1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type
*desc_base_type (struct type
*);
74 static struct type
*desc_bounds_type (struct type
*);
76 static struct value
*desc_bounds (struct value
*);
78 static int fat_pntr_bounds_bitpos (struct type
*);
80 static int fat_pntr_bounds_bitsize (struct type
*);
82 static struct type
*desc_data_target_type (struct type
*);
84 static struct value
*desc_data (struct value
*);
86 static int fat_pntr_data_bitpos (struct type
*);
88 static int fat_pntr_data_bitsize (struct type
*);
90 static struct value
*desc_one_bound (struct value
*, int, int);
92 static int desc_bound_bitpos (struct type
*, int, int);
94 static int desc_bound_bitsize (struct type
*, int, int);
96 static struct type
*desc_index_type (struct type
*, int);
98 static int desc_arity (struct type
*);
100 static int ada_type_match (struct type
*, struct type
*, int);
102 static int ada_args_match (struct symbol
*, struct value
**, int);
104 static int full_match (const char *, const char *);
106 static struct value
*make_array_descriptor (struct type
*, struct value
*);
108 static void ada_add_block_symbols (struct obstack
*,
109 struct block
*, const char *,
110 domain_enum
, struct objfile
*, int);
112 static int is_nonfunction (struct ada_symbol_info
*, int);
114 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
117 static int num_defns_collected (struct obstack
*);
119 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
121 static struct value
*resolve_subexp (struct expression
**, int *, int,
124 static void replace_operator_with_call (struct expression
**, int, int, int,
125 struct symbol
*, struct block
*);
127 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
129 static char *ada_op_name (enum exp_opcode
);
131 static const char *ada_decoded_op_name (enum exp_opcode
);
133 static int numeric_type_p (struct type
*);
135 static int integer_type_p (struct type
*);
137 static int scalar_type_p (struct type
*);
139 static int discrete_type_p (struct type
*);
141 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
146 static struct symbol
*find_old_style_renaming_symbol (const char *,
149 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
152 static struct value
*evaluate_subexp_type (struct expression
*, int *);
154 static struct type
*ada_find_parallel_type_with_name (struct type
*,
157 static int is_dynamic_field (struct type
*, int);
159 static struct type
*to_fixed_variant_branch_type (struct type
*,
161 CORE_ADDR
, struct value
*);
163 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
165 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
167 static struct type
*to_static_fixed_type (struct type
*);
168 static struct type
*static_unwrap_type (struct type
*type
);
170 static struct value
*unwrap_value (struct value
*);
172 static struct type
*constrained_packed_array_type (struct type
*, long *);
174 static struct type
*decode_constrained_packed_array_type (struct type
*);
176 static long decode_packed_array_bitsize (struct type
*);
178 static struct value
*decode_constrained_packed_array (struct value
*);
180 static int ada_is_packed_array_type (struct type
*);
182 static int ada_is_unconstrained_packed_array_type (struct type
*);
184 static struct value
*value_subscript_packed (struct value
*, int,
187 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int, int);
189 static struct value
*coerce_unspec_val_to_type (struct value
*,
192 static struct value
*get_var_value (char *, char *);
194 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
196 static int equiv_types (struct type
*, struct type
*);
198 static int is_name_suffix (const char *);
200 static int advance_wild_match (const char **, const char *, int);
202 static int wild_match (const char *, const char *);
204 static struct value
*ada_coerce_ref (struct value
*);
206 static LONGEST
pos_atr (struct value
*);
208 static struct value
*value_pos_atr (struct type
*, struct value
*);
210 static struct value
*value_val_atr (struct type
*, struct value
*);
212 static struct symbol
*standard_lookup (const char *, const struct block
*,
215 static struct value
*ada_search_struct_field (char *, struct value
*, int,
218 static struct value
*ada_value_primitive_field (struct value
*, int, int,
221 static int find_struct_field (char *, struct type
*, int,
222 struct type
**, int *, int *, int *, int *);
224 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
227 static int ada_resolve_function (struct ada_symbol_info
*, int,
228 struct value
**, int, const char *,
231 static int ada_is_direct_array_type (struct type
*);
233 static void ada_language_arch_info (struct gdbarch
*,
234 struct language_arch_info
*);
236 static void check_size (const struct type
*);
238 static struct value
*ada_index_struct_field (int, struct value
*, int,
241 static struct value
*assign_aggregate (struct value
*, struct value
*,
245 static void aggregate_assign_from_choices (struct value
*, struct value
*,
247 int *, LONGEST
*, int *,
248 int, LONGEST
, LONGEST
);
250 static void aggregate_assign_positional (struct value
*, struct value
*,
252 int *, LONGEST
*, int *, int,
256 static void aggregate_assign_others (struct value
*, struct value
*,
258 int *, LONGEST
*, int, LONGEST
, LONGEST
);
261 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
264 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
267 static void ada_forward_operator_length (struct expression
*, int, int *,
272 /* Maximum-sized dynamic type. */
273 static unsigned int varsize_limit
;
275 /* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277 static char *ada_completer_word_break_characters
=
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 /* The name of the symbol to use to get the name of the main subprogram. */
285 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
286 = "__gnat_ada_main_program_name";
288 /* Limit on the number of warnings to raise per expression evaluation. */
289 static int warning_limit
= 2;
291 /* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293 static int warnings_issued
= 0;
295 static const char *known_runtime_file_name_patterns
[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 static const char *known_auxiliary_function_name_patterns
[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 /* Space for allocating results of ada_lookup_symbol_list. */
304 static struct obstack symbol_list_obstack
;
306 /* Inferior-specific data. */
308 /* Per-inferior data for this module. */
310 struct ada_inferior_data
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type
*tsd_type
;
319 /* Our key to this module's inferior data. */
320 static const struct inferior_data
*ada_inferior_data
;
322 /* A cleanup routine for our inferior data. */
324 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
326 struct ada_inferior_data
*data
;
328 data
= inferior_data (inf
, ada_inferior_data
);
333 /* Return our inferior data for the given inferior (INF).
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
341 static struct ada_inferior_data
*
342 get_ada_inferior_data (struct inferior
*inf
)
344 struct ada_inferior_data
*data
;
346 data
= inferior_data (inf
, ada_inferior_data
);
349 data
= XZALLOC (struct ada_inferior_data
);
350 set_inferior_data (inf
, ada_inferior_data
, data
);
356 /* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
360 ada_inferior_exit (struct inferior
*inf
)
362 ada_inferior_data_cleanup (inf
, NULL
);
363 set_inferior_data (inf
, ada_inferior_data
, NULL
);
368 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
369 all typedef layers have been peeled. Otherwise, return TYPE.
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
396 ada_typedef_target_type (struct type
*type
)
398 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
399 type
= TYPE_TARGET_TYPE (type
);
403 /* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
408 ada_unqualified_name (const char *decoded_name
)
410 const char *result
= strrchr (decoded_name
, '.');
413 result
++; /* Skip the dot... */
415 result
= decoded_name
;
420 /* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
424 add_angle_brackets (const char *str
)
426 static char *result
= NULL
;
429 result
= xstrprintf ("<%s>", str
);
434 ada_get_gdb_completer_word_break_characters (void)
436 return ada_completer_word_break_characters
;
439 /* Print an array element index using the Ada syntax. */
442 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
443 const struct value_print_options
*options
)
445 LA_VALUE_PRINT (index_value
, stream
, options
);
446 fprintf_filtered (stream
, " => ");
449 /* Assuming VECT points to an array of *SIZE objects of size
450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
451 updating *SIZE as necessary and returning the (new) array. */
454 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
456 if (*size
< min_size
)
459 if (*size
< min_size
)
461 vect
= xrealloc (vect
, *size
* element_size
);
466 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
467 suffix of FIELD_NAME beginning "___". */
470 field_name_match (const char *field_name
, const char *target
)
472 int len
= strlen (target
);
475 (strncmp (field_name
, target
, len
) == 0
476 && (field_name
[len
] == '\0'
477 || (strncmp (field_name
+ len
, "___", 3) == 0
478 && strcmp (field_name
+ strlen (field_name
) - 6,
483 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
492 ada_get_field_index (const struct type
*type
, const char *field_name
,
496 struct type
*struct_type
= check_typedef ((struct type
*) type
);
498 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
503 error (_("Unable to find field %s in struct %s. Aborting"),
504 field_name
, TYPE_NAME (struct_type
));
509 /* The length of the prefix of NAME prior to any "___" suffix. */
512 ada_name_prefix_len (const char *name
)
518 const char *p
= strstr (name
, "___");
521 return strlen (name
);
527 /* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
531 is_suffix (const char *str
, const char *suffix
)
538 len2
= strlen (suffix
);
539 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
542 /* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
545 static struct value
*
546 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
548 type
= ada_check_typedef (type
);
549 if (value_type (val
) == type
)
553 struct value
*result
;
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
560 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
561 result
= allocate_value_lazy (type
);
564 result
= allocate_value (type
);
565 memcpy (value_contents_raw (result
), value_contents (val
),
568 set_value_component_location (result
, val
);
569 set_value_bitsize (result
, value_bitsize (val
));
570 set_value_bitpos (result
, value_bitpos (val
));
571 set_value_address (result
, value_address (val
));
576 static const gdb_byte
*
577 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
582 return valaddr
+ offset
;
586 cond_offset_target (CORE_ADDR address
, long offset
)
591 return address
+ offset
;
594 /* Issue a warning (as for the definition of warning in utils.c, but
595 with exactly one argument rather than ...), unless the limit on the
596 number of warnings has passed during the evaluation of the current
599 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
600 provided by "complaint". */
601 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
604 lim_warning (const char *format
, ...)
608 va_start (args
, format
);
609 warnings_issued
+= 1;
610 if (warnings_issued
<= warning_limit
)
611 vwarning (format
, args
);
616 /* Issue an error if the size of an object of type T is unreasonable,
617 i.e. if it would be a bad idea to allocate a value of this type in
621 check_size (const struct type
*type
)
623 if (TYPE_LENGTH (type
) > varsize_limit
)
624 error (_("object size is larger than varsize-limit"));
627 /* Maximum value of a SIZE-byte signed integer type. */
629 max_of_size (int size
)
631 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
633 return top_bit
| (top_bit
- 1);
636 /* Minimum value of a SIZE-byte signed integer type. */
638 min_of_size (int size
)
640 return -max_of_size (size
) - 1;
643 /* Maximum value of a SIZE-byte unsigned integer type. */
645 umax_of_size (int size
)
647 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
649 return top_bit
| (top_bit
- 1);
652 /* Maximum value of integral type T, as a signed quantity. */
654 max_of_type (struct type
*t
)
656 if (TYPE_UNSIGNED (t
))
657 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
659 return max_of_size (TYPE_LENGTH (t
));
662 /* Minimum value of integral type T, as a signed quantity. */
664 min_of_type (struct type
*t
)
666 if (TYPE_UNSIGNED (t
))
669 return min_of_size (TYPE_LENGTH (t
));
672 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
674 ada_discrete_type_high_bound (struct type
*type
)
676 switch (TYPE_CODE (type
))
678 case TYPE_CODE_RANGE
:
679 return TYPE_HIGH_BOUND (type
);
681 return TYPE_FIELD_BITPOS (type
, TYPE_NFIELDS (type
) - 1);
686 return max_of_type (type
);
688 error (_("Unexpected type in ada_discrete_type_high_bound."));
692 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
694 ada_discrete_type_low_bound (struct type
*type
)
696 switch (TYPE_CODE (type
))
698 case TYPE_CODE_RANGE
:
699 return TYPE_LOW_BOUND (type
);
701 return TYPE_FIELD_BITPOS (type
, 0);
706 return min_of_type (type
);
708 error (_("Unexpected type in ada_discrete_type_low_bound."));
712 /* The identity on non-range types. For range types, the underlying
713 non-range scalar type. */
716 base_type (struct type
*type
)
718 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
720 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
722 type
= TYPE_TARGET_TYPE (type
);
728 /* Language Selection */
730 /* If the main program is in Ada, return language_ada, otherwise return LANG
731 (the main program is in Ada iif the adainit symbol is found). */
734 ada_update_initial_language (enum language lang
)
736 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
737 (struct objfile
*) NULL
) != NULL
)
743 /* If the main procedure is written in Ada, then return its name.
744 The result is good until the next call. Return NULL if the main
745 procedure doesn't appear to be in Ada. */
750 struct minimal_symbol
*msym
;
751 static char *main_program_name
= NULL
;
753 /* For Ada, the name of the main procedure is stored in a specific
754 string constant, generated by the binder. Look for that symbol,
755 extract its address, and then read that string. If we didn't find
756 that string, then most probably the main procedure is not written
758 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
762 CORE_ADDR main_program_name_addr
;
765 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
766 if (main_program_name_addr
== 0)
767 error (_("Invalid address for Ada main program name."));
769 xfree (main_program_name
);
770 target_read_string (main_program_name_addr
, &main_program_name
,
775 return main_program_name
;
778 /* The main procedure doesn't seem to be in Ada. */
784 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
787 const struct ada_opname_map ada_opname_table
[] = {
788 {"Oadd", "\"+\"", BINOP_ADD
},
789 {"Osubtract", "\"-\"", BINOP_SUB
},
790 {"Omultiply", "\"*\"", BINOP_MUL
},
791 {"Odivide", "\"/\"", BINOP_DIV
},
792 {"Omod", "\"mod\"", BINOP_MOD
},
793 {"Orem", "\"rem\"", BINOP_REM
},
794 {"Oexpon", "\"**\"", BINOP_EXP
},
795 {"Olt", "\"<\"", BINOP_LESS
},
796 {"Ole", "\"<=\"", BINOP_LEQ
},
797 {"Ogt", "\">\"", BINOP_GTR
},
798 {"Oge", "\">=\"", BINOP_GEQ
},
799 {"Oeq", "\"=\"", BINOP_EQUAL
},
800 {"One", "\"/=\"", BINOP_NOTEQUAL
},
801 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
802 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
803 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
804 {"Oconcat", "\"&\"", BINOP_CONCAT
},
805 {"Oabs", "\"abs\"", UNOP_ABS
},
806 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
807 {"Oadd", "\"+\"", UNOP_PLUS
},
808 {"Osubtract", "\"-\"", UNOP_NEG
},
812 /* The "encoded" form of DECODED, according to GNAT conventions.
813 The result is valid until the next call to ada_encode. */
816 ada_encode (const char *decoded
)
818 static char *encoding_buffer
= NULL
;
819 static size_t encoding_buffer_size
= 0;
826 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
827 2 * strlen (decoded
) + 10);
830 for (p
= decoded
; *p
!= '\0'; p
+= 1)
834 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
839 const struct ada_opname_map
*mapping
;
841 for (mapping
= ada_opname_table
;
842 mapping
->encoded
!= NULL
843 && strncmp (mapping
->decoded
, p
,
844 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
846 if (mapping
->encoded
== NULL
)
847 error (_("invalid Ada operator name: %s"), p
);
848 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
849 k
+= strlen (mapping
->encoded
);
854 encoding_buffer
[k
] = *p
;
859 encoding_buffer
[k
] = '\0';
860 return encoding_buffer
;
863 /* Return NAME folded to lower case, or, if surrounded by single
864 quotes, unfolded, but with the quotes stripped away. Result good
868 ada_fold_name (const char *name
)
870 static char *fold_buffer
= NULL
;
871 static size_t fold_buffer_size
= 0;
873 int len
= strlen (name
);
874 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
878 strncpy (fold_buffer
, name
+ 1, len
- 2);
879 fold_buffer
[len
- 2] = '\000';
885 for (i
= 0; i
<= len
; i
+= 1)
886 fold_buffer
[i
] = tolower (name
[i
]);
892 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
895 is_lower_alphanum (const char c
)
897 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
900 /* Remove either of these suffixes:
905 These are suffixes introduced by the compiler for entities such as
906 nested subprogram for instance, in order to avoid name clashes.
907 They do not serve any purpose for the debugger. */
910 ada_remove_trailing_digits (const char *encoded
, int *len
)
912 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
916 while (i
> 0 && isdigit (encoded
[i
]))
918 if (i
>= 0 && encoded
[i
] == '.')
920 else if (i
>= 0 && encoded
[i
] == '$')
922 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
924 else if (i
>= 1 && strncmp (encoded
+ i
- 1, "__", 2) == 0)
929 /* Remove the suffix introduced by the compiler for protected object
933 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
935 /* Remove trailing N. */
937 /* Protected entry subprograms are broken into two
938 separate subprograms: The first one is unprotected, and has
939 a 'N' suffix; the second is the protected version, and has
940 the 'P' suffix. The second calls the first one after handling
941 the protection. Since the P subprograms are internally generated,
942 we leave these names undecoded, giving the user a clue that this
943 entity is internal. */
946 && encoded
[*len
- 1] == 'N'
947 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
951 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
954 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
958 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
961 if (encoded
[i
] != 'X')
967 if (isalnum (encoded
[i
-1]))
971 /* If ENCODED follows the GNAT entity encoding conventions, then return
972 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
975 The resulting string is valid until the next call of ada_decode.
976 If the string is unchanged by decoding, the original string pointer
980 ada_decode (const char *encoded
)
987 static char *decoding_buffer
= NULL
;
988 static size_t decoding_buffer_size
= 0;
990 /* The name of the Ada main procedure starts with "_ada_".
