* linux-low.c (linux_wait_1): Avoid setting need_step_over is
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
313 /* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317 static const char *
318 ada_unqualified_name (const char *decoded_name)
319 {
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328 }
329
330 /* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333 static char *
334 add_angle_brackets (const char *str)
335 {
336 static char *result = NULL;
337
338 xfree (result);
339 result = xstrprintf ("<%s>", str);
340 return result;
341 }
342
343 static char *
344 ada_get_gdb_completer_word_break_characters (void)
345 {
346 return ada_completer_word_break_characters;
347 }
348
349 /* Print an array element index using the Ada syntax. */
350
351 static void
352 ada_print_array_index (struct value *index_value, struct ui_file *stream,
353 const struct value_print_options *options)
354 {
355 LA_VALUE_PRINT (index_value, stream, options);
356 fprintf_filtered (stream, " => ");
357 }
358
359 /* Assuming VECT points to an array of *SIZE objects of size
360 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
361 updating *SIZE as necessary and returning the (new) array. */
362
363 void *
364 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
365 {
366 if (*size < min_size)
367 {
368 *size *= 2;
369 if (*size < min_size)
370 *size = min_size;
371 vect = xrealloc (vect, *size * element_size);
372 }
373 return vect;
374 }
375
376 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
377 suffix of FIELD_NAME beginning "___". */
378
379 static int
380 field_name_match (const char *field_name, const char *target)
381 {
382 int len = strlen (target);
383 return
384 (strncmp (field_name, target, len) == 0
385 && (field_name[len] == '\0'
386 || (strncmp (field_name + len, "___", 3) == 0
387 && strcmp (field_name + strlen (field_name) - 6,
388 "___XVN") != 0)));
389 }
390
391
392 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
393 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
394 and return its index. This function also handles fields whose name
395 have ___ suffixes because the compiler sometimes alters their name
396 by adding such a suffix to represent fields with certain constraints.
397 If the field could not be found, return a negative number if
398 MAYBE_MISSING is set. Otherwise raise an error. */
399
400 int
401 ada_get_field_index (const struct type *type, const char *field_name,
402 int maybe_missing)
403 {
404 int fieldno;
405 struct type *struct_type = check_typedef ((struct type *) type);
406
407 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
408 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
409 return fieldno;
410
411 if (!maybe_missing)
412 error (_("Unable to find field %s in struct %s. Aborting"),
413 field_name, TYPE_NAME (struct_type));
414
415 return -1;
416 }
417
418 /* The length of the prefix of NAME prior to any "___" suffix. */
419
420 int
421 ada_name_prefix_len (const char *name)
422 {
423 if (name == NULL)
424 return 0;
425 else
426 {
427 const char *p = strstr (name, "___");
428 if (p == NULL)
429 return strlen (name);
430 else
431 return p - name;
432 }
433 }
434
435 /* Return non-zero if SUFFIX is a suffix of STR.
436 Return zero if STR is null. */
437
438 static int
439 is_suffix (const char *str, const char *suffix)
440 {
441 int len1, len2;
442 if (str == NULL)
443 return 0;
444 len1 = strlen (str);
445 len2 = strlen (suffix);
446 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
447 }
448
449 /* The contents of value VAL, treated as a value of type TYPE. The
450 result is an lval in memory if VAL is. */
451
452 static struct value *
453 coerce_unspec_val_to_type (struct value *val, struct type *type)
454 {
455 type = ada_check_typedef (type);
456 if (value_type (val) == type)
457 return val;
458 else
459 {
460 struct value *result;
461
462 /* Make sure that the object size is not unreasonable before
463 trying to allocate some memory for it. */
464 check_size (type);
465
466 result = allocate_value (type);
467 set_value_component_location (result, val);
468 set_value_bitsize (result, value_bitsize (val));
469 set_value_bitpos (result, value_bitpos (val));
470 set_value_address (result, value_address (val));
471 if (value_lazy (val)
472 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
473 set_value_lazy (result, 1);
474 else
475 memcpy (value_contents_raw (result), value_contents (val),
476 TYPE_LENGTH (type));
477 return result;
478 }
479 }
480
481 static const gdb_byte *
482 cond_offset_host (const gdb_byte *valaddr, long offset)
483 {
484 if (valaddr == NULL)
485 return NULL;
486 else
487 return valaddr + offset;
488 }
489
490 static CORE_ADDR
491 cond_offset_target (CORE_ADDR address, long offset)
492 {
493 if (address == 0)
494 return 0;
495 else
496 return address + offset;
497 }
498
499 /* Issue a warning (as for the definition of warning in utils.c, but
500 with exactly one argument rather than ...), unless the limit on the
501 number of warnings has passed during the evaluation of the current
502 expression. */
503
504 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
505 provided by "complaint". */
506 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
507
508 static void
509 lim_warning (const char *format, ...)
510 {
511 va_list args;
512 va_start (args, format);
513
514 warnings_issued += 1;
515 if (warnings_issued <= warning_limit)
516 vwarning (format, args);
517
518 va_end (args);
519 }
520
521 /* Issue an error if the size of an object of type T is unreasonable,
522 i.e. if it would be a bad idea to allocate a value of this type in
523 GDB. */
524
525 static void
526 check_size (const struct type *type)
527 {
528 if (TYPE_LENGTH (type) > varsize_limit)
529 error (_("object size is larger than varsize-limit"));
530 }
531
532
533 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
534 gdbtypes.h, but some of the necessary definitions in that file
535 seem to have gone missing. */
536
537 /* Maximum value of a SIZE-byte signed integer type. */
538 static LONGEST
539 max_of_size (int size)
540 {
541 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
542 return top_bit | (top_bit - 1);
543 }
544
545 /* Minimum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 min_of_size (int size)
548 {
549 return -max_of_size (size) - 1;
550 }
551
552 /* Maximum value of a SIZE-byte unsigned integer type. */
553 static ULONGEST
554 umax_of_size (int size)
555 {
556 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Maximum value of integral type T, as a signed quantity. */
561 static LONGEST
562 max_of_type (struct type *t)
563 {
564 if (TYPE_UNSIGNED (t))
565 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
566 else
567 return max_of_size (TYPE_LENGTH (t));
568 }
569
570 /* Minimum value of integral type T, as a signed quantity. */
571 static LONGEST
572 min_of_type (struct type *t)
573 {
574 if (TYPE_UNSIGNED (t))
575 return 0;
576 else
577 return min_of_size (TYPE_LENGTH (t));
578 }
579
580 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
581 LONGEST
582 ada_discrete_type_high_bound (struct type *type)
583 {
584 switch (TYPE_CODE (type))
585 {
586 case TYPE_CODE_RANGE:
587 return TYPE_HIGH_BOUND (type);
588 case TYPE_CODE_ENUM:
589 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
590 case TYPE_CODE_BOOL:
591 return 1;
592 case TYPE_CODE_CHAR:
593 case TYPE_CODE_INT:
594 return max_of_type (type);
595 default:
596 error (_("Unexpected type in ada_discrete_type_high_bound."));
597 }
598 }
599
600 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
601 LONGEST
602 ada_discrete_type_low_bound (struct type *type)
603 {
604 switch (TYPE_CODE (type))
605 {
606 case TYPE_CODE_RANGE:
607 return TYPE_LOW_BOUND (type);
608 case TYPE_CODE_ENUM:
609 return TYPE_FIELD_BITPOS (type, 0);
610 case TYPE_CODE_BOOL:
611 return 0;
612 case TYPE_CODE_CHAR:
613 case TYPE_CODE_INT:
614 return min_of_type (type);
615 default:
616 error (_("Unexpected type in ada_discrete_type_low_bound."));
617 }
618 }
619
620 /* The identity on non-range types. For range types, the underlying
621 non-range scalar type. */
622
623 static struct type *
624 base_type (struct type *type)
625 {
626 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
627 {
628 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
629 return type;
630 type = TYPE_TARGET_TYPE (type);
631 }
632 return type;
633 }
634 \f
635
636 /* Language Selection */
637
638 /* If the main program is in Ada, return language_ada, otherwise return LANG
639 (the main program is in Ada iif the adainit symbol is found). */
640
641 enum language
642 ada_update_initial_language (enum language lang)
643 {
644 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
645 (struct objfile *) NULL) != NULL)
646 return language_ada;
647
648 return lang;
649 }
650
651 /* If the main procedure is written in Ada, then return its name.
652 The result is good until the next call. Return NULL if the main
653 procedure doesn't appear to be in Ada. */
654
655 char *
656 ada_main_name (void)
657 {
658 struct minimal_symbol *msym;
659 static char *main_program_name = NULL;
660
661 /* For Ada, the name of the main procedure is stored in a specific
662 string constant, generated by the binder. Look for that symbol,
663 extract its address, and then read that string. If we didn't find
664 that string, then most probably the main procedure is not written
665 in Ada. */
666 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
667
668 if (msym != NULL)
669 {
670 CORE_ADDR main_program_name_addr;
671 int err_code;
672
673 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
674 if (main_program_name_addr == 0)
675 error (_("Invalid address for Ada main program name."));
676
677 xfree (main_program_name);
678 target_read_string (main_program_name_addr, &main_program_name,
679 1024, &err_code);
680
681 if (err_code != 0)
682 return NULL;
683 return main_program_name;
684 }
685
686 /* The main procedure doesn't seem to be in Ada. */
687 return NULL;
688 }
689 \f
690 /* Symbols */
691
692 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
693 of NULLs. */
694
695 const struct ada_opname_map ada_opname_table[] = {
696 {"Oadd", "\"+\"", BINOP_ADD},
697 {"Osubtract", "\"-\"", BINOP_SUB},
698 {"Omultiply", "\"*\"", BINOP_MUL},
699 {"Odivide", "\"/\"", BINOP_DIV},
700 {"Omod", "\"mod\"", BINOP_MOD},
701 {"Orem", "\"rem\"", BINOP_REM},
702 {"Oexpon", "\"**\"", BINOP_EXP},
703 {"Olt", "\"<\"", BINOP_LESS},
704 {"Ole", "\"<=\"", BINOP_LEQ},
705 {"Ogt", "\">\"", BINOP_GTR},
706 {"Oge", "\">=\"", BINOP_GEQ},
707 {"Oeq", "\"=\"", BINOP_EQUAL},
708 {"One", "\"/=\"", BINOP_NOTEQUAL},
709 {"Oand", "\"and\"", BINOP_BITWISE_AND},
710 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
711 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
712 {"Oconcat", "\"&\"", BINOP_CONCAT},
713 {"Oabs", "\"abs\"", UNOP_ABS},
714 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
715 {"Oadd", "\"+\"", UNOP_PLUS},
716 {"Osubtract", "\"-\"", UNOP_NEG},
717 {NULL, NULL}
718 };
719
720 /* The "encoded" form of DECODED, according to GNAT conventions.
721 The result is valid until the next call to ada_encode. */
722
723 char *
724 ada_encode (const char *decoded)
725 {
726 static char *encoding_buffer = NULL;
727 static size_t encoding_buffer_size = 0;
728 const char *p;
729 int k;
730
731 if (decoded == NULL)
732 return NULL;
733
734 GROW_VECT (encoding_buffer, encoding_buffer_size,
735 2 * strlen (decoded) + 10);
736
737 k = 0;
738 for (p = decoded; *p != '\0'; p += 1)
739 {
740 if (*p == '.')
741 {
742 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
743 k += 2;
744 }
745 else if (*p == '"')
746 {
747 const struct ada_opname_map *mapping;
748
749 for (mapping = ada_opname_table;
750 mapping->encoded != NULL
751 && strncmp (mapping->decoded, p,
752 strlen (mapping->decoded)) != 0; mapping += 1)
753 ;
754 if (mapping->encoded == NULL)
755 error (_("invalid Ada operator name: %s"), p);
756 strcpy (encoding_buffer + k, mapping->encoded);
757 k += strlen (mapping->encoded);
758 break;
759 }
760 else
761 {
762 encoding_buffer[k] = *p;
763 k += 1;
764 }
765 }
766
767 encoding_buffer[k] = '\0';
768 return encoding_buffer;
769 }
770
771 /* Return NAME folded to lower case, or, if surrounded by single
772 quotes, unfolded, but with the quotes stripped away. Result good
773 to next call. */
774
775 char *
776 ada_fold_name (const char *name)
777 {
778 static char *fold_buffer = NULL;
779 static size_t fold_buffer_size = 0;
780
781 int len = strlen (name);
782 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
783
784 if (name[0] == '\'')
785 {
786 strncpy (fold_buffer, name + 1, len - 2);
787 fold_buffer[len - 2] = '\000';
788 }
789 else
790 {
791 int i;
792 for (i = 0; i <= len; i += 1)
793 fold_buffer[i] = tolower (name[i]);
794 }
795
796 return fold_buffer;
797 }
798
799 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
800
801 static int
802 is_lower_alphanum (const char c)
803 {
804 return (isdigit (c) || (isalpha (c) && islower (c)));
805 }
806
807 /* Remove either of these suffixes:
808 . .{DIGIT}+
809 . ${DIGIT}+
810 . ___{DIGIT}+
811 . __{DIGIT}+.
812 These are suffixes introduced by the compiler for entities such as
813 nested subprogram for instance, in order to avoid name clashes.
814 They do not serve any purpose for the debugger. */
815
816 static void
817 ada_remove_trailing_digits (const char *encoded, int *len)
818 {
819 if (*len > 1 && isdigit (encoded[*len - 1]))
820 {
821 int i = *len - 2;
822 while (i > 0 && isdigit (encoded[i]))
823 i--;
824 if (i >= 0 && encoded[i] == '.')
825 *len = i;
826 else if (i >= 0 && encoded[i] == '$')
827 *len = i;
828 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
829 *len = i - 2;
830 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
831 *len = i - 1;
832 }
833 }
834
835 /* Remove the suffix introduced by the compiler for protected object
836 subprograms. */
837
838 static void
839 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
840 {
841 /* Remove trailing N. */
842
843 /* Protected entry subprograms are broken into two
844 separate subprograms: The first one is unprotected, and has
845 a 'N' suffix; the second is the protected version, and has
846 the 'P' suffix. The second calls the first one after handling
847 the protection. Since the P subprograms are internally generated,
848 we leave these names undecoded, giving the user a clue that this
849 entity is internal. */
850
851 if (*len > 1
852 && encoded[*len - 1] == 'N'
853 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
854 *len = *len - 1;
855 }
856
857 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
858
859 static void
860 ada_remove_Xbn_suffix (const char *encoded, int *len)
861 {
862 int i = *len - 1;
863
864 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
865 i--;
866
867 if (encoded[i] != 'X')
868 return;
869
870 if (i == 0)
871 return;
872
873 if (isalnum (encoded[i-1]))
874 *len = i;
875 }
876
877 /* If ENCODED follows the GNAT entity encoding conventions, then return
878 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
879 replaced by ENCODED.
880
881 The resulting string is valid until the next call of ada_decode.
882 If the string is unchanged by decoding, the original string pointer
883 is returned. */
884
885 const char *
886 ada_decode (const char *encoded)
887 {
888 int i, j;
889 int len0;
890 const char *p;
891 char *decoded;
892 int at_start_name;
893 static char *decoding_buffer = NULL;
894 static size_t decoding_buffer_size = 0;
895
896 /* The name of the Ada main procedure starts with "_ada_".
897 This prefix is not part of the decoded name, so skip this part
898 if we see this prefix. */
899 if (strncmp (encoded, "_ada_", 5) == 0)
900 encoded += 5;
901
902 /* If the name starts with '_', then it is not a properly encoded
903 name, so do not attempt to decode it. Similarly, if the name
904 starts with '<', the name should not be decoded. */
905 if (encoded[0] == '_' || encoded[0] == '<')
906 goto Suppress;
907
908 len0 = strlen (encoded);
909
910 ada_remove_trailing_digits (encoded, &len0);
911 ada_remove_po_subprogram_suffix (encoded, &len0);
912
913 /* Remove the ___X.* suffix if present. Do not forget to verify that
914 the suffix is located before the current "end" of ENCODED. We want
915 to avoid re-matching parts of ENCODED that have previously been
916 marked as discarded (by decrementing LEN0). */
917 p = strstr (encoded, "___");
918 if (p != NULL && p - encoded < len0 - 3)
919 {
920 if (p[3] == 'X')
921 len0 = p - encoded;
922 else
923 goto Suppress;
924 }
925
926 /* Remove any trailing TKB suffix. It tells us that this symbol
927 is for the body of a task, but that information does not actually
928 appear in the decoded name. */
929
930 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
931 len0 -= 3;
932
933 /* Remove any trailing TB suffix. The TB suffix is slightly different
934 from the TKB suffix because it is used for non-anonymous task
935 bodies. */
936
937 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
938 len0 -= 2;
939
940 /* Remove trailing "B" suffixes. */
941 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
942
943 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
944 len0 -= 1;
945
946 /* Make decoded big enough for possible expansion by operator name. */
947
948 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
949 decoded = decoding_buffer;
950
951 /* Remove trailing __{digit}+ or trailing ${digit}+. */
952
953 if (len0 > 1 && isdigit (encoded[len0 - 1]))
954 {
955 i = len0 - 2;
956 while ((i >= 0 && isdigit (encoded[i]))
957 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
958 i -= 1;
959 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
960 len0 = i - 1;
961 else if (encoded[i] == '$')
962 len0 = i;
963 }
964
965 /* The first few characters that are not alphabetic are not part
966 of any encoding we use, so we can copy them over verbatim. */
967
968 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
969 decoded[j] = encoded[i];
970
971 at_start_name = 1;
972 while (i < len0)
973 {
974 /* Is this a symbol function? */
975 if (at_start_name && encoded[i] == 'O')
976 {
977 int k;
978 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
979 {
980 int op_len = strlen (ada_opname_table[k].encoded);
981 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
982 op_len - 1) == 0)
983 && !isalnum (encoded[i + op_len]))
984 {
985 strcpy (decoded + j, ada_opname_table[k].decoded);
986 at_start_name = 0;
987 i += op_len;
988 j += strlen (ada_opname_table[k].decoded);
989 break;
990 }
991 }
992 if (ada_opname_table[k].encoded != NULL)
993 continue;
994 }
995 at_start_name = 0;
996
997 /* Replace "TK__" with "__", which will eventually be translated
998 into "." (just below). */
999
1000 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 i += 2;
1002
1003 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1004 be translated into "." (just below). These are internal names
1005 generated for anonymous blocks inside which our symbol is nested. */
1006
1007 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1008 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1009 && isdigit (encoded [i+4]))
1010 {
1011 int k = i + 5;
1012
1013 while (k < len0 && isdigit (encoded[k]))
1014 k++; /* Skip any extra digit. */
1015
1016 /* Double-check that the "__B_{DIGITS}+" sequence we found
1017 is indeed followed by "__". */
1018 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1019 i = k;
1020 }
1021
1022 /* Remove _E{DIGITS}+[sb] */
1023
1024 /* Just as for protected object subprograms, there are 2 categories
1025 of subprograms created by the compiler for each entry. The first
1026 one implements the actual entry code, and has a suffix following
1027 the convention above; the second one implements the barrier and
1028 uses the same convention as above, except that the 'E' is replaced
1029 by a 'B'.
1030
1031 Just as above, we do not decode the name of barrier functions
1032 to give the user a clue that the code he is debugging has been
1033 internally generated. */
1034
1035 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1036 && isdigit (encoded[i+2]))
1037 {
1038 int k = i + 3;
1039
1040 while (k < len0 && isdigit (encoded[k]))
1041 k++;
1042
1043 if (k < len0
1044 && (encoded[k] == 'b' || encoded[k] == 's'))
1045 {
1046 k++;
1047 /* Just as an extra precaution, make sure that if this
1048 suffix is followed by anything else, it is a '_'.
1049 Otherwise, we matched this sequence by accident. */
1050 if (k == len0
1051 || (k < len0 && encoded[k] == '_'))
1052 i = k;
1053 }
1054 }
1055
1056 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1057 the GNAT front-end in protected object subprograms. */
1058
1059 if (i < len0 + 3
1060 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1061 {
1062 /* Backtrack a bit up until we reach either the begining of
1063 the encoded name, or "__". Make sure that we only find
1064 digits or lowercase characters. */
1065 const char *ptr = encoded + i - 1;
1066
1067 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1068 ptr--;
1069 if (ptr < encoded
1070 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1071 i++;
1072 }
1073
1074 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1075 {
1076 /* This is a X[bn]* sequence not separated from the previous
1077 part of the name with a non-alpha-numeric character (in other
1078 words, immediately following an alpha-numeric character), then
1079 verify that it is placed at the end of the encoded name. If
1080 not, then the encoding is not valid and we should abort the
1081 decoding. Otherwise, just skip it, it is used in body-nested
1082 package names. */
1083 do
1084 i += 1;
1085 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1086 if (i < len0)
1087 goto Suppress;
1088 }
1089 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1090 {
1091 /* Replace '__' by '.'. */
1092 decoded[j] = '.';
1093 at_start_name = 1;
1094 i += 2;
1095 j += 1;
1096 }
1097 else
1098 {
1099 /* It's a character part of the decoded name, so just copy it
1100 over. */
1101 decoded[j] = encoded[i];
1102 i += 1;
1103 j += 1;
1104 }
1105 }
1106 decoded[j] = '\000';
1107
1108 /* Decoded names should never contain any uppercase character.
1109 Double-check this, and abort the decoding if we find one. */
1110
1111 for (i = 0; decoded[i] != '\0'; i += 1)
1112 if (isupper (decoded[i]) || decoded[i] == ' ')
1113 goto Suppress;
1114
1115 if (strcmp (decoded, encoded) == 0)
1116 return encoded;
1117 else
1118 return decoded;
1119
1120 Suppress:
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1122 decoded = decoding_buffer;
1123 if (encoded[0] == '<')
1124 strcpy (decoded, encoded);
1125 else
1126 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1127 return decoded;
1128
1129 }
1130
1131 /* Table for keeping permanent unique copies of decoded names. Once
1132 allocated, names in this table are never released. While this is a
1133 storage leak, it should not be significant unless there are massive
1134 changes in the set of decoded names in successive versions of a
1135 symbol table loaded during a single session. */
1136 static struct htab *decoded_names_store;
1137
1138 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1139 in the language-specific part of GSYMBOL, if it has not been
1140 previously computed. Tries to save the decoded name in the same
1141 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1142 in any case, the decoded symbol has a lifetime at least that of
1143 GSYMBOL).
1144 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1145 const, but nevertheless modified to a semantically equivalent form
1146 when a decoded name is cached in it.
1147 */
1148
1149 char *
1150 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1151 {
1152 char **resultp =
1153 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1154 if (*resultp == NULL)
1155 {
1156 const char *decoded = ada_decode (gsymbol->name);
1157 if (gsymbol->obj_section != NULL)
1158 {
1159 struct objfile *objf = gsymbol->obj_section->objfile;
1160 *resultp = obsavestring (decoded, strlen (decoded),
1161 &objf->objfile_obstack);
1162 }
1163 /* Sometimes, we can't find a corresponding objfile, in which
1164 case, we put the result on the heap. Since we only decode
1165 when needed, we hope this usually does not cause a
1166 significant memory leak (FIXME). */
1167 if (*resultp == NULL)
1168 {
1169 char **slot = (char **) htab_find_slot (decoded_names_store,
1170 decoded, INSERT);
1171 if (*slot == NULL)
1172 *slot = xstrdup (decoded);
1173 *resultp = *slot;
1174 }
1175 }
1176
1177 return *resultp;
1178 }
1179
1180 static char *
1181 ada_la_decode (const char *encoded, int options)
1182 {
1183 return xstrdup (ada_decode (encoded));
1184 }
1185
1186 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1187 suffixes that encode debugging information or leading _ada_ on
1188 SYM_NAME (see is_name_suffix commentary for the debugging
1189 information that is ignored). If WILD, then NAME need only match a
1190 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1191 either argument is NULL. */
1192
1193 static int
1194 ada_match_name (const char *sym_name, const char *name, int wild)
1195 {
1196 if (sym_name == NULL || name == NULL)
1197 return 0;
1198 else if (wild)
1199 return wild_match (name, strlen (name), sym_name);
1200 else
1201 {
1202 int len_name = strlen (name);
1203 return (strncmp (sym_name, name, len_name) == 0
1204 && is_name_suffix (sym_name + len_name))
1205 || (strncmp (sym_name, "_ada_", 5) == 0
1206 && strncmp (sym_name + 5, name, len_name) == 0
1207 && is_name_suffix (sym_name + len_name + 5));
1208 }
1209 }
1210 \f
1211
1212 /* Arrays */
1213
1214 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1215
1216 static char *bound_name[] = {
1217 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1218 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1219 };
1220
1221 /* Maximum number of array dimensions we are prepared to handle. */
1222
1223 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1224
1225 /* Like modify_field, but allows bitpos > wordlength. */
1226
1227 static void
1228 modify_general_field (struct type *type, char *addr,
1229 LONGEST fieldval, int bitpos, int bitsize)
1230 {
1231 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1232 }
1233
1234
1235 /* The desc_* routines return primitive portions of array descriptors
1236 (fat pointers). */
1237
1238 /* The descriptor or array type, if any, indicated by TYPE; removes
1239 level of indirection, if needed. */
1240
1241 static struct type *
1242 desc_base_type (struct type *type)
1243 {
1244 if (type == NULL)
1245 return NULL;
1246 type = ada_check_typedef (type);
1247 if (type != NULL
1248 && (TYPE_CODE (type) == TYPE_CODE_PTR
1249 || TYPE_CODE (type) == TYPE_CODE_REF))
1250 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1251 else
1252 return type;
1253 }
1254
1255 /* True iff TYPE indicates a "thin" array pointer type. */
1256
1257 static int
1258 is_thin_pntr (struct type *type)
1259 {
1260 return
1261 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1262 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1263 }
1264
1265 /* The descriptor type for thin pointer type TYPE. */
1266
1267 static struct type *
1268 thin_descriptor_type (struct type *type)
1269 {
1270 struct type *base_type = desc_base_type (type);
1271 if (base_type == NULL)
1272 return NULL;
1273 if (is_suffix (ada_type_name (base_type), "___XVE"))
1274 return base_type;
1275 else
1276 {
1277 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1278 if (alt_type == NULL)
1279 return base_type;
1280 else
1281 return alt_type;
1282 }
1283 }
1284
1285 /* A pointer to the array data for thin-pointer value VAL. */
1286
1287 static struct value *
1288 thin_data_pntr (struct value *val)
1289 {
1290 struct type *type = value_type (val);
1291 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1292 data_type = lookup_pointer_type (data_type);
1293
1294 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1295 return value_cast (data_type, value_copy (val));
1296 else
1297 return value_from_longest (data_type, value_address (val));
1298 }
1299
1300 /* True iff TYPE indicates a "thick" array pointer type. */
1301
1302 static int
1303 is_thick_pntr (struct type *type)
1304 {
1305 type = desc_base_type (type);
1306 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1307 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1308 }
1309
1310 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1311 pointer to one, the type of its bounds data; otherwise, NULL. */
1312
1313 static struct type *
1314 desc_bounds_type (struct type *type)
1315 {
1316 struct type *r;
1317
1318 type = desc_base_type (type);
1319
1320 if (type == NULL)
1321 return NULL;
1322 else if (is_thin_pntr (type))
1323 {
1324 type = thin_descriptor_type (type);
1325 if (type == NULL)
1326 return NULL;
1327 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1328 if (r != NULL)
1329 return ada_check_typedef (r);
1330 }
1331 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1332 {
1333 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1334 if (r != NULL)
1335 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1336 }
1337 return NULL;
1338 }
1339
1340 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1341 one, a pointer to its bounds data. Otherwise NULL. */
1342
1343 static struct value *
1344 desc_bounds (struct value *arr)
1345 {
1346 struct type *type = ada_check_typedef (value_type (arr));
1347 if (is_thin_pntr (type))
1348 {
1349 struct type *bounds_type =
1350 desc_bounds_type (thin_descriptor_type (type));
1351 LONGEST addr;
1352
1353 if (bounds_type == NULL)
1354 error (_("Bad GNAT array descriptor"));
1355
1356 /* NOTE: The following calculation is not really kosher, but
1357 since desc_type is an XVE-encoded type (and shouldn't be),
1358 the correct calculation is a real pain. FIXME (and fix GCC). */
1359 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1360 addr = value_as_long (arr);
1361 else
1362 addr = value_address (arr);
1363
1364 return
1365 value_from_longest (lookup_pointer_type (bounds_type),
1366 addr - TYPE_LENGTH (bounds_type));
1367 }
1368
1369 else if (is_thick_pntr (type))
1370 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1371 _("Bad GNAT array descriptor"));
1372 else
1373 return NULL;
1374 }
1375
1376 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1377 position of the field containing the address of the bounds data. */
1378
1379 static int
1380 fat_pntr_bounds_bitpos (struct type *type)
1381 {
1382 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1383 }
1384
1385 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1386 size of the field containing the address of the bounds data. */
1387
1388 static int
1389 fat_pntr_bounds_bitsize (struct type *type)
1390 {
1391 type = desc_base_type (type);
1392
1393 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1394 return TYPE_FIELD_BITSIZE (type, 1);
1395 else
1396 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1397 }
1398
1399 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1400 pointer to one, the type of its array data (a array-with-no-bounds type);
1401 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1402 data. */
1403
1404 static struct type *
1405 desc_data_target_type (struct type *type)
1406 {
1407 type = desc_base_type (type);
1408
1409 /* NOTE: The following is bogus; see comment in desc_bounds. */
1410 if (is_thin_pntr (type))
1411 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1412 else if (is_thick_pntr (type))
1413 {
1414 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1415
1416 if (data_type
1417 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1418 return TYPE_TARGET_TYPE (data_type);
1419 }
1420
1421 return NULL;
1422 }
1423
1424 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1425 its array data. */
1426
1427 static struct value *
1428 desc_data (struct value *arr)
1429 {
1430 struct type *type = value_type (arr);
1431 if (is_thin_pntr (type))
1432 return thin_data_pntr (arr);
1433 else if (is_thick_pntr (type))
1434 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1435 _("Bad GNAT array descriptor"));
1436 else
1437 return NULL;
1438 }
1439
1440
1441 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1442 position of the field containing the address of the data. */
1443
1444 static int
1445 fat_pntr_data_bitpos (struct type *type)
1446 {
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1448 }
1449
1450 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1451 size of the field containing the address of the data. */
1452
1453 static int
1454 fat_pntr_data_bitsize (struct type *type)
1455 {
1456 type = desc_base_type (type);
1457
1458 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1459 return TYPE_FIELD_BITSIZE (type, 0);
1460 else
1461 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1462 }
1463
1464 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1465 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
1468 static struct value *
1469 desc_one_bound (struct value *bounds, int i, int which)
1470 {
1471 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1472 _("Bad GNAT array descriptor bounds"));
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit position
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitpos (struct type *type, int i, int which)
1481 {
1482 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1483 }
1484
1485 /* If BOUNDS is an array-bounds structure type, return the bit field size
1486 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1487 bound, if WHICH is 1. The first bound is I=1. */
1488
1489 static int
1490 desc_bound_bitsize (struct type *type, int i, int which)
1491 {
1492 type = desc_base_type (type);
1493
1494 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1495 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1496 else
1497 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1498 }
1499
1500 /* If TYPE is the type of an array-bounds structure, the type of its
1501 Ith bound (numbering from 1). Otherwise, NULL. */
1502
1503 static struct type *
1504 desc_index_type (struct type *type, int i)
1505 {
1506 type = desc_base_type (type);
1507
1508 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1509 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1510 else
1511 return NULL;
1512 }
1513
1514 /* The number of index positions in the array-bounds type TYPE.
1515 Return 0 if TYPE is NULL. */
1516
1517 static int
1518 desc_arity (struct type *type)
1519 {
1520 type = desc_base_type (type);
1521
1522 if (type != NULL)
1523 return TYPE_NFIELDS (type) / 2;
1524 return 0;
1525 }
1526
1527 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1528 an array descriptor type (representing an unconstrained array
1529 type). */
1530
1531 static int
1532 ada_is_direct_array_type (struct type *type)
1533 {
1534 if (type == NULL)
1535 return 0;
1536 type = ada_check_typedef (type);
1537 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1538 || ada_is_array_descriptor_type (type));
1539 }
1540
1541 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1542 * to one. */
1543
1544 static int
1545 ada_is_array_type (struct type *type)
1546 {
1547 while (type != NULL
1548 && (TYPE_CODE (type) == TYPE_CODE_PTR
1549 || TYPE_CODE (type) == TYPE_CODE_REF))
1550 type = TYPE_TARGET_TYPE (type);
1551 return ada_is_direct_array_type (type);
1552 }
1553
1554 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1555
1556 int
1557 ada_is_simple_array_type (struct type *type)
1558 {
1559 if (type == NULL)
1560 return 0;
1561 type = ada_check_typedef (type);
1562 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1563 || (TYPE_CODE (type) == TYPE_CODE_PTR
1564 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1565 }
1566
1567 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1568
1569 int
1570 ada_is_array_descriptor_type (struct type *type)
1571 {
1572 struct type *data_type = desc_data_target_type (type);
1573
1574 if (type == NULL)
1575 return 0;
1576 type = ada_check_typedef (type);
1577 return (data_type != NULL
1578 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1579 && desc_arity (desc_bounds_type (type)) > 0);
1580 }
1581
1582 /* Non-zero iff type is a partially mal-formed GNAT array
1583 descriptor. FIXME: This is to compensate for some problems with
1584 debugging output from GNAT. Re-examine periodically to see if it
1585 is still needed. */
1586
1587 int
1588 ada_is_bogus_array_descriptor (struct type *type)
1589 {
1590 return
1591 type != NULL
1592 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1593 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1594 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1595 && !ada_is_array_descriptor_type (type);
1596 }
1597
1598
1599 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1600 (fat pointer) returns the type of the array data described---specifically,
1601 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1602 in from the descriptor; otherwise, they are left unspecified. If
1603 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1604 returns NULL. The result is simply the type of ARR if ARR is not
1605 a descriptor. */
1606 struct type *
1607 ada_type_of_array (struct value *arr, int bounds)
1608 {
1609 if (ada_is_constrained_packed_array_type (value_type (arr)))
1610 return decode_constrained_packed_array_type (value_type (arr));
1611
1612 if (!ada_is_array_descriptor_type (value_type (arr)))
1613 return value_type (arr);
1614
1615 if (!bounds)
1616 {
1617 struct type *array_type =
1618 ada_check_typedef (desc_data_target_type (value_type (arr)));
1619
1620 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1621 TYPE_FIELD_BITSIZE (array_type, 0) =
1622 decode_packed_array_bitsize (value_type (arr));
1623
1624 return array_type;
1625 }
1626 else
1627 {
1628 struct type *elt_type;
1629 int arity;
1630 struct value *descriptor;
1631
1632 elt_type = ada_array_element_type (value_type (arr), -1);
1633 arity = ada_array_arity (value_type (arr));
1634
1635 if (elt_type == NULL || arity == 0)
1636 return ada_check_typedef (value_type (arr));
1637
1638 descriptor = desc_bounds (arr);
1639 if (value_as_long (descriptor) == 0)
1640 return NULL;
1641 while (arity > 0)
1642 {
1643 struct type *range_type = alloc_type_copy (value_type (arr));
1644 struct type *array_type = alloc_type_copy (value_type (arr));
1645 struct value *low = desc_one_bound (descriptor, arity, 0);
1646 struct value *high = desc_one_bound (descriptor, arity, 1);
1647 arity -= 1;
1648
1649 create_range_type (range_type, value_type (low),
1650 longest_to_int (value_as_long (low)),
1651 longest_to_int (value_as_long (high)));
1652 elt_type = create_array_type (array_type, elt_type, range_type);
1653
1654 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1655 TYPE_FIELD_BITSIZE (elt_type, 0) =
1656 decode_packed_array_bitsize (value_type (arr));
1657 }
1658
1659 return lookup_pointer_type (elt_type);
1660 }
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns either a standard GDB array with bounds set
1665 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1666 GDB array. Returns NULL if ARR is a null fat pointer. */
1667
1668 struct value *
1669 ada_coerce_to_simple_array_ptr (struct value *arr)
1670 {
1671 if (ada_is_array_descriptor_type (value_type (arr)))
1672 {
1673 struct type *arrType = ada_type_of_array (arr, 1);
1674 if (arrType == NULL)
1675 return NULL;
1676 return value_cast (arrType, value_copy (desc_data (arr)));
1677 }
1678 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1679 return decode_constrained_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If ARR does not represent an array, returns ARR unchanged.
