Rework symbol searches to move Ada-specific stuff to ada-lang.c.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void modify_general_field (struct type *, char *, LONGEST, int, int);
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_target_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static int full_match (const char *, const char *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct value *resolve_subexp (struct expression **, int *, int,
124 struct type *);
125
126 static void replace_operator_with_call (struct expression **, int, int, int,
127 struct symbol *, struct block *);
128
129 static int possible_user_operator_p (enum exp_opcode, struct value **);
130
131 static char *ada_op_name (enum exp_opcode);
132
133 static const char *ada_decoded_op_name (enum exp_opcode);
134
135 static int numeric_type_p (struct type *);
136
137 static int integer_type_p (struct type *);
138
139 static int scalar_type_p (struct type *);
140
141 static int discrete_type_p (struct type *);
142
143 static enum ada_renaming_category parse_old_style_renaming (struct type *,
144 const char **,
145 int *,
146 const char **);
147
148 static struct symbol *find_old_style_renaming_symbol (const char *,
149 struct block *);
150
151 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
152 int, int, int *);
153
154 static struct value *evaluate_subexp_type (struct expression *, int *);
155
156 static struct type *ada_find_parallel_type_with_name (struct type *,
157 const char *);
158
159 static int is_dynamic_field (struct type *, int);
160
161 static struct type *to_fixed_variant_branch_type (struct type *,
162 const gdb_byte *,
163 CORE_ADDR, struct value *);
164
165 static struct type *to_fixed_array_type (struct type *, struct value *, int);
166
167 static struct type *to_fixed_range_type (struct type *, struct value *);
168
169 static struct type *to_static_fixed_type (struct type *);
170 static struct type *static_unwrap_type (struct type *type);
171
172 static struct value *unwrap_value (struct value *);
173
174 static struct type *constrained_packed_array_type (struct type *, long *);
175
176 static struct type *decode_constrained_packed_array_type (struct type *);
177
178 static long decode_packed_array_bitsize (struct type *);
179
180 static struct value *decode_constrained_packed_array (struct value *);
181
182 static int ada_is_packed_array_type (struct type *);
183
184 static int ada_is_unconstrained_packed_array_type (struct type *);
185
186 static struct value *value_subscript_packed (struct value *, int,
187 struct value **);
188
189 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
190
191 static struct value *coerce_unspec_val_to_type (struct value *,
192 struct type *);
193
194 static struct value *get_var_value (char *, char *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static int wild_match (const char *, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233 static struct value *ada_coerce_to_simple_array (struct value *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static void check_size (const struct type *);
241
242 static struct value *ada_index_struct_field (int, struct value *, int,
243 struct type *);
244
245 static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Inferior-specific data. */
310
311 /* Per-inferior data for this module. */
312
313 struct ada_inferior_data
314 {
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320 };
321
322 /* Our key to this module's inferior data. */
323 static const struct inferior_data *ada_inferior_data;
324
325 /* A cleanup routine for our inferior data. */
326 static void
327 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328 {
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334 }
335
336 /* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344 static struct ada_inferior_data *
345 get_ada_inferior_data (struct inferior *inf)
346 {
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357 }
358
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362 static void
363 ada_inferior_exit (struct inferior *inf)
364 {
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367 }
368
369 /* Utilities */
370
371 /* Given DECODED_NAME a string holding a symbol name in its
372 decoded form (ie using the Ada dotted notation), returns
373 its unqualified name. */
374
375 static const char *
376 ada_unqualified_name (const char *decoded_name)
377 {
378 const char *result = strrchr (decoded_name, '.');
379
380 if (result != NULL)
381 result++; /* Skip the dot... */
382 else
383 result = decoded_name;
384
385 return result;
386 }
387
388 /* Return a string starting with '<', followed by STR, and '>'.
389 The result is good until the next call. */
390
391 static char *
392 add_angle_brackets (const char *str)
393 {
394 static char *result = NULL;
395
396 xfree (result);
397 result = xstrprintf ("<%s>", str);
398 return result;
399 }
400
401 static char *
402 ada_get_gdb_completer_word_break_characters (void)
403 {
404 return ada_completer_word_break_characters;
405 }
406
407 /* Print an array element index using the Ada syntax. */
408
409 static void
410 ada_print_array_index (struct value *index_value, struct ui_file *stream,
411 const struct value_print_options *options)
412 {
413 LA_VALUE_PRINT (index_value, stream, options);
414 fprintf_filtered (stream, " => ");
415 }
416
417 /* Assuming VECT points to an array of *SIZE objects of size
418 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
419 updating *SIZE as necessary and returning the (new) array. */
420
421 void *
422 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
423 {
424 if (*size < min_size)
425 {
426 *size *= 2;
427 if (*size < min_size)
428 *size = min_size;
429 vect = xrealloc (vect, *size * element_size);
430 }
431 return vect;
432 }
433
434 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
435 suffix of FIELD_NAME beginning "___". */
436
437 static int
438 field_name_match (const char *field_name, const char *target)
439 {
440 int len = strlen (target);
441
442 return
443 (strncmp (field_name, target, len) == 0
444 && (field_name[len] == '\0'
445 || (strncmp (field_name + len, "___", 3) == 0
446 && strcmp (field_name + strlen (field_name) - 6,
447 "___XVN") != 0)));
448 }
449
450
451 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
452 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
453 and return its index. This function also handles fields whose name
454 have ___ suffixes because the compiler sometimes alters their name
455 by adding such a suffix to represent fields with certain constraints.
456 If the field could not be found, return a negative number if
457 MAYBE_MISSING is set. Otherwise raise an error. */
458
459 int
460 ada_get_field_index (const struct type *type, const char *field_name,
461 int maybe_missing)
462 {
463 int fieldno;
464 struct type *struct_type = check_typedef ((struct type *) type);
465
466 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
467 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
468 return fieldno;
469
470 if (!maybe_missing)
471 error (_("Unable to find field %s in struct %s. Aborting"),
472 field_name, TYPE_NAME (struct_type));
473
474 return -1;
475 }
476
477 /* The length of the prefix of NAME prior to any "___" suffix. */
478
479 int
480 ada_name_prefix_len (const char *name)
481 {
482 if (name == NULL)
483 return 0;
484 else
485 {
486 const char *p = strstr (name, "___");
487
488 if (p == NULL)
489 return strlen (name);
490 else
491 return p - name;
492 }
493 }
494
495 /* Return non-zero if SUFFIX is a suffix of STR.
496 Return zero if STR is null. */
497
498 static int
499 is_suffix (const char *str, const char *suffix)
500 {
501 int len1, len2;
502
503 if (str == NULL)
504 return 0;
505 len1 = strlen (str);
506 len2 = strlen (suffix);
507 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
508 }
509
510 /* The contents of value VAL, treated as a value of type TYPE. The
511 result is an lval in memory if VAL is. */
512
513 static struct value *
514 coerce_unspec_val_to_type (struct value *val, struct type *type)
515 {
516 type = ada_check_typedef (type);
517 if (value_type (val) == type)
518 return val;
519 else
520 {
521 struct value *result;
522
523 /* Make sure that the object size is not unreasonable before
524 trying to allocate some memory for it. */
525 check_size (type);
526
527 result = allocate_value (type);
528 set_value_component_location (result, val);
529 set_value_bitsize (result, value_bitsize (val));
530 set_value_bitpos (result, value_bitpos (val));
531 set_value_address (result, value_address (val));
532 if (value_lazy (val)
533 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
534 set_value_lazy (result, 1);
535 else
536 memcpy (value_contents_raw (result), value_contents (val),
537 TYPE_LENGTH (type));
538 return result;
539 }
540 }
541
542 static const gdb_byte *
543 cond_offset_host (const gdb_byte *valaddr, long offset)
544 {
545 if (valaddr == NULL)
546 return NULL;
547 else
548 return valaddr + offset;
549 }
550
551 static CORE_ADDR
552 cond_offset_target (CORE_ADDR address, long offset)
553 {
554 if (address == 0)
555 return 0;
556 else
557 return address + offset;
558 }
559
560 /* Issue a warning (as for the definition of warning in utils.c, but
561 with exactly one argument rather than ...), unless the limit on the
562 number of warnings has passed during the evaluation of the current
563 expression. */
564
565 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
566 provided by "complaint". */
567 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
568
569 static void
570 lim_warning (const char *format, ...)
571 {
572 va_list args;
573
574 va_start (args, format);
575 warnings_issued += 1;
576 if (warnings_issued <= warning_limit)
577 vwarning (format, args);
578
579 va_end (args);
580 }
581
582 /* Issue an error if the size of an object of type T is unreasonable,
583 i.e. if it would be a bad idea to allocate a value of this type in
584 GDB. */
585
586 static void
587 check_size (const struct type *type)
588 {
589 if (TYPE_LENGTH (type) > varsize_limit)
590 error (_("object size is larger than varsize-limit"));
591 }
592
593 /* Maximum value of a SIZE-byte signed integer type. */
594 static LONGEST
595 max_of_size (int size)
596 {
597 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
598
599 return top_bit | (top_bit - 1);
600 }
601
602 /* Minimum value of a SIZE-byte signed integer type. */
603 static LONGEST
604 min_of_size (int size)
605 {
606 return -max_of_size (size) - 1;
607 }
608
609 /* Maximum value of a SIZE-byte unsigned integer type. */
610 static ULONGEST
611 umax_of_size (int size)
612 {
613 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
614
615 return top_bit | (top_bit - 1);
616 }
617
618 /* Maximum value of integral type T, as a signed quantity. */
619 static LONGEST
620 max_of_type (struct type *t)
621 {
622 if (TYPE_UNSIGNED (t))
623 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
624 else
625 return max_of_size (TYPE_LENGTH (t));
626 }
627
628 /* Minimum value of integral type T, as a signed quantity. */
629 static LONGEST
630 min_of_type (struct type *t)
631 {
632 if (TYPE_UNSIGNED (t))
633 return 0;
634 else
635 return min_of_size (TYPE_LENGTH (t));
636 }
637
638 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
639 LONGEST
640 ada_discrete_type_high_bound (struct type *type)
641 {
642 switch (TYPE_CODE (type))
643 {
644 case TYPE_CODE_RANGE:
645 return TYPE_HIGH_BOUND (type);
646 case TYPE_CODE_ENUM:
647 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
648 case TYPE_CODE_BOOL:
649 return 1;
650 case TYPE_CODE_CHAR:
651 case TYPE_CODE_INT:
652 return max_of_type (type);
653 default:
654 error (_("Unexpected type in ada_discrete_type_high_bound."));
655 }
656 }
657
658 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
659 LONGEST
660 ada_discrete_type_low_bound (struct type *type)
661 {
662 switch (TYPE_CODE (type))
663 {
664 case TYPE_CODE_RANGE:
665 return TYPE_LOW_BOUND (type);
666 case TYPE_CODE_ENUM:
667 return TYPE_FIELD_BITPOS (type, 0);
668 case TYPE_CODE_BOOL:
669 return 0;
670 case TYPE_CODE_CHAR:
671 case TYPE_CODE_INT:
672 return min_of_type (type);
673 default:
674 error (_("Unexpected type in ada_discrete_type_low_bound."));
675 }
676 }
677
678 /* The identity on non-range types. For range types, the underlying
679 non-range scalar type. */
680
681 static struct type *
682 base_type (struct type *type)
683 {
684 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
685 {
686 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
687 return type;
688 type = TYPE_TARGET_TYPE (type);
689 }
690 return type;
691 }
692 \f
693
694 /* Language Selection */
695
696 /* If the main program is in Ada, return language_ada, otherwise return LANG
697 (the main program is in Ada iif the adainit symbol is found). */
698
699 enum language
700 ada_update_initial_language (enum language lang)
701 {
702 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
703 (struct objfile *) NULL) != NULL)
704 return language_ada;
705
706 return lang;
707 }
708
709 /* If the main procedure is written in Ada, then return its name.
710 The result is good until the next call. Return NULL if the main
711 procedure doesn't appear to be in Ada. */
712
713 char *
714 ada_main_name (void)
715 {
716 struct minimal_symbol *msym;
717 static char *main_program_name = NULL;
718
719 /* For Ada, the name of the main procedure is stored in a specific
720 string constant, generated by the binder. Look for that symbol,
721 extract its address, and then read that string. If we didn't find
722 that string, then most probably the main procedure is not written
723 in Ada. */
724 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
725
726 if (msym != NULL)
727 {
728 CORE_ADDR main_program_name_addr;
729 int err_code;
730
731 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
732 if (main_program_name_addr == 0)
733 error (_("Invalid address for Ada main program name."));
734
735 xfree (main_program_name);
736 target_read_string (main_program_name_addr, &main_program_name,
737 1024, &err_code);
738
739 if (err_code != 0)
740 return NULL;
741 return main_program_name;
742 }
743
744 /* The main procedure doesn't seem to be in Ada. */
745 return NULL;
746 }
747 \f
748 /* Symbols */
749
750 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
751 of NULLs. */
752
753 const struct ada_opname_map ada_opname_table[] = {
754 {"Oadd", "\"+\"", BINOP_ADD},
755 {"Osubtract", "\"-\"", BINOP_SUB},
756 {"Omultiply", "\"*\"", BINOP_MUL},
757 {"Odivide", "\"/\"", BINOP_DIV},
758 {"Omod", "\"mod\"", BINOP_MOD},
759 {"Orem", "\"rem\"", BINOP_REM},
760 {"Oexpon", "\"**\"", BINOP_EXP},
761 {"Olt", "\"<\"", BINOP_LESS},
762 {"Ole", "\"<=\"", BINOP_LEQ},
763 {"Ogt", "\">\"", BINOP_GTR},
764 {"Oge", "\">=\"", BINOP_GEQ},
765 {"Oeq", "\"=\"", BINOP_EQUAL},
766 {"One", "\"/=\"", BINOP_NOTEQUAL},
767 {"Oand", "\"and\"", BINOP_BITWISE_AND},
768 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
769 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
770 {"Oconcat", "\"&\"", BINOP_CONCAT},
771 {"Oabs", "\"abs\"", UNOP_ABS},
772 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
773 {"Oadd", "\"+\"", UNOP_PLUS},
774 {"Osubtract", "\"-\"", UNOP_NEG},
775 {NULL, NULL}
776 };
777
778 /* The "encoded" form of DECODED, according to GNAT conventions.
779 The result is valid until the next call to ada_encode. */
780
781 char *
782 ada_encode (const char *decoded)
783 {
784 static char *encoding_buffer = NULL;
785 static size_t encoding_buffer_size = 0;
786 const char *p;
787 int k;
788
789 if (decoded == NULL)
790 return NULL;
791
792 GROW_VECT (encoding_buffer, encoding_buffer_size,
793 2 * strlen (decoded) + 10);
794
795 k = 0;
796 for (p = decoded; *p != '\0'; p += 1)
797 {
798 if (*p == '.')
799 {
800 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
801 k += 2;
802 }
803 else if (*p == '"')
804 {
805 const struct ada_opname_map *mapping;
806
807 for (mapping = ada_opname_table;
808 mapping->encoded != NULL
809 && strncmp (mapping->decoded, p,
810 strlen (mapping->decoded)) != 0; mapping += 1)
811 ;
812 if (mapping->encoded == NULL)
813 error (_("invalid Ada operator name: %s"), p);
814 strcpy (encoding_buffer + k, mapping->encoded);
815 k += strlen (mapping->encoded);
816 break;
817 }
818 else
819 {
820 encoding_buffer[k] = *p;
821 k += 1;
822 }
823 }
824
825 encoding_buffer[k] = '\0';
826 return encoding_buffer;
827 }
828
829 /* Return NAME folded to lower case, or, if surrounded by single
830 quotes, unfolded, but with the quotes stripped away. Result good
831 to next call. */
832
833 char *
834 ada_fold_name (const char *name)
835 {
836 static char *fold_buffer = NULL;
837 static size_t fold_buffer_size = 0;
838
839 int len = strlen (name);
840 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
841
842 if (name[0] == '\'')
843 {
844 strncpy (fold_buffer, name + 1, len - 2);
845 fold_buffer[len - 2] = '\000';
846 }
847 else
848 {
849 int i;
850
851 for (i = 0; i <= len; i += 1)
852 fold_buffer[i] = tolower (name[i]);
853 }
854
855 return fold_buffer;
856 }
857
858 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
859
860 static int
861 is_lower_alphanum (const char c)
862 {
863 return (isdigit (c) || (isalpha (c) && islower (c)));
864 }
865
866 /* Remove either of these suffixes:
867 . .{DIGIT}+
868 . ${DIGIT}+
869 . ___{DIGIT}+
870 . __{DIGIT}+.
871 These are suffixes introduced by the compiler for entities such as
872 nested subprogram for instance, in order to avoid name clashes.
873 They do not serve any purpose for the debugger. */
874
875 static void
876 ada_remove_trailing_digits (const char *encoded, int *len)
877 {
878 if (*len > 1 && isdigit (encoded[*len - 1]))
879 {
880 int i = *len - 2;
881
882 while (i > 0 && isdigit (encoded[i]))
883 i--;
884 if (i >= 0 && encoded[i] == '.')
885 *len = i;
886 else if (i >= 0 && encoded[i] == '$')
887 *len = i;
888 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
889 *len = i - 2;
890 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
891 *len = i - 1;
892 }
893 }
894
895 /* Remove the suffix introduced by the compiler for protected object
896 subprograms. */
897
898 static void
899 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
900 {
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (*len > 1
912 && encoded[*len - 1] == 'N'
913 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
914 *len = *len - 1;
915 }
916
917 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
918
919 static void
920 ada_remove_Xbn_suffix (const char *encoded, int *len)
921 {
922 int i = *len - 1;
923
924 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
925 i--;
926
927 if (encoded[i] != 'X')
928 return;
929
930 if (i == 0)
931 return;
932
933 if (isalnum (encoded[i-1]))
934 *len = i;
935 }
936
937 /* If ENCODED follows the GNAT entity encoding conventions, then return
938 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
939 replaced by ENCODED.
940
941 The resulting string is valid until the next call of ada_decode.
942 If the string is unchanged by decoding, the original string pointer
943 is returned. */
944
945 const char *
946 ada_decode (const char *encoded)
947 {
948 int i, j;
949 int len0;
950 const char *p;
951 char *decoded;
952 int at_start_name;
953 static char *decoding_buffer = NULL;
954 static size_t decoding_buffer_size = 0;
955
956 /* The name of the Ada main procedure starts with "_ada_".
957 This prefix is not part of the decoded name, so skip this part
958 if we see this prefix. */
959 if (strncmp (encoded, "_ada_", 5) == 0)
960 encoded += 5;
961
962 /* If the name starts with '_', then it is not a properly encoded
963 name, so do not attempt to decode it. Similarly, if the name
964 starts with '<', the name should not be decoded. */
965 if (encoded[0] == '_' || encoded[0] == '<')
966 goto Suppress;
967
968 len0 = strlen (encoded);
969
970 ada_remove_trailing_digits (encoded, &len0);
971 ada_remove_po_subprogram_suffix (encoded, &len0);
972
973 /* Remove the ___X.* suffix if present. Do not forget to verify that
974 the suffix is located before the current "end" of ENCODED. We want
975 to avoid re-matching parts of ENCODED that have previously been
976 marked as discarded (by decrementing LEN0). */
977 p = strstr (encoded, "___");
978 if (p != NULL && p - encoded < len0 - 3)
979 {
980 if (p[3] == 'X')
981 len0 = p - encoded;
982 else
983 goto Suppress;
984 }
985
986 /* Remove any trailing TKB suffix. It tells us that this symbol
987 is for the body of a task, but that information does not actually
988 appear in the decoded name. */
989
990 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
991 len0 -= 3;
992
993 /* Remove any trailing TB suffix. The TB suffix is slightly different
994 from the TKB suffix because it is used for non-anonymous task
995 bodies. */
996
997 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
998 len0 -= 2;
999
1000 /* Remove trailing "B" suffixes. */
1001 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1002
1003 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1004 len0 -= 1;
1005
1006 /* Make decoded big enough for possible expansion by operator name. */
1007
1008 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1009 decoded = decoding_buffer;
1010
1011 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1012
1013 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1014 {
1015 i = len0 - 2;
1016 while ((i >= 0 && isdigit (encoded[i]))
1017 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1018 i -= 1;
1019 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1020 len0 = i - 1;
1021 else if (encoded[i] == '$')
1022 len0 = i;
1023 }
1024
1025 /* The first few characters that are not alphabetic are not part
1026 of any encoding we use, so we can copy them over verbatim. */
1027
1028 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1029 decoded[j] = encoded[i];
1030
1031 at_start_name = 1;
1032 while (i < len0)
1033 {
1034 /* Is this a symbol function? */
1035 if (at_start_name && encoded[i] == 'O')
1036 {
1037 int k;
1038
1039 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1040 {
1041 int op_len = strlen (ada_opname_table[k].encoded);
1042 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1043 op_len - 1) == 0)
1044 && !isalnum (encoded[i + op_len]))
1045 {
1046 strcpy (decoded + j, ada_opname_table[k].decoded);
1047 at_start_name = 0;
1048 i += op_len;
1049 j += strlen (ada_opname_table[k].decoded);
1050 break;
1051 }
1052 }
1053 if (ada_opname_table[k].encoded != NULL)
1054 continue;
1055 }
1056 at_start_name = 0;
1057
1058 /* Replace "TK__" with "__", which will eventually be translated
1059 into "." (just below). */
1060
1061 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1062 i += 2;
1063
1064 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1065 be translated into "." (just below). These are internal names
1066 generated for anonymous blocks inside which our symbol is nested. */
1067
1068 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1069 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1070 && isdigit (encoded [i+4]))
1071 {
1072 int k = i + 5;
1073
1074 while (k < len0 && isdigit (encoded[k]))
1075 k++; /* Skip any extra digit. */
1076
1077 /* Double-check that the "__B_{DIGITS}+" sequence we found
1078 is indeed followed by "__". */
1079 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1080 i = k;
1081 }
1082
1083 /* Remove _E{DIGITS}+[sb] */
1084
1085 /* Just as for protected object subprograms, there are 2 categories
1086 of subprograms created by the compiler for each entry. The first
1087 one implements the actual entry code, and has a suffix following
1088 the convention above; the second one implements the barrier and
1089 uses the same convention as above, except that the 'E' is replaced
1090 by a 'B'.
1091
1092 Just as above, we do not decode the name of barrier functions
1093 to give the user a clue that the code he is debugging has been
1094 internally generated. */
1095
1096 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1097 && isdigit (encoded[i+2]))
1098 {
1099 int k = i + 3;
1100
1101 while (k < len0 && isdigit (encoded[k]))
1102 k++;
1103
1104 if (k < len0
1105 && (encoded[k] == 'b' || encoded[k] == 's'))
1106 {
1107 k++;
1108 /* Just as an extra precaution, make sure that if this
1109 suffix is followed by anything else, it is a '_'.
1110 Otherwise, we matched this sequence by accident. */
1111 if (k == len0
1112 || (k < len0 && encoded[k] == '_'))
1113 i = k;
1114 }
1115 }
1116
1117 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1118 the GNAT front-end in protected object subprograms. */
1119
1120 if (i < len0 + 3
1121 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1122 {
1123 /* Backtrack a bit up until we reach either the begining of
1124 the encoded name, or "__". Make sure that we only find
1125 digits or lowercase characters. */
1126 const char *ptr = encoded + i - 1;
1127
1128 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1129 ptr--;
1130 if (ptr < encoded
1131 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1132 i++;
1133 }
1134
1135 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1136 {
1137 /* This is a X[bn]* sequence not separated from the previous
1138 part of the name with a non-alpha-numeric character (in other
1139 words, immediately following an alpha-numeric character), then
1140 verify that it is placed at the end of the encoded name. If
1141 not, then the encoding is not valid and we should abort the
1142 decoding. Otherwise, just skip it, it is used in body-nested
1143 package names. */
1144 do
1145 i += 1;
1146 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1147 if (i < len0)
1148 goto Suppress;
1149 }
1150 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1151 {
1152 /* Replace '__' by '.'. */
1153 decoded[j] = '.';
1154 at_start_name = 1;
1155 i += 2;
1156 j += 1;
1157 }
1158 else
1159 {
1160 /* It's a character part of the decoded name, so just copy it
1161 over. */
1162 decoded[j] = encoded[i];
1163 i += 1;
1164 j += 1;
1165 }
1166 }
1167 decoded[j] = '\000';
1168
1169 /* Decoded names should never contain any uppercase character.
1170 Double-check this, and abort the decoding if we find one. */
1171
1172 for (i = 0; decoded[i] != '\0'; i += 1)
1173 if (isupper (decoded[i]) || decoded[i] == ' ')
1174 goto Suppress;
1175
1176 if (strcmp (decoded, encoded) == 0)
1177 return encoded;
1178 else
1179 return decoded;
1180
1181 Suppress:
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1183 decoded = decoding_buffer;
1184 if (encoded[0] == '<')
1185 strcpy (decoded, encoded);
1186 else
1187 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1188 return decoded;
1189
1190 }
1191
1192 /* Table for keeping permanent unique copies of decoded names. Once
1193 allocated, names in this table are never released. While this is a
1194 storage leak, it should not be significant unless there are massive
1195 changes in the set of decoded names in successive versions of a
1196 symbol table loaded during a single session. */
1197 static struct htab *decoded_names_store;
1198
1199 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1200 in the language-specific part of GSYMBOL, if it has not been
1201 previously computed. Tries to save the decoded name in the same
1202 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1203 in any case, the decoded symbol has a lifetime at least that of
1204 GSYMBOL).
1205 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1206 const, but nevertheless modified to a semantically equivalent form
1207 when a decoded name is cached in it.
1208 */
1209
1210 char *
1211 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1212 {
1213 char **resultp =
1214 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1215
1216 if (*resultp == NULL)
1217 {
1218 const char *decoded = ada_decode (gsymbol->name);
1219
1220 if (gsymbol->obj_section != NULL)
1221 {
1222 struct objfile *objf = gsymbol->obj_section->objfile;
1223
1224 *resultp = obsavestring (decoded, strlen (decoded),
1225 &objf->objfile_obstack);
1226 }
1227 /* Sometimes, we can't find a corresponding objfile, in which
1228 case, we put the result on the heap. Since we only decode
1229 when needed, we hope this usually does not cause a
1230 significant memory leak (FIXME). */
1231 if (*resultp == NULL)
1232 {
1233 char **slot = (char **) htab_find_slot (decoded_names_store,
1234 decoded, INSERT);
1235
1236 if (*slot == NULL)
1237 *slot = xstrdup (decoded);
1238 *resultp = *slot;
1239 }
1240 }
1241
1242 return *resultp;
1243 }
1244
1245 static char *
1246 ada_la_decode (const char *encoded, int options)
1247 {
1248 return xstrdup (ada_decode (encoded));
1249 }
1250
1251 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1252 suffixes that encode debugging information or leading _ada_ on
1253 SYM_NAME (see is_name_suffix commentary for the debugging
1254 information that is ignored). If WILD, then NAME need only match a
1255 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1256 either argument is NULL. */
1257
1258 static int
1259 match_name (const char *sym_name, const char *name, int wild)
1260 {
1261 if (sym_name == NULL || name == NULL)
1262 return 0;
1263 else if (wild)
1264 return wild_match (sym_name, name) == 0;
1265 else
1266 {
1267 int len_name = strlen (name);
1268
1269 return (strncmp (sym_name, name, len_name) == 0
1270 && is_name_suffix (sym_name + len_name))
1271 || (strncmp (sym_name, "_ada_", 5) == 0
1272 && strncmp (sym_name + 5, name, len_name) == 0
1273 && is_name_suffix (sym_name + len_name + 5));
1274 }
1275 }
1276 \f
1277
1278 /* Arrays */
1279
1280 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1281 generated by the GNAT compiler to describe the index type used
1282 for each dimension of an array, check whether it follows the latest
1283 known encoding. If not, fix it up to conform to the latest encoding.
1284 Otherwise, do nothing. This function also does nothing if
1285 INDEX_DESC_TYPE is NULL.
1286
1287 The GNAT encoding used to describle the array index type evolved a bit.
1288 Initially, the information would be provided through the name of each
1289 field of the structure type only, while the type of these fields was
1290 described as unspecified and irrelevant. The debugger was then expected
1291 to perform a global type lookup using the name of that field in order
1292 to get access to the full index type description. Because these global
1293 lookups can be very expensive, the encoding was later enhanced to make
1294 the global lookup unnecessary by defining the field type as being
1295 the full index type description.
1296
1297 The purpose of this routine is to allow us to support older versions
1298 of the compiler by detecting the use of the older encoding, and by
1299 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1300 we essentially replace each field's meaningless type by the associated
1301 index subtype). */
1302
1303 void
1304 ada_fixup_array_indexes_type (struct type *index_desc_type)
1305 {
1306 int i;
1307
1308 if (index_desc_type == NULL)
1309 return;
1310 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1311
1312 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1313 to check one field only, no need to check them all). If not, return
1314 now.
1315
1316 If our INDEX_DESC_TYPE was generated using the older encoding,
1317 the field type should be a meaningless integer type whose name
1318 is not equal to the field name. */
1319 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1320 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1321 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1322 return;
1323
1324 /* Fixup each field of INDEX_DESC_TYPE. */
1325 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1326 {
1327 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1328 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1329
1330 if (raw_type)
1331 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1332 }
1333 }
1334
1335 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1336
1337 static char *bound_name[] = {
1338 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1339 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1340 };
1341
1342 /* Maximum number of array dimensions we are prepared to handle. */
1343
1344 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1345
1346 /* Like modify_field, but allows bitpos > wordlength. */
1347
1348 static void
1349 modify_general_field (struct type *type, char *addr,
1350 LONGEST fieldval, int bitpos, int bitsize)
1351 {
1352 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1353 }
1354
1355
1356 /* The desc_* routines return primitive portions of array descriptors
1357 (fat pointers). */
1358
1359 /* The descriptor or array type, if any, indicated by TYPE; removes
1360 level of indirection, if needed. */
1361
1362 static struct type *
1363 desc_base_type (struct type *type)
1364 {
1365 if (type == NULL)
1366 return NULL;
1367 type = ada_check_typedef (type);
1368 if (type != NULL
1369 && (TYPE_CODE (type) == TYPE_CODE_PTR
1370 || TYPE_CODE (type) == TYPE_CODE_REF))
1371 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1372 else
1373 return type;
1374 }
1375
1376 /* True iff TYPE indicates a "thin" array pointer type. */
1377
1378 static int
1379 is_thin_pntr (struct type *type)
1380 {
1381 return
1382 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1383 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1384 }
1385
1386 /* The descriptor type for thin pointer type TYPE. */
1387
1388 static struct type *
1389 thin_descriptor_type (struct type *type)
1390 {
1391 struct type *base_type = desc_base_type (type);
1392
1393 if (base_type == NULL)
1394 return NULL;
1395 if (is_suffix (ada_type_name (base_type), "___XVE"))
1396 return base_type;
1397 else
1398 {
1399 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1400
1401 if (alt_type == NULL)
1402 return base_type;
1403 else
1404 return alt_type;
1405 }
1406 }
1407
1408 /* A pointer to the array data for thin-pointer value VAL. */
1409
1410 static struct value *
1411 thin_data_pntr (struct value *val)
1412 {
1413 struct type *type = value_type (val);
1414 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1415
1416 data_type = lookup_pointer_type (data_type);
1417
1418 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1419 return value_cast (data_type, value_copy (val));
1420 else
1421 return value_from_longest (data_type, value_address (val));
1422 }
1423
1424 /* True iff TYPE indicates a "thick" array pointer type. */
1425
1426 static int
1427 is_thick_pntr (struct type *type)
1428 {
1429 type = desc_base_type (type);
1430 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1431 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1432 }
1433
1434 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1435 pointer to one, the type of its bounds data; otherwise, NULL. */
1436
1437 static struct type *
1438 desc_bounds_type (struct type *type)
1439 {
1440 struct type *r;
1441
1442 type = desc_base_type (type);
1443
1444 if (type == NULL)
1445 return NULL;
1446 else if (is_thin_pntr (type))
1447 {
1448 type = thin_descriptor_type (type);
1449 if (type == NULL)
1450 return NULL;
1451 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1452 if (r != NULL)
1453 return ada_check_typedef (r);
1454 }
1455 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1456 {
1457 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1458 if (r != NULL)
1459 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1460 }
1461 return NULL;
1462 }
1463
1464 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1465 one, a pointer to its bounds data. Otherwise NULL. */
1466
1467 static struct value *
1468 desc_bounds (struct value *arr)
1469 {
1470 struct type *type = ada_check_typedef (value_type (arr));
1471
1472 if (is_thin_pntr (type))
1473 {
1474 struct type *bounds_type =
1475 desc_bounds_type (thin_descriptor_type (type));
1476 LONGEST addr;
1477
1478 if (bounds_type == NULL)
1479 error (_("Bad GNAT array descriptor"));
1480
1481 /* NOTE: The following calculation is not really kosher, but
1482 since desc_type is an XVE-encoded type (and shouldn't be),
1483 the correct calculation is a real pain. FIXME (and fix GCC). */
1484 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1485 addr = value_as_long (arr);
1486 else
1487 addr = value_address (arr);
1488
1489 return
1490 value_from_longest (lookup_pointer_type (bounds_type),
1491 addr - TYPE_LENGTH (bounds_type));
1492 }
1493
1494 else if (is_thick_pntr (type))
1495 {
1496 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1497 _("Bad GNAT array descriptor"));
1498 struct type *p_bounds_type = value_type (p_bounds);
1499
1500 if (p_bounds_type
1501 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1502 {
1503 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1504
1505 if (TYPE_STUB (target_type))
1506 p_bounds = value_cast (lookup_pointer_type
1507 (ada_check_typedef (target_type)),
1508 p_bounds);
1509 }
1510 else
1511 error (_("Bad GNAT array descriptor"));
1512
1513 return p_bounds;
1514 }
1515 else
1516 return NULL;
1517 }
1518
1519 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1520 position of the field containing the address of the bounds data. */
1521
1522 static int
1523 fat_pntr_bounds_bitpos (struct type *type)
1524 {
1525 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1526 }
1527
1528 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1529 size of the field containing the address of the bounds data. */
1530
1531 static int
1532 fat_pntr_bounds_bitsize (struct type *type)
1533 {
1534 type = desc_base_type (type);
1535
1536 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1537 return TYPE_FIELD_BITSIZE (type, 1);
1538 else
1539 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1540 }
1541
1542 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1543 pointer to one, the type of its array data (a array-with-no-bounds type);
1544 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1545 data. */
1546
1547 static struct type *
1548 desc_data_target_type (struct type *type)
1549 {
1550 type = desc_base_type (type);
1551
1552 /* NOTE: The following is bogus; see comment in desc_bounds. */
1553 if (is_thin_pntr (type))
1554 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1555 else if (is_thick_pntr (type))
1556 {
1557 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1558
1559 if (data_type
1560 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1561 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1568 its array data. */
1569
1570 static struct value *
1571 desc_data (struct value *arr)
1572 {
1573 struct type *type = value_type (arr);
1574
1575 if (is_thin_pntr (type))
1576 return thin_data_pntr (arr);
1577 else if (is_thick_pntr (type))
1578 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1579 _("Bad GNAT array descriptor"));
1580 else
1581 return NULL;
1582 }
1583
1584
1585 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1586 position of the field containing the address of the data. */
1587
1588 static int
1589 fat_pntr_data_bitpos (struct type *type)
1590 {
1591 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1592 }
1593
1594 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1595 size of the field containing the address of the data. */
1596
1597 static int
1598 fat_pntr_data_bitsize (struct type *type)
1599 {
1600 type = desc_base_type (type);
1601
1602 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1603 return TYPE_FIELD_BITSIZE (type, 0);
1604 else
1605 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1606 }
1607
1608 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1609 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
1612 static struct value *
1613 desc_one_bound (struct value *bounds, int i, int which)
1614 {
1615 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1616 _("Bad GNAT array descriptor bounds"));
1617 }
1618
1619 /* If BOUNDS is an array-bounds structure type, return the bit position
1620 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1621 bound, if WHICH is 1. The first bound is I=1. */
1622
1623 static int
1624 desc_bound_bitpos (struct type *type, int i, int which)
1625 {
1626 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1627 }
1628
1629 /* If BOUNDS is an array-bounds structure type, return the bit field size
1630 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1631 bound, if WHICH is 1. The first bound is I=1. */
1632
1633 static int
1634 desc_bound_bitsize (struct type *type, int i, int which)
1635 {
1636 type = desc_base_type (type);
1637
1638 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1639 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1640 else
1641 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1642 }
1643
1644 /* If TYPE is the type of an array-bounds structure, the type of its
1645 Ith bound (numbering from 1). Otherwise, NULL. */
1646
1647 static struct type *
1648 desc_index_type (struct type *type, int i)
1649 {
1650 type = desc_base_type (type);
1651
1652 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1653 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1654 else
1655 return NULL;
1656 }
1657
1658 /* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
1661 static int
1662 desc_arity (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1667 return TYPE_NFIELDS (type) / 2;
1668 return 0;
1669 }
1670
1671 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
1675 static int
1676 ada_is_direct_array_type (struct type *type)
1677 {
1678 if (type == NULL)
1679 return 0;
1680 type = ada_check_typedef (type);
1681 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1682 || ada_is_array_descriptor_type (type));
1683 }
1684
1685 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1687
1688 static int
1689 ada_is_array_type (struct type *type)
1690 {
1691 while (type != NULL
1692 && (TYPE_CODE (type) == TYPE_CODE_PTR
1693 || TYPE_CODE (type) == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1699
1700 int
1701 ada_is_simple_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1707 || (TYPE_CODE (type) == TYPE_CODE_PTR
1708 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1709 }
1710
1711 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1712
1713 int
1714 ada_is_array_descriptor_type (struct type *type)
1715 {
1716 struct type *data_type = desc_data_target_type (type);
1717
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (data_type != NULL
1722 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
1724 }
1725
1726 /* Non-zero iff type is a partially mal-formed GNAT array
1727 descriptor. FIXME: This is to compensate for some problems with
1728 debugging output from GNAT. Re-examine periodically to see if it
1729 is still needed. */
1730
1731 int
1732 ada_is_bogus_array_descriptor (struct type *type)
1733 {
1734 return
1735 type != NULL
1736 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
1740 }
1741
1742
1743 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1744 (fat pointer) returns the type of the array data described---specifically,
1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1746 in from the descriptor; otherwise, they are left unspecified. If
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
1749 a descriptor. */
1750 struct type *
1751 ada_type_of_array (struct value *arr, int bounds)
1752 {
1753 if (ada_is_constrained_packed_array_type (value_type (arr)))
1754 return decode_constrained_packed_array_type (value_type (arr));
1755
1756 if (!ada_is_array_descriptor_type (value_type (arr)))
1757 return value_type (arr);
1758
1759 if (!bounds)
1760 {
1761 struct type *array_type =
1762 ada_check_typedef (desc_data_target_type (value_type (arr)));
1763
1764 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1765 TYPE_FIELD_BITSIZE (array_type, 0) =
1766 decode_packed_array_bitsize (value_type (arr));
1767
1768 return array_type;
1769 }
1770 else
1771 {
1772 struct type *elt_type;
1773 int arity;
1774 struct value *descriptor;
1775
1776 elt_type = ada_array_element_type (value_type (arr), -1);
1777 arity = ada_array_arity (value_type (arr));
1778
1779 if (elt_type == NULL || arity == 0)
1780 return ada_check_typedef (value_type (arr));
1781
1782 descriptor = desc_bounds (arr);
1783 if (value_as_long (descriptor) == 0)
1784 return NULL;
1785 while (arity > 0)
1786 {
1787 struct type *range_type = alloc_type_copy (value_type (arr));
1788 struct type *array_type = alloc_type_copy (value_type (arr));
1789 struct value *low = desc_one_bound (descriptor, arity, 0);
1790 struct value *high = desc_one_bound (descriptor, arity, 1);
1791
1792 arity -= 1;
1793 create_range_type (range_type, value_type (low),
1794 longest_to_int (value_as_long (low)),
1795 longest_to_int (value_as_long (high)));
1796 elt_type = create_array_type (array_type, elt_type, range_type);
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (elt_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
1801 }
1802
1803 return lookup_pointer_type (elt_type);
1804 }
1805 }
1806
1807 /* If ARR does not represent an array, returns ARR unchanged.
1808 Otherwise, returns either a standard GDB array with bounds set
1809 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1810 GDB array. Returns NULL if ARR is a null fat pointer. */
1811
1812 struct value *
1813 ada_coerce_to_simple_array_ptr (struct value *arr)
1814 {
1815 if (ada_is_array_descriptor_type (value_type (arr)))
1816 {
1817 struct type *arrType = ada_type_of_array (arr, 1);
1818
1819 if (arrType == NULL)
1820 return NULL;
1821 return value_cast (arrType, value_copy (desc_data (arr)));
1822 }
1823 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1824 return decode_constrained_packed_array (arr);
1825 else
1826 return arr;
1827 }
1828
1829 /* If ARR does not represent an array, returns ARR unchanged.