991 This prefix is not part of the decoded name, so skip this part
992 if we see this prefix. */
993 if (strncmp (encoded
, "_ada_", 5) == 0)
996 /* If the name starts with '_', then it is not a properly encoded
997 name, so do not attempt to decode it. Similarly, if the name
998 starts with '<', the name should not be decoded. */
999 if (encoded
[0] == '_' || encoded
[0] == '<')
1002 len0
= strlen (encoded
);
1004 ada_remove_trailing_digits (encoded
, &len0
);
1005 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1007 /* Remove the ___X.* suffix if present. Do not forget to verify that
1008 the suffix is located before the current "end" of ENCODED. We want
1009 to avoid re-matching parts of ENCODED that have previously been
1010 marked as discarded (by decrementing LEN0). */
1011 p
= strstr (encoded
, "___");
1012 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1020 /* Remove any trailing TKB suffix. It tells us that this symbol
1021 is for the body of a task, but that information does not actually
1022 appear in the decoded name. */
1024 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
1027 /* Remove any trailing TB suffix. The TB suffix is slightly different
1028 from the TKB suffix because it is used for non-anonymous task
1031 if (len0
> 2 && strncmp (encoded
+ len0
- 2, "TB", 2) == 0)
1034 /* Remove trailing "B" suffixes. */
1035 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
1040 /* Make decoded big enough for possible expansion by operator name. */
1042 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1043 decoded
= decoding_buffer
;
1045 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1050 while ((i
>= 0 && isdigit (encoded
[i
]))
1051 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1053 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1055 else if (encoded
[i
] == '$')
1059 /* The first few characters that are not alphabetic are not part
1060 of any encoding we use, so we can copy them over verbatim. */
1062 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1063 decoded
[j
] = encoded
[i
];
1068 /* Is this a symbol function? */
1069 if (at_start_name
&& encoded
[i
] == 'O')
1073 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1075 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1076 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1078 && !isalnum (encoded
[i
+ op_len
]))
1080 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1083 j
+= strlen (ada_opname_table
[k
].decoded
);
1087 if (ada_opname_table
[k
].encoded
!= NULL
)
1092 /* Replace "TK__" with "__", which will eventually be translated
1093 into "." (just below). */
1095 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
1098 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1099 be translated into "." (just below). These are internal names
1100 generated for anonymous blocks inside which our symbol is nested. */
1102 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1103 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1104 && isdigit (encoded
[i
+4]))
1108 while (k
< len0
&& isdigit (encoded
[k
]))
1109 k
++; /* Skip any extra digit. */
1111 /* Double-check that the "__B_{DIGITS}+" sequence we found
1112 is indeed followed by "__". */
1113 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1117 /* Remove _E{DIGITS}+[sb] */
1119 /* Just as for protected object subprograms, there are 2 categories
1120 of subprograms created by the compiler for each entry. The first
1121 one implements the actual entry code, and has a suffix following
1122 the convention above; the second one implements the barrier and
1123 uses the same convention as above, except that the 'E' is replaced
1126 Just as above, we do not decode the name of barrier functions
1127 to give the user a clue that the code he is debugging has been
1128 internally generated. */
1130 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1131 && isdigit (encoded
[i
+2]))
1135 while (k
< len0
&& isdigit (encoded
[k
]))
1139 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1142 /* Just as an extra precaution, make sure that if this
1143 suffix is followed by anything else, it is a '_'.
1144 Otherwise, we matched this sequence by accident. */
1146 || (k
< len0
&& encoded
[k
] == '_'))
1151 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1152 the GNAT front-end in protected object subprograms. */
1155 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1157 /* Backtrack a bit up until we reach either the begining of
1158 the encoded name, or "__". Make sure that we only find
1159 digits or lowercase characters. */
1160 const char *ptr
= encoded
+ i
- 1;
1162 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1165 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1169 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1171 /* This is a X[bn]* sequence not separated from the previous
1172 part of the name with a non-alpha-numeric character (in other
1173 words, immediately following an alpha-numeric character), then
1174 verify that it is placed at the end of the encoded name. If
1175 not, then the encoding is not valid and we should abort the
1176 decoding. Otherwise, just skip it, it is used in body-nested
1180 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1184 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1186 /* Replace '__' by '.'. */
1194 /* It's a character part of the decoded name, so just copy it
1196 decoded
[j
] = encoded
[i
];
1201 decoded
[j
] = '\000';
1203 /* Decoded names should never contain any uppercase character.
1204 Double-check this, and abort the decoding if we find one. */
1206 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1207 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1210 if (strcmp (decoded
, encoded
) == 0)
1216 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1217 decoded
= decoding_buffer
;
1218 if (encoded
[0] == '<')
1219 strcpy (decoded
, encoded
);
1221 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1226 /* Table for keeping permanent unique copies of decoded names. Once
1227 allocated, names in this table are never released. While this is a
1228 storage leak, it should not be significant unless there are massive
1229 changes in the set of decoded names in successive versions of a
1230 symbol table loaded during a single session. */
1231 static struct htab
*decoded_names_store
;
1233 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1234 in the language-specific part of GSYMBOL, if it has not been
1235 previously computed. Tries to save the decoded name in the same
1236 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1237 in any case, the decoded symbol has a lifetime at least that of
1239 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1240 const, but nevertheless modified to a semantically equivalent form
1241 when a decoded name is cached in it. */
1244 ada_decode_symbol (const struct general_symbol_info
*gsymbol
)
1247 (char **) &gsymbol
->language_specific
.mangled_lang
.demangled_name
;
1249 if (*resultp
== NULL
)
1251 const char *decoded
= ada_decode (gsymbol
->name
);
1253 if (gsymbol
->obj_section
!= NULL
)
1255 struct objfile
*objf
= gsymbol
->obj_section
->objfile
;
1257 *resultp
= obsavestring (decoded
, strlen (decoded
),
1258 &objf
->objfile_obstack
);
1260 /* Sometimes, we can't find a corresponding objfile, in which
1261 case, we put the result on the heap. Since we only decode
1262 when needed, we hope this usually does not cause a
1263 significant memory leak (FIXME). */
1264 if (*resultp
== NULL
)
1266 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1270 *slot
= xstrdup (decoded
);
1279 ada_la_decode (const char *encoded
, int options
)
1281 return xstrdup (ada_decode (encoded
));
1284 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1285 suffixes that encode debugging information or leading _ada_ on
1286 SYM_NAME (see is_name_suffix commentary for the debugging
1287 information that is ignored). If WILD, then NAME need only match a
1288 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1289 either argument is NULL. */
1292 match_name (const char *sym_name
, const char *name
, int wild
)
1294 if (sym_name
== NULL
|| name
== NULL
)
1297 return wild_match (sym_name
, name
) == 0;
1300 int len_name
= strlen (name
);
1302 return (strncmp (sym_name
, name
, len_name
) == 0
1303 && is_name_suffix (sym_name
+ len_name
))
1304 || (strncmp (sym_name
, "_ada_", 5) == 0
1305 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1306 && is_name_suffix (sym_name
+ len_name
+ 5));
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1320 The GNAT encoding used to describle the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1337 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1341 if (index_desc_type
== NULL
)
1343 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1353 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1354 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1360 char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1361 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1364 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1368 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1370 static char *bound_name
[] = {
1371 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1372 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1375 /* Maximum number of array dimensions we are prepared to handle. */
1377 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1380 /* The desc_* routines return primitive portions of array descriptors
1383 /* The descriptor or array type, if any, indicated by TYPE; removes
1384 level of indirection, if needed. */
1386 static struct type
*
1387 desc_base_type (struct type
*type
)
1391 type
= ada_check_typedef (type
);
1392 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1393 type
= ada_typedef_target_type (type
);
1396 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1397 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1398 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1403 /* True iff TYPE indicates a "thin" array pointer type. */
1406 is_thin_pntr (struct type
*type
)
1409 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1410 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1413 /* The descriptor type for thin pointer type TYPE. */
1415 static struct type
*
1416 thin_descriptor_type (struct type
*type
)
1418 struct type
*base_type
= desc_base_type (type
);
1420 if (base_type
== NULL
)
1422 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1426 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1428 if (alt_type
== NULL
)
1435 /* A pointer to the array data for thin-pointer value VAL. */
1437 static struct value
*
1438 thin_data_pntr (struct value
*val
)
1440 struct type
*type
= value_type (val
);
1441 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1443 data_type
= lookup_pointer_type (data_type
);
1445 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1446 return value_cast (data_type
, value_copy (val
));
1448 return value_from_longest (data_type
, value_address (val
));
1451 /* True iff TYPE indicates a "thick" array pointer type. */
1454 is_thick_pntr (struct type
*type
)
1456 type
= desc_base_type (type
);
1457 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1458 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1461 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1462 pointer to one, the type of its bounds data; otherwise, NULL. */
1464 static struct type
*
1465 desc_bounds_type (struct type
*type
)
1469 type
= desc_base_type (type
);
1473 else if (is_thin_pntr (type
))
1475 type
= thin_descriptor_type (type
);
1478 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1480 return ada_check_typedef (r
);
1482 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1484 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1486 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1491 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1492 one, a pointer to its bounds data. Otherwise NULL. */
1494 static struct value
*
1495 desc_bounds (struct value
*arr
)
1497 struct type
*type
= ada_check_typedef (value_type (arr
));
1499 if (is_thin_pntr (type
))
1501 struct type
*bounds_type
=
1502 desc_bounds_type (thin_descriptor_type (type
));
1505 if (bounds_type
== NULL
)
1506 error (_("Bad GNAT array descriptor"));
1508 /* NOTE: The following calculation is not really kosher, but
1509 since desc_type is an XVE-encoded type (and shouldn't be),
1510 the correct calculation is a real pain. FIXME (and fix GCC). */
1511 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1512 addr
= value_as_long (arr
);
1514 addr
= value_address (arr
);
1517 value_from_longest (lookup_pointer_type (bounds_type
),
1518 addr
- TYPE_LENGTH (bounds_type
));
1521 else if (is_thick_pntr (type
))
1523 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1524 _("Bad GNAT array descriptor"));
1525 struct type
*p_bounds_type
= value_type (p_bounds
);
1528 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1530 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1532 if (TYPE_STUB (target_type
))
1533 p_bounds
= value_cast (lookup_pointer_type
1534 (ada_check_typedef (target_type
)),
1538 error (_("Bad GNAT array descriptor"));
1546 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1547 position of the field containing the address of the bounds data. */
1550 fat_pntr_bounds_bitpos (struct type
*type
)
1552 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1555 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1556 size of the field containing the address of the bounds data. */
1559 fat_pntr_bounds_bitsize (struct type
*type
)
1561 type
= desc_base_type (type
);
1563 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1564 return TYPE_FIELD_BITSIZE (type
, 1);
1566 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1569 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1570 pointer to one, the type of its array data (a array-with-no-bounds type);
1571 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1574 static struct type
*
1575 desc_data_target_type (struct type
*type
)
1577 type
= desc_base_type (type
);
1579 /* NOTE: The following is bogus; see comment in desc_bounds. */
1580 if (is_thin_pntr (type
))
1581 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1582 else if (is_thick_pntr (type
))
1584 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1587 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1588 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1594 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1597 static struct value
*
1598 desc_data (struct value
*arr
)
1600 struct type
*type
= value_type (arr
);
1602 if (is_thin_pntr (type
))
1603 return thin_data_pntr (arr
);
1604 else if (is_thick_pntr (type
))
1605 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1606 _("Bad GNAT array descriptor"));
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 position of the field containing the address of the data. */
1616 fat_pntr_data_bitpos (struct type
*type
)
1618 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1621 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1622 size of the field containing the address of the data. */
1625 fat_pntr_data_bitsize (struct type
*type
)
1627 type
= desc_base_type (type
);
1629 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1630 return TYPE_FIELD_BITSIZE (type
, 0);
1632 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1635 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1636 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1637 bound, if WHICH is 1. The first bound is I=1. */
1639 static struct value
*
1640 desc_one_bound (struct value
*bounds
, int i
, int which
)
1642 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1643 _("Bad GNAT array descriptor bounds"));
1646 /* If BOUNDS is an array-bounds structure type, return the bit position
1647 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1648 bound, if WHICH is 1. The first bound is I=1. */
1651 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1653 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1656 /* If BOUNDS is an array-bounds structure type, return the bit field size
1657 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1658 bound, if WHICH is 1. The first bound is I=1. */
1661 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1663 type
= desc_base_type (type
);
1665 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1666 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1668 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1671 /* If TYPE is the type of an array-bounds structure, the type of its
1672 Ith bound (numbering from 1). Otherwise, NULL. */
1674 static struct type
*
1675 desc_index_type (struct type
*type
, int i
)
1677 type
= desc_base_type (type
);
1679 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1680 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1685 /* The number of index positions in the array-bounds type TYPE.
1686 Return 0 if TYPE is NULL. */
1689 desc_arity (struct type
*type
)
1691 type
= desc_base_type (type
);
1694 return TYPE_NFIELDS (type
) / 2;
1698 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1699 an array descriptor type (representing an unconstrained array
1703 ada_is_direct_array_type (struct type
*type
)
1707 type
= ada_check_typedef (type
);
1708 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1709 || ada_is_array_descriptor_type (type
));
1712 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1716 ada_is_array_type (struct type
*type
)
1719 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1720 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1721 type
= TYPE_TARGET_TYPE (type
);
1722 return ada_is_direct_array_type (type
);
1725 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1728 ada_is_simple_array_type (struct type
*type
)
1732 type
= ada_check_typedef (type
);
1733 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1734 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1735 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_ARRAY
));
1738 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741 ada_is_array_descriptor_type (struct type
*type
)
1743 struct type
*data_type
= desc_data_target_type (type
);
1747 type
= ada_check_typedef (type
);
1748 return (data_type
!= NULL
1749 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1750 && desc_arity (desc_bounds_type (type
)) > 0);
1753 /* Non-zero iff type is a partially mal-formed GNAT array
1754 descriptor. FIXME: This is to compensate for some problems with
1755 debugging output from GNAT. Re-examine periodically to see if it
1759 ada_is_bogus_array_descriptor (struct type
*type
)
1763 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1764 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1765 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1766 && !ada_is_array_descriptor_type (type
);
1770 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1771 (fat pointer) returns the type of the array data described---specifically,
1772 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1773 in from the descriptor; otherwise, they are left unspecified. If
1774 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1775 returns NULL. The result is simply the type of ARR if ARR is not
1778 ada_type_of_array (struct value
*arr
, int bounds
)
1780 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1781 return decode_constrained_packed_array_type (value_type (arr
));
1783 if (!ada_is_array_descriptor_type (value_type (arr
)))
1784 return value_type (arr
);
1788 struct type
*array_type
=
1789 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1791 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1792 TYPE_FIELD_BITSIZE (array_type
, 0) =
1793 decode_packed_array_bitsize (value_type (arr
));
1799 struct type
*elt_type
;
1801 struct value
*descriptor
;
1803 elt_type
= ada_array_element_type (value_type (arr
), -1);
1804 arity
= ada_array_arity (value_type (arr
));
1806 if (elt_type
== NULL
|| arity
== 0)
1807 return ada_check_typedef (value_type (arr
));
1809 descriptor
= desc_bounds (arr
);
1810 if (value_as_long (descriptor
) == 0)
1814 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1815 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1816 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1817 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1820 create_range_type (range_type
, value_type (low
),
1821 longest_to_int (value_as_long (low
)),
1822 longest_to_int (value_as_long (high
)));
1823 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1825 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1827 /* We need to store the element packed bitsize, as well as
1828 recompute the array size, because it was previously
1829 computed based on the unpacked element size. */
1830 LONGEST lo
= value_as_long (low
);
1831 LONGEST hi
= value_as_long (high
);
1833 TYPE_FIELD_BITSIZE (elt_type
, 0) =
1834 decode_packed_array_bitsize (value_type (arr
));
1835 /* If the array has no element, then the size is already
1836 zero, and does not need to be recomputed. */
1840 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
1842 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
1847 return lookup_pointer_type (elt_type
);
1851 /* If ARR does not represent an array, returns ARR unchanged.
1852 Otherwise, returns either a standard GDB array with bounds set
1853 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1854 GDB array. Returns NULL if ARR is a null fat pointer. */
1857 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1859 if (ada_is_array_descriptor_type (value_type (arr
)))
1861 struct type
*arrType
= ada_type_of_array (arr
, 1);
1863 if (arrType
== NULL
)
1865 return value_cast (arrType
, value_copy (desc_data (arr
)));
1867 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1868 return decode_constrained_packed_array (arr
);
1873 /* If ARR does not represent an array, returns ARR unchanged.