1685 Otherwise, returns a standard GDB array describing ARR (which may
1686 be ARR itself if it already is in the proper form). */
1687
1688 static struct value *
1689 ada_coerce_to_simple_array (struct value *arr)
1690 {
1691 if (ada_is_array_descriptor_type (value_type (arr)))
1692 {
1693 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1694 if (arrVal == NULL)
1695 error (_("Bounds unavailable for null array pointer."));
1696 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1697 return value_ind (arrVal);
1698 }
1699 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1700 return decode_constrained_packed_array (arr);
1701 else
1702 return arr;
1703 }
1704
1705 /* If TYPE represents a GNAT array type, return it translated to an
1706 ordinary GDB array type (possibly with BITSIZE fields indicating
1707 packing). For other types, is the identity. */
1708
1709 struct type *
1710 ada_coerce_to_simple_array_type (struct type *type)
1711 {
1712 if (ada_is_constrained_packed_array_type (type))
1713 return decode_constrained_packed_array_type (type);
1714
1715 if (ada_is_array_descriptor_type (type))
1716 return ada_check_typedef (desc_data_target_type (type));
1717
1718 return type;
1719 }
1720
1721 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1722
1723 static int
1724 ada_is_packed_array_type (struct type *type)
1725 {
1726 if (type == NULL)
1727 return 0;
1728 type = desc_base_type (type);
1729 type = ada_check_typedef (type);
1730 return
1731 ada_type_name (type) != NULL
1732 && strstr (ada_type_name (type), "___XP") != NULL;
1733 }
1734
1735 /* Non-zero iff TYPE represents a standard GNAT constrained
1736 packed-array type. */
1737
1738 int
1739 ada_is_constrained_packed_array_type (struct type *type)
1740 {
1741 return ada_is_packed_array_type (type)
1742 && !ada_is_array_descriptor_type (type);
1743 }
1744
1745 /* Non-zero iff TYPE represents an array descriptor for a
1746 unconstrained packed-array type. */
1747
1748 static int
1749 ada_is_unconstrained_packed_array_type (struct type *type)
1750 {
1751 return ada_is_packed_array_type (type)
1752 && ada_is_array_descriptor_type (type);
1753 }
1754
1755 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1756 return the size of its elements in bits. */
1757
1758 static long
1759 decode_packed_array_bitsize (struct type *type)
1760 {
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *tail;
1763 long bits;
1764
1765 if (!raw_name)
1766 raw_name = ada_type_name (desc_base_type (type));
1767
1768 if (!raw_name)
1769 return 0;
1770
1771 tail = strstr (raw_name, "___XP");
1772
1773 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 {
1775 lim_warning
1776 (_("could not understand bit size information on packed array"));
1777 return 0;
1778 }
1779
1780 return bits;
1781 }
1782
1783 /* Given that TYPE is a standard GDB array type with all bounds filled
1784 in, and that the element size of its ultimate scalar constituents
1785 (that is, either its elements, or, if it is an array of arrays, its
1786 elements' elements, etc.) is *ELT_BITS, return an identical type,
1787 but with the bit sizes of its elements (and those of any
1788 constituent arrays) recorded in the BITSIZE components of its
1789 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1790 in bits. */
1791
1792 static struct type *
1793 constrained_packed_array_type (struct type *type, long *elt_bits)
1794 {
1795 struct type *new_elt_type;
1796 struct type *new_type;
1797 LONGEST low_bound, high_bound;
1798
1799 type = ada_check_typedef (type);
1800 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1801 return type;
1802
1803 new_type = alloc_type_copy (type);
1804 new_elt_type =
1805 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where
1828 ada_is_constrained_packed_array_type (TYPE). */
1829
1830 static struct type *
1831 decode_constrained_packed_array_type (struct type *type)
1832 {
1833 struct symbol *sym;
1834 struct block **blocks;
1835 char *raw_name = ada_type_name (ada_check_typedef (type));
1836 char *name;
1837 char *tail;
1838 struct type *shadow_type;
1839 long bits;
1840 int i, n;
1841
1842 if (!raw_name)
1843 raw_name = ada_type_name (desc_base_type (type));
1844
1845 if (!raw_name)
1846 return NULL;
1847
1848 name = (char *) alloca (strlen (raw_name) + 1);
1849 tail = strstr (raw_name, "___XP");
1850 type = desc_base_type (type);
1851
1852 memcpy (name, raw_name, tail - raw_name);
1853 name[tail - raw_name] = '\000';
1854
1855 shadow_type = ada_find_parallel_type_with_name (type, name);
1856
1857 if (shadow_type == NULL)
1858 {
1859 lim_warning (_("could not find bounds information on packed array"));
1860 return NULL;
1861 }
1862 CHECK_TYPEDEF (shadow_type);
1863
1864 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1865 {
1866 lim_warning (_("could not understand bounds information on packed array"));
1867 return NULL;
1868 }
1869
1870 bits = decode_packed_array_bitsize (type);
1871 return constrained_packed_array_type (shadow_type, &bits);
1872 }
1873
1874 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1875 array, returns a simple array that denotes that array. Its type is a
1876 standard GDB array type except that the BITSIZEs of the array
1877 target types are set to the number of bits in each element, and the
1878 type length is set appropriately. */
1879
1880 static struct value *
1881 decode_constrained_packed_array (struct value *arr)
1882 {
1883 struct type *type;
1884
1885 arr = ada_coerce_ref (arr);
1886
1887 /* If our value is a pointer, then dererence it. Make sure that
1888 this operation does not cause the target type to be fixed, as
1889 this would indirectly cause this array to be decoded. The rest
1890 of the routine assumes that the array hasn't been decoded yet,
1891 so we use the basic "value_ind" routine to perform the dereferencing,
1892 as opposed to using "ada_value_ind". */
1893 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1894 arr = value_ind (arr);
1895
1896 type = decode_constrained_packed_array_type (value_type (arr));
1897 if (type == NULL)
1898 {
1899 error (_("can't unpack array"));
1900 return NULL;
1901 }
1902
1903 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1904 && ada_is_modular_type (value_type (arr)))
1905 {
1906 /* This is a (right-justified) modular type representing a packed
1907 array with no wrapper. In order to interpret the value through
1908 the (left-justified) packed array type we just built, we must
1909 first left-justify it. */
1910 int bit_size, bit_pos;
1911 ULONGEST mod;
1912
1913 mod = ada_modulus (value_type (arr)) - 1;
1914 bit_size = 0;
1915 while (mod > 0)
1916 {
1917 bit_size += 1;
1918 mod >>= 1;
1919 }
1920 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1921 arr = ada_value_primitive_packed_val (arr, NULL,
1922 bit_pos / HOST_CHAR_BIT,
1923 bit_pos % HOST_CHAR_BIT,
1924 bit_size,
1925 type);
1926 }
1927
1928 return coerce_unspec_val_to_type (arr, type);
1929 }
1930
1931
1932 /* The value of the element of packed array ARR at the ARITY indices
1933 given in IND. ARR must be a simple array. */
1934
1935 static struct value *
1936 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1937 {
1938 int i;
1939 int bits, elt_off, bit_off;
1940 long elt_total_bit_offset;
1941 struct type *elt_type;
1942 struct value *v;
1943
1944 bits = 0;
1945 elt_total_bit_offset = 0;
1946 elt_type = ada_check_typedef (value_type (arr));
1947 for (i = 0; i < arity; i += 1)
1948 {
1949 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1950 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1951 error
1952 (_("attempt to do packed indexing of something other than a packed array"));
1953 else
1954 {
1955 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1956 LONGEST lowerbound, upperbound;
1957 LONGEST idx;
1958
1959 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1960 {
1961 lim_warning (_("don't know bounds of array"));
1962 lowerbound = upperbound = 0;
1963 }
1964
1965 idx = pos_atr (ind[i]);
1966 if (idx < lowerbound || idx > upperbound)
1967 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1968 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1969 elt_total_bit_offset += (idx - lowerbound) * bits;
1970 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1971 }
1972 }
1973 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1974 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1975
1976 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1977 bits, elt_type);
1978 return v;
1979 }
1980
1981 /* Non-zero iff TYPE includes negative integer values. */
1982
1983 static int
1984 has_negatives (struct type *type)
1985 {
1986 switch (TYPE_CODE (type))
1987 {
1988 default:
1989 return 0;
1990 case TYPE_CODE_INT:
1991 return !TYPE_UNSIGNED (type);
1992 case TYPE_CODE_RANGE:
1993 return TYPE_LOW_BOUND (type) < 0;
1994 }
1995 }
1996
1997
1998 /* Create a new value of type TYPE from the contents of OBJ starting
1999 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2000 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2001 assigning through the result will set the field fetched from.
2002 VALADDR is ignored unless OBJ is NULL, in which case,
2003 VALADDR+OFFSET must address the start of storage containing the
2004 packed value. The value returned in this case is never an lval.
2005 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2006
2007 struct value *
2008 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2009 long offset, int bit_offset, int bit_size,
2010 struct type *type)
2011 {
2012 struct value *v;
2013 int src, /* Index into the source area */
2014 targ, /* Index into the target area */
2015 srcBitsLeft, /* Number of source bits left to move */
2016 nsrc, ntarg, /* Number of source and target bytes */
2017 unusedLS, /* Number of bits in next significant
2018 byte of source that are unused */
2019 accumSize; /* Number of meaningful bits in accum */
2020 unsigned char *bytes; /* First byte containing data to unpack */
2021 unsigned char *unpacked;
2022 unsigned long accum; /* Staging area for bits being transferred */
2023 unsigned char sign;
2024 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2025 /* Transmit bytes from least to most significant; delta is the direction
2026 the indices move. */
2027 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2028
2029 type = ada_check_typedef (type);
2030
2031 if (obj == NULL)
2032 {
2033 v = allocate_value (type);
2034 bytes = (unsigned char *) (valaddr + offset);
2035 }
2036 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2037 {
2038 v = value_at (type,
2039 value_address (obj) + offset);
2040 bytes = (unsigned char *) alloca (len);
2041 read_memory (value_address (v), bytes, len);
2042 }
2043 else
2044 {
2045 v = allocate_value (type);
2046 bytes = (unsigned char *) value_contents (obj) + offset;
2047 }
2048
2049 if (obj != NULL)
2050 {
2051 CORE_ADDR new_addr;
2052 set_value_component_location (v, obj);
2053 new_addr = value_address (obj) + offset;
2054 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2055 set_value_bitsize (v, bit_size);
2056 if (value_bitpos (v) >= HOST_CHAR_BIT)
2057 {
2058 ++new_addr;
2059 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2060 }
2061 set_value_address (v, new_addr);
2062 }
2063 else
2064 set_value_bitsize (v, bit_size);
2065 unpacked = (unsigned char *) value_contents (v);
2066
2067 srcBitsLeft = bit_size;
2068 nsrc = len;
2069 ntarg = TYPE_LENGTH (type);
2070 sign = 0;
2071 if (bit_size == 0)
2072 {
2073 memset (unpacked, 0, TYPE_LENGTH (type));
2074 return v;
2075 }
2076 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2077 {
2078 src = len - 1;
2079 if (has_negatives (type)
2080 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2081 sign = ~0;
2082
2083 unusedLS =
2084 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2085 % HOST_CHAR_BIT;
2086
2087 switch (TYPE_CODE (type))
2088 {
2089 case TYPE_CODE_ARRAY:
2090 case TYPE_CODE_UNION:
2091 case TYPE_CODE_STRUCT:
2092 /* Non-scalar values must be aligned at a byte boundary... */
2093 accumSize =
2094 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2095 /* ... And are placed at the beginning (most-significant) bytes
2096 of the target. */
2097 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2098 ntarg = targ + 1;
2099 break;
2100 default:
2101 accumSize = 0;
2102 targ = TYPE_LENGTH (type) - 1;
2103 break;
2104 }
2105 }
2106 else
2107 {
2108 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2109
2110 src = targ = 0;
2111 unusedLS = bit_offset;
2112 accumSize = 0;
2113
2114 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2115 sign = ~0;
2116 }
2117
2118 accum = 0;
2119 while (nsrc > 0)
2120 {
2121 /* Mask for removing bits of the next source byte that are not
2122 part of the value. */
2123 unsigned int unusedMSMask =
2124 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2125 1;
2126 /* Sign-extend bits for this byte. */
2127 unsigned int signMask = sign & ~unusedMSMask;
2128 accum |=
2129 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2130 accumSize += HOST_CHAR_BIT - unusedLS;
2131 if (accumSize >= HOST_CHAR_BIT)
2132 {
2133 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2134 accumSize -= HOST_CHAR_BIT;
2135 accum >>= HOST_CHAR_BIT;
2136 ntarg -= 1;
2137 targ += delta;
2138 }
2139 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2140 unusedLS = 0;
2141 nsrc -= 1;
2142 src += delta;
2143 }
2144 while (ntarg > 0)
2145 {
2146 accum |= sign << accumSize;
2147 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2148 accumSize -= HOST_CHAR_BIT;
2149 accum >>= HOST_CHAR_BIT;
2150 ntarg -= 1;
2151 targ += delta;
2152 }
2153
2154 return v;
2155 }
2156
2157 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2158 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2159 not overlap. */
2160 static void
2161 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2162 int src_offset, int n, int bits_big_endian_p)
2163 {
2164 unsigned int accum, mask;
2165 int accum_bits, chunk_size;
2166
2167 target += targ_offset / HOST_CHAR_BIT;
2168 targ_offset %= HOST_CHAR_BIT;
2169 source += src_offset / HOST_CHAR_BIT;
2170 src_offset %= HOST_CHAR_BIT;
2171 if (bits_big_endian_p)
2172 {
2173 accum = (unsigned char) *source;
2174 source += 1;
2175 accum_bits = HOST_CHAR_BIT - src_offset;
2176
2177 while (n > 0)
2178 {
2179 int unused_right;
2180 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2181 accum_bits += HOST_CHAR_BIT;
2182 source += 1;
2183 chunk_size = HOST_CHAR_BIT - targ_offset;
2184 if (chunk_size > n)
2185 chunk_size = n;
2186 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2187 mask = ((1 << chunk_size) - 1) << unused_right;
2188 *target =
2189 (*target & ~mask)
2190 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2191 n -= chunk_size;
2192 accum_bits -= chunk_size;
2193 target += 1;
2194 targ_offset = 0;
2195 }
2196 }
2197 else
2198 {
2199 accum = (unsigned char) *source >> src_offset;
2200 source += 1;
2201 accum_bits = HOST_CHAR_BIT - src_offset;
2202
2203 while (n > 0)
2204 {
2205 accum = accum + ((unsigned char) *source << accum_bits);
2206 accum_bits += HOST_CHAR_BIT;
2207 source += 1;
2208 chunk_size = HOST_CHAR_BIT - targ_offset;
2209 if (chunk_size > n)
2210 chunk_size = n;
2211 mask = ((1 << chunk_size) - 1) << targ_offset;
2212 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 accum >>= chunk_size;
2216 target += 1;
2217 targ_offset = 0;
2218 }
2219 }
2220 }
2221
2222 /* Store the contents of FROMVAL into the location of TOVAL.
2223 Return a new value with the location of TOVAL and contents of
2224 FROMVAL. Handles assignment into packed fields that have
2225 floating-point or non-scalar types. */
2226
2227 static struct value *
2228 ada_value_assign (struct value *toval, struct value *fromval)
2229 {
2230 struct type *type = value_type (toval);
2231 int bits = value_bitsize (toval);
2232
2233 toval = ada_coerce_ref (toval);
2234 fromval = ada_coerce_ref (fromval);
2235
2236 if (ada_is_direct_array_type (value_type (toval)))
2237 toval = ada_coerce_to_simple_array (toval);
2238 if (ada_is_direct_array_type (value_type (fromval)))
2239 fromval = ada_coerce_to_simple_array (fromval);
2240
2241 if (!deprecated_value_modifiable (toval))
2242 error (_("Left operand of assignment is not a modifiable lvalue."));
2243
2244 if (VALUE_LVAL (toval) == lval_memory
2245 && bits > 0
2246 && (TYPE_CODE (type) == TYPE_CODE_FLT
2247 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2248 {
2249 int len = (value_bitpos (toval)
2250 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2251 int from_size;
2252 char *buffer = (char *) alloca (len);
2253 struct value *val;
2254 CORE_ADDR to_addr = value_address (toval);
2255
2256 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2257 fromval = value_cast (type, fromval);
2258
2259 read_memory (to_addr, buffer, len);
2260 from_size = value_bitsize (fromval);
2261 if (from_size == 0)
2262 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2263 if (gdbarch_bits_big_endian (get_type_arch (type)))
2264 move_bits (buffer, value_bitpos (toval),
2265 value_contents (fromval), from_size - bits, bits, 1);
2266 else
2267 move_bits (buffer, value_bitpos (toval),
2268 value_contents (fromval), 0, bits, 0);
2269 write_memory (to_addr, buffer, len);
2270 observer_notify_memory_changed (to_addr, len, buffer);
2271
2272 val = value_copy (toval);
2273 memcpy (value_contents_raw (val), value_contents (fromval),
2274 TYPE_LENGTH (type));
2275 deprecated_set_value_type (val, type);
2276
2277 return val;
2278 }
2279
2280 return value_assign (toval, fromval);
2281 }
2282
2283
2284 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2285 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2286 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2287 * COMPONENT, and not the inferior's memory. The current contents
2288 * of COMPONENT are ignored. */
2289 static void
2290 value_assign_to_component (struct value *container, struct value *component,
2291 struct value *val)
2292 {
2293 LONGEST offset_in_container =
2294 (LONGEST) (value_address (component) - value_address (container));
2295 int bit_offset_in_container =
2296 value_bitpos (component) - value_bitpos (container);
2297 int bits;
2298
2299 val = value_cast (value_type (component), val);
2300
2301 if (value_bitsize (component) == 0)
2302 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2303 else
2304 bits = value_bitsize (component);
2305
2306 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2307 move_bits (value_contents_writeable (container) + offset_in_container,
2308 value_bitpos (container) + bit_offset_in_container,
2309 value_contents (val),
2310 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2311 bits, 1);
2312 else
2313 move_bits (value_contents_writeable (container) + offset_in_container,
2314 value_bitpos (container) + bit_offset_in_container,
2315 value_contents (val), 0, bits, 0);
2316 }
2317
2318 /* The value of the element of array ARR at the ARITY indices given in IND.
2319 ARR may be either a simple array, GNAT array descriptor, or pointer
2320 thereto. */
2321
2322 struct value *
2323 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2324 {
2325 int k;
2326 struct value *elt;
2327 struct type *elt_type;
2328
2329 elt = ada_coerce_to_simple_array (arr);
2330
2331 elt_type = ada_check_typedef (value_type (elt));
2332 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2333 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2334 return value_subscript_packed (elt, arity, ind);
2335
2336 for (k = 0; k < arity; k += 1)
2337 {
2338 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2339 error (_("too many subscripts (%d expected)"), k);
2340 elt = value_subscript (elt, pos_atr (ind[k]));
2341 }
2342 return elt;
2343 }
2344
2345 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2346 value of the element of *ARR at the ARITY indices given in
2347 IND. Does not read the entire array into memory. */
2348
2349 static struct value *
2350 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2351 struct value **ind)
2352 {
2353 int k;
2354
2355 for (k = 0; k < arity; k += 1)
2356 {
2357 LONGEST lwb, upb;
2358
2359 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2360 error (_("too many subscripts (%d expected)"), k);
2361 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2362 value_copy (arr));
2363 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2364 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2365 type = TYPE_TARGET_TYPE (type);
2366 }
2367
2368 return value_ind (arr);
2369 }
2370
2371 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2372 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2373 elements starting at index LOW. The lower bound of this array is LOW, as
2374 per Ada rules. */
2375 static struct value *
2376 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2377 int low, int high)
2378 {
2379 CORE_ADDR base = value_as_address (array_ptr)
2380 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2381 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2382 struct type *index_type =
2383 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2384 low, high);
2385 struct type *slice_type =
2386 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2387 return value_at_lazy (slice_type, base);
2388 }
2389
2390
2391 static struct value *
2392 ada_value_slice (struct value *array, int low, int high)
2393 {
2394 struct type *type = value_type (array);
2395 struct type *index_type =
2396 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2397 struct type *slice_type =
2398 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2399 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2400 }
2401
2402 /* If type is a record type in the form of a standard GNAT array
2403 descriptor, returns the number of dimensions for type. If arr is a
2404 simple array, returns the number of "array of"s that prefix its
2405 type designation. Otherwise, returns 0. */
2406
2407 int
2408 ada_array_arity (struct type *type)
2409 {
2410 int arity;
2411
2412 if (type == NULL)
2413 return 0;
2414
2415 type = desc_base_type (type);
2416
2417 arity = 0;
2418 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2419 return desc_arity (desc_bounds_type (type));
2420 else
2421 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2422 {
2423 arity += 1;
2424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2425 }
2426
2427 return arity;
2428 }
2429
2430 /* If TYPE is a record type in the form of a standard GNAT array
2431 descriptor or a simple array type, returns the element type for
2432 TYPE after indexing by NINDICES indices, or by all indices if
2433 NINDICES is -1. Otherwise, returns NULL. */
2434
2435 struct type *
2436 ada_array_element_type (struct type *type, int nindices)
2437 {
2438 type = desc_base_type (type);
2439
2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2441 {
2442 int k;
2443 struct type *p_array_type;
2444
2445 p_array_type = desc_data_target_type (type);
2446
2447 k = ada_array_arity (type);
2448 if (k == 0)
2449 return NULL;
2450
2451 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2452 if (nindices >= 0 && k > nindices)
2453 k = nindices;
2454 while (k > 0 && p_array_type != NULL)
2455 {
2456 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2457 k -= 1;
2458 }
2459 return p_array_type;
2460 }
2461 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2464 {
2465 type = TYPE_TARGET_TYPE (type);
2466 nindices -= 1;
2467 }
2468 return type;
2469 }
2470
2471 return NULL;
2472 }
2473
2474 /* The type of nth index in arrays of given type (n numbering from 1).
2475 Does not examine memory. Throws an error if N is invalid or TYPE
2476 is not an array type. NAME is the name of the Ada attribute being
2477 evaluated ('range, 'first, 'last, or 'length); it is used in building
2478 the error message. */
2479
2480 static struct type *
2481 ada_index_type (struct type *type, int n, const char *name)
2482 {
2483 struct type *result_type;
2484
2485 type = desc_base_type (type);
2486
2487 if (n < 0 || n > ada_array_arity (type))
2488 error (_("invalid dimension number to '%s"), name);
2489
2490 if (ada_is_simple_array_type (type))
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
2495 type = TYPE_TARGET_TYPE (type);
2496 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2499 perhaps stabsread.c would make more sense. */
2500 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = NULL;
2502 }
2503 else
2504 {
2505 result_type = desc_index_type (desc_bounds_type (type), n);
2506 if (result_type == NULL)
2507 error (_("attempt to take bound of something that is not an array"));
2508 }
2509
2510 return result_type;
2511 }
2512
2513 /* Given that arr is an array type, returns the lower bound of the
2514 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2515 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2516 array-descriptor type. It works for other arrays with bounds supplied
2517 by run-time quantities other than discriminants. */
2518
2519 static LONGEST
2520 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2521 {
2522 struct type *type, *elt_type, *index_type_desc, *index_type;
2523 int i;
2524
2525 gdb_assert (which == 0 || which == 1);
2526
2527 if (ada_is_constrained_packed_array_type (arr_type))
2528 arr_type = decode_constrained_packed_array_type (arr_type);
2529
2530 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2531 return (LONGEST) - which;
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
2538 elt_type = type;
2539 for (i = n; i > 1; i--)
2540 elt_type = TYPE_TARGET_TYPE (type);
2541
2542 index_type_desc = ada_find_parallel_type (type, "___XA");
2543 if (index_type_desc != NULL)
2544 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2545 NULL, TYPE_INDEX_TYPE (elt_type));
2546 else
2547 index_type = TYPE_INDEX_TYPE (elt_type);
2548
2549 return
2550 (LONGEST) (which == 0
2551 ? ada_discrete_type_low_bound (index_type)
2552 : ada_discrete_type_high_bound (index_type));
2553 }
2554
2555 /* Given that arr is an array value, returns the lower bound of the
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
2558 supplied by run-time quantities other than discriminants. */
2559
2560 static LONGEST
2561 ada_array_bound (struct value *arr, int n, int which)
2562 {
2563 struct type *arr_type = value_type (arr);
2564
2565 if (ada_is_constrained_packed_array_type (arr_type))
2566 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2567 else if (ada_is_simple_array_type (arr_type))
2568 return ada_array_bound_from_type (arr_type, n, which);
2569 else
2570 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2571 }
2572
2573 /* Given that arr is an array value, returns the length of the
2574 nth index. This routine will also work for arrays with bounds
2575 supplied by run-time quantities other than discriminants.
2576 Does not work for arrays indexed by enumeration types with representation
2577 clauses at the moment. */
2578
2579 static LONGEST
2580 ada_array_length (struct value *arr, int n)
2581 {
2582 struct type *arr_type = ada_check_typedef (value_type (arr));
2583
2584 if (ada_is_constrained_packed_array_type (arr_type))
2585 return ada_array_length (decode_constrained_packed_array (arr), n);
2586
2587 if (ada_is_simple_array_type (arr_type))
2588 return (ada_array_bound_from_type (arr_type, n, 1)
2589 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2590 else
2591 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2592 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2593 }
2594
2595 /* An empty array whose type is that of ARR_TYPE (an array type),
2596 with bounds LOW to LOW-1. */
2597
2598 static struct value *
2599 empty_array (struct type *arr_type, int low)
2600 {
2601 struct type *index_type =
2602 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 low, low - 1);
2604 struct type *elt_type = ada_array_element_type (arr_type, 1);
2605 return allocate_value (create_array_type (NULL, elt_type, index_type));
2606 }
2607 \f
2608
2609 /* Name resolution */
2610
2611 /* The "decoded" name for the user-definable Ada operator corresponding
2612 to OP. */
2613
2614 static const char *
2615 ada_decoded_op_name (enum exp_opcode op)
2616 {
2617 int i;
2618
2619 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2620 {
2621 if (ada_opname_table[i].op == op)
2622 return ada_opname_table[i].decoded;
2623 }
2624 error (_("Could not find operator name for opcode"));
2625 }
2626
2627
2628 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2629 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2630 undefined namespace) and converts operators that are
2631 user-defined into appropriate function calls. If CONTEXT_TYPE is
2632 non-null, it provides a preferred result type [at the moment, only
2633 type void has any effect---causing procedures to be preferred over
2634 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2635 return type is preferred. May change (expand) *EXP. */
2636
2637 static void
2638 resolve (struct expression **expp, int void_context_p)
2639 {
2640 struct type *context_type = NULL;
2641 int pc = 0;
2642
2643 if (void_context_p)
2644 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2645
2646 resolve_subexp (expp, &pc, 1, context_type);
2647 }
2648
2649 /* Resolve the operator of the subexpression beginning at
2650 position *POS of *EXPP. "Resolving" consists of replacing
2651 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2652 with their resolutions, replacing built-in operators with
2653 function calls to user-defined operators, where appropriate, and,
2654 when DEPROCEDURE_P is non-zero, converting function-valued variables
2655 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2656 are as in ada_resolve, above. */
2657
2658 static struct value *
2659 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2660 struct type *context_type)
2661 {
2662 int pc = *pos;
2663 int i;
2664 struct expression *exp; /* Convenience: == *expp. */
2665 enum exp_opcode op = (*expp)->elts[pc].opcode;
2666 struct value **argvec; /* Vector of operand types (alloca'ed). */
2667 int nargs; /* Number of operands. */
2668 int oplen;
2669
2670 argvec = NULL;
2671 nargs = 0;
2672 exp = *expp;
2673
2674 /* Pass one: resolve operands, saving their types and updating *pos,
2675 if needed. */
2676 switch (op)
2677 {
2678 case OP_FUNCALL:
2679 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2680 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2681 *pos += 7;
2682 else
2683 {
2684 *pos += 3;
2685 resolve_subexp (expp, pos, 0, NULL);
2686 }
2687 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2688 break;
2689
2690 case UNOP_ADDR:
2691 *pos += 1;
2692 resolve_subexp (expp, pos, 0, NULL);
2693 break;
2694
2695 case UNOP_QUAL:
2696 *pos += 3;
2697 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2698 break;
2699
2700 case OP_ATR_MODULUS:
2701 case OP_ATR_SIZE:
2702 case OP_ATR_TAG:
2703 case OP_ATR_FIRST:
2704 case OP_ATR_LAST:
2705 case OP_ATR_LENGTH:
2706 case OP_ATR_POS:
2707 case OP_ATR_VAL:
2708 case OP_ATR_MIN:
2709 case OP_ATR_MAX:
2710 case TERNOP_IN_RANGE:
2711 case BINOP_IN_BOUNDS:
2712 case UNOP_IN_RANGE:
2713 case OP_AGGREGATE:
2714 case OP_OTHERS:
2715 case OP_CHOICES:
2716 case OP_POSITIONAL:
2717 case OP_DISCRETE_RANGE:
2718 case OP_NAME:
2719 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2720 *pos += oplen;
2721 break;
2722
2723 case BINOP_ASSIGN:
2724 {
2725 struct value *arg1;
2726
2727 *pos += 1;
2728 arg1 = resolve_subexp (expp, pos, 0, NULL);
2729 if (arg1 == NULL)
2730 resolve_subexp (expp, pos, 1, NULL);
2731 else
2732 resolve_subexp (expp, pos, 1, value_type (arg1));
2733 break;
2734 }
2735
2736 case UNOP_CAST:
2737 *pos += 3;
2738 nargs = 1;
2739 break;
2740
2741 case BINOP_ADD:
2742 case BINOP_SUB:
2743 case BINOP_MUL:
2744 case BINOP_DIV:
2745 case BINOP_REM:
2746 case BINOP_MOD:
2747 case BINOP_EXP:
2748 case BINOP_CONCAT:
2749 case BINOP_LOGICAL_AND:
2750 case BINOP_LOGICAL_OR:
2751 case BINOP_BITWISE_AND:
2752 case BINOP_BITWISE_IOR:
2753 case BINOP_BITWISE_XOR:
2754
2755 case BINOP_EQUAL:
2756 case BINOP_NOTEQUAL:
2757 case BINOP_LESS:
2758 case BINOP_GTR:
2759 case BINOP_LEQ:
2760 case BINOP_GEQ:
2761
2762 case BINOP_REPEAT:
2763 case BINOP_SUBSCRIPT:
2764 case BINOP_COMMA:
2765 *pos += 1;
2766 nargs = 2;
2767 break;
2768
2769 case UNOP_NEG:
2770 case UNOP_PLUS:
2771 case UNOP_LOGICAL_NOT:
2772 case UNOP_ABS:
2773 case UNOP_IND:
2774 *pos += 1;
2775 nargs = 1;
2776 break;
2777
2778 case OP_LONG:
2779 case OP_DOUBLE:
2780 case OP_VAR_VALUE:
2781 *pos += 4;
2782 break;
2783
2784 case OP_TYPE:
2785 case OP_BOOL:
2786 case OP_LAST:
2787 case OP_INTERNALVAR:
2788 *pos += 3;
2789 break;
2790
2791 case UNOP_MEMVAL:
2792 *pos += 3;
2793 nargs = 1;
2794 break;
2795
2796 case OP_REGISTER:
2797 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2798 break;
2799
2800 case STRUCTOP_STRUCT:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 nargs = 1;
2803 break;
2804
2805 case TERNOP_SLICE:
2806 *pos += 1;
2807 nargs = 3;
2808 break;
2809
2810 case OP_STRING:
2811 break;
2812
2813 default:
2814 error (_("Unexpected operator during name resolution"));
2815 }
2816
2817 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2818 for (i = 0; i < nargs; i += 1)
2819 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2820 argvec[i] = NULL;
2821 exp = *expp;
2822
2823 /* Pass two: perform any resolution on principal operator. */
2824 switch (op)
2825 {
2826 default:
2827 break;
2828
2829 case OP_VAR_VALUE:
2830 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2831 {
2832 struct ada_symbol_info *candidates;
2833 int n_candidates;
2834
2835 n_candidates =
2836 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2837 (exp->elts[pc + 2].symbol),
2838 exp->elts[pc + 1].block, VAR_DOMAIN,
2839 &candidates);
2840
2841 if (n_candidates > 1)
2842 {
2843 /* Types tend to get re-introduced locally, so if there
2844 are any local symbols that are not types, first filter
2845 out all types. */
2846 int j;
2847 for (j = 0; j < n_candidates; j += 1)
2848 switch (SYMBOL_CLASS (candidates[j].sym))
2849 {
2850 case LOC_REGISTER:
2851 case LOC_ARG:
2852 case LOC_REF_ARG:
2853 case LOC_REGPARM_ADDR:
2854 case LOC_LOCAL:
2855 case LOC_COMPUTED:
2856 goto FoundNonType;
2857 default:
2858 break;
2859 }
2860 FoundNonType:
2861 if (j < n_candidates)
2862 {
2863 j = 0;
2864 while (j < n_candidates)
2865 {
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2867 {
2868 candidates[j] = candidates[n_candidates - 1];
2869 n_candidates -= 1;
2870 }
2871 else
2872 j += 1;
2873 }
2874 }
2875 }
2876
2877 if (n_candidates == 0)
2878 error (_("No definition found for %s"),
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2881 i = 0;
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2884 {
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2888 context_type);
2889 if (i < 0)
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2892 }
2893 else
2894 {
2895 printf_filtered (_("Multiple matches for %s\n"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2898 i = 0;
2899 }
2900
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2906 }
2907
2908 if (deprocedure_p
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2910 == TYPE_CODE_FUNC))
2911 {
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2915 exp = *expp;
2916 }
2917 break;
2918
2919 case OP_FUNCALL:
2920 {
2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2931 &candidates);
2932 if (n_candidates == 1)
2933 i = 0;
2934 else
2935 {
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2938 argvec, nargs,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2940 context_type);
2941 if (i < 0)
2942 error (_("Could not find a match for %s"),
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2944 }
2945
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2951 }
2952 }
2953 break;
2954 case BINOP_ADD:
2955 case BINOP_SUB:
2956 case BINOP_MUL:
2957 case BINOP_DIV:
2958 case BINOP_REM:
2959 case BINOP_MOD:
2960 case BINOP_CONCAT:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970 case BINOP_EXP:
2971 case UNOP_NEG:
2972 case UNOP_PLUS:
2973 case UNOP_LOGICAL_NOT:
2974 case UNOP_ABS:
2975 if (possible_user_operator_p (op, argvec))
2976 {
2977 struct ada_symbol_info *candidates;
2978 int n_candidates;
2979
2980 n_candidates =
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2983 &candidates);
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2985 ada_decoded_op_name (op), NULL);
2986 if (i < 0)
2987 break;
2988
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
2991 exp = *expp;
2992 }
2993 break;
2994
2995 case OP_TYPE:
2996 case OP_REGISTER:
2997 return NULL;
2998 }
2999
3000 *pos = pc;
3001 return evaluate_subexp_type (exp, pos);
3002 }
3003
3004 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3005 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3006 a non-pointer. */
3007 /* The term "match" here is rather loose. The match is heuristic and
3008 liberal. */
3009
3010 static int
3011 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3012 {
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
3015
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3020
3021 switch (TYPE_CODE (ftype))
3022 {
3023 default:
3024 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3025 case TYPE_CODE_PTR:
3026 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3027 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3028 TYPE_TARGET_TYPE (atype), 0);
3029 else
3030 return (may_deref
3031 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3032 case TYPE_CODE_INT:
3033 case TYPE_CODE_ENUM:
3034 case TYPE_CODE_RANGE:
3035 switch (TYPE_CODE (atype))
3036 {
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 return 1;
3041 default:
3042 return 0;
3043 }
3044
3045 case TYPE_CODE_ARRAY:
3046 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3047 || ada_is_array_descriptor_type (atype));
3048
3049 case TYPE_CODE_STRUCT:
3050 if (ada_is_array_descriptor_type (ftype))
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
3053 else
3054 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3055 && !ada_is_array_descriptor_type (atype));
3056
3057 case TYPE_CODE_UNION:
3058 case TYPE_CODE_FLT:
3059 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3060 }
3061 }
3062
3063 /* Return non-zero if the formals of FUNC "sufficiently match" the
3064 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3065 may also be an enumeral, in which case it is treated as a 0-
3066 argument function. */
3067
3068 static int
3069 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3070 {
3071 int i;
3072 struct type *func_type = SYMBOL_TYPE (func);
3073
3074 if (SYMBOL_CLASS (func) == LOC_CONST
3075 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3076 return (n_actuals == 0);
3077 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3078 return 0;
3079
3080 if (TYPE_NFIELDS (func_type) != n_actuals)
3081 return 0;
3082
3083 for (i = 0; i < n_actuals; i += 1)
3084 {
3085 if (actuals[i] == NULL)
3086 return 0;
3087 else
3088 {
3089 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3090 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3091
3092 if (!ada_type_match (ftype, atype, 1))
3093 return 0;
3094 }
3095 }
3096 return 1;
3097 }
3098
3099 /* False iff function type FUNC_TYPE definitely does not produce a value
3100 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3101 FUNC_TYPE is not a valid function type with a non-null return type
3102 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3103
3104 static int
3105 return_match (struct type *func_type, struct type *context_type)
3106 {
3107 struct type *return_type;
3108
3109 if (func_type == NULL)
3110 return 1;
3111
3112 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3113 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3114 else
3115 return_type = base_type (func_type);
3116 if (return_type == NULL)
3117 return 1;
3118
3119 context_type = base_type (context_type);
3120
3121 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3122 return context_type == NULL || return_type == context_type;
3123 else if (context_type == NULL)
3124 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3125 else
3126 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3127 }
3128
3129
3130 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3131 function (if any) that matches the types of the NARGS arguments in
3132 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3133 that returns that type, then eliminate matches that don't. If
3134 CONTEXT_TYPE is void and there is at least one match that does not
3135 return void, eliminate all matches that do.
3136
3137 Asks the user if there is more than one match remaining. Returns -1
3138 if there is no such symbol or none is selected. NAME is used
3139 solely for messages. May re-arrange and modify SYMS in
3140 the process; the index returned is for the modified vector. */
3141
3142 static int
3143 ada_resolve_function (struct ada_symbol_info syms[],
3144 int nsyms, struct value **args, int nargs,
3145 const char *name, struct type *context_type)
3146 {
3147 int fallback;
3148 int k;
3149 int m; /* Number of hits */
3150
3151 m = 0;
3152 /* In the first pass of the loop, we only accept functions matching
3153 context_type. If none are found, we add a second pass of the loop
3154 where every function is accepted. */
3155 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3156 {
3157 for (k = 0; k < nsyms; k += 1)
3158 {
3159 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3160
3161 if (ada_args_match (syms[k].sym, args, nargs)
3162 && (fallback || return_match (type, context_type)))
3163 {
3164 syms[m] = syms[k];
3165 m += 1;
3166 }
3167 }
3168 }
3169
3170 if (m == 0)
3171 return -1;
3172 else if (m > 1)
3173 {
3174 printf_filtered (_("Multiple matches for %s\n"), name);
3175 user_select_syms (syms, m, 1);
3176 return 0;
3177 }
3178 return 0;
3179 }
3180
3181 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3182 in a listing of choices during disambiguation (see sort_choices, below).
3183 The idea is that overloadings of a subprogram name from the
3184 same package should sort in their source order. We settle for ordering
3185 such symbols by their trailing number (__N or $N). */
3186
3187 static int
3188 encoded_ordered_before (char *N0, char *N1)
3189 {
3190 if (N1 == NULL)
3191 return 0;
3192 else if (N0 == NULL)
3193 return 1;
3194 else
3195 {
3196 int k0, k1;
3197 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3198 ;
3199 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3200 ;
3201 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3202 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3203 {
3204 int n0, n1;
3205 n0 = k0;
3206 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3207 n0 -= 1;
3208 n1 = k1;
3209 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3210 n1 -= 1;
3211 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3212 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3213 }
3214 return (strcmp (N0, N1) < 0);
3215 }
3216 }
3217
3218 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3219 encoded names. */
3220
3221 static void
3222 sort_choices (struct ada_symbol_info syms[], int nsyms)
3223 {
3224 int i;
3225 for (i = 1; i < nsyms; i += 1)
3226 {
3227 struct ada_symbol_info sym = syms[i];
3228 int j;
3229
3230 for (j = i - 1; j >= 0; j -= 1)
3231 {
3232 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3233 SYMBOL_LINKAGE_NAME (sym.sym)))
3234 break;
3235 syms[j + 1] = syms[j];
3236 }
3237 syms[j + 1] = sym;
3238 }
3239 }
3240
3241 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3242 by asking the user (if necessary), returning the number selected,
3243 and setting the first elements of SYMS items. Error if no symbols
3244 selected. */
3245
3246 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3247 to be re-integrated one of these days. */
3248
3249 int
3250 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3251 {
3252 int i;
3253 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3254 int n_chosen;
3255 int first_choice = (max_results == 1) ? 1 : 2;
3256 const char *select_mode = multiple_symbols_select_mode ();
3257
3258 if (max_results < 1)
3259 error (_("Request to select 0 symbols!"));
3260 if (nsyms <= 1)
3261 return nsyms;
3262
3263 if (select_mode == multiple_symbols_cancel)
3264 error (_("\
3265 canceled because the command is ambiguous\n\
3266 See set/show multiple-symbol."));
3267
3268 /* If select_mode is "all", then return all possible symbols.