1830 Otherwise, returns a standard GDB array describing ARR (which may
1831 be ARR itself if it already is in the proper form). */
1832
1833 static struct value *
1834 ada_coerce_to_simple_array (struct value *arr)
1835 {
1836 if (ada_is_array_descriptor_type (value_type (arr)))
1837 {
1838 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1839
1840 if (arrVal == NULL)
1841 error (_("Bounds unavailable for null array pointer."));
1842 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1843 return value_ind (arrVal);
1844 }
1845 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1846 return decode_constrained_packed_array (arr);
1847 else
1848 return arr;
1849 }
1850
1851 /* If TYPE represents a GNAT array type, return it translated to an
1852 ordinary GDB array type (possibly with BITSIZE fields indicating
1853 packing). For other types, is the identity. */
1854
1855 struct type *
1856 ada_coerce_to_simple_array_type (struct type *type)
1857 {
1858 if (ada_is_constrained_packed_array_type (type))
1859 return decode_constrained_packed_array_type (type);
1860
1861 if (ada_is_array_descriptor_type (type))
1862 return ada_check_typedef (desc_data_target_type (type));
1863
1864 return type;
1865 }
1866
1867 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1868
1869 static int
1870 ada_is_packed_array_type (struct type *type)
1871 {
1872 if (type == NULL)
1873 return 0;
1874 type = desc_base_type (type);
1875 type = ada_check_typedef (type);
1876 return
1877 ada_type_name (type) != NULL
1878 && strstr (ada_type_name (type), "___XP") != NULL;
1879 }
1880
1881 /* Non-zero iff TYPE represents a standard GNAT constrained
1882 packed-array type. */
1883
1884 int
1885 ada_is_constrained_packed_array_type (struct type *type)
1886 {
1887 return ada_is_packed_array_type (type)
1888 && !ada_is_array_descriptor_type (type);
1889 }
1890
1891 /* Non-zero iff TYPE represents an array descriptor for a
1892 unconstrained packed-array type. */
1893
1894 static int
1895 ada_is_unconstrained_packed_array_type (struct type *type)
1896 {
1897 return ada_is_packed_array_type (type)
1898 && ada_is_array_descriptor_type (type);
1899 }
1900
1901 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1902 return the size of its elements in bits. */
1903
1904 static long
1905 decode_packed_array_bitsize (struct type *type)
1906 {
1907 char *raw_name = ada_type_name (ada_check_typedef (type));
1908 char *tail;
1909 long bits;
1910
1911 if (!raw_name)
1912 raw_name = ada_type_name (desc_base_type (type));
1913
1914 if (!raw_name)
1915 return 0;
1916
1917 tail = strstr (raw_name, "___XP");
1918
1919 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1920 {
1921 lim_warning
1922 (_("could not understand bit size information on packed array"));
1923 return 0;
1924 }
1925
1926 return bits;
1927 }
1928
1929 /* Given that TYPE is a standard GDB array type with all bounds filled
1930 in, and that the element size of its ultimate scalar constituents
1931 (that is, either its elements, or, if it is an array of arrays, its
1932 elements' elements, etc.) is *ELT_BITS, return an identical type,
1933 but with the bit sizes of its elements (and those of any
1934 constituent arrays) recorded in the BITSIZE components of its
1935 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1936 in bits. */
1937
1938 static struct type *
1939 constrained_packed_array_type (struct type *type, long *elt_bits)
1940 {
1941 struct type *new_elt_type;
1942 struct type *new_type;
1943 LONGEST low_bound, high_bound;
1944
1945 type = ada_check_typedef (type);
1946 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1947 return type;
1948
1949 new_type = alloc_type_copy (type);
1950 new_elt_type =
1951 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1952 elt_bits);
1953 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1954 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1955 TYPE_NAME (new_type) = ada_type_name (type);
1956
1957 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1958 &low_bound, &high_bound) < 0)
1959 low_bound = high_bound = 0;
1960 if (high_bound < low_bound)
1961 *elt_bits = TYPE_LENGTH (new_type) = 0;
1962 else
1963 {
1964 *elt_bits *= (high_bound - low_bound + 1);
1965 TYPE_LENGTH (new_type) =
1966 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1967 }
1968
1969 TYPE_FIXED_INSTANCE (new_type) = 1;
1970 return new_type;
1971 }
1972
1973 /* The array type encoded by TYPE, where
1974 ada_is_constrained_packed_array_type (TYPE). */
1975
1976 static struct type *
1977 decode_constrained_packed_array_type (struct type *type)
1978 {
1979 char *raw_name = ada_type_name (ada_check_typedef (type));
1980 char *name;
1981 char *tail;
1982 struct type *shadow_type;
1983 long bits;
1984
1985 if (!raw_name)
1986 raw_name = ada_type_name (desc_base_type (type));
1987
1988 if (!raw_name)
1989 return NULL;
1990
1991 name = (char *) alloca (strlen (raw_name) + 1);
1992 tail = strstr (raw_name, "___XP");
1993 type = desc_base_type (type);
1994
1995 memcpy (name, raw_name, tail - raw_name);
1996 name[tail - raw_name] = '\000';
1997
1998 shadow_type = ada_find_parallel_type_with_name (type, name);
1999
2000 if (shadow_type == NULL)
2001 {
2002 lim_warning (_("could not find bounds information on packed array"));
2003 return NULL;
2004 }
2005 CHECK_TYPEDEF (shadow_type);
2006
2007 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2008 {
2009 lim_warning (_("could not understand bounds information on packed array"));
2010 return NULL;
2011 }
2012
2013 bits = decode_packed_array_bitsize (type);
2014 return constrained_packed_array_type (shadow_type, &bits);
2015 }
2016
2017 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2018 array, returns a simple array that denotes that array. Its type is a
2019 standard GDB array type except that the BITSIZEs of the array
2020 target types are set to the number of bits in each element, and the
2021 type length is set appropriately. */
2022
2023 static struct value *
2024 decode_constrained_packed_array (struct value *arr)
2025 {
2026 struct type *type;
2027
2028 arr = ada_coerce_ref (arr);
2029
2030 /* If our value is a pointer, then dererence it. Make sure that
2031 this operation does not cause the target type to be fixed, as
2032 this would indirectly cause this array to be decoded. The rest
2033 of the routine assumes that the array hasn't been decoded yet,
2034 so we use the basic "value_ind" routine to perform the dereferencing,
2035 as opposed to using "ada_value_ind". */
2036 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2037 arr = value_ind (arr);
2038
2039 type = decode_constrained_packed_array_type (value_type (arr));
2040 if (type == NULL)
2041 {
2042 error (_("can't unpack array"));
2043 return NULL;
2044 }
2045
2046 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2047 && ada_is_modular_type (value_type (arr)))
2048 {
2049 /* This is a (right-justified) modular type representing a packed
2050 array with no wrapper. In order to interpret the value through
2051 the (left-justified) packed array type we just built, we must
2052 first left-justify it. */
2053 int bit_size, bit_pos;
2054 ULONGEST mod;
2055
2056 mod = ada_modulus (value_type (arr)) - 1;
2057 bit_size = 0;
2058 while (mod > 0)
2059 {
2060 bit_size += 1;
2061 mod >>= 1;
2062 }
2063 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2064 arr = ada_value_primitive_packed_val (arr, NULL,
2065 bit_pos / HOST_CHAR_BIT,
2066 bit_pos % HOST_CHAR_BIT,
2067 bit_size,
2068 type);
2069 }
2070
2071 return coerce_unspec_val_to_type (arr, type);
2072 }
2073
2074
2075 /* The value of the element of packed array ARR at the ARITY indices
2076 given in IND. ARR must be a simple array. */
2077
2078 static struct value *
2079 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2080 {
2081 int i;
2082 int bits, elt_off, bit_off;
2083 long elt_total_bit_offset;
2084 struct type *elt_type;
2085 struct value *v;
2086
2087 bits = 0;
2088 elt_total_bit_offset = 0;
2089 elt_type = ada_check_typedef (value_type (arr));
2090 for (i = 0; i < arity; i += 1)
2091 {
2092 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2093 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2094 error
2095 (_("attempt to do packed indexing of something other than a packed array"));
2096 else
2097 {
2098 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2099 LONGEST lowerbound, upperbound;
2100 LONGEST idx;
2101
2102 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2103 {
2104 lim_warning (_("don't know bounds of array"));
2105 lowerbound = upperbound = 0;
2106 }
2107
2108 idx = pos_atr (ind[i]);
2109 if (idx < lowerbound || idx > upperbound)
2110 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2111 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2112 elt_total_bit_offset += (idx - lowerbound) * bits;
2113 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2114 }
2115 }
2116 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2117 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2118
2119 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2120 bits, elt_type);
2121 return v;
2122 }
2123
2124 /* Non-zero iff TYPE includes negative integer values. */
2125
2126 static int
2127 has_negatives (struct type *type)
2128 {
2129 switch (TYPE_CODE (type))
2130 {
2131 default:
2132 return 0;
2133 case TYPE_CODE_INT:
2134 return !TYPE_UNSIGNED (type);
2135 case TYPE_CODE_RANGE:
2136 return TYPE_LOW_BOUND (type) < 0;
2137 }
2138 }
2139
2140
2141 /* Create a new value of type TYPE from the contents of OBJ starting
2142 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2143 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2144 assigning through the result will set the field fetched from.
2145 VALADDR is ignored unless OBJ is NULL, in which case,
2146 VALADDR+OFFSET must address the start of storage containing the
2147 packed value. The value returned in this case is never an lval.
2148 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2149
2150 struct value *
2151 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2152 long offset, int bit_offset, int bit_size,
2153 struct type *type)
2154 {
2155 struct value *v;
2156 int src, /* Index into the source area */
2157 targ, /* Index into the target area */
2158 srcBitsLeft, /* Number of source bits left to move */
2159 nsrc, ntarg, /* Number of source and target bytes */
2160 unusedLS, /* Number of bits in next significant
2161 byte of source that are unused */
2162 accumSize; /* Number of meaningful bits in accum */
2163 unsigned char *bytes; /* First byte containing data to unpack */
2164 unsigned char *unpacked;
2165 unsigned long accum; /* Staging area for bits being transferred */
2166 unsigned char sign;
2167 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2168 /* Transmit bytes from least to most significant; delta is the direction
2169 the indices move. */
2170 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2171
2172 type = ada_check_typedef (type);
2173
2174 if (obj == NULL)
2175 {
2176 v = allocate_value (type);
2177 bytes = (unsigned char *) (valaddr + offset);
2178 }
2179 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2180 {
2181 v = value_at (type,
2182 value_address (obj) + offset);
2183 bytes = (unsigned char *) alloca (len);
2184 read_memory (value_address (v), bytes, len);
2185 }
2186 else
2187 {
2188 v = allocate_value (type);
2189 bytes = (unsigned char *) value_contents (obj) + offset;
2190 }
2191
2192 if (obj != NULL)
2193 {
2194 CORE_ADDR new_addr;
2195
2196 set_value_component_location (v, obj);
2197 new_addr = value_address (obj) + offset;
2198 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2199 set_value_bitsize (v, bit_size);
2200 if (value_bitpos (v) >= HOST_CHAR_BIT)
2201 {
2202 ++new_addr;
2203 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2204 }
2205 set_value_address (v, new_addr);
2206 }
2207 else
2208 set_value_bitsize (v, bit_size);
2209 unpacked = (unsigned char *) value_contents (v);
2210
2211 srcBitsLeft = bit_size;
2212 nsrc = len;
2213 ntarg = TYPE_LENGTH (type);
2214 sign = 0;
2215 if (bit_size == 0)
2216 {
2217 memset (unpacked, 0, TYPE_LENGTH (type));
2218 return v;
2219 }
2220 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2221 {
2222 src = len - 1;
2223 if (has_negatives (type)
2224 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2225 sign = ~0;
2226
2227 unusedLS =
2228 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2229 % HOST_CHAR_BIT;
2230
2231 switch (TYPE_CODE (type))
2232 {
2233 case TYPE_CODE_ARRAY:
2234 case TYPE_CODE_UNION:
2235 case TYPE_CODE_STRUCT:
2236 /* Non-scalar values must be aligned at a byte boundary... */
2237 accumSize =
2238 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2239 /* ... And are placed at the beginning (most-significant) bytes
2240 of the target. */
2241 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2242 ntarg = targ + 1;
2243 break;
2244 default:
2245 accumSize = 0;
2246 targ = TYPE_LENGTH (type) - 1;
2247 break;
2248 }
2249 }
2250 else
2251 {
2252 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2253
2254 src = targ = 0;
2255 unusedLS = bit_offset;
2256 accumSize = 0;
2257
2258 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2259 sign = ~0;
2260 }
2261
2262 accum = 0;
2263 while (nsrc > 0)
2264 {
2265 /* Mask for removing bits of the next source byte that are not
2266 part of the value. */
2267 unsigned int unusedMSMask =
2268 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2269 1;
2270 /* Sign-extend bits for this byte. */
2271 unsigned int signMask = sign & ~unusedMSMask;
2272
2273 accum |=
2274 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2275 accumSize += HOST_CHAR_BIT - unusedLS;
2276 if (accumSize >= HOST_CHAR_BIT)
2277 {
2278 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2279 accumSize -= HOST_CHAR_BIT;
2280 accum >>= HOST_CHAR_BIT;
2281 ntarg -= 1;
2282 targ += delta;
2283 }
2284 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2285 unusedLS = 0;
2286 nsrc -= 1;
2287 src += delta;
2288 }
2289 while (ntarg > 0)
2290 {
2291 accum |= sign << accumSize;
2292 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2293 accumSize -= HOST_CHAR_BIT;
2294 accum >>= HOST_CHAR_BIT;
2295 ntarg -= 1;
2296 targ += delta;
2297 }
2298
2299 return v;
2300 }
2301
2302 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2303 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2304 not overlap. */
2305 static void
2306 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2307 int src_offset, int n, int bits_big_endian_p)
2308 {
2309 unsigned int accum, mask;
2310 int accum_bits, chunk_size;
2311
2312 target += targ_offset / HOST_CHAR_BIT;
2313 targ_offset %= HOST_CHAR_BIT;
2314 source += src_offset / HOST_CHAR_BIT;
2315 src_offset %= HOST_CHAR_BIT;
2316 if (bits_big_endian_p)
2317 {
2318 accum = (unsigned char) *source;
2319 source += 1;
2320 accum_bits = HOST_CHAR_BIT - src_offset;
2321
2322 while (n > 0)
2323 {
2324 int unused_right;
2325
2326 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2327 accum_bits += HOST_CHAR_BIT;
2328 source += 1;
2329 chunk_size = HOST_CHAR_BIT - targ_offset;
2330 if (chunk_size > n)
2331 chunk_size = n;
2332 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2333 mask = ((1 << chunk_size) - 1) << unused_right;
2334 *target =
2335 (*target & ~mask)
2336 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2337 n -= chunk_size;
2338 accum_bits -= chunk_size;
2339 target += 1;
2340 targ_offset = 0;
2341 }
2342 }
2343 else
2344 {
2345 accum = (unsigned char) *source >> src_offset;
2346 source += 1;
2347 accum_bits = HOST_CHAR_BIT - src_offset;
2348
2349 while (n > 0)
2350 {
2351 accum = accum + ((unsigned char) *source << accum_bits);
2352 accum_bits += HOST_CHAR_BIT;
2353 source += 1;
2354 chunk_size = HOST_CHAR_BIT - targ_offset;
2355 if (chunk_size > n)
2356 chunk_size = n;
2357 mask = ((1 << chunk_size) - 1) << targ_offset;
2358 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2359 n -= chunk_size;
2360 accum_bits -= chunk_size;
2361 accum >>= chunk_size;
2362 target += 1;
2363 targ_offset = 0;
2364 }
2365 }
2366 }
2367
2368 /* Store the contents of FROMVAL into the location of TOVAL.
2369 Return a new value with the location of TOVAL and contents of
2370 FROMVAL. Handles assignment into packed fields that have
2371 floating-point or non-scalar types. */
2372
2373 static struct value *
2374 ada_value_assign (struct value *toval, struct value *fromval)
2375 {
2376 struct type *type = value_type (toval);
2377 int bits = value_bitsize (toval);
2378
2379 toval = ada_coerce_ref (toval);
2380 fromval = ada_coerce_ref (fromval);
2381
2382 if (ada_is_direct_array_type (value_type (toval)))
2383 toval = ada_coerce_to_simple_array (toval);
2384 if (ada_is_direct_array_type (value_type (fromval)))
2385 fromval = ada_coerce_to_simple_array (fromval);
2386
2387 if (!deprecated_value_modifiable (toval))
2388 error (_("Left operand of assignment is not a modifiable lvalue."));
2389
2390 if (VALUE_LVAL (toval) == lval_memory
2391 && bits > 0
2392 && (TYPE_CODE (type) == TYPE_CODE_FLT
2393 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2394 {
2395 int len = (value_bitpos (toval)
2396 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2397 int from_size;
2398 char *buffer = (char *) alloca (len);
2399 struct value *val;
2400 CORE_ADDR to_addr = value_address (toval);
2401
2402 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2403 fromval = value_cast (type, fromval);
2404
2405 read_memory (to_addr, buffer, len);
2406 from_size = value_bitsize (fromval);
2407 if (from_size == 0)
2408 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2409 if (gdbarch_bits_big_endian (get_type_arch (type)))
2410 move_bits (buffer, value_bitpos (toval),
2411 value_contents (fromval), from_size - bits, bits, 1);
2412 else
2413 move_bits (buffer, value_bitpos (toval),
2414 value_contents (fromval), 0, bits, 0);
2415 write_memory (to_addr, buffer, len);
2416 observer_notify_memory_changed (to_addr, len, buffer);
2417
2418 val = value_copy (toval);
2419 memcpy (value_contents_raw (val), value_contents (fromval),
2420 TYPE_LENGTH (type));
2421 deprecated_set_value_type (val, type);
2422
2423 return val;
2424 }
2425
2426 return value_assign (toval, fromval);
2427 }
2428
2429
2430 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2431 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2432 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2433 * COMPONENT, and not the inferior's memory. The current contents
2434 * of COMPONENT are ignored. */
2435 static void
2436 value_assign_to_component (struct value *container, struct value *component,
2437 struct value *val)
2438 {
2439 LONGEST offset_in_container =
2440 (LONGEST) (value_address (component) - value_address (container));
2441 int bit_offset_in_container =
2442 value_bitpos (component) - value_bitpos (container);
2443 int bits;
2444
2445 val = value_cast (value_type (component), val);
2446
2447 if (value_bitsize (component) == 0)
2448 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2449 else
2450 bits = value_bitsize (component);
2451
2452 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2453 move_bits (value_contents_writeable (container) + offset_in_container,
2454 value_bitpos (container) + bit_offset_in_container,
2455 value_contents (val),
2456 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2457 bits, 1);
2458 else
2459 move_bits (value_contents_writeable (container) + offset_in_container,
2460 value_bitpos (container) + bit_offset_in_container,
2461 value_contents (val), 0, bits, 0);
2462 }
2463
2464 /* The value of the element of array ARR at the ARITY indices given in IND.
2465 ARR may be either a simple array, GNAT array descriptor, or pointer
2466 thereto. */
2467
2468 struct value *
2469 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2470 {
2471 int k;
2472 struct value *elt;
2473 struct type *elt_type;
2474
2475 elt = ada_coerce_to_simple_array (arr);
2476
2477 elt_type = ada_check_typedef (value_type (elt));
2478 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2479 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2480 return value_subscript_packed (elt, arity, ind);
2481
2482 for (k = 0; k < arity; k += 1)
2483 {
2484 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2485 error (_("too many subscripts (%d expected)"), k);
2486 elt = value_subscript (elt, pos_atr (ind[k]));
2487 }
2488 return elt;
2489 }
2490
2491 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2492 value of the element of *ARR at the ARITY indices given in
2493 IND. Does not read the entire array into memory. */
2494
2495 static struct value *
2496 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2497 struct value **ind)
2498 {
2499 int k;
2500
2501 for (k = 0; k < arity; k += 1)
2502 {
2503 LONGEST lwb, upb;
2504
2505 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2506 error (_("too many subscripts (%d expected)"), k);
2507 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2508 value_copy (arr));
2509 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2510 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2511 type = TYPE_TARGET_TYPE (type);
2512 }
2513
2514 return value_ind (arr);
2515 }
2516
2517 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2518 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2519 elements starting at index LOW. The lower bound of this array is LOW, as
2520 per Ada rules. */
2521 static struct value *
2522 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2523 int low, int high)
2524 {
2525 CORE_ADDR base = value_as_address (array_ptr)
2526 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2527 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2528 struct type *index_type =
2529 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2530 low, high);
2531 struct type *slice_type =
2532 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2533
2534 return value_at_lazy (slice_type, base);
2535 }
2536
2537
2538 static struct value *
2539 ada_value_slice (struct value *array, int low, int high)
2540 {
2541 struct type *type = value_type (array);
2542 struct type *index_type =
2543 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2544 struct type *slice_type =
2545 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2546
2547 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2548 }
2549
2550 /* If type is a record type in the form of a standard GNAT array
2551 descriptor, returns the number of dimensions for type. If arr is a
2552 simple array, returns the number of "array of"s that prefix its
2553 type designation. Otherwise, returns 0. */
2554
2555 int
2556 ada_array_arity (struct type *type)
2557 {
2558 int arity;
2559
2560 if (type == NULL)
2561 return 0;
2562
2563 type = desc_base_type (type);
2564
2565 arity = 0;
2566 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2567 return desc_arity (desc_bounds_type (type));
2568 else
2569 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2570 {
2571 arity += 1;
2572 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2573 }
2574
2575 return arity;
2576 }
2577
2578 /* If TYPE is a record type in the form of a standard GNAT array
2579 descriptor or a simple array type, returns the element type for
2580 TYPE after indexing by NINDICES indices, or by all indices if
2581 NINDICES is -1. Otherwise, returns NULL. */
2582
2583 struct type *
2584 ada_array_element_type (struct type *type, int nindices)
2585 {
2586 type = desc_base_type (type);
2587
2588 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2589 {
2590 int k;
2591 struct type *p_array_type;
2592
2593 p_array_type = desc_data_target_type (type);
2594
2595 k = ada_array_arity (type);
2596 if (k == 0)
2597 return NULL;
2598
2599 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2600 if (nindices >= 0 && k > nindices)
2601 k = nindices;
2602 while (k > 0 && p_array_type != NULL)
2603 {
2604 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2605 k -= 1;
2606 }
2607 return p_array_type;
2608 }
2609 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2610 {
2611 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2612 {
2613 type = TYPE_TARGET_TYPE (type);
2614 nindices -= 1;
2615 }
2616 return type;
2617 }
2618
2619 return NULL;
2620 }
2621
2622 /* The type of nth index in arrays of given type (n numbering from 1).
2623 Does not examine memory. Throws an error if N is invalid or TYPE
2624 is not an array type. NAME is the name of the Ada attribute being
2625 evaluated ('range, 'first, 'last, or 'length); it is used in building
2626 the error message. */
2627
2628 static struct type *
2629 ada_index_type (struct type *type, int n, const char *name)
2630 {
2631 struct type *result_type;
2632
2633 type = desc_base_type (type);
2634
2635 if (n < 0 || n > ada_array_arity (type))
2636 error (_("invalid dimension number to '%s"), name);
2637
2638 if (ada_is_simple_array_type (type))
2639 {
2640 int i;
2641
2642 for (i = 1; i < n; i += 1)
2643 type = TYPE_TARGET_TYPE (type);
2644 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2645 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2646 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2647 perhaps stabsread.c would make more sense. */
2648 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2649 result_type = NULL;
2650 }
2651 else
2652 {
2653 result_type = desc_index_type (desc_bounds_type (type), n);
2654 if (result_type == NULL)
2655 error (_("attempt to take bound of something that is not an array"));
2656 }
2657
2658 return result_type;
2659 }
2660
2661 /* Given that arr is an array type, returns the lower bound of the
2662 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2663 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2664 array-descriptor type. It works for other arrays with bounds supplied
2665 by run-time quantities other than discriminants. */
2666
2667 static LONGEST
2668 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2669 {
2670 struct type *type, *elt_type, *index_type_desc, *index_type;
2671 int i;
2672
2673 gdb_assert (which == 0 || which == 1);
2674
2675 if (ada_is_constrained_packed_array_type (arr_type))
2676 arr_type = decode_constrained_packed_array_type (arr_type);
2677
2678 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2679 return (LONGEST) - which;
2680
2681 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2682 type = TYPE_TARGET_TYPE (arr_type);
2683 else
2684 type = arr_type;
2685
2686 elt_type = type;
2687 for (i = n; i > 1; i--)
2688 elt_type = TYPE_TARGET_TYPE (type);
2689
2690 index_type_desc = ada_find_parallel_type (type, "___XA");
2691 ada_fixup_array_indexes_type (index_type_desc);
2692 if (index_type_desc != NULL)
2693 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2694 NULL);
2695 else
2696 index_type = TYPE_INDEX_TYPE (elt_type);
2697
2698 return
2699 (LONGEST) (which == 0
2700 ? ada_discrete_type_low_bound (index_type)
2701 : ada_discrete_type_high_bound (index_type));
2702 }
2703
2704 /* Given that arr is an array value, returns the lower bound of the
2705 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2706 WHICH is 1. This routine will also work for arrays with bounds
2707 supplied by run-time quantities other than discriminants. */
2708
2709 static LONGEST
2710 ada_array_bound (struct value *arr, int n, int which)
2711 {
2712 struct type *arr_type = value_type (arr);
2713
2714 if (ada_is_constrained_packed_array_type (arr_type))
2715 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2716 else if (ada_is_simple_array_type (arr_type))
2717 return ada_array_bound_from_type (arr_type, n, which);
2718 else
2719 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2720 }
2721
2722 /* Given that arr is an array value, returns the length of the
2723 nth index. This routine will also work for arrays with bounds
2724 supplied by run-time quantities other than discriminants.
2725 Does not work for arrays indexed by enumeration types with representation
2726 clauses at the moment. */
2727
2728 static LONGEST
2729 ada_array_length (struct value *arr, int n)
2730 {
2731 struct type *arr_type = ada_check_typedef (value_type (arr));
2732
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 return ada_array_length (decode_constrained_packed_array (arr), n);
2735
2736 if (ada_is_simple_array_type (arr_type))
2737 return (ada_array_bound_from_type (arr_type, n, 1)
2738 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2739 else
2740 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2741 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2742 }
2743
2744 /* An empty array whose type is that of ARR_TYPE (an array type),
2745 with bounds LOW to LOW-1. */
2746
2747 static struct value *
2748 empty_array (struct type *arr_type, int low)
2749 {
2750 struct type *index_type =
2751 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2752 low, low - 1);
2753 struct type *elt_type = ada_array_element_type (arr_type, 1);
2754
2755 return allocate_value (create_array_type (NULL, elt_type, index_type));
2756 }
2757 \f
2758
2759 /* Name resolution */
2760
2761 /* The "decoded" name for the user-definable Ada operator corresponding
2762 to OP. */
2763
2764 static const char *
2765 ada_decoded_op_name (enum exp_opcode op)
2766 {
2767 int i;
2768
2769 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2770 {
2771 if (ada_opname_table[i].op == op)
2772 return ada_opname_table[i].decoded;
2773 }
2774 error (_("Could not find operator name for opcode"));
2775 }
2776
2777
2778 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2779 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2780 undefined namespace) and converts operators that are
2781 user-defined into appropriate function calls. If CONTEXT_TYPE is
2782 non-null, it provides a preferred result type [at the moment, only
2783 type void has any effect---causing procedures to be preferred over
2784 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2785 return type is preferred. May change (expand) *EXP. */
2786
2787 static void
2788 resolve (struct expression **expp, int void_context_p)
2789 {
2790 struct type *context_type = NULL;
2791 int pc = 0;
2792
2793 if (void_context_p)
2794 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2795
2796 resolve_subexp (expp, &pc, 1, context_type);
2797 }
2798
2799 /* Resolve the operator of the subexpression beginning at
2800 position *POS of *EXPP. "Resolving" consists of replacing
2801 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2802 with their resolutions, replacing built-in operators with
2803 function calls to user-defined operators, where appropriate, and,
2804 when DEPROCEDURE_P is non-zero, converting function-valued variables
2805 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2806 are as in ada_resolve, above. */
2807
2808 static struct value *
2809 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2810 struct type *context_type)
2811 {
2812 int pc = *pos;
2813 int i;
2814 struct expression *exp; /* Convenience: == *expp. */
2815 enum exp_opcode op = (*expp)->elts[pc].opcode;
2816 struct value **argvec; /* Vector of operand types (alloca'ed). */
2817 int nargs; /* Number of operands. */
2818 int oplen;
2819
2820 argvec = NULL;
2821 nargs = 0;
2822 exp = *expp;
2823
2824 /* Pass one: resolve operands, saving their types and updating *pos,
2825 if needed. */
2826 switch (op)
2827 {
2828 case OP_FUNCALL:
2829 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2830 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2831 *pos += 7;
2832 else
2833 {
2834 *pos += 3;
2835 resolve_subexp (expp, pos, 0, NULL);
2836 }
2837 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2838 break;
2839
2840 case UNOP_ADDR:
2841 *pos += 1;
2842 resolve_subexp (expp, pos, 0, NULL);
2843 break;
2844
2845 case UNOP_QUAL:
2846 *pos += 3;
2847 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2848 break;
2849
2850 case OP_ATR_MODULUS:
2851 case OP_ATR_SIZE:
2852 case OP_ATR_TAG:
2853 case OP_ATR_FIRST:
2854 case OP_ATR_LAST:
2855 case OP_ATR_LENGTH:
2856 case OP_ATR_POS:
2857 case OP_ATR_VAL:
2858 case OP_ATR_MIN:
2859 case OP_ATR_MAX:
2860 case TERNOP_IN_RANGE:
2861 case BINOP_IN_BOUNDS:
2862 case UNOP_IN_RANGE:
2863 case OP_AGGREGATE:
2864 case OP_OTHERS:
2865 case OP_CHOICES:
2866 case OP_POSITIONAL:
2867 case OP_DISCRETE_RANGE:
2868 case OP_NAME:
2869 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2870 *pos += oplen;
2871 break;
2872
2873 case BINOP_ASSIGN:
2874 {
2875 struct value *arg1;
2876
2877 *pos += 1;
2878 arg1 = resolve_subexp (expp, pos, 0, NULL);
2879 if (arg1 == NULL)
2880 resolve_subexp (expp, pos, 1, NULL);
2881 else
2882 resolve_subexp (expp, pos, 1, value_type (arg1));
2883 break;
2884 }
2885
2886 case UNOP_CAST:
2887 *pos += 3;
2888 nargs = 1;
2889 break;
2890
2891 case BINOP_ADD:
2892 case BINOP_SUB:
2893 case BINOP_MUL:
2894 case BINOP_DIV:
2895 case BINOP_REM:
2896 case BINOP_MOD:
2897 case BINOP_EXP:
2898 case BINOP_CONCAT:
2899 case BINOP_LOGICAL_AND:
2900 case BINOP_LOGICAL_OR:
2901 case BINOP_BITWISE_AND:
2902 case BINOP_BITWISE_IOR:
2903 case BINOP_BITWISE_XOR:
2904
2905 case BINOP_EQUAL:
2906 case BINOP_NOTEQUAL:
2907 case BINOP_LESS:
2908 case BINOP_GTR:
2909 case BINOP_LEQ:
2910 case BINOP_GEQ:
2911
2912 case BINOP_REPEAT:
2913 case BINOP_SUBSCRIPT:
2914 case BINOP_COMMA:
2915 *pos += 1;
2916 nargs = 2;
2917 break;
2918
2919 case UNOP_NEG:
2920 case UNOP_PLUS:
2921 case UNOP_LOGICAL_NOT:
2922 case UNOP_ABS:
2923 case UNOP_IND:
2924 *pos += 1;
2925 nargs = 1;
2926 break;
2927
2928 case OP_LONG:
2929 case OP_DOUBLE:
2930 case OP_VAR_VALUE:
2931 *pos += 4;
2932 break;
2933
2934 case OP_TYPE:
2935 case OP_BOOL:
2936 case OP_LAST:
2937 case OP_INTERNALVAR:
2938 *pos += 3;
2939 break;
2940
2941 case UNOP_MEMVAL:
2942 *pos += 3;
2943 nargs = 1;
2944 break;
2945
2946 case OP_REGISTER:
2947 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2948 break;
2949
2950 case STRUCTOP_STRUCT:
2951 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2952 nargs = 1;
2953 break;
2954
2955 case TERNOP_SLICE:
2956 *pos += 1;
2957 nargs = 3;
2958 break;
2959
2960 case OP_STRING:
2961 break;
2962
2963 default:
2964 error (_("Unexpected operator during name resolution"));
2965 }
2966
2967 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2968 for (i = 0; i < nargs; i += 1)
2969 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2970 argvec[i] = NULL;
2971 exp = *expp;
2972
2973 /* Pass two: perform any resolution on principal operator. */
2974 switch (op)
2975 {
2976 default:
2977 break;
2978
2979 case OP_VAR_VALUE:
2980 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2981 {
2982 struct ada_symbol_info *candidates;
2983 int n_candidates;
2984
2985 n_candidates =
2986 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2987 (exp->elts[pc + 2].symbol),
2988 exp->elts[pc + 1].block, VAR_DOMAIN,
2989 &candidates);
2990
2991 if (n_candidates > 1)
2992 {
2993 /* Types tend to get re-introduced locally, so if there
2994 are any local symbols that are not types, first filter
2995 out all types. */
2996 int j;
2997 for (j = 0; j < n_candidates; j += 1)
2998 switch (SYMBOL_CLASS (candidates[j].sym))
2999 {
3000 case LOC_REGISTER:
3001 case LOC_ARG:
3002 case LOC_REF_ARG:
3003 case LOC_REGPARM_ADDR:
3004 case LOC_LOCAL:
3005 case LOC_COMPUTED:
3006 goto FoundNonType;
3007 default:
3008 break;
3009 }
3010 FoundNonType:
3011 if (j < n_candidates)
3012 {
3013 j = 0;
3014 while (j < n_candidates)
3015 {
3016 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3017 {
3018 candidates[j] = candidates[n_candidates - 1];
3019 n_candidates -= 1;
3020 }
3021 else
3022 j += 1;
3023 }
3024 }
3025 }
3026
3027 if (n_candidates == 0)
3028 error (_("No definition found for %s"),
3029 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3030 else if (n_candidates == 1)
3031 i = 0;
3032 else if (deprocedure_p
3033 && !is_nonfunction (candidates, n_candidates))
3034 {
3035 i = ada_resolve_function
3036 (candidates, n_candidates, NULL, 0,
3037 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3038 context_type);
3039 if (i < 0)
3040 error (_("Could not find a match for %s"),
3041 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3042 }
3043 else
3044 {
3045 printf_filtered (_("Multiple matches for %s\n"),
3046 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3047 user_select_syms (candidates, n_candidates, 1);
3048 i = 0;
3049 }
3050
3051 exp->elts[pc + 1].block = candidates[i].block;
3052 exp->elts[pc + 2].symbol = candidates[i].sym;
3053 if (innermost_block == NULL
3054 || contained_in (candidates[i].block, innermost_block))
3055 innermost_block = candidates[i].block;
3056 }
3057
3058 if (deprocedure_p
3059 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3060 == TYPE_CODE_FUNC))
3061 {
3062 replace_operator_with_call (expp, pc, 0, 0,
3063 exp->elts[pc + 2].symbol,
3064 exp->elts[pc + 1].block);
3065 exp = *expp;
3066 }
3067 break;
3068
3069 case OP_FUNCALL:
3070 {
3071 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3072 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3073 {
3074 struct ada_symbol_info *candidates;
3075 int n_candidates;
3076
3077 n_candidates =
3078 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3079 (exp->elts[pc + 5].symbol),
3080 exp->elts[pc + 4].block, VAR_DOMAIN,
3081 &candidates);
3082 if (n_candidates == 1)
3083 i = 0;
3084 else
3085 {
3086 i = ada_resolve_function
3087 (candidates, n_candidates,
3088 argvec, nargs,
3089 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3090 context_type);
3091 if (i < 0)
3092 error (_("Could not find a match for %s"),
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3094 }
3095
3096 exp->elts[pc + 4].block = candidates[i].block;
3097 exp->elts[pc + 5].symbol = candidates[i].sym;
3098 if (innermost_block == NULL
3099 || contained_in (candidates[i].block, innermost_block))
3100 innermost_block = candidates[i].block;
3101 }
3102 }
3103 break;
3104 case BINOP_ADD:
3105 case BINOP_SUB:
3106 case BINOP_MUL:
3107 case BINOP_DIV:
3108 case BINOP_REM:
3109 case BINOP_MOD:
3110 case BINOP_CONCAT:
3111 case BINOP_BITWISE_AND:
3112 case BINOP_BITWISE_IOR:
3113 case BINOP_BITWISE_XOR:
3114 case BINOP_EQUAL:
3115 case BINOP_NOTEQUAL:
3116 case BINOP_LESS:
3117 case BINOP_GTR:
3118 case BINOP_LEQ:
3119 case BINOP_GEQ:
3120 case BINOP_EXP:
3121 case UNOP_NEG:
3122 case UNOP_PLUS:
3123 case UNOP_LOGICAL_NOT:
3124 case UNOP_ABS:
3125 if (possible_user_operator_p (op, argvec))
3126 {
3127 struct ada_symbol_info *candidates;
3128 int n_candidates;
3129
3130 n_candidates =
3131 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3132 (struct block *) NULL, VAR_DOMAIN,
3133 &candidates);
3134 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3135 ada_decoded_op_name (op), NULL);
3136 if (i < 0)
3137 break;
3138
3139 replace_operator_with_call (expp, pc, nargs, 1,
3140 candidates[i].sym, candidates[i].block);
3141 exp = *expp;
3142 }
3143 break;
3144
3145 case OP_TYPE:
3146 case OP_REGISTER:
3147 return NULL;
3148 }
3149
3150 *pos = pc;
3151 return evaluate_subexp_type (exp, pos);
3152 }
3153
3154 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3155 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3156 a non-pointer. */
3157 /* The term "match" here is rather loose. The match is heuristic and
3158 liberal. */
3159
3160 static int
3161 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3162 {
3163 ftype = ada_check_typedef (ftype);
3164 atype = ada_check_typedef (atype);
3165
3166 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3167 ftype = TYPE_TARGET_TYPE (ftype);
3168 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3169 atype = TYPE_TARGET_TYPE (atype);
3170
3171 switch (TYPE_CODE (ftype))
3172 {
3173 default:
3174 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3175 case TYPE_CODE_PTR:
3176 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3177 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3178 TYPE_TARGET_TYPE (atype), 0);
3179 else
3180 return (may_deref
3181 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3182 case TYPE_CODE_INT:
3183 case TYPE_CODE_ENUM:
3184 case TYPE_CODE_RANGE:
3185 switch (TYPE_CODE (atype))
3186 {
3187 case TYPE_CODE_INT:
3188 case TYPE_CODE_ENUM:
3189 case TYPE_CODE_RANGE:
3190 return 1;
3191 default:
3192 return 0;
3193 }
3194
3195 case TYPE_CODE_ARRAY:
3196 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3197 || ada_is_array_descriptor_type (atype));
3198
3199 case TYPE_CODE_STRUCT:
3200 if (ada_is_array_descriptor_type (ftype))
3201 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3202 || ada_is_array_descriptor_type (atype));
3203 else
3204 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3205 && !ada_is_array_descriptor_type (atype));
3206
3207 case TYPE_CODE_UNION:
3208 case TYPE_CODE_FLT:
3209 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3210 }
3211 }
3212
3213 /* Return non-zero if the formals of FUNC "sufficiently match" the
3214 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3215 may also be an enumeral, in which case it is treated as a 0-
3216 argument function. */
3217
3218 static int
3219 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3220 {
3221 int i;
3222 struct type *func_type = SYMBOL_TYPE (func);
3223
3224 if (SYMBOL_CLASS (func) == LOC_CONST
3225 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3226 return (n_actuals == 0);
3227 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3228 return 0;
3229
3230 if (TYPE_NFIELDS (func_type) != n_actuals)
3231 return 0;
3232
3233 for (i = 0; i < n_actuals; i += 1)
3234 {
3235 if (actuals[i] == NULL)
3236 return 0;
3237 else
3238 {
3239 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3240 i));
3241 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3242
3243 if (!ada_type_match (ftype, atype, 1))
3244 return 0;
3245 }
3246 }
3247 return 1;
3248 }
3249
3250 /* False iff function type FUNC_TYPE definitely does not produce a value
3251 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3252 FUNC_TYPE is not a valid function type with a non-null return type
3253 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3254
3255 static int
3256 return_match (struct type *func_type, struct type *context_type)
3257 {
3258 struct type *return_type;
3259
3260 if (func_type == NULL)
3261 return 1;
3262
3263 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3264 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3265 else
3266 return_type = base_type (func_type);
3267 if (return_type == NULL)
3268 return 1;
3269
3270 context_type = base_type (context_type);
3271
3272 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3273 return context_type == NULL || return_type == context_type;
3274 else if (context_type == NULL)
3275 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3276 else
3277 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3278 }
3279
3280
3281 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3282 function (if any) that matches the types of the NARGS arguments in
3283 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3284 that returns that type, then eliminate matches that don't. If
3285 CONTEXT_TYPE is void and there is at least one match that does not
3286 return void, eliminate all matches that do.