1874 Otherwise, returns a standard GDB array describing ARR (which may
1875 be ARR itself if it already is in the proper form). */
1878 ada_coerce_to_simple_array (struct value
*arr
)
1880 if (ada_is_array_descriptor_type (value_type (arr
)))
1882 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1885 error (_("Bounds unavailable for null array pointer."));
1886 check_size (TYPE_TARGET_TYPE (value_type (arrVal
)));
1887 return value_ind (arrVal
);
1889 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1890 return decode_constrained_packed_array (arr
);
1895 /* If TYPE represents a GNAT array type, return it translated to an
1896 ordinary GDB array type (possibly with BITSIZE fields indicating
1897 packing). For other types, is the identity. */
1900 ada_coerce_to_simple_array_type (struct type
*type
)
1902 if (ada_is_constrained_packed_array_type (type
))
1903 return decode_constrained_packed_array_type (type
);
1905 if (ada_is_array_descriptor_type (type
))
1906 return ada_check_typedef (desc_data_target_type (type
));
1911 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914 ada_is_packed_array_type (struct type
*type
)
1918 type
= desc_base_type (type
);
1919 type
= ada_check_typedef (type
);
1921 ada_type_name (type
) != NULL
1922 && strstr (ada_type_name (type
), "___XP") != NULL
;
1925 /* Non-zero iff TYPE represents a standard GNAT constrained
1926 packed-array type. */
1929 ada_is_constrained_packed_array_type (struct type
*type
)
1931 return ada_is_packed_array_type (type
)
1932 && !ada_is_array_descriptor_type (type
);
1935 /* Non-zero iff TYPE represents an array descriptor for a
1936 unconstrained packed-array type. */
1939 ada_is_unconstrained_packed_array_type (struct type
*type
)
1941 return ada_is_packed_array_type (type
)
1942 && ada_is_array_descriptor_type (type
);
1945 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1946 return the size of its elements in bits. */
1949 decode_packed_array_bitsize (struct type
*type
)
1955 /* Access to arrays implemented as fat pointers are encoded as a typedef
1956 of the fat pointer type. We need the name of the fat pointer type
1957 to do the decoding, so strip the typedef layer. */
1958 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1959 type
= ada_typedef_target_type (type
);
1961 raw_name
= ada_type_name (ada_check_typedef (type
));
1963 raw_name
= ada_type_name (desc_base_type (type
));
1968 tail
= strstr (raw_name
, "___XP");
1969 gdb_assert (tail
!= NULL
);
1971 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
1974 (_("could not understand bit size information on packed array"));
1981 /* Given that TYPE is a standard GDB array type with all bounds filled
1982 in, and that the element size of its ultimate scalar constituents
1983 (that is, either its elements, or, if it is an array of arrays, its
1984 elements' elements, etc.) is *ELT_BITS, return an identical type,
1985 but with the bit sizes of its elements (and those of any
1986 constituent arrays) recorded in the BITSIZE components of its
1987 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 static struct type
*
1991 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
1993 struct type
*new_elt_type
;
1994 struct type
*new_type
;
1995 LONGEST low_bound
, high_bound
;
1997 type
= ada_check_typedef (type
);
1998 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2001 new_type
= alloc_type_copy (type
);
2003 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2005 create_array_type (new_type
, new_elt_type
, TYPE_INDEX_TYPE (type
));
2006 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2007 TYPE_NAME (new_type
) = ada_type_name (type
);
2009 if (get_discrete_bounds (TYPE_INDEX_TYPE (type
),
2010 &low_bound
, &high_bound
) < 0)
2011 low_bound
= high_bound
= 0;
2012 if (high_bound
< low_bound
)
2013 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2016 *elt_bits
*= (high_bound
- low_bound
+ 1);
2017 TYPE_LENGTH (new_type
) =
2018 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2021 TYPE_FIXED_INSTANCE (new_type
) = 1;
2025 /* The array type encoded by TYPE, where
2026 ada_is_constrained_packed_array_type (TYPE). */
2028 static struct type
*
2029 decode_constrained_packed_array_type (struct type
*type
)
2031 char *raw_name
= ada_type_name (ada_check_typedef (type
));
2034 struct type
*shadow_type
;
2038 raw_name
= ada_type_name (desc_base_type (type
));
2043 name
= (char *) alloca (strlen (raw_name
) + 1);
2044 tail
= strstr (raw_name
, "___XP");
2045 type
= desc_base_type (type
);
2047 memcpy (name
, raw_name
, tail
- raw_name
);
2048 name
[tail
- raw_name
] = '\000';
2050 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2052 if (shadow_type
== NULL
)
2054 lim_warning (_("could not find bounds information on packed array"));
2057 CHECK_TYPEDEF (shadow_type
);
2059 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2061 lim_warning (_("could not understand bounds "
2062 "information on packed array"));
2066 bits
= decode_packed_array_bitsize (type
);
2067 return constrained_packed_array_type (shadow_type
, &bits
);
2070 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2071 array, returns a simple array that denotes that array. Its type is a
2072 standard GDB array type except that the BITSIZEs of the array
2073 target types are set to the number of bits in each element, and the
2074 type length is set appropriately. */
2076 static struct value
*
2077 decode_constrained_packed_array (struct value
*arr
)
2081 arr
= ada_coerce_ref (arr
);
2083 /* If our value is a pointer, then dererence it. Make sure that
2084 this operation does not cause the target type to be fixed, as
2085 this would indirectly cause this array to be decoded. The rest
2086 of the routine assumes that the array hasn't been decoded yet,
2087 so we use the basic "value_ind" routine to perform the dereferencing,
2088 as opposed to using "ada_value_ind". */
2089 if (TYPE_CODE (value_type (arr
)) == TYPE_CODE_PTR
)
2090 arr
= value_ind (arr
);
2092 type
= decode_constrained_packed_array_type (value_type (arr
));
2095 error (_("can't unpack array"));
2099 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2100 && ada_is_modular_type (value_type (arr
)))
2102 /* This is a (right-justified) modular type representing a packed
2103 array with no wrapper. In order to interpret the value through
2104 the (left-justified) packed array type we just built, we must
2105 first left-justify it. */
2106 int bit_size
, bit_pos
;
2109 mod
= ada_modulus (value_type (arr
)) - 1;
2116 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2117 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2118 bit_pos
/ HOST_CHAR_BIT
,
2119 bit_pos
% HOST_CHAR_BIT
,
2124 return coerce_unspec_val_to_type (arr
, type
);
2128 /* The value of the element of packed array ARR at the ARITY indices
2129 given in IND. ARR must be a simple array. */
2131 static struct value
*
2132 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2135 int bits
, elt_off
, bit_off
;
2136 long elt_total_bit_offset
;
2137 struct type
*elt_type
;
2141 elt_total_bit_offset
= 0;
2142 elt_type
= ada_check_typedef (value_type (arr
));
2143 for (i
= 0; i
< arity
; i
+= 1)
2145 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2146 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2148 (_("attempt to do packed indexing of "
2149 "something other than a packed array"));
2152 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2153 LONGEST lowerbound
, upperbound
;
2156 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2158 lim_warning (_("don't know bounds of array"));
2159 lowerbound
= upperbound
= 0;
2162 idx
= pos_atr (ind
[i
]);
2163 if (idx
< lowerbound
|| idx
> upperbound
)
2164 lim_warning (_("packed array index %ld out of bounds"),
2166 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2167 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2168 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2171 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2172 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2174 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2179 /* Non-zero iff TYPE includes negative integer values. */
2182 has_negatives (struct type
*type
)
2184 switch (TYPE_CODE (type
))
2189 return !TYPE_UNSIGNED (type
);
2190 case TYPE_CODE_RANGE
:
2191 return TYPE_LOW_BOUND (type
) < 0;
2196 /* Create a new value of type TYPE from the contents of OBJ starting
2197 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2198 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2199 assigning through the result will set the field fetched from.
2200 VALADDR is ignored unless OBJ is NULL, in which case,
2201 VALADDR+OFFSET must address the start of storage containing the
2202 packed value. The value returned in this case is never an lval.
2203 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2206 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2207 long offset
, int bit_offset
, int bit_size
,
2211 int src
, /* Index into the source area */
2212 targ
, /* Index into the target area */
2213 srcBitsLeft
, /* Number of source bits left to move */
2214 nsrc
, ntarg
, /* Number of source and target bytes */
2215 unusedLS
, /* Number of bits in next significant
2216 byte of source that are unused */
2217 accumSize
; /* Number of meaningful bits in accum */
2218 unsigned char *bytes
; /* First byte containing data to unpack */
2219 unsigned char *unpacked
;
2220 unsigned long accum
; /* Staging area for bits being transferred */
2222 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2223 /* Transmit bytes from least to most significant; delta is the direction
2224 the indices move. */
2225 int delta
= gdbarch_bits_big_endian (get_type_arch (type
)) ? -1 : 1;
2227 type
= ada_check_typedef (type
);
2231 v
= allocate_value (type
);
2232 bytes
= (unsigned char *) (valaddr
+ offset
);
2234 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2237 value_address (obj
) + offset
);
2238 bytes
= (unsigned char *) alloca (len
);
2239 read_memory (value_address (v
), bytes
, len
);
2243 v
= allocate_value (type
);
2244 bytes
= (unsigned char *) value_contents (obj
) + offset
;
2251 set_value_component_location (v
, obj
);
2252 new_addr
= value_address (obj
) + offset
;
2253 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2254 set_value_bitsize (v
, bit_size
);
2255 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2258 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2260 set_value_address (v
, new_addr
);
2263 set_value_bitsize (v
, bit_size
);
2264 unpacked
= (unsigned char *) value_contents (v
);
2266 srcBitsLeft
= bit_size
;
2268 ntarg
= TYPE_LENGTH (type
);
2272 memset (unpacked
, 0, TYPE_LENGTH (type
));
2275 else if (gdbarch_bits_big_endian (get_type_arch (type
)))
2278 if (has_negatives (type
)
2279 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2283 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2286 switch (TYPE_CODE (type
))
2288 case TYPE_CODE_ARRAY
:
2289 case TYPE_CODE_UNION
:
2290 case TYPE_CODE_STRUCT
:
2291 /* Non-scalar values must be aligned at a byte boundary... */
2293 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2294 /* ... And are placed at the beginning (most-significant) bytes
2296 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2301 targ
= TYPE_LENGTH (type
) - 1;
2307 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2310 unusedLS
= bit_offset
;
2313 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2320 /* Mask for removing bits of the next source byte that are not
2321 part of the value. */
2322 unsigned int unusedMSMask
=
2323 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2325 /* Sign-extend bits for this byte. */
2326 unsigned int signMask
= sign
& ~unusedMSMask
;
2329 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2330 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2331 if (accumSize
>= HOST_CHAR_BIT
)
2333 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2334 accumSize
-= HOST_CHAR_BIT
;
2335 accum
>>= HOST_CHAR_BIT
;
2339 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2346 accum
|= sign
<< accumSize
;
2347 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2348 accumSize
-= HOST_CHAR_BIT
;
2349 accum
>>= HOST_CHAR_BIT
;
2357 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2358 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2361 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2362 int src_offset
, int n
, int bits_big_endian_p
)
2364 unsigned int accum
, mask
;
2365 int accum_bits
, chunk_size
;
2367 target
+= targ_offset
/ HOST_CHAR_BIT
;
2368 targ_offset
%= HOST_CHAR_BIT
;
2369 source
+= src_offset
/ HOST_CHAR_BIT
;
2370 src_offset
%= HOST_CHAR_BIT
;
2371 if (bits_big_endian_p
)
2373 accum
= (unsigned char) *source
;
2375 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2381 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2382 accum_bits
+= HOST_CHAR_BIT
;
2384 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2387 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2388 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2391 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2393 accum_bits
-= chunk_size
;
2400 accum
= (unsigned char) *source
>> src_offset
;
2402 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2406 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2407 accum_bits
+= HOST_CHAR_BIT
;
2409 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2412 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2413 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2415 accum_bits
-= chunk_size
;
2416 accum
>>= chunk_size
;
2423 /* Store the contents of FROMVAL into the location of TOVAL.
2424 Return a new value with the location of TOVAL and contents of
2425 FROMVAL. Handles assignment into packed fields that have
2426 floating-point or non-scalar types. */
2428 static struct value
*
2429 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2431 struct type
*type
= value_type (toval
);
2432 int bits
= value_bitsize (toval
);
2434 toval
= ada_coerce_ref (toval
);
2435 fromval
= ada_coerce_ref (fromval
);
2437 if (ada_is_direct_array_type (value_type (toval
)))
2438 toval
= ada_coerce_to_simple_array (toval
);
2439 if (ada_is_direct_array_type (value_type (fromval
)))
2440 fromval
= ada_coerce_to_simple_array (fromval
);
2442 if (!deprecated_value_modifiable (toval
))
2443 error (_("Left operand of assignment is not a modifiable lvalue."));
2445 if (VALUE_LVAL (toval
) == lval_memory
2447 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2448 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2450 int len
= (value_bitpos (toval
)
2451 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2453 char *buffer
= (char *) alloca (len
);
2455 CORE_ADDR to_addr
= value_address (toval
);
2457 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2458 fromval
= value_cast (type
, fromval
);
2460 read_memory (to_addr
, buffer
, len
);
2461 from_size
= value_bitsize (fromval
);
2463 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2464 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2465 move_bits (buffer
, value_bitpos (toval
),
2466 value_contents (fromval
), from_size
- bits
, bits
, 1);
2468 move_bits (buffer
, value_bitpos (toval
),
2469 value_contents (fromval
), 0, bits
, 0);
2470 write_memory (to_addr
, buffer
, len
);
2471 observer_notify_memory_changed (to_addr
, len
, buffer
);
2473 val
= value_copy (toval
);
2474 memcpy (value_contents_raw (val
), value_contents (fromval
),
2475 TYPE_LENGTH (type
));
2476 deprecated_set_value_type (val
, type
);
2481 return value_assign (toval
, fromval
);
2485 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2486 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2487 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2488 * COMPONENT, and not the inferior's memory. The current contents
2489 * of COMPONENT are ignored. */
2491 value_assign_to_component (struct value
*container
, struct value
*component
,
2494 LONGEST offset_in_container
=
2495 (LONGEST
) (value_address (component
) - value_address (container
));
2496 int bit_offset_in_container
=
2497 value_bitpos (component
) - value_bitpos (container
);
2500 val
= value_cast (value_type (component
), val
);
2502 if (value_bitsize (component
) == 0)
2503 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2505 bits
= value_bitsize (component
);
2507 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2508 move_bits (value_contents_writeable (container
) + offset_in_container
,
2509 value_bitpos (container
) + bit_offset_in_container
,
2510 value_contents (val
),
2511 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2514 move_bits (value_contents_writeable (container
) + offset_in_container
,
2515 value_bitpos (container
) + bit_offset_in_container
,
2516 value_contents (val
), 0, bits
, 0);
2519 /* The value of the element of array ARR at the ARITY indices given in IND.
2520 ARR may be either a simple array, GNAT array descriptor, or pointer
2524 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2528 struct type
*elt_type
;
2530 elt
= ada_coerce_to_simple_array (arr
);
2532 elt_type
= ada_check_typedef (value_type (elt
));
2533 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2534 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2535 return value_subscript_packed (elt
, arity
, ind
);
2537 for (k
= 0; k
< arity
; k
+= 1)
2539 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2540 error (_("too many subscripts (%d expected)"), k
);
2541 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2546 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2547 value of the element of *ARR at the ARITY indices given in
2548 IND. Does not read the entire array into memory. */
2550 static struct value
*
2551 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2556 for (k
= 0; k
< arity
; k
+= 1)
2560 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2561 error (_("too many subscripts (%d expected)"), k
);
2562 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2564 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2565 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
2566 type
= TYPE_TARGET_TYPE (type
);
2569 return value_ind (arr
);
2572 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2573 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2574 elements starting at index LOW. The lower bound of this array is LOW, as
2576 static struct value
*
2577 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2580 CORE_ADDR base
= value_as_address (array_ptr
)
2581 + ((low
- ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type
)))
2582 * TYPE_LENGTH (TYPE_TARGET_TYPE (type
)));
2583 struct type
*index_type
=
2584 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
)),
2586 struct type
*slice_type
=
2587 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2589 return value_at_lazy (slice_type
, base
);
2593 static struct value
*
2594 ada_value_slice (struct value
*array
, int low
, int high
)
2596 struct type
*type
= value_type (array
);
2597 struct type
*index_type
=
2598 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2599 struct type
*slice_type
=
2600 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2602 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2605 /* If type is a record type in the form of a standard GNAT array
2606 descriptor, returns the number of dimensions for type. If arr is a
2607 simple array, returns the number of "array of"s that prefix its
2608 type designation. Otherwise, returns 0. */
2611 ada_array_arity (struct type
*type
)
2618 type
= desc_base_type (type
);
2621 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2622 return desc_arity (desc_bounds_type (type
));
2624 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2627 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2633 /* If TYPE is a record type in the form of a standard GNAT array
2634 descriptor or a simple array type, returns the element type for
2635 TYPE after indexing by NINDICES indices, or by all indices if
2636 NINDICES is -1. Otherwise, returns NULL. */
2639 ada_array_element_type (struct type
*type
, int nindices
)
2641 type
= desc_base_type (type
);
2643 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2646 struct type
*p_array_type
;
2648 p_array_type
= desc_data_target_type (type
);
2650 k
= ada_array_arity (type
);
2654 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2655 if (nindices
>= 0 && k
> nindices
)
2657 while (k
> 0 && p_array_type
!= NULL
)
2659 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2662 return p_array_type
;
2664 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2666 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2668 type
= TYPE_TARGET_TYPE (type
);
2677 /* The type of nth index in arrays of given type (n numbering from 1).