3269 Only do that if more than one symbol can be selected, of course.
3270 Otherwise, display the menu as usual. */
3271 if (select_mode == multiple_symbols_all && max_results > 1)
3272 return nsyms;
3273
3274 printf_unfiltered (_("[0] cancel\n"));
3275 if (max_results > 1)
3276 printf_unfiltered (_("[1] all\n"));
3277
3278 sort_choices (syms, nsyms);
3279
3280 for (i = 0; i < nsyms; i += 1)
3281 {
3282 if (syms[i].sym == NULL)
3283 continue;
3284
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3286 {
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3293 sal.line);
3294 else
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
3298 continue;
3299 }
3300 else
3301 {
3302 int is_enumeral =
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3306 struct symtab *symtab = syms[i].sym->symtab;
3307
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3310 i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3315 {
3316 printf_unfiltered (("[%d] "), i + first_choice);
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3318 gdb_stdout, -1, 0);
3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3321 }
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename);
3329 else
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3335 }
3336 }
3337
3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3339 "overload-choice");
3340
3341 for (i = 0; i < n_chosen; i += 1)
3342 syms[i] = syms[chosen[i]];
3343
3344 return n_chosen;
3345 }
3346
3347 /* Read and validate a set of numeric choices from the user in the
3348 range 0 .. N_CHOICES-1. Place the results in increasing
3349 order in CHOICES[0 .. N-1], and return N.
3350
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3353
3354 + A choice of 0 means to cancel the selection, throwing an error.
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3357
3358 The user is not allowed to choose more than MAX_RESULTS values.
3359
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
3361 prompts (for use with the -f switch). */
3362
3363 int
3364 get_selections (int *choices, int n_choices, int max_results,
3365 int is_all_choice, char *annotation_suffix)
3366 {
3367 char *args;
3368 char *prompt;
3369 int n_chosen;
3370 int first_choice = is_all_choice ? 2 : 1;
3371
3372 prompt = getenv ("PS2");
3373 if (prompt == NULL)
3374 prompt = "> ";
3375
3376 args = command_line_input (prompt, 0, annotation_suffix);
3377
3378 if (args == NULL)
3379 error_no_arg (_("one or more choice numbers"));
3380
3381 n_chosen = 0;
3382
3383 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3384 order, as given in args. Choices are validated. */
3385 while (1)
3386 {
3387 char *args2;
3388 int choice, j;
3389
3390 while (isspace (*args))
3391 args += 1;
3392 if (*args == '\0' && n_chosen == 0)
3393 error_no_arg (_("one or more choice numbers"));
3394 else if (*args == '\0')
3395 break;
3396
3397 choice = strtol (args, &args2, 10);
3398 if (args == args2 || choice < 0
3399 || choice > n_choices + first_choice - 1)
3400 error (_("Argument must be choice number"));
3401 args = args2;
3402
3403 if (choice == 0)
3404 error (_("cancelled"));
3405
3406 if (choice < first_choice)
3407 {
3408 n_chosen = n_choices;
3409 for (j = 0; j < n_choices; j += 1)
3410 choices[j] = j;
3411 break;
3412 }
3413 choice -= first_choice;
3414
3415 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3416 {
3417 }
3418
3419 if (j < 0 || choice != choices[j])
3420 {
3421 int k;
3422 for (k = n_chosen - 1; k > j; k -= 1)
3423 choices[k + 1] = choices[k];
3424 choices[j + 1] = choice;
3425 n_chosen += 1;
3426 }
3427 }
3428
3429 if (n_chosen > max_results)
3430 error (_("Select no more than %d of the above"), max_results);
3431
3432 return n_chosen;
3433 }
3434
3435 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3436 on the function identified by SYM and BLOCK, and taking NARGS
3437 arguments. Update *EXPP as needed to hold more space. */
3438
3439 static void
3440 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3441 int oplen, struct symbol *sym,
3442 struct block *block)
3443 {
3444 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3445 symbol, -oplen for operator being replaced). */
3446 struct expression *newexp = (struct expression *)
3447 xmalloc (sizeof (struct expression)
3448 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3449 struct expression *exp = *expp;
3450
3451 newexp->nelts = exp->nelts + 7 - oplen;
3452 newexp->language_defn = exp->language_defn;
3453 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3454 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3455 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3456
3457 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3458 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3459
3460 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3461 newexp->elts[pc + 4].block = block;
3462 newexp->elts[pc + 5].symbol = sym;
3463
3464 *expp = newexp;
3465 xfree (exp);
3466 }
3467
3468 /* Type-class predicates */
3469
3470 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3471 or FLOAT). */
3472
3473 static int
3474 numeric_type_p (struct type *type)
3475 {
3476 if (type == NULL)
3477 return 0;
3478 else
3479 {
3480 switch (TYPE_CODE (type))
3481 {
3482 case TYPE_CODE_INT:
3483 case TYPE_CODE_FLT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
3491 }
3492 }
3493
3494 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3495
3496 static int
3497 integer_type_p (struct type *type)
3498 {
3499 if (type == NULL)
3500 return 0;
3501 else
3502 {
3503 switch (TYPE_CODE (type))
3504 {
3505 case TYPE_CODE_INT:
3506 return 1;
3507 case TYPE_CODE_RANGE:
3508 return (type == TYPE_TARGET_TYPE (type)
3509 || integer_type_p (TYPE_TARGET_TYPE (type)));
3510 default:
3511 return 0;
3512 }
3513 }
3514 }
3515
3516 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3517
3518 static int
3519 scalar_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535 }
3536 }
3537
3538 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3539
3540 static int
3541 discrete_type_p (struct type *type)
3542 {
3543 if (type == NULL)
3544 return 0;
3545 else
3546 {
3547 switch (TYPE_CODE (type))
3548 {
3549 case TYPE_CODE_INT:
3550 case TYPE_CODE_RANGE:
3551 case TYPE_CODE_ENUM:
3552 case TYPE_CODE_BOOL:
3553 return 1;
3554 default:
3555 return 0;
3556 }
3557 }
3558 }
3559
3560 /* Returns non-zero if OP with operands in the vector ARGS could be
3561 a user-defined function. Errs on the side of pre-defined operators
3562 (i.e., result 0). */
3563
3564 static int
3565 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3566 {
3567 struct type *type0 =
3568 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3569 struct type *type1 =
3570 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3571
3572 if (type0 == NULL)
3573 return 0;
3574
3575 switch (op)
3576 {
3577 default:
3578 return 0;
3579
3580 case BINOP_ADD:
3581 case BINOP_SUB:
3582 case BINOP_MUL:
3583 case BINOP_DIV:
3584 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3585
3586 case BINOP_REM:
3587 case BINOP_MOD:
3588 case BINOP_BITWISE_AND:
3589 case BINOP_BITWISE_IOR:
3590 case BINOP_BITWISE_XOR:
3591 return (!(integer_type_p (type0) && integer_type_p (type1)));
3592
3593 case BINOP_EQUAL:
3594 case BINOP_NOTEQUAL:
3595 case BINOP_LESS:
3596 case BINOP_GTR:
3597 case BINOP_LEQ:
3598 case BINOP_GEQ:
3599 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3600
3601 case BINOP_CONCAT:
3602 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3603
3604 case BINOP_EXP:
3605 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3606
3607 case UNOP_NEG:
3608 case UNOP_PLUS:
3609 case UNOP_LOGICAL_NOT:
3610 case UNOP_ABS:
3611 return (!numeric_type_p (type0));
3612
3613 }
3614 }
3615 \f
3616 /* Renaming */
3617
3618 /* NOTES:
3619
3620 1. In the following, we assume that a renaming type's name may
3621 have an ___XD suffix. It would be nice if this went away at some
3622 point.
3623 2. We handle both the (old) purely type-based representation of
3624 renamings and the (new) variable-based encoding. At some point,
3625 it is devoutly to be hoped that the former goes away
3626 (FIXME: hilfinger-2007-07-09).
3627 3. Subprogram renamings are not implemented, although the XRS
3628 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3629
3630 /* If SYM encodes a renaming,
3631
3632 <renaming> renames <renamed entity>,
3633
3634 sets *LEN to the length of the renamed entity's name,
3635 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3636 the string describing the subcomponent selected from the renamed
3637 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3638 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3639 are undefined). Otherwise, returns a value indicating the category
3640 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3641 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3642 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3643 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3644 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3645 may be NULL, in which case they are not assigned.
3646
3647 [Currently, however, GCC does not generate subprogram renamings.] */
3648
3649 enum ada_renaming_category
3650 ada_parse_renaming (struct symbol *sym,
3651 const char **renamed_entity, int *len,
3652 const char **renaming_expr)
3653 {
3654 enum ada_renaming_category kind;
3655 const char *info;
3656 const char *suffix;
3657
3658 if (sym == NULL)
3659 return ADA_NOT_RENAMING;
3660 switch (SYMBOL_CLASS (sym))
3661 {
3662 default:
3663 return ADA_NOT_RENAMING;
3664 case LOC_TYPEDEF:
3665 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3666 renamed_entity, len, renaming_expr);
3667 case LOC_LOCAL:
3668 case LOC_STATIC:
3669 case LOC_COMPUTED:
3670 case LOC_OPTIMIZED_OUT:
3671 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3672 if (info == NULL)
3673 return ADA_NOT_RENAMING;
3674 switch (info[5])
3675 {
3676 case '_':
3677 kind = ADA_OBJECT_RENAMING;
3678 info += 6;
3679 break;
3680 case 'E':
3681 kind = ADA_EXCEPTION_RENAMING;
3682 info += 7;
3683 break;
3684 case 'P':
3685 kind = ADA_PACKAGE_RENAMING;
3686 info += 7;
3687 break;
3688 case 'S':
3689 kind = ADA_SUBPROGRAM_RENAMING;
3690 info += 7;
3691 break;
3692 default:
3693 return ADA_NOT_RENAMING;
3694 }
3695 }
3696
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (suffix == NULL || suffix == info)
3701 return ADA_NOT_RENAMING;
3702 if (len != NULL)
3703 *len = strlen (info) - strlen (suffix);
3704 suffix += 5;
3705 if (renaming_expr != NULL)
3706 *renaming_expr = suffix;
3707 return kind;
3708 }
3709
3710 /* Assuming TYPE encodes a renaming according to the old encoding in
3711 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3712 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3713 ADA_NOT_RENAMING otherwise. */
3714 static enum ada_renaming_category
3715 parse_old_style_renaming (struct type *type,
3716 const char **renamed_entity, int *len,
3717 const char **renaming_expr)
3718 {
3719 enum ada_renaming_category kind;
3720 const char *name;
3721 const char *info;
3722 const char *suffix;
3723
3724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3725 || TYPE_NFIELDS (type) != 1)
3726 return ADA_NOT_RENAMING;
3727
3728 name = type_name_no_tag (type);
3729 if (name == NULL)
3730 return ADA_NOT_RENAMING;
3731
3732 name = strstr (name, "___XR");
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735 switch (name[5])
3736 {
3737 case '\0':
3738 case '_':
3739 kind = ADA_OBJECT_RENAMING;
3740 break;
3741 case 'E':
3742 kind = ADA_EXCEPTION_RENAMING;
3743 break;
3744 case 'P':
3745 kind = ADA_PACKAGE_RENAMING;
3746 break;
3747 case 'S':
3748 kind = ADA_SUBPROGRAM_RENAMING;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753
3754 info = TYPE_FIELD_NAME (type, 0);
3755 if (info == NULL)
3756 return ADA_NOT_RENAMING;
3757 if (renamed_entity != NULL)
3758 *renamed_entity = info;
3759 suffix = strstr (info, "___XE");
3760 if (renaming_expr != NULL)
3761 *renaming_expr = suffix + 5;
3762 if (suffix == NULL || suffix == info)
3763 return ADA_NOT_RENAMING;
3764 if (len != NULL)
3765 *len = suffix - info;
3766 return kind;
3767 }
3768
3769 \f
3770
3771 /* Evaluation: Function Calls */
3772
3773 /* Return an lvalue containing the value VAL. This is the identity on
3774 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3775 on the stack, using and updating *SP as the stack pointer, and
3776 returning an lvalue whose value_address points to the copy. */
3777
3778 static struct value *
3779 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3780 {
3781 if (! VALUE_LVAL (val))
3782 {
3783 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3784
3785 /* The following is taken from the structure-return code in
3786 call_function_by_hand. FIXME: Therefore, some refactoring seems
3787 indicated. */
3788 if (gdbarch_inner_than (gdbarch, 1, 2))
3789 {
3790 /* Stack grows downward. Align SP and value_address (val) after
3791 reserving sufficient space. */
3792 *sp -= len;
3793 if (gdbarch_frame_align_p (gdbarch))
3794 *sp = gdbarch_frame_align (gdbarch, *sp);
3795 set_value_address (val, *sp);
3796 }
3797 else
3798 {
3799 /* Stack grows upward. Align the frame, allocate space, and
3800 then again, re-align the frame. */
3801 if (gdbarch_frame_align_p (gdbarch))
3802 *sp = gdbarch_frame_align (gdbarch, *sp);
3803 set_value_address (val, *sp);
3804 *sp += len;
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
3807 }
3808 VALUE_LVAL (val) = lval_memory;
3809
3810 write_memory (value_address (val), value_contents_raw (val), len);
3811 }
3812
3813 return val;
3814 }
3815
3816 /* Return the value ACTUAL, converted to be an appropriate value for a
3817 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3818 allocating any necessary descriptors (fat pointers), or copies of
3819 values not residing in memory, updating it as needed. */
3820
3821 struct value *
3822 ada_convert_actual (struct value *actual, struct type *formal_type0,
3823 struct gdbarch *gdbarch, CORE_ADDR *sp)
3824 {
3825 struct type *actual_type = ada_check_typedef (value_type (actual));
3826 struct type *formal_type = ada_check_typedef (formal_type0);
3827 struct type *formal_target =
3828 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3829 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3830 struct type *actual_target =
3831 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3832 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3833
3834 if (ada_is_array_descriptor_type (formal_target)
3835 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3836 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3837 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3838 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3839 {
3840 struct value *result;
3841 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3842 && ada_is_array_descriptor_type (actual_target))
3843 result = desc_data (actual);
3844 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3845 {
3846 if (VALUE_LVAL (actual) != lval_memory)
3847 {
3848 struct value *val;
3849 actual_type = ada_check_typedef (value_type (actual));
3850 val = allocate_value (actual_type);
3851 memcpy ((char *) value_contents_raw (val),
3852 (char *) value_contents (actual),
3853 TYPE_LENGTH (actual_type));
3854 actual = ensure_lval (val, gdbarch, sp);
3855 }
3856 result = value_addr (actual);
3857 }
3858 else
3859 return actual;
3860 return value_cast_pointers (formal_type, result);
3861 }
3862 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3863 return ada_value_ind (actual);
3864
3865 return actual;
3866 }
3867
3868
3869 /* Push a descriptor of type TYPE for array value ARR on the stack at
3870 *SP, updating *SP to reflect the new descriptor. Return either
3871 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3872 to-descriptor type rather than a descriptor type), a struct value *
3873 representing a pointer to this descriptor. */
3874
3875 static struct value *
3876 make_array_descriptor (struct type *type, struct value *arr,
3877 struct gdbarch *gdbarch, CORE_ADDR *sp)
3878 {
3879 struct type *bounds_type = desc_bounds_type (type);
3880 struct type *desc_type = desc_base_type (type);
3881 struct value *descriptor = allocate_value (desc_type);
3882 struct value *bounds = allocate_value (bounds_type);
3883 int i;
3884
3885 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3886 {
3887 modify_general_field (value_type (bounds),
3888 value_contents_writeable (bounds),
3889 ada_array_bound (arr, i, 0),
3890 desc_bound_bitpos (bounds_type, i, 0),
3891 desc_bound_bitsize (bounds_type, i, 0));
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
3894 ada_array_bound (arr, i, 1),
3895 desc_bound_bitpos (bounds_type, i, 1),
3896 desc_bound_bitsize (bounds_type, i, 1));
3897 }
3898
3899 bounds = ensure_lval (bounds, gdbarch, sp);
3900
3901 modify_general_field (value_type (descriptor),
3902 value_contents_writeable (descriptor),
3903 value_address (ensure_lval (arr, gdbarch, sp)),
3904 fat_pntr_data_bitpos (desc_type),
3905 fat_pntr_data_bitsize (desc_type));
3906
3907 modify_general_field (value_type (descriptor),
3908 value_contents_writeable (descriptor),
3909 value_address (bounds),
3910 fat_pntr_bounds_bitpos (desc_type),
3911 fat_pntr_bounds_bitsize (desc_type));
3912
3913 descriptor = ensure_lval (descriptor, gdbarch, sp);
3914
3915 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3916 return value_addr (descriptor);
3917 else
3918 return descriptor;
3919 }
3920 \f
3921 /* Dummy definitions for an experimental caching module that is not
3922 * used in the public sources. */
3923
3924 static int
3925 lookup_cached_symbol (const char *name, domain_enum namespace,
3926 struct symbol **sym, struct block **block)
3927 {
3928 return 0;
3929 }
3930
3931 static void
3932 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3933 struct block *block)
3934 {
3935 }
3936 \f
3937 /* Symbol Lookup */
3938
3939 /* Return the result of a standard (literal, C-like) lookup of NAME in
3940 given DOMAIN, visible from lexical block BLOCK. */
3941
3942 static struct symbol *
3943 standard_lookup (const char *name, const struct block *block,
3944 domain_enum domain)
3945 {
3946 struct symbol *sym;
3947
3948 if (lookup_cached_symbol (name, domain, &sym, NULL))
3949 return sym;
3950 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3951 cache_symbol (name, domain, sym, block_found);
3952 return sym;
3953 }
3954
3955
3956 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3957 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3958 since they contend in overloading in the same way. */
3959 static int
3960 is_nonfunction (struct ada_symbol_info syms[], int n)
3961 {
3962 int i;
3963
3964 for (i = 0; i < n; i += 1)
3965 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3966 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3967 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3968 return 1;
3969
3970 return 0;
3971 }
3972
3973 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3974 struct types. Otherwise, they may not. */
3975
3976 static int
3977 equiv_types (struct type *type0, struct type *type1)
3978 {
3979 if (type0 == type1)
3980 return 1;
3981 if (type0 == NULL || type1 == NULL
3982 || TYPE_CODE (type0) != TYPE_CODE (type1))
3983 return 0;
3984 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3985 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3986 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3987 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3988 return 1;
3989
3990 return 0;
3991 }
3992
3993 /* True iff SYM0 represents the same entity as SYM1, or one that is
3994 no more defined than that of SYM1. */
3995
3996 static int
3997 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3998 {
3999 if (sym0 == sym1)
4000 return 1;
4001 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4002 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4003 return 0;
4004
4005 switch (SYMBOL_CLASS (sym0))
4006 {
4007 case LOC_UNDEF:
4008 return 1;
4009 case LOC_TYPEDEF:
4010 {
4011 struct type *type0 = SYMBOL_TYPE (sym0);
4012 struct type *type1 = SYMBOL_TYPE (sym1);
4013 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4014 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4015 int len0 = strlen (name0);
4016 return
4017 TYPE_CODE (type0) == TYPE_CODE (type1)
4018 && (equiv_types (type0, type1)
4019 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4020 && strncmp (name1 + len0, "___XV", 5) == 0));
4021 }
4022 case LOC_CONST:
4023 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4024 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4025 default:
4026 return 0;
4027 }
4028 }
4029
4030 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4031 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4032
4033 static void
4034 add_defn_to_vec (struct obstack *obstackp,
4035 struct symbol *sym,
4036 struct block *block)
4037 {
4038 int i;
4039 size_t tmp;
4040 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4041
4042 /* Do not try to complete stub types, as the debugger is probably
4043 already scanning all symbols matching a certain name at the
4044 time when this function is called. Trying to replace the stub
4045 type by its associated full type will cause us to restart a scan
4046 which may lead to an infinite recursion. Instead, the client
4047 collecting the matching symbols will end up collecting several
4048 matches, with at least one of them complete. It can then filter
4049 out the stub ones if needed. */
4050
4051 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4052 {
4053 if (lesseq_defined_than (sym, prevDefns[i].sym))
4054 return;
4055 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4056 {
4057 prevDefns[i].sym = sym;
4058 prevDefns[i].block = block;
4059 return;
4060 }
4061 }
4062
4063 {
4064 struct ada_symbol_info info;
4065
4066 info.sym = sym;
4067 info.block = block;
4068 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4069 }
4070 }
4071
4072 /* Number of ada_symbol_info structures currently collected in
4073 current vector in *OBSTACKP. */
4074
4075 static int
4076 num_defns_collected (struct obstack *obstackp)
4077 {
4078 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4079 }
4080
4081 /* Vector of ada_symbol_info structures currently collected in current
4082 vector in *OBSTACKP. If FINISH, close off the vector and return
4083 its final address. */
4084
4085 static struct ada_symbol_info *
4086 defns_collected (struct obstack *obstackp, int finish)
4087 {
4088 if (finish)
4089 return obstack_finish (obstackp);
4090 else
4091 return (struct ada_symbol_info *) obstack_base (obstackp);
4092 }
4093
4094 /* Return a minimal symbol matching NAME according to Ada decoding
4095 rules. Returns NULL if there is no such minimal symbol. Names
4096 prefixed with "standard__" are handled specially: "standard__" is
4097 first stripped off, and only static and global symbols are searched. */
4098
4099 struct minimal_symbol *
4100 ada_lookup_simple_minsym (const char *name)
4101 {
4102 struct objfile *objfile;
4103 struct minimal_symbol *msymbol;
4104 int wild_match;
4105
4106 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4107 {
4108 name += sizeof ("standard__") - 1;
4109 wild_match = 0;
4110 }
4111 else
4112 wild_match = (strstr (name, "__") == NULL);
4113
4114 ALL_MSYMBOLS (objfile, msymbol)
4115 {
4116 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4117 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4118 return msymbol;
4119 }
4120
4121 return NULL;
4122 }
4123
4124 /* For all subprograms that statically enclose the subprogram of the
4125 selected frame, add symbols matching identifier NAME in DOMAIN
4126 and their blocks to the list of data in OBSTACKP, as for
4127 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4128 wildcard prefix. */
4129
4130 static void
4131 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4132 const char *name, domain_enum namespace,
4133 int wild_match)
4134 {
4135 }
4136
4137 /* True if TYPE is definitely an artificial type supplied to a symbol
4138 for which no debugging information was given in the symbol file. */
4139
4140 static int
4141 is_nondebugging_type (struct type *type)
4142 {
4143 char *name = ada_type_name (type);
4144 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4145 }
4146
4147 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4148 duplicate other symbols in the list (The only case I know of where
4149 this happens is when object files containing stabs-in-ecoff are
4150 linked with files containing ordinary ecoff debugging symbols (or no
4151 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4152 Returns the number of items in the modified list. */
4153
4154 static int
4155 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4156 {
4157 int i, j;
4158
4159 i = 0;
4160 while (i < nsyms)
4161 {
4162 int remove = 0;
4163
4164 /* If two symbols have the same name and one of them is a stub type,
4165 the get rid of the stub. */
4166
4167 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4168 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4169 {
4170 for (j = 0; j < nsyms; j++)
4171 {
4172 if (j != i
4173 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4174 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4175 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4176 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4177 remove = 1;
4178 }
4179 }
4180
4181 /* Two symbols with the same name, same class and same address
4182 should be identical. */
4183
4184 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4185 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4186 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4187 {
4188 for (j = 0; j < nsyms; j += 1)
4189 {
4190 if (i != j
4191 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4192 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4193 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4194 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4195 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4196 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4197 remove = 1;
4198 }
4199 }
4200
4201 if (remove)
4202 {
4203 for (j = i + 1; j < nsyms; j += 1)
4204 syms[j - 1] = syms[j];
4205 nsyms -= 1;
4206 }
4207
4208 i += 1;
4209 }
4210 return nsyms;
4211 }
4212
4213 /* Given a type that corresponds to a renaming entity, use the type name
4214 to extract the scope (package name or function name, fully qualified,
4215 and following the GNAT encoding convention) where this renaming has been
4216 defined. The string returned needs to be deallocated after use. */
4217
4218 static char *
4219 xget_renaming_scope (struct type *renaming_type)
4220 {
4221 /* The renaming types adhere to the following convention:
4222 <scope>__<rename>___<XR extension>.
4223 So, to extract the scope, we search for the "___XR" extension,
4224 and then backtrack until we find the first "__". */
4225
4226 const char *name = type_name_no_tag (renaming_type);
4227 char *suffix = strstr (name, "___XR");
4228 char *last;
4229 int scope_len;
4230 char *scope;
4231
4232 /* Now, backtrack a bit until we find the first "__". Start looking
4233 at suffix - 3, as the <rename> part is at least one character long. */
4234
4235 for (last = suffix - 3; last > name; last--)
4236 if (last[0] == '_' && last[1] == '_')
4237 break;
4238
4239 /* Make a copy of scope and return it. */
4240
4241 scope_len = last - name;
4242 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4243
4244 strncpy (scope, name, scope_len);
4245 scope[scope_len] = '\0';
4246
4247 return scope;
4248 }
4249
4250 /* Return nonzero if NAME corresponds to a package name. */
4251
4252 static int
4253 is_package_name (const char *name)
4254 {
4255 /* Here, We take advantage of the fact that no symbols are generated
4256 for packages, while symbols are generated for each function.
4257 So the condition for NAME represent a package becomes equivalent
4258 to NAME not existing in our list of symbols. There is only one
4259 small complication with library-level functions (see below). */
4260
4261 char *fun_name;
4262
4263 /* If it is a function that has not been defined at library level,
4264 then we should be able to look it up in the symbols. */
4265 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4266 return 0;
4267
4268 /* Library-level function names start with "_ada_". See if function
4269 "_ada_" followed by NAME can be found. */
4270
4271 /* Do a quick check that NAME does not contain "__", since library-level
4272 functions names cannot contain "__" in them. */
4273 if (strstr (name, "__") != NULL)
4274 return 0;
4275
4276 fun_name = xstrprintf ("_ada_%s", name);
4277
4278 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4279 }
4280
4281 /* Return nonzero if SYM corresponds to a renaming entity that is
4282 not visible from FUNCTION_NAME. */
4283
4284 static int
4285 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4286 {
4287 char *scope;
4288
4289 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4290 return 0;
4291
4292 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4293
4294 make_cleanup (xfree, scope);
4295
4296 /* If the rename has been defined in a package, then it is visible. */
4297 if (is_package_name (scope))
4298 return 0;
4299
4300 /* Check that the rename is in the current function scope by checking
4301 that its name starts with SCOPE. */
4302
4303 /* If the function name starts with "_ada_", it means that it is
4304 a library-level function. Strip this prefix before doing the
4305 comparison, as the encoding for the renaming does not contain
4306 this prefix. */
4307 if (strncmp (function_name, "_ada_", 5) == 0)
4308 function_name += 5;
4309
4310 return (strncmp (function_name, scope, strlen (scope)) != 0);
4311 }
4312
4313 /* Remove entries from SYMS that corresponds to a renaming entity that
4314 is not visible from the function associated with CURRENT_BLOCK or
4315 that is superfluous due to the presence of more specific renaming
4316 information. Places surviving symbols in the initial entries of
4317 SYMS and returns the number of surviving symbols.
4318
4319 Rationale:
4320 First, in cases where an object renaming is implemented as a
4321 reference variable, GNAT may produce both the actual reference
4322 variable and the renaming encoding. In this case, we discard the
4323 latter.
4324
4325 Second, GNAT emits a type following a specified encoding for each renaming
4326 entity. Unfortunately, STABS currently does not support the definition
4327 of types that are local to a given lexical block, so all renamings types
4328 are emitted at library level. As a consequence, if an application
4329 contains two renaming entities using the same name, and a user tries to
4330 print the value of one of these entities, the result of the ada symbol
4331 lookup will also contain the wrong renaming type.
4332
4333 This function partially covers for this limitation by attempting to
4334 remove from the SYMS list renaming symbols that should be visible
4335 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4336 method with the current information available. The implementation
4337 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4338
4339 - When the user tries to print a rename in a function while there
4340 is another rename entity defined in a package: Normally, the
4341 rename in the function has precedence over the rename in the
4342 package, so the latter should be removed from the list. This is
4343 currently not the case.
4344
4345 - This function will incorrectly remove valid renames if
4346 the CURRENT_BLOCK corresponds to a function which symbol name
4347 has been changed by an "Export" pragma. As a consequence,
4348 the user will be unable to print such rename entities. */
4349
4350 static int
4351 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4352 int nsyms, const struct block *current_block)
4353 {
4354 struct symbol *current_function;
4355 char *current_function_name;
4356 int i;
4357 int is_new_style_renaming;
4358
4359 /* If there is both a renaming foo___XR... encoded as a variable and
4360 a simple variable foo in the same block, discard the latter.
4361 First, zero out such symbols, then compress. */
4362 is_new_style_renaming = 0;
4363 for (i = 0; i < nsyms; i += 1)
4364 {
4365 struct symbol *sym = syms[i].sym;
4366 struct block *block = syms[i].block;
4367 const char *name;
4368 const char *suffix;
4369
4370 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4371 continue;
4372 name = SYMBOL_LINKAGE_NAME (sym);
4373 suffix = strstr (name, "___XR");
4374
4375 if (suffix != NULL)
4376 {
4377 int name_len = suffix - name;
4378 int j;
4379 is_new_style_renaming = 1;
4380 for (j = 0; j < nsyms; j += 1)
4381 if (i != j && syms[j].sym != NULL
4382 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4383 name_len) == 0
4384 && block == syms[j].block)
4385 syms[j].sym = NULL;
4386 }
4387 }
4388 if (is_new_style_renaming)
4389 {
4390 int j, k;
4391
4392 for (j = k = 0; j < nsyms; j += 1)
4393 if (syms[j].sym != NULL)
4394 {
4395 syms[k] = syms[j];
4396 k += 1;
4397 }
4398 return k;
4399 }
4400
4401 /* Extract the function name associated to CURRENT_BLOCK.
4402 Abort if unable to do so. */
4403
4404 if (current_block == NULL)
4405 return nsyms;
4406
4407 current_function = block_linkage_function (current_block);
4408 if (current_function == NULL)
4409 return nsyms;
4410
4411 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4412 if (current_function_name == NULL)
4413 return nsyms;
4414
4415 /* Check each of the symbols, and remove it from the list if it is
4416 a type corresponding to a renaming that is out of the scope of
4417 the current block. */
4418
4419 i = 0;
4420 while (i < nsyms)
4421 {
4422 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4423 == ADA_OBJECT_RENAMING
4424 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4425 {
4426 int j;
4427 for (j = i + 1; j < nsyms; j += 1)
4428 syms[j - 1] = syms[j];
4429 nsyms -= 1;
4430 }
4431 else
4432 i += 1;
4433 }
4434
4435 return nsyms;
4436 }
4437
4438 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4439 whose name and domain match NAME and DOMAIN respectively.
4440 If no match was found, then extend the search to "enclosing"
4441 routines (in other words, if we're inside a nested function,
4442 search the symbols defined inside the enclosing functions).
4443
4444 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4445
4446 static void
4447 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4448 struct block *block, domain_enum domain,
4449 int wild_match)
4450 {
4451 int block_depth = 0;
4452
4453 while (block != NULL)
4454 {
4455 block_depth += 1;
4456 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4457
4458 /* If we found a non-function match, assume that's the one. */
4459 if (is_nonfunction (defns_collected (obstackp, 0),
4460 num_defns_collected (obstackp)))
4461 return;
4462
4463 block = BLOCK_SUPERBLOCK (block);
4464 }
4465
4466 /* If no luck so far, try to find NAME as a local symbol in some lexically
4467 enclosing subprogram. */
4468 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4469 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4470 }
4471
4472 /* An object of this type is used as the user_data argument when
4473 calling the map_ada_symtabs method. */
4474
4475 struct ada_psym_data
4476 {
4477 struct obstack *obstackp;
4478 const char *name;
4479 domain_enum domain;
4480 int global;
4481 int wild_match;
4482 };
4483
4484 /* Callback function for map_ada_symtabs. */
4485
4486 static void
4487 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4488 {
4489 struct ada_psym_data *data = user_data;
4490 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4491 ada_add_block_symbols (data->obstackp,
4492 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4493 data->name, data->domain, objfile, data->wild_match);
4494 }
4495
4496 /* Add to OBSTACKP all non-local symbols whose name and domain match
4497 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4498 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4499
4500 static void
4501 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4502 domain_enum domain, int global,
4503 int is_wild_match)
4504 {
4505 struct objfile *objfile;
4506 struct ada_psym_data data;
4507
4508 data.obstackp = obstackp;
4509 data.name = name;
4510 data.domain = domain;
4511 data.global = global;
4512 data.wild_match = is_wild_match;
4513
4514 ALL_OBJFILES (objfile)
4515 {
4516 if (objfile->sf)
4517 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4518 ada_add_psyms, name,
4519 global, domain,
4520 is_wild_match, &data);
4521 }
4522 }
4523
4524 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4525 scope and in global scopes, returning the number of matches. Sets
4526 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4527 indicating the symbols found and the blocks and symbol tables (if
4528 any) in which they were found. This vector are transient---good only to
4529 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4530 symbol match within the nest of blocks whose innermost member is BLOCK0,
4531 is the one match returned (no other matches in that or
4532 enclosing blocks is returned). If there are any matches in or
4533 surrounding BLOCK0, then these alone are returned. Otherwise, the
4534 search extends to global and file-scope (static) symbol tables.
4535 Names prefixed with "standard__" are handled specially: "standard__"
4536 is first stripped off, and only static and global symbols are searched. */
4537
4538 int
4539 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4540 domain_enum namespace,
4541 struct ada_symbol_info **results)
4542 {
4543 struct symbol *sym;
4544 struct block *block;
4545 const char *name;
4546 int wild_match;
4547 int cacheIfUnique;
4548 int ndefns;
4549
4550 obstack_free (&symbol_list_obstack, NULL);
4551 obstack_init (&symbol_list_obstack);
4552
4553 cacheIfUnique = 0;
4554
4555 /* Search specified block and its superiors. */
4556
4557 wild_match = (strstr (name0, "__") == NULL);
4558 name = name0;
4559 block = (struct block *) block0; /* FIXME: No cast ought to be
4560 needed, but adding const will
4561 have a cascade effect. */
4562
4563 /* Special case: If the user specifies a symbol name inside package
4564 Standard, do a non-wild matching of the symbol name without
4565 the "standard__" prefix. This was primarily introduced in order
4566 to allow the user to specifically access the standard exceptions
4567 using, for instance, Standard.Constraint_Error when Constraint_Error
4568 is ambiguous (due to the user defining its own Constraint_Error
4569 entity inside its program). */
4570 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4571 {
4572 wild_match = 0;
4573 block = NULL;
4574 name = name0 + sizeof ("standard__") - 1;
4575 }
4576
4577 /* Check the non-global symbols. If we have ANY match, then we're done. */
4578
4579 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4580 wild_match);
4581 if (num_defns_collected (&symbol_list_obstack) > 0)
4582 goto done;
4583
4584 /* No non-global symbols found. Check our cache to see if we have
4585 already performed this search before. If we have, then return
4586 the same result. */
4587
4588 cacheIfUnique = 1;
4589 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4590 {
4591 if (sym != NULL)
4592 add_defn_to_vec (&symbol_list_obstack, sym, block);
4593 goto done;
4594 }
4595
4596 /* Search symbols from all global blocks. */
4597
4598 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4599 wild_match);
4600
4601 /* Now add symbols from all per-file blocks if we've gotten no hits
4602 (not strictly correct, but perhaps better than an error). */
4603
4604 if (num_defns_collected (&symbol_list_obstack) == 0)
4605 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4606 wild_match);
4607
4608 done:
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4611
4612 ndefns = remove_extra_symbols (*results, ndefns);
4613
4614 if (ndefns == 0)
4615 cache_symbol (name0, namespace, NULL, NULL);
4616
4617 if (ndefns == 1 && cacheIfUnique)
4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4619
4620 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4621
4622 return ndefns;
4623 }
4624
4625 struct symbol *
4626 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4627 domain_enum namespace, struct block **block_found)
4628 {
4629 struct ada_symbol_info *candidates;
4630 int n_candidates;
4631
4632 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4633
4634 if (n_candidates == 0)
4635 return NULL;
4636
4637 if (block_found != NULL)
4638 *block_found = candidates[0].block;
4639
4640 return fixup_symbol_section (candidates[0].sym, NULL);
4641 }
4642
4643 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4644 scope and in global scopes, or NULL if none. NAME is folded and
4645 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4646 choosing the first symbol if there are multiple choices.
4647 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4648 table in which the symbol was found (in both cases, these
4649 assignments occur only if the pointers are non-null). */
4650 struct symbol *
4651 ada_lookup_symbol (const char *name, const struct block *block0,
4652 domain_enum namespace, int *is_a_field_of_this)
4653 {
4654 if (is_a_field_of_this != NULL)
4655 *is_a_field_of_this = 0;
4656
4657 return
4658 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4659 block0, namespace, NULL);
4660 }
4661
4662 static struct symbol *
4663 ada_lookup_symbol_nonlocal (const char *name,
4664 const struct block *block,
4665 const domain_enum domain)
4666 {
4667 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4668 }
4669
4670
4671 /* True iff STR is a possible encoded suffix of a normal Ada name
4672 that is to be ignored for matching purposes. Suffixes of parallel
4673 names (e.g., XVE) are not included here. Currently, the possible suffixes
4674 are given by any of the regular expressions:
4675
4676 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4677 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4678 _E[0-9]+[bs]$ [protected object entry suffixes]
4679 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4680
4681 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4682 match is performed. This sequence is used to differentiate homonyms,
4683 is an optional part of a valid name suffix. */
4684
4685 static int
4686 is_name_suffix (const char *str)
4687 {
4688 int k;
4689 const char *matching;
4690 const int len = strlen (str);
4691
4692 /* Skip optional leading __[0-9]+. */
4693
4694 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4695 {
4696 str += 3;
4697 while (isdigit (str[0]))
4698 str += 1;
4699 }
4700
4701 /* [.$][0-9]+ */
4702
4703 if (str[0] == '.' || str[0] == '$')
4704 {
4705 matching = str + 1;
4706 while (isdigit (matching[0]))
4707 matching += 1;
4708 if (matching[0] == '\0')
4709 return 1;
4710 }
4711
4712 /* ___[0-9]+ */
4713
4714 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4715 {
4716 matching = str + 3;
4717 while (isdigit (matching[0]))
4718 matching += 1;
4719 if (matching[0] == '\0')
4720 return 1;
4721 }
4722
4723 #if 0
4724 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4725 with a N at the end. Unfortunately, the compiler uses the same
4726 convention for other internal types it creates. So treating
4727 all entity names that end with an "N" as a name suffix causes
4728 some regressions. For instance, consider the case of an enumerated
4729 type. To support the 'Image attribute, it creates an array whose
4730 name ends with N.
