attempt to take contents of a non-pointer value."));
8491 }
8492 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8493 type = ada_check_typedef (value_type (arg1));
8494
8495 if (ada_is_array_descriptor_type (type))
8496 /* GDB allows dereferencing GNAT array descriptors. */
8497 return ada_coerce_to_simple_array (arg1);
8498 else
8499 return ada_value_ind (arg1);
8500
8501 case STRUCTOP_STRUCT:
8502 tem = longest_to_int (exp->elts[pc + 1].longconst);
8503 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8505 if (noside == EVAL_SKIP)
8506 goto nosideret;
8507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8508 {
8509 struct type *type1 = value_type (arg1);
8510 if (ada_is_tagged_type (type1, 1))
8511 {
8512 type = ada_lookup_struct_elt_type (type1,
8513 &exp->elts[pc + 2].string,
8514 1, 1, NULL);
8515 if (type == NULL)
8516 /* In this case, we assume that the field COULD exist
8517 in some extension of the type. Return an object of
8518 "type" void, which will match any formal
8519 (see ada_type_match). */
8520 return value_zero (builtin_type_void, lval_memory);
8521 }
8522 else
8523 type =
8524 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8525 0, NULL);
8526
8527 return value_zero (ada_aligned_type (type), lval_memory);
8528 }
8529 else
8530 return
8531 ada_to_fixed_value (unwrap_value
8532 (ada_value_struct_elt
8533 (arg1, &exp->elts[pc + 2].string, 0)));
8534 case OP_TYPE:
8535 /* The value is not supposed to be used. This is here to make it
8536 easier to accommodate expressions that contain types. */
8537 (*pos) += 2;
8538 if (noside == EVAL_SKIP)
8539 goto nosideret;
8540 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8541 return allocate_value (exp->elts[pc + 1].type);
8542 else
8543 error (_("Attempt to use a type name as an expression"));
8544
8545 case OP_AGGREGATE:
8546 case OP_CHOICES:
8547 case OP_OTHERS:
8548 case OP_DISCRETE_RANGE:
8549 case OP_POSITIONAL:
8550 case OP_NAME:
8551 if (noside == EVAL_NORMAL)
8552 switch (op)
8553 {
8554 case OP_NAME:
8555 error (_("Undefined name, ambiguous name, or renaming used in "
8556 "component association: %s."), &exp->elts[pc+2].string);
8557 case OP_AGGREGATE:
8558 error (_("Aggregates only allowed on the right of an assignment"));
8559 default:
8560 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8561 }
8562
8563 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8564 *pos += oplen - 1;
8565 for (tem = 0; tem < nargs; tem += 1)
8566 ada_evaluate_subexp (NULL, exp, pos, noside);
8567 goto nosideret;
8568 }
8569
8570 nosideret:
8571 return value_from_longest (builtin_type_long, (LONGEST) 1);
8572 }
8573 \f
8574
8575 /* Fixed point */
8576
8577 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8578 type name that encodes the 'small and 'delta information.
8579 Otherwise, return NULL. */
8580
8581 static const char *
8582 fixed_type_info (struct type *type)
8583 {
8584 const char *name = ada_type_name (type);
8585 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8586
8587 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8588 {
8589 const char *tail = strstr (name, "___XF_");
8590 if (tail == NULL)
8591 return NULL;
8592 else
8593 return tail + 5;
8594 }
8595 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8596 return fixed_type_info (TYPE_TARGET_TYPE (type));
8597 else
8598 return NULL;
8599 }
8600
8601 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8602
8603 int
8604 ada_is_fixed_point_type (struct type *type)
8605 {
8606 return fixed_type_info (type) != NULL;
8607 }
8608
8609 /* Return non-zero iff TYPE represents a System.Address type. */
8610
8611 int
8612 ada_is_system_address_type (struct type *type)
8613 {
8614 return (TYPE_NAME (type)
8615 && strcmp (TYPE_NAME (type), "system__address") == 0);
8616 }
8617
8618 /* Assuming that TYPE is the representation of an Ada fixed-point
8619 type, return its delta, or -1 if the type is malformed and the
8620 delta cannot be determined. */
8621
8622 DOUBLEST
8623 ada_delta (struct type *type)
8624 {
8625 const char *encoding = fixed_type_info (type);
8626 long num, den;
8627
8628 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8629 return -1.0;
8630 else
8631 return (DOUBLEST) num / (DOUBLEST) den;
8632 }
8633
8634 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8635 factor ('SMALL value) associated with the type. */
8636
8637 static DOUBLEST
8638 scaling_factor (struct type *type)
8639 {
8640 const char *encoding = fixed_type_info (type);
8641 unsigned long num0, den0, num1, den1;
8642 int n;
8643
8644 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8645
8646 if (n < 2)
8647 return 1.0;
8648 else if (n == 4)
8649 return (DOUBLEST) num1 / (DOUBLEST) den1;
8650 else
8651 return (DOUBLEST) num0 / (DOUBLEST) den0;
8652 }
8653
8654
8655 /* Assuming that X is the representation of a value of fixed-point
8656 type TYPE, return its floating-point equivalent. */
8657
8658 DOUBLEST
8659 ada_fixed_to_float (struct type *type, LONGEST x)
8660 {
8661 return (DOUBLEST) x *scaling_factor (type);
8662 }
8663
8664 /* The representation of a fixed-point value of type TYPE
8665 corresponding to the value X. */
8666
8667 LONGEST
8668 ada_float_to_fixed (struct type *type, DOUBLEST x)
8669 {
8670 return (LONGEST) (x / scaling_factor (type) + 0.5);
8671 }
8672
8673
8674 /* VAX floating formats */
8675
8676 /* Non-zero iff TYPE represents one of the special VAX floating-point
8677 types. */
8678
8679 int
8680 ada_is_vax_floating_type (struct type *type)
8681 {
8682 int name_len =
8683 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8684 return
8685 name_len > 6
8686 && (TYPE_CODE (type) == TYPE_CODE_INT
8687 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8688 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8689 }
8690
8691 /* The type of special VAX floating-point type this is, assuming
8692 ada_is_vax_floating_point. */
8693
8694 int
8695 ada_vax_float_type_suffix (struct type *type)
8696 {
8697 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8698 }
8699
8700 /* A value representing the special debugging function that outputs
8701 VAX floating-point values of the type represented by TYPE. Assumes
8702 ada_is_vax_floating_type (TYPE). */
8703
8704 struct value *
8705 ada_vax_float_print_function (struct type *type)
8706 {
8707 switch (ada_vax_float_type_suffix (type))
8708 {
8709 case 'F':
8710 return get_var_value ("DEBUG_STRING_F", 0);
8711 case 'D':
8712 return get_var_value ("DEBUG_STRING_D", 0);
8713 case 'G':
8714 return get_var_value ("DEBUG_STRING_G", 0);
8715 default:
8716 error (_("invalid VAX floating-point type"));
8717 }
8718 }
8719 \f
8720
8721 /* Range types */
8722
8723 /* Scan STR beginning at position K for a discriminant name, and
8724 return the value of that discriminant field of DVAL in *PX. If
8725 PNEW_K is not null, put the position of the character beyond the
8726 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8727 not alter *PX and *PNEW_K if unsuccessful. */
8728
8729 static int
8730 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8731 int *pnew_k)
8732 {
8733 static char *bound_buffer = NULL;
8734 static size_t bound_buffer_len = 0;
8735 char *bound;
8736 char *pend;
8737 struct value *bound_val;
8738
8739 if (dval == NULL || str == NULL || str[k] == '\0')
8740 return 0;
8741
8742 pend = strstr (str + k, "__");
8743 if (pend == NULL)
8744 {
8745 bound = str + k;
8746 k += strlen (bound);
8747 }
8748 else
8749 {
8750 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8751 bound = bound_buffer;
8752 strncpy (bound_buffer, str + k, pend - (str + k));
8753 bound[pend - (str + k)] = '\0';
8754 k = pend - str;
8755 }
8756
8757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8758 if (bound_val == NULL)
8759 return 0;
8760
8761 *px = value_as_long (bound_val);
8762 if (pnew_k != NULL)
8763 *pnew_k = k;
8764 return 1;
8765 }
8766
8767 /* Value of variable named NAME in the current environment. If
8768 no such variable found, then if ERR_MSG is null, returns 0, and
8769 otherwise causes an error with message ERR_MSG. */
8770
8771 static struct value *
8772 get_var_value (char *name, char *err_msg)
8773 {
8774 struct ada_symbol_info *syms;
8775 int nsyms;
8776
8777 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8778 &syms);
8779
8780 if (nsyms != 1)
8781 {
8782 if (err_msg == NULL)
8783 return 0;
8784 else
8785 error (("%s"), err_msg);
8786 }
8787
8788 return value_of_variable (syms[0].sym, syms[0].block);
8789 }
8790
8791 /* Value of integer variable named NAME in the current environment. If
8792 no such variable found, returns 0, and sets *FLAG to 0. If
8793 successful, sets *FLAG to 1. */
8794
8795 LONGEST
8796 get_int_var_value (char *name, int *flag)
8797 {
8798 struct value *var_val = get_var_value (name, 0);
8799
8800 if (var_val == 0)
8801 {
8802 if (flag != NULL)
8803 *flag = 0;
8804 return 0;
8805 }
8806 else
8807 {
8808 if (flag != NULL)
8809 *flag = 1;
8810 return value_as_long (var_val);
8811 }
8812 }
8813
8814
8815 /* Return a range type whose base type is that of the range type named
8816 NAME in the current environment, and whose bounds are calculated
8817 from NAME according to the GNAT range encoding conventions.