2678 Does not examine memory. Throws an error if N is invalid or TYPE
2679 is not an array type. NAME is the name of the Ada attribute being
2680 evaluated ('range, 'first, 'last, or 'length); it is used in building
2681 the error message. */
2683 static struct type
*
2684 ada_index_type (struct type
*type
, int n
, const char *name
)
2686 struct type
*result_type
;
2688 type
= desc_base_type (type
);
2690 if (n
< 0 || n
> ada_array_arity (type
))
2691 error (_("invalid dimension number to '%s"), name
);
2693 if (ada_is_simple_array_type (type
))
2697 for (i
= 1; i
< n
; i
+= 1)
2698 type
= TYPE_TARGET_TYPE (type
);
2699 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2700 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2701 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2702 perhaps stabsread.c would make more sense. */
2703 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2708 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2709 if (result_type
== NULL
)
2710 error (_("attempt to take bound of something that is not an array"));
2716 /* Given that arr is an array type, returns the lower bound of the
2717 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2718 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2719 array-descriptor type. It works for other arrays with bounds supplied
2720 by run-time quantities other than discriminants. */
2723 ada_array_bound_from_type (struct type
* arr_type
, int n
, int which
)
2725 struct type
*type
, *elt_type
, *index_type_desc
, *index_type
;
2728 gdb_assert (which
== 0 || which
== 1);
2730 if (ada_is_constrained_packed_array_type (arr_type
))
2731 arr_type
= decode_constrained_packed_array_type (arr_type
);
2733 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2734 return (LONGEST
) - which
;
2736 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2737 type
= TYPE_TARGET_TYPE (arr_type
);
2742 for (i
= n
; i
> 1; i
--)
2743 elt_type
= TYPE_TARGET_TYPE (type
);
2745 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2746 ada_fixup_array_indexes_type (index_type_desc
);
2747 if (index_type_desc
!= NULL
)
2748 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
2751 index_type
= TYPE_INDEX_TYPE (elt_type
);
2754 (LONGEST
) (which
== 0
2755 ? ada_discrete_type_low_bound (index_type
)
2756 : ada_discrete_type_high_bound (index_type
));
2759 /* Given that arr is an array value, returns the lower bound of the
2760 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2761 WHICH is 1. This routine will also work for arrays with bounds
2762 supplied by run-time quantities other than discriminants. */
2765 ada_array_bound (struct value
*arr
, int n
, int which
)
2767 struct type
*arr_type
= value_type (arr
);
2769 if (ada_is_constrained_packed_array_type (arr_type
))
2770 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
2771 else if (ada_is_simple_array_type (arr_type
))
2772 return ada_array_bound_from_type (arr_type
, n
, which
);
2774 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
2777 /* Given that arr is an array value, returns the length of the
2778 nth index. This routine will also work for arrays with bounds
2779 supplied by run-time quantities other than discriminants.
2780 Does not work for arrays indexed by enumeration types with representation
2781 clauses at the moment. */
2784 ada_array_length (struct value
*arr
, int n
)
2786 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2788 if (ada_is_constrained_packed_array_type (arr_type
))
2789 return ada_array_length (decode_constrained_packed_array (arr
), n
);
2791 if (ada_is_simple_array_type (arr_type
))
2792 return (ada_array_bound_from_type (arr_type
, n
, 1)
2793 - ada_array_bound_from_type (arr_type
, n
, 0) + 1);
2795 return (value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1))
2796 - value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0)) + 1);
2799 /* An empty array whose type is that of ARR_TYPE (an array type),
2800 with bounds LOW to LOW-1. */
2802 static struct value
*
2803 empty_array (struct type
*arr_type
, int low
)
2805 struct type
*index_type
=
2806 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type
)),
2808 struct type
*elt_type
= ada_array_element_type (arr_type
, 1);
2810 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2814 /* Name resolution */
2816 /* The "decoded" name for the user-definable Ada operator corresponding
2820 ada_decoded_op_name (enum exp_opcode op
)
2824 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2826 if (ada_opname_table
[i
].op
== op
)
2827 return ada_opname_table
[i
].decoded
;
2829 error (_("Could not find operator name for opcode"));
2833 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2834 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2835 undefined namespace) and converts operators that are
2836 user-defined into appropriate function calls. If CONTEXT_TYPE is
2837 non-null, it provides a preferred result type [at the moment, only
2838 type void has any effect---causing procedures to be preferred over
2839 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2840 return type is preferred. May change (expand) *EXP. */
2843 resolve (struct expression
**expp
, int void_context_p
)
2845 struct type
*context_type
= NULL
;
2849 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
2851 resolve_subexp (expp
, &pc
, 1, context_type
);
2854 /* Resolve the operator of the subexpression beginning at
2855 position *POS of *EXPP. "Resolving" consists of replacing
2856 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2857 with their resolutions, replacing built-in operators with
2858 function calls to user-defined operators, where appropriate, and,
2859 when DEPROCEDURE_P is non-zero, converting function-valued variables
2860 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2861 are as in ada_resolve, above. */
2863 static struct value
*
2864 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2865 struct type
*context_type
)
2869 struct expression
*exp
; /* Convenience: == *expp. */
2870 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2871 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2872 int nargs
; /* Number of operands. */
2879 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2885 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2890 resolve_subexp (expp
, pos
, 0, NULL
);
2892 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2897 resolve_subexp (expp
, pos
, 0, NULL
);
2902 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
2905 case OP_ATR_MODULUS
:
2915 case TERNOP_IN_RANGE
:
2916 case BINOP_IN_BOUNDS
:
2922 case OP_DISCRETE_RANGE
:
2924 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
2933 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
2935 resolve_subexp (expp
, pos
, 1, NULL
);
2937 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
2954 case BINOP_LOGICAL_AND
:
2955 case BINOP_LOGICAL_OR
:
2956 case BINOP_BITWISE_AND
:
2957 case BINOP_BITWISE_IOR
:
2958 case BINOP_BITWISE_XOR
:
2961 case BINOP_NOTEQUAL
:
2968 case BINOP_SUBSCRIPT
:
2976 case UNOP_LOGICAL_NOT
:
2992 case OP_INTERNALVAR
:
3002 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3005 case STRUCTOP_STRUCT
:
3006 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3019 error (_("Unexpected operator during name resolution"));
3022 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
3023 for (i
= 0; i
< nargs
; i
+= 1)
3024 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
3028 /* Pass two: perform any resolution on principal operator. */
3035 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3037 struct ada_symbol_info
*candidates
;
3041 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3042 (exp
->elts
[pc
+ 2].symbol
),
3043 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3046 if (n_candidates
> 1)
3048 /* Types tend to get re-introduced locally, so if there
3049 are any local symbols that are not types, first filter
3052 for (j
= 0; j
< n_candidates
; j
+= 1)
3053 switch (SYMBOL_CLASS (candidates
[j
].sym
))
3058 case LOC_REGPARM_ADDR
:
3066 if (j
< n_candidates
)
3069 while (j
< n_candidates
)
3071 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
3073 candidates
[j
] = candidates
[n_candidates
- 1];
3082 if (n_candidates
== 0)
3083 error (_("No definition found for %s"),
3084 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3085 else if (n_candidates
== 1)
3087 else if (deprocedure_p
3088 && !is_nonfunction (candidates
, n_candidates
))
3090 i
= ada_resolve_function
3091 (candidates
, n_candidates
, NULL
, 0,
3092 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3095 error (_("Could not find a match for %s"),
3096 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3100 printf_filtered (_("Multiple matches for %s\n"),
3101 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3102 user_select_syms (candidates
, n_candidates
, 1);
3106 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3107 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
3108 if (innermost_block
== NULL
3109 || contained_in (candidates
[i
].block
, innermost_block
))
3110 innermost_block
= candidates
[i
].block
;
3114 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3117 replace_operator_with_call (expp
, pc
, 0, 0,
3118 exp
->elts
[pc
+ 2].symbol
,
3119 exp
->elts
[pc
+ 1].block
);
3126 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3127 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3129 struct ada_symbol_info
*candidates
;
3133 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3134 (exp
->elts
[pc
+ 5].symbol
),
3135 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3137 if (n_candidates
== 1)
3141 i
= ada_resolve_function
3142 (candidates
, n_candidates
,
3144 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3147 error (_("Could not find a match for %s"),
3148 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3151 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3152 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
3153 if (innermost_block
== NULL
3154 || contained_in (candidates
[i
].block
, innermost_block
))
3155 innermost_block
= candidates
[i
].block
;
3166 case BINOP_BITWISE_AND
:
3167 case BINOP_BITWISE_IOR
:
3168 case BINOP_BITWISE_XOR
:
3170 case BINOP_NOTEQUAL
:
3178 case UNOP_LOGICAL_NOT
:
3180 if (possible_user_operator_p (op
, argvec
))
3182 struct ada_symbol_info
*candidates
;
3186 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
3187 (struct block
*) NULL
, VAR_DOMAIN
,
3189 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
3190 ada_decoded_op_name (op
), NULL
);
3194 replace_operator_with_call (expp
, pc
, nargs
, 1,
3195 candidates
[i
].sym
, candidates
[i
].block
);
3206 return evaluate_subexp_type (exp
, pos
);
3209 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3210 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3212 /* The term "match" here is rather loose. The match is heuristic and
3216 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3218 ftype
= ada_check_typedef (ftype
);
3219 atype
= ada_check_typedef (atype
);
3221 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3222 ftype
= TYPE_TARGET_TYPE (ftype
);
3223 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3224 atype
= TYPE_TARGET_TYPE (atype
);
3226 switch (TYPE_CODE (ftype
))
3229 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3231 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3232 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3233 TYPE_TARGET_TYPE (atype
), 0);
3236 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3238 case TYPE_CODE_ENUM
:
3239 case TYPE_CODE_RANGE
:
3240 switch (TYPE_CODE (atype
))
3243 case TYPE_CODE_ENUM
:
3244 case TYPE_CODE_RANGE
:
3250 case TYPE_CODE_ARRAY
:
3251 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3252 || ada_is_array_descriptor_type (atype
));
3254 case TYPE_CODE_STRUCT
:
3255 if (ada_is_array_descriptor_type (ftype
))
3256 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype
));
3259 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3260 && !ada_is_array_descriptor_type (atype
));
3262 case TYPE_CODE_UNION
:
3264 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3268 /* Return non-zero if the formals of FUNC "sufficiently match" the
3269 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3270 may also be an enumeral, in which case it is treated as a 0-
3271 argument function. */
3274 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3277 struct type
*func_type
= SYMBOL_TYPE (func
);
3279 if (SYMBOL_CLASS (func
) == LOC_CONST
3280 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3281 return (n_actuals
== 0);
3282 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3285 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3288 for (i
= 0; i
< n_actuals
; i
+= 1)
3290 if (actuals
[i
] == NULL
)
3294 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3296 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3298 if (!ada_type_match (ftype
, atype
, 1))
3305 /* False iff function type FUNC_TYPE definitely does not produce a value
3306 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3307 FUNC_TYPE is not a valid function type with a non-null return type
3308 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3311 return_match (struct type
*func_type
, struct type
*context_type
)
3313 struct type
*return_type
;
3315 if (func_type
== NULL
)
3318 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3319 return_type
= base_type (TYPE_TARGET_TYPE (func_type
));
3321 return_type
= base_type (func_type
);
3322 if (return_type
== NULL
)
3325 context_type
= base_type (context_type
);
3327 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3328 return context_type
== NULL
|| return_type
== context_type
;
3329 else if (context_type
== NULL
)
3330 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3332 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3336 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3337 function (if any) that matches the types of the NARGS arguments in
3338 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3339 that returns that type, then eliminate matches that don't. If
3340 CONTEXT_TYPE is void and there is at least one match that does not
3341 return void, eliminate all matches that do.
3343 Asks the user if there is more than one match remaining. Returns -1
3344 if there is no such symbol or none is selected. NAME is used
3345 solely for messages. May re-arrange and modify SYMS in
3346 the process; the index returned is for the modified vector. */
3349 ada_resolve_function (struct ada_symbol_info syms
[],
3350 int nsyms
, struct value
**args
, int nargs
,
3351 const char *name
, struct type
*context_type
)
3355 int m
; /* Number of hits */
3358 /* In the first pass of the loop, we only accept functions matching
3359 context_type. If none are found, we add a second pass of the loop
3360 where every function is accepted. */
3361 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3363 for (k
= 0; k
< nsyms
; k
+= 1)
3365 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
3367 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
3368 && (fallback
|| return_match (type
, context_type
)))
3380 printf_filtered (_("Multiple matches for %s\n"), name
);
3381 user_select_syms (syms
, m
, 1);
3387 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3388 in a listing of choices during disambiguation (see sort_choices, below).
3389 The idea is that overloadings of a subprogram name from the
3390 same package should sort in their source order. We settle for ordering
3391 such symbols by their trailing number (__N or $N). */
3394 encoded_ordered_before (char *N0
, char *N1
)
3398 else if (N0
== NULL
)
3404 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3406 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3408 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3409 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3414 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3417 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3419 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3420 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3422 return (strcmp (N0
, N1
) < 0);
3426 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3430 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3434 for (i
= 1; i
< nsyms
; i
+= 1)
3436 struct ada_symbol_info sym
= syms
[i
];
3439 for (j
= i
- 1; j
>= 0; j
-= 1)
3441 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3442 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3444 syms
[j
+ 1] = syms
[j
];
3450 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3451 by asking the user (if necessary), returning the number selected,
3452 and setting the first elements of SYMS items. Error if no symbols
3455 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3456 to be re-integrated one of these days. */
3459 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3462 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3464 int first_choice
= (max_results
== 1) ? 1 : 2;
3465 const char *select_mode
= multiple_symbols_select_mode ();
3467 if (max_results
< 1)
3468 error (_("Request to select 0 symbols!"));
3472 if (select_mode
== multiple_symbols_cancel
)
3474 canceled because the command is ambiguous\n\
3475 See set/show multiple-symbol."));
3477 /* If select_mode is "all", then return all possible symbols.
3478 Only do that if more than one symbol can be selected, of course.
3479 Otherwise, display the menu as usual. */
3480 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3483 printf_unfiltered (_("[0] cancel\n"));
3484 if (max_results
> 1)
3485 printf_unfiltered (_("[1] all\n"));
3487 sort_choices (syms
, nsyms
);
3489 for (i
= 0; i
< nsyms
; i
+= 1)
3491 if (syms
[i
].sym
== NULL
)
3494 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3496 struct symtab_and_line sal
=
3497 find_function_start_sal (syms
[i
].sym
, 1);
3499 if (sal
.symtab
== NULL
)
3500 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3502 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3505 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3506 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3507 sal
.symtab
->filename
, sal
.line
);
3513 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3514 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3515 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3516 struct symtab
*symtab
= syms
[i
].sym
->symtab
;
3518 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3521 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3522 symtab
->filename
, SYMBOL_LINE (syms
[i
].sym
));
3523 else if (is_enumeral
3524 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3526 printf_unfiltered (("[%d] "), i
+ first_choice
);
3527 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3529 printf_unfiltered (_("'(%s) (enumeral)\n"),
3530 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3532 else if (symtab
!= NULL
)
3533 printf_unfiltered (is_enumeral
3534 ? _("[%d] %s in %s (enumeral)\n")
3535 : _("[%d] %s at %s:?\n"),
3537 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3540 printf_unfiltered (is_enumeral
3541 ? _("[%d] %s (enumeral)\n")
3542 : _("[%d] %s at ?\n"),
3544 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3548 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3551 for (i
= 0; i
< n_chosen
; i
+= 1)
3552 syms
[i
] = syms
[chosen
[i
]];
3557 /* Read and validate a set of numeric choices from the user in the
3558 range 0 .. N_CHOICES-1. Place the results in increasing
3559 order in CHOICES[0 .. N-1], and return N.
3561 The user types choices as a sequence of numbers on one line
3562 separated by blanks, encoding them as follows:
3564 + A choice of 0 means to cancel the selection, throwing an error.
3565 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3566 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3568 The user is not allowed to choose more than MAX_RESULTS values.