4731 Having a single character like this as a suffix carrying some
4732 information is a bit risky. Perhaps we should change the encoding
4733 to be something like "_N" instead. In the meantime, do not do
4734 the following check. */
4735 /* Protected Object Subprograms */
4736 if (len == 1 && str [0] == 'N')
4737 return 1;
4738 #endif
4739
4740 /* _E[0-9]+[bs]$ */
4741 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4742 {
4743 matching = str + 3;
4744 while (isdigit (matching[0]))
4745 matching += 1;
4746 if ((matching[0] == 'b' || matching[0] == 's')
4747 && matching [1] == '\0')
4748 return 1;
4749 }
4750
4751 /* ??? We should not modify STR directly, as we are doing below. This
4752 is fine in this case, but may become problematic later if we find
4753 that this alternative did not work, and want to try matching
4754 another one from the begining of STR. Since we modified it, we
4755 won't be able to find the begining of the string anymore! */
4756 if (str[0] == 'X')
4757 {
4758 str += 1;
4759 while (str[0] != '_' && str[0] != '\0')
4760 {
4761 if (str[0] != 'n' && str[0] != 'b')
4762 return 0;
4763 str += 1;
4764 }
4765 }
4766
4767 if (str[0] == '\000')
4768 return 1;
4769
4770 if (str[0] == '_')
4771 {
4772 if (str[1] != '_' || str[2] == '\000')
4773 return 0;
4774 if (str[2] == '_')
4775 {
4776 if (strcmp (str + 3, "JM") == 0)
4777 return 1;
4778 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4779 the LJM suffix in favor of the JM one. But we will
4780 still accept LJM as a valid suffix for a reasonable
4781 amount of time, just to allow ourselves to debug programs
4782 compiled using an older version of GNAT. */
4783 if (strcmp (str + 3, "LJM") == 0)
4784 return 1;
4785 if (str[3] != 'X')
4786 return 0;
4787 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4788 || str[4] == 'U' || str[4] == 'P')
4789 return 1;
4790 if (str[4] == 'R' && str[5] != 'T')
4791 return 1;
4792 return 0;
4793 }
4794 if (!isdigit (str[2]))
4795 return 0;
4796 for (k = 3; str[k] != '\0'; k += 1)
4797 if (!isdigit (str[k]) && str[k] != '_')
4798 return 0;
4799 return 1;
4800 }
4801 if (str[0] == '$' && isdigit (str[1]))
4802 {
4803 for (k = 2; str[k] != '\0'; k += 1)
4804 if (!isdigit (str[k]) && str[k] != '_')
4805 return 0;
4806 return 1;
4807 }
4808 return 0;
4809 }
4810
4811 /* Return non-zero if the string starting at NAME and ending before
4812 NAME_END contains no capital letters. */
4813
4814 static int
4815 is_valid_name_for_wild_match (const char *name0)
4816 {
4817 const char *decoded_name = ada_decode (name0);
4818 int i;
4819
4820 /* If the decoded name starts with an angle bracket, it means that
4821 NAME0 does not follow the GNAT encoding format. It should then
4822 not be allowed as a possible wild match. */
4823 if (decoded_name[0] == '<')
4824 return 0;
4825
4826 for (i=0; decoded_name[i] != '\0'; i++)
4827 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4828 return 0;
4829
4830 return 1;
4831 }
4832
4833 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4834 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4835 informational suffixes of NAME (i.e., for which is_name_suffix is
4836 true). */
4837
4838 static int
4839 wild_match (const char *patn0, int patn_len, const char *name0)
4840 {
4841 char* match;
4842 const char* start;
4843 start = name0;
4844 while (1)
4845 {
4846 match = strstr (start, patn0);
4847 if (match == NULL)
4848 return 0;
4849 if ((match == name0
4850 || match[-1] == '.'
4851 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4852 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4853 && is_name_suffix (match + patn_len))
4854 return (match == name0 || is_valid_name_for_wild_match (name0));
4855 start = match + 1;
4856 }
4857 }
4858
4859 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4860 vector *defn_symbols, updating the list of symbols in OBSTACKP
4861 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4862 OBJFILE is the section containing BLOCK.
4863 SYMTAB is recorded with each symbol added. */
4864
4865 static void
4866 ada_add_block_symbols (struct obstack *obstackp,
4867 struct block *block, const char *name,
4868 domain_enum domain, struct objfile *objfile,
4869 int wild)
4870 {
4871 struct dict_iterator iter;
4872 int name_len = strlen (name);
4873 /* A matching argument symbol, if any. */
4874 struct symbol *arg_sym;
4875 /* Set true when we find a matching non-argument symbol. */
4876 int found_sym;
4877 struct symbol *sym;
4878
4879 arg_sym = NULL;
4880 found_sym = 0;
4881 if (wild)
4882 {
4883 struct symbol *sym;
4884 ALL_BLOCK_SYMBOLS (block, iter, sym)
4885 {
4886 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4887 SYMBOL_DOMAIN (sym), domain)
4888 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4889 {
4890 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4891 continue;
4892 else if (SYMBOL_IS_ARGUMENT (sym))
4893 arg_sym = sym;
4894 else
4895 {
4896 found_sym = 1;
4897 add_defn_to_vec (obstackp,
4898 fixup_symbol_section (sym, objfile),
4899 block);
4900 }
4901 }
4902 }
4903 }
4904 else
4905 {
4906 ALL_BLOCK_SYMBOLS (block, iter, sym)
4907 {
4908 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4909 SYMBOL_DOMAIN (sym), domain))
4910 {
4911 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4912 if (cmp == 0
4913 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4914 {
4915 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4916 {
4917 if (SYMBOL_IS_ARGUMENT (sym))
4918 arg_sym = sym;
4919 else
4920 {
4921 found_sym = 1;
4922 add_defn_to_vec (obstackp,
4923 fixup_symbol_section (sym, objfile),
4924 block);
4925 }
4926 }
4927 }
4928 }
4929 }
4930 }
4931
4932 if (!found_sym && arg_sym != NULL)
4933 {
4934 add_defn_to_vec (obstackp,
4935 fixup_symbol_section (arg_sym, objfile),
4936 block);
4937 }
4938
4939 if (!wild)
4940 {
4941 arg_sym = NULL;
4942 found_sym = 0;
4943
4944 ALL_BLOCK_SYMBOLS (block, iter, sym)
4945 {
4946 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4947 SYMBOL_DOMAIN (sym), domain))
4948 {
4949 int cmp;
4950
4951 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4952 if (cmp == 0)
4953 {
4954 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4955 if (cmp == 0)
4956 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4957 name_len);
4958 }
4959
4960 if (cmp == 0
4961 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4962 {
4963 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4964 {
4965 if (SYMBOL_IS_ARGUMENT (sym))
4966 arg_sym = sym;
4967 else
4968 {
4969 found_sym = 1;
4970 add_defn_to_vec (obstackp,
4971 fixup_symbol_section (sym, objfile),
4972 block);
4973 }
4974 }
4975 }
4976 }
4977 }
4978
4979 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4980 They aren't parameters, right? */
4981 if (!found_sym && arg_sym != NULL)
4982 {
4983 add_defn_to_vec (obstackp,
4984 fixup_symbol_section (arg_sym, objfile),
4985 block);
4986 }
4987 }
4988 }
4989 \f
4990
4991 /* Symbol Completion */
4992
4993 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
4994 name in a form that's appropriate for the completion. The result
4995 does not need to be deallocated, but is only good until the next call.
4996
4997 TEXT_LEN is equal to the length of TEXT.
4998 Perform a wild match if WILD_MATCH is set.
4999 ENCODED should be set if TEXT represents the start of a symbol name
5000 in its encoded form. */
5001
5002 static const char *
5003 symbol_completion_match (const char *sym_name,
5004 const char *text, int text_len,
5005 int wild_match, int encoded)
5006 {
5007 char *result;
5008 const int verbatim_match = (text[0] == '<');
5009 int match = 0;
5010
5011 if (verbatim_match)
5012 {
5013 /* Strip the leading angle bracket. */
5014 text = text + 1;
5015 text_len--;
5016 }
5017
5018 /* First, test against the fully qualified name of the symbol. */
5019
5020 if (strncmp (sym_name, text, text_len) == 0)
5021 match = 1;
5022
5023 if (match && !encoded)
5024 {
5025 /* One needed check before declaring a positive match is to verify
5026 that iff we are doing a verbatim match, the decoded version
5027 of the symbol name starts with '<'. Otherwise, this symbol name
5028 is not a suitable completion. */
5029 const char *sym_name_copy = sym_name;
5030 int has_angle_bracket;
5031
5032 sym_name = ada_decode (sym_name);
5033 has_angle_bracket = (sym_name[0] == '<');
5034 match = (has_angle_bracket == verbatim_match);
5035 sym_name = sym_name_copy;
5036 }
5037
5038 if (match && !verbatim_match)
5039 {
5040 /* When doing non-verbatim match, another check that needs to
5041 be done is to verify that the potentially matching symbol name
5042 does not include capital letters, because the ada-mode would
5043 not be able to understand these symbol names without the
5044 angle bracket notation. */
5045 const char *tmp;
5046
5047 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5048 if (*tmp != '\0')
5049 match = 0;
5050 }
5051
5052 /* Second: Try wild matching... */
5053
5054 if (!match && wild_match)
5055 {
5056 /* Since we are doing wild matching, this means that TEXT
5057 may represent an unqualified symbol name. We therefore must
5058 also compare TEXT against the unqualified name of the symbol. */
5059 sym_name = ada_unqualified_name (ada_decode (sym_name));
5060
5061 if (strncmp (sym_name, text, text_len) == 0)
5062 match = 1;
5063 }
5064
5065 /* Finally: If we found a mach, prepare the result to return. */
5066
5067 if (!match)
5068 return NULL;
5069
5070 if (verbatim_match)
5071 sym_name = add_angle_brackets (sym_name);
5072
5073 if (!encoded)
5074 sym_name = ada_decode (sym_name);
5075
5076 return sym_name;
5077 }
5078
5079 typedef char *char_ptr;
5080 DEF_VEC_P (char_ptr);
5081
5082 /* A companion function to ada_make_symbol_completion_list().
5083 Check if SYM_NAME represents a symbol which name would be suitable
5084 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5085 it is appended at the end of the given string vector SV.
5086
5087 ORIG_TEXT is the string original string from the user command
5088 that needs to be completed. WORD is the entire command on which
5089 completion should be performed. These two parameters are used to
5090 determine which part of the symbol name should be added to the
5091 completion vector.
5092 if WILD_MATCH is set, then wild matching is performed.
5093 ENCODED should be set if TEXT represents a symbol name in its
5094 encoded formed (in which case the completion should also be
5095 encoded). */
5096
5097 static void
5098 symbol_completion_add (VEC(char_ptr) **sv,
5099 const char *sym_name,
5100 const char *text, int text_len,
5101 const char *orig_text, const char *word,
5102 int wild_match, int encoded)
5103 {
5104 const char *match = symbol_completion_match (sym_name, text, text_len,
5105 wild_match, encoded);
5106 char *completion;
5107
5108 if (match == NULL)
5109 return;
5110
5111 /* We found a match, so add the appropriate completion to the given
5112 string vector. */
5113
5114 if (word == orig_text)
5115 {
5116 completion = xmalloc (strlen (match) + 5);
5117 strcpy (completion, match);
5118 }
5119 else if (word > orig_text)
5120 {
5121 /* Return some portion of sym_name. */
5122 completion = xmalloc (strlen (match) + 5);
5123 strcpy (completion, match + (word - orig_text));
5124 }
5125 else
5126 {
5127 /* Return some of ORIG_TEXT plus sym_name. */
5128 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5129 strncpy (completion, word, orig_text - word);
5130 completion[orig_text - word] = '\0';
5131 strcat (completion, match);
5132 }
5133
5134 VEC_safe_push (char_ptr, *sv, completion);
5135 }
5136
5137 /* An object of this type is passed as the user_data argument to the
5138 map_partial_symbol_names method. */
5139 struct add_partial_datum
5140 {
5141 VEC(char_ptr) **completions;
5142 char *text;
5143 int text_len;
5144 char *text0;
5145 char *word;
5146 int wild_match;
5147 int encoded;
5148 };
5149
5150 /* A callback for map_partial_symbol_names. */
5151 static void
5152 ada_add_partial_symbol_completions (const char *name, void *user_data)
5153 {
5154 struct add_partial_datum *data = user_data;
5155 symbol_completion_add (data->completions, name,
5156 data->text, data->text_len, data->text0, data->word,
5157 data->wild_match, data->encoded);
5158 }
5159
5160 /* Return a list of possible symbol names completing TEXT0. The list
5161 is NULL terminated. WORD is the entire command on which completion
5162 is made. */
5163
5164 static char **
5165 ada_make_symbol_completion_list (char *text0, char *word)
5166 {
5167 char *text;
5168 int text_len;
5169 int wild_match;
5170 int encoded;
5171 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5172 struct symbol *sym;
5173 struct symtab *s;
5174 struct minimal_symbol *msymbol;
5175 struct objfile *objfile;
5176 struct block *b, *surrounding_static_block = 0;
5177 int i;
5178 struct dict_iterator iter;
5179
5180 if (text0[0] == '<')
5181 {
5182 text = xstrdup (text0);
5183 make_cleanup (xfree, text);
5184 text_len = strlen (text);
5185 wild_match = 0;
5186 encoded = 1;
5187 }
5188 else
5189 {
5190 text = xstrdup (ada_encode (text0));
5191 make_cleanup (xfree, text);
5192 text_len = strlen (text);
5193 for (i = 0; i < text_len; i++)
5194 text[i] = tolower (text[i]);
5195
5196 encoded = (strstr (text0, "__") != NULL);
5197 /* If the name contains a ".", then the user is entering a fully
5198 qualified entity name, and the match must not be done in wild
5199 mode. Similarly, if the user wants to complete what looks like
5200 an encoded name, the match must not be done in wild mode. */
5201 wild_match = (strchr (text0, '.') == NULL && !encoded);
5202 }
5203
5204 /* First, look at the partial symtab symbols. */
5205 {
5206 struct add_partial_datum data;
5207
5208 data.completions = &completions;
5209 data.text = text;
5210 data.text_len = text_len;
5211 data.text0 = text0;
5212 data.word = word;
5213 data.wild_match = wild_match;
5214 data.encoded = encoded;
5215 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5216 }
5217
5218 /* At this point scan through the misc symbol vectors and add each
5219 symbol you find to the list. Eventually we want to ignore
5220 anything that isn't a text symbol (everything else will be
5221 handled by the psymtab code above). */
5222
5223 ALL_MSYMBOLS (objfile, msymbol)
5224 {
5225 QUIT;
5226 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5227 text, text_len, text0, word, wild_match, encoded);
5228 }
5229
5230 /* Search upwards from currently selected frame (so that we can
5231 complete on local vars. */
5232
5233 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5234 {
5235 if (!BLOCK_SUPERBLOCK (b))
5236 surrounding_static_block = b; /* For elmin of dups */
5237
5238 ALL_BLOCK_SYMBOLS (b, iter, sym)
5239 {
5240 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5241 text, text_len, text0, word,
5242 wild_match, encoded);
5243 }
5244 }
5245
5246 /* Go through the symtabs and check the externs and statics for
5247 symbols which match. */
5248
5249 ALL_SYMTABS (objfile, s)
5250 {
5251 QUIT;
5252 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5253 ALL_BLOCK_SYMBOLS (b, iter, sym)
5254 {
5255 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5256 text, text_len, text0, word,
5257 wild_match, encoded);
5258 }
5259 }
5260
5261 ALL_SYMTABS (objfile, s)
5262 {
5263 QUIT;
5264 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5265 /* Don't do this block twice. */
5266 if (b == surrounding_static_block)
5267 continue;
5268 ALL_BLOCK_SYMBOLS (b, iter, sym)
5269 {
5270 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5271 text, text_len, text0, word,
5272 wild_match, encoded);
5273 }
5274 }
5275
5276 /* Append the closing NULL entry. */
5277 VEC_safe_push (char_ptr, completions, NULL);
5278
5279 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5280 return the copy. It's unfortunate that we have to make a copy
5281 of an array that we're about to destroy, but there is nothing much
5282 we can do about it. Fortunately, it's typically not a very large
5283 array. */
5284 {
5285 const size_t completions_size =
5286 VEC_length (char_ptr, completions) * sizeof (char *);
5287 char **result = malloc (completions_size);
5288
5289 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5290
5291 VEC_free (char_ptr, completions);
5292 return result;
5293 }
5294 }
5295
5296 /* Field Access */
5297
5298 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5299 for tagged types. */
5300
5301 static int
5302 ada_is_dispatch_table_ptr_type (struct type *type)
5303 {
5304 char *name;
5305
5306 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5307 return 0;
5308
5309 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5310 if (name == NULL)
5311 return 0;
5312
5313 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5314 }
5315
5316 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5317 to be invisible to users. */
5318
5319 int
5320 ada_is_ignored_field (struct type *type, int field_num)
5321 {
5322 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5323 return 1;
5324
5325 /* Check the name of that field. */
5326 {
5327 const char *name = TYPE_FIELD_NAME (type, field_num);
5328
5329 /* Anonymous field names should not be printed.
5330 brobecker/2007-02-20: I don't think this can actually happen
5331 but we don't want to print the value of annonymous fields anyway. */
5332 if (name == NULL)
5333 return 1;
5334
5335 /* A field named "_parent" is internally generated by GNAT for
5336 tagged types, and should not be printed either. */
5337 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5338 return 1;
5339 }
5340
5341 /* If this is the dispatch table of a tagged type, then ignore. */
5342 if (ada_is_tagged_type (type, 1)
5343 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5344 return 1;
5345
5346 /* Not a special field, so it should not be ignored. */
5347 return 0;
5348 }
5349
5350 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5351 pointer or reference type whose ultimate target has a tag field. */
5352
5353 int
5354 ada_is_tagged_type (struct type *type, int refok)
5355 {
5356 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5357 }
5358
5359 /* True iff TYPE represents the type of X'Tag */
5360
5361 int
5362 ada_is_tag_type (struct type *type)
5363 {
5364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5365 return 0;
5366 else
5367 {
5368 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5369 return (name != NULL
5370 && strcmp (name, "ada__tags__dispatch_table") == 0);
5371 }
5372 }
5373
5374 /* The type of the tag on VAL. */
5375
5376 struct type *
5377 ada_tag_type (struct value *val)
5378 {
5379 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5380 }
5381
5382 /* The value of the tag on VAL. */
5383
5384 struct value *
5385 ada_value_tag (struct value *val)
5386 {
5387 return ada_value_struct_elt (val, "_tag", 0);
5388 }
5389
5390 /* The value of the tag on the object of type TYPE whose contents are
5391 saved at VALADDR, if it is non-null, or is at memory address
5392 ADDRESS. */
5393
5394 static struct value *
5395 value_tag_from_contents_and_address (struct type *type,
5396 const gdb_byte *valaddr,
5397 CORE_ADDR address)
5398 {
5399 int tag_byte_offset, dummy1, dummy2;
5400 struct type *tag_type;
5401 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5402 NULL, NULL, NULL))
5403 {
5404 const gdb_byte *valaddr1 = ((valaddr == NULL)
5405 ? NULL
5406 : valaddr + tag_byte_offset);
5407 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5408
5409 return value_from_contents_and_address (tag_type, valaddr1, address1);
5410 }
5411 return NULL;
5412 }
5413
5414 static struct type *
5415 type_from_tag (struct value *tag)
5416 {
5417 const char *type_name = ada_tag_name (tag);
5418 if (type_name != NULL)
5419 return ada_find_any_type (ada_encode (type_name));
5420 return NULL;
5421 }
5422
5423 struct tag_args
5424 {
5425 struct value *tag;
5426 char *name;
5427 };
5428
5429
5430 static int ada_tag_name_1 (void *);
5431 static int ada_tag_name_2 (struct tag_args *);
5432
5433 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5434 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5435 The value stored in ARGS->name is valid until the next call to
5436 ada_tag_name_1. */
5437
5438 static int
5439 ada_tag_name_1 (void *args0)
5440 {
5441 struct tag_args *args = (struct tag_args *) args0;
5442 static char name[1024];
5443 char *p;
5444 struct value *val;
5445 args->name = NULL;
5446 val = ada_value_struct_elt (args->tag, "tsd", 1);
5447 if (val == NULL)
5448 return ada_tag_name_2 (args);
5449 val = ada_value_struct_elt (val, "expanded_name", 1);
5450 if (val == NULL)
5451 return 0;
5452 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5453 for (p = name; *p != '\0'; p += 1)
5454 if (isalpha (*p))
5455 *p = tolower (*p);
5456 args->name = name;
5457 return 0;
5458 }
5459
5460 /* Utility function for ada_tag_name_1 that tries the second
5461 representation for the dispatch table (in which there is no
5462 explicit 'tsd' field in the referent of the tag pointer, and instead
5463 the tsd pointer is stored just before the dispatch table. */
5464
5465 static int
5466 ada_tag_name_2 (struct tag_args *args)
5467 {
5468 struct type *info_type;
5469 static char name[1024];
5470 char *p;
5471 struct value *val, *valp;
5472
5473 args->name = NULL;
5474 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5475 if (info_type == NULL)
5476 return 0;
5477 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5478 valp = value_cast (info_type, args->tag);
5479 if (valp == NULL)
5480 return 0;
5481 val = value_ind (value_ptradd (valp, -1));
5482 if (val == NULL)
5483 return 0;
5484 val = ada_value_struct_elt (val, "expanded_name", 1);
5485 if (val == NULL)
5486 return 0;
5487 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5488 for (p = name; *p != '\0'; p += 1)
5489 if (isalpha (*p))
5490 *p = tolower (*p);
5491 args->name = name;
5492 return 0;
5493 }
5494
5495 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5496 * a C string. */
5497
5498 const char *
5499 ada_tag_name (struct value *tag)
5500 {
5501 struct tag_args args;
5502 if (!ada_is_tag_type (value_type (tag)))
5503 return NULL;
5504 args.tag = tag;
5505 args.name = NULL;
5506 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5507 return args.name;
5508 }
5509
5510 /* The parent type of TYPE, or NULL if none. */
5511
5512 struct type *
5513 ada_parent_type (struct type *type)
5514 {
5515 int i;
5516
5517 type = ada_check_typedef (type);
5518
5519 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5520 return NULL;
5521
5522 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5523 if (ada_is_parent_field (type, i))
5524 {
5525 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5526
5527 /* If the _parent field is a pointer, then dereference it. */
5528 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5529 parent_type = TYPE_TARGET_TYPE (parent_type);
5530 /* If there is a parallel XVS type, get the actual base type. */
5531 parent_type = ada_get_base_type (parent_type);
5532
5533 return ada_check_typedef (parent_type);
5534 }
5535
5536 return NULL;
5537 }
5538
5539 /* True iff field number FIELD_NUM of structure type TYPE contains the
5540 parent-type (inherited) fields of a derived type. Assumes TYPE is
5541 a structure type with at least FIELD_NUM+1 fields. */
5542
5543 int
5544 ada_is_parent_field (struct type *type, int field_num)
5545 {
5546 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5547 return (name != NULL
5548 && (strncmp (name, "PARENT", 6) == 0
5549 || strncmp (name, "_parent", 7) == 0));
5550 }
5551
5552 /* True iff field number FIELD_NUM of structure type TYPE is a
5553 transparent wrapper field (which should be silently traversed when doing
5554 field selection and flattened when printing). Assumes TYPE is a
5555 structure type with at least FIELD_NUM+1 fields. Such fields are always
5556 structures. */
5557
5558 int
5559 ada_is_wrapper_field (struct type *type, int field_num)
5560 {
5561 const char *name = TYPE_FIELD_NAME (type, field_num);
5562 return (name != NULL
5563 && (strncmp (name, "PARENT", 6) == 0
5564 || strcmp (name, "REP") == 0
5565 || strncmp (name, "_parent", 7) == 0
5566 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5567 }
5568
5569 /* True iff field number FIELD_NUM of structure or union type TYPE
5570 is a variant wrapper. Assumes TYPE is a structure type with at least
5571 FIELD_NUM+1 fields. */
5572
5573 int
5574 ada_is_variant_part (struct type *type, int field_num)
5575 {
5576 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5577 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5578 || (is_dynamic_field (type, field_num)
5579 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5580 == TYPE_CODE_UNION)));
5581 }
5582
5583 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5584 whose discriminants are contained in the record type OUTER_TYPE,
5585 returns the type of the controlling discriminant for the variant.
5586 May return NULL if the type could not be found. */
5587
5588 struct type *
5589 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5590 {
5591 char *name = ada_variant_discrim_name (var_type);
5592 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5593 }
5594
5595 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5596 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5597 represents a 'when others' clause; otherwise 0. */
5598
5599 int
5600 ada_is_others_clause (struct type *type, int field_num)
5601 {
5602 const char *name = TYPE_FIELD_NAME (type, field_num);
5603 return (name != NULL && name[0] == 'O');
5604 }
5605
5606 /* Assuming that TYPE0 is the type of the variant part of a record,
5607 returns the name of the discriminant controlling the variant.
5608 The value is valid until the next call to ada_variant_discrim_name. */
5609
5610 char *
5611 ada_variant_discrim_name (struct type *type0)
5612 {
5613 static char *result = NULL;
5614 static size_t result_len = 0;
5615 struct type *type;
5616 const char *name;
5617 const char *discrim_end;
5618 const char *discrim_start;
5619
5620 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5621 type = TYPE_TARGET_TYPE (type0);
5622 else
5623 type = type0;
5624
5625 name = ada_type_name (type);
5626
5627 if (name == NULL || name[0] == '\000')
5628 return "";
5629
5630 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5631 discrim_end -= 1)
5632 {
5633 if (strncmp (discrim_end, "___XVN", 6) == 0)
5634 break;
5635 }
5636 if (discrim_end == name)
5637 return "";
5638
5639 for (discrim_start = discrim_end; discrim_start != name + 3;
5640 discrim_start -= 1)
5641 {
5642 if (discrim_start == name + 1)
5643 return "";
5644 if ((discrim_start > name + 3
5645 && strncmp (discrim_start - 3, "___", 3) == 0)
5646 || discrim_start[-1] == '.')
5647 break;
5648 }
5649
5650 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5651 strncpy (result, discrim_start, discrim_end - discrim_start);
5652 result[discrim_end - discrim_start] = '\0';
5653 return result;
5654 }
5655
5656 /* Scan STR for a subtype-encoded number, beginning at position K.
5657 Put the position of the character just past the number scanned in
5658 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5659 Return 1 if there was a valid number at the given position, and 0
5660 otherwise. A "subtype-encoded" number consists of the absolute value
5661 in decimal, followed by the letter 'm' to indicate a negative number.
5662 Assumes 0m does not occur. */
5663
5664 int
5665 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5666 {
5667 ULONGEST RU;
5668
5669 if (!isdigit (str[k]))
5670 return 0;
5671
5672 /* Do it the hard way so as not to make any assumption about
5673 the relationship of unsigned long (%lu scan format code) and
5674 LONGEST. */
5675 RU = 0;
5676 while (isdigit (str[k]))
5677 {
5678 RU = RU * 10 + (str[k] - '0');
5679 k += 1;
5680 }
5681
5682 if (str[k] == 'm')
5683 {
5684 if (R != NULL)
5685 *R = (-(LONGEST) (RU - 1)) - 1;
5686 k += 1;
5687 }
5688 else if (R != NULL)
5689 *R = (LONGEST) RU;
5690
5691 /* NOTE on the above: Technically, C does not say what the results of
5692 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5693 number representable as a LONGEST (although either would probably work
5694 in most implementations). When RU>0, the locution in the then branch
5695 above is always equivalent to the negative of RU. */
5696
5697 if (new_k != NULL)
5698 *new_k = k;
5699 return 1;
5700 }
5701
5702 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5703 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5704 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5705
5706 int
5707 ada_in_variant (LONGEST val, struct type *type, int field_num)
5708 {
5709 const char *name = TYPE_FIELD_NAME (type, field_num);
5710 int p;
5711
5712 p = 0;
5713 while (1)
5714 {
5715 switch (name[p])
5716 {
5717 case '\0':
5718 return 0;
5719 case 'S':
5720 {
5721 LONGEST W;
5722 if (!ada_scan_number (name, p + 1, &W, &p))
5723 return 0;
5724 if (val == W)
5725 return 1;
5726 break;
5727 }
5728 case 'R':
5729 {
5730 LONGEST L, U;
5731 if (!ada_scan_number (name, p + 1, &L, &p)
5732 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5733 return 0;
5734 if (val >= L && val <= U)
5735 return 1;
5736 break;
5737 }
5738 case 'O':
5739 return 1;
5740 default:
5741 return 0;
5742 }
5743 }
5744 }
5745
5746 /* FIXME: Lots of redundancy below. Try to consolidate. */
5747
5748 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5749 ARG_TYPE, extract and return the value of one of its (non-static)
5750 fields. FIELDNO says which field. Differs from value_primitive_field
5751 only in that it can handle packed values of arbitrary type. */
5752
5753 static struct value *
5754 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5755 struct type *arg_type)
5756 {
5757 struct type *type;
5758
5759 arg_type = ada_check_typedef (arg_type);
5760 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5761
5762 /* Handle packed fields. */
5763
5764 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5765 {
5766 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5767 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5768
5769 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5770 offset + bit_pos / 8,
5771 bit_pos % 8, bit_size, type);
5772 }
5773 else
5774 return value_primitive_field (arg1, offset, fieldno, arg_type);
5775 }
5776
5777 /* Find field with name NAME in object of type TYPE. If found,
5778 set the following for each argument that is non-null:
5779 - *FIELD_TYPE_P to the field's type;
5780 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5781 an object of that type;
5782 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5783 - *BIT_SIZE_P to its size in bits if the field is packed, and
5784 0 otherwise;
5785 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5786 fields up to but not including the desired field, or by the total
5787 number of fields if not found. A NULL value of NAME never
5788 matches; the function just counts visible fields in this case.
5789
5790 Returns 1 if found, 0 otherwise. */
5791
5792 static int
5793 find_struct_field (char *name, struct type *type, int offset,
5794 struct type **field_type_p,
5795 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5796 int *index_p)
5797 {
5798 int i;
5799
5800 type = ada_check_typedef (type);
5801
5802 if (field_type_p != NULL)
5803 *field_type_p = NULL;
5804 if (byte_offset_p != NULL)
5805 *byte_offset_p = 0;
5806 if (bit_offset_p != NULL)
5807 *bit_offset_p = 0;
5808 if (bit_size_p != NULL)
5809 *bit_size_p = 0;
5810
5811 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5812 {
5813 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5814 int fld_offset = offset + bit_pos / 8;
5815 char *t_field_name = TYPE_FIELD_NAME (type, i);
5816
5817 if (t_field_name == NULL)
5818 continue;
5819
5820 else if (name != NULL && field_name_match (t_field_name, name))
5821 {
5822 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5823 if (field_type_p != NULL)
5824 *field_type_p = TYPE_FIELD_TYPE (type, i);
5825 if (byte_offset_p != NULL)
5826 *byte_offset_p = fld_offset;
5827 if (bit_offset_p != NULL)
5828 *bit_offset_p = bit_pos % 8;
5829 if (bit_size_p != NULL)
5830 *bit_size_p = bit_size;
5831 return 1;
5832 }
5833 else if (ada_is_wrapper_field (type, i))
5834 {
5835 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5836 field_type_p, byte_offset_p, bit_offset_p,
5837 bit_size_p, index_p))
5838 return 1;
5839 }
5840 else if (ada_is_variant_part (type, i))
5841 {
5842 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5843 fixed type?? */
5844 int j;
5845 struct type *field_type
5846 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5847
5848 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5849 {
5850 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5851 fld_offset
5852 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5853 field_type_p, byte_offset_p,
5854 bit_offset_p, bit_size_p, index_p))
5855 return 1;
5856 }
5857 }
5858 else if (index_p != NULL)
5859 *index_p += 1;
5860 }
5861 return 0;
5862 }
5863
5864 /* Number of user-visible fields in record type TYPE. */
5865
5866 static int
5867 num_visible_fields (struct type *type)
5868 {
5869 int n;
5870 n = 0;
5871 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5872 return n;
5873 }
5874
5875 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5876 and search in it assuming it has (class) type TYPE.
5877 If found, return value, else return NULL.
5878
5879 Searches recursively through wrapper fields (e.g., '_parent'). */
5880
5881 static struct value *
5882 ada_search_struct_field (char *name, struct value *arg, int offset,
5883 struct type *type)
5884 {
5885 int i;
5886 type = ada_check_typedef (type);
5887
5888 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5889 {
5890 char *t_field_name = TYPE_FIELD_NAME (type, i);
5891
5892 if (t_field_name == NULL)
5893 continue;
5894
5895 else if (field_name_match (t_field_name, name))
5896 return ada_value_primitive_field (arg, offset, i, type);
5897
5898 else if (ada_is_wrapper_field (type, i))
5899 {
5900 struct value *v = /* Do not let indent join lines here. */
5901 ada_search_struct_field (name, arg,
5902 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5903 TYPE_FIELD_TYPE (type, i));
5904 if (v != NULL)
5905 return v;
5906 }
5907
5908 else if (ada_is_variant_part (type, i))
5909 {
5910 /* PNH: Do we ever get here? See find_struct_field. */
5911 int j;
5912 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5913 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5914
5915 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5916 {
5917 struct value *v = ada_search_struct_field /* Force line break. */
5918 (name, arg,
5919 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5920 TYPE_FIELD_TYPE (field_type, j));
5921 if (v != NULL)
5922 return v;
5923 }
5924 }
5925 }
5926 return NULL;
5927 }
5928
5929 static struct value *ada_index_struct_field_1 (int *, struct value *,
5930 int, struct type *);
5931
5932
5933 /* Return field #INDEX in ARG, where the index is that returned by
5934 * find_struct_field through its INDEX_P argument. Adjust the address
5935 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5936 * If found, return value, else return NULL. */
5937
5938 static struct value *
5939 ada_index_struct_field (int index, struct value *arg, int offset,
5940 struct type *type)
5941 {
5942 return ada_index_struct_field_1 (&index, arg, offset, type);
5943 }
5944
5945
5946 /* Auxiliary function for ada_index_struct_field. Like
5947 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5948 * *INDEX_P. */
5949
5950 static struct value *
5951 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5952 struct type *type)
5953 {
5954 int i;
5955 type = ada_check_typedef (type);
5956
5957 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5958 {
5959 if (TYPE_FIELD_NAME (type, i) == NULL)
5960 continue;
5961 else if (ada_is_wrapper_field (type, i))
5962 {
5963 struct value *v = /* Do not let indent join lines here. */
5964 ada_index_struct_field_1 (index_p, arg,
5965 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5966 TYPE_FIELD_TYPE (type, i));
5967 if (v != NULL)
5968 return v;
5969 }
5970
5971 else if (ada_is_variant_part (type, i))
5972 {
5973 /* PNH: Do we ever get here? See ada_search_struct_field,
5974 find_struct_field. */
5975 error (_("Cannot assign this kind of variant record"));
5976 }
5977 else if (*index_p == 0)
5978 return ada_value_primitive_field (arg, offset, i, type);
5979 else
5980 *index_p -= 1;
5981 }
5982 return NULL;
5983 }
5984
5985 /* Given ARG, a value of type (pointer or reference to a)*
5986 structure/union, extract the component named NAME from the ultimate
5987 target structure/union and return it as a value with its
5988 appropriate type.
5989
5990 The routine searches for NAME among all members of the structure itself
5991 and (recursively) among all members of any wrapper members
5992 (e.g., '_parent').
5993
5994 If NO_ERR, then simply return NULL in case of error, rather than
5995 calling error. */
5996
5997 struct value *
5998 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5999 {
6000 struct type *t, *t1;
6001 struct value *v;
6002
6003 v = NULL;
6004 t1 = t = ada_check_typedef (value_type (arg));
6005 if (TYPE_CODE (t) == TYPE_CODE_REF)
6006 {
6007 t1 = TYPE_TARGET_TYPE (t);
6008 if (t1 == NULL)
6009 goto BadValue;
6010 t1 = ada_check_typedef (t1);
6011 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6012 {
6013 arg = coerce_ref (arg);
6014 t = t1;
6015 }
6016 }
6017
6018 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6019 {
6020 t1 = TYPE_TARGET_TYPE (t);
6021 if (t1 == NULL)
6022 goto BadValue;
6023 t1 = ada_check_typedef (t1);
6024 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6025 {
6026 arg = value_ind (arg);
6027 t = t1;
6028 }
6029 else
6030 break;
6031 }
6032
6033 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6034 goto BadValue;
6035
6036 if (t1 == t)
6037 v = ada_search_struct_field (name, arg, 0, t);
6038 else
6039 {
6040 int bit_offset, bit_size, byte_offset;
6041 struct type *field_type;
6042 CORE_ADDR address;
6043
6044 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6045 address = value_as_address (arg);
6046 else
6047 address = unpack_pointer (t, value_contents (arg));
6048
6049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6050 if (find_struct_field (name, t1, 0,
6051 &field_type, &byte_offset, &bit_offset,
6052 &bit_size, NULL))
6053 {
6054 if (bit_size != 0)
6055 {
6056 if (TYPE_CODE (t) == TYPE_CODE_REF)
6057 arg = ada_coerce_ref (arg);
6058 else
6059 arg = ada_value_ind (arg);
6060 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6061 bit_offset, bit_size,
6062 field_type);
6063 }
6064 else
6065 v = value_at_lazy (field_type, address + byte_offset);
6066 }
6067 }
6068
6069 if (v != NULL || no_err)
6070 return v;
6071 else
6072 error (_("There is no member named %s."), name);
6073
6074 BadValue:
6075 if (no_err)
6076 return NULL;
6077 else
6078 error (_("Attempt to extract a component of a value that is not a record."));
6079 }
6080
6081 /* Given a type TYPE, look up the type of the component of type named NAME.
6082 If DISPP is non-null, add its byte displacement from the beginning of a
6083 structure (pointed to by a value) of type TYPE to *DISPP (does not
6084 work for packed fields).
6085
6086 Matches any field whose name has NAME as a prefix, possibly
6087 followed by "___".
6088
6089 TYPE can be either a struct or union. If REFOK, TYPE may also
6090 be a (pointer or reference)+ to a struct or union, and the
6091 ultimate target type will be searched.