8818 Extract discriminant values, if needed, from DVAL. If a new type
8819 must be created, allocate in OBJFILE's space. The bounds
8820 information, in general, is encoded in NAME, the base type given in
8821 the named range type. */
8822
8823 static struct type *
8824 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8825 {
8826 struct type *raw_type = ada_find_any_type (name);
8827 struct type *base_type;
8828 char *subtype_info;
8829
8830 if (raw_type == NULL)
8831 base_type = builtin_type_int;
8832 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8833 base_type = TYPE_TARGET_TYPE (raw_type);
8834 else
8835 base_type = raw_type;
8836
8837 subtype_info = strstr (name, "___XD");
8838 if (subtype_info == NULL)
8839 return raw_type;
8840 else
8841 {
8842 static char *name_buf = NULL;
8843 static size_t name_len = 0;
8844 int prefix_len = subtype_info - name;
8845 LONGEST L, U;
8846 struct type *type;
8847 char *bounds_str;
8848 int n;
8849
8850 GROW_VECT (name_buf, name_len, prefix_len + 5);
8851 strncpy (name_buf, name, prefix_len);
8852 name_buf[prefix_len] = '\0';
8853
8854 subtype_info += 5;
8855 bounds_str = strchr (subtype_info, '_');
8856 n = 1;
8857
8858 if (*subtype_info == 'L')
8859 {
8860 if (!ada_scan_number (bounds_str, n, &L, &n)
8861 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8862 return raw_type;
8863 if (bounds_str[n] == '_')
8864 n += 2;
8865 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8866 n += 1;
8867 subtype_info += 1;
8868 }
8869 else
8870 {
8871 int ok;
8872 strcpy (name_buf + prefix_len, "___L");
8873 L = get_int_var_value (name_buf, &ok);
8874 if (!ok)
8875 {
8876 lim_warning (_("Unknown lower bound, using 1."));
8877 L = 1;
8878 }
8879 }
8880
8881 if (*subtype_info == 'U')
8882 {
8883 if (!ada_scan_number (bounds_str, n, &U, &n)
8884 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8885 return raw_type;
8886 }
8887 else
8888 {
8889 int ok;
8890 strcpy (name_buf + prefix_len, "___U");
8891 U = get_int_var_value (name_buf, &ok);
8892 if (!ok)
8893 {
8894 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8895 U = L;
8896 }
8897 }
8898
8899 if (objfile == NULL)
8900 objfile = TYPE_OBJFILE (base_type);
8901 type = create_range_type (alloc_type (objfile), base_type, L, U);
8902 TYPE_NAME (type) = name;
8903 return type;
8904 }
8905 }
8906
8907 /* True iff NAME is the name of a range type. */
8908
8909 int
8910 ada_is_range_type_name (const char *name)
8911 {
8912 return (name != NULL && strstr (name, "___XD"));
8913 }
8914 \f
8915
8916 /* Modular types */
8917
8918 /* True iff TYPE is an Ada modular type. */
8919
8920 int
8921 ada_is_modular_type (struct type *type)
8922 {
8923 struct type *subranged_type = base_type (type);
8924
8925 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8926 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8927 && TYPE_UNSIGNED (subranged_type));
8928 }
8929
8930 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8931
8932 ULONGEST
8933 ada_modulus (struct type * type)
8934 {
8935 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8936 }
8937 \f
8938
8939 /* Ada exception catchpoint support:
8940 ---------------------------------
8941
8942 We support 3 kinds of exception catchpoints:
8943 . catchpoints on Ada exceptions
8944 . catchpoints on unhandled Ada exceptions
8945 . catchpoints on failed assertions
8946
8947 Exceptions raised during failed assertions, or unhandled exceptions
8948 could perfectly be caught with the general catchpoint on Ada exceptions.
8949 However, we can easily differentiate these two special cases, and having
8950 the option to distinguish these two cases from the rest can be useful
8951 to zero-in on certain situations.
8952
8953 Exception catchpoints are a specialized form of breakpoint,
8954 since they rely on inserting breakpoints inside known routines
8955 of the GNAT runtime. The implementation therefore uses a standard
8956 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8957 of breakpoint_ops.
8958
8959 Support in the runtime for exception catchpoints have been changed
8960 a few times already, and these changes affect the implementation
8961 of these catchpoints. In order to be able to support several
8962 variants of the runtime, we use a sniffer that will determine
8963 the runtime variant used by the program being debugged.
8964
8965 At this time, we do not support the use of conditions on Ada exception
8966 catchpoints. The COND and COND_STRING fields are therefore set
8967 to NULL (most of the time, see below).
8968
8969 Conditions where EXP_STRING, COND, and COND_STRING are used:
8970
8971 When a user specifies the name of a specific exception in the case
8972 of catchpoints on Ada exceptions, we store the name of that exception
8973 in the EXP_STRING. We then translate this request into an actual
8974 condition stored in COND_STRING, and then parse it into an expression
8975 stored in COND. */
8976
8977 /* The different types of catchpoints that we introduced for catching
8978 Ada exceptions. */
8979
8980 enum exception_catchpoint_kind
8981 {
8982 ex_catch_exception,
8983 ex_catch_exception_unhandled,
8984 ex_catch_assert
8985 };
8986
8987 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8988
8989 /* A structure that describes how to support exception catchpoints
8990 for a given executable. */
8991
8992 struct exception_support_info
8993 {
8994 /* The name of the symbol to break on in order to insert
8995 a catchpoint on exceptions. */
8996 const char *catch_exception_sym;
8997
8998 /* The name of the symbol to break on in order to insert
8999 a catchpoint on unhandled exceptions. */
9000 const char *catch_exception_unhandled_sym;
9001
9002 /* The name of the symbol to break on in order to insert
9003 a catchpoint on failed assertions. */
9004 const char *catch_assert_sym;
9005
9006 /* Assuming that the inferior just triggered an unhandled exception
9007 catchpoint, this function is responsible for returning the address
9008 in inferior memory where the name of that exception is stored.