3287
3288 Asks the user if there is more than one match remaining. Returns -1
3289 if there is no such symbol or none is selected. NAME is used
3290 solely for messages. May re-arrange and modify SYMS in
3291 the process; the index returned is for the modified vector. */
3292
3293 static int
3294 ada_resolve_function (struct ada_symbol_info syms[],
3295 int nsyms, struct value **args, int nargs,
3296 const char *name, struct type *context_type)
3297 {
3298 int fallback;
3299 int k;
3300 int m; /* Number of hits */
3301
3302 m = 0;
3303 /* In the first pass of the loop, we only accept functions matching
3304 context_type. If none are found, we add a second pass of the loop
3305 where every function is accepted. */
3306 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3307 {
3308 for (k = 0; k < nsyms; k += 1)
3309 {
3310 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3311
3312 if (ada_args_match (syms[k].sym, args, nargs)
3313 && (fallback || return_match (type, context_type)))
3314 {
3315 syms[m] = syms[k];
3316 m += 1;
3317 }
3318 }
3319 }
3320
3321 if (m == 0)
3322 return -1;
3323 else if (m > 1)
3324 {
3325 printf_filtered (_("Multiple matches for %s\n"), name);
3326 user_select_syms (syms, m, 1);
3327 return 0;
3328 }
3329 return 0;
3330 }
3331
3332 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3333 in a listing of choices during disambiguation (see sort_choices, below).
3334 The idea is that overloadings of a subprogram name from the
3335 same package should sort in their source order. We settle for ordering
3336 such symbols by their trailing number (__N or $N). */
3337
3338 static int
3339 encoded_ordered_before (char *N0, char *N1)
3340 {
3341 if (N1 == NULL)
3342 return 0;
3343 else if (N0 == NULL)
3344 return 1;
3345 else
3346 {
3347 int k0, k1;
3348
3349 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3350 ;
3351 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3352 ;
3353 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3354 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3355 {
3356 int n0, n1;
3357
3358 n0 = k0;
3359 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3360 n0 -= 1;
3361 n1 = k1;
3362 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3363 n1 -= 1;
3364 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3365 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3366 }
3367 return (strcmp (N0, N1) < 0);
3368 }
3369 }
3370
3371 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3372 encoded names. */
3373
3374 static void
3375 sort_choices (struct ada_symbol_info syms[], int nsyms)
3376 {
3377 int i;
3378
3379 for (i = 1; i < nsyms; i += 1)
3380 {
3381 struct ada_symbol_info sym = syms[i];
3382 int j;
3383
3384 for (j = i - 1; j >= 0; j -= 1)
3385 {
3386 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3387 SYMBOL_LINKAGE_NAME (sym.sym)))
3388 break;
3389 syms[j + 1] = syms[j];
3390 }
3391 syms[j + 1] = sym;
3392 }
3393 }
3394
3395 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3396 by asking the user (if necessary), returning the number selected,
3397 and setting the first elements of SYMS items. Error if no symbols
3398 selected. */
3399
3400 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3401 to be re-integrated one of these days. */
3402
3403 int
3404 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3405 {
3406 int i;
3407 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3408 int n_chosen;
3409 int first_choice = (max_results == 1) ? 1 : 2;
3410 const char *select_mode = multiple_symbols_select_mode ();
3411
3412 if (max_results < 1)
3413 error (_("Request to select 0 symbols!"));
3414 if (nsyms <= 1)
3415 return nsyms;
3416
3417 if (select_mode == multiple_symbols_cancel)
3418 error (_("\
3419 canceled because the command is ambiguous\n\
3420 See set/show multiple-symbol."));
3421
3422 /* If select_mode is "all", then return all possible symbols.
3423 Only do that if more than one symbol can be selected, of course.
3424 Otherwise, display the menu as usual. */
3425 if (select_mode == multiple_symbols_all && max_results > 1)
3426 return nsyms;
3427
3428 printf_unfiltered (_("[0] cancel\n"));
3429 if (max_results > 1)
3430 printf_unfiltered (_("[1] all\n"));
3431
3432 sort_choices (syms, nsyms);
3433
3434 for (i = 0; i < nsyms; i += 1)
3435 {
3436 if (syms[i].sym == NULL)
3437 continue;
3438
3439 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3440 {
3441 struct symtab_and_line sal =
3442 find_function_start_sal (syms[i].sym, 1);
3443
3444 if (sal.symtab == NULL)
3445 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3446 i + first_choice,
3447 SYMBOL_PRINT_NAME (syms[i].sym),
3448 sal.line);
3449 else
3450 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3451 SYMBOL_PRINT_NAME (syms[i].sym),
3452 sal.symtab->filename, sal.line);
3453 continue;
3454 }
3455 else
3456 {
3457 int is_enumeral =
3458 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3459 && SYMBOL_TYPE (syms[i].sym) != NULL
3460 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3461 struct symtab *symtab = syms[i].sym->symtab;
3462
3463 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3464 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3465 i + first_choice,
3466 SYMBOL_PRINT_NAME (syms[i].sym),
3467 symtab->filename, SYMBOL_LINE (syms[i].sym));
3468 else if (is_enumeral
3469 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3470 {
3471 printf_unfiltered (("[%d] "), i + first_choice);
3472 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3473 gdb_stdout, -1, 0);
3474 printf_unfiltered (_("'(%s) (enumeral)\n"),
3475 SYMBOL_PRINT_NAME (syms[i].sym));
3476 }
3477 else if (symtab != NULL)
3478 printf_unfiltered (is_enumeral
3479 ? _("[%d] %s in %s (enumeral)\n")
3480 : _("[%d] %s at %s:?\n"),
3481 i + first_choice,
3482 SYMBOL_PRINT_NAME (syms[i].sym),
3483 symtab->filename);
3484 else
3485 printf_unfiltered (is_enumeral
3486 ? _("[%d] %s (enumeral)\n")
3487 : _("[%d] %s at ?\n"),
3488 i + first_choice,
3489 SYMBOL_PRINT_NAME (syms[i].sym));
3490 }
3491 }
3492
3493 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3494 "overload-choice");
3495
3496 for (i = 0; i < n_chosen; i += 1)
3497 syms[i] = syms[chosen[i]];
3498
3499 return n_chosen;
3500 }
3501
3502 /* Read and validate a set of numeric choices from the user in the
3503 range 0 .. N_CHOICES-1. Place the results in increasing
3504 order in CHOICES[0 .. N-1], and return N.
3505
3506 The user types choices as a sequence of numbers on one line
3507 separated by blanks, encoding them as follows:
3508
3509 + A choice of 0 means to cancel the selection, throwing an error.
3510 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3511 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3512
3513 The user is not allowed to choose more than MAX_RESULTS values.
3514
3515 ANNOTATION_SUFFIX, if present, is used to annotate the input
3516 prompts (for use with the -f switch). */
3517
3518 int
3519 get_selections (int *choices, int n_choices, int max_results,
3520 int is_all_choice, char *annotation_suffix)
3521 {
3522 char *args;
3523 char *prompt;
3524 int n_chosen;
3525 int first_choice = is_all_choice ? 2 : 1;
3526
3527 prompt = getenv ("PS2");
3528 if (prompt == NULL)
3529 prompt = "> ";
3530
3531 args = command_line_input (prompt, 0, annotation_suffix);
3532
3533 if (args == NULL)
3534 error_no_arg (_("one or more choice numbers"));
3535
3536 n_chosen = 0;
3537
3538 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3539 order, as given in args. Choices are validated. */
3540 while (1)
3541 {
3542 char *args2;
3543 int choice, j;
3544
3545 while (isspace (*args))
3546 args += 1;
3547 if (*args == '\0' && n_chosen == 0)
3548 error_no_arg (_("one or more choice numbers"));
3549 else if (*args == '\0')
3550 break;
3551
3552 choice = strtol (args, &args2, 10);
3553 if (args == args2 || choice < 0
3554 || choice > n_choices + first_choice - 1)
3555 error (_("Argument must be choice number"));
3556 args = args2;
3557
3558 if (choice == 0)
3559 error (_("cancelled"));
3560
3561 if (choice < first_choice)
3562 {
3563 n_chosen = n_choices;
3564 for (j = 0; j < n_choices; j += 1)
3565 choices[j] = j;
3566 break;
3567 }
3568 choice -= first_choice;
3569
3570 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3571 {
3572 }
3573
3574 if (j < 0 || choice != choices[j])
3575 {
3576 int k;
3577
3578 for (k = n_chosen - 1; k > j; k -= 1)
3579 choices[k + 1] = choices[k];
3580 choices[j + 1] = choice;
3581 n_chosen += 1;
3582 }
3583 }
3584
3585 if (n_chosen > max_results)
3586 error (_("Select no more than %d of the above"), max_results);
3587
3588 return n_chosen;
3589 }
3590
3591 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3592 on the function identified by SYM and BLOCK, and taking NARGS
3593 arguments. Update *EXPP as needed to hold more space. */
3594
3595 static void
3596 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3597 int oplen, struct symbol *sym,
3598 struct block *block)
3599 {
3600 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3601 symbol, -oplen for operator being replaced). */
3602 struct expression *newexp = (struct expression *)
3603 xmalloc (sizeof (struct expression)
3604 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3605 struct expression *exp = *expp;
3606
3607 newexp->nelts = exp->nelts + 7 - oplen;
3608 newexp->language_defn = exp->language_defn;
3609 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3610 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3611 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3612
3613 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3614 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3615
3616 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3617 newexp->elts[pc + 4].block = block;
3618 newexp->elts[pc + 5].symbol = sym;
3619
3620 *expp = newexp;
3621 xfree (exp);
3622 }
3623
3624 /* Type-class predicates */
3625
3626 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3627 or FLOAT). */
3628
3629 static int
3630 numeric_type_p (struct type *type)
3631 {
3632 if (type == NULL)
3633 return 0;
3634 else
3635 {
3636 switch (TYPE_CODE (type))
3637 {
3638 case TYPE_CODE_INT:
3639 case TYPE_CODE_FLT:
3640 return 1;
3641 case TYPE_CODE_RANGE:
3642 return (type == TYPE_TARGET_TYPE (type)
3643 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3644 default:
3645 return 0;
3646 }
3647 }
3648 }
3649
3650 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3651
3652 static int
3653 integer_type_p (struct type *type)
3654 {
3655 if (type == NULL)
3656 return 0;
3657 else
3658 {
3659 switch (TYPE_CODE (type))
3660 {
3661 case TYPE_CODE_INT:
3662 return 1;
3663 case TYPE_CODE_RANGE:
3664 return (type == TYPE_TARGET_TYPE (type)
3665 || integer_type_p (TYPE_TARGET_TYPE (type)));
3666 default:
3667 return 0;
3668 }
3669 }
3670 }
3671
3672 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3673
3674 static int
3675 scalar_type_p (struct type *type)
3676 {
3677 if (type == NULL)
3678 return 0;
3679 else
3680 {
3681 switch (TYPE_CODE (type))
3682 {
3683 case TYPE_CODE_INT:
3684 case TYPE_CODE_RANGE:
3685 case TYPE_CODE_ENUM:
3686 case TYPE_CODE_FLT:
3687 return 1;
3688 default:
3689 return 0;
3690 }
3691 }
3692 }
3693
3694 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3695
3696 static int
3697 discrete_type_p (struct type *type)
3698 {
3699 if (type == NULL)
3700 return 0;
3701 else
3702 {
3703 switch (TYPE_CODE (type))
3704 {
3705 case TYPE_CODE_INT:
3706 case TYPE_CODE_RANGE:
3707 case TYPE_CODE_ENUM:
3708 case TYPE_CODE_BOOL:
3709 return 1;
3710 default:
3711 return 0;
3712 }
3713 }
3714 }
3715
3716 /* Returns non-zero if OP with operands in the vector ARGS could be
3717 a user-defined function. Errs on the side of pre-defined operators
3718 (i.e., result 0). */
3719
3720 static int
3721 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3722 {
3723 struct type *type0 =
3724 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3725 struct type *type1 =
3726 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3727
3728 if (type0 == NULL)
3729 return 0;
3730
3731 switch (op)
3732 {
3733 default:
3734 return 0;
3735
3736 case BINOP_ADD:
3737 case BINOP_SUB:
3738 case BINOP_MUL:
3739 case BINOP_DIV:
3740 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3741
3742 case BINOP_REM:
3743 case BINOP_MOD:
3744 case BINOP_BITWISE_AND:
3745 case BINOP_BITWISE_IOR:
3746 case BINOP_BITWISE_XOR:
3747 return (!(integer_type_p (type0) && integer_type_p (type1)));
3748
3749 case BINOP_EQUAL:
3750 case BINOP_NOTEQUAL:
3751 case BINOP_LESS:
3752 case BINOP_GTR:
3753 case BINOP_LEQ:
3754 case BINOP_GEQ:
3755 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3756
3757 case BINOP_CONCAT:
3758 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3759
3760 case BINOP_EXP:
3761 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3762
3763 case UNOP_NEG:
3764 case UNOP_PLUS:
3765 case UNOP_LOGICAL_NOT:
3766 case UNOP_ABS:
3767 return (!numeric_type_p (type0));
3768
3769 }
3770 }
3771 \f
3772 /* Renaming */
3773
3774 /* NOTES:
3775
3776 1. In the following, we assume that a renaming type's name may
3777 have an ___XD suffix. It would be nice if this went away at some
3778 point.
3779 2. We handle both the (old) purely type-based representation of
3780 renamings and the (new) variable-based encoding. At some point,
3781 it is devoutly to be hoped that the former goes away
3782 (FIXME: hilfinger-2007-07-09).
3783 3. Subprogram renamings are not implemented, although the XRS
3784 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3785
3786 /* If SYM encodes a renaming,
3787
3788 <renaming> renames <renamed entity>,
3789
3790 sets *LEN to the length of the renamed entity's name,
3791 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3792 the string describing the subcomponent selected from the renamed
3793 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3794 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3795 are undefined). Otherwise, returns a value indicating the category
3796 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3797 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3798 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3799 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3800 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3801 may be NULL, in which case they are not assigned.
3802
3803 [Currently, however, GCC does not generate subprogram renamings.] */
3804
3805 enum ada_renaming_category
3806 ada_parse_renaming (struct symbol *sym,
3807 const char **renamed_entity, int *len,
3808 const char **renaming_expr)
3809 {
3810 enum ada_renaming_category kind;
3811 const char *info;
3812 const char *suffix;
3813
3814 if (sym == NULL)
3815 return ADA_NOT_RENAMING;
3816 switch (SYMBOL_CLASS (sym))
3817 {
3818 default:
3819 return ADA_NOT_RENAMING;
3820 case LOC_TYPEDEF:
3821 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3822 renamed_entity, len, renaming_expr);
3823 case LOC_LOCAL:
3824 case LOC_STATIC:
3825 case LOC_COMPUTED:
3826 case LOC_OPTIMIZED_OUT:
3827 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3828 if (info == NULL)
3829 return ADA_NOT_RENAMING;
3830 switch (info[5])
3831 {
3832 case '_':
3833 kind = ADA_OBJECT_RENAMING;
3834 info += 6;
3835 break;
3836 case 'E':
3837 kind = ADA_EXCEPTION_RENAMING;
3838 info += 7;
3839 break;
3840 case 'P':
3841 kind = ADA_PACKAGE_RENAMING;
3842 info += 7;
3843 break;
3844 case 'S':
3845 kind = ADA_SUBPROGRAM_RENAMING;
3846 info += 7;
3847 break;
3848 default:
3849 return ADA_NOT_RENAMING;
3850 }
3851 }
3852
3853 if (renamed_entity != NULL)
3854 *renamed_entity = info;
3855 suffix = strstr (info, "___XE");
3856 if (suffix == NULL || suffix == info)
3857 return ADA_NOT_RENAMING;
3858 if (len != NULL)
3859 *len = strlen (info) - strlen (suffix);
3860 suffix += 5;
3861 if (renaming_expr != NULL)
3862 *renaming_expr = suffix;
3863 return kind;
3864 }
3865
3866 /* Assuming TYPE encodes a renaming according to the old encoding in
3867 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3868 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3869 ADA_NOT_RENAMING otherwise. */
3870 static enum ada_renaming_category
3871 parse_old_style_renaming (struct type *type,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874 {
3875 enum ada_renaming_category kind;
3876 const char *name;
3877 const char *info;
3878 const char *suffix;
3879
3880 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3881 || TYPE_NFIELDS (type) != 1)
3882 return ADA_NOT_RENAMING;
3883
3884 name = type_name_no_tag (type);
3885 if (name == NULL)
3886 return ADA_NOT_RENAMING;
3887
3888 name = strstr (name, "___XR");
3889 if (name == NULL)
3890 return ADA_NOT_RENAMING;
3891 switch (name[5])
3892 {
3893 case '\0':
3894 case '_':
3895 kind = ADA_OBJECT_RENAMING;
3896 break;
3897 case 'E':
3898 kind = ADA_EXCEPTION_RENAMING;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 break;
3903 case 'S':
3904 kind = ADA_SUBPROGRAM_RENAMING;
3905 break;
3906 default:
3907 return ADA_NOT_RENAMING;
3908 }
3909
3910 info = TYPE_FIELD_NAME (type, 0);
3911 if (info == NULL)
3912 return ADA_NOT_RENAMING;
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (renaming_expr != NULL)
3917 *renaming_expr = suffix + 5;
3918 if (suffix == NULL || suffix == info)
3919 return ADA_NOT_RENAMING;
3920 if (len != NULL)
3921 *len = suffix - info;
3922 return kind;
3923 }
3924
3925 \f
3926
3927 /* Evaluation: Function Calls */
3928
3929 /* Return an lvalue containing the value VAL. This is the identity on
3930 lvalues, and otherwise has the side-effect of allocating memory
3931 in the inferior where a copy of the value contents is copied. */
3932
3933 static struct value *
3934 ensure_lval (struct value *val)
3935 {
3936 if (VALUE_LVAL (val) == not_lval
3937 || VALUE_LVAL (val) == lval_internalvar)
3938 {
3939 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3940 const CORE_ADDR addr =
3941 value_as_long (value_allocate_space_in_inferior (len));
3942
3943 set_value_address (val, addr);
3944 VALUE_LVAL (val) = lval_memory;
3945 write_memory (addr, value_contents (val), len);
3946 }
3947
3948 return val;
3949 }
3950
3951 /* Return the value ACTUAL, converted to be an appropriate value for a
3952 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3953 allocating any necessary descriptors (fat pointers), or copies of
3954 values not residing in memory, updating it as needed. */
3955
3956 struct value *
3957 ada_convert_actual (struct value *actual, struct type *formal_type0)
3958 {
3959 struct type *actual_type = ada_check_typedef (value_type (actual));
3960 struct type *formal_type = ada_check_typedef (formal_type0);
3961 struct type *formal_target =
3962 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3963 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3964 struct type *actual_target =
3965 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3966 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3967
3968 if (ada_is_array_descriptor_type (formal_target)
3969 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3970 return make_array_descriptor (formal_type, actual);
3971 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3972 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3973 {
3974 struct value *result;
3975
3976 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3977 && ada_is_array_descriptor_type (actual_target))
3978 result = desc_data (actual);
3979 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3980 {
3981 if (VALUE_LVAL (actual) != lval_memory)
3982 {
3983 struct value *val;
3984
3985 actual_type = ada_check_typedef (value_type (actual));
3986 val = allocate_value (actual_type);
3987 memcpy ((char *) value_contents_raw (val),
3988 (char *) value_contents (actual),
3989 TYPE_LENGTH (actual_type));
3990 actual = ensure_lval (val);
3991 }
3992 result = value_addr (actual);
3993 }
3994 else
3995 return actual;
3996 return value_cast_pointers (formal_type, result);
3997 }
3998 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3999 return ada_value_ind (actual);
4000
4001 return actual;
4002 }
4003
4004 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4005 type TYPE. This is usually an inefficient no-op except on some targets
4006 (such as AVR) where the representation of a pointer and an address
4007 differs. */
4008
4009 static CORE_ADDR
4010 value_pointer (struct value *value, struct type *type)
4011 {
4012 struct gdbarch *gdbarch = get_type_arch (type);
4013 unsigned len = TYPE_LENGTH (type);
4014 gdb_byte *buf = alloca (len);
4015 CORE_ADDR addr;
4016
4017 addr = value_address (value);
4018 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4019 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4020 return addr;
4021 }
4022
4023
4024 /* Push a descriptor of type TYPE for array value ARR on the stack at
4025 *SP, updating *SP to reflect the new descriptor. Return either
4026 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4027 to-descriptor type rather than a descriptor type), a struct value *
4028 representing a pointer to this descriptor. */
4029
4030 static struct value *
4031 make_array_descriptor (struct type *type, struct value *arr)
4032 {
4033 struct type *bounds_type = desc_bounds_type (type);
4034 struct type *desc_type = desc_base_type (type);
4035 struct value *descriptor = allocate_value (desc_type);
4036 struct value *bounds = allocate_value (bounds_type);
4037 int i;
4038
4039 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4040 {
4041 modify_general_field (value_type (bounds),
4042 value_contents_writeable (bounds),
4043 ada_array_bound (arr, i, 0),
4044 desc_bound_bitpos (bounds_type, i, 0),
4045 desc_bound_bitsize (bounds_type, i, 0));
4046 modify_general_field (value_type (bounds),
4047 value_contents_writeable (bounds),
4048 ada_array_bound (arr, i, 1),
4049 desc_bound_bitpos (bounds_type, i, 1),
4050 desc_bound_bitsize (bounds_type, i, 1));
4051 }
4052
4053 bounds = ensure_lval (bounds);
4054
4055 modify_general_field (value_type (descriptor),
4056 value_contents_writeable (descriptor),
4057 value_pointer (ensure_lval (arr),
4058 TYPE_FIELD_TYPE (desc_type, 0)),
4059 fat_pntr_data_bitpos (desc_type),
4060 fat_pntr_data_bitsize (desc_type));
4061
4062 modify_general_field (value_type (descriptor),
4063 value_contents_writeable (descriptor),
4064 value_pointer (bounds,
4065 TYPE_FIELD_TYPE (desc_type, 1)),
4066 fat_pntr_bounds_bitpos (desc_type),
4067 fat_pntr_bounds_bitsize (desc_type));
4068
4069 descriptor = ensure_lval (descriptor);
4070
4071 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4072 return value_addr (descriptor);
4073 else
4074 return descriptor;
4075 }
4076 \f
4077 /* Dummy definitions for an experimental caching module that is not
4078 * used in the public sources. */
4079
4080 static int
4081 lookup_cached_symbol (const char *name, domain_enum namespace,
4082 struct symbol **sym, struct block **block)
4083 {
4084 return 0;
4085 }
4086
4087 static void
4088 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4089 struct block *block)
4090 {
4091 }
4092 \f
4093 /* Symbol Lookup */
4094
4095 /* Return the result of a standard (literal, C-like) lookup of NAME in
4096 given DOMAIN, visible from lexical block BLOCK. */
4097
4098 static struct symbol *
4099 standard_lookup (const char *name, const struct block *block,
4100 domain_enum domain)
4101 {
4102 struct symbol *sym;
4103
4104 if (lookup_cached_symbol (name, domain, &sym, NULL))
4105 return sym;
4106 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4107 cache_symbol (name, domain, sym, block_found);
4108 return sym;
4109 }
4110
4111
4112 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4113 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4114 since they contend in overloading in the same way. */
4115 static int
4116 is_nonfunction (struct ada_symbol_info syms[], int n)
4117 {
4118 int i;
4119
4120 for (i = 0; i < n; i += 1)
4121 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4122 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4123 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4124 return 1;
4125
4126 return 0;
4127 }
4128
4129 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4130 struct types. Otherwise, they may not. */
4131
4132 static int
4133 equiv_types (struct type *type0, struct type *type1)
4134 {
4135 if (type0 == type1)
4136 return 1;
4137 if (type0 == NULL || type1 == NULL
4138 || TYPE_CODE (type0) != TYPE_CODE (type1))
4139 return 0;
4140 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4141 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4142 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4143 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4144 return 1;
4145
4146 return 0;
4147 }
4148
4149 /* True iff SYM0 represents the same entity as SYM1, or one that is
4150 no more defined than that of SYM1. */
4151
4152 static int
4153 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4154 {
4155 if (sym0 == sym1)
4156 return 1;
4157 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4158 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4159 return 0;
4160
4161 switch (SYMBOL_CLASS (sym0))
4162 {
4163 case LOC_UNDEF:
4164 return 1;
4165 case LOC_TYPEDEF:
4166 {
4167 struct type *type0 = SYMBOL_TYPE (sym0);
4168 struct type *type1 = SYMBOL_TYPE (sym1);
4169 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4170 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4171 int len0 = strlen (name0);
4172
4173 return
4174 TYPE_CODE (type0) == TYPE_CODE (type1)
4175 && (equiv_types (type0, type1)
4176 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4177 && strncmp (name1 + len0, "___XV", 5) == 0));
4178 }
4179 case LOC_CONST:
4180 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4181 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4182 default:
4183 return 0;
4184 }
4185 }
4186
4187 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4188 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4189
4190 static void
4191 add_defn_to_vec (struct obstack *obstackp,
4192 struct symbol *sym,
4193 struct block *block)
4194 {
4195 int i;
4196 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4197
4198 /* Do not try to complete stub types, as the debugger is probably
4199 already scanning all symbols matching a certain name at the
4200 time when this function is called. Trying to replace the stub
4201 type by its associated full type will cause us to restart a scan
4202 which may lead to an infinite recursion. Instead, the client
4203 collecting the matching symbols will end up collecting several
4204 matches, with at least one of them complete. It can then filter
4205 out the stub ones if needed. */
4206
4207 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4208 {
4209 if (lesseq_defined_than (sym, prevDefns[i].sym))
4210 return;
4211 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4212 {
4213 prevDefns[i].sym = sym;
4214 prevDefns[i].block = block;
4215 return;
4216 }
4217 }
4218
4219 {
4220 struct ada_symbol_info info;
4221
4222 info.sym = sym;
4223 info.block = block;
4224 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4225 }
4226 }
4227
4228 /* Number of ada_symbol_info structures currently collected in
4229 current vector in *OBSTACKP. */
4230
4231 static int
4232 num_defns_collected (struct obstack *obstackp)
4233 {
4234 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4235 }
4236
4237 /* Vector of ada_symbol_info structures currently collected in current
4238 vector in *OBSTACKP. If FINISH, close off the vector and return
4239 its final address. */
4240
4241 static struct ada_symbol_info *
4242 defns_collected (struct obstack *obstackp, int finish)
4243 {
4244 if (finish)
4245 return obstack_finish (obstackp);
4246 else
4247 return (struct ada_symbol_info *) obstack_base (obstackp);
4248 }
4249
4250 /* Return a minimal symbol matching NAME according to Ada decoding
4251 rules. Returns NULL if there is no such minimal symbol. Names
4252 prefixed with "standard__" are handled specially: "standard__" is
4253 first stripped off, and only static and global symbols are searched. */
4254
4255 struct minimal_symbol *
4256 ada_lookup_simple_minsym (const char *name)
4257 {
4258 struct objfile *objfile;
4259 struct minimal_symbol *msymbol;
4260 int wild_match;
4261
4262 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4263 {
4264 name += sizeof ("standard__") - 1;
4265 wild_match = 0;
4266 }
4267 else
4268 wild_match = (strstr (name, "__") == NULL);
4269
4270 ALL_MSYMBOLS (objfile, msymbol)
4271 {
4272 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4273 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4274 return msymbol;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 /* For all subprograms that statically enclose the subprogram of the
4281 selected frame, add symbols matching identifier NAME in DOMAIN
4282 and their blocks to the list of data in OBSTACKP, as for
4283 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4284 wildcard prefix. */
4285
4286 static void
4287 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4288 const char *name, domain_enum namespace,
4289 int wild_match)
4290 {
4291 }
4292
4293 /* True if TYPE is definitely an artificial type supplied to a symbol
4294 for which no debugging information was given in the symbol file. */
4295
4296 static int
4297 is_nondebugging_type (struct type *type)
4298 {
4299 char *name = ada_type_name (type);
4300
4301 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4302 }
4303
4304 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4305 duplicate other symbols in the list (The only case I know of where
4306 this happens is when object files containing stabs-in-ecoff are
4307 linked with files containing ordinary ecoff debugging symbols (or no
4308 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4309 Returns the number of items in the modified list. */
4310
4311 static int
4312 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4313 {
4314 int i, j;
4315
4316 i = 0;
4317 while (i < nsyms)
4318 {
4319 int remove = 0;
4320
4321 /* If two symbols have the same name and one of them is a stub type,
4322 the get rid of the stub. */
4323
4324 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4325 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4326 {
4327 for (j = 0; j < nsyms; j++)
4328 {
4329 if (j != i
4330 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4331 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4332 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4333 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4334 remove = 1;
4335 }
4336 }
4337
4338 /* Two symbols with the same name, same class and same address
4339 should be identical. */
4340
4341 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4342 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4343 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4344 {
4345 for (j = 0; j < nsyms; j += 1)
4346 {
4347 if (i != j
4348 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4349 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4350 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4351 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4352 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4353 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4354 remove = 1;
4355 }
4356 }
4357
4358 if (remove)
4359 {
4360 for (j = i + 1; j < nsyms; j += 1)
4361 syms[j - 1] = syms[j];
4362 nsyms -= 1;
4363 }
4364
4365 i += 1;
4366 }
4367 return nsyms;
4368 }
4369
4370 /* Given a type that corresponds to a renaming entity, use the type name
4371 to extract the scope (package name or function name, fully qualified,
4372 and following the GNAT encoding convention) where this renaming has been
4373 defined. The string returned needs to be deallocated after use. */
4374
4375 static char *
4376 xget_renaming_scope (struct type *renaming_type)
4377 {
4378 /* The renaming types adhere to the following convention:
4379 <scope>__<rename>___<XR extension>.
4380 So, to extract the scope, we search for the "___XR" extension,
4381 and then backtrack until we find the first "__". */
4382
4383 const char *name = type_name_no_tag (renaming_type);
4384 char *suffix = strstr (name, "___XR");
4385 char *last;
4386 int scope_len;
4387 char *scope;
4388
4389 /* Now, backtrack a bit until we find the first "__". Start looking
4390 at suffix - 3, as the <rename> part is at least one character long. */
4391
4392 for (last = suffix - 3; last > name; last--)
4393 if (last[0] == '_' && last[1] == '_')
4394 break;
4395
4396 /* Make a copy of scope and return it. */
4397
4398 scope_len = last - name;
4399 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4400
4401 strncpy (scope, name, scope_len);
4402 scope[scope_len] = '\0';
4403
4404 return scope;
4405 }
4406
4407 /* Return nonzero if NAME corresponds to a package name. */
4408
4409 static int
4410 is_package_name (const char *name)
4411 {
4412 /* Here, We take advantage of the fact that no symbols are generated
4413 for packages, while symbols are generated for each function.
4414 So the condition for NAME represent a package becomes equivalent
4415 to NAME not existing in our list of symbols. There is only one
4416 small complication with library-level functions (see below). */
4417
4418 char *fun_name;
4419
4420 /* If it is a function that has not been defined at library level,
4421 then we should be able to look it up in the symbols. */
4422 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4423 return 0;
4424
4425 /* Library-level function names start with "_ada_". See if function
4426 "_ada_" followed by NAME can be found. */
4427
4428 /* Do a quick check that NAME does not contain "__", since library-level
4429 functions names cannot contain "__" in them. */
4430 if (strstr (name, "__") != NULL)
4431 return 0;
4432
4433 fun_name = xstrprintf ("_ada_%s", name);
4434
4435 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4436 }
4437
4438 /* Return nonzero if SYM corresponds to a renaming entity that is
4439 not visible from FUNCTION_NAME. */
4440
4441 static int
4442 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4443 {
4444 char *scope;
4445
4446 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4447 return 0;
4448
4449 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4450
4451 make_cleanup (xfree, scope);
4452
4453 /* If the rename has been defined in a package, then it is visible. */
4454 if (is_package_name (scope))
4455 return 0;
4456
4457 /* Check that the rename is in the current function scope by checking
4458 that its name starts with SCOPE. */
4459
4460 /* If the function name starts with "_ada_", it means that it is
4461 a library-level function. Strip this prefix before doing the
4462 comparison, as the encoding for the renaming does not contain
4463 this prefix. */
4464 if (strncmp (function_name, "_ada_", 5) == 0)
4465 function_name += 5;
4466
4467 return (strncmp (function_name, scope, strlen (scope)) != 0);
4468 }
4469
4470 /* Remove entries from SYMS that corresponds to a renaming entity that
4471 is not visible from the function associated with CURRENT_BLOCK or
4472 that is superfluous due to the presence of more specific renaming
4473 information. Places surviving symbols in the initial entries of
4474 SYMS and returns the number of surviving symbols.
4475
4476 Rationale:
4477 First, in cases where an object renaming is implemented as a
4478 reference variable, GNAT may produce both the actual reference
4479 variable and the renaming encoding. In this case, we discard the
4480 latter.
4481
4482 Second, GNAT emits a type following a specified encoding for each renaming
4483 entity. Unfortunately, STABS currently does not support the definition
4484 of types that are local to a given lexical block, so all renamings types
4485 are emitted at library level. As a consequence, if an application
4486 contains two renaming entities using the same name, and a user tries to
4487 print the value of one of these entities, the result of the ada symbol
4488 lookup will also contain the wrong renaming type.
4489
4490 This function partially covers for this limitation by attempting to
4491 remove from the SYMS list renaming symbols that should be visible
4492 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4493 method with the current information available. The implementation
4494 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4495
4496 - When the user tries to print a rename in a function while there
4497 is another rename entity defined in a package: Normally, the
4498 rename in the function has precedence over the rename in the
4499 package, so the latter should be removed from the list. This is
4500 currently not the case.
4501
4502 - This function will incorrectly remove valid renames if
4503 the CURRENT_BLOCK corresponds to a function which symbol name
4504 has been changed by an "Export" pragma. As a consequence,
4505 the user will be unable to print such rename entities. */
4506
4507 static int
4508 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4509 int nsyms, const struct block *current_block)
4510 {
4511 struct symbol *current_function;
4512 char *current_function_name;
4513 int i;
4514 int is_new_style_renaming;
4515
4516 /* If there is both a renaming foo___XR... encoded as a variable and
4517 a simple variable foo in the same block, discard the latter.
4518 First, zero out such symbols, then compress. */
4519 is_new_style_renaming = 0;
4520 for (i = 0; i < nsyms; i += 1)
4521 {
4522 struct symbol *sym = syms[i].sym;
4523 struct block *block = syms[i].block;
4524 const char *name;
4525 const char *suffix;
4526
4527 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4528 continue;
4529 name = SYMBOL_LINKAGE_NAME (sym);
4530 suffix = strstr (name, "___XR");
4531
4532 if (suffix != NULL)
4533 {
4534 int name_len = suffix - name;
4535 int j;
4536
4537 is_new_style_renaming = 1;
4538 for (j = 0; j < nsyms; j += 1)
4539 if (i != j && syms[j].sym != NULL
4540 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4541 name_len) == 0
4542 && block == syms[j].block)
4543 syms[j].sym = NULL;
4544 }
4545 }
4546 if (is_new_style_renaming)
4547 {
4548 int j, k;
4549
4550 for (j = k = 0; j < nsyms; j += 1)
4551 if (syms[j].sym != NULL)
4552 {
4553 syms[k] = syms[j];
4554 k += 1;
4555 }
4556 return k;
4557 }
4558
4559 /* Extract the function name associated to CURRENT_BLOCK.
4560 Abort if unable to do so. */
4561
4562 if (current_block == NULL)
4563 return nsyms;
4564
4565 current_function = block_linkage_function (current_block);
4566 if (current_function == NULL)
4567 return nsyms;
4568
4569 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4570 if (current_function_name == NULL)
4571 return nsyms;
4572
4573 /* Check each of the symbols, and remove it from the list if it is
4574 a type corresponding to a renaming that is out of the scope of
4575 the current block. */
4576
4577 i = 0;
4578 while (i < nsyms)
4579 {
4580 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4581 == ADA_OBJECT_RENAMING
4582 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4583 {
4584 int j;
4585
4586 for (j = i + 1; j < nsyms; j += 1)
4587 syms[j - 1] = syms[j];
4588 nsyms -= 1;
4589 }
4590 else
4591 i += 1;
4592 }
4593
4594 return nsyms;
4595 }
4596
4597 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4598 whose name and domain match NAME and DOMAIN respectively.
4599 If no match was found, then extend the search to "enclosing"
4600 routines (in other words, if we're inside a nested function,
4601 search the symbols defined inside the enclosing functions).
4602
4603 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4604
4605 static void
4606 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4607 struct block *block, domain_enum domain,
4608 int wild_match)
4609 {
4610 int block_depth = 0;
4611
4612 while (block != NULL)
4613 {
4614 block_depth += 1;
4615 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4616
4617 /* If we found a non-function match, assume that's the one. */
4618 if (is_nonfunction (defns_collected (obstackp, 0),
4619 num_defns_collected (obstackp)))
4620 return;
4621
4622 block = BLOCK_SUPERBLOCK (block);
4623 }
4624
4625 /* If no luck so far, try to find NAME as a local symbol in some lexically
4626 enclosing subprogram. */
4627 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4628 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4629 }
4630
4631 /* An object of this type is used as the user_data argument when
4632 calling the map_matching_symbols method. */
4633
4634 struct match_data
4635 {
4636 struct objfile *objfile;
4637 struct obstack *obstackp;
4638 struct symbol *arg_sym;
4639 int found_sym;
4640 };
4641
4642 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4643 to a list of symbols. DATA0 is a pointer to a struct match_data *
4644 containing the obstack that collects the symbol list, the file that SYM
4645 must come from, a flag indicating whether a non-argument symbol has
4646 been found in the current block, and the last argument symbol
4647 passed in SYM within the current block (if any). When SYM is null,
4648 marking the end of a block, the argument symbol is added if no
4649 other has been found. */
4650
4651 static int
4652 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4653 {
4654 struct match_data *data = (struct match_data *) data0;
4655
4656 if (sym == NULL)
4657 {
4658 if (!data->found_sym && data->arg_sym != NULL)
4659 add_defn_to_vec (data->obstackp,
4660 fixup_symbol_section (data->arg_sym, data->objfile),
4661 block);
4662 data->found_sym = 0;
4663 data->arg_sym = NULL;
4664 }
4665 else
4666 {
4667 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4668 return 0;
4669 else if (SYMBOL_IS_ARGUMENT (sym))
4670 data->arg_sym = sym;
4671 else
4672 {
4673 data->found_sym = 1;
4674 add_defn_to_vec (data->obstackp,
4675 fixup_symbol_section (sym, data->objfile),
4676 block);
4677 }
4678 }
4679 return 0;
4680 }
4681
4682 /* Compare STRING1 to STRING2, with results as for strcmp.
4683 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4684 implies compare_names (STRING1, STRING2) (they may differ as to
4685 what symbols compare equal). */
4686
4687 static int
4688 compare_names (const char *string1, const char *string2)
4689 {
4690 while (*string1 != '\0' && *string2 != '\0')
4691 {
4692 if (isspace (*string1) || isspace (*string2))
4693 return strcmp_iw_ordered (string1, string2);
4694 if (*string1 != *string2)
4695 break;
4696 string1 += 1;
4697 string2 += 1;
4698 }
4699 switch (*string1)
4700 {
4701 case '(':
4702 return strcmp_iw_ordered (string1, string2);
4703 case '_':
4704 if (*string2 == '\0')
4705 {
4706 if (is_name_suffix (string2))
4707 return 0;
4708 else
4709 return -1;
4710 }
4711 default:
4712 if (*string2 == '(')
4713 return strcmp_iw_ordered (string1, string2);
4714 else
4715 return *string1 - *string2;
4716 }
4717 }
4718
4719 /* Add to OBSTACKP all non-local symbols whose name and domain match
4720 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4721 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4722
4723 static void
4724 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4725 domain_enum domain, int global,
4726 int is_wild_match)
4727 {
4728 struct objfile *objfile;
4729 struct match_data data;
4730
4731 data.obstackp = obstackp;
4732 data.arg_sym = NULL;
4733
4734 ALL_OBJFILES (objfile)
4735 {
4736 data.objfile = objfile;
4737
4738 if (is_wild_match)
4739 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4740 aux_add_nonlocal_symbols, &data,
4741 wild_match, NULL);
4742 else
4743 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747
4748 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4749 {
4750 ALL_OBJFILES (objfile)
4751 {
4752 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4753 strcpy (name1, "_ada_");
4754 strcpy (name1 + sizeof ("_ada_") - 1, name);
4755 data.objfile = objfile;
4756 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4757 aux_add_nonlocal_symbols, &data,
4758 full_match, compare_names);
4759 }
4760 }
4761 }
4762
4763 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4764 scope and in global scopes, returning the number of matches. Sets
4765 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4766 indicating the symbols found and the blocks and symbol tables (if
4767 any) in which they were found. This vector are transient---good only to
4768 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4769 symbol match within the nest of blocks whose innermost member is BLOCK0,
4770 is the one match returned (no other matches in that or
4771 enclosing blocks is returned). If there are any matches in or
4772 surrounding BLOCK0, then these alone are returned. Otherwise, the
4773 search extends to global and file-scope (static) symbol tables.