6092
6093 Looks recursively into variant clauses and parent types.
6094
6095 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6096 TYPE is not a type of the right kind. */
6097
6098 static struct type *
6099 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6100 int noerr, int *dispp)
6101 {
6102 int i;
6103
6104 if (name == NULL)
6105 goto BadName;
6106
6107 if (refok && type != NULL)
6108 while (1)
6109 {
6110 type = ada_check_typedef (type);
6111 if (TYPE_CODE (type) != TYPE_CODE_PTR
6112 && TYPE_CODE (type) != TYPE_CODE_REF)
6113 break;
6114 type = TYPE_TARGET_TYPE (type);
6115 }
6116
6117 if (type == NULL
6118 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6119 && TYPE_CODE (type) != TYPE_CODE_UNION))
6120 {
6121 if (noerr)
6122 return NULL;
6123 else
6124 {
6125 target_terminal_ours ();
6126 gdb_flush (gdb_stdout);
6127 if (type == NULL)
6128 error (_("Type (null) is not a structure or union type"));
6129 else
6130 {
6131 /* XXX: type_sprint */
6132 fprintf_unfiltered (gdb_stderr, _("Type "));
6133 type_print (type, "", gdb_stderr, -1);
6134 error (_(" is not a structure or union type"));
6135 }
6136 }
6137 }
6138
6139 type = to_static_fixed_type (type);
6140
6141 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6142 {
6143 char *t_field_name = TYPE_FIELD_NAME (type, i);
6144 struct type *t;
6145 int disp;
6146
6147 if (t_field_name == NULL)
6148 continue;
6149
6150 else if (field_name_match (t_field_name, name))
6151 {
6152 if (dispp != NULL)
6153 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6154 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6155 }
6156
6157 else if (ada_is_wrapper_field (type, i))
6158 {
6159 disp = 0;
6160 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6161 0, 1, &disp);
6162 if (t != NULL)
6163 {
6164 if (dispp != NULL)
6165 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6166 return t;
6167 }
6168 }
6169
6170 else if (ada_is_variant_part (type, i))
6171 {
6172 int j;
6173 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6174
6175 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6176 {
6177 /* FIXME pnh 2008/01/26: We check for a field that is
6178 NOT wrapped in a struct, since the compiler sometimes
6179 generates these for unchecked variant types. Revisit
6180 if the compiler changes this practice. */
6181 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6182 disp = 0;
6183 if (v_field_name != NULL
6184 && field_name_match (v_field_name, name))
6185 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6186 else
6187 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6188 name, 0, 1, &disp);
6189
6190 if (t != NULL)
6191 {
6192 if (dispp != NULL)
6193 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6194 return t;
6195 }
6196 }
6197 }
6198
6199 }
6200
6201 BadName:
6202 if (!noerr)
6203 {
6204 target_terminal_ours ();
6205 gdb_flush (gdb_stdout);
6206 if (name == NULL)
6207 {
6208 /* XXX: type_sprint */
6209 fprintf_unfiltered (gdb_stderr, _("Type "));
6210 type_print (type, "", gdb_stderr, -1);
6211 error (_(" has no component named <null>"));
6212 }
6213 else
6214 {
6215 /* XXX: type_sprint */
6216 fprintf_unfiltered (gdb_stderr, _("Type "));
6217 type_print (type, "", gdb_stderr, -1);
6218 error (_(" has no component named %s"), name);
6219 }
6220 }
6221
6222 return NULL;
6223 }
6224
6225 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6226 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6227 represents an unchecked union (that is, the variant part of a
6228 record that is named in an Unchecked_Union pragma). */
6229
6230 static int
6231 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6232 {
6233 char *discrim_name = ada_variant_discrim_name (var_type);
6234 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6235 == NULL);
6236 }
6237
6238
6239 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6240 within a value of type OUTER_TYPE that is stored in GDB at
6241 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6242 numbering from 0) is applicable. Returns -1 if none are. */
6243
6244 int
6245 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6246 const gdb_byte *outer_valaddr)
6247 {
6248 int others_clause;
6249 int i;
6250 char *discrim_name = ada_variant_discrim_name (var_type);
6251 struct value *outer;
6252 struct value *discrim;
6253 LONGEST discrim_val;
6254
6255 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6256 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6257 if (discrim == NULL)
6258 return -1;
6259 discrim_val = value_as_long (discrim);
6260
6261 others_clause = -1;
6262 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6263 {
6264 if (ada_is_others_clause (var_type, i))
6265 others_clause = i;
6266 else if (ada_in_variant (discrim_val, var_type, i))
6267 return i;
6268 }
6269
6270 return others_clause;
6271 }
6272 \f
6273
6274
6275 /* Dynamic-Sized Records */
6276
6277 /* Strategy: The type ostensibly attached to a value with dynamic size
6278 (i.e., a size that is not statically recorded in the debugging
6279 data) does not accurately reflect the size or layout of the value.
6280 Our strategy is to convert these values to values with accurate,
6281 conventional types that are constructed on the fly. */
6282
6283 /* There is a subtle and tricky problem here. In general, we cannot
6284 determine the size of dynamic records without its data. However,
6285 the 'struct value' data structure, which GDB uses to represent
6286 quantities in the inferior process (the target), requires the size
6287 of the type at the time of its allocation in order to reserve space
6288 for GDB's internal copy of the data. That's why the
6289 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6290 rather than struct value*s.
6291
6292 However, GDB's internal history variables ($1, $2, etc.) are
6293 struct value*s containing internal copies of the data that are not, in
6294 general, the same as the data at their corresponding addresses in
6295 the target. Fortunately, the types we give to these values are all
6296 conventional, fixed-size types (as per the strategy described
6297 above), so that we don't usually have to perform the
6298 'to_fixed_xxx_type' conversions to look at their values.
6299 Unfortunately, there is one exception: if one of the internal
6300 history variables is an array whose elements are unconstrained
6301 records, then we will need to create distinct fixed types for each
6302 element selected. */
6303
6304 /* The upshot of all of this is that many routines take a (type, host
6305 address, target address) triple as arguments to represent a value.
6306 The host address, if non-null, is supposed to contain an internal
6307 copy of the relevant data; otherwise, the program is to consult the
6308 target at the target address. */
6309
6310 /* Assuming that VAL0 represents a pointer value, the result of
6311 dereferencing it. Differs from value_ind in its treatment of
6312 dynamic-sized types. */
6313
6314 struct value *
6315 ada_value_ind (struct value *val0)
6316 {
6317 struct value *val = unwrap_value (value_ind (val0));
6318 return ada_to_fixed_value (val);
6319 }
6320
6321 /* The value resulting from dereferencing any "reference to"
6322 qualifiers on VAL0. */
6323
6324 static struct value *
6325 ada_coerce_ref (struct value *val0)
6326 {
6327 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6328 {
6329 struct value *val = val0;
6330 val = coerce_ref (val);
6331 val = unwrap_value (val);
6332 return ada_to_fixed_value (val);
6333 }
6334 else
6335 return val0;
6336 }
6337
6338 /* Return OFF rounded upward if necessary to a multiple of
6339 ALIGNMENT (a power of 2). */
6340
6341 static unsigned int
6342 align_value (unsigned int off, unsigned int alignment)
6343 {
6344 return (off + alignment - 1) & ~(alignment - 1);
6345 }
6346
6347 /* Return the bit alignment required for field #F of template type TYPE. */
6348
6349 static unsigned int
6350 field_alignment (struct type *type, int f)
6351 {
6352 const char *name = TYPE_FIELD_NAME (type, f);
6353 int len;
6354 int align_offset;
6355
6356 /* The field name should never be null, unless the debugging information
6357 is somehow malformed. In this case, we assume the field does not
6358 require any alignment. */
6359 if (name == NULL)
6360 return 1;
6361
6362 len = strlen (name);
6363
6364 if (!isdigit (name[len - 1]))
6365 return 1;
6366
6367 if (isdigit (name[len - 2]))
6368 align_offset = len - 2;
6369 else
6370 align_offset = len - 1;
6371
6372 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6373 return TARGET_CHAR_BIT;
6374
6375 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6376 }
6377
6378 /* Find a symbol named NAME. Ignores ambiguity. */
6379
6380 struct symbol *
6381 ada_find_any_symbol (const char *name)
6382 {
6383 struct symbol *sym;
6384
6385 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6386 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6387 return sym;
6388
6389 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6390 return sym;
6391 }
6392
6393 /* Find a type named NAME. Ignores ambiguity. This routine will look
6394 solely for types defined by debug info, it will not search the GDB
6395 primitive types. */
6396
6397 struct type *
6398 ada_find_any_type (const char *name)
6399 {
6400 struct symbol *sym = ada_find_any_symbol (name);
6401
6402 if (sym != NULL)
6403 return SYMBOL_TYPE (sym);
6404
6405 return NULL;
6406 }
6407
6408 /* Given NAME and an associated BLOCK, search all symbols for
6409 NAME suffixed with "___XR", which is the ``renaming'' symbol
6410 associated to NAME. Return this symbol if found, return
6411 NULL otherwise. */
6412
6413 struct symbol *
6414 ada_find_renaming_symbol (const char *name, struct block *block)
6415 {
6416 struct symbol *sym;
6417
6418 sym = find_old_style_renaming_symbol (name, block);
6419
6420 if (sym != NULL)
6421 return sym;
6422
6423 /* Not right yet. FIXME pnh 7/20/2007. */
6424 sym = ada_find_any_symbol (name);
6425 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6426 return sym;
6427 else
6428 return NULL;
6429 }
6430
6431 static struct symbol *
6432 find_old_style_renaming_symbol (const char *name, struct block *block)
6433 {
6434 const struct symbol *function_sym = block_linkage_function (block);
6435 char *rename;
6436
6437 if (function_sym != NULL)
6438 {
6439 /* If the symbol is defined inside a function, NAME is not fully
6440 qualified. This means we need to prepend the function name
6441 as well as adding the ``___XR'' suffix to build the name of
6442 the associated renaming symbol. */
6443 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6444 /* Function names sometimes contain suffixes used
6445 for instance to qualify nested subprograms. When building
6446 the XR type name, we need to make sure that this suffix is
6447 not included. So do not include any suffix in the function
6448 name length below. */
6449 int function_name_len = ada_name_prefix_len (function_name);
6450 const int rename_len = function_name_len + 2 /* "__" */
6451 + strlen (name) + 6 /* "___XR\0" */ ;
6452
6453 /* Strip the suffix if necessary. */
6454 ada_remove_trailing_digits (function_name, &function_name_len);
6455 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6456 ada_remove_Xbn_suffix (function_name, &function_name_len);
6457
6458 /* Library-level functions are a special case, as GNAT adds
6459 a ``_ada_'' prefix to the function name to avoid namespace
6460 pollution. However, the renaming symbols themselves do not
6461 have this prefix, so we need to skip this prefix if present. */
6462 if (function_name_len > 5 /* "_ada_" */
6463 && strstr (function_name, "_ada_") == function_name)
6464 {
6465 function_name += 5;
6466 function_name_len -= 5;
6467 }
6468
6469 rename = (char *) alloca (rename_len * sizeof (char));
6470 strncpy (rename, function_name, function_name_len);
6471 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6472 "__%s___XR", name);
6473 }
6474 else
6475 {
6476 const int rename_len = strlen (name) + 6;
6477 rename = (char *) alloca (rename_len * sizeof (char));
6478 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6479 }
6480
6481 return ada_find_any_symbol (rename);
6482 }
6483
6484 /* Because of GNAT encoding conventions, several GDB symbols may match a
6485 given type name. If the type denoted by TYPE0 is to be preferred to
6486 that of TYPE1 for purposes of type printing, return non-zero;
6487 otherwise return 0. */
6488
6489 int
6490 ada_prefer_type (struct type *type0, struct type *type1)
6491 {
6492 if (type1 == NULL)
6493 return 1;
6494 else if (type0 == NULL)
6495 return 0;
6496 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6497 return 1;
6498 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6499 return 0;
6500 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6501 return 1;
6502 else if (ada_is_constrained_packed_array_type (type0))
6503 return 1;
6504 else if (ada_is_array_descriptor_type (type0)
6505 && !ada_is_array_descriptor_type (type1))
6506 return 1;
6507 else
6508 {
6509 const char *type0_name = type_name_no_tag (type0);
6510 const char *type1_name = type_name_no_tag (type1);
6511
6512 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6513 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6514 return 1;
6515 }
6516 return 0;
6517 }
6518
6519 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6520 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6521
6522 char *
6523 ada_type_name (struct type *type)
6524 {
6525 if (type == NULL)
6526 return NULL;
6527 else if (TYPE_NAME (type) != NULL)
6528 return TYPE_NAME (type);
6529 else
6530 return TYPE_TAG_NAME (type);
6531 }
6532
6533 /* Search the list of "descriptive" types associated to TYPE for a type
6534 whose name is NAME. */
6535
6536 static struct type *
6537 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6538 {
6539 struct type *result;
6540
6541 /* If there no descriptive-type info, then there is no parallel type
6542 to be found. */
6543 if (!HAVE_GNAT_AUX_INFO (type))
6544 return NULL;
6545
6546 result = TYPE_DESCRIPTIVE_TYPE (type);
6547 while (result != NULL)
6548 {
6549 char *result_name = ada_type_name (result);
6550
6551 if (result_name == NULL)
6552 {
6553 warning (_("unexpected null name on descriptive type"));
6554 return NULL;
6555 }
6556
6557 /* If the names match, stop. */
6558 if (strcmp (result_name, name) == 0)
6559 break;
6560
6561 /* Otherwise, look at the next item on the list, if any. */
6562 if (HAVE_GNAT_AUX_INFO (result))
6563 result = TYPE_DESCRIPTIVE_TYPE (result);
6564 else
6565 result = NULL;
6566 }
6567
6568 /* If we didn't find a match, see whether this is a packed array. With
6569 older compilers, the descriptive type information is either absent or
6570 irrelevant when it comes to packed arrays so the above lookup fails.
6571 Fall back to using a parallel lookup by name in this case. */
6572 if (result == NULL && ada_is_constrained_packed_array_type (type))
6573 return ada_find_any_type (name);
6574
6575 return result;
6576 }
6577
6578 /* Find a parallel type to TYPE with the specified NAME, using the
6579 descriptive type taken from the debugging information, if available,
6580 and otherwise using the (slower) name-based method. */
6581
6582 static struct type *
6583 ada_find_parallel_type_with_name (struct type *type, const char *name)
6584 {
6585 struct type *result = NULL;
6586
6587 if (HAVE_GNAT_AUX_INFO (type))
6588 result = find_parallel_type_by_descriptive_type (type, name);
6589 else
6590 result = ada_find_any_type (name);
6591
6592 return result;
6593 }
6594
6595 /* Same as above, but specify the name of the parallel type by appending
6596 SUFFIX to the name of TYPE. */
6597
6598 struct type *
6599 ada_find_parallel_type (struct type *type, const char *suffix)
6600 {
6601 char *name, *typename = ada_type_name (type);
6602 int len;
6603
6604 if (typename == NULL)
6605 return NULL;
6606
6607 len = strlen (typename);
6608
6609 name = (char *) alloca (len + strlen (suffix) + 1);
6610
6611 strcpy (name, typename);
6612 strcpy (name + len, suffix);
6613
6614 return ada_find_parallel_type_with_name (type, name);
6615 }
6616
6617 /* If TYPE is a variable-size record type, return the corresponding template
6618 type describing its fields. Otherwise, return NULL. */
6619
6620 static struct type *
6621 dynamic_template_type (struct type *type)
6622 {
6623 type = ada_check_typedef (type);
6624
6625 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6626 || ada_type_name (type) == NULL)
6627 return NULL;
6628 else
6629 {
6630 int len = strlen (ada_type_name (type));
6631 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6632 return type;
6633 else
6634 return ada_find_parallel_type (type, "___XVE");
6635 }
6636 }
6637
6638 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6639 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6640
6641 static int
6642 is_dynamic_field (struct type *templ_type, int field_num)
6643 {
6644 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6645 return name != NULL
6646 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6647 && strstr (name, "___XVL") != NULL;
6648 }
6649
6650 /* The index of the variant field of TYPE, or -1 if TYPE does not
6651 represent a variant record type. */
6652
6653 static int
6654 variant_field_index (struct type *type)
6655 {
6656 int f;
6657
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6659 return -1;
6660
6661 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6662 {
6663 if (ada_is_variant_part (type, f))
6664 return f;
6665 }
6666 return -1;
6667 }
6668
6669 /* A record type with no fields. */
6670
6671 static struct type *
6672 empty_record (struct type *template)
6673 {
6674 struct type *type = alloc_type_copy (template);
6675 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6676 TYPE_NFIELDS (type) = 0;
6677 TYPE_FIELDS (type) = NULL;
6678 INIT_CPLUS_SPECIFIC (type);
6679 TYPE_NAME (type) = "<empty>";
6680 TYPE_TAG_NAME (type) = NULL;
6681 TYPE_LENGTH (type) = 0;
6682 return type;
6683 }
6684
6685 /* An ordinary record type (with fixed-length fields) that describes
6686 the value of type TYPE at VALADDR or ADDRESS (see comments at
6687 the beginning of this section) VAL according to GNAT conventions.
6688 DVAL0 should describe the (portion of a) record that contains any
6689 necessary discriminants. It should be NULL if value_type (VAL) is
6690 an outer-level type (i.e., as opposed to a branch of a variant.) A
6691 variant field (unless unchecked) is replaced by a particular branch
6692 of the variant.
6693
6694 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6695 length are not statically known are discarded. As a consequence,
6696 VALADDR, ADDRESS and DVAL0 are ignored.
6697
6698 NOTE: Limitations: For now, we assume that dynamic fields and
6699 variants occupy whole numbers of bytes. However, they need not be
6700 byte-aligned. */
6701
6702 struct type *
6703 ada_template_to_fixed_record_type_1 (struct type *type,
6704 const gdb_byte *valaddr,
6705 CORE_ADDR address, struct value *dval0,
6706 int keep_dynamic_fields)
6707 {
6708 struct value *mark = value_mark ();
6709 struct value *dval;
6710 struct type *rtype;
6711 int nfields, bit_len;
6712 int variant_field;
6713 long off;
6714 int fld_bit_len, bit_incr;
6715 int f;
6716
6717 /* Compute the number of fields in this record type that are going
6718 to be processed: unless keep_dynamic_fields, this includes only
6719 fields whose position and length are static will be processed. */
6720 if (keep_dynamic_fields)
6721 nfields = TYPE_NFIELDS (type);
6722 else
6723 {
6724 nfields = 0;
6725 while (nfields < TYPE_NFIELDS (type)
6726 && !ada_is_variant_part (type, nfields)
6727 && !is_dynamic_field (type, nfields))
6728 nfields++;
6729 }
6730
6731 rtype = alloc_type_copy (type);
6732 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6733 INIT_CPLUS_SPECIFIC (rtype);
6734 TYPE_NFIELDS (rtype) = nfields;
6735 TYPE_FIELDS (rtype) = (struct field *)
6736 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6737 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6738 TYPE_NAME (rtype) = ada_type_name (type);
6739 TYPE_TAG_NAME (rtype) = NULL;
6740 TYPE_FIXED_INSTANCE (rtype) = 1;
6741
6742 off = 0;
6743 bit_len = 0;
6744 variant_field = -1;
6745
6746 for (f = 0; f < nfields; f += 1)
6747 {
6748 off = align_value (off, field_alignment (type, f))
6749 + TYPE_FIELD_BITPOS (type, f);
6750 TYPE_FIELD_BITPOS (rtype, f) = off;
6751 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6752
6753 if (ada_is_variant_part (type, f))
6754 {
6755 variant_field = f;
6756 fld_bit_len = bit_incr = 0;
6757 }
6758 else if (is_dynamic_field (type, f))
6759 {
6760 const gdb_byte *field_valaddr = valaddr;
6761 CORE_ADDR field_address = address;
6762 struct type *field_type =
6763 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6764
6765 if (dval0 == NULL)
6766 {
6767 /* rtype's length is computed based on the run-time
6768 value of discriminants. If the discriminants are not
6769 initialized, the type size may be completely bogus and
6770 GDB may fail to allocate a value for it. So check the
6771 size first before creating the value. */
6772 check_size (rtype);
6773 dval = value_from_contents_and_address (rtype, valaddr, address);
6774 }
6775 else
6776 dval = dval0;
6777
6778 /* If the type referenced by this field is an aligner type, we need
6779 to unwrap that aligner type, because its size might not be set.
6780 Keeping the aligner type would cause us to compute the wrong
6781 size for this field, impacting the offset of the all the fields
6782 that follow this one. */
6783 if (ada_is_aligner_type (field_type))
6784 {
6785 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6786
6787 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6788 field_address = cond_offset_target (field_address, field_offset);
6789 field_type = ada_aligned_type (field_type);
6790 }
6791
6792 field_valaddr = cond_offset_host (field_valaddr,
6793 off / TARGET_CHAR_BIT);
6794 field_address = cond_offset_target (field_address,
6795 off / TARGET_CHAR_BIT);
6796
6797 /* Get the fixed type of the field. Note that, in this case,
6798 we do not want to get the real type out of the tag: if
6799 the current field is the parent part of a tagged record,
6800 we will get the tag of the object. Clearly wrong: the real
6801 type of the parent is not the real type of the child. We
6802 would end up in an infinite loop. */
6803 field_type = ada_get_base_type (field_type);
6804 field_type = ada_to_fixed_type (field_type, field_valaddr,
6805 field_address, dval, 0);
6806
6807 TYPE_FIELD_TYPE (rtype, f) = field_type;
6808 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6809 bit_incr = fld_bit_len =
6810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6811 }
6812 else
6813 {
6814 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6815
6816 TYPE_FIELD_TYPE (rtype, f) = field_type;
6817 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6818 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6819 bit_incr = fld_bit_len =
6820 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6821 else
6822 bit_incr = fld_bit_len =
6823 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6824 }
6825 if (off + fld_bit_len > bit_len)
6826 bit_len = off + fld_bit_len;
6827 off += bit_incr;
6828 TYPE_LENGTH (rtype) =
6829 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6830 }
6831
6832 /* We handle the variant part, if any, at the end because of certain
6833 odd cases in which it is re-ordered so as NOT to be the last field of
6834 the record. This can happen in the presence of representation
6835 clauses. */
6836 if (variant_field >= 0)
6837 {
6838 struct type *branch_type;
6839
6840 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6841
6842 if (dval0 == NULL)
6843 dval = value_from_contents_and_address (rtype, valaddr, address);
6844 else
6845 dval = dval0;
6846
6847 branch_type =
6848 to_fixed_variant_branch_type
6849 (TYPE_FIELD_TYPE (type, variant_field),
6850 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6851 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6852 if (branch_type == NULL)
6853 {
6854 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6855 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6856 TYPE_NFIELDS (rtype) -= 1;
6857 }
6858 else
6859 {
6860 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6861 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6862 fld_bit_len =
6863 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6864 TARGET_CHAR_BIT;
6865 if (off + fld_bit_len > bit_len)
6866 bit_len = off + fld_bit_len;
6867 TYPE_LENGTH (rtype) =
6868 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6869 }
6870 }
6871
6872 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6873 should contain the alignment of that record, which should be a strictly
6874 positive value. If null or negative, then something is wrong, most
6875 probably in the debug info. In that case, we don't round up the size
6876 of the resulting type. If this record is not part of another structure,
6877 the current RTYPE length might be good enough for our purposes. */
6878 if (TYPE_LENGTH (type) <= 0)
6879 {
6880 if (TYPE_NAME (rtype))
6881 warning (_("Invalid type size for `%s' detected: %d."),
6882 TYPE_NAME (rtype), TYPE_LENGTH (type));
6883 else
6884 warning (_("Invalid type size for <unnamed> detected: %d."),
6885 TYPE_LENGTH (type));
6886 }
6887 else
6888 {
6889 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6890 TYPE_LENGTH (type));
6891 }
6892
6893 value_free_to_mark (mark);
6894 if (TYPE_LENGTH (rtype) > varsize_limit)
6895 error (_("record type with dynamic size is larger than varsize-limit"));
6896 return rtype;
6897 }
6898
6899 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6900 of 1. */
6901
6902 static struct type *
6903 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6904 CORE_ADDR address, struct value *dval0)
6905 {
6906 return ada_template_to_fixed_record_type_1 (type, valaddr,
6907 address, dval0, 1);
6908 }
6909
6910 /* An ordinary record type in which ___XVL-convention fields and
6911 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6912 static approximations, containing all possible fields. Uses
6913 no runtime values. Useless for use in values, but that's OK,
6914 since the results are used only for type determinations. Works on both
6915 structs and unions. Representation note: to save space, we memorize
6916 the result of this function in the TYPE_TARGET_TYPE of the
6917 template type. */
6918
6919 static struct type *
6920 template_to_static_fixed_type (struct type *type0)
6921 {
6922 struct type *type;
6923 int nfields;
6924 int f;
6925
6926 if (TYPE_TARGET_TYPE (type0) != NULL)
6927 return TYPE_TARGET_TYPE (type0);
6928
6929 nfields = TYPE_NFIELDS (type0);
6930 type = type0;
6931
6932 for (f = 0; f < nfields; f += 1)
6933 {
6934 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6935 struct type *new_type;
6936
6937 if (is_dynamic_field (type0, f))
6938 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6939 else
6940 new_type = static_unwrap_type (field_type);
6941 if (type == type0 && new_type != field_type)
6942 {
6943 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6944 TYPE_CODE (type) = TYPE_CODE (type0);
6945 INIT_CPLUS_SPECIFIC (type);
6946 TYPE_NFIELDS (type) = nfields;
6947 TYPE_FIELDS (type) = (struct field *)
6948 TYPE_ALLOC (type, nfields * sizeof (struct field));
6949 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6950 sizeof (struct field) * nfields);
6951 TYPE_NAME (type) = ada_type_name (type0);
6952 TYPE_TAG_NAME (type) = NULL;
6953 TYPE_FIXED_INSTANCE (type) = 1;
6954 TYPE_LENGTH (type) = 0;
6955 }
6956 TYPE_FIELD_TYPE (type, f) = new_type;
6957 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6958 }
6959 return type;
6960 }
6961
6962 /* Given an object of type TYPE whose contents are at VALADDR and
6963 whose address in memory is ADDRESS, returns a revision of TYPE,
6964 which should be a non-dynamic-sized record, in which the variant
6965 part, if any, is replaced with the appropriate branch. Looks
6966 for discriminant values in DVAL0, which can be NULL if the record
6967 contains the necessary discriminant values. */
6968
6969 static struct type *
6970 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6971 CORE_ADDR address, struct value *dval0)
6972 {
6973 struct value *mark = value_mark ();
6974 struct value *dval;
6975 struct type *rtype;
6976 struct type *branch_type;
6977 int nfields = TYPE_NFIELDS (type);
6978 int variant_field = variant_field_index (type);
6979
6980 if (variant_field == -1)
6981 return type;
6982
6983 if (dval0 == NULL)
6984 dval = value_from_contents_and_address (type, valaddr, address);
6985 else
6986 dval = dval0;
6987
6988 rtype = alloc_type_copy (type);
6989 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6990 INIT_CPLUS_SPECIFIC (rtype);
6991 TYPE_NFIELDS (rtype) = nfields;
6992 TYPE_FIELDS (rtype) =
6993 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6994 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6995 sizeof (struct field) * nfields);
6996 TYPE_NAME (rtype) = ada_type_name (type);
6997 TYPE_TAG_NAME (rtype) = NULL;
6998 TYPE_FIXED_INSTANCE (rtype) = 1;
6999 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7000
7001 branch_type = to_fixed_variant_branch_type
7002 (TYPE_FIELD_TYPE (type, variant_field),
7003 cond_offset_host (valaddr,
7004 TYPE_FIELD_BITPOS (type, variant_field)
7005 / TARGET_CHAR_BIT),
7006 cond_offset_target (address,
7007 TYPE_FIELD_BITPOS (type, variant_field)
7008 / TARGET_CHAR_BIT), dval);
7009 if (branch_type == NULL)
7010 {
7011 int f;
7012 for (f = variant_field + 1; f < nfields; f += 1)
7013 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7014 TYPE_NFIELDS (rtype) -= 1;
7015 }
7016 else
7017 {
7018 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7019 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7020 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7021 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7022 }
7023 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7024
7025 value_free_to_mark (mark);
7026 return rtype;
7027 }
7028
7029 /* An ordinary record type (with fixed-length fields) that describes
7030 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7031 beginning of this section]. Any necessary discriminants' values
7032 should be in DVAL, a record value; it may be NULL if the object
7033 at ADDR itself contains any necessary discriminant values.
7034 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7035 values from the record are needed. Except in the case that DVAL,
7036 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7037 unchecked) is replaced by a particular branch of the variant.
7038
7039 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7040 is questionable and may be removed. It can arise during the
7041 processing of an unconstrained-array-of-record type where all the
7042 variant branches have exactly the same size. This is because in
7043 such cases, the compiler does not bother to use the XVS convention
7044 when encoding the record. I am currently dubious of this
7045 shortcut and suspect the compiler should be altered. FIXME. */
7046
7047 static struct type *
7048 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7049 CORE_ADDR address, struct value *dval)
7050 {
7051 struct type *templ_type;
7052
7053 if (TYPE_FIXED_INSTANCE (type0))
7054 return type0;
7055
7056 templ_type = dynamic_template_type (type0);
7057
7058 if (templ_type != NULL)
7059 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7060 else if (variant_field_index (type0) >= 0)
7061 {
7062 if (dval == NULL && valaddr == NULL && address == 0)
7063 return type0;
7064 return to_record_with_fixed_variant_part (type0, valaddr, address,
7065 dval);
7066 }
7067 else
7068 {
7069 TYPE_FIXED_INSTANCE (type0) = 1;
7070 return type0;
7071 }
7072
7073 }
7074
7075 /* An ordinary record type (with fixed-length fields) that describes
7076 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7077 union type. Any necessary discriminants' values should be in DVAL,
7078 a record value. That is, this routine selects the appropriate
7079 branch of the union at ADDR according to the discriminant value
7080 indicated in the union's type name. Returns VAR_TYPE0 itself if
7081 it represents a variant subject to a pragma Unchecked_Union. */
7082
7083 static struct type *
7084 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7085 CORE_ADDR address, struct value *dval)
7086 {
7087 int which;
7088 struct type *templ_type;
7089 struct type *var_type;
7090
7091 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7092 var_type = TYPE_TARGET_TYPE (var_type0);
7093 else
7094 var_type = var_type0;
7095
7096 templ_type = ada_find_parallel_type (var_type, "___XVU");
7097
7098 if (templ_type != NULL)
7099 var_type = templ_type;
7100
7101 if (is_unchecked_variant (var_type, value_type (dval)))
7102 return var_type0;
7103 which =
7104 ada_which_variant_applies (var_type,
7105 value_type (dval), value_contents (dval));
7106
7107 if (which < 0)
7108 return empty_record (var_type);
7109 else if (is_dynamic_field (var_type, which))
7110 return to_fixed_record_type
7111 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7112 valaddr, address, dval);
7113 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7114 return
7115 to_fixed_record_type
7116 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7117 else
7118 return TYPE_FIELD_TYPE (var_type, which);
7119 }
7120
7121 /* Assuming that TYPE0 is an array type describing the type of a value
7122 at ADDR, and that DVAL describes a record containing any
7123 discriminants used in TYPE0, returns a type for the value that
7124 contains no dynamic components (that is, no components whose sizes
7125 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7126 true, gives an error message if the resulting type's size is over
7127 varsize_limit. */
7128
7129 static struct type *
7130 to_fixed_array_type (struct type *type0, struct value *dval,
7131 int ignore_too_big)
7132 {
7133 struct type *index_type_desc;
7134 struct type *result;
7135 int constrained_packed_array_p;
7136
7137 if (TYPE_FIXED_INSTANCE (type0))
7138 return type0;
7139
7140 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7141 if (constrained_packed_array_p)
7142 type0 = decode_constrained_packed_array_type (type0);
7143
7144 index_type_desc = ada_find_parallel_type (type0, "___XA");
7145 if (index_type_desc == NULL)
7146 {
7147 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7148 /* NOTE: elt_type---the fixed version of elt_type0---should never
7149 depend on the contents of the array in properly constructed
7150 debugging data. */
7151 /* Create a fixed version of the array element type.
7152 We're not providing the address of an element here,
7153 and thus the actual object value cannot be inspected to do
7154 the conversion. This should not be a problem, since arrays of
7155 unconstrained objects are not allowed. In particular, all
7156 the elements of an array of a tagged type should all be of
7157 the same type specified in the debugging info. No need to
7158 consult the object tag. */
7159 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7160
7161 /* Make sure we always create a new array type when dealing with
7162 packed array types, since we're going to fix-up the array
7163 type length and element bitsize a little further down. */
7164 if (elt_type0 == elt_type && !constrained_packed_array_p)
7165 result = type0;
7166 else
7167 result = create_array_type (alloc_type_copy (type0),
7168 elt_type, TYPE_INDEX_TYPE (type0));
7169 }
7170 else
7171 {
7172 int i;
7173 struct type *elt_type0;
7174
7175 elt_type0 = type0;
7176 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7177 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7178
7179 /* NOTE: result---the fixed version of elt_type0---should never
7180 depend on the contents of the array in properly constructed
7181 debugging data. */
7182 /* Create a fixed version of the array element type.
7183 We're not providing the address of an element here,
7184 and thus the actual object value cannot be inspected to do
7185 the conversion. This should not be a problem, since arrays of
7186 unconstrained objects are not allowed. In particular, all
7187 the elements of an array of a tagged type should all be of
7188 the same type specified in the debugging info. No need to
7189 consult the object tag. */
7190 result =
7191 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7192
7193 elt_type0 = type0;
7194 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7195 {
7196 struct type *range_type =
7197 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7198 dval, TYPE_INDEX_TYPE (elt_type0));
7199 result = create_array_type (alloc_type_copy (elt_type0),
7200 result, range_type);
7201 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7202 }
7203 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7204 error (_("array type with dynamic size is larger than varsize-limit"));
7205 }
7206
7207 if (constrained_packed_array_p)
7208 {
7209 /* So far, the resulting type has been created as if the original
7210 type was a regular (non-packed) array type. As a result, the
7211 bitsize of the array elements needs to be set again, and the array
7212 length needs to be recomputed based on that bitsize. */
7213 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7214 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7215
7216 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7217 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7218 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7219 TYPE_LENGTH (result)++;
7220 }
7221
7222 TYPE_FIXED_INSTANCE (result) = 1;
7223 return result;
7224 }
7225
7226
7227 /* A standard type (containing no dynamically sized components)
7228 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7229 DVAL describes a record containing any discriminants used in TYPE0,
7230 and may be NULL if there are none, or if the object of type TYPE at
7231 ADDRESS or in VALADDR contains these discriminants.
7232
7233 If CHECK_TAG is not null, in the case of tagged types, this function
7234 attempts to locate the object's tag and use it to compute the actual
7235 type. However, when ADDRESS is null, we cannot use it to determine the
7236 location of the tag, and therefore compute the tagged type's actual type.
7237 So we return the tagged type without consulting the tag. */
7238
7239 static struct type *
7240 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7241 CORE_ADDR address, struct value *dval, int check_tag)
7242 {
7243 type = ada_check_typedef (type);
7244 switch (TYPE_CODE (type))
7245 {
7246 default:
7247 return type;
7248 case TYPE_CODE_STRUCT:
7249 {
7250 struct type *static_type = to_static_fixed_type (type);
7251 struct type *fixed_record_type =
7252 to_fixed_record_type (type, valaddr, address, NULL);
7253 /* If STATIC_TYPE is a tagged type and we know the object's address,
7254 then we can determine its tag, and compute the object's actual
7255 type from there. Note that we have to use the fixed record
7256 type (the parent part of the record may have dynamic fields
7257 and the way the location of _tag is expressed may depend on
7258 them). */
7259
7260 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7261 {
7262 struct type *real_type =
7263 type_from_tag (value_tag_from_contents_and_address
7264 (fixed_record_type,
7265 valaddr,
7266 address));
7267 if (real_type != NULL)
7268 return to_fixed_record_type (real_type, valaddr, address, NULL);
7269 }
7270
7271 /* Check to see if there is a parallel ___XVZ variable.
7272 If there is, then it provides the actual size of our type. */
7273 else if (ada_type_name (fixed_record_type) != NULL)
7274 {
7275 char *name = ada_type_name (fixed_record_type);
7276 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7277 int xvz_found = 0;
7278 LONGEST size;
7279
7280 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7281 size = get_int_var_value (xvz_name, &xvz_found);
7282 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7283 {
7284 fixed_record_type = copy_type (fixed_record_type);
7285 TYPE_LENGTH (fixed_record_type) = size;
7286
7287 /* The FIXED_RECORD_TYPE may have be a stub. We have
7288 observed this when the debugging info is STABS, and
7289 apparently it is something that is hard to fix.
7290
7291 In practice, we don't need the actual type definition
7292 at all, because the presence of the XVZ variable allows us
7293 to assume that there must be a XVS type as well, which we
7294 should be able to use later, when we need the actual type
7295 definition.
7296
7297 In the meantime, pretend that the "fixed" type we are
7298 returning is NOT a stub, because this can cause trouble
7299 when using this type to create new types targeting it.
7300 Indeed, the associated creation routines often check
7301 whether the target type is a stub and will try to replace
7302 it, thus using a type with the wrong size. This, in turn,
7303 might cause the new type to have the wrong size too.
7304 Consider the case of an array, for instance, where the size
7305 of the array is computed from the number of elements in
7306 our array multiplied by the size of its element. */
7307 TYPE_STUB (fixed_record_type) = 0;
7308 }
7309 }
7310 return fixed_record_type;
7311 }
7312 case TYPE_CODE_ARRAY:
7313 return to_fixed_array_type (type, dval, 1);
7314 case TYPE_CODE_UNION:
7315 if (dval == NULL)
7316 return type;
7317 else
7318 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7319 }
7320 }
7321
7322 /* The same as ada_to_fixed_type_1, except that it preserves the type
7323 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7324 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7325
7326 struct type *
7327 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7328 CORE_ADDR address, struct value *dval, int check_tag)
7329
7330 {
7331 struct type *fixed_type =
7332 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7333
7334 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7335 && TYPE_TARGET_TYPE (type) == fixed_type)
7336 return type;
7337
7338 return fixed_type;
7339 }
7340
7341 /* A standard (static-sized) type corresponding as well as possible to
7342 TYPE0, but based on no runtime data. */
7343
7344 static struct type *
7345 to_static_fixed_type (struct type *type0)
7346 {
7347 struct type *type;
7348
7349 if (type0 == NULL)
7350 return NULL;
7351
7352 if (TYPE_FIXED_INSTANCE (type0))
7353 return type0;
7354
7355 type0 = ada_check_typedef (type0);
7356
7357 switch (TYPE_CODE (type0))
7358 {
7359 default:
7360 return type0;
7361 case TYPE_CODE_STRUCT:
7362 type = dynamic_template_type (type0);
7363 if (type != NULL)
7364 return template_to_static_fixed_type (type);
7365 else
7366 return template_to_static_fixed_type (type0);
7367 case TYPE_CODE_UNION:
7368 type = ada_find_parallel_type (type0, "___XVU");
7369 if (type != NULL)
7370 return template_to_static_fixed_type (type);
7371 else
7372 return template_to_static_fixed_type (type0);
7373 }
7374 }
7375
7376 /* A static approximation of TYPE with all type wrappers removed. */
7377
7378 static struct type *
7379 static_unwrap_type (struct type *type)
7380 {
7381 if (ada_is_aligner_type (type))
7382 {
7383 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7384 if (ada_type_name (type1) == NULL)
7385 TYPE_NAME (type1) = ada_type_name (type);
7386
7387 return static_unwrap_type (type1);
7388 }
7389 else
7390 {
7391 struct type *raw_real_type = ada_get_base_type (type);
7392 if (raw_real_type == type)
7393 return type;
7394 else
7395 return to_static_fixed_type (raw_real_type);
7396 }
7397 }
7398
7399 /* In some cases, incomplete and private types require
7400 cross-references that are not resolved as records (for example,
7401 type Foo;
7402 type FooP is access Foo;
7403 V: FooP;
7404 type Foo is array ...;
7405 ). In these cases, since there is no mechanism for producing
7406 cross-references to such types, we instead substitute for FooP a
7407 stub enumeration type that is nowhere resolved, and whose tag is
7408 the name of the actual type. Call these types "non-record stubs". */
7409
7410 /* A type equivalent to TYPE that is not a non-record stub, if one
7411 exists, otherwise TYPE. */
7412
7413 struct type *
7414 ada_check_typedef (struct type *type)
7415 {
7416 if (type == NULL)
7417 return NULL;
7418
7419 CHECK_TYPEDEF (type);
7420 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7421 || !TYPE_STUB (type)
7422 || TYPE_TAG_NAME (type) == NULL)
7423 return type;
7424 else
7425 {
7426 char *name = TYPE_TAG_NAME (type);
7427 struct type *type1 = ada_find_any_type (name);
7428 return (type1 == NULL) ? type : type1;
7429 }
7430 }
7431
7432 /* A value representing the data at VALADDR/ADDRESS as described by
7433 type TYPE0, but with a standard (static-sized) type that correctly
7434 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7435 type, then return VAL0 [this feature is simply to avoid redundant
7436 creation of struct values]. */
7437
7438 static struct value *
7439 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7440 struct value *val0)
7441 {
7442 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7443 if (type == type0 && val0 != NULL)
7444 return val0;
7445 else
7446 return value_from_contents_and_address (type, 0, address);
7447 }
7448
7449 /* A value representing VAL, but with a standard (static-sized) type
7450 that correctly describes it. Does not necessarily create a new
7451 value. */
7452
7453 static struct value *
7454 ada_to_fixed_value (struct value *val)
7455 {
7456 return ada_to_fixed_value_create (value_type (val),
7457 value_address (val),
7458 val);
7459 }
7460 \f
7461
7462 /* Attributes */
7463
7464 /* Table mapping attribute numbers to names.