9009 Return zero if the address could not be computed. */
9010 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9011 };
9012
9013 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9014 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9015
9016 /* The following exception support info structure describes how to
9017 implement exception catchpoints with the latest version of the
9018 Ada runtime (as of 2007-03-06). */
9019
9020 static const struct exception_support_info default_exception_support_info =
9021 {
9022 "__gnat_debug_raise_exception", /* catch_exception_sym */
9023 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9024 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9025 ada_unhandled_exception_name_addr
9026 };
9027
9028 /* The following exception support info structure describes how to
9029 implement exception catchpoints with a slightly older version
9030 of the Ada runtime. */
9031
9032 static const struct exception_support_info exception_support_info_fallback =
9033 {
9034 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9035 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9036 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9037 ada_unhandled_exception_name_addr_from_raise
9038 };
9039
9040 /* For each executable, we sniff which exception info structure to use
9041 and cache it in the following global variable. */
9042
9043 static const struct exception_support_info *exception_info = NULL;
9044
9045 /* Inspect the Ada runtime and determine which exception info structure
9046 should be used to provide support for exception catchpoints.
9047
9048 This function will always set exception_info, or raise an error. */
9049
9050 static void
9051 ada_exception_support_info_sniffer (void)
9052 {
9053 struct symbol *sym;
9054
9055 /* If the exception info is already known, then no need to recompute it. */
9056 if (exception_info != NULL)
9057 return;
9058
9059 /* Check the latest (default) exception support info. */
9060 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9061 NULL, VAR_DOMAIN);
9062 if (sym != NULL)
9063 {
9064 exception_info = &default_exception_support_info;
9065 return;
9066 }
9067
9068 /* Try our fallback exception suport info. */
9069 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9070 NULL, VAR_DOMAIN);
9071 if (sym != NULL)
9072 {
9073 exception_info = &exception_support_info_fallback;
9074 return;
9075 }
9076
9077 /* Sometimes, it is normal for us to not be able to find the routine
9078 we are looking for. This happens when the program is linked with
9079 the shared version of the GNAT runtime, and the program has not been
9080 started yet. Inform the user of these two possible causes if
9081 applicable. */
9082
9083 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9084 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9085
9086 /* If the symbol does not exist, then check that the program is
9087 already started, to make sure that shared libraries have been
9088 loaded. If it is not started, this may mean that the symbol is
9089 in a shared library. */
9090
9091 if (ptid_get_pid (inferior_ptid) == 0)
9092 error (_("Unable to insert catchpoint. Try to start the program first."));
9093
9094 /* At this point, we know that we are debugging an Ada program and
9095 that the inferior has been started, but we still are not able to
9096 find the run-time symbols. That can mean that we are in
9097 configurable run time mode, or that a-except as been optimized
9098 out by the linker... In any case, at this point it is not worth
9099 supporting this feature. */
9100
9101 error (_("Cannot insert catchpoints in this configuration."));
9102 }
9103
9104 /* An observer of "executable_changed" events.
9105 Its role is to clear certain cached values that need to be recomputed
9106 each time a new executable is loaded by GDB. */
9107
9108 static void
9109 ada_executable_changed_observer (void *unused)
9110 {
9111 /* If the executable changed, then it is possible that the Ada runtime
9112 is different. So we need to invalidate the exception support info
9113 cache. */
9114 exception_info = NULL;
9115 }
9116
9117 /* Return the name of the function at PC, NULL if could not find it.
9118 This function only checks the debugging information, not the symbol
9119 table. */
9120
9121 static char *
9122 function_name_from_pc (CORE_ADDR pc)
9123 {
9124 char *func_name;
9125
9126 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9127 return NULL;
9128
9129 return func_name;
9130 }
9131
9132 /* True iff FRAME is very likely to be that of a function that is
9133 part of the runtime system. This is all very heuristic, but is
9134 intended to be used as advice as to what frames are uninteresting
9135 to most users. */
9136
9137 static int
9138 is_known_support_routine (struct frame_info *frame)
9139 {
9140 struct symtab_and_line sal;
9141 char *func_name;
9142 int i;
9143
9144 /* If this code does not have any debugging information (no symtab),
9145 This cannot be any user code. */
9146
9147 find_frame_sal (frame, &sal);
9148 if (sal.symtab == NULL)
9149 return 1;
9150
9151 /* If there is a symtab, but the associated source file cannot be
9152 located, then assume this is not user code: Selecting a frame
9153 for which we cannot display the code would not be very helpful
9154 for the user. This should also take care of case such as VxWorks
9155 where the kernel has some debugging info provided for a few units. */
9156
9157 if (symtab_to_fullname (sal.symtab) == NULL)
9158 return 1;
9159
9160 /* Check the unit filename againt the Ada runtime file naming.
9161 We also check the name of the objfile against the name of some
9162 known system libraries that sometimes come with debugging info
9163 too. */
9164
9165 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9166 {
9167 re_comp (known_runtime_file_name_patterns[i]);
9168 if (re_exec (sal.symtab->filename))
9169 return 1;
9170 if (sal.symtab->objfile != NULL
9171 && re_exec (sal.symtab->objfile->name))
9172 return 1;
9173 }
9174
9175 /* Check whether the function is a GNAT-generated entity. */
9176
9177 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9178 if (func_name == NULL)
9179 return 1;
9180
9181 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9182 {
9183 re_comp (known_auxiliary_function_name_patterns[i]);
9184 if (re_exec (func_name))
9185 return 1;
9186 }
9187
9188 return 0;
9189 }
9190
9191 /* Find the first frame that contains debugging information and that is not
9192 part of the Ada run-time, starting from FI and moving upward. */
9193
9194 static void
9195 ada_find_printable_frame (struct frame_info *fi)
9196 {
9197 for (; fi != NULL; fi = get_prev_frame (fi))
9198 {
9199 if (!is_known_support_routine (fi))
9200 {
9201 select_frame (fi);
9202 break;
9203 }
9204 }
9205
9206 }
9207
9208 /* Assuming that the inferior just triggered an unhandled exception
9209 catchpoint, return the address in inferior memory where the name
9210 of the exception is stored.