4774 Names prefixed with "standard__" are handled specially: "standard__"
4775 is first stripped off, and only static and global symbols are searched. */
4776
4777 int
4778 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4779 domain_enum namespace,
4780 struct ada_symbol_info **results)
4781 {
4782 struct symbol *sym;
4783 struct block *block;
4784 const char *name;
4785 int wild_match;
4786 int cacheIfUnique;
4787 int ndefns;
4788
4789 obstack_free (&symbol_list_obstack, NULL);
4790 obstack_init (&symbol_list_obstack);
4791
4792 cacheIfUnique = 0;
4793
4794 /* Search specified block and its superiors. */
4795
4796 wild_match = (strstr (name0, "__") == NULL);
4797 name = name0;
4798 block = (struct block *) block0; /* FIXME: No cast ought to be
4799 needed, but adding const will
4800 have a cascade effect. */
4801
4802 /* Special case: If the user specifies a symbol name inside package
4803 Standard, do a non-wild matching of the symbol name without
4804 the "standard__" prefix. This was primarily introduced in order
4805 to allow the user to specifically access the standard exceptions
4806 using, for instance, Standard.Constraint_Error when Constraint_Error
4807 is ambiguous (due to the user defining its own Constraint_Error
4808 entity inside its program). */
4809 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4810 {
4811 wild_match = 0;
4812 block = NULL;
4813 name = name0 + sizeof ("standard__") - 1;
4814 }
4815
4816 /* Check the non-global symbols. If we have ANY match, then we're done. */
4817
4818 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4819 wild_match);
4820 if (num_defns_collected (&symbol_list_obstack) > 0)
4821 goto done;
4822
4823 /* No non-global symbols found. Check our cache to see if we have
4824 already performed this search before. If we have, then return
4825 the same result. */
4826
4827 cacheIfUnique = 1;
4828 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4829 {
4830 if (sym != NULL)
4831 add_defn_to_vec (&symbol_list_obstack, sym, block);
4832 goto done;
4833 }
4834
4835 /* Search symbols from all global blocks. */
4836
4837 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4838 wild_match);
4839
4840 /* Now add symbols from all per-file blocks if we've gotten no hits
4841 (not strictly correct, but perhaps better than an error). */
4842
4843 if (num_defns_collected (&symbol_list_obstack) == 0)
4844 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4845 wild_match);
4846
4847 done:
4848 ndefns = num_defns_collected (&symbol_list_obstack);
4849 *results = defns_collected (&symbol_list_obstack, 1);
4850
4851 ndefns = remove_extra_symbols (*results, ndefns);
4852
4853 if (ndefns == 0)
4854 cache_symbol (name0, namespace, NULL, NULL);
4855
4856 if (ndefns == 1 && cacheIfUnique)
4857 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4858
4859 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4860
4861 return ndefns;
4862 }
4863
4864 struct symbol *
4865 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4866 domain_enum namespace, struct block **block_found)
4867 {
4868 struct ada_symbol_info *candidates;
4869 int n_candidates;
4870
4871 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4872
4873 if (n_candidates == 0)
4874 return NULL;
4875
4876 if (block_found != NULL)
4877 *block_found = candidates[0].block;
4878
4879 return fixup_symbol_section (candidates[0].sym, NULL);
4880 }
4881
4882 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4883 scope and in global scopes, or NULL if none. NAME is folded and
4884 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4885 choosing the first symbol if there are multiple choices.
4886 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4887 table in which the symbol was found (in both cases, these
4888 assignments occur only if the pointers are non-null). */
4889 struct symbol *
4890 ada_lookup_symbol (const char *name, const struct block *block0,
4891 domain_enum namespace, int *is_a_field_of_this)
4892 {
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4895
4896 return
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4898 block0, namespace, NULL);
4899 }
4900
4901 static struct symbol *
4902 ada_lookup_symbol_nonlocal (const char *name,
4903 const struct block *block,
4904 const domain_enum domain)
4905 {
4906 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4907 }
4908
4909
4910 /* True iff STR is a possible encoded suffix of a normal Ada name
4911 that is to be ignored for matching purposes. Suffixes of parallel
4912 names (e.g., XVE) are not included here. Currently, the possible suffixes
4913 are given by any of the regular expressions:
4914
4915 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4916 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4917 _E[0-9]+[bs]$ [protected object entry suffixes]
4918 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4919
4920 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4921 match is performed. This sequence is used to differentiate homonyms,
4922 is an optional part of a valid name suffix. */
4923
4924 static int
4925 is_name_suffix (const char *str)
4926 {
4927 int k;
4928 const char *matching;
4929 const int len = strlen (str);
4930
4931 /* Skip optional leading __[0-9]+. */
4932
4933 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4934 {
4935 str += 3;
4936 while (isdigit (str[0]))
4937 str += 1;
4938 }
4939
4940 /* [.$][0-9]+ */
4941
4942 if (str[0] == '.' || str[0] == '$')
4943 {
4944 matching = str + 1;
4945 while (isdigit (matching[0]))
4946 matching += 1;
4947 if (matching[0] == '\0')
4948 return 1;
4949 }
4950
4951 /* ___[0-9]+ */
4952
4953 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4954 {
4955 matching = str + 3;
4956 while (isdigit (matching[0]))
4957 matching += 1;
4958 if (matching[0] == '\0')
4959 return 1;
4960 }
4961
4962 #if 0
4963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4964 with a N at the end. Unfortunately, the compiler uses the same
4965 convention for other internal types it creates. So treating
4966 all entity names that end with an "N" as a name suffix causes
4967 some regressions. For instance, consider the case of an enumerated
4968 type. To support the 'Image attribute, it creates an array whose
4969 name ends with N.
4970 Having a single character like this as a suffix carrying some
4971 information is a bit risky. Perhaps we should change the encoding
4972 to be something like "_N" instead. In the meantime, do not do
4973 the following check. */
4974 /* Protected Object Subprograms */
4975 if (len == 1 && str [0] == 'N')
4976 return 1;
4977 #endif
4978
4979 /* _E[0-9]+[bs]$ */
4980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4981 {
4982 matching = str + 3;
4983 while (isdigit (matching[0]))
4984 matching += 1;
4985 if ((matching[0] == 'b' || matching[0] == 's')
4986 && matching [1] == '\0')
4987 return 1;
4988 }
4989
4990 /* ??? We should not modify STR directly, as we are doing below. This
4991 is fine in this case, but may become problematic later if we find
4992 that this alternative did not work, and want to try matching
4993 another one from the begining of STR. Since we modified it, we
4994 won't be able to find the begining of the string anymore! */
4995 if (str[0] == 'X')
4996 {
4997 str += 1;
4998 while (str[0] != '_' && str[0] != '\0')
4999 {
5000 if (str[0] != 'n' && str[0] != 'b')
5001 return 0;
5002 str += 1;
5003 }
5004 }
5005
5006 if (str[0] == '\000')
5007 return 1;
5008
5009 if (str[0] == '_')
5010 {
5011 if (str[1] != '_' || str[2] == '\000')
5012 return 0;
5013 if (str[2] == '_')
5014 {
5015 if (strcmp (str + 3, "JM") == 0)
5016 return 1;
5017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5018 the LJM suffix in favor of the JM one. But we will
5019 still accept LJM as a valid suffix for a reasonable
5020 amount of time, just to allow ourselves to debug programs
5021 compiled using an older version of GNAT. */
5022 if (strcmp (str + 3, "LJM") == 0)
5023 return 1;
5024 if (str[3] != 'X')
5025 return 0;
5026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5027 || str[4] == 'U' || str[4] == 'P')
5028 return 1;
5029 if (str[4] == 'R' && str[5] != 'T')
5030 return 1;
5031 return 0;
5032 }
5033 if (!isdigit (str[2]))
5034 return 0;
5035 for (k = 3; str[k] != '\0'; k += 1)
5036 if (!isdigit (str[k]) && str[k] != '_')
5037 return 0;
5038 return 1;
5039 }
5040 if (str[0] == '$' && isdigit (str[1]))
5041 {
5042 for (k = 2; str[k] != '\0'; k += 1)
5043 if (!isdigit (str[k]) && str[k] != '_')
5044 return 0;
5045 return 1;
5046 }
5047 return 0;
5048 }
5049
5050 /* Return non-zero if the string starting at NAME and ending before
5051 NAME_END contains no capital letters. */
5052
5053 static int
5054 is_valid_name_for_wild_match (const char *name0)
5055 {
5056 const char *decoded_name = ada_decode (name0);
5057 int i;
5058
5059 /* If the decoded name starts with an angle bracket, it means that
5060 NAME0 does not follow the GNAT encoding format. It should then
5061 not be allowed as a possible wild match. */
5062 if (decoded_name[0] == '<')
5063 return 0;
5064
5065 for (i=0; decoded_name[i] != '\0'; i++)
5066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5067 return 0;
5068
5069 return 1;
5070 }
5071
5072 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5073 that could start a simple name. Assumes that *NAMEP points into
5074 the string beginning at NAME0. */
5075
5076 static int
5077 advance_wild_match (const char **namep, const char *name0, int target0)
5078 {
5079 const char *name = *namep;
5080
5081 while (1)
5082 {
5083 int t0, t1;
5084
5085 t0 = *name;
5086 if (t0 == '_')
5087 {
5088 t1 = name[1];
5089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5090 {
5091 name += 1;
5092 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5093 break;
5094 else
5095 name += 1;
5096 }
5097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5098 || name[2] == target0))
5099 {
5100 name += 2;
5101 break;
5102 }
5103 else
5104 return 0;
5105 }
5106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5107 name += 1;
5108 else
5109 return 0;
5110 }
5111
5112 *namep = name;
5113 return 1;
5114 }
5115
5116 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5117 informational suffixes of NAME (i.e., for which is_name_suffix is
5118 true). Assumes that PATN is a lower-cased Ada simple name. */
5119
5120 static int
5121 wild_match (const char *name, const char *patn)
5122 {
5123 const char *p, *n;
5124 const char *name0 = name;
5125
5126 while (1)
5127 {
5128 const char *match = name;
5129
5130 if (*name == *patn)
5131 {
5132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5133 if (*p != *name)
5134 break;
5135 if (*p == '\0' && is_name_suffix (name))
5136 return match != name0 && !is_valid_name_for_wild_match (name0);
5137
5138 if (name[-1] == '_')
5139 name -= 1;
5140 }
5141 if (!advance_wild_match (&name, name0, *patn))
5142 return 1;
5143 }
5144 }
5145
5146 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5147 informational suffix. */
5148
5149 static int
5150 full_match (const char *sym_name, const char *search_name)
5151 {
5152 return !match_name (sym_name, search_name, 0);
5153 }
5154
5155
5156 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5157 vector *defn_symbols, updating the list of symbols in OBSTACKP
5158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5159 OBJFILE is the section containing BLOCK.
5160 SYMTAB is recorded with each symbol added. */
5161
5162 static void
5163 ada_add_block_symbols (struct obstack *obstackp,
5164 struct block *block, const char *name,
5165 domain_enum domain, struct objfile *objfile,
5166 int wild)
5167 {
5168 struct dict_iterator iter;
5169 int name_len = strlen (name);
5170 /* A matching argument symbol, if any. */
5171 struct symbol *arg_sym;
5172 /* Set true when we find a matching non-argument symbol. */
5173 int found_sym;
5174 struct symbol *sym;
5175
5176 arg_sym = NULL;
5177 found_sym = 0;
5178 if (wild)
5179 {
5180 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5181 wild_match, &iter);
5182 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5183 {
5184 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5185 SYMBOL_DOMAIN (sym), domain)
5186 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5187 {
5188 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5189 continue;
5190 else if (SYMBOL_IS_ARGUMENT (sym))
5191 arg_sym = sym;
5192 else
5193 {
5194 found_sym = 1;
5195 add_defn_to_vec (obstackp,
5196 fixup_symbol_section (sym, objfile),
5197 block);
5198 }
5199 }
5200 }
5201 }
5202 else
5203 {
5204 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5205 full_match, &iter);
5206 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5207 {
5208 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5209 SYMBOL_DOMAIN (sym), domain))
5210 {
5211 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5212 {
5213 if (SYMBOL_IS_ARGUMENT (sym))
5214 arg_sym = sym;
5215 else
5216 {
5217 found_sym = 1;
5218 add_defn_to_vec (obstackp,
5219 fixup_symbol_section (sym, objfile),
5220 block);
5221 }
5222 }
5223 }
5224 }
5225 }
5226
5227 if (!found_sym && arg_sym != NULL)
5228 {
5229 add_defn_to_vec (obstackp,
5230 fixup_symbol_section (arg_sym, objfile),
5231 block);
5232 }
5233
5234 if (!wild)
5235 {
5236 arg_sym = NULL;
5237 found_sym = 0;
5238
5239 ALL_BLOCK_SYMBOLS (block, iter, sym)
5240 {
5241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5242 SYMBOL_DOMAIN (sym), domain))
5243 {
5244 int cmp;
5245
5246 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5247 if (cmp == 0)
5248 {
5249 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5250 if (cmp == 0)
5251 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5252 name_len);
5253 }
5254
5255 if (cmp == 0
5256 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5257 {
5258 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5259 {
5260 if (SYMBOL_IS_ARGUMENT (sym))
5261 arg_sym = sym;
5262 else
5263 {
5264 found_sym = 1;
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (sym, objfile),
5267 block);
5268 }
5269 }
5270 }
5271 }
5272 }
5273
5274 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5275 They aren't parameters, right? */
5276 if (!found_sym && arg_sym != NULL)
5277 {
5278 add_defn_to_vec (obstackp,
5279 fixup_symbol_section (arg_sym, objfile),
5280 block);
5281 }
5282 }
5283 }
5284 \f
5285
5286 /* Symbol Completion */
5287
5288 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5289 name in a form that's appropriate for the completion. The result
5290 does not need to be deallocated, but is only good until the next call.
5291
5292 TEXT_LEN is equal to the length of TEXT.
5293 Perform a wild match if WILD_MATCH is set.
5294 ENCODED should be set if TEXT represents the start of a symbol name
5295 in its encoded form. */
5296
5297 static const char *
5298 symbol_completion_match (const char *sym_name,
5299 const char *text, int text_len,
5300 int wild_match, int encoded)
5301 {
5302 const int verbatim_match = (text[0] == '<');
5303 int match = 0;
5304
5305 if (verbatim_match)
5306 {
5307 /* Strip the leading angle bracket. */
5308 text = text + 1;
5309 text_len--;
5310 }
5311
5312 /* First, test against the fully qualified name of the symbol. */
5313
5314 if (strncmp (sym_name, text, text_len) == 0)
5315 match = 1;
5316
5317 if (match && !encoded)
5318 {
5319 /* One needed check before declaring a positive match is to verify
5320 that iff we are doing a verbatim match, the decoded version
5321 of the symbol name starts with '<'. Otherwise, this symbol name
5322 is not a suitable completion. */
5323 const char *sym_name_copy = sym_name;
5324 int has_angle_bracket;
5325
5326 sym_name = ada_decode (sym_name);
5327 has_angle_bracket = (sym_name[0] == '<');
5328 match = (has_angle_bracket == verbatim_match);
5329 sym_name = sym_name_copy;
5330 }
5331
5332 if (match && !verbatim_match)
5333 {
5334 /* When doing non-verbatim match, another check that needs to
5335 be done is to verify that the potentially matching symbol name
5336 does not include capital letters, because the ada-mode would
5337 not be able to understand these symbol names without the
5338 angle bracket notation. */
5339 const char *tmp;
5340
5341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5342 if (*tmp != '\0')
5343 match = 0;
5344 }
5345
5346 /* Second: Try wild matching... */
5347
5348 if (!match && wild_match)
5349 {
5350 /* Since we are doing wild matching, this means that TEXT
5351 may represent an unqualified symbol name. We therefore must
5352 also compare TEXT against the unqualified name of the symbol. */
5353 sym_name = ada_unqualified_name (ada_decode (sym_name));
5354
5355 if (strncmp (sym_name, text, text_len) == 0)
5356 match = 1;
5357 }
5358
5359 /* Finally: If we found a mach, prepare the result to return. */
5360
5361 if (!match)
5362 return NULL;
5363
5364 if (verbatim_match)
5365 sym_name = add_angle_brackets (sym_name);
5366
5367 if (!encoded)
5368 sym_name = ada_decode (sym_name);
5369
5370 return sym_name;
5371 }
5372
5373 DEF_VEC_P (char_ptr);
5374
5375 /* A companion function to ada_make_symbol_completion_list().
5376 Check if SYM_NAME represents a symbol which name would be suitable
5377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5378 it is appended at the end of the given string vector SV.
5379
5380 ORIG_TEXT is the string original string from the user command
5381 that needs to be completed. WORD is the entire command on which
5382 completion should be performed. These two parameters are used to
5383 determine which part of the symbol name should be added to the
5384 completion vector.
5385 if WILD_MATCH is set, then wild matching is performed.
5386 ENCODED should be set if TEXT represents a symbol name in its
5387 encoded formed (in which case the completion should also be
5388 encoded). */
5389
5390 static void
5391 symbol_completion_add (VEC(char_ptr) **sv,
5392 const char *sym_name,
5393 const char *text, int text_len,
5394 const char *orig_text, const char *word,
5395 int wild_match, int encoded)
5396 {
5397 const char *match = symbol_completion_match (sym_name, text, text_len,
5398 wild_match, encoded);
5399 char *completion;
5400
5401 if (match == NULL)
5402 return;
5403
5404 /* We found a match, so add the appropriate completion to the given
5405 string vector. */
5406
5407 if (word == orig_text)
5408 {
5409 completion = xmalloc (strlen (match) + 5);
5410 strcpy (completion, match);
5411 }
5412 else if (word > orig_text)
5413 {
5414 /* Return some portion of sym_name. */
5415 completion = xmalloc (strlen (match) + 5);
5416 strcpy (completion, match + (word - orig_text));
5417 }
5418 else
5419 {
5420 /* Return some of ORIG_TEXT plus sym_name. */
5421 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5422 strncpy (completion, word, orig_text - word);
5423 completion[orig_text - word] = '\0';
5424 strcat (completion, match);
5425 }
5426
5427 VEC_safe_push (char_ptr, *sv, completion);
5428 }
5429
5430 /* An object of this type is passed as the user_data argument to the
5431 map_partial_symbol_names method. */
5432 struct add_partial_datum
5433 {
5434 VEC(char_ptr) **completions;
5435 char *text;
5436 int text_len;
5437 char *text0;
5438 char *word;
5439 int wild_match;
5440 int encoded;
5441 };
5442
5443 /* A callback for map_partial_symbol_names. */
5444 static void
5445 ada_add_partial_symbol_completions (const char *name, void *user_data)
5446 {
5447 struct add_partial_datum *data = user_data;
5448
5449 symbol_completion_add (data->completions, name,
5450 data->text, data->text_len, data->text0, data->word,
5451 data->wild_match, data->encoded);
5452 }
5453
5454 /* Return a list of possible symbol names completing TEXT0. The list
5455 is NULL terminated. WORD is the entire command on which completion
5456 is made. */
5457
5458 static char **
5459 ada_make_symbol_completion_list (char *text0, char *word)
5460 {
5461 char *text;
5462 int text_len;
5463 int wild_match;
5464 int encoded;
5465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5466 struct symbol *sym;
5467 struct symtab *s;
5468 struct minimal_symbol *msymbol;
5469 struct objfile *objfile;
5470 struct block *b, *surrounding_static_block = 0;
5471 int i;
5472 struct dict_iterator iter;
5473
5474 if (text0[0] == '<')
5475 {
5476 text = xstrdup (text0);
5477 make_cleanup (xfree, text);
5478 text_len = strlen (text);
5479 wild_match = 0;
5480 encoded = 1;
5481 }
5482 else
5483 {
5484 text = xstrdup (ada_encode (text0));
5485 make_cleanup (xfree, text);
5486 text_len = strlen (text);
5487 for (i = 0; i < text_len; i++)
5488 text[i] = tolower (text[i]);
5489
5490 encoded = (strstr (text0, "__") != NULL);
5491 /* If the name contains a ".", then the user is entering a fully
5492 qualified entity name, and the match must not be done in wild
5493 mode. Similarly, if the user wants to complete what looks like
5494 an encoded name, the match must not be done in wild mode. */
5495 wild_match = (strchr (text0, '.') == NULL && !encoded);
5496 }
5497
5498 /* First, look at the partial symtab symbols. */
5499 {
5500 struct add_partial_datum data;
5501
5502 data.completions = &completions;
5503 data.text = text;
5504 data.text_len = text_len;
5505 data.text0 = text0;
5506 data.word = word;
5507 data.wild_match = wild_match;
5508 data.encoded = encoded;
5509 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5510 }
5511
5512 /* At this point scan through the misc symbol vectors and add each
5513 symbol you find to the list. Eventually we want to ignore
5514 anything that isn't a text symbol (everything else will be
5515 handled by the psymtab code above). */
5516
5517 ALL_MSYMBOLS (objfile, msymbol)
5518 {
5519 QUIT;
5520 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5521 text, text_len, text0, word, wild_match, encoded);
5522 }
5523
5524 /* Search upwards from currently selected frame (so that we can
5525 complete on local vars. */
5526
5527 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5528 {
5529 if (!BLOCK_SUPERBLOCK (b))
5530 surrounding_static_block = b; /* For elmin of dups */
5531
5532 ALL_BLOCK_SYMBOLS (b, iter, sym)
5533 {
5534 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5535 text, text_len, text0, word,
5536 wild_match, encoded);
5537 }
5538 }
5539
5540 /* Go through the symtabs and check the externs and statics for
5541 symbols which match. */
5542
5543 ALL_SYMTABS (objfile, s)
5544 {
5545 QUIT;
5546 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5547 ALL_BLOCK_SYMBOLS (b, iter, sym)
5548 {
5549 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5550 text, text_len, text0, word,
5551 wild_match, encoded);
5552 }
5553 }
5554
5555 ALL_SYMTABS (objfile, s)
5556 {
5557 QUIT;
5558 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5559 /* Don't do this block twice. */
5560 if (b == surrounding_static_block)
5561 continue;
5562 ALL_BLOCK_SYMBOLS (b, iter, sym)
5563 {
5564 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5565 text, text_len, text0, word,
5566 wild_match, encoded);
5567 }
5568 }
5569
5570 /* Append the closing NULL entry. */
5571 VEC_safe_push (char_ptr, completions, NULL);
5572
5573 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5574 return the copy. It's unfortunate that we have to make a copy
5575 of an array that we're about to destroy, but there is nothing much
5576 we can do about it. Fortunately, it's typically not a very large
5577 array. */
5578 {
5579 const size_t completions_size =
5580 VEC_length (char_ptr, completions) * sizeof (char *);
5581 char **result = malloc (completions_size);
5582
5583 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5584
5585 VEC_free (char_ptr, completions);
5586 return result;
5587 }
5588 }
5589
5590 /* Field Access */
5591
5592 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5593 for tagged types. */
5594
5595 static int
5596 ada_is_dispatch_table_ptr_type (struct type *type)
5597 {
5598 char *name;
5599
5600 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5601 return 0;
5602
5603 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5604 if (name == NULL)
5605 return 0;
5606
5607 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5608 }
5609
5610 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5611 to be invisible to users. */
5612
5613 int
5614 ada_is_ignored_field (struct type *type, int field_num)
5615 {
5616 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5617 return 1;
5618
5619 /* Check the name of that field. */
5620 {
5621 const char *name = TYPE_FIELD_NAME (type, field_num);
5622
5623 /* Anonymous field names should not be printed.
5624 brobecker/2007-02-20: I don't think this can actually happen
5625 but we don't want to print the value of annonymous fields anyway. */
5626 if (name == NULL)
5627 return 1;
5628
5629 /* A field named "_parent" is internally generated by GNAT for
5630 tagged types, and should not be printed either. */
5631 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5632 return 1;
5633 }
5634
5635 /* If this is the dispatch table of a tagged type, then ignore. */
5636 if (ada_is_tagged_type (type, 1)
5637 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5638 return 1;
5639
5640 /* Not a special field, so it should not be ignored. */
5641 return 0;
5642 }
5643
5644 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5645 pointer or reference type whose ultimate target has a tag field. */
5646
5647 int
5648 ada_is_tagged_type (struct type *type, int refok)
5649 {
5650 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5651 }
5652
5653 /* True iff TYPE represents the type of X'Tag */
5654
5655 int
5656 ada_is_tag_type (struct type *type)
5657 {
5658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5659 return 0;
5660 else
5661 {
5662 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5663
5664 return (name != NULL
5665 && strcmp (name, "ada__tags__dispatch_table") == 0);
5666 }
5667 }
5668
5669 /* The type of the tag on VAL. */
5670
5671 struct type *
5672 ada_tag_type (struct value *val)
5673 {
5674 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5675 }
5676
5677 /* The value of the tag on VAL. */
5678
5679 struct value *
5680 ada_value_tag (struct value *val)
5681 {
5682 return ada_value_struct_elt (val, "_tag", 0);
5683 }
5684
5685 /* The value of the tag on the object of type TYPE whose contents are
5686 saved at VALADDR, if it is non-null, or is at memory address
5687 ADDRESS. */
5688
5689 static struct value *
5690 value_tag_from_contents_and_address (struct type *type,
5691 const gdb_byte *valaddr,
5692 CORE_ADDR address)
5693 {
5694 int tag_byte_offset;
5695 struct type *tag_type;
5696
5697 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5698 NULL, NULL, NULL))
5699 {
5700 const gdb_byte *valaddr1 = ((valaddr == NULL)
5701 ? NULL
5702 : valaddr + tag_byte_offset);
5703 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5704
5705 return value_from_contents_and_address (tag_type, valaddr1, address1);
5706 }
5707 return NULL;
5708 }
5709
5710 static struct type *
5711 type_from_tag (struct value *tag)
5712 {
5713 const char *type_name = ada_tag_name (tag);
5714
5715 if (type_name != NULL)
5716 return ada_find_any_type (ada_encode (type_name));
5717 return NULL;
5718 }
5719
5720 struct tag_args
5721 {
5722 struct value *tag;
5723 char *name;
5724 };
5725
5726
5727 static int ada_tag_name_1 (void *);
5728 static int ada_tag_name_2 (struct tag_args *);
5729
5730 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5731 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5732 The value stored in ARGS->name is valid until the next call to
5733 ada_tag_name_1. */
5734
5735 static int
5736 ada_tag_name_1 (void *args0)
5737 {
5738 struct tag_args *args = (struct tag_args *) args0;
5739 static char name[1024];
5740 char *p;
5741 struct value *val;
5742
5743 args->name = NULL;
5744 val = ada_value_struct_elt (args->tag, "tsd", 1);
5745 if (val == NULL)
5746 return ada_tag_name_2 (args);
5747 val = ada_value_struct_elt (val, "expanded_name", 1);
5748 if (val == NULL)
5749 return 0;
5750 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5751 for (p = name; *p != '\0'; p += 1)
5752 if (isalpha (*p))
5753 *p = tolower (*p);
5754 args->name = name;
5755 return 0;
5756 }
5757
5758 /* Return the "ada__tags__type_specific_data" type. */
5759
5760 static struct type *
5761 ada_get_tsd_type (struct inferior *inf)
5762 {
5763 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5764
5765 if (data->tsd_type == 0)
5766 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5767 return data->tsd_type;
5768 }
5769
5770 /* Utility function for ada_tag_name_1 that tries the second
5771 representation for the dispatch table (in which there is no
5772 explicit 'tsd' field in the referent of the tag pointer, and instead
5773 the tsd pointer is stored just before the dispatch table. */
5774
5775 static int
5776 ada_tag_name_2 (struct tag_args *args)
5777 {
5778 struct type *info_type;
5779 static char name[1024];
5780 char *p;
5781 struct value *val, *valp;
5782
5783 args->name = NULL;
5784 info_type = ada_get_tsd_type (current_inferior());
5785 if (info_type == NULL)
5786 return 0;
5787 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5788 valp = value_cast (info_type, args->tag);
5789 if (valp == NULL)
5790 return 0;
5791 val = value_ind (value_ptradd (valp, -1));
5792 if (val == NULL)
5793 return 0;
5794 val = ada_value_struct_elt (val, "expanded_name", 1);
5795 if (val == NULL)
5796 return 0;
5797 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5798 for (p = name; *p != '\0'; p += 1)
5799 if (isalpha (*p))
5800 *p = tolower (*p);
5801 args->name = name;
5802 return 0;
5803 }
5804
5805 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5806 a C string. */
5807
5808 const char *
5809 ada_tag_name (struct value *tag)
5810 {
5811 struct tag_args args;
5812
5813 if (!ada_is_tag_type (value_type (tag)))
5814 return NULL;
5815 args.tag = tag;
5816 args.name = NULL;
5817 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5818 return args.name;
5819 }
5820
5821 /* The parent type of TYPE, or NULL if none. */
5822
5823 struct type *
5824 ada_parent_type (struct type *type)
5825 {
5826 int i;
5827
5828 type = ada_check_typedef (type);
5829
5830 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5831 return NULL;
5832
5833 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5834 if (ada_is_parent_field (type, i))
5835 {
5836 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5837
5838 /* If the _parent field is a pointer, then dereference it. */
5839 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5840 parent_type = TYPE_TARGET_TYPE (parent_type);
5841 /* If there is a parallel XVS type, get the actual base type. */
5842 parent_type = ada_get_base_type (parent_type);
5843
5844 return ada_check_typedef (parent_type);
5845 }
5846
5847 return NULL;
5848 }
5849
5850 /* True iff field number FIELD_NUM of structure type TYPE contains the
5851 parent-type (inherited) fields of a derived type. Assumes TYPE is
5852 a structure type with at least FIELD_NUM+1 fields. */
5853
5854 int
5855 ada_is_parent_field (struct type *type, int field_num)
5856 {
5857 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5858
5859 return (name != NULL
5860 && (strncmp (name, "PARENT", 6) == 0
5861 || strncmp (name, "_parent", 7) == 0));
5862 }
5863
5864 /* True iff field number FIELD_NUM of structure type TYPE is a
5865 transparent wrapper field (which should be silently traversed when doing
5866 field selection and flattened when printing). Assumes TYPE is a
5867 structure type with at least FIELD_NUM+1 fields. Such fields are always
5868 structures. */
5869
5870 int
5871 ada_is_wrapper_field (struct type *type, int field_num)
5872 {
5873 const char *name = TYPE_FIELD_NAME (type, field_num);
5874
5875 return (name != NULL
5876 && (strncmp (name, "PARENT", 6) == 0
5877 || strcmp (name, "REP") == 0
5878 || strncmp (name, "_parent", 7) == 0
5879 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5880 }
5881
5882 /* True iff field number FIELD_NUM of structure or union type TYPE
5883 is a variant wrapper. Assumes TYPE is a structure type with at least
5884 FIELD_NUM+1 fields. */
5885
5886 int
5887 ada_is_variant_part (struct type *type, int field_num)
5888 {
5889 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5890
5891 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5892 || (is_dynamic_field (type, field_num)
5893 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5894 == TYPE_CODE_UNION)));
5895 }
5896
5897 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5898 whose discriminants are contained in the record type OUTER_TYPE,
5899 returns the type of the controlling discriminant for the variant.
5900 May return NULL if the type could not be found. */
5901
5902 struct type *
5903 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5904 {
5905 char *name = ada_variant_discrim_name (var_type);
5906
5907 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5908 }
5909
5910 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5911 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5912 represents a 'when others' clause; otherwise 0. */
5913
5914 int
5915 ada_is_others_clause (struct type *type, int field_num)
5916 {
5917 const char *name = TYPE_FIELD_NAME (type, field_num);
5918
5919 return (name != NULL && name[0] == 'O');
5920 }
5921
5922 /* Assuming that TYPE0 is the type of the variant part of a record,
5923 returns the name of the discriminant controlling the variant.
5924 The value is valid until the next call to ada_variant_discrim_name. */
5925
5926 char *
5927 ada_variant_discrim_name (struct type *type0)
5928 {
5929 static char *result = NULL;
5930 static size_t result_len = 0;
5931 struct type *type;
5932 const char *name;
5933 const char *discrim_end;
5934 const char *discrim_start;
5935
5936 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5937 type = TYPE_TARGET_TYPE (type0);
5938 else
5939 type = type0;
5940
5941 name = ada_type_name (type);
5942
5943 if (name == NULL || name[0] == '\000')
5944 return "";
5945
5946 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5947 discrim_end -= 1)
5948 {
5949 if (strncmp (discrim_end, "___XVN", 6) == 0)
5950 break;
5951 }
5952 if (discrim_end == name)
5953 return "";
5954
5955 for (discrim_start = discrim_end; discrim_start != name + 3;
5956 discrim_start -= 1)
5957 {
5958 if (discrim_start == name + 1)
5959 return "";
5960 if ((discrim_start > name + 3
5961 && strncmp (discrim_start - 3, "___", 3) == 0)
5962 || discrim_start[-1] == '.')
5963 break;
5964 }
5965
5966 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5967 strncpy (result, discrim_start, discrim_end - discrim_start);
5968 result[discrim_end - discrim_start] = '\0';
5969 return result;
5970 }
5971
5972 /* Scan STR for a subtype-encoded number, beginning at position K.
5973 Put the position of the character just past the number scanned in
5974 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5975 Return 1 if there was a valid number at the given position, and 0
5976 otherwise. A "subtype-encoded" number consists of the absolute value
5977 in decimal, followed by the letter 'm' to indicate a negative number.
5978 Assumes 0m does not occur. */
5979
5980 int
5981 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5982 {
5983 ULONGEST RU;
5984
5985 if (!isdigit (str[k]))
5986 return 0;
5987
5988 /* Do it the hard way so as not to make any assumption about
5989 the relationship of unsigned long (%lu scan format code) and
5990 LONGEST. */
5991 RU = 0;
5992 while (isdigit (str[k]))
5993 {
5994 RU = RU * 10 + (str[k] - '0');
5995 k += 1;
5996 }
5997
5998 if (str[k] == 'm')
5999 {
6000 if (R != NULL)
6001 *R = (-(LONGEST) (RU - 1)) - 1;
6002 k += 1;
6003 }
6004 else if (R != NULL)
6005 *R = (LONGEST) RU;
6006
6007 /* NOTE on the above: Technically, C does not say what the results of
6008 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6009 number representable as a LONGEST (although either would probably work
6010 in most implementations). When RU>0, the locution in the then branch
6011 above is always equivalent to the negative of RU. */
6012
6013 if (new_k != NULL)
6014 *new_k = k;
6015 return 1;
6016 }
6017
6018 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6019 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6020 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6021
6022 int
6023 ada_in_variant (LONGEST val, struct type *type, int field_num)
6024 {
6025 const char *name = TYPE_FIELD_NAME (type, field_num);
6026 int p;
6027
6028 p = 0;
6029 while (1)
6030 {
6031 switch (name[p])
6032 {
6033 case '\0':
6034 return 0;
6035 case 'S':
6036 {
6037 LONGEST W;
6038
6039 if (!ada_scan_number (name, p + 1, &W, &p))
6040 return 0;
6041 if (val == W)
6042 return 1;
6043 break;
6044 }
6045 case 'R':
6046 {
6047 LONGEST L, U;
6048
6049 if (!ada_scan_number (name, p + 1, &L, &p)
6050 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6051 return 0;
6052 if (val >= L && val <= U)
6053 return 1;
6054 break;
6055 }
6056 case 'O':
6057 return 1;
6058 default:
6059 return 0;
6060 }
6061 }
6062 }
6063
6064 /* FIXME: Lots of redundancy below. Try to consolidate. */
6065
6066 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6067 ARG_TYPE, extract and return the value of one of its (non-static)
6068 fields. FIELDNO says which field. Differs from value_primitive_field
6069 only in that it can handle packed values of arbitrary type. */
6070
6071 static struct value *
6072 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6073 struct type *arg_type)
6074 {
6075 struct type *type;
6076
6077 arg_type = ada_check_typedef (arg_type);
6078 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6079
6080 /* Handle packed fields. */
6081
6082 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6083 {
6084 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6085 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6086
6087 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6088 offset + bit_pos / 8,
6089 bit_pos % 8, bit_size, type);
6090 }
6091 else
6092 return value_primitive_field (arg1, offset, fieldno, arg_type);
6093 }
6094
6095 /* Find field with name NAME in object of type TYPE. If found,
6096 set the following for each argument that is non-null:
6097 - *FIELD_TYPE_P to the field's type;
6098 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6099 an object of that type;
6100 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6101 - *BIT_SIZE_P to its size in bits if the field is packed, and
6102 0 otherwise;
6103 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6104 fields up to but not including the desired field, or by the total
6105 number of fields if not found. A NULL value of NAME never
6106 matches; the function just counts visible fields in this case.
6107
6108 Returns 1 if found, 0 otherwise. */
6109
6110 static int
6111 find_struct_field (char *name, struct type *type, int offset,
6112 struct type **field_type_p,
6113 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6114 int *index_p)
6115 {
6116 int i;
6117
6118 type = ada_check_typedef (type);
6119
6120 if (field_type_p != NULL)
6121 *field_type_p = NULL;
6122 if (byte_offset_p != NULL)
6123 *byte_offset_p = 0;
6124 if (bit_offset_p != NULL)
6125 *bit_offset_p = 0;
6126 if (bit_size_p != NULL)
6127 *bit_size_p = 0;
6128
6129 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6130 {
6131 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6132 int fld_offset = offset + bit_pos / 8;
6133 char *t_field_name = TYPE_FIELD_NAME (type, i);
6134
6135 if (t_field_name == NULL)
6136 continue;
6137
6138 else if (name != NULL && field_name_match (t_field_name, name))
6139 {
6140 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6141
6142 if (field_type_p != NULL)
6143 *field_type_p = TYPE_FIELD_TYPE (type, i);
6144 if (byte_offset_p != NULL)
6145 *byte_offset_p = fld_offset;
6146 if (bit_offset_p != NULL)
6147 *bit_offset_p = bit_pos % 8;
6148 if (bit_size_p != NULL)
6149 *bit_size_p = bit_size;
6150 return 1;
6151 }
6152 else if (ada_is_wrapper_field (type, i))
6153 {
6154 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6155 field_type_p, byte_offset_p, bit_offset_p,
6156 bit_size_p, index_p))
6157 return 1;
6158 }
6159 else if (ada_is_variant_part (type, i))
6160 {
6161 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6162 fixed type?? */
6163 int j;
6164 struct type *field_type
6165 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6166
6167 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6168 {
6169 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6170 fld_offset
6171 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6172 field_type_p, byte_offset_p,
6173 bit_offset_p, bit_size_p, index_p))
6174 return 1;
6175 }
6176 }
6177 else if (index_p != NULL)
6178 *index_p += 1;
6179 }
6180 return 0;
6181 }
6182
6183 /* Number of user-visible fields in record type TYPE. */
6184
6185 static int
6186 num_visible_fields (struct type *type)
6187 {
6188 int n;
6189
6190 n = 0;
6191 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6192 return n;
6193 }
6194
6195 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6196 and search in it assuming it has (class) type TYPE.
6197 If found, return value, else return NULL.
6198
6199 Searches recursively through wrapper fields (e.g., '_parent'). */
6200
6201 static struct value *
6202 ada_search_struct_field (char *name, struct value *arg, int offset,
6203 struct type *type)
6204 {
6205 int i;
6206
6207 type = ada_check_typedef (type);
6208 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6209 {
6210 char *t_field_name = TYPE_FIELD_NAME (type, i);
6211
6212 if (t_field_name == NULL)
6213 continue;
6214
6215 else if (field_name_match (t_field_name, name))
6216 return ada_value_primitive_field (arg, offset, i, type);
6217
6218 else if (ada_is_wrapper_field (type, i))
6219 {
6220 struct value *v = /* Do not let indent join lines here. */
6221 ada_search_struct_field (name, arg,
6222 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6223 TYPE_FIELD_TYPE (type, i));
6224
6225 if (v != NULL)
6226 return v;
6227 }
6228
6229 else if (ada_is_variant_part (type, i))
6230 {
6231 /* PNH: Do we ever get here? See find_struct_field. */
6232 int j;
6233 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6234 i));
6235 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6236
6237 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6238 {
6239 struct value *v = ada_search_struct_field /* Force line break. */
6240 (name, arg,
6241 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6242 TYPE_FIELD_TYPE (field_type, j));
6243
6244 if (v != NULL)
6245 return v;
6246 }
6247 }
6248 }
6249 return NULL;
6250 }
6251
6252 static struct value *ada_index_struct_field_1 (int *, struct value *,
6253 int, struct type *);
6254
6255
6256 /* Return field #INDEX in ARG, where the index is that returned by
6257 * find_struct_field through its INDEX_P argument. Adjust the address
6258 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6259 * If found, return value, else return NULL. */
6260
6261 static struct value *
6262 ada_index_struct_field (int index, struct value *arg, int offset,
6263 struct type *type)
6264 {
6265 return ada_index_struct_field_1 (&index, arg, offset, type);
6266 }
6267
6268
6269 /* Auxiliary function for ada_index_struct_field. Like
6270 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6271 * *INDEX_P. */
6272
6273 static struct value *
6274 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6275 struct type *type)
6276 {
6277 int i;
6278 type = ada_check_typedef (type);
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 {
6282 if (TYPE_FIELD_NAME (type, i) == NULL)
6283 continue;
6284 else if (ada_is_wrapper_field (type, i))
6285 {
6286 struct value *v = /* Do not let indent join lines here. */
6287 ada_index_struct_field_1 (index_p, arg,
6288 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6289 TYPE_FIELD_TYPE (type, i));
6290
6291 if (v != NULL)
6292 return v;
6293 }
6294
6295 else if (ada_is_variant_part (type, i))
6296 {
6297 /* PNH: Do we ever get here? See ada_search_struct_field,
6298 find_struct_field. */
6299 error (_("Cannot assign this kind of variant record"));
6300 }
6301 else if (*index_p == 0)
6302 return ada_value_primitive_field (arg, offset, i, type);
6303 else
6304 *index_p -= 1;
6305 }
6306 return NULL;
6307 }
6308
6309 /* Given ARG, a value of type (pointer or reference to a)*
6310 structure/union, extract the component named NAME from the ultimate
6311 target structure/union and return it as a value with its
6312 appropriate type.