7465 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7466
7467 static const char *attribute_names[] = {
7468 "<?>",
7469
7470 "first",
7471 "last",
7472 "length",
7473 "image",
7474 "max",
7475 "min",
7476 "modulus",
7477 "pos",
7478 "size",
7479 "tag",
7480 "val",
7481 0
7482 };
7483
7484 const char *
7485 ada_attribute_name (enum exp_opcode n)
7486 {
7487 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7488 return attribute_names[n - OP_ATR_FIRST + 1];
7489 else
7490 return attribute_names[0];
7491 }
7492
7493 /* Evaluate the 'POS attribute applied to ARG. */
7494
7495 static LONGEST
7496 pos_atr (struct value *arg)
7497 {
7498 struct value *val = coerce_ref (arg);
7499 struct type *type = value_type (val);
7500
7501 if (!discrete_type_p (type))
7502 error (_("'POS only defined on discrete types"));
7503
7504 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7505 {
7506 int i;
7507 LONGEST v = value_as_long (val);
7508
7509 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7510 {
7511 if (v == TYPE_FIELD_BITPOS (type, i))
7512 return i;
7513 }
7514 error (_("enumeration value is invalid: can't find 'POS"));
7515 }
7516 else
7517 return value_as_long (val);
7518 }
7519
7520 static struct value *
7521 value_pos_atr (struct type *type, struct value *arg)
7522 {
7523 return value_from_longest (type, pos_atr (arg));
7524 }
7525
7526 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7527
7528 static struct value *
7529 value_val_atr (struct type *type, struct value *arg)
7530 {
7531 if (!discrete_type_p (type))
7532 error (_("'VAL only defined on discrete types"));
7533 if (!integer_type_p (value_type (arg)))
7534 error (_("'VAL requires integral argument"));
7535
7536 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7537 {
7538 long pos = value_as_long (arg);
7539 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7540 error (_("argument to 'VAL out of range"));
7541 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7542 }
7543 else
7544 return value_from_longest (type, value_as_long (arg));
7545 }
7546 \f
7547
7548 /* Evaluation */
7549
7550 /* True if TYPE appears to be an Ada character type.
7551 [At the moment, this is true only for Character and Wide_Character;
7552 It is a heuristic test that could stand improvement]. */
7553
7554 int
7555 ada_is_character_type (struct type *type)
7556 {
7557 const char *name;
7558
7559 /* If the type code says it's a character, then assume it really is,
7560 and don't check any further. */
7561 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7562 return 1;
7563
7564 /* Otherwise, assume it's a character type iff it is a discrete type
7565 with a known character type name. */
7566 name = ada_type_name (type);
7567 return (name != NULL
7568 && (TYPE_CODE (type) == TYPE_CODE_INT
7569 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7570 && (strcmp (name, "character") == 0
7571 || strcmp (name, "wide_character") == 0
7572 || strcmp (name, "wide_wide_character") == 0
7573 || strcmp (name, "unsigned char") == 0));
7574 }
7575
7576 /* True if TYPE appears to be an Ada string type. */
7577
7578 int
7579 ada_is_string_type (struct type *type)
7580 {
7581 type = ada_check_typedef (type);
7582 if (type != NULL
7583 && TYPE_CODE (type) != TYPE_CODE_PTR
7584 && (ada_is_simple_array_type (type)
7585 || ada_is_array_descriptor_type (type))
7586 && ada_array_arity (type) == 1)
7587 {
7588 struct type *elttype = ada_array_element_type (type, 1);
7589
7590 return ada_is_character_type (elttype);
7591 }
7592 else
7593 return 0;
7594 }
7595
7596 /* The compiler sometimes provides a parallel XVS type for a given
7597 PAD type. Normally, it is safe to follow the PAD type directly,
7598 but older versions of the compiler have a bug that causes the offset
7599 of its "F" field to be wrong. Following that field in that case
7600 would lead to incorrect results, but this can be worked around
7601 by ignoring the PAD type and using the associated XVS type instead.
7602
7603 Set to True if the debugger should trust the contents of PAD types.
7604 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7605 static int trust_pad_over_xvs = 1;
7606
7607 /* True if TYPE is a struct type introduced by the compiler to force the
7608 alignment of a value. Such types have a single field with a
7609 distinctive name. */
7610
7611 int
7612 ada_is_aligner_type (struct type *type)
7613 {
7614 type = ada_check_typedef (type);
7615
7616 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7617 return 0;
7618
7619 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7620 && TYPE_NFIELDS (type) == 1
7621 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7622 }
7623
7624 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7625 the parallel type. */
7626
7627 struct type *
7628 ada_get_base_type (struct type *raw_type)
7629 {
7630 struct type *real_type_namer;
7631 struct type *raw_real_type;
7632
7633 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7634 return raw_type;
7635
7636 if (ada_is_aligner_type (raw_type))
7637 /* The encoding specifies that we should always use the aligner type.
7638 So, even if this aligner type has an associated XVS type, we should
7639 simply ignore it.
7640
7641 According to the compiler gurus, an XVS type parallel to an aligner
7642 type may exist because of a stabs limitation. In stabs, aligner
7643 types are empty because the field has a variable-sized type, and
7644 thus cannot actually be used as an aligner type. As a result,
7645 we need the associated parallel XVS type to decode the type.
7646 Since the policy in the compiler is to not change the internal
7647 representation based on the debugging info format, we sometimes
7648 end up having a redundant XVS type parallel to the aligner type. */
7649 return raw_type;
7650
7651 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7652 if (real_type_namer == NULL
7653 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7654 || TYPE_NFIELDS (real_type_namer) != 1)
7655 return raw_type;
7656
7657 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7658 {
7659 /* This is an older encoding form where the base type needs to be
7660 looked up by name. We prefer the newer enconding because it is
7661 more efficient. */
7662 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7663 if (raw_real_type == NULL)
7664 return raw_type;
7665 else
7666 return raw_real_type;
7667 }
7668
7669 /* The field in our XVS type is a reference to the base type. */
7670 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7671 }
7672
7673 /* The type of value designated by TYPE, with all aligners removed. */
7674
7675 struct type *
7676 ada_aligned_type (struct type *type)
7677 {
7678 if (ada_is_aligner_type (type))
7679 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7680 else
7681 return ada_get_base_type (type);
7682 }
7683
7684
7685 /* The address of the aligned value in an object at address VALADDR
7686 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7687
7688 const gdb_byte *
7689 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7690 {
7691 if (ada_is_aligner_type (type))
7692 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7693 valaddr +
7694 TYPE_FIELD_BITPOS (type,
7695 0) / TARGET_CHAR_BIT);
7696 else
7697 return valaddr;
7698 }
7699
7700
7701
7702 /* The printed representation of an enumeration literal with encoded
7703 name NAME. The value is good to the next call of ada_enum_name. */
7704 const char *
7705 ada_enum_name (const char *name)
7706 {
7707 static char *result;
7708 static size_t result_len = 0;
7709 char *tmp;
7710
7711 /* First, unqualify the enumeration name:
7712 1. Search for the last '.' character. If we find one, then skip
7713 all the preceeding characters, the unqualified name starts
7714 right after that dot.
7715 2. Otherwise, we may be debugging on a target where the compiler
7716 translates dots into "__". Search forward for double underscores,
7717 but stop searching when we hit an overloading suffix, which is
7718 of the form "__" followed by digits. */
7719
7720 tmp = strrchr (name, '.');
7721 if (tmp != NULL)
7722 name = tmp + 1;
7723 else
7724 {
7725 while ((tmp = strstr (name, "__")) != NULL)
7726 {
7727 if (isdigit (tmp[2]))
7728 break;
7729 else
7730 name = tmp + 2;
7731 }
7732 }
7733
7734 if (name[0] == 'Q')
7735 {
7736 int v;
7737 if (name[1] == 'U' || name[1] == 'W')
7738 {
7739 if (sscanf (name + 2, "%x", &v) != 1)
7740 return name;
7741 }
7742 else
7743 return name;
7744
7745 GROW_VECT (result, result_len, 16);
7746 if (isascii (v) && isprint (v))
7747 xsnprintf (result, result_len, "'%c'", v);
7748 else if (name[1] == 'U')
7749 xsnprintf (result, result_len, "[\"%02x\"]", v);
7750 else
7751 xsnprintf (result, result_len, "[\"%04x\"]", v);
7752
7753 return result;
7754 }
7755 else
7756 {
7757 tmp = strstr (name, "__");
7758 if (tmp == NULL)
7759 tmp = strstr (name, "$");
7760 if (tmp != NULL)
7761 {
7762 GROW_VECT (result, result_len, tmp - name + 1);
7763 strncpy (result, name, tmp - name);
7764 result[tmp - name] = '\0';
7765 return result;
7766 }
7767
7768 return name;
7769 }
7770 }
7771
7772 /* Evaluate the subexpression of EXP starting at *POS as for
7773 evaluate_type, updating *POS to point just past the evaluated
7774 expression. */
7775
7776 static struct value *
7777 evaluate_subexp_type (struct expression *exp, int *pos)
7778 {
7779 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7780 }
7781
7782 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7783 value it wraps. */
7784
7785 static struct value *
7786 unwrap_value (struct value *val)
7787 {
7788 struct type *type = ada_check_typedef (value_type (val));
7789 if (ada_is_aligner_type (type))
7790 {
7791 struct value *v = ada_value_struct_elt (val, "F", 0);
7792 struct type *val_type = ada_check_typedef (value_type (v));
7793 if (ada_type_name (val_type) == NULL)
7794 TYPE_NAME (val_type) = ada_type_name (type);
7795
7796 return unwrap_value (v);
7797 }
7798 else
7799 {
7800 struct type *raw_real_type =
7801 ada_check_typedef (ada_get_base_type (type));
7802
7803 /* If there is no parallel XVS or XVE type, then the value is
7804 already unwrapped. Return it without further modification. */
7805 if ((type == raw_real_type)
7806 && ada_find_parallel_type (type, "___XVE") == NULL)
7807 return val;
7808
7809 return
7810 coerce_unspec_val_to_type
7811 (val, ada_to_fixed_type (raw_real_type, 0,
7812 value_address (val),
7813 NULL, 1));
7814 }
7815 }
7816
7817 static struct value *
7818 cast_to_fixed (struct type *type, struct value *arg)
7819 {
7820 LONGEST val;
7821
7822 if (type == value_type (arg))
7823 return arg;
7824 else if (ada_is_fixed_point_type (value_type (arg)))
7825 val = ada_float_to_fixed (type,
7826 ada_fixed_to_float (value_type (arg),
7827 value_as_long (arg)));
7828 else
7829 {
7830 DOUBLEST argd = value_as_double (arg);
7831 val = ada_float_to_fixed (type, argd);
7832 }
7833
7834 return value_from_longest (type, val);
7835 }
7836
7837 static struct value *
7838 cast_from_fixed (struct type *type, struct value *arg)
7839 {
7840 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7841 value_as_long (arg));
7842 return value_from_double (type, val);
7843 }
7844
7845 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7846 return the converted value. */
7847
7848 static struct value *
7849 coerce_for_assign (struct type *type, struct value *val)
7850 {
7851 struct type *type2 = value_type (val);
7852 if (type == type2)
7853 return val;
7854
7855 type2 = ada_check_typedef (type2);
7856 type = ada_check_typedef (type);
7857
7858 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7859 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7860 {
7861 val = ada_value_ind (val);
7862 type2 = value_type (val);
7863 }
7864
7865 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7866 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7867 {
7868 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7869 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7870 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7871 error (_("Incompatible types in assignment"));
7872 deprecated_set_value_type (val, type);
7873 }
7874 return val;
7875 }
7876
7877 static struct value *
7878 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7879 {
7880 struct value *val;
7881 struct type *type1, *type2;
7882 LONGEST v, v1, v2;
7883
7884 arg1 = coerce_ref (arg1);
7885 arg2 = coerce_ref (arg2);
7886 type1 = base_type (ada_check_typedef (value_type (arg1)));
7887 type2 = base_type (ada_check_typedef (value_type (arg2)));
7888
7889 if (TYPE_CODE (type1) != TYPE_CODE_INT
7890 || TYPE_CODE (type2) != TYPE_CODE_INT)
7891 return value_binop (arg1, arg2, op);
7892
7893 switch (op)
7894 {
7895 case BINOP_MOD:
7896 case BINOP_DIV:
7897 case BINOP_REM:
7898 break;
7899 default:
7900 return value_binop (arg1, arg2, op);
7901 }
7902
7903 v2 = value_as_long (arg2);
7904 if (v2 == 0)
7905 error (_("second operand of %s must not be zero."), op_string (op));
7906
7907 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7908 return value_binop (arg1, arg2, op);
7909
7910 v1 = value_as_long (arg1);
7911 switch (op)
7912 {
7913 case BINOP_DIV:
7914 v = v1 / v2;
7915 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7916 v += v > 0 ? -1 : 1;
7917 break;
7918 case BINOP_REM:
7919 v = v1 % v2;
7920 if (v * v1 < 0)
7921 v -= v2;
7922 break;
7923 default:
7924 /* Should not reach this point. */
7925 v = 0;
7926 }
7927
7928 val = allocate_value (type1);
7929 store_unsigned_integer (value_contents_raw (val),
7930 TYPE_LENGTH (value_type (val)),
7931 gdbarch_byte_order (get_type_arch (type1)), v);
7932 return val;
7933 }
7934
7935 static int
7936 ada_value_equal (struct value *arg1, struct value *arg2)
7937 {
7938 if (ada_is_direct_array_type (value_type (arg1))
7939 || ada_is_direct_array_type (value_type (arg2)))
7940 {
7941 /* Automatically dereference any array reference before
7942 we attempt to perform the comparison. */
7943 arg1 = ada_coerce_ref (arg1);
7944 arg2 = ada_coerce_ref (arg2);
7945
7946 arg1 = ada_coerce_to_simple_array (arg1);
7947 arg2 = ada_coerce_to_simple_array (arg2);
7948 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7949 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7950 error (_("Attempt to compare array with non-array"));
7951 /* FIXME: The following works only for types whose
7952 representations use all bits (no padding or undefined bits)
7953 and do not have user-defined equality. */
7954 return
7955 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7956 && memcmp (value_contents (arg1), value_contents (arg2),
7957 TYPE_LENGTH (value_type (arg1))) == 0;
7958 }
7959 return value_equal (arg1, arg2);
7960 }
7961
7962 /* Total number of component associations in the aggregate starting at
7963 index PC in EXP. Assumes that index PC is the start of an
7964 OP_AGGREGATE. */
7965
7966 static int
7967 num_component_specs (struct expression *exp, int pc)
7968 {
7969 int n, m, i;
7970 m = exp->elts[pc + 1].longconst;
7971 pc += 3;
7972 n = 0;
7973 for (i = 0; i < m; i += 1)
7974 {
7975 switch (exp->elts[pc].opcode)
7976 {
7977 default:
7978 n += 1;
7979 break;
7980 case OP_CHOICES:
7981 n += exp->elts[pc + 1].longconst;
7982 break;
7983 }
7984 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7985 }
7986 return n;
7987 }
7988
7989 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7990 component of LHS (a simple array or a record), updating *POS past
7991 the expression, assuming that LHS is contained in CONTAINER. Does
7992 not modify the inferior's memory, nor does it modify LHS (unless
7993 LHS == CONTAINER). */
7994
7995 static void
7996 assign_component (struct value *container, struct value *lhs, LONGEST index,
7997 struct expression *exp, int *pos)
7998 {
7999 struct value *mark = value_mark ();
8000 struct value *elt;
8001 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8002 {
8003 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8004 struct value *index_val = value_from_longest (index_type, index);
8005 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8006 }
8007 else
8008 {
8009 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8010 elt = ada_to_fixed_value (unwrap_value (elt));
8011 }
8012
8013 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8014 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8015 else
8016 value_assign_to_component (container, elt,
8017 ada_evaluate_subexp (NULL, exp, pos,
8018 EVAL_NORMAL));
8019
8020 value_free_to_mark (mark);
8021 }
8022
8023 /* Assuming that LHS represents an lvalue having a record or array
8024 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8025 of that aggregate's value to LHS, advancing *POS past the
8026 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8027 lvalue containing LHS (possibly LHS itself). Does not modify
8028 the inferior's memory, nor does it modify the contents of
8029 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8030
8031 static struct value *
8032 assign_aggregate (struct value *container,
8033 struct value *lhs, struct expression *exp,
8034 int *pos, enum noside noside)
8035 {
8036 struct type *lhs_type;
8037 int n = exp->elts[*pos+1].longconst;
8038 LONGEST low_index, high_index;
8039 int num_specs;
8040 LONGEST *indices;
8041 int max_indices, num_indices;
8042 int is_array_aggregate;
8043 int i;
8044 struct value *mark = value_mark ();
8045
8046 *pos += 3;
8047 if (noside != EVAL_NORMAL)
8048 {
8049 int i;
8050 for (i = 0; i < n; i += 1)
8051 ada_evaluate_subexp (NULL, exp, pos, noside);
8052 return container;
8053 }
8054
8055 container = ada_coerce_ref (container);
8056 if (ada_is_direct_array_type (value_type (container)))
8057 container = ada_coerce_to_simple_array (container);
8058 lhs = ada_coerce_ref (lhs);
8059 if (!deprecated_value_modifiable (lhs))
8060 error (_("Left operand of assignment is not a modifiable lvalue."));
8061
8062 lhs_type = value_type (lhs);
8063 if (ada_is_direct_array_type (lhs_type))
8064 {
8065 lhs = ada_coerce_to_simple_array (lhs);
8066 lhs_type = value_type (lhs);
8067 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8068 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8069 is_array_aggregate = 1;
8070 }
8071 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8072 {
8073 low_index = 0;
8074 high_index = num_visible_fields (lhs_type) - 1;
8075 is_array_aggregate = 0;
8076 }
8077 else
8078 error (_("Left-hand side must be array or record."));
8079
8080 num_specs = num_component_specs (exp, *pos - 3);
8081 max_indices = 4 * num_specs + 4;
8082 indices = alloca (max_indices * sizeof (indices[0]));
8083 indices[0] = indices[1] = low_index - 1;
8084 indices[2] = indices[3] = high_index + 1;
8085 num_indices = 4;
8086
8087 for (i = 0; i < n; i += 1)
8088 {
8089 switch (exp->elts[*pos].opcode)
8090 {
8091 case OP_CHOICES:
8092 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8093 &num_indices, max_indices,
8094 low_index, high_index);
8095 break;
8096 case OP_POSITIONAL:
8097 aggregate_assign_positional (container, lhs, exp, pos, indices,
8098 &num_indices, max_indices,
8099 low_index, high_index);
8100 break;
8101 case OP_OTHERS:
8102 if (i != n-1)
8103 error (_("Misplaced 'others' clause"));
8104 aggregate_assign_others (container, lhs, exp, pos, indices,
8105 num_indices, low_index, high_index);
8106 break;
8107 default:
8108 error (_("Internal error: bad aggregate clause"));
8109 }
8110 }
8111
8112 return container;
8113 }
8114
8115 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8116 construct at *POS, updating *POS past the construct, given that
8117 the positions are relative to lower bound LOW, where HIGH is the
8118 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8119 updating *NUM_INDICES as needed. CONTAINER is as for
8120 assign_aggregate. */
8121 static void
8122 aggregate_assign_positional (struct value *container,
8123 struct value *lhs, struct expression *exp,
8124 int *pos, LONGEST *indices, int *num_indices,
8125 int max_indices, LONGEST low, LONGEST high)
8126 {
8127 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8128
8129 if (ind - 1 == high)
8130 warning (_("Extra components in aggregate ignored."));
8131 if (ind <= high)
8132 {
8133 add_component_interval (ind, ind, indices, num_indices, max_indices);
8134 *pos += 3;
8135 assign_component (container, lhs, ind, exp, pos);
8136 }
8137 else
8138 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8139 }
8140
8141 /* Assign into the components of LHS indexed by the OP_CHOICES
8142 construct at *POS, updating *POS past the construct, given that
8143 the allowable indices are LOW..HIGH. Record the indices assigned
8144 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8145 needed. CONTAINER is as for assign_aggregate. */
8146 static void
8147 aggregate_assign_from_choices (struct value *container,
8148 struct value *lhs, struct expression *exp,
8149 int *pos, LONGEST *indices, int *num_indices,
8150 int max_indices, LONGEST low, LONGEST high)
8151 {
8152 int j;
8153 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8154 int choice_pos, expr_pc;
8155 int is_array = ada_is_direct_array_type (value_type (lhs));
8156
8157 choice_pos = *pos += 3;
8158
8159 for (j = 0; j < n_choices; j += 1)
8160 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8161 expr_pc = *pos;
8162 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8163
8164 for (j = 0; j < n_choices; j += 1)
8165 {
8166 LONGEST lower, upper;
8167 enum exp_opcode op = exp->elts[choice_pos].opcode;
8168 if (op == OP_DISCRETE_RANGE)
8169 {
8170 choice_pos += 1;
8171 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8172 EVAL_NORMAL));
8173 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8174 EVAL_NORMAL));
8175 }
8176 else if (is_array)
8177 {
8178 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8179 EVAL_NORMAL));
8180 upper = lower;
8181 }
8182 else
8183 {
8184 int ind;
8185 char *name;
8186 switch (op)
8187 {
8188 case OP_NAME:
8189 name = &exp->elts[choice_pos + 2].string;
8190 break;
8191 case OP_VAR_VALUE:
8192 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8193 break;
8194 default:
8195 error (_("Invalid record component association."));
8196 }
8197 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8198 ind = 0;
8199 if (! find_struct_field (name, value_type (lhs), 0,
8200 NULL, NULL, NULL, NULL, &ind))
8201 error (_("Unknown component name: %s."), name);
8202 lower = upper = ind;
8203 }
8204
8205 if (lower <= upper && (lower < low || upper > high))
8206 error (_("Index in component association out of bounds."));
8207
8208 add_component_interval (lower, upper, indices, num_indices,
8209 max_indices);
8210 while (lower <= upper)
8211 {
8212 int pos1;
8213 pos1 = expr_pc;
8214 assign_component (container, lhs, lower, exp, &pos1);
8215 lower += 1;
8216 }
8217 }
8218 }
8219
8220 /* Assign the value of the expression in the OP_OTHERS construct in
8221 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8222 have not been previously assigned. The index intervals already assigned
8223 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8224 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8225 static void
8226 aggregate_assign_others (struct value *container,
8227 struct value *lhs, struct expression *exp,
8228 int *pos, LONGEST *indices, int num_indices,
8229 LONGEST low, LONGEST high)
8230 {
8231 int i;
8232 int expr_pc = *pos+1;
8233
8234 for (i = 0; i < num_indices - 2; i += 2)
8235 {
8236 LONGEST ind;
8237 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8238 {
8239 int pos;
8240 pos = expr_pc;
8241 assign_component (container, lhs, ind, exp, &pos);
8242 }
8243 }
8244 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8245 }
8246
8247 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8248 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8249 modifying *SIZE as needed. It is an error if *SIZE exceeds
8250 MAX_SIZE. The resulting intervals do not overlap. */
8251 static void
8252 add_component_interval (LONGEST low, LONGEST high,
8253 LONGEST* indices, int *size, int max_size)
8254 {
8255 int i, j;
8256 for (i = 0; i < *size; i += 2) {
8257 if (high >= indices[i] && low <= indices[i + 1])
8258 {
8259 int kh;
8260 for (kh = i + 2; kh < *size; kh += 2)
8261 if (high < indices[kh])
8262 break;
8263 if (low < indices[i])
8264 indices[i] = low;
8265 indices[i + 1] = indices[kh - 1];
8266 if (high > indices[i + 1])
8267 indices[i + 1] = high;
8268 memcpy (indices + i + 2, indices + kh, *size - kh);
8269 *size -= kh - i - 2;
8270 return;
8271 }
8272 else if (high < indices[i])
8273 break;
8274 }
8275
8276 if (*size == max_size)
8277 error (_("Internal error: miscounted aggregate components."));
8278 *size += 2;
8279 for (j = *size-1; j >= i+2; j -= 1)
8280 indices[j] = indices[j - 2];
8281 indices[i] = low;
8282 indices[i + 1] = high;
8283 }
8284
8285 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8286 is different. */
8287
8288 static struct value *
8289 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8290 {
8291 if (type == ada_check_typedef (value_type (arg2)))
8292 return arg2;
8293
8294 if (ada_is_fixed_point_type (type))
8295 return (cast_to_fixed (type, arg2));
8296
8297 if (ada_is_fixed_point_type (value_type (arg2)))
8298 return cast_from_fixed (type, arg2);
8299
8300 return value_cast (type, arg2);
8301 }
8302
8303 /* Evaluating Ada expressions, and printing their result.
8304 ------------------------------------------------------
8305
8306 1. Introduction:
8307 ----------------
8308
8309 We usually evaluate an Ada expression in order to print its value.
8310 We also evaluate an expression in order to print its type, which
8311 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8312 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8313 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8314 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8315 similar.
8316
8317 Evaluating expressions is a little more complicated for Ada entities
8318 than it is for entities in languages such as C. The main reason for
8319 this is that Ada provides types whose definition might be dynamic.
8320 One example of such types is variant records. Or another example
8321 would be an array whose bounds can only be known at run time.
8322
8323 The following description is a general guide as to what should be
8324 done (and what should NOT be done) in order to evaluate an expression
8325 involving such types, and when. This does not cover how the semantic
8326 information is encoded by GNAT as this is covered separatly. For the
8327 document used as the reference for the GNAT encoding, see exp_dbug.ads
8328 in the GNAT sources.
8329
8330 Ideally, we should embed each part of this description next to its
8331 associated code. Unfortunately, the amount of code is so vast right
8332 now that it's hard to see whether the code handling a particular
8333 situation might be duplicated or not. One day, when the code is
8334 cleaned up, this guide might become redundant with the comments
8335 inserted in the code, and we might want to remove it.
8336
8337 2. ``Fixing'' an Entity, the Simple Case:
8338 -----------------------------------------
8339
8340 When evaluating Ada expressions, the tricky issue is that they may
8341 reference entities whose type contents and size are not statically
8342 known. Consider for instance a variant record:
8343
8344 type Rec (Empty : Boolean := True) is record
8345 case Empty is
8346 when True => null;
8347 when False => Value : Integer;
8348 end case;
8349 end record;
8350 Yes : Rec := (Empty => False, Value => 1);
8351 No : Rec := (empty => True);
8352
8353 The size and contents of that record depends on the value of the
8354 descriminant (Rec.Empty). At this point, neither the debugging
8355 information nor the associated type structure in GDB are able to
8356 express such dynamic types. So what the debugger does is to create
8357 "fixed" versions of the type that applies to the specific object.
8358 We also informally refer to this opperation as "fixing" an object,
8359 which means creating its associated fixed type.
8360
8361 Example: when printing the value of variable "Yes" above, its fixed
8362 type would look like this:
8363
8364 type Rec is record
8365 Empty : Boolean;
8366 Value : Integer;
8367 end record;
8368
8369 On the other hand, if we printed the value of "No", its fixed type
8370 would become:
8371
8372 type Rec is record
8373 Empty : Boolean;
8374 end record;
8375
8376 Things become a little more complicated when trying to fix an entity
8377 with a dynamic type that directly contains another dynamic type,
8378 such as an array of variant records, for instance. There are
8379 two possible cases: Arrays, and records.
8380
8381 3. ``Fixing'' Arrays:
8382 ---------------------
8383
8384 The type structure in GDB describes an array in terms of its bounds,
8385 and the type of its elements. By design, all elements in the array
8386 have the same type and we cannot represent an array of variant elements
8387 using the current type structure in GDB. When fixing an array,
8388 we cannot fix the array element, as we would potentially need one
8389 fixed type per element of the array. As a result, the best we can do
8390 when fixing an array is to produce an array whose bounds and size
8391 are correct (allowing us to read it from memory), but without having
8392 touched its element type. Fixing each element will be done later,
8393 when (if) necessary.
8394
8395 Arrays are a little simpler to handle than records, because the same
8396 amount of memory is allocated for each element of the array, even if
8397 the amount of space actually used by each element differs from element
8398 to element. Consider for instance the following array of type Rec:
8399
8400 type Rec_Array is array (1 .. 2) of Rec;
8401
8402 The actual amount of memory occupied by each element might be different
8403 from element to element, depending on the value of their discriminant.
8404 But the amount of space reserved for each element in the array remains
8405 fixed regardless. So we simply need to compute that size using
8406 the debugging information available, from which we can then determine
8407 the array size (we multiply the number of elements of the array by
8408 the size of each element).
8409
8410 The simplest case is when we have an array of a constrained element
8411 type. For instance, consider the following type declarations:
8412
8413 type Bounded_String (Max_Size : Integer) is
8414 Length : Integer;
8415 Buffer : String (1 .. Max_Size);
8416 end record;
8417 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8418
8419 In this case, the compiler describes the array as an array of
8420 variable-size elements (identified by its XVS suffix) for which
8421 the size can be read in the parallel XVZ variable.
8422
8423 In the case of an array of an unconstrained element type, the compiler
8424 wraps the array element inside a private PAD type. This type should not
8425 be shown to the user, and must be "unwrap"'ed before printing. Note
8426 that we also use the adjective "aligner" in our code to designate
8427 these wrapper types.
8428
8429 In some cases, the size allocated for each element is statically
8430 known. In that case, the PAD type already has the correct size,
8431 and the array element should remain unfixed.
8432
8433 But there are cases when this size is not statically known.
8434 For instance, assuming that "Five" is an integer variable:
8435
8436 type Dynamic is array (1 .. Five) of Integer;
8437 type Wrapper (Has_Length : Boolean := False) is record
8438 Data : Dynamic;
8439 case Has_Length is
8440 when True => Length : Integer;
8441 when False => null;
8442 end case;
8443 end record;
8444 type Wrapper_Array is array (1 .. 2) of Wrapper;
8445
8446 Hello : Wrapper_Array := (others => (Has_Length => True,
8447 Data => (others => 17),
8448 Length => 1));
8449
8450
8451 The debugging info would describe variable Hello as being an
8452 array of a PAD type. The size of that PAD type is not statically
8453 known, but can be determined using a parallel XVZ variable.
8454 In that case, a copy of the PAD type with the correct size should
8455 be used for the fixed array.
8456
8457 3. ``Fixing'' record type objects:
8458 ----------------------------------
8459
8460 Things are slightly different from arrays in the case of dynamic
8461 record types. In this case, in order to compute the associated
8462 fixed type, we need to determine the size and offset of each of
8463 its components. This, in turn, requires us to compute the fixed
8464 type of each of these components.
8465
8466 Consider for instance the example:
8467
8468 type Bounded_String (Max_Size : Natural) is record
8469 Str : String (1 .. Max_Size);
8470 Length : Natural;
8471 end record;
8472 My_String : Bounded_String (Max_Size => 10);
8473
8474 In that case, the position of field "Length" depends on the size
8475 of field Str, which itself depends on the value of the Max_Size
8476 discriminant. In order to fix the type of variable My_String,
8477 we need to fix the type of field Str. Therefore, fixing a variant
8478 record requires us to fix each of its components.
8479
8480 However, if a component does not have a dynamic size, the component
8481 should not be fixed. In particular, fields that use a PAD type
8482 should not fixed. Here is an example where this might happen
8483 (assuming type Rec above):
8484
8485 type Container (Big : Boolean) is record
8486 First : Rec;
8487 After : Integer;
8488 case Big is
8489 when True => Another : Integer;
8490 when False => null;
8491 end case;
8492 end record;
8493 My_Container : Container := (Big => False,
8494 First => (Empty => True),
8495 After => 42);
8496
8497 In that example, the compiler creates a PAD type for component First,
8498 whose size is constant, and then positions the component After just
8499 right after it. The offset of component After is therefore constant
8500 in this case.
8501
8502 The debugger computes the position of each field based on an algorithm
8503 that uses, among other things, the actual position and size of the field
8504 preceding it. Let's now imagine that the user is trying to print
8505 the value of My_Container. If the type fixing was recursive, we would
8506 end up computing the offset of field After based on the size of the
8507 fixed version of field First. And since in our example First has
8508 only one actual field, the size of the fixed type is actually smaller
8509 than the amount of space allocated to that field, and thus we would
8510 compute the wrong offset of field After.
8511
8512 To make things more complicated, we need to watch out for dynamic
8513 components of variant records (identified by the ___XVL suffix in
8514 the component name). Even if the target type is a PAD type, the size
8515 of that type might not be statically known. So the PAD type needs
8516 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8517 we might end up with the wrong size for our component. This can be
8518 observed with the following type declarations:
8519
8520 type Octal is new Integer range 0 .. 7;
8521 type Octal_Array is array (Positive range <>) of Octal;
8522 pragma Pack (Octal_Array);
8523
8524 type Octal_Buffer (Size : Positive) is record
8525 Buffer : Octal_Array (1 .. Size);
8526 Length : Integer;
8527 end record;
8528
8529 In that case, Buffer is a PAD type whose size is unset and needs
8530 to be computed by fixing the unwrapped type.
8531
8532 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8533 ----------------------------------------------------------
8534
8535 Lastly, when should the sub-elements of an entity that remained unfixed
8536 thus far, be actually fixed?
8537
8538 The answer is: Only when referencing that element. For instance
8539 when selecting one component of a record, this specific component
8540 should be fixed at that point in time. Or when printing the value
8541 of a record, each component should be fixed before its value gets
8542 printed. Similarly for arrays, the element of the array should be
8543 fixed when printing each element of the array, or when extracting
8544 one element out of that array. On the other hand, fixing should
8545 not be performed on the elements when taking a slice of an array!
8546
8547 Note that one of the side-effects of miscomputing the offset and
8548 size of each field is that we end up also miscomputing the size
8549 of the containing type. This can have adverse results when computing
8550 the value of an entity. GDB fetches the value of an entity based
8551 on the size of its type, and thus a wrong size causes GDB to fetch
8552 the wrong amount of memory. In the case where the computed size is
8553 too small, GDB fetches too little data to print the value of our
8554 entiry. Results in this case as unpredicatble, as we usually read
8555 past the buffer containing the data =:-o. */
8556
8557 /* Implement the evaluate_exp routine in the exp_descriptor structure
8558 for the Ada language. */
8559
8560 static struct value *
8561 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8562 int *pos, enum noside noside)
8563 {
8564 enum exp_opcode op;
8565 int tem, tem2, tem3;
8566 int pc;
8567 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8568 struct type *type;
8569 int nargs, oplen;
8570 struct value **argvec;
8571
8572 pc = *pos;
8573 *pos += 1;
8574 op = exp->elts[pc].opcode;
8575
8576 switch (op)
8577 {
8578 default:
8579 *pos -= 1;
8580 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8581 arg1 = unwrap_value (arg1);
8582
8583 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8584 then we need to perform the conversion manually, because
8585 evaluate_subexp_standard doesn't do it. This conversion is
8586 necessary in Ada because the different kinds of float/fixed
8587 types in Ada have different representations.
8588
8589 Similarly, we need to perform the conversion from OP_LONG
8590 ourselves. */
8591 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8592 arg1 = ada_value_cast (expect_type, arg1, noside);
8593
8594 return arg1;
8595
8596 case OP_STRING:
8597 {
8598 struct value *result;
8599 *pos -= 1;
8600 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8601 /* The result type will have code OP_STRING, bashed there from
8602 OP_ARRAY. Bash it back. */
8603 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8604 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8605 return result;
8606 }
8607
8608 case UNOP_CAST:
8609 (*pos) += 2;
8610 type = exp->elts[pc + 1].type;
8611 arg1 = evaluate_subexp (type, exp, pos, noside);
8612 if (noside == EVAL_SKIP)
8613 goto nosideret;
8614 arg1 = ada_value_cast (type, arg1, noside);
8615 return arg1;
8616
8617 case UNOP_QUAL:
8618 (*pos) += 2;
8619 type = exp->elts[pc + 1].type;
8620 return ada_evaluate_subexp (type, exp, pos, noside);
8621
8622 case BINOP_ASSIGN:
8623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8624 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8625 {
8626 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8628 return arg1;
8629 return ada_value_assign (arg1, arg1);
8630 }
8631 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8632 except if the lhs of our assignment is a convenience variable.