9211
9212 Return zero if the address could not be computed. */
9213
9214 static CORE_ADDR
9215 ada_unhandled_exception_name_addr (void)
9216 {
9217 return parse_and_eval_address ("e.full_name");
9218 }
9219
9220 /* Same as ada_unhandled_exception_name_addr, except that this function
9221 should be used when the inferior uses an older version of the runtime,
9222 where the exception name needs to be extracted from a specific frame
9223 several frames up in the callstack. */
9224
9225 static CORE_ADDR
9226 ada_unhandled_exception_name_addr_from_raise (void)
9227 {
9228 int frame_level;
9229 struct frame_info *fi;
9230
9231 /* To determine the name of this exception, we need to select
9232 the frame corresponding to RAISE_SYM_NAME. This frame is
9233 at least 3 levels up, so we simply skip the first 3 frames
9234 without checking the name of their associated function. */
9235 fi = get_current_frame ();
9236 for (frame_level = 0; frame_level < 3; frame_level += 1)
9237 if (fi != NULL)
9238 fi = get_prev_frame (fi);
9239
9240 while (fi != NULL)
9241 {
9242 const char *func_name =
9243 function_name_from_pc (get_frame_address_in_block (fi));
9244 if (func_name != NULL
9245 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9246 break; /* We found the frame we were looking for... */
9247 fi = get_prev_frame (fi);
9248 }
9249
9250 if (fi == NULL)
9251 return 0;
9252
9253 select_frame (fi);
9254 return parse_and_eval_address ("id.full_name");
9255 }
9256
9257 /* Assuming the inferior just triggered an Ada exception catchpoint
9258 (of any type), return the address in inferior memory where the name
9259 of the exception is stored, if applicable.
9260
9261 Return zero if the address could not be computed, or if not relevant. */
9262
9263 static CORE_ADDR
9264 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9265 struct breakpoint *b)
9266 {
9267 switch (ex)
9268 {
9269 case ex_catch_exception:
9270 return (parse_and_eval_address ("e.full_name"));
9271 break;
9272
9273 case ex_catch_exception_unhandled:
9274 return exception_info->unhandled_exception_name_addr ();
9275 break;
9276
9277 case ex_catch_assert:
9278 return 0; /* Exception name is not relevant in this case. */
9279 break;
9280
9281 default:
9282 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9283 break;
9284 }
9285
9286 return 0; /* Should never be reached. */
9287 }
9288
9289 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9290 any error that ada_exception_name_addr_1 might cause to be thrown.
9291 When an error is intercepted, a warning with the error message is printed,
9292 and zero is returned. */
9293
9294 static CORE_ADDR
9295 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9296 struct breakpoint *b)
9297 {
9298 struct gdb_exception e;
9299 CORE_ADDR result = 0;
9300
9301 TRY_CATCH (e, RETURN_MASK_ERROR)
9302 {
9303 result = ada_exception_name_addr_1 (ex, b);
9304 }
9305
9306 if (e.reason < 0)
9307 {
9308 warning (_("failed to get exception name: %s"), e.message);
9309 return 0;
9310 }
9311
9312 return result;
9313 }
9314
9315 /* Implement the PRINT_IT method in the breakpoint_ops structure
9316 for all exception catchpoint kinds. */
9317
9318 static enum print_stop_action
9319 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9320 {
9321 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9322 char exception_name[256];
9323
9324 if (addr != 0)
9325 {
9326 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9327 exception_name [sizeof (exception_name) - 1] = '\0';
9328 }
9329
9330 ada_find_printable_frame (get_current_frame ());
9331
9332 annotate_catchpoint (b->number);
9333 switch (ex)
9334 {
9335 case ex_catch_exception:
9336 if (addr != 0)
9337 printf_filtered (_("\nCatchpoint %d, %s at "),
9338 b->number, exception_name);
9339 else
9340 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9341 break;
9342 case ex_catch_exception_unhandled:
9343 if (addr != 0)
9344 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9345 b->number, exception_name);
9346 else
9347 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9348 b->number);
9349 break;
9350 case ex_catch_assert:
9351 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9352 b->number);
9353 break;
9354 }
9355
9356 return PRINT_SRC_AND_LOC;
9357 }
9358
9359 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9360 for all exception catchpoint kinds. */
9361
9362 static void
9363 print_one_exception (enum exception_catchpoint_kind ex,
9364 struct breakpoint *b, CORE_ADDR *last_addr)
9365 {
9366 if (addressprint)
9367 {
9368 annotate_field (4);
9369 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9370 }
9371
9372 annotate_field (5);
9373 *last_addr = b->loc->address;
9374 switch (ex)
9375 {
9376 case ex_catch_exception:
9377 if (b->exp_string != NULL)
9378 {
9379 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9380
9381 ui_out_field_string (uiout, "what", msg);
9382 xfree (msg);
9383 }
9384 else
9385 ui_out_field_string (uiout, "what", "all Ada exceptions");
9386
9387 break;
9388
9389 case ex_catch_exception_unhandled:
9390 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9391 break;
9392
9393 case ex_catch_assert:
9394 ui_out_field_string (uiout, "what", "failed Ada assertions");
9395 break;
9396
9397 default:
9398 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9399 break;
9400 }
9401 }
9402
9403 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9404 for all exception catchpoint kinds. */
9405
9406 static void
9407 print_mention_exception (enum exception_catchpoint_kind ex,
9408 struct breakpoint *b)
9409 {
9410 switch (ex)
9411 {
9412 case ex_catch_exception:
9413 if (b->exp_string != NULL)
9414 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9415 b->number, b->exp_string);
9416 else
9417 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9418
9419 break;
9420
9421 case ex_catch_exception_unhandled:
9422 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9423 b->number);
9424 break;
9425
9426 case ex_catch_assert:
9427 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9428 break;
9429
9430 default:
9431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9432 break;
9433 }
9434 }
9435
9436 /* Virtual table for "catch exception" breakpoints. */
9437
9438 static enum print_stop_action
9439 print_it_catch_exception (struct breakpoint *b)
9440 {
9441 return print_it_exception (ex_catch_exception, b);
9442 }
9443
9444 static void
9445 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9446 {
9447 print_one_exception (ex_catch_exception, b, last_addr);
9448 }
9449
9450 static void
9451 print_mention_catch_exception (struct breakpoint *b)
9452 {
9453 print_mention_exception (ex_catch_exception, b);
9454 }
9455
9456 static struct breakpoint_ops catch_exception_breakpoint_ops =
9457 {
9458 print_it_catch_exception,
9459 print_one_catch_exception,
9460 print_mention_catch_exception
9461 };
9462
9463 /* Virtual table for "catch exception unhandled" breakpoints. */
9464
9465 static enum print_stop_action
9466 print_it_catch_exception_unhandled (struct breakpoint *b)
9467 {
9468 return print_it_exception (ex_catch_exception_unhandled, b);
9469 }
9470
9471 static void
9472 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9473 {
9474 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9475 }
9476
9477 static void
9478 print_mention_catch_exception_unhandled (struct breakpoint *b)
9479 {
9480 print_mention_exception (ex_catch_exception_unhandled, b);
9481 }
9482
9483 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9484 print_it_catch_exception_unhandled,
9485 print_one_catch_exception_unhandled,
9486 print_mention_catch_exception_unhandled
9487 };
9488
9489 /* Virtual table for "catch assert" breakpoints. */
9490
9491 static enum print_stop_action
9492 print_it_catch_assert (struct breakpoint *b)
9493 {
9494 return print_it_exception (ex_catch_assert, b);
9495 }
9496
9497 static void
9498 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9499 {
9500 print_one_exception (ex_catch_assert, b, last_addr);
9501 }
9502
9503 static void
9504 print_mention_catch_assert (struct breakpoint *b)
9505 {
9506 print_mention_exception (ex_catch_assert, b);
9507 }
9508
9509 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9510 print_it_catch_assert,
9511 print_one_catch_assert,
9512 print_mention_catch_assert
9513 };
9514
9515 /* Return non-zero if B is an Ada exception catchpoint. */
9516
9517 int
9518 ada_exception_catchpoint_p (struct breakpoint *b)
9519 {
9520 return (b->ops == &catch_exception_breakpoint_ops
9521 || b->ops == &catch_exception_unhandled_breakpoint_ops
9522 || b->ops == &catch_assert_breakpoint_ops);
9523 }
9524
9525 /* Return a newly allocated copy of the first space-separated token
9526 in ARGSP, and then adjust ARGSP to point immediately after that
9527 token.