3570 ANNOTATION_SUFFIX, if present, is used to annotate the input
3571 prompts (for use with the -f switch). */
3574 get_selections (int *choices
, int n_choices
, int max_results
,
3575 int is_all_choice
, char *annotation_suffix
)
3580 int first_choice
= is_all_choice
? 2 : 1;
3582 prompt
= getenv ("PS2");
3586 args
= command_line_input (prompt
, 0, annotation_suffix
);
3589 error_no_arg (_("one or more choice numbers"));
3593 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3594 order, as given in args. Choices are validated. */
3600 while (isspace (*args
))
3602 if (*args
== '\0' && n_chosen
== 0)
3603 error_no_arg (_("one or more choice numbers"));
3604 else if (*args
== '\0')
3607 choice
= strtol (args
, &args2
, 10);
3608 if (args
== args2
|| choice
< 0
3609 || choice
> n_choices
+ first_choice
- 1)
3610 error (_("Argument must be choice number"));
3614 error (_("cancelled"));
3616 if (choice
< first_choice
)
3618 n_chosen
= n_choices
;
3619 for (j
= 0; j
< n_choices
; j
+= 1)
3623 choice
-= first_choice
;
3625 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3629 if (j
< 0 || choice
!= choices
[j
])
3633 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3634 choices
[k
+ 1] = choices
[k
];
3635 choices
[j
+ 1] = choice
;
3640 if (n_chosen
> max_results
)
3641 error (_("Select no more than %d of the above"), max_results
);
3646 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3647 on the function identified by SYM and BLOCK, and taking NARGS
3648 arguments. Update *EXPP as needed to hold more space. */
3651 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3652 int oplen
, struct symbol
*sym
,
3653 struct block
*block
)
3655 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3656 symbol, -oplen for operator being replaced). */
3657 struct expression
*newexp
= (struct expression
*)
3658 xmalloc (sizeof (struct expression
)
3659 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3660 struct expression
*exp
= *expp
;
3662 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3663 newexp
->language_defn
= exp
->language_defn
;
3664 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3665 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3666 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3668 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3669 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3671 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3672 newexp
->elts
[pc
+ 4].block
= block
;
3673 newexp
->elts
[pc
+ 5].symbol
= sym
;
3679 /* Type-class predicates */
3681 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3685 numeric_type_p (struct type
*type
)
3691 switch (TYPE_CODE (type
))
3696 case TYPE_CODE_RANGE
:
3697 return (type
== TYPE_TARGET_TYPE (type
)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3708 integer_type_p (struct type
*type
)
3714 switch (TYPE_CODE (type
))
3718 case TYPE_CODE_RANGE
:
3719 return (type
== TYPE_TARGET_TYPE (type
)
3720 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3730 scalar_type_p (struct type
*type
)
3736 switch (TYPE_CODE (type
))
3739 case TYPE_CODE_RANGE
:
3740 case TYPE_CODE_ENUM
:
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3752 discrete_type_p (struct type
*type
)
3758 switch (TYPE_CODE (type
))
3761 case TYPE_CODE_RANGE
:
3762 case TYPE_CODE_ENUM
:
3763 case TYPE_CODE_BOOL
:
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3776 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3778 struct type
*type0
=
3779 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3780 struct type
*type1
=
3781 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3795 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3799 case BINOP_BITWISE_AND
:
3800 case BINOP_BITWISE_IOR
:
3801 case BINOP_BITWISE_XOR
:
3802 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3805 case BINOP_NOTEQUAL
:
3810 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3813 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
3816 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3820 case UNOP_LOGICAL_NOT
:
3822 return (!numeric_type_p (type0
));
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841 /* If SYM encodes a renaming,
3843 <renaming> renames <renamed entity>,
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol
*sym
,
3862 const char **renamed_entity
, int *len
,
3863 const char **renaming_expr
)
3865 enum ada_renaming_category kind
;
3870 return ADA_NOT_RENAMING
;
3871 switch (SYMBOL_CLASS (sym
))
3874 return ADA_NOT_RENAMING
;
3876 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
3877 renamed_entity
, len
, renaming_expr
);
3881 case LOC_OPTIMIZED_OUT
:
3882 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
3884 return ADA_NOT_RENAMING
;
3888 kind
= ADA_OBJECT_RENAMING
;
3892 kind
= ADA_EXCEPTION_RENAMING
;
3896 kind
= ADA_PACKAGE_RENAMING
;
3900 kind
= ADA_SUBPROGRAM_RENAMING
;
3904 return ADA_NOT_RENAMING
;
3908 if (renamed_entity
!= NULL
)
3909 *renamed_entity
= info
;
3910 suffix
= strstr (info
, "___XE");
3911 if (suffix
== NULL
|| suffix
== info
)
3912 return ADA_NOT_RENAMING
;
3914 *len
= strlen (info
) - strlen (suffix
);
3916 if (renaming_expr
!= NULL
)
3917 *renaming_expr
= suffix
;
3921 /* Assuming TYPE encodes a renaming according to the old encoding in
3922 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3923 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3924 ADA_NOT_RENAMING otherwise. */
3925 static enum ada_renaming_category
3926 parse_old_style_renaming (struct type
*type
,
3927 const char **renamed_entity
, int *len
,
3928 const char **renaming_expr
)
3930 enum ada_renaming_category kind
;
3935 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
3936 || TYPE_NFIELDS (type
) != 1)
3937 return ADA_NOT_RENAMING
;
3939 name
= type_name_no_tag (type
);
3941 return ADA_NOT_RENAMING
;
3943 name
= strstr (name
, "___XR");
3945 return ADA_NOT_RENAMING
;
3950 kind
= ADA_OBJECT_RENAMING
;
3953 kind
= ADA_EXCEPTION_RENAMING
;
3956 kind
= ADA_PACKAGE_RENAMING
;
3959 kind
= ADA_SUBPROGRAM_RENAMING
;
3962 return ADA_NOT_RENAMING
;
3965 info
= TYPE_FIELD_NAME (type
, 0);
3967 return ADA_NOT_RENAMING
;
3968 if (renamed_entity
!= NULL
)
3969 *renamed_entity
= info
;
3970 suffix
= strstr (info
, "___XE");
3971 if (renaming_expr
!= NULL
)
3972 *renaming_expr
= suffix
+ 5;
3973 if (suffix
== NULL
|| suffix
== info
)
3974 return ADA_NOT_RENAMING
;
3976 *len
= suffix
- info
;
3982 /* Evaluation: Function Calls */
3984 /* Return an lvalue containing the value VAL. This is the identity on
3985 lvalues, and otherwise has the side-effect of allocating memory
3986 in the inferior where a copy of the value contents is copied. */
3988 static struct value
*
3989 ensure_lval (struct value
*val
)
3991 if (VALUE_LVAL (val
) == not_lval
3992 || VALUE_LVAL (val
) == lval_internalvar
)
3994 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
3995 const CORE_ADDR addr
=
3996 value_as_long (value_allocate_space_in_inferior (len
));
3998 set_value_address (val
, addr
);
3999 VALUE_LVAL (val
) = lval_memory
;
4000 write_memory (addr
, value_contents (val
), len
);
4006 /* Return the value ACTUAL, converted to be an appropriate value for a
4007 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4008 allocating any necessary descriptors (fat pointers), or copies of
4009 values not residing in memory, updating it as needed. */
4012 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4014 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4015 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4016 struct type
*formal_target
=
4017 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4018 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4019 struct type
*actual_target
=
4020 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4021 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4023 if (ada_is_array_descriptor_type (formal_target
)
4024 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4025 return make_array_descriptor (formal_type
, actual
);
4026 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4027 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4029 struct value
*result
;
4031 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4032 && ada_is_array_descriptor_type (actual_target
))
4033 result
= desc_data (actual
);
4034 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
4036 if (VALUE_LVAL (actual
) != lval_memory
)
4040 actual_type
= ada_check_typedef (value_type (actual
));
4041 val
= allocate_value (actual_type
);
4042 memcpy ((char *) value_contents_raw (val
),
4043 (char *) value_contents (actual
),
4044 TYPE_LENGTH (actual_type
));
4045 actual
= ensure_lval (val
);
4047 result
= value_addr (actual
);
4051 return value_cast_pointers (formal_type
, result
);
4053 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4054 return ada_value_ind (actual
);
4059 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4060 type TYPE. This is usually an inefficient no-op except on some targets
4061 (such as AVR) where the representation of a pointer and an address
4065 value_pointer (struct value
*value
, struct type
*type
)
4067 struct gdbarch
*gdbarch
= get_type_arch (type
);
4068 unsigned len
= TYPE_LENGTH (type
);
4069 gdb_byte
*buf
= alloca (len
);
4072 addr
= value_address (value
);
4073 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4074 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4079 /* Push a descriptor of type TYPE for array value ARR on the stack at
4080 *SP, updating *SP to reflect the new descriptor. Return either
4081 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4082 to-descriptor type rather than a descriptor type), a struct value *
4083 representing a pointer to this descriptor. */
4085 static struct value
*
4086 make_array_descriptor (struct type
*type
, struct value
*arr
)
4088 struct type
*bounds_type
= desc_bounds_type (type
);
4089 struct type
*desc_type
= desc_base_type (type
);
4090 struct value
*descriptor
= allocate_value (desc_type
);
4091 struct value
*bounds
= allocate_value (bounds_type
);
4094 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4097 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4098 ada_array_bound (arr
, i
, 0),
4099 desc_bound_bitpos (bounds_type
, i
, 0),
4100 desc_bound_bitsize (bounds_type
, i
, 0));
4101 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4102 ada_array_bound (arr
, i
, 1),
4103 desc_bound_bitpos (bounds_type
, i
, 1),
4104 desc_bound_bitsize (bounds_type
, i
, 1));
4107 bounds
= ensure_lval (bounds
);
4109 modify_field (value_type (descriptor
),
4110 value_contents_writeable (descriptor
),
4111 value_pointer (ensure_lval (arr
),
4112 TYPE_FIELD_TYPE (desc_type
, 0)),
4113 fat_pntr_data_bitpos (desc_type
),
4114 fat_pntr_data_bitsize (desc_type
));
4116 modify_field (value_type (descriptor
),
4117 value_contents_writeable (descriptor
),
4118 value_pointer (bounds
,
4119 TYPE_FIELD_TYPE (desc_type
, 1)),
4120 fat_pntr_bounds_bitpos (desc_type
),
4121 fat_pntr_bounds_bitsize (desc_type
));
4123 descriptor
= ensure_lval (descriptor
);
4125 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4126 return value_addr (descriptor
);
4131 /* Dummy definitions for an experimental caching module that is not
4132 * used in the public sources. */
4135 lookup_cached_symbol (const char *name
, domain_enum
namespace,
4136 struct symbol
**sym
, struct block
**block
)
4142 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
4143 struct block
*block
)
4149 /* Return the result of a standard (literal, C-like) lookup of NAME in
4150 given DOMAIN, visible from lexical block BLOCK. */
4152 static struct symbol
*
4153 standard_lookup (const char *name
, const struct block
*block
,
4158 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
))
4160 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
4161 cache_symbol (name
, domain
, sym
, block_found
);
4166 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4167 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4168 since they contend in overloading in the same way. */
4170 is_nonfunction (struct ada_symbol_info syms
[], int n
)
4174 for (i
= 0; i
< n
; i
+= 1)
4175 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
4176 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
4177 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
4183 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4184 struct types. Otherwise, they may not. */
4187 equiv_types (struct type
*type0
, struct type
*type1
)
4191 if (type0
== NULL
|| type1
== NULL
4192 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4194 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4195 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4196 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4197 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4203 /* True iff SYM0 represents the same entity as SYM1, or one that is
4204 no more defined than that of SYM1. */
4207 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4211 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4212 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4215 switch (SYMBOL_CLASS (sym0
))
4221 struct type
*type0
= SYMBOL_TYPE (sym0
);
4222 struct type
*type1
= SYMBOL_TYPE (sym1
);
4223 char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4224 char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4225 int len0
= strlen (name0
);
4228 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4229 && (equiv_types (type0
, type1
)
4230 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4231 && strncmp (name1
+ len0
, "___XV", 5) == 0));
4234 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4235 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4241 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4242 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4245 add_defn_to_vec (struct obstack
*obstackp
,
4247 struct block
*block
)
4250 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
4252 /* Do not try to complete stub types, as the debugger is probably
4253 already scanning all symbols matching a certain name at the
4254 time when this function is called. Trying to replace the stub
4255 type by its associated full type will cause us to restart a scan
4256 which may lead to an infinite recursion. Instead, the client
4257 collecting the matching symbols will end up collecting several
4258 matches, with at least one of them complete. It can then filter
4259 out the stub ones if needed. */
4261 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4263 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
4265 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
4267 prevDefns
[i
].sym
= sym
;
4268 prevDefns
[i
].block
= block
;
4274 struct ada_symbol_info info
;
4278 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
4282 /* Number of ada_symbol_info structures currently collected in
4283 current vector in *OBSTACKP. */
4286 num_defns_collected (struct obstack
*obstackp
)
4288 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
4291 /* Vector of ada_symbol_info structures currently collected in current
4292 vector in *OBSTACKP. If FINISH, close off the vector and return
4293 its final address. */
4295 static struct ada_symbol_info
*
4296 defns_collected (struct obstack
*obstackp
, int finish
)
4299 return obstack_finish (obstackp
);
4301 return (struct ada_symbol_info
*) obstack_base (obstackp
);
4304 /* Return a minimal symbol matching NAME according to Ada decoding
4305 rules. Returns NULL if there is no such minimal symbol. Names
4306 prefixed with "standard__" are handled specially: "standard__" is
4307 first stripped off, and only static and global symbols are searched. */
4309 struct minimal_symbol
*
4310 ada_lookup_simple_minsym (const char *name
)
4312 struct objfile
*objfile
;
4313 struct minimal_symbol
*msymbol
;
4316 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4318 name
+= sizeof ("standard__") - 1;
4322 wild_match
= (strstr (name
, "__") == NULL
);
4324 ALL_MSYMBOLS (objfile
, msymbol
)
4326 if (match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
)
4327 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4334 /* For all subprograms that statically enclose the subprogram of the
4335 selected frame, add symbols matching identifier NAME in DOMAIN
4336 and their blocks to the list of data in OBSTACKP, as for
4337 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4341 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4342 const char *name
, domain_enum
namespace,
4347 /* True if TYPE is definitely an artificial type supplied to a symbol
4348 for which no debugging information was given in the symbol file. */
4351 is_nondebugging_type (struct type
*type
)
4353 char *name
= ada_type_name (type
);
4355 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4358 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4359 duplicate other symbols in the list (The only case I know of where
4360 this happens is when object files containing stabs-in-ecoff are
4361 linked with files containing ordinary ecoff debugging symbols (or no
4362 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4363 Returns the number of items in the modified list. */
4366 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4375 /* If two symbols have the same name and one of them is a stub type,
4376 the get rid of the stub. */
4378 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].sym
))
4379 && SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
)
4381 for (j
= 0; j
< nsyms
; j
++)
4384 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].sym
))
4385 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4387 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0)
4392 /* Two symbols with the same name, same class and same address
4393 should be identical. */
4395 else if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4396 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4397 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4399 for (j
= 0; j
< nsyms
; j
+= 1)
4402 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4403 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4404 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4405 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4406 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4407 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4414 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4415 syms
[j
- 1] = syms
[j
];
4424 /* Given a type that corresponds to a renaming entity, use the type name
4425 to extract the scope (package name or function name, fully qualified,
4426 and following the GNAT encoding convention) where this renaming has been
4427 defined. The string returned needs to be deallocated after use. */
4430 xget_renaming_scope (struct type
*renaming_type
)
4432 /* The renaming types adhere to the following convention:
4433 <scope>__<rename>___<XR extension>.
4434 So, to extract the scope, we search for the "___XR" extension,
4435 and then backtrack until we find the first "__". */
4437 const char *name
= type_name_no_tag (renaming_type
);
4438 char *suffix
= strstr (name
, "___XR");
4443 /* Now, backtrack a bit until we find the first "__". Start looking
4444 at suffix - 3, as the <rename> part is at least one character long. */
4446 for (last
= suffix
- 3; last
> name
; last
--)
4447 if (last
[0] == '_' && last
[1] == '_')
4450 /* Make a copy of scope and return it. */
4452 scope_len
= last
- name
;
4453 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4455 strncpy (scope
, name
, scope_len
);
4456 scope
[scope_len
] = '\0';
4461 /* Return nonzero if NAME corresponds to a package name. */
4464 is_package_name (const char *name
)
4466 /* Here, We take advantage of the fact that no symbols are generated
4467 for packages, while symbols are generated for each function.
4468 So the condition for NAME represent a package becomes equivalent
4469 to NAME not existing in our list of symbols. There is only one
4470 small complication with library-level functions (see below). */
4474 /* If it is a function that has not been defined at library level,
4475 then we should be able to look it up in the symbols. */
4476 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4479 /* Library-level function names start with "_ada_". See if function
4480 "_ada_" followed by NAME can be found. */
4482 /* Do a quick check that NAME does not contain "__", since library-level
4483 functions names cannot contain "__" in them. */
4484 if (strstr (name
, "__") != NULL
)
4487 fun_name
= xstrprintf ("_ada_%s", name
);
4489 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4492 /* Return nonzero if SYM corresponds to a renaming entity that is
4493 not visible from FUNCTION_NAME. */
4496 old_renaming_is_invisible (const struct symbol
*sym
, char *function_name
)
4500 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
4503 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4505 make_cleanup (xfree
, scope
);
4507 /* If the rename has been defined in a package, then it is visible. */
4508 if (is_package_name (scope
))
4511 /* Check that the rename is in the current function scope by checking
4512 that its name starts with SCOPE. */
4514 /* If the function name starts with "_ada_", it means that it is
4515 a library-level function. Strip this prefix before doing the
4516 comparison, as the encoding for the renaming does not contain
4518 if (strncmp (function_name
, "_ada_", 5) == 0)
4521 return (strncmp (function_name
, scope
, strlen (scope
)) != 0);
4524 /* Remove entries from SYMS that corresponds to a renaming entity that
4525 is not visible from the function associated with CURRENT_BLOCK or
4526 that is superfluous due to the presence of more specific renaming
4527 information. Places surviving symbols in the initial entries of
4528 SYMS and returns the number of surviving symbols.
4531 First, in cases where an object renaming is implemented as a
4532 reference variable, GNAT may produce both the actual reference
4533 variable and the renaming encoding. In this case, we discard the
4536 Second, GNAT emits a type following a specified encoding for each renaming
4537 entity. Unfortunately, STABS currently does not support the definition
4538 of types that are local to a given lexical block, so all renamings types
4539 are emitted at library level. As a consequence, if an application
4540 contains two renaming entities using the same name, and a user tries to
4541 print the value of one of these entities, the result of the ada symbol
4542 lookup will also contain the wrong renaming type.
4544 This function partially covers for this limitation by attempting to
4545 remove from the SYMS list renaming symbols that should be visible
4546 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4547 method with the current information available. The implementation
4548 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4550 - When the user tries to print a rename in a function while there
4551 is another rename entity defined in a package: Normally, the
4552 rename in the function has precedence over the rename in the
4553 package, so the latter should be removed from the list. This is
4554 currently not the case.
4556 - This function will incorrectly remove valid renames if
4557 the CURRENT_BLOCK corresponds to a function which symbol name
4558 has been changed by an "Export" pragma. As a consequence,
4559 the user will be unable to print such rename entities. */
4562 remove_irrelevant_renamings (struct ada_symbol_info
*syms
,
4563 int nsyms
, const struct block
*current_block
)
4565 struct symbol
*current_function
;
4566 char *current_function_name
;
4568 int is_new_style_renaming
;
4570 /* If there is both a renaming foo___XR... encoded as a variable and
4571 a simple variable foo in the same block, discard the latter.