8633 In the case of assigning to a convenience variable, the lhs
8634 should be exactly the result of the evaluation of the rhs. */
8635 type = value_type (arg1);
8636 if (VALUE_LVAL (arg1) == lval_internalvar)
8637 type = NULL;
8638 arg2 = evaluate_subexp (type, exp, pos, noside);
8639 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8640 return arg1;
8641 if (ada_is_fixed_point_type (value_type (arg1)))
8642 arg2 = cast_to_fixed (value_type (arg1), arg2);
8643 else if (ada_is_fixed_point_type (value_type (arg2)))
8644 error
8645 (_("Fixed-point values must be assigned to fixed-point variables"));
8646 else
8647 arg2 = coerce_for_assign (value_type (arg1), arg2);
8648 return ada_value_assign (arg1, arg2);
8649
8650 case BINOP_ADD:
8651 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8652 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
8655 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8656 return (value_from_longest
8657 (value_type (arg1),
8658 value_as_long (arg1) + value_as_long (arg2)));
8659 if ((ada_is_fixed_point_type (value_type (arg1))
8660 || ada_is_fixed_point_type (value_type (arg2)))
8661 && value_type (arg1) != value_type (arg2))
8662 error (_("Operands of fixed-point addition must have the same type"));
8663 /* Do the addition, and cast the result to the type of the first
8664 argument. We cannot cast the result to a reference type, so if
8665 ARG1 is a reference type, find its underlying type. */
8666 type = value_type (arg1);
8667 while (TYPE_CODE (type) == TYPE_CODE_REF)
8668 type = TYPE_TARGET_TYPE (type);
8669 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8670 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8671
8672 case BINOP_SUB:
8673 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8674 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8675 if (noside == EVAL_SKIP)
8676 goto nosideret;
8677 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8678 return (value_from_longest
8679 (value_type (arg1),
8680 value_as_long (arg1) - value_as_long (arg2)));
8681 if ((ada_is_fixed_point_type (value_type (arg1))
8682 || ada_is_fixed_point_type (value_type (arg2)))
8683 && value_type (arg1) != value_type (arg2))
8684 error (_("Operands of fixed-point subtraction must have the same type"));
8685 /* Do the substraction, and cast the result to the type of the first
8686 argument. We cannot cast the result to a reference type, so if
8687 ARG1 is a reference type, find its underlying type. */
8688 type = value_type (arg1);
8689 while (TYPE_CODE (type) == TYPE_CODE_REF)
8690 type = TYPE_TARGET_TYPE (type);
8691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8693
8694 case BINOP_MUL:
8695 case BINOP_DIV:
8696 case BINOP_REM:
8697 case BINOP_MOD:
8698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8700 if (noside == EVAL_SKIP)
8701 goto nosideret;
8702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8703 {
8704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8705 return value_zero (value_type (arg1), not_lval);
8706 }
8707 else
8708 {
8709 type = builtin_type (exp->gdbarch)->builtin_double;
8710 if (ada_is_fixed_point_type (value_type (arg1)))
8711 arg1 = cast_from_fixed (type, arg1);
8712 if (ada_is_fixed_point_type (value_type (arg2)))
8713 arg2 = cast_from_fixed (type, arg2);
8714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8715 return ada_value_binop (arg1, arg2, op);
8716 }
8717
8718 case BINOP_EQUAL:
8719 case BINOP_NOTEQUAL:
8720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8722 if (noside == EVAL_SKIP)
8723 goto nosideret;
8724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8725 tem = 0;
8726 else
8727 {
8728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8729 tem = ada_value_equal (arg1, arg2);
8730 }
8731 if (op == BINOP_NOTEQUAL)
8732 tem = !tem;
8733 type = language_bool_type (exp->language_defn, exp->gdbarch);
8734 return value_from_longest (type, (LONGEST) tem);
8735
8736 case UNOP_NEG:
8737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8738 if (noside == EVAL_SKIP)
8739 goto nosideret;
8740 else if (ada_is_fixed_point_type (value_type (arg1)))
8741 return value_cast (value_type (arg1), value_neg (arg1));
8742 else
8743 {
8744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8745 return value_neg (arg1);
8746 }
8747
8748 case BINOP_LOGICAL_AND:
8749 case BINOP_LOGICAL_OR:
8750 case UNOP_LOGICAL_NOT:
8751 {
8752 struct value *val;
8753
8754 *pos -= 1;
8755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8756 type = language_bool_type (exp->language_defn, exp->gdbarch);
8757 return value_cast (type, val);
8758 }
8759
8760 case BINOP_BITWISE_AND:
8761 case BINOP_BITWISE_IOR:
8762 case BINOP_BITWISE_XOR:
8763 {
8764 struct value *val;
8765
8766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8767 *pos = pc;
8768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8769
8770 return value_cast (value_type (arg1), val);
8771 }
8772
8773 case OP_VAR_VALUE:
8774 *pos -= 1;
8775
8776 if (noside == EVAL_SKIP)
8777 {
8778 *pos += 4;
8779 goto nosideret;
8780 }
8781 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8782 /* Only encountered when an unresolved symbol occurs in a
8783 context other than a function call, in which case, it is
8784 invalid. */
8785 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8786 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8788 {
8789 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8790 /* Check to see if this is a tagged type. We also need to handle
8791 the case where the type is a reference to a tagged type, but
8792 we have to be careful to exclude pointers to tagged types.
8793 The latter should be shown as usual (as a pointer), whereas
8794 a reference should mostly be transparent to the user. */
8795 if (ada_is_tagged_type (type, 0)
8796 || (TYPE_CODE(type) == TYPE_CODE_REF
8797 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8798 {
8799 /* Tagged types are a little special in the fact that the real
8800 type is dynamic and can only be determined by inspecting the
8801 object's tag. This means that we need to get the object's
8802 value first (EVAL_NORMAL) and then extract the actual object
8803 type from its tag.
8804
8805 Note that we cannot skip the final step where we extract
8806 the object type from its tag, because the EVAL_NORMAL phase
8807 results in dynamic components being resolved into fixed ones.
8808 This can cause problems when trying to print the type
8809 description of tagged types whose parent has a dynamic size:
8810 We use the type name of the "_parent" component in order
8811 to print the name of the ancestor type in the type description.
8812 If that component had a dynamic size, the resolution into
8813 a fixed type would result in the loss of that type name,
8814 thus preventing us from printing the name of the ancestor
8815 type in the type description. */
8816 struct type *actual_type;
8817
8818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8819 actual_type = type_from_tag (ada_value_tag (arg1));
8820 if (actual_type == NULL)
8821 /* If, for some reason, we were unable to determine
8822 the actual type from the tag, then use the static
8823 approximation that we just computed as a fallback.
8824 This can happen if the debugging information is
8825 incomplete, for instance. */
8826 actual_type = type;
8827
8828 return value_zero (actual_type, not_lval);
8829 }
8830
8831 *pos += 4;
8832 return value_zero
8833 (to_static_fixed_type
8834 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8835 not_lval);
8836 }
8837 else
8838 {
8839 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8840 arg1 = unwrap_value (arg1);
8841 return ada_to_fixed_value (arg1);
8842 }
8843
8844 case OP_FUNCALL:
8845 (*pos) += 2;
8846
8847 /* Allocate arg vector, including space for the function to be
8848 called in argvec[0] and a terminating NULL. */
8849 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8850 argvec =
8851 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8852
8853 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8854 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8855 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8856 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8857 else
8858 {
8859 for (tem = 0; tem <= nargs; tem += 1)
8860 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8861 argvec[tem] = 0;
8862
8863 if (noside == EVAL_SKIP)
8864 goto nosideret;
8865 }
8866
8867 if (ada_is_constrained_packed_array_type
8868 (desc_base_type (value_type (argvec[0]))))
8869 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8870 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8871 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8872 /* This is a packed array that has already been fixed, and
8873 therefore already coerced to a simple array. Nothing further
8874 to do. */
8875 ;
8876 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8877 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8878 && VALUE_LVAL (argvec[0]) == lval_memory))
8879 argvec[0] = value_addr (argvec[0]);
8880
8881 type = ada_check_typedef (value_type (argvec[0]));
8882 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8883 {
8884 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8885 {
8886 case TYPE_CODE_FUNC:
8887 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8888 break;
8889 case TYPE_CODE_ARRAY:
8890 break;
8891 case TYPE_CODE_STRUCT:
8892 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8893 argvec[0] = ada_value_ind (argvec[0]);
8894 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8895 break;
8896 default:
8897 error (_("cannot subscript or call something of type `%s'"),
8898 ada_type_name (value_type (argvec[0])));
8899 break;
8900 }
8901 }
8902
8903 switch (TYPE_CODE (type))
8904 {
8905 case TYPE_CODE_FUNC:
8906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8907 return allocate_value (TYPE_TARGET_TYPE (type));
8908 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8909 case TYPE_CODE_STRUCT:
8910 {
8911 int arity;
8912
8913 arity = ada_array_arity (type);
8914 type = ada_array_element_type (type, nargs);
8915 if (type == NULL)
8916 error (_("cannot subscript or call a record"));
8917 if (arity != nargs)
8918 error (_("wrong number of subscripts; expecting %d"), arity);
8919 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8920 return value_zero (ada_aligned_type (type), lval_memory);
8921 return
8922 unwrap_value (ada_value_subscript
8923 (argvec[0], nargs, argvec + 1));
8924 }
8925 case TYPE_CODE_ARRAY:
8926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8927 {
8928 type = ada_array_element_type (type, nargs);
8929 if (type == NULL)
8930 error (_("element type of array unknown"));
8931 else
8932 return value_zero (ada_aligned_type (type), lval_memory);
8933 }
8934 return
8935 unwrap_value (ada_value_subscript
8936 (ada_coerce_to_simple_array (argvec[0]),
8937 nargs, argvec + 1));
8938 case TYPE_CODE_PTR: /* Pointer to array */
8939 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8941 {
8942 type = ada_array_element_type (type, nargs);
8943 if (type == NULL)
8944 error (_("element type of array unknown"));
8945 else
8946 return value_zero (ada_aligned_type (type), lval_memory);
8947 }
8948 return
8949 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8950 nargs, argvec + 1));
8951
8952 default:
8953 error (_("Attempt to index or call something other than an "
8954 "array or function"));
8955 }
8956
8957 case TERNOP_SLICE:
8958 {
8959 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8960 struct value *low_bound_val =
8961 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8962 struct value *high_bound_val =
8963 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8964 LONGEST low_bound;
8965 LONGEST high_bound;
8966 low_bound_val = coerce_ref (low_bound_val);
8967 high_bound_val = coerce_ref (high_bound_val);
8968 low_bound = pos_atr (low_bound_val);
8969 high_bound = pos_atr (high_bound_val);
8970
8971 if (noside == EVAL_SKIP)
8972 goto nosideret;
8973
8974 /* If this is a reference to an aligner type, then remove all
8975 the aligners. */
8976 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8977 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8978 TYPE_TARGET_TYPE (value_type (array)) =
8979 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8980
8981 if (ada_is_constrained_packed_array_type (value_type (array)))
8982 error (_("cannot slice a packed array"));
8983
8984 /* If this is a reference to an array or an array lvalue,
8985 convert to a pointer. */
8986 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8987 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8988 && VALUE_LVAL (array) == lval_memory))
8989 array = value_addr (array);
8990
8991 if (noside == EVAL_AVOID_SIDE_EFFECTS
8992 && ada_is_array_descriptor_type (ada_check_typedef
8993 (value_type (array))))
8994 return empty_array (ada_type_of_array (array, 0), low_bound);
8995
8996 array = ada_coerce_to_simple_array_ptr (array);
8997
8998 /* If we have more than one level of pointer indirection,
8999 dereference the value until we get only one level. */
9000 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9001 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9002 == TYPE_CODE_PTR))
9003 array = value_ind (array);
9004
9005 /* Make sure we really do have an array type before going further,
9006 to avoid a SEGV when trying to get the index type or the target
9007 type later down the road if the debug info generated by
9008 the compiler is incorrect or incomplete. */
9009 if (!ada_is_simple_array_type (value_type (array)))
9010 error (_("cannot take slice of non-array"));
9011
9012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9013 {
9014 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9015 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9016 low_bound);
9017 else
9018 {
9019 struct type *arr_type0 =
9020 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9021 NULL, 1);
9022 return ada_value_slice_from_ptr (array, arr_type0,
9023 longest_to_int (low_bound),
9024 longest_to_int (high_bound));
9025 }
9026 }
9027 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9028 return array;
9029 else if (high_bound < low_bound)
9030 return empty_array (value_type (array), low_bound);
9031 else
9032 return ada_value_slice (array, longest_to_int (low_bound),
9033 longest_to_int (high_bound));
9034 }
9035
9036 case UNOP_IN_RANGE:
9037 (*pos) += 2;
9038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9039 type = check_typedef (exp->elts[pc + 1].type);
9040
9041 if (noside == EVAL_SKIP)
9042 goto nosideret;
9043
9044 switch (TYPE_CODE (type))
9045 {
9046 default:
9047 lim_warning (_("Membership test incompletely implemented; "
9048 "always returns true"));
9049 type = language_bool_type (exp->language_defn, exp->gdbarch);
9050 return value_from_longest (type, (LONGEST) 1);
9051
9052 case TYPE_CODE_RANGE:
9053 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9054 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
9058 return
9059 value_from_longest (type,
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064 }
9065
9066 case BINOP_IN_BOUNDS:
9067 (*pos) += 2;
9068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9070
9071 if (noside == EVAL_SKIP)
9072 goto nosideret;
9073
9074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9075 {
9076 type = language_bool_type (exp->language_defn, exp->gdbarch);
9077 return value_zero (type, not_lval);
9078 }
9079
9080 tem = longest_to_int (exp->elts[pc + 1].longconst);
9081
9082 type = ada_index_type (value_type (arg2), tem, "range");
9083 if (!type)
9084 type = value_type (arg1);
9085
9086 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9087 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9088
9089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9090 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9091 type = language_bool_type (exp->language_defn, exp->gdbarch);
9092 return
9093 value_from_longest (type,
9094 (value_less (arg1, arg3)
9095 || value_equal (arg1, arg3))
9096 && (value_less (arg2, arg1)
9097 || value_equal (arg2, arg1)));
9098
9099 case TERNOP_IN_RANGE:
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9103
9104 if (noside == EVAL_SKIP)
9105 goto nosideret;
9106
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9109 type = language_bool_type (exp->language_defn, exp->gdbarch);
9110 return
9111 value_from_longest (type,
9112 (value_less (arg1, arg3)
9113 || value_equal (arg1, arg3))
9114 && (value_less (arg2, arg1)
9115 || value_equal (arg2, arg1)));
9116
9117 case OP_ATR_FIRST:
9118 case OP_ATR_LAST:
9119 case OP_ATR_LENGTH:
9120 {
9121 struct type *type_arg;
9122 if (exp->elts[*pos].opcode == OP_TYPE)
9123 {
9124 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9125 arg1 = NULL;
9126 type_arg = check_typedef (exp->elts[pc + 2].type);
9127 }
9128 else
9129 {
9130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9131 type_arg = NULL;
9132 }
9133
9134 if (exp->elts[*pos].opcode != OP_LONG)
9135 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9136 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9137 *pos += 4;
9138
9139 if (noside == EVAL_SKIP)
9140 goto nosideret;
9141
9142 if (type_arg == NULL)
9143 {
9144 arg1 = ada_coerce_ref (arg1);
9145
9146 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9147 arg1 = ada_coerce_to_simple_array (arg1);
9148
9149 type = ada_index_type (value_type (arg1), tem,
9150 ada_attribute_name (op));
9151 if (type == NULL)
9152 type = builtin_type (exp->gdbarch)->builtin_int;
9153
9154 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9155 return allocate_value (type);
9156
9157 switch (op)
9158 {
9159 default: /* Should never happen. */
9160 error (_("unexpected attribute encountered"));
9161 case OP_ATR_FIRST:
9162 return value_from_longest
9163 (type, ada_array_bound (arg1, tem, 0));
9164 case OP_ATR_LAST:
9165 return value_from_longest
9166 (type, ada_array_bound (arg1, tem, 1));
9167 case OP_ATR_LENGTH:
9168 return value_from_longest
9169 (type, ada_array_length (arg1, tem));
9170 }
9171 }
9172 else if (discrete_type_p (type_arg))
9173 {
9174 struct type *range_type;
9175 char *name = ada_type_name (type_arg);
9176 range_type = NULL;
9177 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9178 range_type = to_fixed_range_type (name, NULL, type_arg);
9179 if (range_type == NULL)
9180 range_type = type_arg;
9181 switch (op)
9182 {
9183 default:
9184 error (_("unexpected attribute encountered"));
9185 case OP_ATR_FIRST:
9186 return value_from_longest
9187 (range_type, ada_discrete_type_low_bound (range_type));
9188 case OP_ATR_LAST:
9189 return value_from_longest
9190 (range_type, ada_discrete_type_high_bound (range_type));
9191 case OP_ATR_LENGTH:
9192 error (_("the 'length attribute applies only to array types"));
9193 }
9194 }
9195 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9196 error (_("unimplemented type attribute"));
9197 else
9198 {
9199 LONGEST low, high;
9200
9201 if (ada_is_constrained_packed_array_type (type_arg))
9202 type_arg = decode_constrained_packed_array_type (type_arg);
9203
9204 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9205 if (type == NULL)
9206 type = builtin_type (exp->gdbarch)->builtin_int;
9207
9208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9209 return allocate_value (type);
9210
9211 switch (op)
9212 {
9213 default:
9214 error (_("unexpected attribute encountered"));
9215 case OP_ATR_FIRST:
9216 low = ada_array_bound_from_type (type_arg, tem, 0);
9217 return value_from_longest (type, low);
9218 case OP_ATR_LAST:
9219 high = ada_array_bound_from_type (type_arg, tem, 1);
9220 return value_from_longest (type, high);
9221 case OP_ATR_LENGTH:
9222 low = ada_array_bound_from_type (type_arg, tem, 0);
9223 high = ada_array_bound_from_type (type_arg, tem, 1);
9224 return value_from_longest (type, high - low + 1);
9225 }
9226 }
9227 }
9228
9229 case OP_ATR_TAG:
9230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9231 if (noside == EVAL_SKIP)
9232 goto nosideret;
9233
9234 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9235 return value_zero (ada_tag_type (arg1), not_lval);
9236
9237 return ada_value_tag (arg1);
9238
9239 case OP_ATR_MIN:
9240 case OP_ATR_MAX:
9241 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9244 if (noside == EVAL_SKIP)
9245 goto nosideret;
9246 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9247 return value_zero (value_type (arg1), not_lval);
9248 else
9249 {
9250 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9251 return value_binop (arg1, arg2,
9252 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9253 }
9254
9255 case OP_ATR_MODULUS:
9256 {
9257 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9258 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9259
9260 if (noside == EVAL_SKIP)
9261 goto nosideret;
9262
9263 if (!ada_is_modular_type (type_arg))
9264 error (_("'modulus must be applied to modular type"));
9265
9266 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9267 ada_modulus (type_arg));
9268 }
9269
9270
9271 case OP_ATR_POS:
9272 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9274 if (noside == EVAL_SKIP)
9275 goto nosideret;
9276 type = builtin_type (exp->gdbarch)->builtin_int;
9277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9278 return value_zero (type, not_lval);
9279 else
9280 return value_pos_atr (type, arg1);
9281
9282 case OP_ATR_SIZE:
9283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9284 type = value_type (arg1);
9285
9286 /* If the argument is a reference, then dereference its type, since
9287 the user is really asking for the size of the actual object,
9288 not the size of the pointer. */
9289 if (TYPE_CODE (type) == TYPE_CODE_REF)
9290 type = TYPE_TARGET_TYPE (type);
9291
9292 if (noside == EVAL_SKIP)
9293 goto nosideret;
9294 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9295 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9296 else
9297 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9298 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9299
9300 case OP_ATR_VAL:
9301 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9303 type = exp->elts[pc + 2].type;
9304 if (noside == EVAL_SKIP)
9305 goto nosideret;
9306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307 return value_zero (type, not_lval);
9308 else
9309 return value_val_atr (type, arg1);
9310
9311 case BINOP_EXP:
9312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9313 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9314 if (noside == EVAL_SKIP)
9315 goto nosideret;
9316 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9317 return value_zero (value_type (arg1), not_lval);
9318 else
9319 {
9320 /* For integer exponentiation operations,
9321 only promote the first argument. */
9322 if (is_integral_type (value_type (arg2)))
9323 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9324 else
9325 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9326
9327 return value_binop (arg1, arg2, op);
9328 }
9329
9330 case UNOP_PLUS:
9331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9332 if (noside == EVAL_SKIP)
9333 goto nosideret;
9334 else
9335 return arg1;
9336
9337 case UNOP_ABS:
9338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9339 if (noside == EVAL_SKIP)
9340 goto nosideret;
9341 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9342 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9343 return value_neg (arg1);
9344 else
9345 return arg1;
9346
9347 case UNOP_IND:
9348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9349 if (noside == EVAL_SKIP)
9350 goto nosideret;
9351 type = ada_check_typedef (value_type (arg1));
9352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9353 {
9354 if (ada_is_array_descriptor_type (type))
9355 /* GDB allows dereferencing GNAT array descriptors. */
9356 {
9357 struct type *arrType = ada_type_of_array (arg1, 0);
9358 if (arrType == NULL)
9359 error (_("Attempt to dereference null array pointer."));
9360 return value_at_lazy (arrType, 0);
9361 }
9362 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9363 || TYPE_CODE (type) == TYPE_CODE_REF
9364 /* In C you can dereference an array to get the 1st elt. */
9365 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9366 {
9367 type = to_static_fixed_type
9368 (ada_aligned_type
9369 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9370 check_size (type);
9371 return value_zero (type, lval_memory);
9372 }
9373 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9374 {
9375 /* GDB allows dereferencing an int. */
9376 if (expect_type == NULL)
9377 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9378 lval_memory);
9379 else
9380 {
9381 expect_type =
9382 to_static_fixed_type (ada_aligned_type (expect_type));
9383 return value_zero (expect_type, lval_memory);
9384 }
9385 }
9386 else
9387 error (_("Attempt to take contents of a non-pointer value."));
9388 }
9389 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9390 type = ada_check_typedef (value_type (arg1));
9391
9392 if (TYPE_CODE (type) == TYPE_CODE_INT)
9393 /* GDB allows dereferencing an int. If we were given
9394 the expect_type, then use that as the target type.
9395 Otherwise, assume that the target type is an int. */
9396 {
9397 if (expect_type != NULL)
9398 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9399 arg1));
9400 else
9401 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9402 (CORE_ADDR) value_as_address (arg1));
9403 }
9404
9405 if (ada_is_array_descriptor_type (type))
9406 /* GDB allows dereferencing GNAT array descriptors. */
9407 return ada_coerce_to_simple_array (arg1);
9408 else
9409 return ada_value_ind (arg1);
9410
9411 case STRUCTOP_STRUCT:
9412 tem = longest_to_int (exp->elts[pc + 1].longconst);
9413 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 if (noside == EVAL_SKIP)
9416 goto nosideret;
9417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9418 {
9419 struct type *type1 = value_type (arg1);
9420 if (ada_is_tagged_type (type1, 1))
9421 {
9422 type = ada_lookup_struct_elt_type (type1,
9423 &exp->elts[pc + 2].string,
9424 1, 1, NULL);
9425 if (type == NULL)
9426 /* In this case, we assume that the field COULD exist
9427 in some extension of the type. Return an object of
9428 "type" void, which will match any formal
9429 (see ada_type_match). */
9430 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9431 lval_memory);
9432 }
9433 else
9434 type =
9435 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9436 0, NULL);
9437
9438 return value_zero (ada_aligned_type (type), lval_memory);
9439 }
9440 else
9441 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9442 arg1 = unwrap_value (arg1);
9443 return ada_to_fixed_value (arg1);
9444
9445 case OP_TYPE:
9446 /* The value is not supposed to be used. This is here to make it
9447 easier to accommodate expressions that contain types. */
9448 (*pos) += 2;
9449 if (noside == EVAL_SKIP)
9450 goto nosideret;
9451 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9452 return allocate_value (exp->elts[pc + 1].type);
9453 else
9454 error (_("Attempt to use a type name as an expression"));
9455
9456 case OP_AGGREGATE:
9457 case OP_CHOICES:
9458 case OP_OTHERS:
9459 case OP_DISCRETE_RANGE:
9460 case OP_POSITIONAL:
9461 case OP_NAME:
9462 if (noside == EVAL_NORMAL)
9463 switch (op)
9464 {
9465 case OP_NAME:
9466 error (_("Undefined name, ambiguous name, or renaming used in "
9467 "component association: %s."), &exp->elts[pc+2].string);
9468 case OP_AGGREGATE:
9469 error (_("Aggregates only allowed on the right of an assignment"));
9470 default:
9471 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9472 }
9473
9474 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9475 *pos += oplen - 1;
9476 for (tem = 0; tem < nargs; tem += 1)
9477 ada_evaluate_subexp (NULL, exp, pos, noside);
9478 goto nosideret;
9479 }
9480
9481 nosideret:
9482 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9483 }
9484 \f
9485
9486 /* Fixed point */
9487
9488 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9489 type name that encodes the 'small and 'delta information.
9490 Otherwise, return NULL. */
9491
9492 static const char *
9493 fixed_type_info (struct type *type)
9494 {
9495 const char *name = ada_type_name (type);
9496 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9497
9498 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9499 {
9500 const char *tail = strstr (name, "___XF_");
9501 if (tail == NULL)
9502 return NULL;
9503 else
9504 return tail + 5;
9505 }
9506 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9507 return fixed_type_info (TYPE_TARGET_TYPE (type));
9508 else
9509 return NULL;
9510 }
9511
9512 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9513
9514 int
9515 ada_is_fixed_point_type (struct type *type)
9516 {
9517 return fixed_type_info (type) != NULL;
9518 }
9519
9520 /* Return non-zero iff TYPE represents a System.Address type. */
9521
9522 int
9523 ada_is_system_address_type (struct type *type)
9524 {
9525 return (TYPE_NAME (type)
9526 && strcmp (TYPE_NAME (type), "system__address") == 0);
9527 }
9528
9529 /* Assuming that TYPE is the representation of an Ada fixed-point
9530 type, return its delta, or -1 if the type is malformed and the
9531 delta cannot be determined. */
9532
9533 DOUBLEST
9534 ada_delta (struct type *type)
9535 {
9536 const char *encoding = fixed_type_info (type);
9537 DOUBLEST num, den;
9538
9539 /* Strictly speaking, num and den are encoded as integer. However,
9540 they may not fit into a long, and they will have to be converted
9541 to DOUBLEST anyway. So scan them as DOUBLEST. */
9542 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9543 &num, &den) < 2)
9544 return -1.0;
9545 else
9546 return num / den;
9547 }
9548
9549 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9550 factor ('SMALL value) associated with the type. */
9551
9552 static DOUBLEST
9553 scaling_factor (struct type *type)
9554 {
9555 const char *encoding = fixed_type_info (type);
9556 DOUBLEST num0, den0, num1, den1;
9557 int n;
9558
9559 /* Strictly speaking, num's and den's are encoded as integer. However,
9560 they may not fit into a long, and they will have to be converted
9561 to DOUBLEST anyway. So scan them as DOUBLEST. */
9562 n = sscanf (encoding,
9563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9564 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9565 &num0, &den0, &num1, &den1);
9566
9567 if (n < 2)
9568 return 1.0;
9569 else if (n == 4)
9570 return num1 / den1;
9571 else
9572 return num0 / den0;
9573 }
9574
9575
9576 /* Assuming that X is the representation of a value of fixed-point
9577 type TYPE, return its floating-point equivalent. */
9578
9579 DOUBLEST
9580 ada_fixed_to_float (struct type *type, LONGEST x)
9581 {
9582 return (DOUBLEST) x *scaling_factor (type);
9583 }
9584
9585 /* The representation of a fixed-point value of type TYPE
9586 corresponding to the value X. */
9587
9588 LONGEST
9589 ada_float_to_fixed (struct type *type, DOUBLEST x)
9590 {
9591 return (LONGEST) (x / scaling_factor (type) + 0.5);
9592 }
9593
9594 \f
9595
9596 /* Range types */
9597
9598 /* Scan STR beginning at position K for a discriminant name, and
9599 return the value of that discriminant field of DVAL in *PX. If
9600 PNEW_K is not null, put the position of the character beyond the
9601 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9602 not alter *PX and *PNEW_K if unsuccessful. */
9603
9604 static int
9605 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9606 int *pnew_k)
9607 {
9608 static char *bound_buffer = NULL;
9609 static size_t bound_buffer_len = 0;
9610 char *bound;
9611 char *pend;
9612 struct value *bound_val;
9613
9614 if (dval == NULL || str == NULL || str[k] == '\0')
9615 return 0;
9616
9617 pend = strstr (str + k, "__");
9618 if (pend == NULL)
9619 {
9620 bound = str + k;
9621 k += strlen (bound);
9622 }
9623 else
9624 {
9625 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9626 bound = bound_buffer;
9627 strncpy (bound_buffer, str + k, pend - (str + k));
9628 bound[pend - (str + k)] = '\0';
9629 k = pend - str;
9630 }
9631
9632 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9633 if (bound_val == NULL)
9634 return 0;
9635
9636 *px = value_as_long (bound_val);
9637 if (pnew_k != NULL)
9638 *pnew_k = k;
9639 return 1;
9640 }
9641
9642 /* Value of variable named NAME in the current environment. If
9643 no such variable found, then if ERR_MSG is null, returns 0, and
9644 otherwise causes an error with message ERR_MSG. */
9645
9646 static struct value *
9647 get_var_value (char *name, char *err_msg)
9648 {
9649 struct ada_symbol_info *syms;
9650 int nsyms;
9651
9652 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9653 &syms);
9654
9655 if (nsyms != 1)
9656 {
9657 if (err_msg == NULL)
9658 return 0;
9659 else
9660 error (("%s"), err_msg);
9661 }
9662
9663 return value_of_variable (syms[0].sym, syms[0].block);
9664 }
9665
9666 /* Value of integer variable named NAME in the current environment. If
9667 no such variable found, returns 0, and sets *FLAG to 0. If
9668 successful, sets *FLAG to 1. */
9669
9670 LONGEST
9671 get_int_var_value (char *name, int *flag)
9672 {
9673 struct value *var_val = get_var_value (name, 0);
9674
9675 if (var_val == 0)
9676 {
9677 if (flag != NULL)
9678 *flag = 0;
9679 return 0;
9680 }
9681 else
9682 {
9683 if (flag != NULL)
9684 *flag = 1;
9685 return value_as_long (var_val);
9686 }
9687 }
9688
9689
9690 /* Return a range type whose base type is that of the range type named
9691 NAME in the current environment, and whose bounds are calculated
9692 from NAME according to the GNAT range encoding conventions.
9693 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9694 corresponding range type from debug information; fall back to using it
9695 if symbol lookup fails. If a new type must be created, allocate it
9696 like ORIG_TYPE was. The bounds information, in general, is encoded
9697 in NAME, the base type given in the named range type. */
9698
9699 static struct type *
9700 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9701 {
9702 struct type *raw_type = ada_find_any_type (name);
9703 struct type *base_type;
9704 char *subtype_info;
9705
9706 /* Fall back to the original type if symbol lookup failed. */
9707 if (raw_type == NULL)
9708 raw_type = orig_type;
9709
9710 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9711 base_type = TYPE_TARGET_TYPE (raw_type);
9712 else
9713 base_type = raw_type;
9714
9715 subtype_info = strstr (name, "___XD");
9716 if (subtype_info == NULL)
9717 {
9718 LONGEST L = ada_discrete_type_low_bound (raw_type);
9719 LONGEST U = ada_discrete_type_high_bound (raw_type);
9720 if (L < INT_MIN || U > INT_MAX)
9721 return raw_type;
9722 else
9723 return create_range_type (alloc_type_copy (orig_type), raw_type,
9724 ada_discrete_type_low_bound (raw_type),
9725 ada_discrete_type_high_bound (raw_type));
9726 }
9727 else
9728 {
9729 static char *name_buf = NULL;
9730 static size_t name_len = 0;
9731 int prefix_len = subtype_info - name;
9732 LONGEST L, U;
9733 struct type *type;
9734 char *bounds_str;
9735 int n;
9736
9737 GROW_VECT (name_buf, name_len, prefix_len + 5);
9738 strncpy (name_buf, name, prefix_len);
9739 name_buf[prefix_len] = '\0';
9740
9741 subtype_info += 5;
9742 bounds_str = strchr (subtype_info, '_');
9743 n = 1;
9744
9745 if (*subtype_info == 'L')
9746 {
9747 if (!ada_scan_number (bounds_str, n, &L, &n)
9748 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9749 return raw_type;
9750 if (bounds_str[n] == '_')
9751 n += 2;
9752 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9753 n += 1;
9754 subtype_info += 1;
9755 }
9756 else
9757 {
9758 int ok;
9759 strcpy (name_buf + prefix_len, "___L");
9760 L = get_int_var_value (name_buf, &ok);
9761 if (!ok)
9762 {
9763 lim_warning (_("Unknown lower bound, using 1."));
9764 L = 1;
9765 }
9766 }
9767
9768 if (*subtype_info == 'U')
9769 {
9770 if (!ada_scan_number (bounds_str, n, &U, &n)
9771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9772 return raw_type;
9773 }
9774 else
9775 {
9776 int ok;
9777 strcpy (name_buf + prefix_len, "___U");
9778 U = get_int_var_value (name_buf, &ok);
9779 if (!ok)
9780 {
9781 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9782 U = L;
9783 }
9784 }
9785
9786 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9787 TYPE_NAME (type) = name;
9788 return type;
9789 }
9790 }
9791
9792 /* True iff NAME is the name of a range type. */
9793
9794 int
9795 ada_is_range_type_name (const char *name)
9796 {
9797 return (name != NULL && strstr (name, "___XD"));
9798 }
9799 \f
9800
9801 /* Modular types */
9802
9803 /* True iff TYPE is an Ada modular type. */
9804
9805 int
9806 ada_is_modular_type (struct type *type)
9807 {
9808 struct type *subranged_type = base_type (type);
9809
9810 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9811 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9812 && TYPE_UNSIGNED (subranged_type));
9813 }
9814
9815 /* Try to determine the lower and upper bounds of the given modular type
9816 using the type name only. Return non-zero and set L and U as the lower
9817 and upper bounds (respectively) if successful. */
9818
9819 int
9820 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9821 {
9822 char *name = ada_type_name (type);
9823 char *suffix;
9824 int k;
9825 LONGEST U;
9826
9827 if (name == NULL)
9828 return 0;
9829
9830 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9831 we are looking for static bounds, which means an __XDLU suffix.
9832 Moreover, we know that the lower bound of modular types is always
9833 zero, so the actual suffix should start with "__XDLU_0__", and
9834 then be followed by the upper bound value. */
9835 suffix = strstr (name, "__XDLU_0__");
9836 if (suffix == NULL)
9837 return 0;
9838 k = 10;
9839 if (!ada_scan_number (suffix, k, &U, NULL))
9840 return 0;
9841
9842 *modulus = (ULONGEST) U + 1;
9843 return 1;
9844 }
9845
9846 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9847
9848 ULONGEST
9849 ada_modulus (struct type *type)
9850 {
9851 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9852 }
9853 \f
9854
9855 /* Ada exception catchpoint support:
9856 ---------------------------------
9857
9858 We support 3 kinds of exception catchpoints:
9859 . catchpoints on Ada exceptions
9860 . catchpoints on unhandled Ada exceptions
9861 . catchpoints on failed assertions
9862
9863 Exceptions raised during failed assertions, or unhandled exceptions
9864 could perfectly be caught with the general catchpoint on Ada exceptions.
9865 However, we can easily differentiate these two special cases, and having
9866 the option to distinguish these two cases from the rest can be useful
9867 to zero-in on certain situations.
9868
9869 Exception catchpoints are a specialized form of breakpoint,
9870 since they rely on inserting breakpoints inside known routines
9871 of the GNAT runtime. The implementation therefore uses a standard
9872 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9873 of breakpoint_ops.
9874
9875 Support in the runtime for exception catchpoints have been changed
9876 a few times already, and these changes affect the implementation
9877 of these catchpoints. In order to be able to support several
9878 variants of the runtime, we use a sniffer that will determine
9879 the runtime variant used by the program being debugged.
9880
9881 At this time, we do not support the use of conditions on Ada exception
9882 catchpoints. The COND and COND_STRING fields are therefore set
9883 to NULL (most of the time, see below).
9884
9885 Conditions where EXP_STRING, COND, and COND_STRING are used:
9886
9887 When a user specifies the name of a specific exception in the case
9888 of catchpoints on Ada exceptions, we store the name of that exception
9889 in the EXP_STRING. We then translate this request into an actual
9890 condition stored in COND_STRING, and then parse it into an expression
9891 stored in COND. */
9892
9893 /* The different types of catchpoints that we introduced for catching
9894 Ada exceptions. */
9895
9896 enum exception_catchpoint_kind
9897 {
9898 ex_catch_exception,
9899 ex_catch_exception_unhandled,
9900 ex_catch_assert
9901 };
9902
9903 /* Ada's standard exceptions. */
9904
9905 static char *standard_exc[] = {
9906 "constraint_error",
9907 "program_error",
9908 "storage_error",
9909 "tasking_error"
9910 };
9911
9912 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9913
9914 /* A structure that describes how to support exception catchpoints
9915 for a given executable. */
9916
9917 struct exception_support_info
9918 {
9919 /* The name of the symbol to break on in order to insert
9920 a catchpoint on exceptions. */
9921 const char *catch_exception_sym;
9922
9923 /* The name of the symbol to break on in order to insert
9924 a catchpoint on unhandled exceptions. */
9925 const char *catch_exception_unhandled_sym;
9926
9927 /* The name of the symbol to break on in order to insert
9928 a catchpoint on failed assertions. */
9929 const char *catch_assert_sym;
9930
9931 /* Assuming that the inferior just triggered an unhandled exception
9932 catchpoint, this function is responsible for returning the address
9933 in inferior memory where the name of that exception is stored.
9934 Return zero if the address could not be computed. */
9935 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9936 };
9937
9938 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9939 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9940
9941 /* The following exception support info structure describes how to
9942 implement exception catchpoints with the latest version of the
9943 Ada runtime (as of 2007-03-06). */
9944
9945 static const struct exception_support_info default_exception_support_info =
9946 {
9947 "__gnat_debug_raise_exception", /* catch_exception_sym */
9948 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9949 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9950 ada_unhandled_exception_name_addr
9951 };
9952
9953 /* The following exception support info structure describes how to
9954 implement exception catchpoints with a slightly older version
9955 of the Ada runtime. */
9956
9957 static const struct exception_support_info exception_support_info_fallback =
9958 {
9959 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9960 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9961 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9962 ada_unhandled_exception_name_addr_from_raise
9963 };
9964
9965 /* For each executable, we sniff which exception info structure to use
9966 and cache it in the following global variable. */
9967
9968 static const struct exception_support_info *exception_info = NULL;
9969
9970 /* Inspect the Ada runtime and determine which exception info structure
9971 should be used to provide support for exception catchpoints.