9528
9529 Return NULL if ARGPS does not contain any more tokens. */
9530
9531 static char *
9532 ada_get_next_arg (char **argsp)
9533 {
9534 char *args = *argsp;
9535 char *end;
9536 char *result;
9537
9538 /* Skip any leading white space. */
9539
9540 while (isspace (*args))
9541 args++;
9542
9543 if (args[0] == '\0')
9544 return NULL; /* No more arguments. */
9545
9546 /* Find the end of the current argument. */
9547
9548 end = args;
9549 while (*end != '\0' && !isspace (*end))
9550 end++;
9551
9552 /* Adjust ARGSP to point to the start of the next argument. */
9553
9554 *argsp = end;
9555
9556 /* Make a copy of the current argument and return it. */
9557
9558 result = xmalloc (end - args + 1);
9559 strncpy (result, args, end - args);
9560 result[end - args] = '\0';
9561
9562 return result;
9563 }
9564
9565 /* Split the arguments specified in a "catch exception" command.
9566 Set EX to the appropriate catchpoint type.
9567 Set EXP_STRING to the name of the specific exception if
9568 specified by the user. */
9569
9570 static void
9571 catch_ada_exception_command_split (char *args,
9572 enum exception_catchpoint_kind *ex,
9573 char **exp_string)
9574 {
9575 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9576 char *exception_name;
9577
9578 exception_name = ada_get_next_arg (&args);
9579 make_cleanup (xfree, exception_name);
9580
9581 /* Check that we do not have any more arguments. Anything else
9582 is unexpected. */
9583
9584 while (isspace (*args))
9585 args++;
9586
9587 if (args[0] != '\0')
9588 error (_("Junk at end of expression"));
9589
9590 discard_cleanups (old_chain);
9591
9592 if (exception_name == NULL)
9593 {
9594 /* Catch all exceptions. */
9595 *ex = ex_catch_exception;
9596 *exp_string = NULL;
9597 }
9598 else if (strcmp (exception_name, "unhandled") == 0)
9599 {
9600 /* Catch unhandled exceptions. */
9601 *ex = ex_catch_exception_unhandled;
9602 *exp_string = NULL;
9603 }
9604 else
9605 {
9606 /* Catch a specific exception. */
9607 *ex = ex_catch_exception;
9608 *exp_string = exception_name;
9609 }
9610 }
9611
9612 /* Return the name of the symbol on which we should break in order to
9613 implement a catchpoint of the EX kind. */
9614
9615 static const char *
9616 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9617 {
9618 gdb_assert (exception_info != NULL);
9619
9620 switch (ex)
9621 {
9622 case ex_catch_exception:
9623 return (exception_info->catch_exception_sym);
9624 break;
9625 case ex_catch_exception_unhandled:
9626 return (exception_info->catch_exception_unhandled_sym);
9627 break;
9628 case ex_catch_assert:
9629 return (exception_info->catch_assert_sym);
9630 break;
9631 default:
9632 internal_error (__FILE__, __LINE__,
9633 _("unexpected catchpoint kind (%d)"), ex);
9634 }
9635 }
9636
9637 /* Return the breakpoint ops "virtual table" used for catchpoints
9638 of the EX kind. */
9639
9640 static struct breakpoint_ops *
9641 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9642 {
9643 switch (ex)
9644 {
9645 case ex_catch_exception:
9646 return (&catch_exception_breakpoint_ops);
9647 break;
9648 case ex_catch_exception_unhandled:
9649 return (&catch_exception_unhandled_breakpoint_ops);
9650 break;
9651 case ex_catch_assert:
9652 return (&catch_assert_breakpoint_ops);
9653 break;
9654 default:
9655 internal_error (__FILE__, __LINE__,
9656 _("unexpected catchpoint kind (%d)"), ex);
9657 }
9658 }
9659
9660 /* Return the condition that will be used to match the current exception
9661 being raised with the exception that the user wants to catch. This
9662 assumes that this condition is used when the inferior just triggered
9663 an exception catchpoint.
9664
9665 The string returned is a newly allocated string that needs to be
9666 deallocated later. */
9667
9668 static char *
9669 ada_exception_catchpoint_cond_string (const char *exp_string)
9670 {
9671 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9672 }
9673
9674 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9675
9676 static struct expression *
9677 ada_parse_catchpoint_condition (char *cond_string,
9678 struct symtab_and_line sal)
9679 {
9680 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9681 }
9682
9683 /* Return the symtab_and_line that should be used to insert an exception
9684 catchpoint of the TYPE kind.
9685
9686 EX_STRING should contain the name of a specific exception
9687 that the catchpoint should catch, or NULL otherwise.
9688
9689 The idea behind all the remaining parameters is that their names match
9690 the name of certain fields in the breakpoint structure that are used to
9691 handle exception catchpoints. This function returns the value to which
9692 these fields should be set, depending on the type of catchpoint we need
9693 to create.
9694
9695 If COND and COND_STRING are both non-NULL, any value they might
9696 hold will be free'ed, and then replaced by newly allocated ones.
9697 These parameters are left untouched otherwise. */
9698
9699 static struct symtab_and_line
9700 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9701 char **addr_string, char **cond_string,
9702 struct expression **cond, struct breakpoint_ops **ops)
9703 {
9704 const char *sym_name;
9705 struct symbol *sym;
9706 struct symtab_and_line sal;
9707
9708 /* First, find out which exception support info to use. */
9709 ada_exception_support_info_sniffer ();
9710
9711 /* Then lookup the function on which we will break in order to catch
9712 the Ada exceptions requested by the user. */
9713
9714 sym_name = ada_exception_sym_name (ex);
9715 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9716
9717 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9718 that should be compiled with debugging information. As a result, we
9719 expect to find that symbol in the symtabs. If we don't find it, then
9720 the target most likely does not support Ada exceptions, or we cannot
9721 insert exception breakpoints yet, because the GNAT runtime hasn't been
9722 loaded yet. */
9723
9724 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9725 in such a way that no debugging information is produced for the symbol
9726 we are looking for. In this case, we could search the minimal symbols
9727 as a fall-back mechanism. This would still be operating in degraded
9728 mode, however, as we would still be missing the debugging information
9729 that is needed in order to extract the name of the exception being
9730 raised (this name is printed in the catchpoint message, and is also
9731 used when trying to catch a specific exception). We do not handle
9732 this case for now. */
9733
9734 if (sym == NULL)
9735 error (_("Unable to break on '%s' in this configuration."), sym_name);
9736
9737 /* Make sure that the symbol we found corresponds to a function. */
9738 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9739 error (_("Symbol \"%s\" is not a function (class = %d)"),
9740 sym_name, SYMBOL_CLASS (sym));
9741
9742 sal = find_function_start_sal (sym, 1);
9743
9744 /* Set ADDR_STRING. */
9745
9746 *addr_string = xstrdup (sym_name);
9747
9748 /* Set the COND and COND_STRING (if not NULL). */
9749
9750 if (cond_string != NULL && cond != NULL)
9751 {
9752 if (*cond_string != NULL)
9753 {
9754 xfree (*cond_string);
9755 *cond_string = NULL;
9756 }
9757 if (*cond != NULL)
9758 {
9759 xfree (*cond);
9760 *cond = NULL;
9761 }
9762 if (exp_string != NULL)
9763 {
9764 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9765 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9766 }
9767 }
9768
9769 /* Set OPS. */
9770 *ops = ada_exception_breakpoint_ops (ex);
9771
9772 return sal;
9773 }
9774
9775 /* Parse the arguments (ARGS) of the "catch exception" command.