6313
6314 The routine searches for NAME among all members of the structure itself
6315 and (recursively) among all members of any wrapper members
6316 (e.g., '_parent').
6317
6318 If NO_ERR, then simply return NULL in case of error, rather than
6319 calling error. */
6320
6321 struct value *
6322 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6323 {
6324 struct type *t, *t1;
6325 struct value *v;
6326
6327 v = NULL;
6328 t1 = t = ada_check_typedef (value_type (arg));
6329 if (TYPE_CODE (t) == TYPE_CODE_REF)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
6333 goto BadValue;
6334 t1 = ada_check_typedef (t1);
6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6336 {
6337 arg = coerce_ref (arg);
6338 t = t1;
6339 }
6340 }
6341
6342 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6343 {
6344 t1 = TYPE_TARGET_TYPE (t);
6345 if (t1 == NULL)
6346 goto BadValue;
6347 t1 = ada_check_typedef (t1);
6348 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6349 {
6350 arg = value_ind (arg);
6351 t = t1;
6352 }
6353 else
6354 break;
6355 }
6356
6357 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6358 goto BadValue;
6359
6360 if (t1 == t)
6361 v = ada_search_struct_field (name, arg, 0, t);
6362 else
6363 {
6364 int bit_offset, bit_size, byte_offset;
6365 struct type *field_type;
6366 CORE_ADDR address;
6367
6368 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6369 address = value_as_address (arg);
6370 else
6371 address = unpack_pointer (t, value_contents (arg));
6372
6373 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6374 if (find_struct_field (name, t1, 0,
6375 &field_type, &byte_offset, &bit_offset,
6376 &bit_size, NULL))
6377 {
6378 if (bit_size != 0)
6379 {
6380 if (TYPE_CODE (t) == TYPE_CODE_REF)
6381 arg = ada_coerce_ref (arg);
6382 else
6383 arg = ada_value_ind (arg);
6384 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6385 bit_offset, bit_size,
6386 field_type);
6387 }
6388 else
6389 v = value_at_lazy (field_type, address + byte_offset);
6390 }
6391 }
6392
6393 if (v != NULL || no_err)
6394 return v;
6395 else
6396 error (_("There is no member named %s."), name);
6397
6398 BadValue:
6399 if (no_err)
6400 return NULL;
6401 else
6402 error (_("Attempt to extract a component of a value that is not a record."));
6403 }
6404
6405 /* Given a type TYPE, look up the type of the component of type named NAME.
6406 If DISPP is non-null, add its byte displacement from the beginning of a
6407 structure (pointed to by a value) of type TYPE to *DISPP (does not
6408 work for packed fields).
6409
6410 Matches any field whose name has NAME as a prefix, possibly
6411 followed by "___".
6412
6413 TYPE can be either a struct or union. If REFOK, TYPE may also
6414 be a (pointer or reference)+ to a struct or union, and the
6415 ultimate target type will be searched.
6416
6417 Looks recursively into variant clauses and parent types.
6418
6419 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6420 TYPE is not a type of the right kind. */
6421
6422 static struct type *
6423 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6424 int noerr, int *dispp)
6425 {
6426 int i;
6427
6428 if (name == NULL)
6429 goto BadName;
6430
6431 if (refok && type != NULL)
6432 while (1)
6433 {
6434 type = ada_check_typedef (type);
6435 if (TYPE_CODE (type) != TYPE_CODE_PTR
6436 && TYPE_CODE (type) != TYPE_CODE_REF)
6437 break;
6438 type = TYPE_TARGET_TYPE (type);
6439 }
6440
6441 if (type == NULL
6442 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6443 && TYPE_CODE (type) != TYPE_CODE_UNION))
6444 {
6445 if (noerr)
6446 return NULL;
6447 else
6448 {
6449 target_terminal_ours ();
6450 gdb_flush (gdb_stdout);
6451 if (type == NULL)
6452 error (_("Type (null) is not a structure or union type"));
6453 else
6454 {
6455 /* XXX: type_sprint */
6456 fprintf_unfiltered (gdb_stderr, _("Type "));
6457 type_print (type, "", gdb_stderr, -1);
6458 error (_(" is not a structure or union type"));
6459 }
6460 }
6461 }
6462
6463 type = to_static_fixed_type (type);
6464
6465 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6466 {
6467 char *t_field_name = TYPE_FIELD_NAME (type, i);
6468 struct type *t;
6469 int disp;
6470
6471 if (t_field_name == NULL)
6472 continue;
6473
6474 else if (field_name_match (t_field_name, name))
6475 {
6476 if (dispp != NULL)
6477 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6478 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6479 }
6480
6481 else if (ada_is_wrapper_field (type, i))
6482 {
6483 disp = 0;
6484 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6485 0, 1, &disp);
6486 if (t != NULL)
6487 {
6488 if (dispp != NULL)
6489 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6490 return t;
6491 }
6492 }
6493
6494 else if (ada_is_variant_part (type, i))
6495 {
6496 int j;
6497 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6498 i));
6499
6500 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6501 {
6502 /* FIXME pnh 2008/01/26: We check for a field that is
6503 NOT wrapped in a struct, since the compiler sometimes
6504 generates these for unchecked variant types. Revisit
6505 if the compiler changes this practice. */
6506 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6507 disp = 0;
6508 if (v_field_name != NULL
6509 && field_name_match (v_field_name, name))
6510 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6511 else
6512 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6513 name, 0, 1, &disp);
6514
6515 if (t != NULL)
6516 {
6517 if (dispp != NULL)
6518 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6519 return t;
6520 }
6521 }
6522 }
6523
6524 }
6525
6526 BadName:
6527 if (!noerr)
6528 {
6529 target_terminal_ours ();
6530 gdb_flush (gdb_stdout);
6531 if (name == NULL)
6532 {
6533 /* XXX: type_sprint */
6534 fprintf_unfiltered (gdb_stderr, _("Type "));
6535 type_print (type, "", gdb_stderr, -1);
6536 error (_(" has no component named <null>"));
6537 }
6538 else
6539 {
6540 /* XXX: type_sprint */
6541 fprintf_unfiltered (gdb_stderr, _("Type "));
6542 type_print (type, "", gdb_stderr, -1);
6543 error (_(" has no component named %s"), name);
6544 }
6545 }
6546
6547 return NULL;
6548 }
6549
6550 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6551 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6552 represents an unchecked union (that is, the variant part of a
6553 record that is named in an Unchecked_Union pragma). */
6554
6555 static int
6556 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6557 {
6558 char *discrim_name = ada_variant_discrim_name (var_type);
6559
6560 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6561 == NULL);
6562 }
6563
6564
6565 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6566 within a value of type OUTER_TYPE that is stored in GDB at
6567 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6568 numbering from 0) is applicable. Returns -1 if none are. */
6569
6570 int
6571 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6572 const gdb_byte *outer_valaddr)
6573 {
6574 int others_clause;
6575 int i;
6576 char *discrim_name = ada_variant_discrim_name (var_type);
6577 struct value *outer;
6578 struct value *discrim;
6579 LONGEST discrim_val;
6580
6581 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6582 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6583 if (discrim == NULL)
6584 return -1;
6585 discrim_val = value_as_long (discrim);
6586
6587 others_clause = -1;
6588 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6589 {
6590 if (ada_is_others_clause (var_type, i))
6591 others_clause = i;
6592 else if (ada_in_variant (discrim_val, var_type, i))
6593 return i;
6594 }
6595
6596 return others_clause;
6597 }
6598 \f
6599
6600
6601 /* Dynamic-Sized Records */
6602
6603 /* Strategy: The type ostensibly attached to a value with dynamic size
6604 (i.e., a size that is not statically recorded in the debugging
6605 data) does not accurately reflect the size or layout of the value.
6606 Our strategy is to convert these values to values with accurate,
6607 conventional types that are constructed on the fly. */
6608
6609 /* There is a subtle and tricky problem here. In general, we cannot
6610 determine the size of dynamic records without its data. However,
6611 the 'struct value' data structure, which GDB uses to represent
6612 quantities in the inferior process (the target), requires the size
6613 of the type at the time of its allocation in order to reserve space
6614 for GDB's internal copy of the data. That's why the
6615 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6616 rather than struct value*s.
6617
6618 However, GDB's internal history variables ($1, $2, etc.) are
6619 struct value*s containing internal copies of the data that are not, in
6620 general, the same as the data at their corresponding addresses in
6621 the target. Fortunately, the types we give to these values are all
6622 conventional, fixed-size types (as per the strategy described
6623 above), so that we don't usually have to perform the
6624 'to_fixed_xxx_type' conversions to look at their values.
6625 Unfortunately, there is one exception: if one of the internal
6626 history variables is an array whose elements are unconstrained
6627 records, then we will need to create distinct fixed types for each
6628 element selected. */
6629
6630 /* The upshot of all of this is that many routines take a (type, host
6631 address, target address) triple as arguments to represent a value.
6632 The host address, if non-null, is supposed to contain an internal
6633 copy of the relevant data; otherwise, the program is to consult the
6634 target at the target address. */
6635
6636 /* Assuming that VAL0 represents a pointer value, the result of
6637 dereferencing it. Differs from value_ind in its treatment of
6638 dynamic-sized types. */
6639
6640 struct value *
6641 ada_value_ind (struct value *val0)
6642 {
6643 struct value *val = unwrap_value (value_ind (val0));
6644
6645 return ada_to_fixed_value (val);
6646 }
6647
6648 /* The value resulting from dereferencing any "reference to"
6649 qualifiers on VAL0. */
6650
6651 static struct value *
6652 ada_coerce_ref (struct value *val0)
6653 {
6654 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6655 {
6656 struct value *val = val0;
6657
6658 val = coerce_ref (val);
6659 val = unwrap_value (val);
6660 return ada_to_fixed_value (val);
6661 }
6662 else
6663 return val0;
6664 }
6665
6666 /* Return OFF rounded upward if necessary to a multiple of
6667 ALIGNMENT (a power of 2). */
6668
6669 static unsigned int
6670 align_value (unsigned int off, unsigned int alignment)
6671 {
6672 return (off + alignment - 1) & ~(alignment - 1);
6673 }
6674
6675 /* Return the bit alignment required for field #F of template type TYPE. */
6676
6677 static unsigned int
6678 field_alignment (struct type *type, int f)
6679 {
6680 const char *name = TYPE_FIELD_NAME (type, f);
6681 int len;
6682 int align_offset;
6683
6684 /* The field name should never be null, unless the debugging information
6685 is somehow malformed. In this case, we assume the field does not
6686 require any alignment. */
6687 if (name == NULL)
6688 return 1;
6689
6690 len = strlen (name);
6691
6692 if (!isdigit (name[len - 1]))
6693 return 1;
6694
6695 if (isdigit (name[len - 2]))
6696 align_offset = len - 2;
6697 else
6698 align_offset = len - 1;
6699
6700 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6701 return TARGET_CHAR_BIT;
6702
6703 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6704 }
6705
6706 /* Find a symbol named NAME. Ignores ambiguity. */
6707
6708 struct symbol *
6709 ada_find_any_symbol (const char *name)
6710 {
6711 struct symbol *sym;
6712
6713 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6714 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6715 return sym;
6716
6717 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6718 return sym;
6719 }
6720
6721 /* Find a type named NAME. Ignores ambiguity. This routine will look
6722 solely for types defined by debug info, it will not search the GDB
6723 primitive types. */
6724
6725 struct type *
6726 ada_find_any_type (const char *name)
6727 {
6728 struct symbol *sym = ada_find_any_symbol (name);
6729
6730 if (sym != NULL)
6731 return SYMBOL_TYPE (sym);
6732
6733 return NULL;
6734 }
6735
6736 /* Given NAME and an associated BLOCK, search all symbols for
6737 NAME suffixed with "___XR", which is the ``renaming'' symbol
6738 associated to NAME. Return this symbol if found, return
6739 NULL otherwise. */
6740
6741 struct symbol *
6742 ada_find_renaming_symbol (const char *name, struct block *block)
6743 {
6744 struct symbol *sym;
6745
6746 sym = find_old_style_renaming_symbol (name, block);
6747
6748 if (sym != NULL)
6749 return sym;
6750
6751 /* Not right yet. FIXME pnh 7/20/2007. */
6752 sym = ada_find_any_symbol (name);
6753 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6754 return sym;
6755 else
6756 return NULL;
6757 }
6758
6759 static struct symbol *
6760 find_old_style_renaming_symbol (const char *name, struct block *block)
6761 {
6762 const struct symbol *function_sym = block_linkage_function (block);
6763 char *rename;
6764
6765 if (function_sym != NULL)
6766 {
6767 /* If the symbol is defined inside a function, NAME is not fully
6768 qualified. This means we need to prepend the function name
6769 as well as adding the ``___XR'' suffix to build the name of
6770 the associated renaming symbol. */
6771 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6772 /* Function names sometimes contain suffixes used
6773 for instance to qualify nested subprograms. When building
6774 the XR type name, we need to make sure that this suffix is
6775 not included. So do not include any suffix in the function
6776 name length below. */
6777 int function_name_len = ada_name_prefix_len (function_name);
6778 const int rename_len = function_name_len + 2 /* "__" */
6779 + strlen (name) + 6 /* "___XR\0" */ ;
6780
6781 /* Strip the suffix if necessary. */
6782 ada_remove_trailing_digits (function_name, &function_name_len);
6783 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6784 ada_remove_Xbn_suffix (function_name, &function_name_len);
6785
6786 /* Library-level functions are a special case, as GNAT adds
6787 a ``_ada_'' prefix to the function name to avoid namespace
6788 pollution. However, the renaming symbols themselves do not
6789 have this prefix, so we need to skip this prefix if present. */
6790 if (function_name_len > 5 /* "_ada_" */
6791 && strstr (function_name, "_ada_") == function_name)
6792 {
6793 function_name += 5;
6794 function_name_len -= 5;
6795 }
6796
6797 rename = (char *) alloca (rename_len * sizeof (char));
6798 strncpy (rename, function_name, function_name_len);
6799 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6800 "__%s___XR", name);
6801 }
6802 else
6803 {
6804 const int rename_len = strlen (name) + 6;
6805
6806 rename = (char *) alloca (rename_len * sizeof (char));
6807 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6808 }
6809
6810 return ada_find_any_symbol (rename);
6811 }
6812
6813 /* Because of GNAT encoding conventions, several GDB symbols may match a
6814 given type name. If the type denoted by TYPE0 is to be preferred to
6815 that of TYPE1 for purposes of type printing, return non-zero;
6816 otherwise return 0. */
6817
6818 int
6819 ada_prefer_type (struct type *type0, struct type *type1)
6820 {
6821 if (type1 == NULL)
6822 return 1;
6823 else if (type0 == NULL)
6824 return 0;
6825 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6826 return 1;
6827 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6828 return 0;
6829 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6830 return 1;
6831 else if (ada_is_constrained_packed_array_type (type0))
6832 return 1;
6833 else if (ada_is_array_descriptor_type (type0)
6834 && !ada_is_array_descriptor_type (type1))
6835 return 1;
6836 else
6837 {
6838 const char *type0_name = type_name_no_tag (type0);
6839 const char *type1_name = type_name_no_tag (type1);
6840
6841 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6842 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6843 return 1;
6844 }
6845 return 0;
6846 }
6847
6848 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6849 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6850
6851 char *
6852 ada_type_name (struct type *type)
6853 {
6854 if (type == NULL)
6855 return NULL;
6856 else if (TYPE_NAME (type) != NULL)
6857 return TYPE_NAME (type);
6858 else
6859 return TYPE_TAG_NAME (type);
6860 }
6861
6862 /* Search the list of "descriptive" types associated to TYPE for a type
6863 whose name is NAME. */
6864
6865 static struct type *
6866 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6867 {
6868 struct type *result;
6869
6870 /* If there no descriptive-type info, then there is no parallel type
6871 to be found. */
6872 if (!HAVE_GNAT_AUX_INFO (type))
6873 return NULL;
6874
6875 result = TYPE_DESCRIPTIVE_TYPE (type);
6876 while (result != NULL)
6877 {
6878 char *result_name = ada_type_name (result);
6879
6880 if (result_name == NULL)
6881 {
6882 warning (_("unexpected null name on descriptive type"));
6883 return NULL;
6884 }
6885
6886 /* If the names match, stop. */
6887 if (strcmp (result_name, name) == 0)
6888 break;
6889
6890 /* Otherwise, look at the next item on the list, if any. */
6891 if (HAVE_GNAT_AUX_INFO (result))
6892 result = TYPE_DESCRIPTIVE_TYPE (result);
6893 else
6894 result = NULL;
6895 }
6896
6897 /* If we didn't find a match, see whether this is a packed array. With
6898 older compilers, the descriptive type information is either absent or
6899 irrelevant when it comes to packed arrays so the above lookup fails.
6900 Fall back to using a parallel lookup by name in this case. */
6901 if (result == NULL && ada_is_constrained_packed_array_type (type))
6902 return ada_find_any_type (name);
6903
6904 return result;
6905 }
6906
6907 /* Find a parallel type to TYPE with the specified NAME, using the
6908 descriptive type taken from the debugging information, if available,
6909 and otherwise using the (slower) name-based method. */
6910
6911 static struct type *
6912 ada_find_parallel_type_with_name (struct type *type, const char *name)
6913 {
6914 struct type *result = NULL;
6915
6916 if (HAVE_GNAT_AUX_INFO (type))
6917 result = find_parallel_type_by_descriptive_type (type, name);
6918 else
6919 result = ada_find_any_type (name);
6920
6921 return result;
6922 }
6923
6924 /* Same as above, but specify the name of the parallel type by appending
6925 SUFFIX to the name of TYPE. */
6926
6927 struct type *
6928 ada_find_parallel_type (struct type *type, const char *suffix)
6929 {
6930 char *name, *typename = ada_type_name (type);
6931 int len;
6932
6933 if (typename == NULL)
6934 return NULL;
6935
6936 len = strlen (typename);
6937
6938 name = (char *) alloca (len + strlen (suffix) + 1);
6939
6940 strcpy (name, typename);
6941 strcpy (name + len, suffix);
6942
6943 return ada_find_parallel_type_with_name (type, name);
6944 }
6945
6946 /* If TYPE is a variable-size record type, return the corresponding template
6947 type describing its fields. Otherwise, return NULL. */
6948
6949 static struct type *
6950 dynamic_template_type (struct type *type)
6951 {
6952 type = ada_check_typedef (type);
6953
6954 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6955 || ada_type_name (type) == NULL)
6956 return NULL;
6957 else
6958 {
6959 int len = strlen (ada_type_name (type));
6960
6961 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6962 return type;
6963 else
6964 return ada_find_parallel_type (type, "___XVE");
6965 }
6966 }
6967
6968 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6969 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6970
6971 static int
6972 is_dynamic_field (struct type *templ_type, int field_num)
6973 {
6974 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6975
6976 return name != NULL
6977 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6978 && strstr (name, "___XVL") != NULL;
6979 }
6980
6981 /* The index of the variant field of TYPE, or -1 if TYPE does not
6982 represent a variant record type. */
6983
6984 static int
6985 variant_field_index (struct type *type)
6986 {
6987 int f;
6988
6989 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6990 return -1;
6991
6992 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6993 {
6994 if (ada_is_variant_part (type, f))
6995 return f;
6996 }
6997 return -1;
6998 }
6999
7000 /* A record type with no fields. */
7001
7002 static struct type *
7003 empty_record (struct type *template)
7004 {
7005 struct type *type = alloc_type_copy (template);
7006
7007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7008 TYPE_NFIELDS (type) = 0;
7009 TYPE_FIELDS (type) = NULL;
7010 INIT_CPLUS_SPECIFIC (type);
7011 TYPE_NAME (type) = "<empty>";
7012 TYPE_TAG_NAME (type) = NULL;
7013 TYPE_LENGTH (type) = 0;
7014 return type;
7015 }
7016
7017 /* An ordinary record type (with fixed-length fields) that describes
7018 the value of type TYPE at VALADDR or ADDRESS (see comments at
7019 the beginning of this section) VAL according to GNAT conventions.
7020 DVAL0 should describe the (portion of a) record that contains any
7021 necessary discriminants. It should be NULL if value_type (VAL) is
7022 an outer-level type (i.e., as opposed to a branch of a variant.) A
7023 variant field (unless unchecked) is replaced by a particular branch
7024 of the variant.
7025
7026 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7027 length are not statically known are discarded. As a consequence,
7028 VALADDR, ADDRESS and DVAL0 are ignored.
7029
7030 NOTE: Limitations: For now, we assume that dynamic fields and
7031 variants occupy whole numbers of bytes. However, they need not be
7032 byte-aligned. */
7033
7034 struct type *
7035 ada_template_to_fixed_record_type_1 (struct type *type,
7036 const gdb_byte *valaddr,
7037 CORE_ADDR address, struct value *dval0,
7038 int keep_dynamic_fields)
7039 {
7040 struct value *mark = value_mark ();
7041 struct value *dval;
7042 struct type *rtype;
7043 int nfields, bit_len;
7044 int variant_field;
7045 long off;
7046 int fld_bit_len, bit_incr;
7047 int f;
7048
7049 /* Compute the number of fields in this record type that are going
7050 to be processed: unless keep_dynamic_fields, this includes only
7051 fields whose position and length are static will be processed. */
7052 if (keep_dynamic_fields)
7053 nfields = TYPE_NFIELDS (type);
7054 else
7055 {
7056 nfields = 0;
7057 while (nfields < TYPE_NFIELDS (type)
7058 && !ada_is_variant_part (type, nfields)
7059 && !is_dynamic_field (type, nfields))
7060 nfields++;
7061 }
7062
7063 rtype = alloc_type_copy (type);
7064 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7065 INIT_CPLUS_SPECIFIC (rtype);
7066 TYPE_NFIELDS (rtype) = nfields;
7067 TYPE_FIELDS (rtype) = (struct field *)
7068 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7069 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7070 TYPE_NAME (rtype) = ada_type_name (type);
7071 TYPE_TAG_NAME (rtype) = NULL;
7072 TYPE_FIXED_INSTANCE (rtype) = 1;
7073
7074 off = 0;
7075 bit_len = 0;
7076 variant_field = -1;
7077
7078 for (f = 0; f < nfields; f += 1)
7079 {
7080 off = align_value (off, field_alignment (type, f))
7081 + TYPE_FIELD_BITPOS (type, f);
7082 TYPE_FIELD_BITPOS (rtype, f) = off;
7083 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7084
7085 if (ada_is_variant_part (type, f))
7086 {
7087 variant_field = f;
7088 fld_bit_len = bit_incr = 0;
7089 }
7090 else if (is_dynamic_field (type, f))
7091 {
7092 const gdb_byte *field_valaddr = valaddr;
7093 CORE_ADDR field_address = address;
7094 struct type *field_type =
7095 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7096
7097 if (dval0 == NULL)
7098 {
7099 /* rtype's length is computed based on the run-time
7100 value of discriminants. If the discriminants are not
7101 initialized, the type size may be completely bogus and
7102 GDB may fail to allocate a value for it. So check the
7103 size first before creating the value. */
7104 check_size (rtype);
7105 dval = value_from_contents_and_address (rtype, valaddr, address);
7106 }
7107 else
7108 dval = dval0;
7109
7110 /* If the type referenced by this field is an aligner type, we need
7111 to unwrap that aligner type, because its size might not be set.
7112 Keeping the aligner type would cause us to compute the wrong
7113 size for this field, impacting the offset of the all the fields
7114 that follow this one. */
7115 if (ada_is_aligner_type (field_type))
7116 {
7117 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7118
7119 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7120 field_address = cond_offset_target (field_address, field_offset);
7121 field_type = ada_aligned_type (field_type);
7122 }
7123
7124 field_valaddr = cond_offset_host (field_valaddr,
7125 off / TARGET_CHAR_BIT);
7126 field_address = cond_offset_target (field_address,
7127 off / TARGET_CHAR_BIT);
7128
7129 /* Get the fixed type of the field. Note that, in this case,
7130 we do not want to get the real type out of the tag: if
7131 the current field is the parent part of a tagged record,
7132 we will get the tag of the object. Clearly wrong: the real
7133 type of the parent is not the real type of the child. We
7134 would end up in an infinite loop. */
7135 field_type = ada_get_base_type (field_type);
7136 field_type = ada_to_fixed_type (field_type, field_valaddr,
7137 field_address, dval, 0);
7138
7139 TYPE_FIELD_TYPE (rtype, f) = field_type;
7140 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7141 bit_incr = fld_bit_len =
7142 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7143 }
7144 else
7145 {
7146 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7147
7148 TYPE_FIELD_TYPE (rtype, f) = field_type;
7149 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7150 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7151 bit_incr = fld_bit_len =
7152 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7153 else
7154 bit_incr = fld_bit_len =
7155 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7156 }
7157 if (off + fld_bit_len > bit_len)
7158 bit_len = off + fld_bit_len;
7159 off += bit_incr;
7160 TYPE_LENGTH (rtype) =
7161 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7162 }
7163
7164 /* We handle the variant part, if any, at the end because of certain
7165 odd cases in which it is re-ordered so as NOT to be the last field of
7166 the record. This can happen in the presence of representation
7167 clauses. */
7168 if (variant_field >= 0)
7169 {
7170 struct type *branch_type;
7171
7172 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7173
7174 if (dval0 == NULL)
7175 dval = value_from_contents_and_address (rtype, valaddr, address);
7176 else
7177 dval = dval0;
7178
7179 branch_type =
7180 to_fixed_variant_branch_type
7181 (TYPE_FIELD_TYPE (type, variant_field),
7182 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7183 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7184 if (branch_type == NULL)
7185 {
7186 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7187 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7188 TYPE_NFIELDS (rtype) -= 1;
7189 }
7190 else
7191 {
7192 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7193 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7194 fld_bit_len =
7195 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7196 TARGET_CHAR_BIT;
7197 if (off + fld_bit_len > bit_len)
7198 bit_len = off + fld_bit_len;
7199 TYPE_LENGTH (rtype) =
7200 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7201 }
7202 }
7203
7204 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7205 should contain the alignment of that record, which should be a strictly
7206 positive value. If null or negative, then something is wrong, most
7207 probably in the debug info. In that case, we don't round up the size
7208 of the resulting type. If this record is not part of another structure,
7209 the current RTYPE length might be good enough for our purposes. */
7210 if (TYPE_LENGTH (type) <= 0)
7211 {
7212 if (TYPE_NAME (rtype))
7213 warning (_("Invalid type size for `%s' detected: %d."),
7214 TYPE_NAME (rtype), TYPE_LENGTH (type));
7215 else
7216 warning (_("Invalid type size for <unnamed> detected: %d."),
7217 TYPE_LENGTH (type));
7218 }
7219 else
7220 {
7221 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7222 TYPE_LENGTH (type));
7223 }
7224
7225 value_free_to_mark (mark);
7226 if (TYPE_LENGTH (rtype) > varsize_limit)
7227 error (_("record type with dynamic size is larger than varsize-limit"));
7228 return rtype;
7229 }
7230
7231 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7232 of 1. */
7233
7234 static struct type *
7235 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7236 CORE_ADDR address, struct value *dval0)
7237 {
7238 return ada_template_to_fixed_record_type_1 (type, valaddr,
7239 address, dval0, 1);
7240 }
7241
7242 /* An ordinary record type in which ___XVL-convention fields and
7243 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7244 static approximations, containing all possible fields. Uses
7245 no runtime values. Useless for use in values, but that's OK,
7246 since the results are used only for type determinations. Works on both
7247 structs and unions. Representation note: to save space, we memorize
7248 the result of this function in the TYPE_TARGET_TYPE of the
7249 template type. */
7250
7251 static struct type *
7252 template_to_static_fixed_type (struct type *type0)
7253 {
7254 struct type *type;
7255 int nfields;
7256 int f;
7257
7258 if (TYPE_TARGET_TYPE (type0) != NULL)
7259 return TYPE_TARGET_TYPE (type0);
7260
7261 nfields = TYPE_NFIELDS (type0);
7262 type = type0;
7263
7264 for (f = 0; f < nfields; f += 1)
7265 {
7266 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7267 struct type *new_type;
7268
7269 if (is_dynamic_field (type0, f))
7270 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7271 else
7272 new_type = static_unwrap_type (field_type);
7273 if (type == type0 && new_type != field_type)
7274 {
7275 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7276 TYPE_CODE (type) = TYPE_CODE (type0);
7277 INIT_CPLUS_SPECIFIC (type);
7278 TYPE_NFIELDS (type) = nfields;
7279 TYPE_FIELDS (type) = (struct field *)
7280 TYPE_ALLOC (type, nfields * sizeof (struct field));
7281 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7282 sizeof (struct field) * nfields);
7283 TYPE_NAME (type) = ada_type_name (type0);
7284 TYPE_TAG_NAME (type) = NULL;
7285 TYPE_FIXED_INSTANCE (type) = 1;
7286 TYPE_LENGTH (type) = 0;
7287 }
7288 TYPE_FIELD_TYPE (type, f) = new_type;
7289 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7290 }
7291 return type;
7292 }
7293
7294 /* Given an object of type TYPE whose contents are at VALADDR and
7295 whose address in memory is ADDRESS, returns a revision of TYPE,
7296 which should be a non-dynamic-sized record, in which the variant
7297 part, if any, is replaced with the appropriate branch. Looks
7298 for discriminant values in DVAL0, which can be NULL if the record
7299 contains the necessary discriminant values. */
7300
7301 static struct type *
7302 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7303 CORE_ADDR address, struct value *dval0)
7304 {
7305 struct value *mark = value_mark ();
7306 struct value *dval;
7307 struct type *rtype;
7308 struct type *branch_type;
7309 int nfields = TYPE_NFIELDS (type);
7310 int variant_field = variant_field_index (type);
7311
7312 if (variant_field == -1)
7313 return type;
7314
7315 if (dval0 == NULL)
7316 dval = value_from_contents_and_address (type, valaddr, address);
7317 else
7318 dval = dval0;
7319
7320 rtype = alloc_type_copy (type);
7321 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7322 INIT_CPLUS_SPECIFIC (rtype);
7323 TYPE_NFIELDS (rtype) = nfields;
7324 TYPE_FIELDS (rtype) =
7325 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7326 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7327 sizeof (struct field) * nfields);
7328 TYPE_NAME (rtype) = ada_type_name (type);
7329 TYPE_TAG_NAME (rtype) = NULL;
7330 TYPE_FIXED_INSTANCE (rtype) = 1;
7331 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7332
7333 branch_type = to_fixed_variant_branch_type
7334 (TYPE_FIELD_TYPE (type, variant_field),
7335 cond_offset_host (valaddr,
7336 TYPE_FIELD_BITPOS (type, variant_field)
7337 / TARGET_CHAR_BIT),
7338 cond_offset_target (address,
7339 TYPE_FIELD_BITPOS (type, variant_field)
7340 / TARGET_CHAR_BIT), dval);
7341 if (branch_type == NULL)
7342 {
7343 int f;
7344
7345 for (f = variant_field + 1; f < nfields; f += 1)
7346 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7347 TYPE_NFIELDS (rtype) -= 1;
7348 }
7349 else
7350 {
7351 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7352 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7353 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7354 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7355 }
7356 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7357
7358 value_free_to_mark (mark);
7359 return rtype;
7360 }
7361
7362 /* An ordinary record type (with fixed-length fields) that describes
7363 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7364 beginning of this section]. Any necessary discriminants' values
7365 should be in DVAL, a record value; it may be NULL if the object
7366 at ADDR itself contains any necessary discriminant values.
7367 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7368 values from the record are needed. Except in the case that DVAL,
7369 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7370 unchecked) is replaced by a particular branch of the variant.
7371
7372 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7373 is questionable and may be removed. It can arise during the
7374 processing of an unconstrained-array-of-record type where all the
7375 variant branches have exactly the same size. This is because in
7376 such cases, the compiler does not bother to use the XVS convention
7377 when encoding the record. I am currently dubious of this
7378 shortcut and suspect the compiler should be altered. FIXME. */
7379
7380 static struct type *
7381 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7382 CORE_ADDR address, struct value *dval)
7383 {
7384 struct type *templ_type;
7385
7386 if (TYPE_FIXED_INSTANCE (type0))
7387 return type0;
7388
7389 templ_type = dynamic_template_type (type0);
7390
7391 if (templ_type != NULL)
7392 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7393 else if (variant_field_index (type0) >= 0)
7394 {
7395 if (dval == NULL && valaddr == NULL && address == 0)
7396 return type0;
7397 return to_record_with_fixed_variant_part (type0, valaddr, address,
7398 dval);
7399 }
7400 else
7401 {
7402 TYPE_FIXED_INSTANCE (type0) = 1;
7403 return type0;
7404 }
7405
7406 }
7407
7408 /* An ordinary record type (with fixed-length fields) that describes
7409 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7410 union type. Any necessary discriminants' values should be in DVAL,
7411 a record value. That is, this routine selects the appropriate
7412 branch of the union at ADDR according to the discriminant value
7413 indicated in the union's type name. Returns VAR_TYPE0 itself if
7414 it represents a variant subject to a pragma Unchecked_Union. */
7415
7416 static struct type *
7417 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7418 CORE_ADDR address, struct value *dval)
7419 {
7420 int which;
7421 struct type *templ_type;
7422 struct type *var_type;
7423
7424 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7425 var_type = TYPE_TARGET_TYPE (var_type0);
7426 else
7427 var_type = var_type0;
7428
7429 templ_type = ada_find_parallel_type (var_type, "___XVU");
7430
7431 if (templ_type != NULL)
7432 var_type = templ_type;
7433
7434 if (is_unchecked_variant (var_type, value_type (dval)))
7435 return var_type0;
7436 which =
7437 ada_which_variant_applies (var_type,
7438 value_type (dval), value_contents (dval));
7439
7440 if (which < 0)
7441 return empty_record (var_type);
7442 else if (is_dynamic_field (var_type, which))
7443 return to_fixed_record_type
7444 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7445 valaddr, address, dval);
7446 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7447 return
7448 to_fixed_record_type
7449 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7450 else
7451 return TYPE_FIELD_TYPE (var_type, which);
7452 }
7453
7454 /* Assuming that TYPE0 is an array type describing the type of a value
7455 at ADDR, and that DVAL describes a record containing any
7456 discriminants used in TYPE0, returns a type for the value that
7457 contains no dynamic components (that is, no components whose sizes
7458 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7459 true, gives an error message if the resulting type's size is over
7460 varsize_limit. */
7461
7462 static struct type *
7463 to_fixed_array_type (struct type *type0, struct value *dval,
7464 int ignore_too_big)
7465 {
7466 struct type *index_type_desc;
7467 struct type *result;
7468 int constrained_packed_array_p;
7469
7470 if (TYPE_FIXED_INSTANCE (type0))
7471 return type0;
7472
7473 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7474 if (constrained_packed_array_p)
7475 type0 = decode_constrained_packed_array_type (type0);
7476
7477 index_type_desc = ada_find_parallel_type (type0, "___XA");
7478 ada_fixup_array_indexes_type (index_type_desc);
7479 if (index_type_desc == NULL)
7480 {
7481 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7482
7483 /* NOTE: elt_type---the fixed version of elt_type0---should never
7484 depend on the contents of the array in properly constructed
7485 debugging data. */
7486 /* Create a fixed version of the array element type.
7487 We're not providing the address of an element here,
7488 and thus the actual object value cannot be inspected to do
7489 the conversion. This should not be a problem, since arrays of
7490 unconstrained objects are not allowed. In particular, all
7491 the elements of an array of a tagged type should all be of
7492 the same type specified in the debugging info. No need to
7493 consult the object tag. */
7494 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7495
7496 /* Make sure we always create a new array type when dealing with
7497 packed array types, since we're going to fix-up the array
7498 type length and element bitsize a little further down. */
7499 if (elt_type0 == elt_type && !constrained_packed_array_p)
7500 result = type0;
7501 else
7502 result = create_array_type (alloc_type_copy (type0),
7503 elt_type, TYPE_INDEX_TYPE (type0));
7504 }
7505 else
7506 {
7507 int i;
7508 struct type *elt_type0;
7509
7510 elt_type0 = type0;
7511 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7512 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7513
7514 /* NOTE: result---the fixed version of elt_type0---should never
7515 depend on the contents of the array in properly constructed
7516 debugging data. */
7517 /* Create a fixed version of the array element type.
7518 We're not providing the address of an element here,
7519 and thus the actual object value cannot be inspected to do
7520 the conversion. This should not be a problem, since arrays of
7521 unconstrained objects are not allowed. In particular, all
7522 the elements of an array of a tagged type should all be of
7523 the same type specified in the debugging info. No need to
7524 consult the object tag. */
7525 result =
7526 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7527
7528 elt_type0 = type0;
7529 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7530 {
7531 struct type *range_type =
7532 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7533
7534 result = create_array_type (alloc_type_copy (elt_type0),
7535 result, range_type);
7536 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7537 }
7538 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7539 error (_("array type with dynamic size is larger than varsize-limit"));
7540 }
7541
7542 if (constrained_packed_array_p)
7543 {
7544 /* So far, the resulting type has been created as if the original
7545 type was a regular (non-packed) array type. As a result, the
7546 bitsize of the array elements needs to be set again, and the array
7547 length needs to be recomputed based on that bitsize. */
7548 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7549 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7550
7551 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7552 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7553 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7554 TYPE_LENGTH (result)++;
7555 }
7556
7557 TYPE_FIXED_INSTANCE (result) = 1;
7558 return result;
7559 }
7560
7561
7562 /* A standard type (containing no dynamically sized components)
7563 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7564 DVAL describes a record containing any discriminants used in TYPE0,
7565 and may be NULL if there are none, or if the object of type TYPE at
7566 ADDRESS or in VALADDR contains these discriminants.
7567
7568 If CHECK_TAG is not null, in the case of tagged types, this function
7569 attempts to locate the object's tag and use it to compute the actual
7570 type. However, when ADDRESS is null, we cannot use it to determine the
7571 location of the tag, and therefore compute the tagged type's actual type.
7572 So we return the tagged type without consulting the tag. */
7573
7574 static struct type *
7575 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7576 CORE_ADDR address, struct value *dval, int check_tag)
7577 {
7578 type = ada_check_typedef (type);
7579 switch (TYPE_CODE (type))
7580 {
7581 default:
7582 return type;
7583 case TYPE_CODE_STRUCT:
7584 {
7585 struct type *static_type = to_static_fixed_type (type);
7586 struct type *fixed_record_type =
7587 to_fixed_record_type (type, valaddr, address, NULL);
7588
7589 /* If STATIC_TYPE is a tagged type and we know the object's address,
7590 then we can determine its tag, and compute the object's actual
7591 type from there. Note that we have to use the fixed record
7592 type (the parent part of the record may have dynamic fields
7593 and the way the location of _tag is expressed may depend on
7594 them). */
7595
7596 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7597 {
7598 struct type *real_type =
7599 type_from_tag (value_tag_from_contents_and_address
7600 (fixed_record_type,
7601 valaddr,
7602 address));
7603
7604 if (real_type != NULL)
7605 return to_fixed_record_type (real_type, valaddr, address, NULL);
7606 }
7607
7608 /* Check to see if there is a parallel ___XVZ variable.
7609 If there is, then it provides the actual size of our type. */
7610 else if (ada_type_name (fixed_record_type) != NULL)
7611 {
7612 char *name = ada_type_name (fixed_record_type);
7613 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7614 int xvz_found = 0;
7615 LONGEST size;
7616
7617 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7618 size = get_int_var_value (xvz_name, &xvz_found);
7619 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7620 {
7621 fixed_record_type = copy_type (fixed_record_type);
7622 TYPE_LENGTH (fixed_record_type) = size;
7623
7624 /* The FIXED_RECORD_TYPE may have be a stub. We have
7625 observed this when the debugging info is STABS, and
7626 apparently it is something that is hard to fix.