4572 First, zero out such symbols, then compress. */
4573 is_new_style_renaming
= 0;
4574 for (i
= 0; i
< nsyms
; i
+= 1)
4576 struct symbol
*sym
= syms
[i
].sym
;
4577 struct block
*block
= syms
[i
].block
;
4581 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4583 name
= SYMBOL_LINKAGE_NAME (sym
);
4584 suffix
= strstr (name
, "___XR");
4588 int name_len
= suffix
- name
;
4591 is_new_style_renaming
= 1;
4592 for (j
= 0; j
< nsyms
; j
+= 1)
4593 if (i
!= j
&& syms
[j
].sym
!= NULL
4594 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
4596 && block
== syms
[j
].block
)
4600 if (is_new_style_renaming
)
4604 for (j
= k
= 0; j
< nsyms
; j
+= 1)
4605 if (syms
[j
].sym
!= NULL
)
4613 /* Extract the function name associated to CURRENT_BLOCK.
4614 Abort if unable to do so. */
4616 if (current_block
== NULL
)
4619 current_function
= block_linkage_function (current_block
);
4620 if (current_function
== NULL
)
4623 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4624 if (current_function_name
== NULL
)
4627 /* Check each of the symbols, and remove it from the list if it is
4628 a type corresponding to a renaming that is out of the scope of
4629 the current block. */
4634 if (ada_parse_renaming (syms
[i
].sym
, NULL
, NULL
, NULL
)
4635 == ADA_OBJECT_RENAMING
4636 && old_renaming_is_invisible (syms
[i
].sym
, current_function_name
))
4640 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4641 syms
[j
- 1] = syms
[j
];
4651 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4652 whose name and domain match NAME and DOMAIN respectively.
4653 If no match was found, then extend the search to "enclosing"
4654 routines (in other words, if we're inside a nested function,
4655 search the symbols defined inside the enclosing functions).
4657 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4660 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
4661 struct block
*block
, domain_enum domain
,
4664 int block_depth
= 0;
4666 while (block
!= NULL
)
4669 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
, wild_match
);
4671 /* If we found a non-function match, assume that's the one. */
4672 if (is_nonfunction (defns_collected (obstackp
, 0),
4673 num_defns_collected (obstackp
)))
4676 block
= BLOCK_SUPERBLOCK (block
);
4679 /* If no luck so far, try to find NAME as a local symbol in some lexically
4680 enclosing subprogram. */
4681 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
4682 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match
);
4685 /* An object of this type is used as the user_data argument when
4686 calling the map_matching_symbols method. */
4690 struct objfile
*objfile
;
4691 struct obstack
*obstackp
;
4692 struct symbol
*arg_sym
;
4696 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4697 to a list of symbols. DATA0 is a pointer to a struct match_data *
4698 containing the obstack that collects the symbol list, the file that SYM
4699 must come from, a flag indicating whether a non-argument symbol has
4700 been found in the current block, and the last argument symbol
4701 passed in SYM within the current block (if any). When SYM is null,
4702 marking the end of a block, the argument symbol is added if no
4703 other has been found. */
4706 aux_add_nonlocal_symbols (struct block
*block
, struct symbol
*sym
, void *data0
)
4708 struct match_data
*data
= (struct match_data
*) data0
;
4712 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
4713 add_defn_to_vec (data
->obstackp
,
4714 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
4716 data
->found_sym
= 0;
4717 data
->arg_sym
= NULL
;
4721 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
4723 else if (SYMBOL_IS_ARGUMENT (sym
))
4724 data
->arg_sym
= sym
;
4727 data
->found_sym
= 1;
4728 add_defn_to_vec (data
->obstackp
,
4729 fixup_symbol_section (sym
, data
->objfile
),
4736 /* Compare STRING1 to STRING2, with results as for strcmp.
4737 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4738 implies compare_names (STRING1, STRING2) (they may differ as to
4739 what symbols compare equal). */
4742 compare_names (const char *string1
, const char *string2
)
4744 while (*string1
!= '\0' && *string2
!= '\0')
4746 if (isspace (*string1
) || isspace (*string2
))
4747 return strcmp_iw_ordered (string1
, string2
);
4748 if (*string1
!= *string2
)
4756 return strcmp_iw_ordered (string1
, string2
);
4758 if (*string2
== '\0')
4760 if (is_name_suffix (string1
))
4767 if (*string2
== '(')
4768 return strcmp_iw_ordered (string1
, string2
);
4770 return *string1
- *string2
;
4774 /* Add to OBSTACKP all non-local symbols whose name and domain match
4775 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4776 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4779 add_nonlocal_symbols (struct obstack
*obstackp
, const char *name
,
4780 domain_enum domain
, int global
,
4783 struct objfile
*objfile
;
4784 struct match_data data
;
4786 data
.obstackp
= obstackp
;
4787 data
.arg_sym
= NULL
;
4789 ALL_OBJFILES (objfile
)
4791 data
.objfile
= objfile
;
4794 objfile
->sf
->qf
->map_matching_symbols (name
, domain
, objfile
, global
,
4795 aux_add_nonlocal_symbols
, &data
,
4798 objfile
->sf
->qf
->map_matching_symbols (name
, domain
, objfile
, global
,
4799 aux_add_nonlocal_symbols
, &data
,
4800 full_match
, compare_names
);
4803 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
4805 ALL_OBJFILES (objfile
)
4807 char *name1
= alloca (strlen (name
) + sizeof ("_ada_"));
4808 strcpy (name1
, "_ada_");
4809 strcpy (name1
+ sizeof ("_ada_") - 1, name
);
4810 data
.objfile
= objfile
;
4811 objfile
->sf
->qf
->map_matching_symbols (name1
, domain
,
4813 aux_add_nonlocal_symbols
,
4815 full_match
, compare_names
);
4820 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4821 scope and in global scopes, returning the number of matches. Sets
4822 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4823 indicating the symbols found and the blocks and symbol tables (if
4824 any) in which they were found. This vector are transient---good only to
4825 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4826 symbol match within the nest of blocks whose innermost member is BLOCK0,
4827 is the one match returned (no other matches in that or
4828 enclosing blocks is returned). If there are any matches in or
4829 surrounding BLOCK0, then these alone are returned. Otherwise, the
4830 search extends to global and file-scope (static) symbol tables.
4831 Names prefixed with "standard__" are handled specially: "standard__"
4832 is first stripped off, and only static and global symbols are searched. */
4835 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
4836 domain_enum
namespace,
4837 struct ada_symbol_info
**results
)
4840 struct block
*block
;
4846 obstack_free (&symbol_list_obstack
, NULL
);
4847 obstack_init (&symbol_list_obstack
);
4851 /* Search specified block and its superiors. */
4853 wild_match
= (strstr (name0
, "__") == NULL
);
4855 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
4856 needed, but adding const will
4857 have a cascade effect. */
4859 /* Special case: If the user specifies a symbol name inside package
4860 Standard, do a non-wild matching of the symbol name without
4861 the "standard__" prefix. This was primarily introduced in order
4862 to allow the user to specifically access the standard exceptions
4863 using, for instance, Standard.Constraint_Error when Constraint_Error
4864 is ambiguous (due to the user defining its own Constraint_Error
4865 entity inside its program). */
4866 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
4870 name
= name0
+ sizeof ("standard__") - 1;
4873 /* Check the non-global symbols. If we have ANY match, then we're done. */
4875 ada_add_local_symbols (&symbol_list_obstack
, name
, block
, namespace,
4877 if (num_defns_collected (&symbol_list_obstack
) > 0)
4880 /* No non-global symbols found. Check our cache to see if we have
4881 already performed this search before. If we have, then return
4885 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
))
4888 add_defn_to_vec (&symbol_list_obstack
, sym
, block
);
4892 /* Search symbols from all global blocks. */
4894 add_nonlocal_symbols (&symbol_list_obstack
, name
, namespace, 1,
4897 /* Now add symbols from all per-file blocks if we've gotten no hits
4898 (not strictly correct, but perhaps better than an error). */
4900 if (num_defns_collected (&symbol_list_obstack
) == 0)
4901 add_nonlocal_symbols (&symbol_list_obstack
, name
, namespace, 0,
4905 ndefns
= num_defns_collected (&symbol_list_obstack
);
4906 *results
= defns_collected (&symbol_list_obstack
, 1);
4908 ndefns
= remove_extra_symbols (*results
, ndefns
);
4911 cache_symbol (name0
, namespace, NULL
, NULL
);
4913 if (ndefns
== 1 && cacheIfUnique
)
4914 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
);
4916 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block0
);
4922 ada_lookup_encoded_symbol (const char *name
, const struct block
*block0
,
4923 domain_enum
namespace, struct block
**block_found
)
4925 struct ada_symbol_info
*candidates
;
4928 n_candidates
= ada_lookup_symbol_list (name
, block0
, namespace, &candidates
);
4930 if (n_candidates
== 0)
4933 if (block_found
!= NULL
)
4934 *block_found
= candidates
[0].block
;
4936 return fixup_symbol_section (candidates
[0].sym
, NULL
);
4939 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4940 scope and in global scopes, or NULL if none. NAME is folded and
4941 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4942 choosing the first symbol if there are multiple choices.
4943 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4944 table in which the symbol was found (in both cases, these
4945 assignments occur only if the pointers are non-null). */
4947 ada_lookup_symbol (const char *name
, const struct block
*block0
,
4948 domain_enum
namespace, int *is_a_field_of_this
)
4950 if (is_a_field_of_this
!= NULL
)
4951 *is_a_field_of_this
= 0;
4954 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
4955 block0
, namespace, NULL
);
4958 static struct symbol
*
4959 ada_lookup_symbol_nonlocal (const char *name
,
4960 const struct block
*block
,
4961 const domain_enum domain
)
4963 return ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
4967 /* True iff STR is a possible encoded suffix of a normal Ada name
4968 that is to be ignored for matching purposes. Suffixes of parallel
4969 names (e.g., XVE) are not included here. Currently, the possible suffixes
4970 are given by any of the regular expressions:
4972 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4973 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4974 _E[0-9]+[bs]$ [protected object entry suffixes]
4975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4978 match is performed. This sequence is used to differentiate homonyms,
4979 is an optional part of a valid name suffix. */
4982 is_name_suffix (const char *str
)
4985 const char *matching
;
4986 const int len
= strlen (str
);
4988 /* Skip optional leading __[0-9]+. */
4990 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
4993 while (isdigit (str
[0]))
4999 if (str
[0] == '.' || str
[0] == '$')
5002 while (isdigit (matching
[0]))
5004 if (matching
[0] == '\0')
5010 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5013 while (isdigit (matching
[0]))
5015 if (matching
[0] == '\0')
5020 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5021 with a N at the end. Unfortunately, the compiler uses the same
5022 convention for other internal types it creates. So treating
5023 all entity names that end with an "N" as a name suffix causes
5024 some regressions. For instance, consider the case of an enumerated
5025 type. To support the 'Image attribute, it creates an array whose
5027 Having a single character like this as a suffix carrying some
5028 information is a bit risky. Perhaps we should change the encoding
5029 to be something like "_N" instead. In the meantime, do not do
5030 the following check. */
5031 /* Protected Object Subprograms */
5032 if (len
== 1 && str
[0] == 'N')
5037 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5040 while (isdigit (matching
[0]))
5042 if ((matching
[0] == 'b' || matching
[0] == 's')
5043 && matching
[1] == '\0')
5047 /* ??? We should not modify STR directly, as we are doing below. This
5048 is fine in this case, but may become problematic later if we find
5049 that this alternative did not work, and want to try matching
5050 another one from the begining of STR. Since we modified it, we
5051 won't be able to find the begining of the string anymore! */
5055 while (str
[0] != '_' && str
[0] != '\0')
5057 if (str
[0] != 'n' && str
[0] != 'b')
5063 if (str
[0] == '\000')
5068 if (str
[1] != '_' || str
[2] == '\000')
5072 if (strcmp (str
+ 3, "JM") == 0)
5074 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5075 the LJM suffix in favor of the JM one. But we will
5076 still accept LJM as a valid suffix for a reasonable
5077 amount of time, just to allow ourselves to debug programs
5078 compiled using an older version of GNAT. */
5079 if (strcmp (str
+ 3, "LJM") == 0)
5083 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5084 || str
[4] == 'U' || str
[4] == 'P')
5086 if (str
[4] == 'R' && str
[5] != 'T')
5090 if (!isdigit (str
[2]))
5092 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5093 if (!isdigit (str
[k
]) && str
[k
] != '_')
5097 if (str
[0] == '$' && isdigit (str
[1]))
5099 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5100 if (!isdigit (str
[k
]) && str
[k
] != '_')
5107 /* Return non-zero if the string starting at NAME and ending before
5108 NAME_END contains no capital letters. */
5111 is_valid_name_for_wild_match (const char *name0
)
5113 const char *decoded_name
= ada_decode (name0
);
5116 /* If the decoded name starts with an angle bracket, it means that
5117 NAME0 does not follow the GNAT encoding format. It should then
5118 not be allowed as a possible wild match. */
5119 if (decoded_name
[0] == '<')
5122 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5123 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5129 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5130 that could start a simple name. Assumes that *NAMEP points into
5131 the string beginning at NAME0. */
5134 advance_wild_match (const char **namep
, const char *name0
, int target0
)
5136 const char *name
= *namep
;
5146 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5149 if (name
== name0
+ 5 && strncmp (name0
, "_ada", 4) == 0)
5154 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5155 || name
[2] == target0
))
5163 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
5173 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5174 informational suffixes of NAME (i.e., for which is_name_suffix is
5175 true). Assumes that PATN is a lower-cased Ada simple name. */
5178 wild_match (const char *name
, const char *patn
)
5181 const char *name0
= name
;
5185 const char *match
= name
;
5189 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
5192 if (*p
== '\0' && is_name_suffix (name
))
5193 return match
!= name0
&& !is_valid_name_for_wild_match (name0
);
5195 if (name
[-1] == '_')
5198 if (!advance_wild_match (&name
, name0
, *patn
))
5203 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5204 informational suffix. */
5207 full_match (const char *sym_name
, const char *search_name
)
5209 return !match_name (sym_name
, search_name
, 0);
5213 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5214 vector *defn_symbols, updating the list of symbols in OBSTACKP
5215 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5216 OBJFILE is the section containing BLOCK.
5217 SYMTAB is recorded with each symbol added. */
5220 ada_add_block_symbols (struct obstack
*obstackp
,
5221 struct block
*block
, const char *name
,
5222 domain_enum domain
, struct objfile
*objfile
,
5225 struct dict_iterator iter
;
5226 int name_len
= strlen (name
);
5227 /* A matching argument symbol, if any. */
5228 struct symbol
*arg_sym
;
5229 /* Set true when we find a matching non-argument symbol. */
5237 for (sym
= dict_iter_match_first (BLOCK_DICT (block
), name
,
5239 sym
!= NULL
; sym
= dict_iter_match_next (name
, wild_match
, &iter
))
5241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5242 SYMBOL_DOMAIN (sym
), domain
)
5243 && wild_match (SYMBOL_LINKAGE_NAME (sym
), name
) == 0)
5245 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5247 else if (SYMBOL_IS_ARGUMENT (sym
))
5252 add_defn_to_vec (obstackp
,
5253 fixup_symbol_section (sym
, objfile
),
5261 for (sym
= dict_iter_match_first (BLOCK_DICT (block
), name
,
5263 sym
!= NULL
; sym
= dict_iter_match_next (name
, full_match
, &iter
))
5265 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5266 SYMBOL_DOMAIN (sym
), domain
))
5268 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5270 if (SYMBOL_IS_ARGUMENT (sym
))
5275 add_defn_to_vec (obstackp
,
5276 fixup_symbol_section (sym
, objfile
),
5284 if (!found_sym
&& arg_sym
!= NULL
)
5286 add_defn_to_vec (obstackp
,
5287 fixup_symbol_section (arg_sym
, objfile
),
5296 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5298 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5299 SYMBOL_DOMAIN (sym
), domain
))
5303 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
5306 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
5308 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
5313 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
5315 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5317 if (SYMBOL_IS_ARGUMENT (sym
))
5322 add_defn_to_vec (obstackp
,
5323 fixup_symbol_section (sym
, objfile
),
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym
&& arg_sym
!= NULL
)
5335 add_defn_to_vec (obstackp
,
5336 fixup_symbol_section (arg_sym
, objfile
),
5343 /* Symbol Completion */
5345 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5346 name in a form that's appropriate for the completion. The result
5347 does not need to be deallocated, but is only good until the next call.
5349 TEXT_LEN is equal to the length of TEXT.
5350 Perform a wild match if WILD_MATCH is set.
5351 ENCODED should be set if TEXT represents the start of a symbol name
5352 in its encoded form. */
5355 symbol_completion_match (const char *sym_name
,
5356 const char *text
, int text_len
,
5357 int wild_match
, int encoded
)
5359 const int verbatim_match
= (text
[0] == '<');
5364 /* Strip the leading angle bracket. */
5369 /* First, test against the fully qualified name of the symbol. */
5371 if (strncmp (sym_name
, text
, text_len
) == 0)
5374 if (match
&& !encoded
)
5376 /* One needed check before declaring a positive match is to verify
5377 that iff we are doing a verbatim match, the decoded version
5378 of the symbol name starts with '<'. Otherwise, this symbol name
5379 is not a suitable completion. */
5380 const char *sym_name_copy
= sym_name
;
5381 int has_angle_bracket
;
5383 sym_name
= ada_decode (sym_name
);
5384 has_angle_bracket
= (sym_name
[0] == '<');
5385 match
= (has_angle_bracket
== verbatim_match
);
5386 sym_name
= sym_name_copy
;
5389 if (match
&& !verbatim_match
)
5391 /* When doing non-verbatim match, another check that needs to
5392 be done is to verify that the potentially matching symbol name
5393 does not include capital letters, because the ada-mode would
5394 not be able to understand these symbol names without the
5395 angle bracket notation. */
5398 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
5403 /* Second: Try wild matching... */
5405 if (!match
&& wild_match
)
5407 /* Since we are doing wild matching, this means that TEXT
5408 may represent an unqualified symbol name. We therefore must
5409 also compare TEXT against the unqualified name of the symbol. */
5410 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
5412 if (strncmp (sym_name
, text
, text_len
) == 0)
5416 /* Finally: If we found a mach, prepare the result to return. */
5422 sym_name
= add_angle_brackets (sym_name
);
5425 sym_name
= ada_decode (sym_name
);
5430 DEF_VEC_P (char_ptr
);
5432 /* A companion function to ada_make_symbol_completion_list().