9776
9777 Set TYPE to the appropriate exception catchpoint type.
9778 If the user asked the catchpoint to catch only a specific
9779 exception, then save the exception name in ADDR_STRING.
9780
9781 See ada_exception_sal for a description of all the remaining
9782 function arguments of this function. */
9783
9784 struct symtab_and_line
9785 ada_decode_exception_location (char *args, char **addr_string,
9786 char **exp_string, char **cond_string,
9787 struct expression **cond,
9788 struct breakpoint_ops **ops)
9789 {
9790 enum exception_catchpoint_kind ex;
9791
9792 catch_ada_exception_command_split (args, &ex, exp_string);
9793 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9794 cond, ops);
9795 }
9796
9797 struct symtab_and_line
9798 ada_decode_assert_location (char *args, char **addr_string,
9799 struct breakpoint_ops **ops)
9800 {
9801 /* Check that no argument where provided at the end of the command. */
9802
9803 if (args != NULL)
9804 {
9805 while (isspace (*args))
9806 args++;
9807 if (*args != '\0')
9808 error (_("Junk at end of arguments."));
9809 }
9810
9811 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9812 ops);
9813 }
9814
9815 /* Operators */
9816 /* Information about operators given special treatment in functions
9817 below. */
9818 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9819
9820 #define ADA_OPERATORS \
9821 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9822 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9823 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9824 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9828 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9829 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9830 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9832 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9833 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9834 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9835 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9836 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9837 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9838 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9839 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9840
9841 static void
9842 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9843 {
9844 switch (exp->elts[pc - 1].opcode)
9845 {
9846 default:
9847 operator_length_standard (exp, pc, oplenp, argsp);
9848 break;
9849
9850 #define OP_DEFN(op, len, args, binop) \
9851 case op: *oplenp = len; *argsp = args; break;
9852 ADA_OPERATORS;
9853 #undef OP_DEFN
9854
9855 case OP_AGGREGATE:
9856 *oplenp = 3;
9857 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9858 break;
9859
9860 case OP_CHOICES:
9861 *oplenp = 3;
9862 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9863 break;
9864 }
9865 }
9866
9867 static char *
9868 ada_op_name (enum exp_opcode opcode)
9869 {
9870 switch (opcode)
9871 {
9872 default:
9873 return op_name_standard (opcode);
9874
9875 #define OP_DEFN(op, len, args, binop) case op: return #op;
9876 ADA_OPERATORS;
9877 #undef OP_DEFN
9878
9879 case OP_AGGREGATE:
9880 return "OP_AGGREGATE";
9881 case OP_CHOICES:
9882 return "OP_CHOICES";
9883 case OP_NAME:
9884 return "OP_NAME";
9885 }
9886 }
9887
9888 /* As for operator_length, but assumes PC is pointing at the first
9889 element of the operator, and gives meaningful results only for the
9890 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9891
9892 static void
9893 ada_forward_operator_length (struct expression *exp, int pc,
9894 int *oplenp, int *argsp)
9895 {
9896 switch (exp->elts[pc].opcode)
9897 {
9898 default:
9899 *oplenp = *argsp = 0;
9900 break;
9901
9902 #define OP_DEFN(op, len, args, binop) \
9903 case op: *oplenp = len; *argsp = args; break;
9904 ADA_OPERATORS;
9905 #undef OP_DEFN
9906
9907 case OP_AGGREGATE:
9908 *oplenp = 3;
9909 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9910 break;
9911
9912 case OP_CHOICES:
9913 *oplenp = 3;
9914 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9915 break;
9916
9917 case OP_STRING:
9918 case OP_NAME:
9919 {
9920 int len = longest_to_int (exp->elts[pc + 1].longconst);
9921 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9922 *argsp = 0;
9923 break;
9924 }
9925 }
9926 }
9927
9928 static int
9929 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9930 {
9931 enum exp_opcode op = exp->elts[elt].opcode;
9932 int oplen, nargs;
9933 int pc = elt;
9934 int i;
9935
9936 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9937
9938 switch (op)
9939 {
9940 /* Ada attributes ('Foo). */
9941 case OP_ATR_FIRST:
9942 case OP_ATR_LAST:
9943 case OP_ATR_LENGTH:
9944 case OP_ATR_IMAGE:
9945 case OP_ATR_MAX:
9946 case OP_ATR_MIN:
9947 case OP_ATR_MODULUS:
9948 case OP_ATR_POS:
9949 case OP_ATR_SIZE:
9950 case OP_ATR_TAG:
9951 case OP_ATR_VAL:
9952 break;
9953
9954 case UNOP_IN_RANGE:
9955 case UNOP_QUAL:
9956 /* XXX: gdb_sprint_host_address, type_sprint */
9957 fprintf_filtered (stream, _("Type @"));
9958 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9959 fprintf_filtered (stream, " (");
9960 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9961 fprintf_filtered (stream, ")");
9962 break;
9963 case BINOP_IN_BOUNDS:
9964 fprintf_filtered (stream, " (%d)",
9965 longest_to_int (exp->elts[pc + 2].longconst));
9966 break;
9967 case TERNOP_IN_RANGE:
9968 break;
9969
9970 case OP_AGGREGATE:
9971 case OP_OTHERS:
9972 case OP_DISCRETE_RANGE:
9973 case OP_POSITIONAL:
9974 case OP_CHOICES:
9975 break;
9976
9977 case OP_NAME:
9978 case OP_STRING:
9979 {
9980 char *name = &exp->elts[elt + 2].string;
9981 int len = longest_to_int (exp->elts[elt + 1].longconst);
9982 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9983 break;
9984 }
9985
9986 default:
9987 return dump_subexp_body_standard (exp, stream, elt);
9988 }
9989
9990 elt += oplen;
9991 for (i = 0; i < nargs; i += 1)
9992 elt = dump_subexp (exp, stream, elt);
9993
9994 return elt;
9995 }
9996
9997 /* The Ada extension of print_subexp (q.v.). */
9998
9999 static void
10000 ada_print_subexp (struct expression *exp, int *pos,
10001 struct ui_file *stream, enum precedence prec)
10002 {
10003 int oplen, nargs, i;
10004 int pc = *pos;
10005 enum exp_opcode op = exp->elts[pc].opcode;
10006
10007 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10008
10009 *pos += oplen;
10010 switch (op)
10011 {
10012 default:
10013 *pos -= oplen;
10014 print_subexp_standard (exp, pos, stream, prec);
10015 return;
10016
10017 case OP_VAR_VALUE:
10018 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10019 return;
10020
10021 case BINOP_IN_BOUNDS:
10022 /* XXX: sprint_subexp */
10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
10024 fputs_filtered (" in ", stream);
10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
10026 fputs_filtered ("'range", stream);
10027 if (exp->elts[pc + 1].longconst > 1)
10028 fprintf_filtered (stream, "(%ld)",
10029 (long) exp->elts[pc + 1].longconst);
10030 return;
10031
10032 case TERNOP_IN_RANGE:
10033 if (prec >= PREC_EQUAL)
10034 fputs_filtered ("(", stream);
10035 /* XXX: sprint_subexp */
10036 print_subexp (exp, pos, stream, PREC_SUFFIX);
10037 fputs_filtered (" in ", stream);
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 fputs_filtered (" .. ", stream);
10040 print_subexp (exp, pos, stream, PREC_EQUAL);
10041 if (prec >= PREC_EQUAL)
10042 fputs_filtered (")", stream);
10043 return;
10044
10045 case OP_ATR_FIRST:
10046 case OP_ATR_LAST:
10047 case OP_ATR_LENGTH:
10048 case OP_ATR_IMAGE:
10049 case OP_ATR_MAX:
10050 case OP_ATR_MIN:
10051 case OP_ATR_MODULUS:
10052 case OP_ATR_POS:
10053 case OP_ATR_SIZE:
10054 case OP_ATR_TAG:
10055 case OP_ATR_VAL:
10056 if (exp->elts[*pos].opcode == OP_TYPE)
10057 {
10058 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10059 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10060 *pos += 3;
10061 }
10062 else
10063 print_subexp (exp, pos, stream, PREC_SUFFIX);
10064 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10065 if (nargs > 1)
10066 {
10067 int tem;
10068 for (tem = 1; tem < nargs; tem += 1)
10069 {
10070 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10071 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10072 }
10073 fputs_filtered (")", stream);
10074 }
10075 return;
10076
10077 case UNOP_QUAL:
10078 type_print (exp->elts[pc + 1].type, "", stream, 0);
10079 fputs_filtered ("'(", stream);
10080 print_subexp (exp, pos, stream, PREC_PREFIX);
10081 fputs_filtered (")", stream);
10082 return;
10083
10084 case UNOP_IN_RANGE:
10085 /* XXX: sprint_subexp */
10086 print_subexp (exp, pos, stream, PREC_SUFFIX);
10087 fputs_filtered (" in ", stream);
10088 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10089 return;
10090
10091 case OP_DISCRETE_RANGE:
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 fputs_filtered ("..", stream);
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10095 return;
10096
10097 case OP_OTHERS:
10098 fputs_filtered ("others => ", stream);
10099 print_subexp (exp, pos, stream, PREC_SUFFIX);
10100 return;
10101
10102 case OP_CHOICES:
10103 for (i = 0; i < nargs-1; i += 1)
10104 {
10105 if (i > 0)
10106 fputs_filtered ("|", stream);
10107 print_subexp (exp, pos, stream, PREC_SUFFIX);
10108 }
10109 fputs_filtered (" => ", stream);
10110 print_subexp (exp, pos, stream, PREC_SUFFIX);
10111 return;
10112
10113 case OP_POSITIONAL:
10114 print_subexp (exp, pos, stream, PREC_SUFFIX);
10115 return;
10116
10117 case OP_AGGREGATE:
10118 fputs_filtered ("(", stream);
10119 for (i = 0; i < nargs; i += 1)
10120 {
10121 if (i > 0)
10122 fputs_filtered (", ", stream);
10123 print_subexp (exp, pos, stream, PREC_SUFFIX);
10124 }
10125 fputs_filtered (")", stream);
10126 return;
10127 }
10128 }
10129
10130 /* Table mapping opcodes into strings for printing operators
10131 and precedences of the operators. */
10132
10133 static const struct op_print ada_op_print_tab[] = {
10134 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10135 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10136 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10137 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10138 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10139 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10140 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10141 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10142 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10143 {">=", BINOP_GEQ, PREC_ORDER, 0},
10144 {">", BINOP_GTR, PREC_ORDER, 0},
10145 {"<", BINOP_LESS, PREC_ORDER, 0},
10146 {">>", BINOP_RSH, PREC_SHIFT, 0},
10147 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10148 {"+", BINOP_ADD, PREC_ADD, 0},
10149 {"-", BINOP_SUB, PREC_ADD, 0},
10150 {"&", BINOP_CONCAT, PREC_ADD, 0},
10151 {"*", BINOP_MUL, PREC_MUL, 0},
10152 {"/", BINOP_DIV, PREC_MUL, 0},
10153 {"rem", BINOP_REM, PREC_MUL, 0},
10154 {"mod", BINOP_MOD, PREC_MUL, 0},
10155 {"**", BINOP_EXP, PREC_REPEAT, 0},
10156 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10157 {"-", UNOP_NEG, PREC_PREFIX, 0},
10158 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10159 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10160 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10161 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10162 {".all", UNOP_IND, PREC_SUFFIX, 1},
10163 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10164 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10165 {NULL, 0, 0, 0}
10166 };
10167 \f
10168 /* Fundamental Ada Types */
10169
10170 /* Create a fundamental Ada type using default reasonable for the current
10171 target machine.
10172
10173 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10174 define fundamental types such as "int" or "double". Others (stabs or
10175 DWARF version 2, etc) do define fundamental types. For the formats which
10176 don't provide fundamental types, gdb can create such types using this
10177 function.
10178
10179 FIXME: Some compilers distinguish explicitly signed integral types
10180 (signed short, signed int, signed long) from "regular" integral types
10181 (short, int, long) in the debugging information. There is some dis-
10182 agreement as to how useful this feature is. In particular, gcc does
10183 not support this. Also, only some debugging formats allow the
10184 distinction to be passed on to a debugger. For now, we always just
10185 use "short", "int", or "long" as the type name, for both the implicit
10186 and explicitly signed types. This also makes life easier for the
10187 gdb test suite since we don't have to account for the differences
10188 in output depending upon what the compiler and debugging format
10189 support. We will probably have to re-examine the issue when gdb
10190 starts taking it's fundamental type information directly from the
10191 debugging information supplied by the compiler. fnf@cygnus.com */
10192
10193 static struct type *
10194 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10195 {
10196 struct type *type = NULL;
10197
10198 switch (typeid)
10199 {
10200 default:
10201 /* FIXME: For now, if we are asked to produce a type not in this
10202 language, create the equivalent of a C integer type with the
10203 name "<?type?>". When all the dust settles from the type
10204 reconstruction work, this should probably become an error. */
10205 type = init_type (TYPE_CODE_INT,
10206 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10207 0, "<?type?>", objfile);
10208 warning (_("internal error: no Ada fundamental type %d"), typeid);
10209 break;
10210 case FT_VOID:
10211 type = init_type (TYPE_CODE_VOID,
10212 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10213 0, "void", objfile);
10214 break;
10215 case FT_CHAR:
10216 type = init_type (TYPE_CODE_INT,
10217 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10218 0, "character", objfile);
10219 break;
10220 case FT_SIGNED_CHAR:
10221 type = init_type (TYPE_CODE_INT,
10222 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10223 0, "signed char", objfile);
10224 break;
10225 case FT_UNSIGNED_CHAR:
10226 type = init_type (TYPE_CODE_INT,
10227 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10228 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10229 break;
10230 case FT_SHORT:
10231 type = init_type (TYPE_CODE_INT,
10232 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10233 0, "short_integer", objfile);
10234 break;
10235 case FT_SIGNED_SHORT:
10236 type = init_type (TYPE_CODE_INT,
10237 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10238 0, "short_integer", objfile);
10239 break;
10240 case FT_UNSIGNED_SHORT:
10241 type = init_type (TYPE_CODE_INT,
10242 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10243 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10244 break;
10245 case FT_INTEGER:
10246 type = init_type (TYPE_CODE_INT,
10247 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10248 0, "integer", objfile);
10249 break;
10250 case FT_SIGNED_INTEGER:
10251 type = init_type (TYPE_CODE_INT,