7627
7628 In practice, we don't need the actual type definition
7629 at all, because the presence of the XVZ variable allows us
7630 to assume that there must be a XVS type as well, which we
7631 should be able to use later, when we need the actual type
7632 definition.
7633
7634 In the meantime, pretend that the "fixed" type we are
7635 returning is NOT a stub, because this can cause trouble
7636 when using this type to create new types targeting it.
7637 Indeed, the associated creation routines often check
7638 whether the target type is a stub and will try to replace
7639 it, thus using a type with the wrong size. This, in turn,
7640 might cause the new type to have the wrong size too.
7641 Consider the case of an array, for instance, where the size
7642 of the array is computed from the number of elements in
7643 our array multiplied by the size of its element. */
7644 TYPE_STUB (fixed_record_type) = 0;
7645 }
7646 }
7647 return fixed_record_type;
7648 }
7649 case TYPE_CODE_ARRAY:
7650 return to_fixed_array_type (type, dval, 1);
7651 case TYPE_CODE_UNION:
7652 if (dval == NULL)
7653 return type;
7654 else
7655 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7656 }
7657 }
7658
7659 /* The same as ada_to_fixed_type_1, except that it preserves the type
7660 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7661 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7662
7663 struct type *
7664 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7665 CORE_ADDR address, struct value *dval, int check_tag)
7666
7667 {
7668 struct type *fixed_type =
7669 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7670
7671 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7672 && TYPE_TARGET_TYPE (type) == fixed_type)
7673 return type;
7674
7675 return fixed_type;
7676 }
7677
7678 /* A standard (static-sized) type corresponding as well as possible to
7679 TYPE0, but based on no runtime data. */
7680
7681 static struct type *
7682 to_static_fixed_type (struct type *type0)
7683 {
7684 struct type *type;
7685
7686 if (type0 == NULL)
7687 return NULL;
7688
7689 if (TYPE_FIXED_INSTANCE (type0))
7690 return type0;
7691
7692 type0 = ada_check_typedef (type0);
7693
7694 switch (TYPE_CODE (type0))
7695 {
7696 default:
7697 return type0;
7698 case TYPE_CODE_STRUCT:
7699 type = dynamic_template_type (type0);
7700 if (type != NULL)
7701 return template_to_static_fixed_type (type);
7702 else
7703 return template_to_static_fixed_type (type0);
7704 case TYPE_CODE_UNION:
7705 type = ada_find_parallel_type (type0, "___XVU");
7706 if (type != NULL)
7707 return template_to_static_fixed_type (type);
7708 else
7709 return template_to_static_fixed_type (type0);
7710 }
7711 }
7712
7713 /* A static approximation of TYPE with all type wrappers removed. */
7714
7715 static struct type *
7716 static_unwrap_type (struct type *type)
7717 {
7718 if (ada_is_aligner_type (type))
7719 {
7720 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7721 if (ada_type_name (type1) == NULL)
7722 TYPE_NAME (type1) = ada_type_name (type);
7723
7724 return static_unwrap_type (type1);
7725 }
7726 else
7727 {
7728 struct type *raw_real_type = ada_get_base_type (type);
7729
7730 if (raw_real_type == type)
7731 return type;
7732 else
7733 return to_static_fixed_type (raw_real_type);
7734 }
7735 }
7736
7737 /* In some cases, incomplete and private types require
7738 cross-references that are not resolved as records (for example,
7739 type Foo;
7740 type FooP is access Foo;
7741 V: FooP;
7742 type Foo is array ...;
7743 ). In these cases, since there is no mechanism for producing
7744 cross-references to such types, we instead substitute for FooP a
7745 stub enumeration type that is nowhere resolved, and whose tag is
7746 the name of the actual type. Call these types "non-record stubs". */
7747
7748 /* A type equivalent to TYPE that is not a non-record stub, if one
7749 exists, otherwise TYPE. */
7750
7751 struct type *
7752 ada_check_typedef (struct type *type)
7753 {
7754 if (type == NULL)
7755 return NULL;
7756
7757 CHECK_TYPEDEF (type);
7758 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7759 || !TYPE_STUB (type)
7760 || TYPE_TAG_NAME (type) == NULL)
7761 return type;
7762 else
7763 {
7764 char *name = TYPE_TAG_NAME (type);
7765 struct type *type1 = ada_find_any_type (name);
7766
7767 if (type1 == NULL)
7768 return type;
7769
7770 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7771 stubs pointing to arrays, as we don't create symbols for array
7772 types, only for the typedef-to-array types). This is why
7773 we process TYPE1 with ada_check_typedef before returning
7774 the result. */
7775 return ada_check_typedef (type1);
7776 }
7777 }
7778
7779 /* A value representing the data at VALADDR/ADDRESS as described by
7780 type TYPE0, but with a standard (static-sized) type that correctly
7781 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7782 type, then return VAL0 [this feature is simply to avoid redundant
7783 creation of struct values]. */
7784
7785 static struct value *
7786 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7787 struct value *val0)
7788 {
7789 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7790
7791 if (type == type0 && val0 != NULL)
7792 return val0;
7793 else
7794 return value_from_contents_and_address (type, 0, address);
7795 }
7796
7797 /* A value representing VAL, but with a standard (static-sized) type
7798 that correctly describes it. Does not necessarily create a new
7799 value. */
7800
7801 struct value *
7802 ada_to_fixed_value (struct value *val)
7803 {
7804 return ada_to_fixed_value_create (value_type (val),
7805 value_address (val),
7806 val);
7807 }
7808 \f
7809
7810 /* Attributes */
7811
7812 /* Table mapping attribute numbers to names.
7813 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7814
7815 static const char *attribute_names[] = {
7816 "<?>",
7817
7818 "first",
7819 "last",
7820 "length",
7821 "image",
7822 "max",
7823 "min",
7824 "modulus",
7825 "pos",
7826 "size",
7827 "tag",
7828 "val",
7829 0
7830 };
7831
7832 const char *
7833 ada_attribute_name (enum exp_opcode n)
7834 {
7835 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7836 return attribute_names[n - OP_ATR_FIRST + 1];
7837 else
7838 return attribute_names[0];
7839 }
7840
7841 /* Evaluate the 'POS attribute applied to ARG. */
7842
7843 static LONGEST
7844 pos_atr (struct value *arg)
7845 {
7846 struct value *val = coerce_ref (arg);
7847 struct type *type = value_type (val);
7848
7849 if (!discrete_type_p (type))
7850 error (_("'POS only defined on discrete types"));
7851
7852 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7853 {
7854 int i;
7855 LONGEST v = value_as_long (val);
7856
7857 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7858 {
7859 if (v == TYPE_FIELD_BITPOS (type, i))
7860 return i;
7861 }
7862 error (_("enumeration value is invalid: can't find 'POS"));
7863 }
7864 else
7865 return value_as_long (val);
7866 }
7867
7868 static struct value *
7869 value_pos_atr (struct type *type, struct value *arg)
7870 {
7871 return value_from_longest (type, pos_atr (arg));
7872 }
7873
7874 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7875
7876 static struct value *
7877 value_val_atr (struct type *type, struct value *arg)
7878 {
7879 if (!discrete_type_p (type))
7880 error (_("'VAL only defined on discrete types"));
7881 if (!integer_type_p (value_type (arg)))
7882 error (_("'VAL requires integral argument"));
7883
7884 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7885 {
7886 long pos = value_as_long (arg);
7887
7888 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7889 error (_("argument to 'VAL out of range"));
7890 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7891 }
7892 else
7893 return value_from_longest (type, value_as_long (arg));
7894 }
7895 \f
7896
7897 /* Evaluation */
7898
7899 /* True if TYPE appears to be an Ada character type.
7900 [At the moment, this is true only for Character and Wide_Character;
7901 It is a heuristic test that could stand improvement]. */
7902
7903 int
7904 ada_is_character_type (struct type *type)
7905 {
7906 const char *name;
7907
7908 /* If the type code says it's a character, then assume it really is,
7909 and don't check any further. */
7910 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7911 return 1;
7912
7913 /* Otherwise, assume it's a character type iff it is a discrete type
7914 with a known character type name. */
7915 name = ada_type_name (type);
7916 return (name != NULL
7917 && (TYPE_CODE (type) == TYPE_CODE_INT
7918 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7919 && (strcmp (name, "character") == 0
7920 || strcmp (name, "wide_character") == 0
7921 || strcmp (name, "wide_wide_character") == 0
7922 || strcmp (name, "unsigned char") == 0));
7923 }
7924
7925 /* True if TYPE appears to be an Ada string type. */
7926
7927 int
7928 ada_is_string_type (struct type *type)
7929 {
7930 type = ada_check_typedef (type);
7931 if (type != NULL
7932 && TYPE_CODE (type) != TYPE_CODE_PTR
7933 && (ada_is_simple_array_type (type)
7934 || ada_is_array_descriptor_type (type))
7935 && ada_array_arity (type) == 1)
7936 {
7937 struct type *elttype = ada_array_element_type (type, 1);
7938
7939 return ada_is_character_type (elttype);
7940 }
7941 else
7942 return 0;
7943 }
7944
7945 /* The compiler sometimes provides a parallel XVS type for a given
7946 PAD type. Normally, it is safe to follow the PAD type directly,
7947 but older versions of the compiler have a bug that causes the offset
7948 of its "F" field to be wrong. Following that field in that case
7949 would lead to incorrect results, but this can be worked around
7950 by ignoring the PAD type and using the associated XVS type instead.
7951
7952 Set to True if the debugger should trust the contents of PAD types.
7953 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7954 static int trust_pad_over_xvs = 1;
7955
7956 /* True if TYPE is a struct type introduced by the compiler to force the
7957 alignment of a value. Such types have a single field with a
7958 distinctive name. */
7959
7960 int
7961 ada_is_aligner_type (struct type *type)
7962 {
7963 type = ada_check_typedef (type);
7964
7965 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7966 return 0;
7967
7968 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7969 && TYPE_NFIELDS (type) == 1
7970 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7971 }
7972
7973 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7974 the parallel type. */
7975
7976 struct type *
7977 ada_get_base_type (struct type *raw_type)
7978 {
7979 struct type *real_type_namer;
7980 struct type *raw_real_type;
7981
7982 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7983 return raw_type;
7984
7985 if (ada_is_aligner_type (raw_type))
7986 /* The encoding specifies that we should always use the aligner type.
7987 So, even if this aligner type has an associated XVS type, we should
7988 simply ignore it.
7989
7990 According to the compiler gurus, an XVS type parallel to an aligner
7991 type may exist because of a stabs limitation. In stabs, aligner
7992 types are empty because the field has a variable-sized type, and
7993 thus cannot actually be used as an aligner type. As a result,
7994 we need the associated parallel XVS type to decode the type.
7995 Since the policy in the compiler is to not change the internal
7996 representation based on the debugging info format, we sometimes
7997 end up having a redundant XVS type parallel to the aligner type. */
7998 return raw_type;
7999
8000 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8001 if (real_type_namer == NULL
8002 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8003 || TYPE_NFIELDS (real_type_namer) != 1)
8004 return raw_type;
8005
8006 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8007 {
8008 /* This is an older encoding form where the base type needs to be
8009 looked up by name. We prefer the newer enconding because it is
8010 more efficient. */
8011 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8012 if (raw_real_type == NULL)
8013 return raw_type;
8014 else
8015 return raw_real_type;
8016 }
8017
8018 /* The field in our XVS type is a reference to the base type. */
8019 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8020 }
8021
8022 /* The type of value designated by TYPE, with all aligners removed. */
8023
8024 struct type *
8025 ada_aligned_type (struct type *type)
8026 {
8027 if (ada_is_aligner_type (type))
8028 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8029 else
8030 return ada_get_base_type (type);
8031 }
8032
8033
8034 /* The address of the aligned value in an object at address VALADDR
8035 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8036
8037 const gdb_byte *
8038 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8039 {
8040 if (ada_is_aligner_type (type))
8041 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8042 valaddr +
8043 TYPE_FIELD_BITPOS (type,
8044 0) / TARGET_CHAR_BIT);
8045 else
8046 return valaddr;
8047 }
8048
8049
8050
8051 /* The printed representation of an enumeration literal with encoded
8052 name NAME. The value is good to the next call of ada_enum_name. */
8053 const char *
8054 ada_enum_name (const char *name)
8055 {
8056 static char *result;
8057 static size_t result_len = 0;
8058 char *tmp;
8059
8060 /* First, unqualify the enumeration name:
8061 1. Search for the last '.' character. If we find one, then skip
8062 all the preceeding characters, the unqualified name starts
8063 right after that dot.
8064 2. Otherwise, we may be debugging on a target where the compiler
8065 translates dots into "__". Search forward for double underscores,
8066 but stop searching when we hit an overloading suffix, which is
8067 of the form "__" followed by digits. */
8068
8069 tmp = strrchr (name, '.');
8070 if (tmp != NULL)
8071 name = tmp + 1;
8072 else
8073 {
8074 while ((tmp = strstr (name, "__")) != NULL)
8075 {
8076 if (isdigit (tmp[2]))
8077 break;
8078 else
8079 name = tmp + 2;
8080 }
8081 }
8082
8083 if (name[0] == 'Q')
8084 {
8085 int v;
8086
8087 if (name[1] == 'U' || name[1] == 'W')
8088 {
8089 if (sscanf (name + 2, "%x", &v) != 1)
8090 return name;
8091 }
8092 else
8093 return name;
8094
8095 GROW_VECT (result, result_len, 16);
8096 if (isascii (v) && isprint (v))
8097 xsnprintf (result, result_len, "'%c'", v);
8098 else if (name[1] == 'U')
8099 xsnprintf (result, result_len, "[\"%02x\"]", v);
8100 else
8101 xsnprintf (result, result_len, "[\"%04x\"]", v);
8102
8103 return result;
8104 }
8105 else
8106 {
8107 tmp = strstr (name, "__");
8108 if (tmp == NULL)
8109 tmp = strstr (name, "$");
8110 if (tmp != NULL)
8111 {
8112 GROW_VECT (result, result_len, tmp - name + 1);
8113 strncpy (result, name, tmp - name);
8114 result[tmp - name] = '\0';
8115 return result;
8116 }
8117
8118 return name;
8119 }
8120 }
8121
8122 /* Evaluate the subexpression of EXP starting at *POS as for
8123 evaluate_type, updating *POS to point just past the evaluated
8124 expression. */
8125
8126 static struct value *
8127 evaluate_subexp_type (struct expression *exp, int *pos)
8128 {
8129 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8130 }
8131
8132 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8133 value it wraps. */
8134
8135 static struct value *
8136 unwrap_value (struct value *val)
8137 {
8138 struct type *type = ada_check_typedef (value_type (val));
8139
8140 if (ada_is_aligner_type (type))
8141 {
8142 struct value *v = ada_value_struct_elt (val, "F", 0);
8143 struct type *val_type = ada_check_typedef (value_type (v));
8144
8145 if (ada_type_name (val_type) == NULL)
8146 TYPE_NAME (val_type) = ada_type_name (type);
8147
8148 return unwrap_value (v);
8149 }
8150 else
8151 {
8152 struct type *raw_real_type =
8153 ada_check_typedef (ada_get_base_type (type));
8154
8155 /* If there is no parallel XVS or XVE type, then the value is
8156 already unwrapped. Return it without further modification. */
8157 if ((type == raw_real_type)
8158 && ada_find_parallel_type (type, "___XVE") == NULL)
8159 return val;
8160
8161 return
8162 coerce_unspec_val_to_type
8163 (val, ada_to_fixed_type (raw_real_type, 0,
8164 value_address (val),
8165 NULL, 1));
8166 }
8167 }
8168
8169 static struct value *
8170 cast_to_fixed (struct type *type, struct value *arg)
8171 {
8172 LONGEST val;
8173
8174 if (type == value_type (arg))
8175 return arg;
8176 else if (ada_is_fixed_point_type (value_type (arg)))
8177 val = ada_float_to_fixed (type,
8178 ada_fixed_to_float (value_type (arg),
8179 value_as_long (arg)));
8180 else
8181 {
8182 DOUBLEST argd = value_as_double (arg);
8183
8184 val = ada_float_to_fixed (type, argd);
8185 }
8186
8187 return value_from_longest (type, val);
8188 }
8189
8190 static struct value *
8191 cast_from_fixed (struct type *type, struct value *arg)
8192 {
8193 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8194 value_as_long (arg));
8195
8196 return value_from_double (type, val);
8197 }
8198
8199 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8200 return the converted value. */
8201
8202 static struct value *
8203 coerce_for_assign (struct type *type, struct value *val)
8204 {
8205 struct type *type2 = value_type (val);
8206
8207 if (type == type2)
8208 return val;
8209
8210 type2 = ada_check_typedef (type2);
8211 type = ada_check_typedef (type);
8212
8213 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8214 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8215 {
8216 val = ada_value_ind (val);
8217 type2 = value_type (val);
8218 }
8219
8220 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8221 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8222 {
8223 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8224 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8225 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8226 error (_("Incompatible types in assignment"));
8227 deprecated_set_value_type (val, type);
8228 }
8229 return val;
8230 }
8231
8232 static struct value *
8233 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8234 {
8235 struct value *val;
8236 struct type *type1, *type2;
8237 LONGEST v, v1, v2;
8238
8239 arg1 = coerce_ref (arg1);
8240 arg2 = coerce_ref (arg2);
8241 type1 = base_type (ada_check_typedef (value_type (arg1)));
8242 type2 = base_type (ada_check_typedef (value_type (arg2)));
8243
8244 if (TYPE_CODE (type1) != TYPE_CODE_INT
8245 || TYPE_CODE (type2) != TYPE_CODE_INT)
8246 return value_binop (arg1, arg2, op);
8247
8248 switch (op)
8249 {
8250 case BINOP_MOD:
8251 case BINOP_DIV:
8252 case BINOP_REM:
8253 break;
8254 default:
8255 return value_binop (arg1, arg2, op);
8256 }
8257
8258 v2 = value_as_long (arg2);
8259 if (v2 == 0)
8260 error (_("second operand of %s must not be zero."), op_string (op));
8261
8262 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8263 return value_binop (arg1, arg2, op);
8264
8265 v1 = value_as_long (arg1);
8266 switch (op)
8267 {
8268 case BINOP_DIV:
8269 v = v1 / v2;
8270 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8271 v += v > 0 ? -1 : 1;
8272 break;
8273 case BINOP_REM:
8274 v = v1 % v2;
8275 if (v * v1 < 0)
8276 v -= v2;
8277 break;
8278 default:
8279 /* Should not reach this point. */
8280 v = 0;
8281 }
8282
8283 val = allocate_value (type1);
8284 store_unsigned_integer (value_contents_raw (val),
8285 TYPE_LENGTH (value_type (val)),
8286 gdbarch_byte_order (get_type_arch (type1)), v);
8287 return val;
8288 }
8289
8290 static int
8291 ada_value_equal (struct value *arg1, struct value *arg2)
8292 {
8293 if (ada_is_direct_array_type (value_type (arg1))
8294 || ada_is_direct_array_type (value_type (arg2)))
8295 {
8296 /* Automatically dereference any array reference before
8297 we attempt to perform the comparison. */
8298 arg1 = ada_coerce_ref (arg1);
8299 arg2 = ada_coerce_ref (arg2);
8300
8301 arg1 = ada_coerce_to_simple_array (arg1);
8302 arg2 = ada_coerce_to_simple_array (arg2);
8303 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8304 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8305 error (_("Attempt to compare array with non-array"));
8306 /* FIXME: The following works only for types whose
8307 representations use all bits (no padding or undefined bits)
8308 and do not have user-defined equality. */
8309 return
8310 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8311 && memcmp (value_contents (arg1), value_contents (arg2),
8312 TYPE_LENGTH (value_type (arg1))) == 0;
8313 }
8314 return value_equal (arg1, arg2);
8315 }
8316
8317 /* Total number of component associations in the aggregate starting at
8318 index PC in EXP. Assumes that index PC is the start of an
8319 OP_AGGREGATE. */
8320
8321 static int
8322 num_component_specs (struct expression *exp, int pc)
8323 {
8324 int n, m, i;
8325
8326 m = exp->elts[pc + 1].longconst;
8327 pc += 3;
8328 n = 0;
8329 for (i = 0; i < m; i += 1)
8330 {
8331 switch (exp->elts[pc].opcode)
8332 {
8333 default:
8334 n += 1;
8335 break;
8336 case OP_CHOICES:
8337 n += exp->elts[pc + 1].longconst;
8338 break;
8339 }
8340 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8341 }
8342 return n;
8343 }
8344
8345 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8346 component of LHS (a simple array or a record), updating *POS past
8347 the expression, assuming that LHS is contained in CONTAINER. Does
8348 not modify the inferior's memory, nor does it modify LHS (unless
8349 LHS == CONTAINER). */
8350
8351 static void
8352 assign_component (struct value *container, struct value *lhs, LONGEST index,
8353 struct expression *exp, int *pos)
8354 {
8355 struct value *mark = value_mark ();
8356 struct value *elt;
8357
8358 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8359 {
8360 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8361 struct value *index_val = value_from_longest (index_type, index);
8362
8363 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8364 }
8365 else
8366 {
8367 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8368 elt = ada_to_fixed_value (unwrap_value (elt));
8369 }
8370
8371 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8372 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8373 else
8374 value_assign_to_component (container, elt,
8375 ada_evaluate_subexp (NULL, exp, pos,
8376 EVAL_NORMAL));
8377
8378 value_free_to_mark (mark);
8379 }
8380
8381 /* Assuming that LHS represents an lvalue having a record or array
8382 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8383 of that aggregate's value to LHS, advancing *POS past the
8384 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8385 lvalue containing LHS (possibly LHS itself). Does not modify
8386 the inferior's memory, nor does it modify the contents of
8387 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8388
8389 static struct value *
8390 assign_aggregate (struct value *container,
8391 struct value *lhs, struct expression *exp,
8392 int *pos, enum noside noside)
8393 {
8394 struct type *lhs_type;
8395 int n = exp->elts[*pos+1].longconst;
8396 LONGEST low_index, high_index;
8397 int num_specs;
8398 LONGEST *indices;
8399 int max_indices, num_indices;
8400 int is_array_aggregate;
8401 int i;
8402
8403 *pos += 3;
8404 if (noside != EVAL_NORMAL)
8405 {
8406 int i;
8407
8408 for (i = 0; i < n; i += 1)
8409 ada_evaluate_subexp (NULL, exp, pos, noside);
8410 return container;
8411 }
8412
8413 container = ada_coerce_ref (container);
8414 if (ada_is_direct_array_type (value_type (container)))
8415 container = ada_coerce_to_simple_array (container);
8416 lhs = ada_coerce_ref (lhs);
8417 if (!deprecated_value_modifiable (lhs))
8418 error (_("Left operand of assignment is not a modifiable lvalue."));
8419
8420 lhs_type = value_type (lhs);
8421 if (ada_is_direct_array_type (lhs_type))
8422 {
8423 lhs = ada_coerce_to_simple_array (lhs);
8424 lhs_type = value_type (lhs);
8425 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8426 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8427 is_array_aggregate = 1;
8428 }
8429 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8430 {
8431 low_index = 0;
8432 high_index = num_visible_fields (lhs_type) - 1;
8433 is_array_aggregate = 0;
8434 }
8435 else
8436 error (_("Left-hand side must be array or record."));
8437
8438 num_specs = num_component_specs (exp, *pos - 3);
8439 max_indices = 4 * num_specs + 4;
8440 indices = alloca (max_indices * sizeof (indices[0]));
8441 indices[0] = indices[1] = low_index - 1;
8442 indices[2] = indices[3] = high_index + 1;
8443 num_indices = 4;
8444
8445 for (i = 0; i < n; i += 1)
8446 {
8447 switch (exp->elts[*pos].opcode)
8448 {
8449 case OP_CHOICES:
8450 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8451 &num_indices, max_indices,
8452 low_index, high_index);
8453 break;
8454 case OP_POSITIONAL:
8455 aggregate_assign_positional (container, lhs, exp, pos, indices,
8456 &num_indices, max_indices,
8457 low_index, high_index);
8458 break;
8459 case OP_OTHERS:
8460 if (i != n-1)
8461 error (_("Misplaced 'others' clause"));
8462 aggregate_assign_others (container, lhs, exp, pos, indices,
8463 num_indices, low_index, high_index);
8464 break;
8465 default:
8466 error (_("Internal error: bad aggregate clause"));
8467 }
8468 }
8469
8470 return container;
8471 }
8472
8473 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8474 construct at *POS, updating *POS past the construct, given that
8475 the positions are relative to lower bound LOW, where HIGH is the
8476 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8477 updating *NUM_INDICES as needed. CONTAINER is as for
8478 assign_aggregate. */
8479 static void
8480 aggregate_assign_positional (struct value *container,
8481 struct value *lhs, struct expression *exp,
8482 int *pos, LONGEST *indices, int *num_indices,
8483 int max_indices, LONGEST low, LONGEST high)
8484 {
8485 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8486
8487 if (ind - 1 == high)
8488 warning (_("Extra components in aggregate ignored."));
8489 if (ind <= high)
8490 {
8491 add_component_interval (ind, ind, indices, num_indices, max_indices);
8492 *pos += 3;
8493 assign_component (container, lhs, ind, exp, pos);
8494 }
8495 else
8496 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8497 }
8498
8499 /* Assign into the components of LHS indexed by the OP_CHOICES
8500 construct at *POS, updating *POS past the construct, given that
8501 the allowable indices are LOW..HIGH. Record the indices assigned
8502 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8503 needed. CONTAINER is as for assign_aggregate. */
8504 static void
8505 aggregate_assign_from_choices (struct value *container,
8506 struct value *lhs, struct expression *exp,
8507 int *pos, LONGEST *indices, int *num_indices,
8508 int max_indices, LONGEST low, LONGEST high)
8509 {
8510 int j;
8511 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8512 int choice_pos, expr_pc;
8513 int is_array = ada_is_direct_array_type (value_type (lhs));
8514
8515 choice_pos = *pos += 3;
8516
8517 for (j = 0; j < n_choices; j += 1)
8518 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8519 expr_pc = *pos;
8520 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8521
8522 for (j = 0; j < n_choices; j += 1)
8523 {
8524 LONGEST lower, upper;
8525 enum exp_opcode op = exp->elts[choice_pos].opcode;
8526
8527 if (op == OP_DISCRETE_RANGE)
8528 {
8529 choice_pos += 1;
8530 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8531 EVAL_NORMAL));
8532 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8533 EVAL_NORMAL));
8534 }
8535 else if (is_array)
8536 {
8537 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8538 EVAL_NORMAL));
8539 upper = lower;
8540 }
8541 else
8542 {
8543 int ind;
8544 char *name;
8545
8546 switch (op)
8547 {
8548 case OP_NAME:
8549 name = &exp->elts[choice_pos + 2].string;
8550 break;
8551 case OP_VAR_VALUE:
8552 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8553 break;
8554 default:
8555 error (_("Invalid record component association."));
8556 }
8557 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8558 ind = 0;
8559 if (! find_struct_field (name, value_type (lhs), 0,
8560 NULL, NULL, NULL, NULL, &ind))
8561 error (_("Unknown component name: %s."), name);
8562 lower = upper = ind;
8563 }
8564
8565 if (lower <= upper && (lower < low || upper > high))
8566 error (_("Index in component association out of bounds."));
8567
8568 add_component_interval (lower, upper, indices, num_indices,
8569 max_indices);
8570 while (lower <= upper)
8571 {
8572 int pos1;
8573
8574 pos1 = expr_pc;
8575 assign_component (container, lhs, lower, exp, &pos1);
8576 lower += 1;
8577 }
8578 }
8579 }
8580
8581 /* Assign the value of the expression in the OP_OTHERS construct in
8582 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8583 have not been previously assigned. The index intervals already assigned
8584 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8585 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8586 static void
8587 aggregate_assign_others (struct value *container,
8588 struct value *lhs, struct expression *exp,
8589 int *pos, LONGEST *indices, int num_indices,
8590 LONGEST low, LONGEST high)
8591 {
8592 int i;
8593 int expr_pc = *pos+1;
8594
8595 for (i = 0; i < num_indices - 2; i += 2)
8596 {
8597 LONGEST ind;
8598
8599 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8600 {
8601 int pos;
8602
8603 pos = expr_pc;
8604 assign_component (container, lhs, ind, exp, &pos);
8605 }
8606 }
8607 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8608 }
8609
8610 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8611 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8612 modifying *SIZE as needed. It is an error if *SIZE exceeds
8613 MAX_SIZE. The resulting intervals do not overlap. */
8614 static void
8615 add_component_interval (LONGEST low, LONGEST high,
8616 LONGEST* indices, int *size, int max_size)
8617 {
8618 int i, j;
8619
8620 for (i = 0; i < *size; i += 2) {
8621 if (high >= indices[i] && low <= indices[i + 1])
8622 {
8623 int kh;
8624
8625 for (kh = i + 2; kh < *size; kh += 2)
8626 if (high < indices[kh])
8627 break;
8628 if (low < indices[i])
8629 indices[i] = low;
8630 indices[i + 1] = indices[kh - 1];
8631 if (high > indices[i + 1])
8632 indices[i + 1] = high;
8633 memcpy (indices + i + 2, indices + kh, *size - kh);
8634 *size -= kh - i - 2;
8635 return;
8636 }
8637 else if (high < indices[i])
8638 break;
8639 }
8640
8641 if (*size == max_size)
8642 error (_("Internal error: miscounted aggregate components."));
8643 *size += 2;
8644 for (j = *size-1; j >= i+2; j -= 1)
8645 indices[j] = indices[j - 2];
8646 indices[i] = low;
8647 indices[i + 1] = high;
8648 }
8649
8650 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8651 is different. */
8652
8653 static struct value *
8654 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8655 {
8656 if (type == ada_check_typedef (value_type (arg2)))
8657 return arg2;
8658
8659 if (ada_is_fixed_point_type (type))
8660 return (cast_to_fixed (type, arg2));
8661
8662 if (ada_is_fixed_point_type (value_type (arg2)))
8663 return cast_from_fixed (type, arg2);
8664
8665 return value_cast (type, arg2);
8666 }
8667
8668 /* Evaluating Ada expressions, and printing their result.
8669 ------------------------------------------------------
8670
8671 1. Introduction:
8672 ----------------
8673
8674 We usually evaluate an Ada expression in order to print its value.
8675 We also evaluate an expression in order to print its type, which
8676 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8677 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8678 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8679 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8680 similar.
8681
8682 Evaluating expressions is a little more complicated for Ada entities
8683 than it is for entities in languages such as C. The main reason for
8684 this is that Ada provides types whose definition might be dynamic.
8685 One example of such types is variant records. Or another example
8686 would be an array whose bounds can only be known at run time.
8687
8688 The following description is a general guide as to what should be
8689 done (and what should NOT be done) in order to evaluate an expression
8690 involving such types, and when. This does not cover how the semantic
8691 information is encoded by GNAT as this is covered separatly. For the
8692 document used as the reference for the GNAT encoding, see exp_dbug.ads
8693 in the GNAT sources.
8694
8695 Ideally, we should embed each part of this description next to its
8696 associated code. Unfortunately, the amount of code is so vast right
8697 now that it's hard to see whether the code handling a particular
8698 situation might be duplicated or not. One day, when the code is
8699 cleaned up, this guide might become redundant with the comments
8700 inserted in the code, and we might want to remove it.
8701
8702 2. ``Fixing'' an Entity, the Simple Case:
8703 -----------------------------------------
8704
8705 When evaluating Ada expressions, the tricky issue is that they may
8706 reference entities whose type contents and size are not statically
8707 known. Consider for instance a variant record:
8708
8709 type Rec (Empty : Boolean := True) is record
8710 case Empty is
8711 when True => null;
8712 when False => Value : Integer;
8713 end case;
8714 end record;
8715 Yes : Rec := (Empty => False, Value => 1);
8716 No : Rec := (empty => True);
8717
8718 The size and contents of that record depends on the value of the
8719 descriminant (Rec.Empty). At this point, neither the debugging
8720 information nor the associated type structure in GDB are able to
8721 express such dynamic types. So what the debugger does is to create
8722 "fixed" versions of the type that applies to the specific object.
8723 We also informally refer to this opperation as "fixing" an object,
8724 which means creating its associated fixed type.
8725
8726 Example: when printing the value of variable "Yes" above, its fixed
8727 type would look like this:
8728
8729 type Rec is record
8730 Empty : Boolean;
8731 Value : Integer;
8732 end record;
8733
8734 On the other hand, if we printed the value of "No", its fixed type
8735 would become:
8736
8737 type Rec is record
8738 Empty : Boolean;
8739 end record;
8740
8741 Things become a little more complicated when trying to fix an entity
8742 with a dynamic type that directly contains another dynamic type,
8743 such as an array of variant records, for instance. There are
8744 two possible cases: Arrays, and records.
8745
8746 3. ``Fixing'' Arrays:
8747 ---------------------
8748
8749 The type structure in GDB describes an array in terms of its bounds,
8750 and the type of its elements. By design, all elements in the array
8751 have the same type and we cannot represent an array of variant elements
8752 using the current type structure in GDB. When fixing an array,
8753 we cannot fix the array element, as we would potentially need one
8754 fixed type per element of the array. As a result, the best we can do
8755 when fixing an array is to produce an array whose bounds and size
8756 are correct (allowing us to read it from memory), but without having
8757 touched its element type. Fixing each element will be done later,
8758 when (if) necessary.
8759
8760 Arrays are a little simpler to handle than records, because the same
8761 amount of memory is allocated for each element of the array, even if
8762 the amount of space actually used by each element differs from element
8763 to element. Consider for instance the following array of type Rec:
8764
8765 type Rec_Array is array (1 .. 2) of Rec;
8766
8767 The actual amount of memory occupied by each element might be different
8768 from element to element, depending on the value of their discriminant.
8769 But the amount of space reserved for each element in the array remains
8770 fixed regardless. So we simply need to compute that size using
8771 the debugging information available, from which we can then determine
8772 the array size (we multiply the number of elements of the array by
8773 the size of each element).
8774
8775 The simplest case is when we have an array of a constrained element
8776 type. For instance, consider the following type declarations:
8777
8778 type Bounded_String (Max_Size : Integer) is
8779 Length : Integer;
8780 Buffer : String (1 .. Max_Size);
8781 end record;
8782 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8783
8784 In this case, the compiler describes the array as an array of
8785 variable-size elements (identified by its XVS suffix) for which
8786 the size can be read in the parallel XVZ variable.
8787
8788 In the case of an array of an unconstrained element type, the compiler
8789 wraps the array element inside a private PAD type. This type should not
8790 be shown to the user, and must be "unwrap"'ed before printing. Note
8791 that we also use the adjective "aligner" in our code to designate
8792 these wrapper types.
8793
8794 In some cases, the size allocated for each element is statically
8795 known. In that case, the PAD type already has the correct size,
8796 and the array element should remain unfixed.
8797
8798 But there are cases when this size is not statically known.
8799 For instance, assuming that "Five" is an integer variable:
8800
8801 type Dynamic is array (1 .. Five) of Integer;
8802 type Wrapper (Has_Length : Boolean := False) is record
8803 Data : Dynamic;
8804 case Has_Length is
8805 when True => Length : Integer;
8806 when False => null;
8807 end case;
8808 end record;
8809 type Wrapper_Array is array (1 .. 2) of Wrapper;
8810
8811 Hello : Wrapper_Array := (others => (Has_Length => True,
8812 Data => (others => 17),
8813 Length => 1));
8814
8815
8816 The debugging info would describe variable Hello as being an
8817 array of a PAD type. The size of that PAD type is not statically
8818 known, but can be determined using a parallel XVZ variable.
8819 In that case, a copy of the PAD type with the correct size should
8820 be used for the fixed array.
8821
8822 3. ``Fixing'' record type objects:
8823 ----------------------------------
8824
8825 Things are slightly different from arrays in the case of dynamic
8826 record types. In this case, in order to compute the associated
8827 fixed type, we need to determine the size and offset of each of
8828 its components. This, in turn, requires us to compute the fixed
8829 type of each of these components.
8830
8831 Consider for instance the example:
8832
8833 type Bounded_String (Max_Size : Natural) is record
8834 Str : String (1 .. Max_Size);
8835 Length : Natural;
8836 end record;
8837 My_String : Bounded_String (Max_Size => 10);
8838
8839 In that case, the position of field "Length" depends on the size
8840 of field Str, which itself depends on the value of the Max_Size
8841 discriminant. In order to fix the type of variable My_String,
8842 we need to fix the type of field Str. Therefore, fixing a variant
8843 record requires us to fix each of its components.
8844
8845 However, if a component does not have a dynamic size, the component
8846 should not be fixed. In particular, fields that use a PAD type
8847 should not fixed. Here is an example where this might happen
8848 (assuming type Rec above):
8849
8850 type Container (Big : Boolean) is record
8851 First : Rec;
8852 After : Integer;
8853 case Big is
8854 when True => Another : Integer;
8855 when False => null;
8856 end case;
8857 end record;
8858 My_Container : Container := (Big => False,
8859 First => (Empty => True),
8860 After => 42);
8861
8862 In that example, the compiler creates a PAD type for component First,
8863 whose size is constant, and then positions the component After just
8864 right after it. The offset of component After is therefore constant
8865 in this case.
8866
8867 The debugger computes the position of each field based on an algorithm
8868 that uses, among other things, the actual position and size of the field
8869 preceding it. Let's now imagine that the user is trying to print
8870 the value of My_Container. If the type fixing was recursive, we would
8871 end up computing the offset of field After based on the size of the
8872 fixed version of field First. And since in our example First has
8873 only one actual field, the size of the fixed type is actually smaller
8874 than the amount of space allocated to that field, and thus we would
8875 compute the wrong offset of field After.
8876
8877 To make things more complicated, we need to watch out for dynamic
8878 components of variant records (identified by the ___XVL suffix in
8879 the component name). Even if the target type is a PAD type, the size
8880 of that type might not be statically known. So the PAD type needs
8881 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8882 we might end up with the wrong size for our component. This can be
8883 observed with the following type declarations:
8884
8885 type Octal is new Integer range 0 .. 7;
8886 type Octal_Array is array (Positive range <>) of Octal;
8887 pragma Pack (Octal_Array);
8888
8889 type Octal_Buffer (Size : Positive) is record
8890 Buffer : Octal_Array (1 .. Size);
8891 Length : Integer;
8892 end record;
8893
8894 In that case, Buffer is a PAD type whose size is unset and needs
8895 to be computed by fixing the unwrapped type.
8896
8897 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8898 ----------------------------------------------------------
8899
8900 Lastly, when should the sub-elements of an entity that remained unfixed
8901 thus far, be actually fixed?
8902
8903 The answer is: Only when referencing that element. For instance
8904 when selecting one component of a record, this specific component
8905 should be fixed at that point in time. Or when printing the value
8906 of a record, each component should be fixed before its value gets
8907 printed. Similarly for arrays, the element of the array should be
8908 fixed when printing each element of the array, or when extracting
8909 one element out of that array. On the other hand, fixing should
8910 not be performed on the elements when taking a slice of an array!
8911
8912 Note that one of the side-effects of miscomputing the offset and
8913 size of each field is that we end up also miscomputing the size
8914 of the containing type. This can have adverse results when computing
8915 the value of an entity. GDB fetches the value of an entity based
8916 on the size of its type, and thus a wrong size causes GDB to fetch
8917 the wrong amount of memory. In the case where the computed size is
8918 too small, GDB fetches too little data to print the value of our
8919 entiry. Results in this case as unpredicatble, as we usually read
8920 past the buffer containing the data =:-o. */
8921
8922 /* Implement the evaluate_exp routine in the exp_descriptor structure
8923 for the Ada language. */
8924
8925 static struct value *
8926 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8927 int *pos, enum noside noside)
8928 {
8929 enum exp_opcode op;
8930 int tem;
8931 int pc;
8932 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8933 struct type *type;
8934 int nargs, oplen;
8935 struct value **argvec;
8936
8937 pc = *pos;
8938 *pos += 1;
8939 op = exp->elts[pc].opcode;
8940
8941 switch (op)
8942 {
8943 default:
8944 *pos -= 1;
8945 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8946 arg1 = unwrap_value (arg1);
8947
8948 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8949 then we need to perform the conversion manually, because
8950 evaluate_subexp_standard doesn't do it. This conversion is
8951 necessary in Ada because the different kinds of float/fixed
8952 types in Ada have different representations.
8953
8954 Similarly, we need to perform the conversion from OP_LONG
8955 ourselves. */
8956 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8957 arg1 = ada_value_cast (expect_type, arg1, noside);
8958
8959 return arg1;
8960
8961 case OP_STRING:
8962 {
8963 struct value *result;
8964
8965 *pos -= 1;
8966 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8967 /* The result type will have code OP_STRING, bashed there from
8968 OP_ARRAY. Bash it back. */
8969 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8970 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8971 return result;
8972 }
8973
8974 case UNOP_CAST:
8975 (*pos) += 2;
8976 type = exp->elts[pc + 1].type;
8977 arg1 = evaluate_subexp (type, exp, pos, noside);
8978 if (noside == EVAL_SKIP)
8979 goto nosideret;
8980 arg1 = ada_value_cast (type, arg1, noside);
8981 return arg1;
8982
8983 case UNOP_QUAL:
8984 (*pos) += 2;
8985 type = exp->elts[pc + 1].type;
8986 return ada_evaluate_subexp (type, exp, pos, noside);
8987
8988 case BINOP_ASSIGN:
8989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8990 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8991 {
8992 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8993 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8994 return arg1;
8995 return ada_value_assign (arg1, arg1);
8996 }
8997 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8998 except if the lhs of our assignment is a convenience variable.