5433 Check if SYM_NAME represents a symbol which name would be suitable
5434 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5435 it is appended at the end of the given string vector SV.
5437 ORIG_TEXT is the string original string from the user command
5438 that needs to be completed. WORD is the entire command on which
5439 completion should be performed. These two parameters are used to
5440 determine which part of the symbol name should be added to the
5442 if WILD_MATCH is set, then wild matching is performed.
5443 ENCODED should be set if TEXT represents a symbol name in its
5444 encoded formed (in which case the completion should also be
5448 symbol_completion_add (VEC(char_ptr
) **sv
,
5449 const char *sym_name
,
5450 const char *text
, int text_len
,
5451 const char *orig_text
, const char *word
,
5452 int wild_match
, int encoded
)
5454 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
5455 wild_match
, encoded
);
5461 /* We found a match, so add the appropriate completion to the given
5464 if (word
== orig_text
)
5466 completion
= xmalloc (strlen (match
) + 5);
5467 strcpy (completion
, match
);
5469 else if (word
> orig_text
)
5471 /* Return some portion of sym_name. */
5472 completion
= xmalloc (strlen (match
) + 5);
5473 strcpy (completion
, match
+ (word
- orig_text
));
5477 /* Return some of ORIG_TEXT plus sym_name. */
5478 completion
= xmalloc (strlen (match
) + (orig_text
- word
) + 5);
5479 strncpy (completion
, word
, orig_text
- word
);
5480 completion
[orig_text
- word
] = '\0';
5481 strcat (completion
, match
);
5484 VEC_safe_push (char_ptr
, *sv
, completion
);
5487 /* An object of this type is passed as the user_data argument to the
5488 map_partial_symbol_names method. */
5489 struct add_partial_datum
5491 VEC(char_ptr
) **completions
;
5500 /* A callback for map_partial_symbol_names. */
5502 ada_add_partial_symbol_completions (const char *name
, void *user_data
)
5504 struct add_partial_datum
*data
= user_data
;
5506 symbol_completion_add (data
->completions
, name
,
5507 data
->text
, data
->text_len
, data
->text0
, data
->word
,
5508 data
->wild_match
, data
->encoded
);
5511 /* Return a list of possible symbol names completing TEXT0. The list
5512 is NULL terminated. WORD is the entire command on which completion
5516 ada_make_symbol_completion_list (char *text0
, char *word
)
5522 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
5525 struct minimal_symbol
*msymbol
;
5526 struct objfile
*objfile
;
5527 struct block
*b
, *surrounding_static_block
= 0;
5529 struct dict_iterator iter
;
5531 if (text0
[0] == '<')
5533 text
= xstrdup (text0
);
5534 make_cleanup (xfree
, text
);
5535 text_len
= strlen (text
);
5541 text
= xstrdup (ada_encode (text0
));
5542 make_cleanup (xfree
, text
);
5543 text_len
= strlen (text
);
5544 for (i
= 0; i
< text_len
; i
++)
5545 text
[i
] = tolower (text
[i
]);
5547 encoded
= (strstr (text0
, "__") != NULL
);
5548 /* If the name contains a ".", then the user is entering a fully
5549 qualified entity name, and the match must not be done in wild
5550 mode. Similarly, if the user wants to complete what looks like
5551 an encoded name, the match must not be done in wild mode. */
5552 wild_match
= (strchr (text0
, '.') == NULL
&& !encoded
);
5555 /* First, look at the partial symtab symbols. */
5557 struct add_partial_datum data
;
5559 data
.completions
= &completions
;
5561 data
.text_len
= text_len
;
5564 data
.wild_match
= wild_match
;
5565 data
.encoded
= encoded
;
5566 map_partial_symbol_names (ada_add_partial_symbol_completions
, &data
);
5569 /* At this point scan through the misc symbol vectors and add each
5570 symbol you find to the list. Eventually we want to ignore
5571 anything that isn't a text symbol (everything else will be
5572 handled by the psymtab code above). */
5574 ALL_MSYMBOLS (objfile
, msymbol
)
5577 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (msymbol
),
5578 text
, text_len
, text0
, word
, wild_match
, encoded
);
5581 /* Search upwards from currently selected frame (so that we can
5582 complete on local vars. */
5584 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
5586 if (!BLOCK_SUPERBLOCK (b
))
5587 surrounding_static_block
= b
; /* For elmin of dups */
5589 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5591 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5592 text
, text_len
, text0
, word
,
5593 wild_match
, encoded
);
5597 /* Go through the symtabs and check the externs and statics for
5598 symbols which match. */
5600 ALL_SYMTABS (objfile
, s
)
5603 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
5604 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5606 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5607 text
, text_len
, text0
, word
,
5608 wild_match
, encoded
);
5612 ALL_SYMTABS (objfile
, s
)
5615 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
5616 /* Don't do this block twice. */
5617 if (b
== surrounding_static_block
)
5619 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5621 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5622 text
, text_len
, text0
, word
,
5623 wild_match
, encoded
);
5627 /* Append the closing NULL entry. */
5628 VEC_safe_push (char_ptr
, completions
, NULL
);
5630 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5631 return the copy. It's unfortunate that we have to make a copy
5632 of an array that we're about to destroy, but there is nothing much
5633 we can do about it. Fortunately, it's typically not a very large
5636 const size_t completions_size
=
5637 VEC_length (char_ptr
, completions
) * sizeof (char *);
5638 char **result
= xmalloc (completions_size
);
5640 memcpy (result
, VEC_address (char_ptr
, completions
), completions_size
);
5642 VEC_free (char_ptr
, completions
);
5649 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5650 for tagged types. */
5653 ada_is_dispatch_table_ptr_type (struct type
*type
)
5657 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
5660 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
5664 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
5667 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5668 to be invisible to users. */
5671 ada_is_ignored_field (struct type
*type
, int field_num
)
5673 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
5676 /* Check the name of that field. */
5678 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5680 /* Anonymous field names should not be printed.
5681 brobecker/2007-02-20: I don't think this can actually happen
5682 but we don't want to print the value of annonymous fields anyway. */
5686 /* A field named "_parent" is internally generated by GNAT for
5687 tagged types, and should not be printed either. */
5688 if (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0)
5692 /* If this is the dispatch table of a tagged type, then ignore. */
5693 if (ada_is_tagged_type (type
, 1)
5694 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
)))
5697 /* Not a special field, so it should not be ignored. */
5701 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5702 pointer or reference type whose ultimate target has a tag field. */
5705 ada_is_tagged_type (struct type
*type
, int refok
)
5707 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
5710 /* True iff TYPE represents the type of X'Tag */
5713 ada_is_tag_type (struct type
*type
)
5715 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
5719 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
5721 return (name
!= NULL
5722 && strcmp (name
, "ada__tags__dispatch_table") == 0);
5726 /* The type of the tag on VAL. */
5729 ada_tag_type (struct value
*val
)
5731 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
5734 /* The value of the tag on VAL. */
5737 ada_value_tag (struct value
*val
)
5739 return ada_value_struct_elt (val
, "_tag", 0);
5742 /* The value of the tag on the object of type TYPE whose contents are
5743 saved at VALADDR, if it is non-null, or is at memory address
5746 static struct value
*
5747 value_tag_from_contents_and_address (struct type
*type
,
5748 const gdb_byte
*valaddr
,
5751 int tag_byte_offset
;
5752 struct type
*tag_type
;
5754 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
5757 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
5759 : valaddr
+ tag_byte_offset
);
5760 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
5762 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
5767 static struct type
*
5768 type_from_tag (struct value
*tag
)
5770 const char *type_name
= ada_tag_name (tag
);
5772 if (type_name
!= NULL
)
5773 return ada_find_any_type (ada_encode (type_name
));
5784 static int ada_tag_name_1 (void *);
5785 static int ada_tag_name_2 (struct tag_args
*);
5787 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5788 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5789 The value stored in ARGS->name is valid until the next call to
5793 ada_tag_name_1 (void *args0
)
5795 struct tag_args
*args
= (struct tag_args
*) args0
;
5796 static char name
[1024];
5801 val
= ada_value_struct_elt (args
->tag
, "tsd", 1);
5803 return ada_tag_name_2 (args
);
5804 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5807 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5808 for (p
= name
; *p
!= '\0'; p
+= 1)
5815 /* Return the "ada__tags__type_specific_data" type. */
5817 static struct type
*
5818 ada_get_tsd_type (struct inferior
*inf
)
5820 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
5822 if (data
->tsd_type
== 0)
5823 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
5824 return data
->tsd_type
;
5827 /* Utility function for ada_tag_name_1 that tries the second
5828 representation for the dispatch table (in which there is no
5829 explicit 'tsd' field in the referent of the tag pointer, and instead
5830 the tsd pointer is stored just before the dispatch table. */
5833 ada_tag_name_2 (struct tag_args
*args
)
5835 struct type
*info_type
;
5836 static char name
[1024];
5838 struct value
*val
, *valp
;
5841 info_type
= ada_get_tsd_type (current_inferior());
5842 if (info_type
== NULL
)
5844 info_type
= lookup_pointer_type (lookup_pointer_type (info_type
));
5845 valp
= value_cast (info_type
, args
->tag
);
5848 val
= value_ind (value_ptradd (valp
, -1));
5851 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5854 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5855 for (p
= name
; *p
!= '\0'; p
+= 1)
5862 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5866 ada_tag_name (struct value
*tag
)
5868 struct tag_args args
;
5870 if (!ada_is_tag_type (value_type (tag
)))
5874 catch_errors (ada_tag_name_1
, &args
, NULL
, RETURN_MASK_ALL
);
5878 /* The parent type of TYPE, or NULL if none. */
5881 ada_parent_type (struct type
*type
)
5885 type
= ada_check_typedef (type
);
5887 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
5890 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5891 if (ada_is_parent_field (type
, i
))
5893 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
5895 /* If the _parent field is a pointer, then dereference it. */
5896 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
5897 parent_type
= TYPE_TARGET_TYPE (parent_type
);
5898 /* If there is a parallel XVS type, get the actual base type. */
5899 parent_type
= ada_get_base_type (parent_type
);
5901 return ada_check_typedef (parent_type
);
5907 /* True iff field number FIELD_NUM of structure type TYPE contains the
5908 parent-type (inherited) fields of a derived type. Assumes TYPE is
5909 a structure type with at least FIELD_NUM+1 fields. */
5912 ada_is_parent_field (struct type
*type
, int field_num
)
5914 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
5916 return (name
!= NULL
5917 && (strncmp (name
, "PARENT", 6) == 0
5918 || strncmp (name
, "_parent", 7) == 0));
5921 /* True iff field number FIELD_NUM of structure type TYPE is a
5922 transparent wrapper field (which should be silently traversed when doing
5923 field selection and flattened when printing). Assumes TYPE is a
5924 structure type with at least FIELD_NUM+1 fields. Such fields are always
5928 ada_is_wrapper_field (struct type
*type
, int field_num
)
5930 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5932 return (name
!= NULL
5933 && (strncmp (name
, "PARENT", 6) == 0
5934 || strcmp (name
, "REP") == 0
5935 || strncmp (name
, "_parent", 7) == 0
5936 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
5939 /* True iff field number FIELD_NUM of structure or union type TYPE
5940 is a variant wrapper. Assumes TYPE is a structure type with at least
5941 FIELD_NUM+1 fields. */
5944 ada_is_variant_part (struct type
*type
, int field_num
)
5946 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
5948 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
5949 || (is_dynamic_field (type
, field_num
)
5950 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
5951 == TYPE_CODE_UNION
)));
5954 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5955 whose discriminants are contained in the record type OUTER_TYPE,
5956 returns the type of the controlling discriminant for the variant.
5957 May return NULL if the type could not be found. */
5960 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
5962 char *name
= ada_variant_discrim_name (var_type
);
5964 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
5967 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5968 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5969 represents a 'when others' clause; otherwise 0. */
5972 ada_is_others_clause (struct type
*type
, int field_num
)
5974 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5976 return (name
!= NULL
&& name
[0] == 'O');
5979 /* Assuming that TYPE0 is the type of the variant part of a record,
5980 returns the name of the discriminant controlling the variant.
5981 The value is valid until the next call to ada_variant_discrim_name. */
5984 ada_variant_discrim_name (struct type
*type0
)
5986 static char *result
= NULL
;
5987 static size_t result_len
= 0;
5990 const char *discrim_end
;
5991 const char *discrim_start
;
5993 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
5994 type
= TYPE_TARGET_TYPE (type0
);
5998 name
= ada_type_name (type
);
6000 if (name
== NULL
|| name
[0] == '\000')
6003 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6006 if (strncmp (discrim_end
, "___XVN", 6) == 0)
6009 if (discrim_end
== name
)
6012 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6015 if (discrim_start
== name
+ 1)
6017 if ((discrim_start
> name
+ 3
6018 && strncmp (discrim_start
- 3, "___", 3) == 0)
6019 || discrim_start
[-1] == '.')
6023 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
6024 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
6025 result
[discrim_end
- discrim_start
] = '\0';
6029 /* Scan STR for a subtype-encoded number, beginning at position K.
6030 Put the position of the character just past the number scanned in
6031 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6032 Return 1 if there was a valid number at the given position, and 0
6033 otherwise. A "subtype-encoded" number consists of the absolute value
6034 in decimal, followed by the letter 'm' to indicate a negative number.
6035 Assumes 0m does not occur. */
6038 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6042 if (!isdigit (str
[k
]))
6045 /* Do it the hard way so as not to make any assumption about
6046 the relationship of unsigned long (%lu scan format code) and
6049 while (isdigit (str
[k
]))
6051 RU
= RU
* 10 + (str
[k
] - '0');
6058 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6064 /* NOTE on the above: Technically, C does not say what the results of
6065 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6066 number representable as a LONGEST (although either would probably work
6067 in most implementations). When RU>0, the locution in the then branch
6068 above is always equivalent to the negative of RU. */
6075 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6076 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6077 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6080 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6082 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6096 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6106 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6107 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6109 if (val
>= L
&& val
<= U
)
6121 /* FIXME: Lots of redundancy below. Try to consolidate. */
6123 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6124 ARG_TYPE, extract and return the value of one of its (non-static)
6125 fields. FIELDNO says which field. Differs from value_primitive_field
6126 only in that it can handle packed values of arbitrary type. */
6128 static struct value
*
6129 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6130 struct type
*arg_type
)
6134 arg_type
= ada_check_typedef (arg_type
);
6135 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
6137 /* Handle packed fields. */
6139 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
6141 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
6142 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
6144 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
6145 offset
+ bit_pos
/ 8,
6146 bit_pos
% 8, bit_size
, type
);
6149 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
6152 /* Find field with name NAME in object of type TYPE. If found,
6153 set the following for each argument that is non-null:
6154 - *FIELD_TYPE_P to the field's type;
6155 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6156 an object of that type;
6157 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6158 - *BIT_SIZE_P to its size in bits if the field is packed, and
6160 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6161 fields up to but not including the desired field, or by the total
6162 number of fields if not found. A NULL value of NAME never
6163 matches; the function just counts visible fields in this case.
6165 Returns 1 if found, 0 otherwise. */
6168 find_struct_field (char *name
, struct type
*type
, int offset
,
6169 struct type
**field_type_p
,
6170 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
6175 type
= ada_check_typedef (type
);
6177 if (field_type_p
!= NULL
)
6178 *field_type_p
= NULL
;
6179 if (byte_offset_p
!= NULL
)
6181 if (bit_offset_p
!= NULL
)
6183 if (bit_size_p
!= NULL
)
6186 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6188 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
6189 int fld_offset
= offset
+ bit_pos
/ 8;
6190 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6192 if (t_field_name
== NULL
)
6195 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
6197 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
6199 if (field_type_p
!= NULL
)
6200 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
6201 if (byte_offset_p
!= NULL
)
6202 *byte_offset_p
= fld_offset
;
6203 if (bit_offset_p
!= NULL
)
6204 *bit_offset_p
= bit_pos
% 8;
6205 if (bit_size_p
!= NULL
)
6206 *bit_size_p
= bit_size
;
6209 else if (ada_is_wrapper_field (type
, i
))
6211 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
6212 field_type_p
, byte_offset_p
, bit_offset_p
,
6213 bit_size_p
, index_p
))
6216 else if (ada_is_variant_part (type
, i
))
6218 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6221 struct type
*field_type
6222 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6224 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6226 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
6228 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6229 field_type_p
, byte_offset_p
,
6230 bit_offset_p
, bit_size_p
, index_p
))
6234 else if (index_p
!= NULL
)
6240 /* Number of user-visible fields in record type TYPE. */
6243 num_visible_fields (struct type
*type
)
6248 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
6252 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6253 and search in it assuming it has (class) type TYPE.