9972
9973 This function will always set exception_info, or raise an error. */
9974
9975 static void
9976 ada_exception_support_info_sniffer (void)
9977 {
9978 struct symbol *sym;
9979
9980 /* If the exception info is already known, then no need to recompute it. */
9981 if (exception_info != NULL)
9982 return;
9983
9984 /* Check the latest (default) exception support info. */
9985 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9986 NULL, VAR_DOMAIN);
9987 if (sym != NULL)
9988 {
9989 exception_info = &default_exception_support_info;
9990 return;
9991 }
9992
9993 /* Try our fallback exception suport info. */
9994 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9995 NULL, VAR_DOMAIN);
9996 if (sym != NULL)
9997 {
9998 exception_info = &exception_support_info_fallback;
9999 return;
10000 }
10001
10002 /* Sometimes, it is normal for us to not be able to find the routine
10003 we are looking for. This happens when the program is linked with
10004 the shared version of the GNAT runtime, and the program has not been
10005 started yet. Inform the user of these two possible causes if
10006 applicable. */
10007
10008 if (ada_update_initial_language (language_unknown) != language_ada)
10009 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10010
10011 /* If the symbol does not exist, then check that the program is
10012 already started, to make sure that shared libraries have been
10013 loaded. If it is not started, this may mean that the symbol is
10014 in a shared library. */
10015
10016 if (ptid_get_pid (inferior_ptid) == 0)
10017 error (_("Unable to insert catchpoint. Try to start the program first."));
10018
10019 /* At this point, we know that we are debugging an Ada program and
10020 that the inferior has been started, but we still are not able to
10021 find the run-time symbols. That can mean that we are in
10022 configurable run time mode, or that a-except as been optimized
10023 out by the linker... In any case, at this point it is not worth
10024 supporting this feature. */
10025
10026 error (_("Cannot insert catchpoints in this configuration."));
10027 }
10028
10029 /* An observer of "executable_changed" events.
10030 Its role is to clear certain cached values that need to be recomputed
10031 each time a new executable is loaded by GDB. */
10032
10033 static void
10034 ada_executable_changed_observer (void)
10035 {
10036 /* If the executable changed, then it is possible that the Ada runtime
10037 is different. So we need to invalidate the exception support info
10038 cache. */
10039 exception_info = NULL;
10040 }
10041
10042 /* True iff FRAME is very likely to be that of a function that is
10043 part of the runtime system. This is all very heuristic, but is
10044 intended to be used as advice as to what frames are uninteresting
10045 to most users. */
10046
10047 static int
10048 is_known_support_routine (struct frame_info *frame)
10049 {
10050 struct symtab_and_line sal;
10051 char *func_name;
10052 enum language func_lang;
10053 int i;
10054
10055 /* If this code does not have any debugging information (no symtab),
10056 This cannot be any user code. */
10057
10058 find_frame_sal (frame, &sal);
10059 if (sal.symtab == NULL)
10060 return 1;
10061
10062 /* If there is a symtab, but the associated source file cannot be
10063 located, then assume this is not user code: Selecting a frame
10064 for which we cannot display the code would not be very helpful
10065 for the user. This should also take care of case such as VxWorks
10066 where the kernel has some debugging info provided for a few units. */
10067
10068 if (symtab_to_fullname (sal.symtab) == NULL)
10069 return 1;
10070
10071 /* Check the unit filename againt the Ada runtime file naming.
10072 We also check the name of the objfile against the name of some
10073 known system libraries that sometimes come with debugging info
10074 too. */
10075
10076 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10077 {
10078 re_comp (known_runtime_file_name_patterns[i]);
10079 if (re_exec (sal.symtab->filename))
10080 return 1;
10081 if (sal.symtab->objfile != NULL
10082 && re_exec (sal.symtab->objfile->name))
10083 return 1;
10084 }
10085
10086 /* Check whether the function is a GNAT-generated entity. */
10087
10088 find_frame_funname (frame, &func_name, &func_lang);
10089 if (func_name == NULL)
10090 return 1;
10091
10092 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10093 {
10094 re_comp (known_auxiliary_function_name_patterns[i]);
10095 if (re_exec (func_name))
10096 return 1;
10097 }
10098
10099 return 0;
10100 }
10101
10102 /* Find the first frame that contains debugging information and that is not
10103 part of the Ada run-time, starting from FI and moving upward. */
10104
10105 void
10106 ada_find_printable_frame (struct frame_info *fi)
10107 {
10108 for (; fi != NULL; fi = get_prev_frame (fi))
10109 {
10110 if (!is_known_support_routine (fi))
10111 {
10112 select_frame (fi);
10113 break;
10114 }
10115 }
10116
10117 }
10118
10119 /* Assuming that the inferior just triggered an unhandled exception
10120 catchpoint, return the address in inferior memory where the name
10121 of the exception is stored.
10122
10123 Return zero if the address could not be computed. */
10124
10125 static CORE_ADDR
10126 ada_unhandled_exception_name_addr (void)
10127 {
10128 return parse_and_eval_address ("e.full_name");
10129 }
10130
10131 /* Same as ada_unhandled_exception_name_addr, except that this function
10132 should be used when the inferior uses an older version of the runtime,
10133 where the exception name needs to be extracted from a specific frame
10134 several frames up in the callstack. */
10135
10136 static CORE_ADDR
10137 ada_unhandled_exception_name_addr_from_raise (void)
10138 {
10139 int frame_level;
10140 struct frame_info *fi;
10141
10142 /* To determine the name of this exception, we need to select
10143 the frame corresponding to RAISE_SYM_NAME. This frame is
10144 at least 3 levels up, so we simply skip the first 3 frames
10145 without checking the name of their associated function. */
10146 fi = get_current_frame ();
10147 for (frame_level = 0; frame_level < 3; frame_level += 1)
10148 if (fi != NULL)
10149 fi = get_prev_frame (fi);
10150
10151 while (fi != NULL)
10152 {
10153 char *func_name;
10154 enum language func_lang;
10155
10156 find_frame_funname (fi, &func_name, &func_lang);
10157 if (func_name != NULL
10158 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10159 break; /* We found the frame we were looking for... */
10160 fi = get_prev_frame (fi);
10161 }
10162
10163 if (fi == NULL)
10164 return 0;
10165
10166 select_frame (fi);
10167 return parse_and_eval_address ("id.full_name");
10168 }
10169
10170 /* Assuming the inferior just triggered an Ada exception catchpoint
10171 (of any type), return the address in inferior memory where the name
10172 of the exception is stored, if applicable.
10173
10174 Return zero if the address could not be computed, or if not relevant. */
10175
10176 static CORE_ADDR
10177 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10178 struct breakpoint *b)
10179 {
10180 switch (ex)
10181 {
10182 case ex_catch_exception:
10183 return (parse_and_eval_address ("e.full_name"));
10184 break;
10185
10186 case ex_catch_exception_unhandled:
10187 return exception_info->unhandled_exception_name_addr ();
10188 break;
10189
10190 case ex_catch_assert:
10191 return 0; /* Exception name is not relevant in this case. */
10192 break;
10193
10194 default:
10195 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10196 break;
10197 }
10198
10199 return 0; /* Should never be reached. */
10200 }
10201
10202 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10203 any error that ada_exception_name_addr_1 might cause to be thrown.
10204 When an error is intercepted, a warning with the error message is printed,
10205 and zero is returned. */
10206
10207 static CORE_ADDR
10208 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10209 struct breakpoint *b)
10210 {
10211 struct gdb_exception e;
10212 CORE_ADDR result = 0;
10213
10214 TRY_CATCH (e, RETURN_MASK_ERROR)
10215 {
10216 result = ada_exception_name_addr_1 (ex, b);
10217 }
10218
10219 if (e.reason < 0)
10220 {
10221 warning (_("failed to get exception name: %s"), e.message);
10222 return 0;
10223 }
10224
10225 return result;
10226 }
10227
10228 /* Implement the PRINT_IT method in the breakpoint_ops structure
10229 for all exception catchpoint kinds. */
10230
10231 static enum print_stop_action
10232 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10233 {
10234 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10235 char exception_name[256];
10236
10237 if (addr != 0)
10238 {
10239 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10240 exception_name [sizeof (exception_name) - 1] = '\0';
10241 }
10242
10243 ada_find_printable_frame (get_current_frame ());
10244
10245 annotate_catchpoint (b->number);
10246 switch (ex)
10247 {
10248 case ex_catch_exception:
10249 if (addr != 0)
10250 printf_filtered (_("\nCatchpoint %d, %s at "),
10251 b->number, exception_name);
10252 else
10253 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10254 break;
10255 case ex_catch_exception_unhandled:
10256 if (addr != 0)
10257 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10258 b->number, exception_name);
10259 else
10260 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10261 b->number);
10262 break;
10263 case ex_catch_assert:
10264 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10265 b->number);
10266 break;
10267 }
10268
10269 return PRINT_SRC_AND_LOC;
10270 }
10271
10272 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10273 for all exception catchpoint kinds. */
10274
10275 static void
10276 print_one_exception (enum exception_catchpoint_kind ex,
10277 struct breakpoint *b, struct bp_location **last_loc)
10278 {
10279 struct value_print_options opts;
10280
10281 get_user_print_options (&opts);
10282 if (opts.addressprint)
10283 {
10284 annotate_field (4);
10285 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10286 }
10287
10288 annotate_field (5);
10289 *last_loc = b->loc;
10290 switch (ex)
10291 {
10292 case ex_catch_exception:
10293 if (b->exp_string != NULL)
10294 {
10295 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10296
10297 ui_out_field_string (uiout, "what", msg);
10298 xfree (msg);
10299 }
10300 else
10301 ui_out_field_string (uiout, "what", "all Ada exceptions");
10302
10303 break;
10304
10305 case ex_catch_exception_unhandled:
10306 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10307 break;
10308
10309 case ex_catch_assert:
10310 ui_out_field_string (uiout, "what", "failed Ada assertions");
10311 break;
10312
10313 default:
10314 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10315 break;
10316 }
10317 }
10318
10319 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10320 for all exception catchpoint kinds. */
10321
10322 static void
10323 print_mention_exception (enum exception_catchpoint_kind ex,
10324 struct breakpoint *b)
10325 {
10326 switch (ex)
10327 {
10328 case ex_catch_exception:
10329 if (b->exp_string != NULL)
10330 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10331 b->number, b->exp_string);
10332 else
10333 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10334
10335 break;
10336
10337 case ex_catch_exception_unhandled:
10338 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10339 b->number);
10340 break;
10341
10342 case ex_catch_assert:
10343 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10344 break;
10345
10346 default:
10347 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10348 break;
10349 }
10350 }
10351
10352 /* Virtual table for "catch exception" breakpoints. */
10353
10354 static enum print_stop_action
10355 print_it_catch_exception (struct breakpoint *b)
10356 {
10357 return print_it_exception (ex_catch_exception, b);
10358 }
10359
10360 static void
10361 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10362 {
10363 print_one_exception (ex_catch_exception, b, last_loc);
10364 }
10365
10366 static void
10367 print_mention_catch_exception (struct breakpoint *b)
10368 {
10369 print_mention_exception (ex_catch_exception, b);
10370 }
10371
10372 static struct breakpoint_ops catch_exception_breakpoint_ops =
10373 {
10374 NULL, /* insert */
10375 NULL, /* remove */
10376 NULL, /* breakpoint_hit */
10377 print_it_catch_exception,
10378 print_one_catch_exception,
10379 print_mention_catch_exception
10380 };
10381
10382 /* Virtual table for "catch exception unhandled" breakpoints. */
10383
10384 static enum print_stop_action
10385 print_it_catch_exception_unhandled (struct breakpoint *b)
10386 {
10387 return print_it_exception (ex_catch_exception_unhandled, b);
10388 }
10389
10390 static void
10391 print_one_catch_exception_unhandled (struct breakpoint *b,
10392 struct bp_location **last_loc)
10393 {
10394 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10395 }
10396
10397 static void
10398 print_mention_catch_exception_unhandled (struct breakpoint *b)
10399 {
10400 print_mention_exception (ex_catch_exception_unhandled, b);
10401 }
10402
10403 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10404 NULL, /* insert */
10405 NULL, /* remove */
10406 NULL, /* breakpoint_hit */
10407 print_it_catch_exception_unhandled,
10408 print_one_catch_exception_unhandled,
10409 print_mention_catch_exception_unhandled
10410 };
10411
10412 /* Virtual table for "catch assert" breakpoints. */
10413
10414 static enum print_stop_action
10415 print_it_catch_assert (struct breakpoint *b)
10416 {
10417 return print_it_exception (ex_catch_assert, b);
10418 }
10419
10420 static void
10421 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10422 {
10423 print_one_exception (ex_catch_assert, b, last_loc);
10424 }
10425
10426 static void
10427 print_mention_catch_assert (struct breakpoint *b)
10428 {
10429 print_mention_exception (ex_catch_assert, b);
10430 }
10431
10432 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10433 NULL, /* insert */
10434 NULL, /* remove */
10435 NULL, /* breakpoint_hit */
10436 print_it_catch_assert,
10437 print_one_catch_assert,
10438 print_mention_catch_assert
10439 };
10440
10441 /* Return non-zero if B is an Ada exception catchpoint. */
10442
10443 int
10444 ada_exception_catchpoint_p (struct breakpoint *b)
10445 {
10446 return (b->ops == &catch_exception_breakpoint_ops
10447 || b->ops == &catch_exception_unhandled_breakpoint_ops
10448 || b->ops == &catch_assert_breakpoint_ops);
10449 }
10450
10451 /* Return a newly allocated copy of the first space-separated token
10452 in ARGSP, and then adjust ARGSP to point immediately after that
10453 token.
10454
10455 Return NULL if ARGPS does not contain any more tokens. */
10456
10457 static char *
10458 ada_get_next_arg (char **argsp)
10459 {
10460 char *args = *argsp;
10461 char *end;
10462 char *result;
10463
10464 /* Skip any leading white space. */
10465
10466 while (isspace (*args))
10467 args++;
10468
10469 if (args[0] == '\0')
10470 return NULL; /* No more arguments. */
10471
10472 /* Find the end of the current argument. */
10473
10474 end = args;
10475 while (*end != '\0' && !isspace (*end))
10476 end++;
10477
10478 /* Adjust ARGSP to point to the start of the next argument. */
10479
10480 *argsp = end;
10481
10482 /* Make a copy of the current argument and return it. */
10483
10484 result = xmalloc (end - args + 1);
10485 strncpy (result, args, end - args);
10486 result[end - args] = '\0';
10487
10488 return result;
10489 }
10490
10491 /* Split the arguments specified in a "catch exception" command.
10492 Set EX to the appropriate catchpoint type.
10493 Set EXP_STRING to the name of the specific exception if
10494 specified by the user. */
10495
10496 static void
10497 catch_ada_exception_command_split (char *args,
10498 enum exception_catchpoint_kind *ex,
10499 char **exp_string)
10500 {
10501 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10502 char *exception_name;
10503
10504 exception_name = ada_get_next_arg (&args);
10505 make_cleanup (xfree, exception_name);
10506
10507 /* Check that we do not have any more arguments. Anything else
10508 is unexpected. */
10509
10510 while (isspace (*args))
10511 args++;
10512
10513 if (args[0] != '\0')
10514 error (_("Junk at end of expression"));
10515
10516 discard_cleanups (old_chain);
10517
10518 if (exception_name == NULL)
10519 {
10520 /* Catch all exceptions. */
10521 *ex = ex_catch_exception;
10522 *exp_string = NULL;
10523 }
10524 else if (strcmp (exception_name, "unhandled") == 0)
10525 {
10526 /* Catch unhandled exceptions. */
10527 *ex = ex_catch_exception_unhandled;
10528 *exp_string = NULL;
10529 }
10530 else
10531 {
10532 /* Catch a specific exception. */
10533 *ex = ex_catch_exception;
10534 *exp_string = exception_name;
10535 }
10536 }
10537
10538 /* Return the name of the symbol on which we should break in order to
10539 implement a catchpoint of the EX kind. */
10540
10541 static const char *
10542 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10543 {
10544 gdb_assert (exception_info != NULL);
10545
10546 switch (ex)
10547 {
10548 case ex_catch_exception:
10549 return (exception_info->catch_exception_sym);
10550 break;
10551 case ex_catch_exception_unhandled:
10552 return (exception_info->catch_exception_unhandled_sym);
10553 break;
10554 case ex_catch_assert:
10555 return (exception_info->catch_assert_sym);
10556 break;
10557 default:
10558 internal_error (__FILE__, __LINE__,
10559 _("unexpected catchpoint kind (%d)"), ex);
10560 }
10561 }
10562
10563 /* Return the breakpoint ops "virtual table" used for catchpoints
10564 of the EX kind. */
10565
10566 static struct breakpoint_ops *
10567 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10568 {
10569 switch (ex)
10570 {
10571 case ex_catch_exception:
10572 return (&catch_exception_breakpoint_ops);
10573 break;
10574 case ex_catch_exception_unhandled:
10575 return (&catch_exception_unhandled_breakpoint_ops);
10576 break;
10577 case ex_catch_assert:
10578 return (&catch_assert_breakpoint_ops);
10579 break;
10580 default:
10581 internal_error (__FILE__, __LINE__,
10582 _("unexpected catchpoint kind (%d)"), ex);
10583 }
10584 }
10585
10586 /* Return the condition that will be used to match the current exception
10587 being raised with the exception that the user wants to catch. This
10588 assumes that this condition is used when the inferior just triggered
10589 an exception catchpoint.
10590
10591 The string returned is a newly allocated string that needs to be
10592 deallocated later. */
10593
10594 static char *
10595 ada_exception_catchpoint_cond_string (const char *exp_string)
10596 {
10597 int i;
10598
10599 /* The standard exceptions are a special case. They are defined in
10600 runtime units that have been compiled without debugging info; if
10601 EXP_STRING is the not-fully-qualified name of a standard
10602 exception (e.g. "constraint_error") then, during the evaluation
10603 of the condition expression, the symbol lookup on this name would
10604 *not* return this standard exception. The catchpoint condition
10605 may then be set only on user-defined exceptions which have the
10606 same not-fully-qualified name (e.g. my_package.constraint_error).
10607
10608 To avoid this unexcepted behavior, these standard exceptions are
10609 systematically prefixed by "standard". This means that "catch
10610 exception constraint_error" is rewritten into "catch exception
10611 standard.constraint_error".
10612
10613 If an exception named contraint_error is defined in another package of
10614 the inferior program, then the only way to specify this exception as a
10615 breakpoint condition is to use its fully-qualified named:
10616 e.g. my_package.constraint_error. */
10617
10618 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10619 {
10620 if (strcmp (standard_exc [i], exp_string) == 0)
10621 {
10622 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10623 exp_string);
10624 }
10625 }
10626 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10627 }
10628
10629 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10630
10631 static struct expression *
10632 ada_parse_catchpoint_condition (char *cond_string,
10633 struct symtab_and_line sal)
10634 {
10635 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10636 }
10637
10638 /* Return the symtab_and_line that should be used to insert an exception
10639 catchpoint of the TYPE kind.
10640
10641 EX_STRING should contain the name of a specific exception
10642 that the catchpoint should catch, or NULL otherwise.
10643
10644 The idea behind all the remaining parameters is that their names match
10645 the name of certain fields in the breakpoint structure that are used to
10646 handle exception catchpoints. This function returns the value to which
10647 these fields should be set, depending on the type of catchpoint we need
10648 to create.
10649
10650 If COND and COND_STRING are both non-NULL, any value they might
10651 hold will be free'ed, and then replaced by newly allocated ones.
10652 These parameters are left untouched otherwise. */
10653
10654 static struct symtab_and_line
10655 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10656 char **addr_string, char **cond_string,
10657 struct expression **cond, struct breakpoint_ops **ops)
10658 {
10659 const char *sym_name;
10660 struct symbol *sym;
10661 struct symtab_and_line sal;
10662
10663 /* First, find out which exception support info to use. */
10664 ada_exception_support_info_sniffer ();
10665
10666 /* Then lookup the function on which we will break in order to catch
10667 the Ada exceptions requested by the user. */
10668
10669 sym_name = ada_exception_sym_name (ex);
10670 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10671
10672 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10673 that should be compiled with debugging information. As a result, we
10674 expect to find that symbol in the symtabs. If we don't find it, then
10675 the target most likely does not support Ada exceptions, or we cannot
10676 insert exception breakpoints yet, because the GNAT runtime hasn't been
10677 loaded yet. */
10678
10679 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10680 in such a way that no debugging information is produced for the symbol
10681 we are looking for. In this case, we could search the minimal symbols
10682 as a fall-back mechanism. This would still be operating in degraded
10683 mode, however, as we would still be missing the debugging information
10684 that is needed in order to extract the name of the exception being
10685 raised (this name is printed in the catchpoint message, and is also
10686 used when trying to catch a specific exception). We do not handle
10687 this case for now. */
10688
10689 if (sym == NULL)
10690 error (_("Unable to break on '%s' in this configuration."), sym_name);
10691
10692 /* Make sure that the symbol we found corresponds to a function. */
10693 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10694 error (_("Symbol \"%s\" is not a function (class = %d)"),
10695 sym_name, SYMBOL_CLASS (sym));
10696
10697 sal = find_function_start_sal (sym, 1);
10698
10699 /* Set ADDR_STRING. */
10700
10701 *addr_string = xstrdup (sym_name);
10702
10703 /* Set the COND and COND_STRING (if not NULL). */
10704
10705 if (cond_string != NULL && cond != NULL)
10706 {
10707 if (*cond_string != NULL)
10708 {
10709 xfree (*cond_string);
10710 *cond_string = NULL;
10711 }
10712 if (*cond != NULL)
10713 {
10714 xfree (*cond);
10715 *cond = NULL;
10716 }
10717 if (exp_string != NULL)
10718 {
10719 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10720 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10721 }
10722 }
10723
10724 /* Set OPS. */
10725 *ops = ada_exception_breakpoint_ops (ex);
10726
10727 return sal;
10728 }
10729
10730 /* Parse the arguments (ARGS) of the "catch exception" command.
10731
10732 Set TYPE to the appropriate exception catchpoint type.
10733 If the user asked the catchpoint to catch only a specific
10734 exception, then save the exception name in ADDR_STRING.
10735
10736 See ada_exception_sal for a description of all the remaining
10737 function arguments of this function. */
10738
10739 struct symtab_and_line
10740 ada_decode_exception_location (char *args, char **addr_string,
10741 char **exp_string, char **cond_string,
10742 struct expression **cond,
10743 struct breakpoint_ops **ops)
10744 {
10745 enum exception_catchpoint_kind ex;
10746
10747 catch_ada_exception_command_split (args, &ex, exp_string);
10748 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10749 cond, ops);
10750 }
10751
10752 struct symtab_and_line
10753 ada_decode_assert_location (char *args, char **addr_string,
10754 struct breakpoint_ops **ops)
10755 {
10756 /* Check that no argument where provided at the end of the command. */
10757
10758 if (args != NULL)
10759 {
10760 while (isspace (*args))
10761 args++;
10762 if (*args != '\0')
10763 error (_("Junk at end of arguments."));
10764 }
10765
10766 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10767 ops);
10768 }
10769
10770 /* Operators */
10771 /* Information about operators given special treatment in functions
10772 below. */
10773 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10774
10775 #define ADA_OPERATORS \
10776 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10777 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10778 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10779 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10780 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10781 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10782 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10783 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10784 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10785 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10786 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10787 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10788 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10789 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10790 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10791 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10792 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10793 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10794 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10795
10796 static void
10797 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10798 {
10799 switch (exp->elts[pc - 1].opcode)
10800 {
10801 default:
10802 operator_length_standard (exp, pc, oplenp, argsp);
10803 break;
10804
10805 #define OP_DEFN(op, len, args, binop) \
10806 case op: *oplenp = len; *argsp = args; break;
10807 ADA_OPERATORS;
10808 #undef OP_DEFN
10809
10810 case OP_AGGREGATE:
10811 *oplenp = 3;
10812 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10813 break;
10814
10815 case OP_CHOICES:
10816 *oplenp = 3;
10817 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10818 break;
10819 }
10820 }
10821
10822 static char *
10823 ada_op_name (enum exp_opcode opcode)
10824 {
10825 switch (opcode)
10826 {
10827 default:
10828 return op_name_standard (opcode);
10829
10830 #define OP_DEFN(op, len, args, binop) case op: return #op;
10831 ADA_OPERATORS;
10832 #undef OP_DEFN
10833
10834 case OP_AGGREGATE:
10835 return "OP_AGGREGATE";
10836 case OP_CHOICES:
10837 return "OP_CHOICES";
10838 case OP_NAME:
10839 return "OP_NAME";
10840 }
10841 }
10842
10843 /* As for operator_length, but assumes PC is pointing at the first
10844 element of the operator, and gives meaningful results only for the
10845 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10846
10847 static void
10848 ada_forward_operator_length (struct expression *exp, int pc,
10849 int *oplenp, int *argsp)
10850 {
10851 switch (exp->elts[pc].opcode)
10852 {
10853 default:
10854 *oplenp = *argsp = 0;
10855 break;
10856
10857 #define OP_DEFN(op, len, args, binop) \
10858 case op: *oplenp = len; *argsp = args; break;
10859 ADA_OPERATORS;
10860 #undef OP_DEFN
10861
10862 case OP_AGGREGATE:
10863 *oplenp = 3;
10864 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10865 break;
10866
10867 case OP_CHOICES:
10868 *oplenp = 3;
10869 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10870 break;
10871
10872 case OP_STRING:
10873 case OP_NAME:
10874 {
10875 int len = longest_to_int (exp->elts[pc + 1].longconst);
10876 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10877 *argsp = 0;
10878 break;
10879 }
10880 }
10881 }
10882
10883 static int
10884 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10885 {
10886 enum exp_opcode op = exp->elts[elt].opcode;
10887 int oplen, nargs;
10888 int pc = elt;
10889 int i;
10890
10891 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10892
10893 switch (op)
10894 {
10895 /* Ada attributes ('Foo). */
10896 case OP_ATR_FIRST:
10897 case OP_ATR_LAST:
10898 case OP_ATR_LENGTH:
10899 case OP_ATR_IMAGE:
10900 case OP_ATR_MAX:
10901 case OP_ATR_MIN:
10902 case OP_ATR_MODULUS:
10903 case OP_ATR_POS:
10904 case OP_ATR_SIZE:
10905 case OP_ATR_TAG:
10906 case OP_ATR_VAL:
10907 break;
10908
10909 case UNOP_IN_RANGE:
10910 case UNOP_QUAL:
10911 /* XXX: gdb_sprint_host_address, type_sprint */
10912 fprintf_filtered (stream, _("Type @"));
10913 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10914 fprintf_filtered (stream, " (");
10915 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10916 fprintf_filtered (stream, ")");
10917 break;
10918 case BINOP_IN_BOUNDS:
10919 fprintf_filtered (stream, " (%d)",
10920 longest_to_int (exp->elts[pc + 2].longconst));
10921 break;
10922 case TERNOP_IN_RANGE:
10923 break;
10924
10925 case OP_AGGREGATE:
10926 case OP_OTHERS:
10927 case OP_DISCRETE_RANGE:
10928 case OP_POSITIONAL:
10929 case OP_CHOICES:
10930 break;
10931
10932 case OP_NAME:
10933 case OP_STRING:
10934 {
10935 char *name = &exp->elts[elt + 2].string;
10936 int len = longest_to_int (exp->elts[elt + 1].longconst);
10937 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10938 break;
10939 }
10940
10941 default:
10942 return dump_subexp_body_standard (exp, stream, elt);
10943 }
10944
10945 elt += oplen;
10946 for (i = 0; i < nargs; i += 1)
10947 elt = dump_subexp (exp, stream, elt);
10948
10949 return elt;
10950 }
10951
10952 /* The Ada extension of print_subexp (q.v.). */
10953
10954 static void
10955 ada_print_subexp (struct expression *exp, int *pos,
10956 struct ui_file *stream, enum precedence prec)
10957 {
10958 int oplen, nargs, i;
10959 int pc = *pos;
10960 enum exp_opcode op = exp->elts[pc].opcode;
10961
10962 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10963
10964 *pos += oplen;
10965 switch (op)
10966 {
10967 default:
10968 *pos -= oplen;
10969 print_subexp_standard (exp, pos, stream, prec);
10970 return;
10971
10972 case OP_VAR_VALUE:
10973 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10974 return;
10975
10976 case BINOP_IN_BOUNDS:
10977 /* XXX: sprint_subexp */
10978 print_subexp (exp, pos, stream, PREC_SUFFIX);
10979 fputs_filtered (" in ", stream);
10980 print_subexp (exp, pos, stream, PREC_SUFFIX);
10981 fputs_filtered ("'range", stream);
10982 if (exp->elts[pc + 1].longconst > 1)
10983 fprintf_filtered (stream, "(%ld)",
10984 (long) exp->elts[pc + 1].longconst);
10985 return;
10986
10987 case TERNOP_IN_RANGE:
10988 if (prec >= PREC_EQUAL)
10989 fputs_filtered ("(", stream);
10990 /* XXX: sprint_subexp */
10991 print_subexp (exp, pos, stream, PREC_SUFFIX);
10992 fputs_filtered (" in ", stream);
10993 print_subexp (exp, pos, stream, PREC_EQUAL);
10994 fputs_filtered (" .. ", stream);
10995 print_subexp (exp, pos, stream, PREC_EQUAL);
10996 if (prec >= PREC_EQUAL)
10997 fputs_filtered (")", stream);
10998 return;
10999
11000 case OP_ATR_FIRST:
11001 case OP_ATR_LAST:
11002 case OP_ATR_LENGTH:
11003 case OP_ATR_IMAGE:
11004 case OP_ATR_MAX:
11005 case OP_ATR_MIN:
11006 case OP_ATR_MODULUS:
11007 case OP_ATR_POS:
11008 case OP_ATR_SIZE:
11009 case OP_ATR_TAG:
11010 case OP_ATR_VAL:
11011 if (exp->elts[*pos].opcode == OP_TYPE)
11012 {
11013 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11014 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11015 *pos += 3;
11016 }
11017 else
11018 print_subexp (exp, pos, stream, PREC_SUFFIX);
11019 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11020 if (nargs > 1)
11021 {
11022 int tem;
11023 for (tem = 1; tem < nargs; tem += 1)
11024 {
11025 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11026 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11027 }
11028 fputs_filtered (")", stream);
11029 }
11030 return;
11031
11032 case UNOP_QUAL:
11033 type_print (exp->elts[pc + 1].type, "", stream, 0);
11034 fputs_filtered ("'(", stream);
11035 print_subexp (exp, pos, stream, PREC_PREFIX);
11036 fputs_filtered (")", stream);
11037 return;
11038
11039 case UNOP_IN_RANGE:
11040 /* XXX: sprint_subexp */
11041 print_subexp (exp, pos, stream, PREC_SUFFIX);
11042 fputs_filtered (" in ", stream);
11043 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11044 return;
11045
11046 case OP_DISCRETE_RANGE:
11047 print_subexp (exp, pos, stream, PREC_SUFFIX);
11048 fputs_filtered ("..", stream);
11049 print_subexp (exp, pos, stream, PREC_SUFFIX);
11050 return;
11051
11052 case OP_OTHERS:
11053 fputs_filtered ("others => ", stream);
11054 print_subexp (exp, pos, stream, PREC_SUFFIX);
11055 return;
11056
11057 case OP_CHOICES:
11058 for (i = 0; i < nargs-1; i += 1)
11059 {
11060 if (i > 0)
11061 fputs_filtered ("|", stream);
11062 print_subexp (exp, pos, stream, PREC_SUFFIX);
11063 }
11064 fputs_filtered (" => ", stream);
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 return;
11067
11068 case OP_POSITIONAL:
11069 print_subexp (exp, pos, stream, PREC_SUFFIX);
11070 return;
11071
11072 case OP_AGGREGATE:
11073 fputs_filtered ("(", stream);
11074 for (i = 0; i < nargs; i += 1)
11075 {
11076 if (i > 0)
11077 fputs_filtered (", ", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 }
11080 fputs_filtered (")", stream);
11081 return;
11082 }
11083 }
11084
11085 /* Table mapping opcodes into strings for printing operators
11086 and precedences of the operators. */
11087
11088 static const struct op_print ada_op_print_tab[] = {
11089 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11090 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11091 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11092 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11093 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11094 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11095 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11096 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11097 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11098 {">=", BINOP_GEQ, PREC_ORDER, 0},
11099 {">", BINOP_GTR, PREC_ORDER, 0},
11100 {"<", BINOP_LESS, PREC_ORDER, 0},
11101 {">>", BINOP_RSH, PREC_SHIFT, 0},
11102 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11103 {"+", BINOP_ADD, PREC_ADD, 0},
11104 {"-", BINOP_SUB, PREC_ADD, 0},
11105 {"&", BINOP_CONCAT, PREC_ADD, 0},
11106 {"*", BINOP_MUL, PREC_MUL, 0},
11107 {"/", BINOP_DIV, PREC_MUL, 0},
11108 {"rem", BINOP_REM, PREC_MUL, 0},
11109 {"mod", BINOP_MOD, PREC_MUL, 0},
11110 {"**", BINOP_EXP, PREC_REPEAT, 0},
11111 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11112 {"-", UNOP_NEG, PREC_PREFIX, 0},
11113 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11114 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11115 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11116 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11117 {".all", UNOP_IND, PREC_SUFFIX, 1},
11118 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11119 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11120 {NULL, 0, 0, 0}
11121 };
11122 \f
11123 enum ada_primitive_types {
11124 ada_primitive_type_int,
11125 ada_primitive_type_long,
11126 ada_primitive_type_short,
11127 ada_primitive_type_char,
11128 ada_primitive_type_float,
11129 ada_primitive_type_double,
11130 ada_primitive_type_void,
11131 ada_primitive_type_long_long,
11132 ada_primitive_type_long_double,
11133 ada_primitive_type_natural,
11134 ada_primitive_type_positive,
11135 ada_primitive_type_system_address,
11136 nr_ada_primitive_types
11137 };
11138
11139 static void
11140 ada_language_arch_info (struct gdbarch *gdbarch,
11141 struct language_arch_info *lai)
11142 {
11143 const struct builtin_type *builtin = builtin_type (gdbarch);
11144 lai->primitive_type_vector
11145 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11146 struct type *);
11147
11148 lai->primitive_type_vector [ada_primitive_type_int]
11149 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11150 0, "integer");
11151 lai->primitive_type_vector [ada_primitive_type_long]
11152 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11153 0, "long_integer");
11154 lai->primitive_type_vector [ada_primitive_type_short]
11155 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11156 0, "short_integer");
11157 lai->string_char_type
11158 = lai->primitive_type_vector [ada_primitive_type_char]
11159 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11160 lai->primitive_type_vector [ada_primitive_type_float]
11161 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11162 "float", NULL);
11163 lai->primitive_type_vector [ada_primitive_type_double]
11164 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11165 "long_float", NULL);
11166 lai->primitive_type_vector [ada_primitive_type_long_long]
11167 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11168 0, "long_long_integer");
11169 lai->primitive_type_vector [ada_primitive_type_long_double]
11170 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11171 "long_long_float", NULL);
11172 lai->primitive_type_vector [ada_primitive_type_natural]
11173 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11174 0, "natural");
11175 lai->primitive_type_vector [ada_primitive_type_positive]
11176 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11177 0, "positive");
11178 lai->primitive_type_vector [ada_primitive_type_void]
11179 = builtin->builtin_void;
11180
11181 lai->primitive_type_vector [ada_primitive_type_system_address]
11182 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11183 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11184 = "system__address";
11185
11186 lai->bool_type_symbol = NULL;
11187 lai->bool_type_default = builtin->builtin_bool;
11188 }
11189 \f
11190 /* Language vector */
11191
11192 /* Not really used, but needed in the ada_language_defn. */
11193
11194 static void
11195 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11196 {
11197 ada_emit_char (c, type, stream, quoter, 1);
11198 }
11199
11200 static int
11201 parse (void)
11202 {
11203 warnings_issued = 0;
11204 return ada_parse ();
11205 }
11206
11207 static const struct exp_descriptor ada_exp_descriptor = {
11208 ada_print_subexp,
11209 ada_operator_length,
11210 ada_op_name,
11211 ada_dump_subexp_body,
11212 ada_evaluate_subexp
11213 };
11214
11215 const struct language_defn ada_language_defn = {
11216 "ada", /* Language name */
11217 language_ada,
11218 range_check_off,
11219 type_check_off,
11220 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11221 that's not quite what this means. */
11222 array_row_major,
11223 macro_expansion_no,
11224 &ada_exp_descriptor,
11225 parse,
11226 ada_error,
11227 resolve,
11228 ada_printchar, /* Print a character constant */
11229 ada_printstr, /* Function to print string constant */
11230 emit_char, /* Function to print single char (not used) */
11231 ada_print_type, /* Print a type using appropriate syntax */
11232 default_print_typedef, /* Print a typedef using appropriate syntax */
11233 ada_val_print, /* Print a value using appropriate syntax */
11234 ada_value_print, /* Print a top-level value */
11235 NULL, /* Language specific skip_trampoline */
11236 NULL, /* name_of_this */
11237 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11238 basic_lookup_transparent_type, /* lookup_transparent_type */
11239 ada_la_decode, /* Language specific symbol demangler */
11240 NULL, /* Language specific class_name_from_physname */
11241 ada_op_print_tab, /* expression operators for printing */
11242 0, /* c-style arrays */
11243 1, /* String lower bound */
11244 ada_get_gdb_completer_word_break_characters,
11245 ada_make_symbol_completion_list,
11246 ada_language_arch_info,
11247 ada_print_array_index,
11248 default_pass_by_reference,
11249 c_get_string,
11250 LANG_MAGIC
11251 };
11252
11253 /* Provide a prototype to silence -Wmissing-prototypes. */
11254 extern initialize_file_ftype _initialize_ada_language;
11255
11256 /* Command-list for the "set/show ada" prefix command. */
11257 static struct cmd_list_element *set_ada_list;
11258 static struct cmd_list_element *show_ada_list;
11259
11260 /* Implement the "set ada" prefix command. */
11261
11262 static void
11263 set_ada_command (char *arg, int from_tty)
11264 {
11265 printf_unfiltered (_(\
11266 "\"set ada\" must be followed by the name of a setting.\n"));
11267 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11268 }
11269
11270 /* Implement the "show ada" prefix command. */
11271
11272 static void
11273 show_ada_command (char *args, int from_tty)
11274 {
11275 cmd_show_list (show_ada_list, from_tty, "");
11276 }
11277
11278 void
11279 _initialize_ada_language (void)
11280 {
11281 add_language (&ada_language_defn);
11282
11283 add_prefix_cmd ("ada", no_class, set_ada_command,
11284 _("Prefix command for changing Ada-specfic settings"),
11285 &set_ada_list, "set ada ", 0, &setlist);
11286
11287 add_prefix_cmd ("ada", no_class, show_ada_command,
11288 _("Generic command for showing Ada-specific settings."),
11289 &show_ada_list, "show ada ", 0, &showlist);
11290
11291 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11292 &trust_pad_over_xvs, _("\
11293 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11294 Show whether an optimization trusting PAD types over XVS types is activated"),
11295 _("\
11296 This is related to the encoding used by the GNAT compiler. The debugger\n\
11297 should normally trust the contents of PAD types, but certain older versions\n\
11298 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11299 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11300 work around this bug. It is always safe to turn this option \"off\", but\n\
11301 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11302 this option to \"off\" unless necessary."),
11303 NULL, NULL, &set_ada_list, &show_ada_list);
11304
11305 varsize_limit = 65536;
11306
11307 obstack_init (&symbol_list_obstack);
11308
11309 decoded_names_store = htab_create_alloc
11310 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11311 NULL, xcalloc, xfree);
11312
11313 observer_attach_executable_changed (ada_executable_changed_observer);
11314 }
This page took 0.385223 seconds and 4 git commands to generate.