8999 In the case of assigning to a convenience variable, the lhs
9000 should be exactly the result of the evaluation of the rhs. */
9001 type = value_type (arg1);
9002 if (VALUE_LVAL (arg1) == lval_internalvar)
9003 type = NULL;
9004 arg2 = evaluate_subexp (type, exp, pos, noside);
9005 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9006 return arg1;
9007 if (ada_is_fixed_point_type (value_type (arg1)))
9008 arg2 = cast_to_fixed (value_type (arg1), arg2);
9009 else if (ada_is_fixed_point_type (value_type (arg2)))
9010 error
9011 (_("Fixed-point values must be assigned to fixed-point variables"));
9012 else
9013 arg2 = coerce_for_assign (value_type (arg1), arg2);
9014 return ada_value_assign (arg1, arg2);
9015
9016 case BINOP_ADD:
9017 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9018 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9019 if (noside == EVAL_SKIP)
9020 goto nosideret;
9021 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9022 return (value_from_longest
9023 (value_type (arg1),
9024 value_as_long (arg1) + value_as_long (arg2)));
9025 if ((ada_is_fixed_point_type (value_type (arg1))
9026 || ada_is_fixed_point_type (value_type (arg2)))
9027 && value_type (arg1) != value_type (arg2))
9028 error (_("Operands of fixed-point addition must have the same type"));
9029 /* Do the addition, and cast the result to the type of the first
9030 argument. We cannot cast the result to a reference type, so if
9031 ARG1 is a reference type, find its underlying type. */
9032 type = value_type (arg1);
9033 while (TYPE_CODE (type) == TYPE_CODE_REF)
9034 type = TYPE_TARGET_TYPE (type);
9035 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9036 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9037
9038 case BINOP_SUB:
9039 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9040 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9041 if (noside == EVAL_SKIP)
9042 goto nosideret;
9043 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9044 return (value_from_longest
9045 (value_type (arg1),
9046 value_as_long (arg1) - value_as_long (arg2)));
9047 if ((ada_is_fixed_point_type (value_type (arg1))
9048 || ada_is_fixed_point_type (value_type (arg2)))
9049 && value_type (arg1) != value_type (arg2))
9050 error (_("Operands of fixed-point subtraction must have the same type"));
9051 /* Do the substraction, and cast the result to the type of the first
9052 argument. We cannot cast the result to a reference type, so if
9053 ARG1 is a reference type, find its underlying type. */
9054 type = value_type (arg1);
9055 while (TYPE_CODE (type) == TYPE_CODE_REF)
9056 type = TYPE_TARGET_TYPE (type);
9057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9058 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9059
9060 case BINOP_MUL:
9061 case BINOP_DIV:
9062 case BINOP_REM:
9063 case BINOP_MOD:
9064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9066 if (noside == EVAL_SKIP)
9067 goto nosideret;
9068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9069 {
9070 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9071 return value_zero (value_type (arg1), not_lval);
9072 }
9073 else
9074 {
9075 type = builtin_type (exp->gdbarch)->builtin_double;
9076 if (ada_is_fixed_point_type (value_type (arg1)))
9077 arg1 = cast_from_fixed (type, arg1);
9078 if (ada_is_fixed_point_type (value_type (arg2)))
9079 arg2 = cast_from_fixed (type, arg2);
9080 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9081 return ada_value_binop (arg1, arg2, op);
9082 }
9083
9084 case BINOP_EQUAL:
9085 case BINOP_NOTEQUAL:
9086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9087 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9088 if (noside == EVAL_SKIP)
9089 goto nosideret;
9090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9091 tem = 0;
9092 else
9093 {
9094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9095 tem = ada_value_equal (arg1, arg2);
9096 }
9097 if (op == BINOP_NOTEQUAL)
9098 tem = !tem;
9099 type = language_bool_type (exp->language_defn, exp->gdbarch);
9100 return value_from_longest (type, (LONGEST) tem);
9101
9102 case UNOP_NEG:
9103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9104 if (noside == EVAL_SKIP)
9105 goto nosideret;
9106 else if (ada_is_fixed_point_type (value_type (arg1)))
9107 return value_cast (value_type (arg1), value_neg (arg1));
9108 else
9109 {
9110 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9111 return value_neg (arg1);
9112 }
9113
9114 case BINOP_LOGICAL_AND:
9115 case BINOP_LOGICAL_OR:
9116 case UNOP_LOGICAL_NOT:
9117 {
9118 struct value *val;
9119
9120 *pos -= 1;
9121 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9122 type = language_bool_type (exp->language_defn, exp->gdbarch);
9123 return value_cast (type, val);
9124 }
9125
9126 case BINOP_BITWISE_AND:
9127 case BINOP_BITWISE_IOR:
9128 case BINOP_BITWISE_XOR:
9129 {
9130 struct value *val;
9131
9132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9133 *pos = pc;
9134 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9135
9136 return value_cast (value_type (arg1), val);
9137 }
9138
9139 case OP_VAR_VALUE:
9140 *pos -= 1;
9141
9142 if (noside == EVAL_SKIP)
9143 {
9144 *pos += 4;
9145 goto nosideret;
9146 }
9147 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9148 /* Only encountered when an unresolved symbol occurs in a
9149 context other than a function call, in which case, it is
9150 invalid. */
9151 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9154 {
9155 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9156 /* Check to see if this is a tagged type. We also need to handle
9157 the case where the type is a reference to a tagged type, but
9158 we have to be careful to exclude pointers to tagged types.
9159 The latter should be shown as usual (as a pointer), whereas
9160 a reference should mostly be transparent to the user. */
9161 if (ada_is_tagged_type (type, 0)
9162 || (TYPE_CODE(type) == TYPE_CODE_REF
9163 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9164 {
9165 /* Tagged types are a little special in the fact that the real
9166 type is dynamic and can only be determined by inspecting the
9167 object's tag. This means that we need to get the object's
9168 value first (EVAL_NORMAL) and then extract the actual object
9169 type from its tag.
9170
9171 Note that we cannot skip the final step where we extract
9172 the object type from its tag, because the EVAL_NORMAL phase
9173 results in dynamic components being resolved into fixed ones.
9174 This can cause problems when trying to print the type
9175 description of tagged types whose parent has a dynamic size:
9176 We use the type name of the "_parent" component in order
9177 to print the name of the ancestor type in the type description.
9178 If that component had a dynamic size, the resolution into
9179 a fixed type would result in the loss of that type name,
9180 thus preventing us from printing the name of the ancestor
9181 type in the type description. */
9182 struct type *actual_type;
9183
9184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9185 actual_type = type_from_tag (ada_value_tag (arg1));
9186 if (actual_type == NULL)
9187 /* If, for some reason, we were unable to determine
9188 the actual type from the tag, then use the static
9189 approximation that we just computed as a fallback.
9190 This can happen if the debugging information is
9191 incomplete, for instance. */
9192 actual_type = type;
9193
9194 return value_zero (actual_type, not_lval);
9195 }
9196
9197 *pos += 4;
9198 return value_zero
9199 (to_static_fixed_type
9200 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9201 not_lval);
9202 }
9203 else
9204 {
9205 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9206 arg1 = unwrap_value (arg1);
9207 return ada_to_fixed_value (arg1);
9208 }
9209
9210 case OP_FUNCALL:
9211 (*pos) += 2;
9212
9213 /* Allocate arg vector, including space for the function to be
9214 called in argvec[0] and a terminating NULL. */
9215 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9216 argvec =
9217 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9218
9219 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9220 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9221 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9222 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9223 else
9224 {
9225 for (tem = 0; tem <= nargs; tem += 1)
9226 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 argvec[tem] = 0;
9228
9229 if (noside == EVAL_SKIP)
9230 goto nosideret;
9231 }
9232
9233 if (ada_is_constrained_packed_array_type
9234 (desc_base_type (value_type (argvec[0]))))
9235 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9236 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9237 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9238 /* This is a packed array that has already been fixed, and
9239 therefore already coerced to a simple array. Nothing further
9240 to do. */
9241 ;
9242 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9243 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9244 && VALUE_LVAL (argvec[0]) == lval_memory))
9245 argvec[0] = value_addr (argvec[0]);
9246
9247 type = ada_check_typedef (value_type (argvec[0]));
9248 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9249 {
9250 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9251 {
9252 case TYPE_CODE_FUNC:
9253 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9254 break;
9255 case TYPE_CODE_ARRAY:
9256 break;
9257 case TYPE_CODE_STRUCT:
9258 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9259 argvec[0] = ada_value_ind (argvec[0]);
9260 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9261 break;
9262 default:
9263 error (_("cannot subscript or call something of type `%s'"),
9264 ada_type_name (value_type (argvec[0])));
9265 break;
9266 }
9267 }
9268
9269 switch (TYPE_CODE (type))
9270 {
9271 case TYPE_CODE_FUNC:
9272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9273 return allocate_value (TYPE_TARGET_TYPE (type));
9274 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9275 case TYPE_CODE_STRUCT:
9276 {
9277 int arity;
9278
9279 arity = ada_array_arity (type);
9280 type = ada_array_element_type (type, nargs);
9281 if (type == NULL)
9282 error (_("cannot subscript or call a record"));
9283 if (arity != nargs)
9284 error (_("wrong number of subscripts; expecting %d"), arity);
9285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9286 return value_zero (ada_aligned_type (type), lval_memory);
9287 return
9288 unwrap_value (ada_value_subscript
9289 (argvec[0], nargs, argvec + 1));
9290 }
9291 case TYPE_CODE_ARRAY:
9292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9293 {
9294 type = ada_array_element_type (type, nargs);
9295 if (type == NULL)
9296 error (_("element type of array unknown"));
9297 else
9298 return value_zero (ada_aligned_type (type), lval_memory);
9299 }
9300 return
9301 unwrap_value (ada_value_subscript
9302 (ada_coerce_to_simple_array (argvec[0]),
9303 nargs, argvec + 1));
9304 case TYPE_CODE_PTR: /* Pointer to array */
9305 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307 {
9308 type = ada_array_element_type (type, nargs);
9309 if (type == NULL)
9310 error (_("element type of array unknown"));
9311 else
9312 return value_zero (ada_aligned_type (type), lval_memory);
9313 }
9314 return
9315 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9316 nargs, argvec + 1));
9317
9318 default:
9319 error (_("Attempt to index or call something other than an "
9320 "array or function"));
9321 }
9322
9323 case TERNOP_SLICE:
9324 {
9325 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9326 struct value *low_bound_val =
9327 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9328 struct value *high_bound_val =
9329 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9330 LONGEST low_bound;
9331 LONGEST high_bound;
9332
9333 low_bound_val = coerce_ref (low_bound_val);
9334 high_bound_val = coerce_ref (high_bound_val);
9335 low_bound = pos_atr (low_bound_val);
9336 high_bound = pos_atr (high_bound_val);
9337
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340
9341 /* If this is a reference to an aligner type, then remove all
9342 the aligners. */
9343 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9344 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9345 TYPE_TARGET_TYPE (value_type (array)) =
9346 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9347
9348 if (ada_is_constrained_packed_array_type (value_type (array)))
9349 error (_("cannot slice a packed array"));
9350
9351 /* If this is a reference to an array or an array lvalue,
9352 convert to a pointer. */
9353 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9354 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9355 && VALUE_LVAL (array) == lval_memory))
9356 array = value_addr (array);
9357
9358 if (noside == EVAL_AVOID_SIDE_EFFECTS
9359 && ada_is_array_descriptor_type (ada_check_typedef
9360 (value_type (array))))
9361 return empty_array (ada_type_of_array (array, 0), low_bound);
9362
9363 array = ada_coerce_to_simple_array_ptr (array);
9364
9365 /* If we have more than one level of pointer indirection,
9366 dereference the value until we get only one level. */
9367 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9368 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9369 == TYPE_CODE_PTR))
9370 array = value_ind (array);
9371
9372 /* Make sure we really do have an array type before going further,
9373 to avoid a SEGV when trying to get the index type or the target
9374 type later down the road if the debug info generated by
9375 the compiler is incorrect or incomplete. */
9376 if (!ada_is_simple_array_type (value_type (array)))
9377 error (_("cannot take slice of non-array"));
9378
9379 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9380 {
9381 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9382 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9383 low_bound);
9384 else
9385 {
9386 struct type *arr_type0 =
9387 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9388 NULL, 1);
9389
9390 return ada_value_slice_from_ptr (array, arr_type0,
9391 longest_to_int (low_bound),
9392 longest_to_int (high_bound));
9393 }
9394 }
9395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9396 return array;
9397 else if (high_bound < low_bound)
9398 return empty_array (value_type (array), low_bound);
9399 else
9400 return ada_value_slice (array, longest_to_int (low_bound),
9401 longest_to_int (high_bound));
9402 }
9403
9404 case UNOP_IN_RANGE:
9405 (*pos) += 2;
9406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9407 type = check_typedef (exp->elts[pc + 1].type);
9408
9409 if (noside == EVAL_SKIP)
9410 goto nosideret;
9411
9412 switch (TYPE_CODE (type))
9413 {
9414 default:
9415 lim_warning (_("Membership test incompletely implemented; "
9416 "always returns true"));
9417 type = language_bool_type (exp->language_defn, exp->gdbarch);
9418 return value_from_longest (type, (LONGEST) 1);
9419
9420 case TYPE_CODE_RANGE:
9421 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9422 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9423 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9425 type = language_bool_type (exp->language_defn, exp->gdbarch);
9426 return
9427 value_from_longest (type,
9428 (value_less (arg1, arg3)
9429 || value_equal (arg1, arg3))
9430 && (value_less (arg2, arg1)
9431 || value_equal (arg2, arg1)));
9432 }
9433
9434 case BINOP_IN_BOUNDS:
9435 (*pos) += 2;
9436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9437 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9438
9439 if (noside == EVAL_SKIP)
9440 goto nosideret;
9441
9442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443 {
9444 type = language_bool_type (exp->language_defn, exp->gdbarch);
9445 return value_zero (type, not_lval);
9446 }
9447
9448 tem = longest_to_int (exp->elts[pc + 1].longconst);
9449
9450 type = ada_index_type (value_type (arg2), tem, "range");
9451 if (!type)
9452 type = value_type (arg1);
9453
9454 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9455 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9456
9457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9458 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9459 type = language_bool_type (exp->language_defn, exp->gdbarch);
9460 return
9461 value_from_longest (type,
9462 (value_less (arg1, arg3)
9463 || value_equal (arg1, arg3))
9464 && (value_less (arg2, arg1)
9465 || value_equal (arg2, arg1)));
9466
9467 case TERNOP_IN_RANGE:
9468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9469 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9470 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471
9472 if (noside == EVAL_SKIP)
9473 goto nosideret;
9474
9475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9476 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9477 type = language_bool_type (exp->language_defn, exp->gdbarch);
9478 return
9479 value_from_longest (type,
9480 (value_less (arg1, arg3)
9481 || value_equal (arg1, arg3))
9482 && (value_less (arg2, arg1)
9483 || value_equal (arg2, arg1)));
9484
9485 case OP_ATR_FIRST:
9486 case OP_ATR_LAST:
9487 case OP_ATR_LENGTH:
9488 {
9489 struct type *type_arg;
9490
9491 if (exp->elts[*pos].opcode == OP_TYPE)
9492 {
9493 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9494 arg1 = NULL;
9495 type_arg = check_typedef (exp->elts[pc + 2].type);
9496 }
9497 else
9498 {
9499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9500 type_arg = NULL;
9501 }
9502
9503 if (exp->elts[*pos].opcode != OP_LONG)
9504 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9505 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9506 *pos += 4;
9507
9508 if (noside == EVAL_SKIP)
9509 goto nosideret;
9510
9511 if (type_arg == NULL)
9512 {
9513 arg1 = ada_coerce_ref (arg1);
9514
9515 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9516 arg1 = ada_coerce_to_simple_array (arg1);
9517
9518 type = ada_index_type (value_type (arg1), tem,
9519 ada_attribute_name (op));
9520 if (type == NULL)
9521 type = builtin_type (exp->gdbarch)->builtin_int;
9522
9523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9524 return allocate_value (type);
9525
9526 switch (op)
9527 {
9528 default: /* Should never happen. */
9529 error (_("unexpected attribute encountered"));
9530 case OP_ATR_FIRST:
9531 return value_from_longest
9532 (type, ada_array_bound (arg1, tem, 0));
9533 case OP_ATR_LAST:
9534 return value_from_longest
9535 (type, ada_array_bound (arg1, tem, 1));
9536 case OP_ATR_LENGTH:
9537 return value_from_longest
9538 (type, ada_array_length (arg1, tem));
9539 }
9540 }
9541 else if (discrete_type_p (type_arg))
9542 {
9543 struct type *range_type;
9544 char *name = ada_type_name (type_arg);
9545
9546 range_type = NULL;
9547 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9548 range_type = to_fixed_range_type (type_arg, NULL);
9549 if (range_type == NULL)
9550 range_type = type_arg;
9551 switch (op)
9552 {
9553 default:
9554 error (_("unexpected attribute encountered"));
9555 case OP_ATR_FIRST:
9556 return value_from_longest
9557 (range_type, ada_discrete_type_low_bound (range_type));
9558 case OP_ATR_LAST:
9559 return value_from_longest
9560 (range_type, ada_discrete_type_high_bound (range_type));
9561 case OP_ATR_LENGTH:
9562 error (_("the 'length attribute applies only to array types"));
9563 }
9564 }
9565 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9566 error (_("unimplemented type attribute"));
9567 else
9568 {
9569 LONGEST low, high;
9570
9571 if (ada_is_constrained_packed_array_type (type_arg))
9572 type_arg = decode_constrained_packed_array_type (type_arg);
9573
9574 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9575 if (type == NULL)
9576 type = builtin_type (exp->gdbarch)->builtin_int;
9577
9578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 return allocate_value (type);
9580
9581 switch (op)
9582 {
9583 default:
9584 error (_("unexpected attribute encountered"));
9585 case OP_ATR_FIRST:
9586 low = ada_array_bound_from_type (type_arg, tem, 0);
9587 return value_from_longest (type, low);
9588 case OP_ATR_LAST:
9589 high = ada_array_bound_from_type (type_arg, tem, 1);
9590 return value_from_longest (type, high);
9591 case OP_ATR_LENGTH:
9592 low = ada_array_bound_from_type (type_arg, tem, 0);
9593 high = ada_array_bound_from_type (type_arg, tem, 1);
9594 return value_from_longest (type, high - low + 1);
9595 }
9596 }
9597 }
9598
9599 case OP_ATR_TAG:
9600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9601 if (noside == EVAL_SKIP)
9602 goto nosideret;
9603
9604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9605 return value_zero (ada_tag_type (arg1), not_lval);
9606
9607 return ada_value_tag (arg1);
9608
9609 case OP_ATR_MIN:
9610 case OP_ATR_MAX:
9611 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9613 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9617 return value_zero (value_type (arg1), not_lval);
9618 else
9619 {
9620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9621 return value_binop (arg1, arg2,
9622 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9623 }
9624
9625 case OP_ATR_MODULUS:
9626 {
9627 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9628
9629 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9630 if (noside == EVAL_SKIP)
9631 goto nosideret;
9632
9633 if (!ada_is_modular_type (type_arg))
9634 error (_("'modulus must be applied to modular type"));
9635
9636 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9637 ada_modulus (type_arg));
9638 }
9639
9640
9641 case OP_ATR_POS:
9642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9644 if (noside == EVAL_SKIP)
9645 goto nosideret;
9646 type = builtin_type (exp->gdbarch)->builtin_int;
9647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9648 return value_zero (type, not_lval);
9649 else
9650 return value_pos_atr (type, arg1);
9651
9652 case OP_ATR_SIZE:
9653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9654 type = value_type (arg1);
9655
9656 /* If the argument is a reference, then dereference its type, since
9657 the user is really asking for the size of the actual object,
9658 not the size of the pointer. */
9659 if (TYPE_CODE (type) == TYPE_CODE_REF)
9660 type = TYPE_TARGET_TYPE (type);
9661
9662 if (noside == EVAL_SKIP)
9663 goto nosideret;
9664 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9665 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9666 else
9667 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9668 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9669
9670 case OP_ATR_VAL:
9671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9673 type = exp->elts[pc + 2].type;
9674 if (noside == EVAL_SKIP)
9675 goto nosideret;
9676 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9677 return value_zero (type, not_lval);
9678 else
9679 return value_val_atr (type, arg1);
9680
9681 case BINOP_EXP:
9682 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9683 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9684 if (noside == EVAL_SKIP)
9685 goto nosideret;
9686 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9687 return value_zero (value_type (arg1), not_lval);
9688 else
9689 {
9690 /* For integer exponentiation operations,
9691 only promote the first argument. */
9692 if (is_integral_type (value_type (arg2)))
9693 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9694 else
9695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9696
9697 return value_binop (arg1, arg2, op);
9698 }
9699
9700 case UNOP_PLUS:
9701 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9702 if (noside == EVAL_SKIP)
9703 goto nosideret;
9704 else
9705 return arg1;
9706
9707 case UNOP_ABS:
9708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9709 if (noside == EVAL_SKIP)
9710 goto nosideret;
9711 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9712 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9713 return value_neg (arg1);
9714 else
9715 return arg1;
9716
9717 case UNOP_IND:
9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9719 if (noside == EVAL_SKIP)
9720 goto nosideret;
9721 type = ada_check_typedef (value_type (arg1));
9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 {
9724 if (ada_is_array_descriptor_type (type))
9725 /* GDB allows dereferencing GNAT array descriptors. */
9726 {
9727 struct type *arrType = ada_type_of_array (arg1, 0);
9728
9729 if (arrType == NULL)
9730 error (_("Attempt to dereference null array pointer."));
9731 return value_at_lazy (arrType, 0);
9732 }
9733 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9734 || TYPE_CODE (type) == TYPE_CODE_REF
9735 /* In C you can dereference an array to get the 1st elt. */
9736 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9737 {
9738 type = to_static_fixed_type
9739 (ada_aligned_type
9740 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9741 check_size (type);
9742 return value_zero (type, lval_memory);
9743 }
9744 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9745 {
9746 /* GDB allows dereferencing an int. */
9747 if (expect_type == NULL)
9748 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9749 lval_memory);
9750 else
9751 {
9752 expect_type =
9753 to_static_fixed_type (ada_aligned_type (expect_type));
9754 return value_zero (expect_type, lval_memory);
9755 }
9756 }
9757 else
9758 error (_("Attempt to take contents of a non-pointer value."));
9759 }
9760 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9761 type = ada_check_typedef (value_type (arg1));
9762
9763 if (TYPE_CODE (type) == TYPE_CODE_INT)
9764 /* GDB allows dereferencing an int. If we were given
9765 the expect_type, then use that as the target type.
9766 Otherwise, assume that the target type is an int. */
9767 {
9768 if (expect_type != NULL)
9769 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9770 arg1));
9771 else
9772 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9773 (CORE_ADDR) value_as_address (arg1));
9774 }
9775
9776 if (ada_is_array_descriptor_type (type))
9777 /* GDB allows dereferencing GNAT array descriptors. */
9778 return ada_coerce_to_simple_array (arg1);
9779 else
9780 return ada_value_ind (arg1);
9781
9782 case STRUCTOP_STRUCT:
9783 tem = longest_to_int (exp->elts[pc + 1].longconst);
9784 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 if (noside == EVAL_SKIP)
9787 goto nosideret;
9788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789 {
9790 struct type *type1 = value_type (arg1);
9791
9792 if (ada_is_tagged_type (type1, 1))
9793 {
9794 type = ada_lookup_struct_elt_type (type1,
9795 &exp->elts[pc + 2].string,
9796 1, 1, NULL);
9797 if (type == NULL)
9798 /* In this case, we assume that the field COULD exist
9799 in some extension of the type. Return an object of
9800 "type" void, which will match any formal
9801 (see ada_type_match). */
9802 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9803 lval_memory);
9804 }
9805 else
9806 type =
9807 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9808 0, NULL);
9809
9810 return value_zero (ada_aligned_type (type), lval_memory);
9811 }
9812 else
9813 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9814 arg1 = unwrap_value (arg1);
9815 return ada_to_fixed_value (arg1);
9816
9817 case OP_TYPE:
9818 /* The value is not supposed to be used. This is here to make it
9819 easier to accommodate expressions that contain types. */
9820 (*pos) += 2;
9821 if (noside == EVAL_SKIP)
9822 goto nosideret;
9823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9824 return allocate_value (exp->elts[pc + 1].type);
9825 else
9826 error (_("Attempt to use a type name as an expression"));
9827
9828 case OP_AGGREGATE:
9829 case OP_CHOICES:
9830 case OP_OTHERS:
9831 case OP_DISCRETE_RANGE:
9832 case OP_POSITIONAL:
9833 case OP_NAME:
9834 if (noside == EVAL_NORMAL)
9835 switch (op)
9836 {
9837 case OP_NAME:
9838 error (_("Undefined name, ambiguous name, or renaming used in "
9839 "component association: %s."), &exp->elts[pc+2].string);
9840 case OP_AGGREGATE:
9841 error (_("Aggregates only allowed on the right of an assignment"));
9842 default:
9843 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9844 }
9845
9846 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9847 *pos += oplen - 1;
9848 for (tem = 0; tem < nargs; tem += 1)
9849 ada_evaluate_subexp (NULL, exp, pos, noside);
9850 goto nosideret;
9851 }
9852
9853 nosideret:
9854 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9855 }
9856 \f
9857
9858 /* Fixed point */
9859
9860 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9861 type name that encodes the 'small and 'delta information.
9862 Otherwise, return NULL. */
9863
9864 static const char *
9865 fixed_type_info (struct type *type)
9866 {
9867 const char *name = ada_type_name (type);
9868 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9869
9870 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9871 {
9872 const char *tail = strstr (name, "___XF_");
9873
9874 if (tail == NULL)
9875 return NULL;
9876 else
9877 return tail + 5;
9878 }
9879 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9880 return fixed_type_info (TYPE_TARGET_TYPE (type));
9881 else
9882 return NULL;
9883 }
9884
9885 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9886
9887 int
9888 ada_is_fixed_point_type (struct type *type)
9889 {
9890 return fixed_type_info (type) != NULL;
9891 }
9892
9893 /* Return non-zero iff TYPE represents a System.Address type. */
9894
9895 int
9896 ada_is_system_address_type (struct type *type)
9897 {
9898 return (TYPE_NAME (type)
9899 && strcmp (TYPE_NAME (type), "system__address") == 0);
9900 }
9901
9902 /* Assuming that TYPE is the representation of an Ada fixed-point
9903 type, return its delta, or -1 if the type is malformed and the
9904 delta cannot be determined. */
9905
9906 DOUBLEST
9907 ada_delta (struct type *type)
9908 {
9909 const char *encoding = fixed_type_info (type);
9910 DOUBLEST num, den;
9911
9912 /* Strictly speaking, num and den are encoded as integer. However,
9913 they may not fit into a long, and they will have to be converted
9914 to DOUBLEST anyway. So scan them as DOUBLEST. */
9915 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9916 &num, &den) < 2)
9917 return -1.0;
9918 else
9919 return num / den;
9920 }
9921
9922 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9923 factor ('SMALL value) associated with the type. */
9924
9925 static DOUBLEST
9926 scaling_factor (struct type *type)
9927 {
9928 const char *encoding = fixed_type_info (type);
9929 DOUBLEST num0, den0, num1, den1;
9930 int n;
9931
9932 /* Strictly speaking, num's and den's are encoded as integer. However,
9933 they may not fit into a long, and they will have to be converted
9934 to DOUBLEST anyway. So scan them as DOUBLEST. */
9935 n = sscanf (encoding,
9936 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9937 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9938 &num0, &den0, &num1, &den1);
9939
9940 if (n < 2)
9941 return 1.0;
9942 else if (n == 4)
9943 return num1 / den1;
9944 else
9945 return num0 / den0;
9946 }
9947
9948
9949 /* Assuming that X is the representation of a value of fixed-point
9950 type TYPE, return its floating-point equivalent. */
9951
9952 DOUBLEST
9953 ada_fixed_to_float (struct type *type, LONGEST x)
9954 {
9955 return (DOUBLEST) x *scaling_factor (type);
9956 }
9957
9958 /* The representation of a fixed-point value of type TYPE
9959 corresponding to the value X. */
9960
9961 LONGEST
9962 ada_float_to_fixed (struct type *type, DOUBLEST x)
9963 {
9964 return (LONGEST) (x / scaling_factor (type) + 0.5);
9965 }
9966
9967 \f
9968
9969 /* Range types */
9970
9971 /* Scan STR beginning at position K for a discriminant name, and
9972 return the value of that discriminant field of DVAL in *PX. If
9973 PNEW_K is not null, put the position of the character beyond the
9974 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9975 not alter *PX and *PNEW_K if unsuccessful. */
9976
9977 static int
9978 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9979 int *pnew_k)
9980 {
9981 static char *bound_buffer = NULL;
9982 static size_t bound_buffer_len = 0;
9983 char *bound;
9984 char *pend;
9985 struct value *bound_val;
9986
9987 if (dval == NULL || str == NULL || str[k] == '\0')
9988 return 0;
9989
9990 pend = strstr (str + k, "__");
9991 if (pend == NULL)
9992 {
9993 bound = str + k;
9994 k += strlen (bound);
9995 }
9996 else
9997 {
9998 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9999 bound = bound_buffer;
10000 strncpy (bound_buffer, str + k, pend - (str + k));
10001 bound[pend - (str + k)] = '\0';
10002 k = pend - str;
10003 }
10004
10005 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10006 if (bound_val == NULL)
10007 return 0;
10008
10009 *px = value_as_long (bound_val);
10010 if (pnew_k != NULL)
10011 *pnew_k = k;
10012 return 1;
10013 }
10014
10015 /* Value of variable named NAME in the current environment. If
10016 no such variable found, then if ERR_MSG is null, returns 0, and
10017 otherwise causes an error with message ERR_MSG. */
10018
10019 static struct value *
10020 get_var_value (char *name, char *err_msg)
10021 {
10022 struct ada_symbol_info *syms;
10023 int nsyms;
10024
10025 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10026 &syms);
10027
10028 if (nsyms != 1)
10029 {
10030 if (err_msg == NULL)
10031 return 0;
10032 else
10033 error (("%s"), err_msg);
10034 }
10035
10036 return value_of_variable (syms[0].sym, syms[0].block);
10037 }
10038
10039 /* Value of integer variable named NAME in the current environment. If
10040 no such variable found, returns 0, and sets *FLAG to 0. If
10041 successful, sets *FLAG to 1. */
10042
10043 LONGEST
10044 get_int_var_value (char *name, int *flag)
10045 {
10046 struct value *var_val = get_var_value (name, 0);
10047
10048 if (var_val == 0)
10049 {
10050 if (flag != NULL)
10051 *flag = 0;
10052 return 0;
10053 }
10054 else
10055 {
10056 if (flag != NULL)
10057 *flag = 1;
10058 return value_as_long (var_val);
10059 }
10060 }
10061
10062
10063 /* Return a range type whose base type is that of the range type named
10064 NAME in the current environment, and whose bounds are calculated
10065 from NAME according to the GNAT range encoding conventions.
10066 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10067 corresponding range type from debug information; fall back to using it
10068 if symbol lookup fails. If a new type must be created, allocate it
10069 like ORIG_TYPE was. The bounds information, in general, is encoded
10070 in NAME, the base type given in the named range type. */
10071
10072 static struct type *
10073 to_fixed_range_type (struct type *raw_type, struct value *dval)
10074 {
10075 char *name;
10076 struct type *base_type;
10077 char *subtype_info;
10078
10079 gdb_assert (raw_type != NULL);
10080 gdb_assert (TYPE_NAME (raw_type) != NULL);
10081
10082 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10083 base_type = TYPE_TARGET_TYPE (raw_type);
10084 else
10085 base_type = raw_type;
10086
10087 name = TYPE_NAME (raw_type);
10088 subtype_info = strstr (name, "___XD");
10089 if (subtype_info == NULL)
10090 {
10091 LONGEST L = ada_discrete_type_low_bound (raw_type);
10092 LONGEST U = ada_discrete_type_high_bound (raw_type);
10093
10094 if (L < INT_MIN || U > INT_MAX)
10095 return raw_type;
10096 else
10097 return create_range_type (alloc_type_copy (raw_type), raw_type,
10098 ada_discrete_type_low_bound (raw_type),
10099 ada_discrete_type_high_bound (raw_type));
10100 }
10101 else
10102 {
10103 static char *name_buf = NULL;
10104 static size_t name_len = 0;
10105 int prefix_len = subtype_info - name;
10106 LONGEST L, U;
10107 struct type *type;
10108 char *bounds_str;
10109 int n;
10110
10111 GROW_VECT (name_buf, name_len, prefix_len + 5);
10112 strncpy (name_buf, name, prefix_len);
10113 name_buf[prefix_len] = '\0';
10114
10115 subtype_info += 5;
10116 bounds_str = strchr (subtype_info, '_');
10117 n = 1;
10118
10119 if (*subtype_info == 'L')
10120 {
10121 if (!ada_scan_number (bounds_str, n, &L, &n)
10122 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10123 return raw_type;
10124 if (bounds_str[n] == '_')
10125 n += 2;
10126 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10127 n += 1;
10128 subtype_info += 1;
10129 }
10130 else
10131 {
10132 int ok;
10133
10134 strcpy (name_buf + prefix_len, "___L");
10135 L = get_int_var_value (name_buf, &ok);
10136 if (!ok)
10137 {
10138 lim_warning (_("Unknown lower bound, using 1."));
10139 L = 1;
10140 }
10141 }
10142
10143 if (*subtype_info == 'U')
10144 {
10145 if (!ada_scan_number (bounds_str, n, &U, &n)
10146 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10147 return raw_type;
10148 }
10149 else
10150 {
10151 int ok;
10152
10153 strcpy (name_buf + prefix_len, "___U");
10154 U = get_int_var_value (name_buf, &ok);
10155 if (!ok)
10156 {
10157 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10158 U = L;
10159 }
10160 }
10161
10162 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10163 TYPE_NAME (type) = name;
10164 return type;
10165 }
10166 }
10167
10168 /* True iff NAME is the name of a range type. */
10169
10170 int
10171 ada_is_range_type_name (const char *name)
10172 {
10173 return (name != NULL && strstr (name, "___XD"));
10174 }
10175 \f
10176
10177 /* Modular types */
10178
10179 /* True iff TYPE is an Ada modular type. */
10180
10181 int
10182 ada_is_modular_type (struct type *type)
10183 {
10184 struct type *subranged_type = base_type (type);
10185
10186 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10187 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10188 && TYPE_UNSIGNED (subranged_type));
10189 }
10190
10191 /* Try to determine the lower and upper bounds of the given modular type
10192 using the type name only. Return non-zero and set L and U as the lower
10193 and upper bounds (respectively) if successful. */
10194
10195 int
10196 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10197 {
10198 char *name = ada_type_name (type);
10199 char *suffix;
10200 int k;
10201 LONGEST U;
10202
10203 if (name == NULL)
10204 return 0;
10205
10206 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10207 we are looking for static bounds, which means an __XDLU suffix.
10208 Moreover, we know that the lower bound of modular types is always
10209 zero, so the actual suffix should start with "__XDLU_0__", and
10210 then be followed by the upper bound value. */
10211 suffix = strstr (name, "__XDLU_0__");
10212 if (suffix == NULL)
10213 return 0;
10214 k = 10;
10215 if (!ada_scan_number (suffix, k, &U, NULL))
10216 return 0;
10217
10218 *modulus = (ULONGEST) U + 1;
10219 return 1;
10220 }
10221
10222 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10223
10224 ULONGEST
10225 ada_modulus (struct type *type)
10226 {
10227 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10228 }
10229 \f
10230
10231 /* Ada exception catchpoint support:
10232 ---------------------------------
10233
10234 We support 3 kinds of exception catchpoints:
10235 . catchpoints on Ada exceptions
10236 . catchpoints on unhandled Ada exceptions
10237 . catchpoints on failed assertions
10238
10239 Exceptions raised during failed assertions, or unhandled exceptions
10240 could perfectly be caught with the general catchpoint on Ada exceptions.
10241 However, we can easily differentiate these two special cases, and having
10242 the option to distinguish these two cases from the rest can be useful
10243 to zero-in on certain situations.
10244
10245 Exception catchpoints are a specialized form of breakpoint,
10246 since they rely on inserting breakpoints inside known routines
10247 of the GNAT runtime. The implementation therefore uses a standard
10248 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10249 of breakpoint_ops.
10250
10251 Support in the runtime for exception catchpoints have been changed
10252 a few times already, and these changes affect the implementation
10253 of these catchpoints. In order to be able to support several
10254 variants of the runtime, we use a sniffer that will determine
10255 the runtime variant used by the program being debugged.
10256
10257 At this time, we do not support the use of conditions on Ada exception
10258 catchpoints. The COND and COND_STRING fields are therefore set
10259 to NULL (most of the time, see below).
10260
10261 Conditions where EXP_STRING, COND, and COND_STRING are used:
10262
10263 When a user specifies the name of a specific exception in the case
10264 of catchpoints on Ada exceptions, we store the name of that exception
10265 in the EXP_STRING. We then translate this request into an actual
10266 condition stored in COND_STRING, and then parse it into an expression
10267 stored in COND. */
10268
10269 /* The different types of catchpoints that we introduced for catching
10270 Ada exceptions. */
10271
10272 enum exception_catchpoint_kind
10273 {
10274 ex_catch_exception,
10275 ex_catch_exception_unhandled,
10276 ex_catch_assert
10277 };
10278
10279 /* Ada's standard exceptions. */
10280
10281 static char *standard_exc[] = {
10282 "constraint_error",
10283 "program_error",
10284 "storage_error",
10285 "tasking_error"
10286 };
10287
10288 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10289
10290 /* A structure that describes how to support exception catchpoints
10291 for a given executable. */
10292
10293 struct exception_support_info
10294 {
10295 /* The name of the symbol to break on in order to insert
10296 a catchpoint on exceptions. */
10297 const char *catch_exception_sym;
10298
10299 /* The name of the symbol to break on in order to insert
10300 a catchpoint on unhandled exceptions. */
10301 const char *catch_exception_unhandled_sym;
10302
10303 /* The name of the symbol to break on in order to insert
10304 a catchpoint on failed assertions. */
10305 const char *catch_assert_sym;
10306
10307 /* Assuming that the inferior just triggered an unhandled exception
10308 catchpoint, this function is responsible for returning the address
10309 in inferior memory where the name of that exception is stored.
10310 Return zero if the address could not be computed. */
10311 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10312 };
10313
10314 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10315 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10316
10317 /* The following exception support info structure describes how to
10318 implement exception catchpoints with the latest version of the
10319 Ada runtime (as of 2007-03-06). */
10320
10321 static const struct exception_support_info default_exception_support_info =
10322 {
10323 "__gnat_debug_raise_exception", /* catch_exception_sym */
10324 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10325 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10326 ada_unhandled_exception_name_addr
10327 };
10328
10329 /* The following exception support info structure describes how to
10330 implement exception catchpoints with a slightly older version
10331 of the Ada runtime. */
10332
10333 static const struct exception_support_info exception_support_info_fallback =
10334 {
10335 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10336 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10337 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10338 ada_unhandled_exception_name_addr_from_raise
10339 };
10340
10341 /* For each executable, we sniff which exception info structure to use
10342 and cache it in the following global variable. */
10343
10344 static const struct exception_support_info *exception_info = NULL;
10345
10346 /* Inspect the Ada runtime and determine which exception info structure
10347 should be used to provide support for exception catchpoints.
10348
10349 This function will always set exception_info, or raise an error. */
10350
10351 static void
10352 ada_exception_support_info_sniffer (void)
10353 {
10354 struct symbol *sym;
10355
10356 /* If the exception info is already known, then no need to recompute it. */
10357 if (exception_info != NULL)
10358 return;
10359
10360 /* Check the latest (default) exception support info. */
10361 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10362 NULL, VAR_DOMAIN);
10363 if (sym != NULL)
10364 {
10365 exception_info = &default_exception_support_info;
10366 return;
10367 }
10368
10369 /* Try our fallback exception suport info. */
10370 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10371 NULL, VAR_DOMAIN);
10372 if (sym != NULL)
10373 {
10374 exception_info = &exception_support_info_fallback;
10375 return;
10376 }
10377
10378 /* Sometimes, it is normal for us to not be able to find the routine
10379 we are looking for. This happens when the program is linked with
10380 the shared version of the GNAT runtime, and the program has not been
10381 started yet. Inform the user of these two possible causes if
10382 applicable. */
10383
10384 if (ada_update_initial_language (language_unknown) != language_ada)
10385 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10386
10387 /* If the symbol does not exist, then check that the program is
10388 already started, to make sure that shared libraries have been
10389 loaded. If it is not started, this may mean that the symbol is
10390 in a shared library. */
10391
10392 if (ptid_get_pid (inferior_ptid) == 0)
10393 error (_("Unable to insert catchpoint. Try to start the program first."));
10394
10395 /* At this point, we know that we are debugging an Ada program and
10396 that the inferior has been started, but we still are not able to
10397 find the run-time symbols. That can mean that we are in
10398 configurable run time mode, or that a-except as been optimized
10399 out by the linker... In any case, at this point it is not worth
10400 supporting this feature. */
10401
10402 error (_("Cannot insert catchpoints in this configuration."));
10403 }
10404
10405 /* An observer of "executable_changed" events.