10252 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10253 0, "integer", objfile); /* FIXME -fnf */
10254 break;
10255 case FT_UNSIGNED_INTEGER:
10256 type = init_type (TYPE_CODE_INT,
10257 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10258 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10259 break;
10260 case FT_LONG:
10261 type = init_type (TYPE_CODE_INT,
10262 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10263 0, "long_integer", objfile);
10264 break;
10265 case FT_SIGNED_LONG:
10266 type = init_type (TYPE_CODE_INT,
10267 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10268 0, "long_integer", objfile);
10269 break;
10270 case FT_UNSIGNED_LONG:
10271 type = init_type (TYPE_CODE_INT,
10272 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10273 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10274 break;
10275 case FT_LONG_LONG:
10276 type = init_type (TYPE_CODE_INT,
10277 gdbarch_long_long_bit (current_gdbarch)
10278 / TARGET_CHAR_BIT,
10279 0, "long_long_integer", objfile);
10280 break;
10281 case FT_SIGNED_LONG_LONG:
10282 type = init_type (TYPE_CODE_INT,
10283 gdbarch_long_long_bit (current_gdbarch)
10284 / TARGET_CHAR_BIT,
10285 0, "long_long_integer", objfile);
10286 break;
10287 case FT_UNSIGNED_LONG_LONG:
10288 type = init_type (TYPE_CODE_INT,
10289 gdbarch_long_long_bit (current_gdbarch)
10290 / TARGET_CHAR_BIT,
10291 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10292 break;
10293 case FT_FLOAT:
10294 type = init_type (TYPE_CODE_FLT,
10295 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10296 0, "float", objfile);
10297 break;
10298 case FT_DBL_PREC_FLOAT:
10299 type = init_type (TYPE_CODE_FLT,
10300 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10301 0, "long_float", objfile);
10302 break;
10303 case FT_EXT_PREC_FLOAT:
10304 type = init_type (TYPE_CODE_FLT,
10305 gdbarch_long_double_bit (current_gdbarch)
10306 / TARGET_CHAR_BIT,
10307 0, "long_long_float", objfile);
10308 break;
10309 }
10310 return (type);
10311 }
10312
10313 enum ada_primitive_types {
10314 ada_primitive_type_int,
10315 ada_primitive_type_long,
10316 ada_primitive_type_short,
10317 ada_primitive_type_char,
10318 ada_primitive_type_float,
10319 ada_primitive_type_double,
10320 ada_primitive_type_void,
10321 ada_primitive_type_long_long,
10322 ada_primitive_type_long_double,
10323 ada_primitive_type_natural,
10324 ada_primitive_type_positive,
10325 ada_primitive_type_system_address,
10326 nr_ada_primitive_types
10327 };
10328
10329 static void
10330 ada_language_arch_info (struct gdbarch *gdbarch,
10331 struct language_arch_info *lai)
10332 {
10333 const struct builtin_type *builtin = builtin_type (gdbarch);
10334 lai->primitive_type_vector
10335 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10336 struct type *);
10337 lai->primitive_type_vector [ada_primitive_type_int] =
10338 init_type (TYPE_CODE_INT,
10339 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10340 0, "integer", (struct objfile *) NULL);
10341 lai->primitive_type_vector [ada_primitive_type_long] =
10342 init_type (TYPE_CODE_INT,
10343 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10344 0, "long_integer", (struct objfile *) NULL);
10345 lai->primitive_type_vector [ada_primitive_type_short] =
10346 init_type (TYPE_CODE_INT,
10347 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10348 0, "short_integer", (struct objfile *) NULL);
10349 lai->string_char_type =
10350 lai->primitive_type_vector [ada_primitive_type_char] =
10351 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10352 0, "character", (struct objfile *) NULL);
10353 lai->primitive_type_vector [ada_primitive_type_float] =
10354 init_type (TYPE_CODE_FLT,
10355 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10356 0, "float", (struct objfile *) NULL);
10357 lai->primitive_type_vector [ada_primitive_type_double] =
10358 init_type (TYPE_CODE_FLT,
10359 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10360 0, "long_float", (struct objfile *) NULL);
10361 lai->primitive_type_vector [ada_primitive_type_long_long] =
10362 init_type (TYPE_CODE_INT,
10363 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10364 0, "long_long_integer", (struct objfile *) NULL);
10365 lai->primitive_type_vector [ada_primitive_type_long_double] =
10366 init_type (TYPE_CODE_FLT,
10367 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10368 0, "long_long_float", (struct objfile *) NULL);
10369 lai->primitive_type_vector [ada_primitive_type_natural] =
10370 init_type (TYPE_CODE_INT,
10371 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10372 0, "natural", (struct objfile *) NULL);
10373 lai->primitive_type_vector [ada_primitive_type_positive] =
10374 init_type (TYPE_CODE_INT,
10375 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10376 0, "positive", (struct objfile *) NULL);
10377 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10378
10379 lai->primitive_type_vector [ada_primitive_type_system_address] =
10380 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10381 (struct objfile *) NULL));
10382 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10383 = "system__address";
10384 }
10385 \f
10386 /* Language vector */
10387
10388 /* Not really used, but needed in the ada_language_defn. */
10389
10390 static void
10391 emit_char (int c, struct ui_file *stream, int quoter)
10392 {
10393 ada_emit_char (c, stream, quoter, 1);
10394 }
10395
10396 static int
10397 parse (void)
10398 {
10399 warnings_issued = 0;
10400 return ada_parse ();
10401 }
10402
10403 static const struct exp_descriptor ada_exp_descriptor = {
10404 ada_print_subexp,
10405 ada_operator_length,
10406 ada_op_name,
10407 ada_dump_subexp_body,
10408 ada_evaluate_subexp
10409 };
10410
10411 const struct language_defn ada_language_defn = {
10412 "ada", /* Language name */
10413 language_ada,
10414 range_check_off,
10415 type_check_off,
10416 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10417 that's not quite what this means. */
10418 array_row_major,
10419 &ada_exp_descriptor,
10420 parse,
10421 ada_error,
10422 resolve,
10423 ada_printchar, /* Print a character constant */
10424 ada_printstr, /* Function to print string constant */
10425 emit_char, /* Function to print single char (not used) */
10426 ada_create_fundamental_type, /* Create fundamental type in this language */
10427 ada_print_type, /* Print a type using appropriate syntax */
10428 ada_val_print, /* Print a value using appropriate syntax */
10429 ada_value_print, /* Print a top-level value */
10430 NULL, /* Language specific skip_trampoline */
10431 NULL, /* value_of_this */
10432 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10433 basic_lookup_transparent_type, /* lookup_transparent_type */
10434 ada_la_decode, /* Language specific symbol demangler */
10435 NULL, /* Language specific class_name_from_physname */
10436 ada_op_print_tab, /* expression operators for printing */
10437 0, /* c-style arrays */
10438 1, /* String lower bound */
10439 ada_get_gdb_completer_word_break_characters,
10440 ada_language_arch_info,
10441 ada_print_array_index,
10442 default_pass_by_reference,
10443 LANG_MAGIC
10444 };
10445
10446 void
10447 _initialize_ada_language (void)
10448 {
10449 add_language (&ada_language_defn);
10450
10451 varsize_limit = 65536;
10452
10453 obstack_init (&symbol_list_obstack);
10454
10455 decoded_names_store = htab_create_alloc
10456 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10457 NULL, xcalloc, xfree);
10458 }
This page took 0.329325 seconds and 3 git commands to generate.