10406 Its role is to clear certain cached values that need to be recomputed
10407 each time a new executable is loaded by GDB. */
10408
10409 static void
10410 ada_executable_changed_observer (void)
10411 {
10412 /* If the executable changed, then it is possible that the Ada runtime
10413 is different. So we need to invalidate the exception support info
10414 cache. */
10415 exception_info = NULL;
10416 }
10417
10418 /* True iff FRAME is very likely to be that of a function that is
10419 part of the runtime system. This is all very heuristic, but is
10420 intended to be used as advice as to what frames are uninteresting
10421 to most users. */
10422
10423 static int
10424 is_known_support_routine (struct frame_info *frame)
10425 {
10426 struct symtab_and_line sal;
10427 char *func_name;
10428 enum language func_lang;
10429 int i;
10430
10431 /* If this code does not have any debugging information (no symtab),
10432 This cannot be any user code. */
10433
10434 find_frame_sal (frame, &sal);
10435 if (sal.symtab == NULL)
10436 return 1;
10437
10438 /* If there is a symtab, but the associated source file cannot be
10439 located, then assume this is not user code: Selecting a frame
10440 for which we cannot display the code would not be very helpful
10441 for the user. This should also take care of case such as VxWorks
10442 where the kernel has some debugging info provided for a few units. */
10443
10444 if (symtab_to_fullname (sal.symtab) == NULL)
10445 return 1;
10446
10447 /* Check the unit filename againt the Ada runtime file naming.
10448 We also check the name of the objfile against the name of some
10449 known system libraries that sometimes come with debugging info
10450 too. */
10451
10452 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10453 {
10454 re_comp (known_runtime_file_name_patterns[i]);
10455 if (re_exec (sal.symtab->filename))
10456 return 1;
10457 if (sal.symtab->objfile != NULL
10458 && re_exec (sal.symtab->objfile->name))
10459 return 1;
10460 }
10461
10462 /* Check whether the function is a GNAT-generated entity. */
10463
10464 find_frame_funname (frame, &func_name, &func_lang, NULL);
10465 if (func_name == NULL)
10466 return 1;
10467
10468 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10469 {
10470 re_comp (known_auxiliary_function_name_patterns[i]);
10471 if (re_exec (func_name))
10472 return 1;
10473 }
10474
10475 return 0;
10476 }
10477
10478 /* Find the first frame that contains debugging information and that is not
10479 part of the Ada run-time, starting from FI and moving upward. */
10480
10481 void
10482 ada_find_printable_frame (struct frame_info *fi)
10483 {
10484 for (; fi != NULL; fi = get_prev_frame (fi))
10485 {
10486 if (!is_known_support_routine (fi))
10487 {
10488 select_frame (fi);
10489 break;
10490 }
10491 }
10492
10493 }
10494
10495 /* Assuming that the inferior just triggered an unhandled exception
10496 catchpoint, return the address in inferior memory where the name
10497 of the exception is stored.
10498
10499 Return zero if the address could not be computed. */
10500
10501 static CORE_ADDR
10502 ada_unhandled_exception_name_addr (void)
10503 {
10504 return parse_and_eval_address ("e.full_name");
10505 }
10506
10507 /* Same as ada_unhandled_exception_name_addr, except that this function
10508 should be used when the inferior uses an older version of the runtime,
10509 where the exception name needs to be extracted from a specific frame
10510 several frames up in the callstack. */
10511
10512 static CORE_ADDR
10513 ada_unhandled_exception_name_addr_from_raise (void)
10514 {
10515 int frame_level;
10516 struct frame_info *fi;
10517
10518 /* To determine the name of this exception, we need to select
10519 the frame corresponding to RAISE_SYM_NAME. This frame is
10520 at least 3 levels up, so we simply skip the first 3 frames
10521 without checking the name of their associated function. */
10522 fi = get_current_frame ();
10523 for (frame_level = 0; frame_level < 3; frame_level += 1)
10524 if (fi != NULL)
10525 fi = get_prev_frame (fi);
10526
10527 while (fi != NULL)
10528 {
10529 char *func_name;
10530 enum language func_lang;
10531
10532 find_frame_funname (fi, &func_name, &func_lang, NULL);
10533 if (func_name != NULL
10534 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10535 break; /* We found the frame we were looking for... */
10536 fi = get_prev_frame (fi);
10537 }
10538
10539 if (fi == NULL)
10540 return 0;
10541
10542 select_frame (fi);
10543 return parse_and_eval_address ("id.full_name");
10544 }
10545
10546 /* Assuming the inferior just triggered an Ada exception catchpoint
10547 (of any type), return the address in inferior memory where the name
10548 of the exception is stored, if applicable.
10549
10550 Return zero if the address could not be computed, or if not relevant. */
10551
10552 static CORE_ADDR
10553 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10554 struct breakpoint *b)
10555 {
10556 switch (ex)
10557 {
10558 case ex_catch_exception:
10559 return (parse_and_eval_address ("e.full_name"));
10560 break;
10561
10562 case ex_catch_exception_unhandled:
10563 return exception_info->unhandled_exception_name_addr ();
10564 break;
10565
10566 case ex_catch_assert:
10567 return 0; /* Exception name is not relevant in this case. */
10568 break;
10569
10570 default:
10571 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10572 break;
10573 }
10574
10575 return 0; /* Should never be reached. */
10576 }
10577
10578 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10579 any error that ada_exception_name_addr_1 might cause to be thrown.
10580 When an error is intercepted, a warning with the error message is printed,
10581 and zero is returned. */
10582
10583 static CORE_ADDR
10584 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10585 struct breakpoint *b)
10586 {
10587 struct gdb_exception e;
10588 CORE_ADDR result = 0;
10589
10590 TRY_CATCH (e, RETURN_MASK_ERROR)
10591 {
10592 result = ada_exception_name_addr_1 (ex, b);
10593 }
10594
10595 if (e.reason < 0)
10596 {
10597 warning (_("failed to get exception name: %s"), e.message);
10598 return 0;
10599 }
10600
10601 return result;
10602 }
10603
10604 /* Implement the PRINT_IT method in the breakpoint_ops structure
10605 for all exception catchpoint kinds. */
10606
10607 static enum print_stop_action
10608 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10609 {
10610 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10611 char exception_name[256];
10612
10613 if (addr != 0)
10614 {
10615 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10616 exception_name [sizeof (exception_name) - 1] = '\0';
10617 }
10618
10619 ada_find_printable_frame (get_current_frame ());
10620
10621 annotate_catchpoint (b->number);
10622 switch (ex)
10623 {
10624 case ex_catch_exception:
10625 if (addr != 0)
10626 printf_filtered (_("\nCatchpoint %d, %s at "),
10627 b->number, exception_name);
10628 else
10629 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10630 break;
10631 case ex_catch_exception_unhandled:
10632 if (addr != 0)
10633 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10634 b->number, exception_name);
10635 else
10636 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10637 b->number);
10638 break;
10639 case ex_catch_assert:
10640 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10641 b->number);
10642 break;
10643 }
10644
10645 return PRINT_SRC_AND_LOC;
10646 }
10647
10648 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10649 for all exception catchpoint kinds. */
10650
10651 static void
10652 print_one_exception (enum exception_catchpoint_kind ex,
10653 struct breakpoint *b, struct bp_location **last_loc)
10654 {
10655 struct value_print_options opts;
10656
10657 get_user_print_options (&opts);
10658 if (opts.addressprint)
10659 {
10660 annotate_field (4);
10661 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10662 }
10663
10664 annotate_field (5);
10665 *last_loc = b->loc;
10666 switch (ex)
10667 {
10668 case ex_catch_exception:
10669 if (b->exp_string != NULL)
10670 {
10671 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10672
10673 ui_out_field_string (uiout, "what", msg);
10674 xfree (msg);
10675 }
10676 else
10677 ui_out_field_string (uiout, "what", "all Ada exceptions");
10678
10679 break;
10680
10681 case ex_catch_exception_unhandled:
10682 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10683 break;
10684
10685 case ex_catch_assert:
10686 ui_out_field_string (uiout, "what", "failed Ada assertions");
10687 break;
10688
10689 default:
10690 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10691 break;
10692 }
10693 }
10694
10695 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10696 for all exception catchpoint kinds. */
10697
10698 static void
10699 print_mention_exception (enum exception_catchpoint_kind ex,
10700 struct breakpoint *b)
10701 {
10702 switch (ex)
10703 {
10704 case ex_catch_exception:
10705 if (b->exp_string != NULL)
10706 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10707 b->number, b->exp_string);
10708 else
10709 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10710
10711 break;
10712
10713 case ex_catch_exception_unhandled:
10714 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10715 b->number);
10716 break;
10717
10718 case ex_catch_assert:
10719 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10720 break;
10721
10722 default:
10723 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10724 break;
10725 }
10726 }
10727
10728 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10729 for all exception catchpoint kinds. */
10730
10731 static void
10732 print_recreate_exception (enum exception_catchpoint_kind ex,
10733 struct breakpoint *b, struct ui_file *fp)
10734 {
10735 switch (ex)
10736 {
10737 case ex_catch_exception:
10738 fprintf_filtered (fp, "catch exception");
10739 if (b->exp_string != NULL)
10740 fprintf_filtered (fp, " %s", b->exp_string);
10741 break;
10742
10743 case ex_catch_exception_unhandled:
10744 fprintf_filtered (fp, "catch exception unhandled");
10745 break;
10746
10747 case ex_catch_assert:
10748 fprintf_filtered (fp, "catch assert");
10749 break;
10750
10751 default:
10752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10753 }
10754 }
10755
10756 /* Virtual table for "catch exception" breakpoints. */
10757
10758 static enum print_stop_action
10759 print_it_catch_exception (struct breakpoint *b)
10760 {
10761 return print_it_exception (ex_catch_exception, b);
10762 }
10763
10764 static void
10765 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10766 {
10767 print_one_exception (ex_catch_exception, b, last_loc);
10768 }
10769
10770 static void
10771 print_mention_catch_exception (struct breakpoint *b)
10772 {
10773 print_mention_exception (ex_catch_exception, b);
10774 }
10775
10776 static void
10777 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10778 {
10779 print_recreate_exception (ex_catch_exception, b, fp);
10780 }
10781
10782 static struct breakpoint_ops catch_exception_breakpoint_ops =
10783 {
10784 NULL, /* insert */
10785 NULL, /* remove */
10786 NULL, /* breakpoint_hit */
10787 print_it_catch_exception,
10788 print_one_catch_exception,
10789 print_mention_catch_exception,
10790 print_recreate_catch_exception
10791 };
10792
10793 /* Virtual table for "catch exception unhandled" breakpoints. */
10794
10795 static enum print_stop_action
10796 print_it_catch_exception_unhandled (struct breakpoint *b)
10797 {
10798 return print_it_exception (ex_catch_exception_unhandled, b);
10799 }
10800
10801 static void
10802 print_one_catch_exception_unhandled (struct breakpoint *b,
10803 struct bp_location **last_loc)
10804 {
10805 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10806 }
10807
10808 static void
10809 print_mention_catch_exception_unhandled (struct breakpoint *b)
10810 {
10811 print_mention_exception (ex_catch_exception_unhandled, b);
10812 }
10813
10814 static void
10815 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10816 struct ui_file *fp)
10817 {
10818 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10819 }
10820
10821 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10822 NULL, /* insert */
10823 NULL, /* remove */
10824 NULL, /* breakpoint_hit */
10825 print_it_catch_exception_unhandled,
10826 print_one_catch_exception_unhandled,
10827 print_mention_catch_exception_unhandled,
10828 print_recreate_catch_exception_unhandled
10829 };
10830
10831 /* Virtual table for "catch assert" breakpoints. */
10832
10833 static enum print_stop_action
10834 print_it_catch_assert (struct breakpoint *b)
10835 {
10836 return print_it_exception (ex_catch_assert, b);
10837 }
10838
10839 static void
10840 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10841 {
10842 print_one_exception (ex_catch_assert, b, last_loc);
10843 }
10844
10845 static void
10846 print_mention_catch_assert (struct breakpoint *b)
10847 {
10848 print_mention_exception (ex_catch_assert, b);
10849 }
10850
10851 static void
10852 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10853 {
10854 print_recreate_exception (ex_catch_assert, b, fp);
10855 }
10856
10857 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10858 NULL, /* insert */
10859 NULL, /* remove */
10860 NULL, /* breakpoint_hit */
10861 print_it_catch_assert,
10862 print_one_catch_assert,
10863 print_mention_catch_assert,
10864 print_recreate_catch_assert
10865 };
10866
10867 /* Return non-zero if B is an Ada exception catchpoint. */
10868
10869 int
10870 ada_exception_catchpoint_p (struct breakpoint *b)
10871 {
10872 return (b->ops == &catch_exception_breakpoint_ops
10873 || b->ops == &catch_exception_unhandled_breakpoint_ops
10874 || b->ops == &catch_assert_breakpoint_ops);
10875 }
10876
10877 /* Return a newly allocated copy of the first space-separated token
10878 in ARGSP, and then adjust ARGSP to point immediately after that
10879 token.
10880
10881 Return NULL if ARGPS does not contain any more tokens. */
10882
10883 static char *
10884 ada_get_next_arg (char **argsp)
10885 {
10886 char *args = *argsp;
10887 char *end;
10888 char *result;
10889
10890 /* Skip any leading white space. */
10891
10892 while (isspace (*args))
10893 args++;
10894
10895 if (args[0] == '\0')
10896 return NULL; /* No more arguments. */
10897
10898 /* Find the end of the current argument. */
10899
10900 end = args;
10901 while (*end != '\0' && !isspace (*end))
10902 end++;
10903
10904 /* Adjust ARGSP to point to the start of the next argument. */
10905
10906 *argsp = end;
10907
10908 /* Make a copy of the current argument and return it. */
10909
10910 result = xmalloc (end - args + 1);
10911 strncpy (result, args, end - args);
10912 result[end - args] = '\0';
10913
10914 return result;
10915 }
10916
10917 /* Split the arguments specified in a "catch exception" command.
10918 Set EX to the appropriate catchpoint type.
10919 Set EXP_STRING to the name of the specific exception if
10920 specified by the user. */
10921
10922 static void
10923 catch_ada_exception_command_split (char *args,
10924 enum exception_catchpoint_kind *ex,
10925 char **exp_string)
10926 {
10927 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10928 char *exception_name;
10929
10930 exception_name = ada_get_next_arg (&args);
10931 make_cleanup (xfree, exception_name);
10932
10933 /* Check that we do not have any more arguments. Anything else
10934 is unexpected. */
10935
10936 while (isspace (*args))
10937 args++;
10938
10939 if (args[0] != '\0')
10940 error (_("Junk at end of expression"));
10941
10942 discard_cleanups (old_chain);
10943
10944 if (exception_name == NULL)
10945 {
10946 /* Catch all exceptions. */
10947 *ex = ex_catch_exception;
10948 *exp_string = NULL;
10949 }
10950 else if (strcmp (exception_name, "unhandled") == 0)
10951 {
10952 /* Catch unhandled exceptions. */
10953 *ex = ex_catch_exception_unhandled;
10954 *exp_string = NULL;
10955 }
10956 else
10957 {
10958 /* Catch a specific exception. */
10959 *ex = ex_catch_exception;
10960 *exp_string = exception_name;
10961 }
10962 }
10963
10964 /* Return the name of the symbol on which we should break in order to
10965 implement a catchpoint of the EX kind. */
10966
10967 static const char *
10968 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10969 {
10970 gdb_assert (exception_info != NULL);
10971
10972 switch (ex)
10973 {
10974 case ex_catch_exception:
10975 return (exception_info->catch_exception_sym);
10976 break;
10977 case ex_catch_exception_unhandled:
10978 return (exception_info->catch_exception_unhandled_sym);
10979 break;
10980 case ex_catch_assert:
10981 return (exception_info->catch_assert_sym);
10982 break;
10983 default:
10984 internal_error (__FILE__, __LINE__,
10985 _("unexpected catchpoint kind (%d)"), ex);
10986 }
10987 }
10988
10989 /* Return the breakpoint ops "virtual table" used for catchpoints
10990 of the EX kind. */
10991
10992 static struct breakpoint_ops *
10993 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10994 {
10995 switch (ex)
10996 {
10997 case ex_catch_exception:
10998 return (&catch_exception_breakpoint_ops);
10999 break;
11000 case ex_catch_exception_unhandled:
11001 return (&catch_exception_unhandled_breakpoint_ops);
11002 break;
11003 case ex_catch_assert:
11004 return (&catch_assert_breakpoint_ops);
11005 break;
11006 default:
11007 internal_error (__FILE__, __LINE__,
11008 _("unexpected catchpoint kind (%d)"), ex);
11009 }
11010 }
11011
11012 /* Return the condition that will be used to match the current exception
11013 being raised with the exception that the user wants to catch. This
11014 assumes that this condition is used when the inferior just triggered
11015 an exception catchpoint.
11016
11017 The string returned is a newly allocated string that needs to be
11018 deallocated later. */
11019
11020 static char *
11021 ada_exception_catchpoint_cond_string (const char *exp_string)
11022 {
11023 int i;
11024
11025 /* The standard exceptions are a special case. They are defined in
11026 runtime units that have been compiled without debugging info; if
11027 EXP_STRING is the not-fully-qualified name of a standard
11028 exception (e.g. "constraint_error") then, during the evaluation
11029 of the condition expression, the symbol lookup on this name would
11030 *not* return this standard exception. The catchpoint condition
11031 may then be set only on user-defined exceptions which have the
11032 same not-fully-qualified name (e.g. my_package.constraint_error).
11033
11034 To avoid this unexcepted behavior, these standard exceptions are
11035 systematically prefixed by "standard". This means that "catch
11036 exception constraint_error" is rewritten into "catch exception
11037 standard.constraint_error".
11038
11039 If an exception named contraint_error is defined in another package of
11040 the inferior program, then the only way to specify this exception as a
11041 breakpoint condition is to use its fully-qualified named:
11042 e.g. my_package.constraint_error. */
11043
11044 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11045 {
11046 if (strcmp (standard_exc [i], exp_string) == 0)
11047 {
11048 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11049 exp_string);
11050 }
11051 }
11052 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11053 }
11054
11055 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11056
11057 static struct expression *
11058 ada_parse_catchpoint_condition (char *cond_string,
11059 struct symtab_and_line sal)
11060 {
11061 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11062 }
11063
11064 /* Return the symtab_and_line that should be used to insert an exception
11065 catchpoint of the TYPE kind.
11066
11067 EX_STRING should contain the name of a specific exception
11068 that the catchpoint should catch, or NULL otherwise.
11069
11070 The idea behind all the remaining parameters is that their names match
11071 the name of certain fields in the breakpoint structure that are used to
11072 handle exception catchpoints. This function returns the value to which
11073 these fields should be set, depending on the type of catchpoint we need
11074 to create.
11075
11076 If COND and COND_STRING are both non-NULL, any value they might
11077 hold will be free'ed, and then replaced by newly allocated ones.
11078 These parameters are left untouched otherwise. */
11079
11080 static struct symtab_and_line
11081 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11082 char **addr_string, char **cond_string,
11083 struct expression **cond, struct breakpoint_ops **ops)
11084 {
11085 const char *sym_name;
11086 struct symbol *sym;
11087 struct symtab_and_line sal;
11088
11089 /* First, find out which exception support info to use. */
11090 ada_exception_support_info_sniffer ();
11091
11092 /* Then lookup the function on which we will break in order to catch
11093 the Ada exceptions requested by the user. */
11094
11095 sym_name = ada_exception_sym_name (ex);
11096 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11097
11098 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11099 that should be compiled with debugging information. As a result, we
11100 expect to find that symbol in the symtabs. If we don't find it, then
11101 the target most likely does not support Ada exceptions, or we cannot
11102 insert exception breakpoints yet, because the GNAT runtime hasn't been
11103 loaded yet. */
11104
11105 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11106 in such a way that no debugging information is produced for the symbol
11107 we are looking for. In this case, we could search the minimal symbols
11108 as a fall-back mechanism. This would still be operating in degraded
11109 mode, however, as we would still be missing the debugging information
11110 that is needed in order to extract the name of the exception being
11111 raised (this name is printed in the catchpoint message, and is also
11112 used when trying to catch a specific exception). We do not handle
11113 this case for now. */
11114
11115 if (sym == NULL)
11116 error (_("Unable to break on '%s' in this configuration."), sym_name);
11117
11118 /* Make sure that the symbol we found corresponds to a function. */
11119 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11120 error (_("Symbol \"%s\" is not a function (class = %d)"),
11121 sym_name, SYMBOL_CLASS (sym));
11122
11123 sal = find_function_start_sal (sym, 1);
11124
11125 /* Set ADDR_STRING. */
11126
11127 *addr_string = xstrdup (sym_name);
11128
11129 /* Set the COND and COND_STRING (if not NULL). */
11130
11131 if (cond_string != NULL && cond != NULL)
11132 {
11133 if (*cond_string != NULL)
11134 {
11135 xfree (*cond_string);
11136 *cond_string = NULL;
11137 }
11138 if (*cond != NULL)
11139 {
11140 xfree (*cond);
11141 *cond = NULL;
11142 }
11143 if (exp_string != NULL)
11144 {
11145 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11146 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11147 }
11148 }
11149
11150 /* Set OPS. */
11151 *ops = ada_exception_breakpoint_ops (ex);
11152
11153 return sal;
11154 }
11155
11156 /* Parse the arguments (ARGS) of the "catch exception" command.
11157
11158 Set TYPE to the appropriate exception catchpoint type.
11159 If the user asked the catchpoint to catch only a specific
11160 exception, then save the exception name in ADDR_STRING.
11161
11162 See ada_exception_sal for a description of all the remaining
11163 function arguments of this function. */
11164
11165 struct symtab_and_line
11166 ada_decode_exception_location (char *args, char **addr_string,
11167 char **exp_string, char **cond_string,
11168 struct expression **cond,
11169 struct breakpoint_ops **ops)
11170 {
11171 enum exception_catchpoint_kind ex;
11172
11173 catch_ada_exception_command_split (args, &ex, exp_string);
11174 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11175 cond, ops);
11176 }
11177
11178 struct symtab_and_line
11179 ada_decode_assert_location (char *args, char **addr_string,
11180 struct breakpoint_ops **ops)
11181 {
11182 /* Check that no argument where provided at the end of the command. */
11183
11184 if (args != NULL)
11185 {
11186 while (isspace (*args))
11187 args++;
11188 if (*args != '\0')
11189 error (_("Junk at end of arguments."));
11190 }
11191
11192 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11193 ops);
11194 }
11195
11196 /* Operators */
11197 /* Information about operators given special treatment in functions
11198 below. */
11199 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11200
11201 #define ADA_OPERATORS \
11202 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11203 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11204 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11205 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11206 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11207 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11208 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11209 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11210 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11211 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11212 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11213 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11214 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11215 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11216 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11217 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11218 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11219 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11220 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11221
11222 static void
11223 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11224 int *argsp)
11225 {
11226 switch (exp->elts[pc - 1].opcode)
11227 {
11228 default:
11229 operator_length_standard (exp, pc, oplenp, argsp);
11230 break;
11231
11232 #define OP_DEFN(op, len, args, binop) \
11233 case op: *oplenp = len; *argsp = args; break;
11234 ADA_OPERATORS;
11235 #undef OP_DEFN
11236
11237 case OP_AGGREGATE:
11238 *oplenp = 3;
11239 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11240 break;
11241
11242 case OP_CHOICES:
11243 *oplenp = 3;
11244 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11245 break;
11246 }
11247 }
11248
11249 /* Implementation of the exp_descriptor method operator_check. */
11250
11251 static int
11252 ada_operator_check (struct expression *exp, int pos,
11253 int (*objfile_func) (struct objfile *objfile, void *data),
11254 void *data)
11255 {
11256 const union exp_element *const elts = exp->elts;
11257 struct type *type = NULL;
11258
11259 switch (elts[pos].opcode)
11260 {
11261 case UNOP_IN_RANGE:
11262 case UNOP_QUAL:
11263 type = elts[pos + 1].type;
11264 break;
11265
11266 default:
11267 return operator_check_standard (exp, pos, objfile_func, data);
11268 }
11269
11270 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11271
11272 if (type && TYPE_OBJFILE (type)
11273 && (*objfile_func) (TYPE_OBJFILE (type), data))
11274 return 1;
11275
11276 return 0;
11277 }
11278
11279 static char *
11280 ada_op_name (enum exp_opcode opcode)
11281 {
11282 switch (opcode)
11283 {
11284 default:
11285 return op_name_standard (opcode);
11286
11287 #define OP_DEFN(op, len, args, binop) case op: return #op;
11288 ADA_OPERATORS;
11289 #undef OP_DEFN
11290
11291 case OP_AGGREGATE:
11292 return "OP_AGGREGATE";
11293 case OP_CHOICES:
11294 return "OP_CHOICES";
11295 case OP_NAME:
11296 return "OP_NAME";
11297 }
11298 }
11299
11300 /* As for operator_length, but assumes PC is pointing at the first
11301 element of the operator, and gives meaningful results only for the
11302 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11303
11304 static void
11305 ada_forward_operator_length (struct expression *exp, int pc,
11306 int *oplenp, int *argsp)
11307 {
11308 switch (exp->elts[pc].opcode)
11309 {
11310 default:
11311 *oplenp = *argsp = 0;
11312 break;
11313
11314 #define OP_DEFN(op, len, args, binop) \
11315 case op: *oplenp = len; *argsp = args; break;
11316 ADA_OPERATORS;
11317 #undef OP_DEFN
11318
11319 case OP_AGGREGATE:
11320 *oplenp = 3;
11321 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11322 break;
11323
11324 case OP_CHOICES:
11325 *oplenp = 3;
11326 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11327 break;
11328
11329 case OP_STRING:
11330 case OP_NAME:
11331 {
11332 int len = longest_to_int (exp->elts[pc + 1].longconst);
11333
11334 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11335 *argsp = 0;
11336 break;
11337 }
11338 }
11339 }
11340
11341 static int
11342 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11343 {
11344 enum exp_opcode op = exp->elts[elt].opcode;
11345 int oplen, nargs;
11346 int pc = elt;
11347 int i;
11348
11349 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11350
11351 switch (op)
11352 {
11353 /* Ada attributes ('Foo). */
11354 case OP_ATR_FIRST:
11355 case OP_ATR_LAST:
11356 case OP_ATR_LENGTH:
11357 case OP_ATR_IMAGE:
11358 case OP_ATR_MAX:
11359 case OP_ATR_MIN:
11360 case OP_ATR_MODULUS:
11361 case OP_ATR_POS:
11362 case OP_ATR_SIZE:
11363 case OP_ATR_TAG:
11364 case OP_ATR_VAL:
11365 break;
11366
11367 case UNOP_IN_RANGE:
11368 case UNOP_QUAL:
11369 /* XXX: gdb_sprint_host_address, type_sprint */
11370 fprintf_filtered (stream, _("Type @"));
11371 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11372 fprintf_filtered (stream, " (");
11373 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11374 fprintf_filtered (stream, ")");
11375 break;
11376 case BINOP_IN_BOUNDS:
11377 fprintf_filtered (stream, " (%d)",
11378 longest_to_int (exp->elts[pc + 2].longconst));
11379 break;
11380 case TERNOP_IN_RANGE:
11381 break;
11382
11383 case OP_AGGREGATE:
11384 case OP_OTHERS:
11385 case OP_DISCRETE_RANGE:
11386 case OP_POSITIONAL:
11387 case OP_CHOICES:
11388 break;
11389
11390 case OP_NAME:
11391 case OP_STRING:
11392 {
11393 char *name = &exp->elts[elt + 2].string;
11394 int len = longest_to_int (exp->elts[elt + 1].longconst);
11395
11396 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11397 break;
11398 }
11399
11400 default:
11401 return dump_subexp_body_standard (exp, stream, elt);
11402 }
11403
11404 elt += oplen;
11405 for (i = 0; i < nargs; i += 1)
11406 elt = dump_subexp (exp, stream, elt);
11407
11408 return elt;
11409 }
11410
11411 /* The Ada extension of print_subexp (q.v.). */
11412
11413 static void
11414 ada_print_subexp (struct expression *exp, int *pos,
11415 struct ui_file *stream, enum precedence prec)
11416 {
11417 int oplen, nargs, i;
11418 int pc = *pos;
11419 enum exp_opcode op = exp->elts[pc].opcode;
11420
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422
11423 *pos += oplen;
11424 switch (op)
11425 {
11426 default:
11427 *pos -= oplen;
11428 print_subexp_standard (exp, pos, stream, prec);
11429 return;
11430
11431 case OP_VAR_VALUE:
11432 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11433 return;
11434
11435 case BINOP_IN_BOUNDS:
11436 /* XXX: sprint_subexp */
11437 print_subexp (exp, pos, stream, PREC_SUFFIX);
11438 fputs_filtered (" in ", stream);
11439 print_subexp (exp, pos, stream, PREC_SUFFIX);
11440 fputs_filtered ("'range", stream);
11441 if (exp->elts[pc + 1].longconst > 1)
11442 fprintf_filtered (stream, "(%ld)",
11443 (long) exp->elts[pc + 1].longconst);
11444 return;
11445
11446 case TERNOP_IN_RANGE:
11447 if (prec >= PREC_EQUAL)
11448 fputs_filtered ("(", stream);
11449 /* XXX: sprint_subexp */
11450 print_subexp (exp, pos, stream, PREC_SUFFIX);
11451 fputs_filtered (" in ", stream);
11452 print_subexp (exp, pos, stream, PREC_EQUAL);
11453 fputs_filtered (" .. ", stream);
11454 print_subexp (exp, pos, stream, PREC_EQUAL);
11455 if (prec >= PREC_EQUAL)
11456 fputs_filtered (")", stream);
11457 return;
11458
11459 case OP_ATR_FIRST:
11460 case OP_ATR_LAST:
11461 case OP_ATR_LENGTH:
11462 case OP_ATR_IMAGE:
11463 case OP_ATR_MAX:
11464 case OP_ATR_MIN:
11465 case OP_ATR_MODULUS:
11466 case OP_ATR_POS:
11467 case OP_ATR_SIZE:
11468 case OP_ATR_TAG:
11469 case OP_ATR_VAL:
11470 if (exp->elts[*pos].opcode == OP_TYPE)
11471 {
11472 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11473 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11474 *pos += 3;
11475 }
11476 else
11477 print_subexp (exp, pos, stream, PREC_SUFFIX);
11478 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11479 if (nargs > 1)
11480 {
11481 int tem;
11482
11483 for (tem = 1; tem < nargs; tem += 1)
11484 {
11485 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11486 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11487 }
11488 fputs_filtered (")", stream);
11489 }
11490 return;
11491
11492 case UNOP_QUAL:
11493 type_print (exp->elts[pc + 1].type, "", stream, 0);
11494 fputs_filtered ("'(", stream);
11495 print_subexp (exp, pos, stream, PREC_PREFIX);
11496 fputs_filtered (")", stream);
11497 return;
11498
11499 case UNOP_IN_RANGE:
11500 /* XXX: sprint_subexp */
11501 print_subexp (exp, pos, stream, PREC_SUFFIX);
11502 fputs_filtered (" in ", stream);
11503 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11504 return;
11505
11506 case OP_DISCRETE_RANGE:
11507 print_subexp (exp, pos, stream, PREC_SUFFIX);
11508 fputs_filtered ("..", stream);
11509 print_subexp (exp, pos, stream, PREC_SUFFIX);
11510 return;
11511
11512 case OP_OTHERS:
11513 fputs_filtered ("others => ", stream);
11514 print_subexp (exp, pos, stream, PREC_SUFFIX);
11515 return;
11516
11517 case OP_CHOICES:
11518 for (i = 0; i < nargs-1; i += 1)
11519 {
11520 if (i > 0)
11521 fputs_filtered ("|", stream);
11522 print_subexp (exp, pos, stream, PREC_SUFFIX);
11523 }
11524 fputs_filtered (" => ", stream);
11525 print_subexp (exp, pos, stream, PREC_SUFFIX);
11526 return;
11527
11528 case OP_POSITIONAL:
11529 print_subexp (exp, pos, stream, PREC_SUFFIX);
11530 return;
11531
11532 case OP_AGGREGATE:
11533 fputs_filtered ("(", stream);
11534 for (i = 0; i < nargs; i += 1)
11535 {
11536 if (i > 0)
11537 fputs_filtered (", ", stream);
11538 print_subexp (exp, pos, stream, PREC_SUFFIX);
11539 }
11540 fputs_filtered (")", stream);
11541 return;
11542 }
11543 }
11544
11545 /* Table mapping opcodes into strings for printing operators
11546 and precedences of the operators. */
11547
11548 static const struct op_print ada_op_print_tab[] = {
11549 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11550 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11551 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11552 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11553 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11554 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11555 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11556 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11557 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11558 {">=", BINOP_GEQ, PREC_ORDER, 0},
11559 {">", BINOP_GTR, PREC_ORDER, 0},
11560 {"<", BINOP_LESS, PREC_ORDER, 0},
11561 {">>", BINOP_RSH, PREC_SHIFT, 0},
11562 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11563 {"+", BINOP_ADD, PREC_ADD, 0},
11564 {"-", BINOP_SUB, PREC_ADD, 0},
11565 {"&", BINOP_CONCAT, PREC_ADD, 0},
11566 {"*", BINOP_MUL, PREC_MUL, 0},
11567 {"/", BINOP_DIV, PREC_MUL, 0},
11568 {"rem", BINOP_REM, PREC_MUL, 0},
11569 {"mod", BINOP_MOD, PREC_MUL, 0},
11570 {"**", BINOP_EXP, PREC_REPEAT, 0},
11571 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11572 {"-", UNOP_NEG, PREC_PREFIX, 0},
11573 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11574 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11575 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11576 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11577 {".all", UNOP_IND, PREC_SUFFIX, 1},
11578 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11579 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11580 {NULL, 0, 0, 0}
11581 };
11582 \f
11583 enum ada_primitive_types {
11584 ada_primitive_type_int,
11585 ada_primitive_type_long,
11586 ada_primitive_type_short,
11587 ada_primitive_type_char,
11588 ada_primitive_type_float,
11589 ada_primitive_type_double,
11590 ada_primitive_type_void,
11591 ada_primitive_type_long_long,
11592 ada_primitive_type_long_double,
11593 ada_primitive_type_natural,
11594 ada_primitive_type_positive,
11595 ada_primitive_type_system_address,
11596 nr_ada_primitive_types
11597 };
11598
11599 static void
11600 ada_language_arch_info (struct gdbarch *gdbarch,
11601 struct language_arch_info *lai)
11602 {
11603 const struct builtin_type *builtin = builtin_type (gdbarch);
11604
11605 lai->primitive_type_vector
11606 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11607 struct type *);
11608
11609 lai->primitive_type_vector [ada_primitive_type_int]
11610 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11611 0, "integer");
11612 lai->primitive_type_vector [ada_primitive_type_long]
11613 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11614 0, "long_integer");
11615 lai->primitive_type_vector [ada_primitive_type_short]
11616 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11617 0, "short_integer");
11618 lai->string_char_type
11619 = lai->primitive_type_vector [ada_primitive_type_char]
11620 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11621 lai->primitive_type_vector [ada_primitive_type_float]
11622 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11623 "float", NULL);
11624 lai->primitive_type_vector [ada_primitive_type_double]
11625 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11626 "long_float", NULL);
11627 lai->primitive_type_vector [ada_primitive_type_long_long]
11628 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11629 0, "long_long_integer");
11630 lai->primitive_type_vector [ada_primitive_type_long_double]
11631 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11632 "long_long_float", NULL);
11633 lai->primitive_type_vector [ada_primitive_type_natural]
11634 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11635 0, "natural");
11636 lai->primitive_type_vector [ada_primitive_type_positive]
11637 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11638 0, "positive");
11639 lai->primitive_type_vector [ada_primitive_type_void]
11640 = builtin->builtin_void;
11641
11642 lai->primitive_type_vector [ada_primitive_type_system_address]
11643 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11644 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11645 = "system__address";
11646
11647 lai->bool_type_symbol = NULL;
11648 lai->bool_type_default = builtin->builtin_bool;
11649 }
11650 \f
11651 /* Language vector */
11652
11653 /* Not really used, but needed in the ada_language_defn. */
11654
11655 static void
11656 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11657 {
11658 ada_emit_char (c, type, stream, quoter, 1);
11659 }
11660
11661 static int
11662 parse (void)
11663 {
11664 warnings_issued = 0;
11665 return ada_parse ();
11666 }
11667
11668 static const struct exp_descriptor ada_exp_descriptor = {
11669 ada_print_subexp,
11670 ada_operator_length,
11671 ada_operator_check,
11672 ada_op_name,
11673 ada_dump_subexp_body,
11674 ada_evaluate_subexp
11675 };
11676
11677 const struct language_defn ada_language_defn = {
11678 "ada", /* Language name */
11679 language_ada,
11680 range_check_off,
11681 type_check_off,
11682 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11683 that's not quite what this means. */
11684 array_row_major,
11685 macro_expansion_no,
11686 &ada_exp_descriptor,
11687 parse,
11688 ada_error,
11689 resolve,
11690 ada_printchar, /* Print a character constant */
11691 ada_printstr, /* Function to print string constant */
11692 emit_char, /* Function to print single char (not used) */
11693 ada_print_type, /* Print a type using appropriate syntax */
11694 ada_print_typedef, /* Print a typedef using appropriate syntax */
11695 ada_val_print, /* Print a value using appropriate syntax */
11696 ada_value_print, /* Print a top-level value */
11697 NULL, /* Language specific skip_trampoline */
11698 NULL, /* name_of_this */
11699 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11700 basic_lookup_transparent_type, /* lookup_transparent_type */
11701 ada_la_decode, /* Language specific symbol demangler */
11702 NULL, /* Language specific class_name_from_physname */
11703 ada_op_print_tab, /* expression operators for printing */
11704 0, /* c-style arrays */
11705 1, /* String lower bound */
11706 ada_get_gdb_completer_word_break_characters,
11707 ada_make_symbol_completion_list,
11708 ada_language_arch_info,
11709 ada_print_array_index,
11710 default_pass_by_reference,
11711 c_get_string,
11712 LANG_MAGIC
11713 };
11714
11715 /* Provide a prototype to silence -Wmissing-prototypes. */
11716 extern initialize_file_ftype _initialize_ada_language;
11717
11718 /* Command-list for the "set/show ada" prefix command. */
11719 static struct cmd_list_element *set_ada_list;
11720 static struct cmd_list_element *show_ada_list;
11721
11722 /* Implement the "set ada" prefix command. */
11723
11724 static void
11725 set_ada_command (char *arg, int from_tty)
11726 {
11727 printf_unfiltered (_(\
11728 "\"set ada\" must be followed by the name of a setting.\n"));
11729 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11730 }
11731
11732 /* Implement the "show ada" prefix command. */
11733
11734 static void
11735 show_ada_command (char *args, int from_tty)
11736 {
11737 cmd_show_list (show_ada_list, from_tty, "");
11738 }
11739
11740 void
11741 _initialize_ada_language (void)
11742 {
11743 add_language (&ada_language_defn);
11744
11745 add_prefix_cmd ("ada", no_class, set_ada_command,
11746 _("Prefix command for changing Ada-specfic settings"),
11747 &set_ada_list, "set ada ", 0, &setlist);
11748
11749 add_prefix_cmd ("ada", no_class, show_ada_command,
11750 _("Generic command for showing Ada-specific settings."),
11751 &show_ada_list, "show ada ", 0, &showlist);
11752
11753 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11754 &trust_pad_over_xvs, _("\
11755 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11756 Show whether an optimization trusting PAD types over XVS types is activated"),
11757 _("\
11758 This is related to the encoding used by the GNAT compiler. The debugger\n\
11759 should normally trust the contents of PAD types, but certain older versions\n\
11760 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11761 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11762 work around this bug. It is always safe to turn this option \"off\", but\n\
11763 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11764 this option to \"off\" unless necessary."),
11765 NULL, NULL, &set_ada_list, &show_ada_list);
11766
11767 varsize_limit = 65536;
11768
11769 obstack_init (&symbol_list_obstack);
11770
11771 decoded_names_store = htab_create_alloc
11772 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11773 NULL, xcalloc, xfree);
11774
11775 observer_attach_executable_changed (ada_executable_changed_observer);
11776
11777 /* Setup per-inferior data. */
11778 observer_attach_inferior_exit (ada_inferior_exit);
11779 ada_inferior_data
11780 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11781 }
This page took 0.316325 seconds and 4 git commands to generate.