6254 If found, return value, else return NULL.
6256 Searches recursively through wrapper fields (e.g., '_parent'). */
6258 static struct value
*
6259 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
6264 type
= ada_check_typedef (type
);
6265 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6267 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6269 if (t_field_name
== NULL
)
6272 else if (field_name_match (t_field_name
, name
))
6273 return ada_value_primitive_field (arg
, offset
, i
, type
);
6275 else if (ada_is_wrapper_field (type
, i
))
6277 struct value
*v
= /* Do not let indent join lines here. */
6278 ada_search_struct_field (name
, arg
,
6279 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6280 TYPE_FIELD_TYPE (type
, i
));
6286 else if (ada_is_variant_part (type
, i
))
6288 /* PNH: Do we ever get here? See find_struct_field. */
6290 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
6292 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6294 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6296 struct value
*v
= ada_search_struct_field
/* Force line
6299 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6300 TYPE_FIELD_TYPE (field_type
, j
));
6310 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
6311 int, struct type
*);
6314 /* Return field #INDEX in ARG, where the index is that returned by
6315 * find_struct_field through its INDEX_P argument. Adjust the address
6316 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6317 * If found, return value, else return NULL. */
6319 static struct value
*
6320 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
6323 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
6327 /* Auxiliary function for ada_index_struct_field. Like
6328 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6331 static struct value
*
6332 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
6336 type
= ada_check_typedef (type
);
6338 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6340 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
6342 else if (ada_is_wrapper_field (type
, i
))
6344 struct value
*v
= /* Do not let indent join lines here. */
6345 ada_index_struct_field_1 (index_p
, arg
,
6346 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6347 TYPE_FIELD_TYPE (type
, i
));
6353 else if (ada_is_variant_part (type
, i
))
6355 /* PNH: Do we ever get here? See ada_search_struct_field,
6356 find_struct_field. */
6357 error (_("Cannot assign this kind of variant record"));
6359 else if (*index_p
== 0)
6360 return ada_value_primitive_field (arg
, offset
, i
, type
);
6367 /* Given ARG, a value of type (pointer or reference to a)*
6368 structure/union, extract the component named NAME from the ultimate
6369 target structure/union and return it as a value with its
6372 The routine searches for NAME among all members of the structure itself
6373 and (recursively) among all members of any wrapper members
6376 If NO_ERR, then simply return NULL in case of error, rather than
6380 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
6382 struct type
*t
, *t1
;
6386 t1
= t
= ada_check_typedef (value_type (arg
));
6387 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6389 t1
= TYPE_TARGET_TYPE (t
);
6392 t1
= ada_check_typedef (t1
);
6393 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6395 arg
= coerce_ref (arg
);
6400 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6402 t1
= TYPE_TARGET_TYPE (t
);
6405 t1
= ada_check_typedef (t1
);
6406 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6408 arg
= value_ind (arg
);
6415 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
6419 v
= ada_search_struct_field (name
, arg
, 0, t
);
6422 int bit_offset
, bit_size
, byte_offset
;
6423 struct type
*field_type
;
6426 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6427 address
= value_as_address (arg
);
6429 address
= unpack_pointer (t
, value_contents (arg
));
6431 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
6432 if (find_struct_field (name
, t1
, 0,
6433 &field_type
, &byte_offset
, &bit_offset
,
6438 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6439 arg
= ada_coerce_ref (arg
);
6441 arg
= ada_value_ind (arg
);
6442 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
6443 bit_offset
, bit_size
,
6447 v
= value_at_lazy (field_type
, address
+ byte_offset
);
6451 if (v
!= NULL
|| no_err
)
6454 error (_("There is no member named %s."), name
);
6460 error (_("Attempt to extract a component of "
6461 "a value that is not a record."));
6464 /* Given a type TYPE, look up the type of the component of type named NAME.
6465 If DISPP is non-null, add its byte displacement from the beginning of a
6466 structure (pointed to by a value) of type TYPE to *DISPP (does not
6467 work for packed fields).
6469 Matches any field whose name has NAME as a prefix, possibly
6472 TYPE can be either a struct or union. If REFOK, TYPE may also
6473 be a (pointer or reference)+ to a struct or union, and the
6474 ultimate target type will be searched.
6476 Looks recursively into variant clauses and parent types.
6478 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6479 TYPE is not a type of the right kind. */
6481 static struct type
*
6482 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
6483 int noerr
, int *dispp
)
6490 if (refok
&& type
!= NULL
)
6493 type
= ada_check_typedef (type
);
6494 if (TYPE_CODE (type
) != TYPE_CODE_PTR
6495 && TYPE_CODE (type
) != TYPE_CODE_REF
)
6497 type
= TYPE_TARGET_TYPE (type
);
6501 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
6502 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
6508 target_terminal_ours ();
6509 gdb_flush (gdb_stdout
);
6511 error (_("Type (null) is not a structure or union type"));
6514 /* XXX: type_sprint */
6515 fprintf_unfiltered (gdb_stderr
, _("Type "));
6516 type_print (type
, "", gdb_stderr
, -1);
6517 error (_(" is not a structure or union type"));
6522 type
= to_static_fixed_type (type
);
6524 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6526 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6530 if (t_field_name
== NULL
)
6533 else if (field_name_match (t_field_name
, name
))
6536 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
6537 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6540 else if (ada_is_wrapper_field (type
, i
))
6543 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
6548 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6553 else if (ada_is_variant_part (type
, i
))
6556 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
6559 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
6561 /* FIXME pnh 2008/01/26: We check for a field that is
6562 NOT wrapped in a struct, since the compiler sometimes
6563 generates these for unchecked variant types. Revisit
6564 if the compiler changes this practice. */
6565 char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
6567 if (v_field_name
!= NULL
6568 && field_name_match (v_field_name
, name
))
6569 t
= ada_check_typedef (TYPE_FIELD_TYPE (field_type
, j
));
6571 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
6578 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6589 target_terminal_ours ();
6590 gdb_flush (gdb_stdout
);
6593 /* XXX: type_sprint */
6594 fprintf_unfiltered (gdb_stderr
, _("Type "));
6595 type_print (type
, "", gdb_stderr
, -1);
6596 error (_(" has no component named <null>"));
6600 /* XXX: type_sprint */
6601 fprintf_unfiltered (gdb_stderr
, _("Type "));
6602 type_print (type
, "", gdb_stderr
, -1);
6603 error (_(" has no component named %s"), name
);
6610 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6611 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6612 represents an unchecked union (that is, the variant part of a
6613 record that is named in an Unchecked_Union pragma). */
6616 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
6618 char *discrim_name
= ada_variant_discrim_name (var_type
);
6620 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
6625 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6626 within a value of type OUTER_TYPE that is stored in GDB at
6627 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6628 numbering from 0) is applicable. Returns -1 if none are. */
6631 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
6632 const gdb_byte
*outer_valaddr
)
6636 char *discrim_name
= ada_variant_discrim_name (var_type
);
6637 struct value
*outer
;
6638 struct value
*discrim
;
6639 LONGEST discrim_val
;
6641 outer
= value_from_contents_and_address (outer_type
, outer_valaddr
, 0);
6642 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
6643 if (discrim
== NULL
)
6645 discrim_val
= value_as_long (discrim
);
6648 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
6650 if (ada_is_others_clause (var_type
, i
))
6652 else if (ada_in_variant (discrim_val
, var_type
, i
))
6656 return others_clause
;
6661 /* Dynamic-Sized Records */
6663 /* Strategy: The type ostensibly attached to a value with dynamic size
6664 (i.e., a size that is not statically recorded in the debugging
6665 data) does not accurately reflect the size or layout of the value.
6666 Our strategy is to convert these values to values with accurate,
6667 conventional types that are constructed on the fly. */
6669 /* There is a subtle and tricky problem here. In general, we cannot
6670 determine the size of dynamic records without its data. However,
6671 the 'struct value' data structure, which GDB uses to represent
6672 quantities in the inferior process (the target), requires the size
6673 of the type at the time of its allocation in order to reserve space
6674 for GDB's internal copy of the data. That's why the
6675 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6676 rather than struct value*s.
6678 However, GDB's internal history variables ($1, $2, etc.) are
6679 struct value*s containing internal copies of the data that are not, in
6680 general, the same as the data at their corresponding addresses in
6681 the target. Fortunately, the types we give to these values are all
6682 conventional, fixed-size types (as per the strategy described
6683 above), so that we don't usually have to perform the
6684 'to_fixed_xxx_type' conversions to look at their values.
6685 Unfortunately, there is one exception: if one of the internal
6686 history variables is an array whose elements are unconstrained
6687 records, then we will need to create distinct fixed types for each
6688 element selected. */
6690 /* The upshot of all of this is that many routines take a (type, host
6691 address, target address) triple as arguments to represent a value.
6692 The host address, if non-null, is supposed to contain an internal
6693 copy of the relevant data; otherwise, the program is to consult the
6694 target at the target address. */
6696 /* Assuming that VAL0 represents a pointer value, the result of
6697 dereferencing it. Differs from value_ind in its treatment of
6698 dynamic-sized types. */
6701 ada_value_ind (struct value
*val0
)
6703 struct value
*val
= unwrap_value (value_ind (val0
));
6705 return ada_to_fixed_value (val
);
6708 /* The value resulting from dereferencing any "reference to"
6709 qualifiers on VAL0. */
6711 static struct value
*
6712 ada_coerce_ref (struct value
*val0
)
6714 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
6716 struct value
*val
= val0
;
6718 val
= coerce_ref (val
);
6719 val
= unwrap_value (val
);
6720 return ada_to_fixed_value (val
);
6726 /* Return OFF rounded upward if necessary to a multiple of
6727 ALIGNMENT (a power of 2). */
6730 align_value (unsigned int off
, unsigned int alignment
)
6732 return (off
+ alignment
- 1) & ~(alignment
- 1);
6735 /* Return the bit alignment required for field #F of template type TYPE. */
6738 field_alignment (struct type
*type
, int f
)
6740 const char *name
= TYPE_FIELD_NAME (type
, f
);
6744 /* The field name should never be null, unless the debugging information
6745 is somehow malformed. In this case, we assume the field does not
6746 require any alignment. */
6750 len
= strlen (name
);
6752 if (!isdigit (name
[len
- 1]))
6755 if (isdigit (name
[len
- 2]))
6756 align_offset
= len
- 2;
6758 align_offset
= len
- 1;
6760 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
6761 return TARGET_CHAR_BIT
;
6763 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
6766 /* Find a symbol named NAME. Ignores ambiguity. */
6769 ada_find_any_symbol (const char *name
)
6773 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
6774 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
6777 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
6781 /* Find a type named NAME. Ignores ambiguity. This routine will look
6782 solely for types defined by debug info, it will not search the GDB
6786 ada_find_any_type (const char *name
)
6788 struct symbol
*sym
= ada_find_any_symbol (name
);
6791 return SYMBOL_TYPE (sym
);
6796 /* Given NAME and an associated BLOCK, search all symbols for
6797 NAME suffixed with "___XR", which is the ``renaming'' symbol
6798 associated to NAME. Return this symbol if found, return
6802 ada_find_renaming_symbol (const char *name
, struct block
*block
)
6806 sym
= find_old_style_renaming_symbol (name
, block
);
6811 /* Not right yet. FIXME pnh 7/20/2007. */
6812 sym
= ada_find_any_symbol (name
);
6813 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
6819 static struct symbol
*
6820 find_old_style_renaming_symbol (const char *name
, struct block
*block
)
6822 const struct symbol
*function_sym
= block_linkage_function (block
);
6825 if (function_sym
!= NULL
)
6827 /* If the symbol is defined inside a function, NAME is not fully
6828 qualified. This means we need to prepend the function name
6829 as well as adding the ``___XR'' suffix to build the name of
6830 the associated renaming symbol. */
6831 char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
6832 /* Function names sometimes contain suffixes used
6833 for instance to qualify nested subprograms. When building
6834 the XR type name, we need to make sure that this suffix is
6835 not included. So do not include any suffix in the function
6836 name length below. */
6837 int function_name_len
= ada_name_prefix_len (function_name
);
6838 const int rename_len
= function_name_len
+ 2 /* "__" */
6839 + strlen (name
) + 6 /* "___XR\0" */ ;
6841 /* Strip the suffix if necessary. */
6842 ada_remove_trailing_digits (function_name
, &function_name_len
);
6843 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
6844 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
6846 /* Library-level functions are a special case, as GNAT adds
6847 a ``_ada_'' prefix to the function name to avoid namespace
6848 pollution. However, the renaming symbols themselves do not
6849 have this prefix, so we need to skip this prefix if present. */
6850 if (function_name_len
> 5 /* "_ada_" */
6851 && strstr (function_name
, "_ada_") == function_name
)
6854 function_name_len
-= 5;
6857 rename
= (char *) alloca (rename_len
* sizeof (char));
6858 strncpy (rename
, function_name
, function_name_len
);
6859 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
6864 const int rename_len
= strlen (name
) + 6;
6866 rename
= (char *) alloca (rename_len
* sizeof (char));
6867 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
6870 return ada_find_any_symbol (rename
);
6873 /* Because of GNAT encoding conventions, several GDB symbols may match a
6874 given type name. If the type denoted by TYPE0 is to be preferred to
6875 that of TYPE1 for purposes of type printing, return non-zero;
6876 otherwise return 0. */
6879 ada_prefer_type (struct type
*type0
, struct type
*type1
)
6883 else if (type0
== NULL
)
6885 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
6887 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
6889 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
6891 else if (ada_is_constrained_packed_array_type (type0
))
6893 else if (ada_is_array_descriptor_type (type0
)
6894 && !ada_is_array_descriptor_type (type1
))
6898 const char *type0_name
= type_name_no_tag (type0
);
6899 const char *type1_name
= type_name_no_tag (type1
);
6901 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
6902 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
6908 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6909 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6912 ada_type_name (struct type
*type
)
6916 else if (TYPE_NAME (type
) != NULL
)
6917 return TYPE_NAME (type
);
6919 return TYPE_TAG_NAME (type
);
6922 /* Search the list of "descriptive" types associated to TYPE for a type
6923 whose name is NAME. */
6925 static struct type
*
6926 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
6928 struct type
*result
;
6930 /* If there no descriptive-type info, then there is no parallel type
6932 if (!HAVE_GNAT_AUX_INFO (type
))
6935 result
= TYPE_DESCRIPTIVE_TYPE (type
);
6936 while (result
!= NULL
)
6938 char *result_name
= ada_type_name (result
);
6940 if (result_name
== NULL
)
6942 warning (_("unexpected null name on descriptive type"));
6946 /* If the names match, stop. */
6947 if (strcmp (result_name
, name
) == 0)
6950 /* Otherwise, look at the next item on the list, if any. */
6951 if (HAVE_GNAT_AUX_INFO (result
))
6952 result
= TYPE_DESCRIPTIVE_TYPE (result
);
6957 /* If we didn't find a match, see whether this is a packed array. With
6958 older compilers, the descriptive type information is either absent or
6959 irrelevant when it comes to packed arrays so the above lookup fails.
6960 Fall back to using a parallel lookup by name in this case. */
6961 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
6962 return ada_find_any_type (name
);
6967 /* Find a parallel type to TYPE with the specified NAME, using the
6968 descriptive type taken from the debugging information, if available,
6969 and otherwise using the (slower) name-based method. */
6971 static struct type
*
6972 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
6974 struct type
*result
= NULL
;
6976 if (HAVE_GNAT_AUX_INFO (type
))
6977 result
= find_parallel_type_by_descriptive_type (type
, name
);
6979 result
= ada_find_any_type (name
);
6984 /* Same as above, but specify the name of the parallel type by appending
6985 SUFFIX to the name of TYPE. */
6988 ada_find_parallel_type (struct type
*type
, const char *suffix
)
6990 char *name
, *typename
= ada_type_name (type
);
6993 if (typename
== NULL
)
6996 len
= strlen (typename
);
6998 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7000 strcpy (name
, typename
);
7001 strcpy (name
+ len
, suffix
);
7003 return ada_find_parallel_type_with_name (type
, name
);
7006 /* If TYPE is a variable-size record type, return the corresponding template
7007 type describing its fields. Otherwise, return NULL. */
7009 static struct type
*
7010 dynamic_template_type (struct type
*type
)
7012 type
= ada_check_typedef (type
);
7014 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
7015 || ada_type_name (type
) == NULL
)
7019 int len
= strlen (ada_type_name (type
));
7021 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7024 return ada_find_parallel_type (type
, "___XVE");
7028 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7029 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7032 is_dynamic_field (struct type
*templ_type
, int field_num
)
7034 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
7037 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
7038 && strstr (name
, "___XVL") != NULL
;
7041 /* The index of the variant field of TYPE, or -1 if TYPE does not
7042 represent a variant record type. */
7045 variant_field_index (struct type
*type
)
7049 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
7052 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
7054 if (ada_is_variant_part (type
, f
))
7060 /* A record type with no fields. */
7062 static struct type
*
7063 empty_record (struct type
*template)
7065 struct type
*type
= alloc_type_copy (template);
7067 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
7068 TYPE_NFIELDS (type
) = 0;
7069 TYPE_FIELDS (type
) = NULL
;
7070 INIT_CPLUS_SPECIFIC (type
);
7071 TYPE_NAME (type
) = "<empty>";
7072 TYPE_TAG_NAME (type
) = NULL
;
7073 TYPE_LENGTH (type
) = 0;
7077 /* An ordinary record type (with fixed-length fields) that describes
7078 the value of type TYPE at VALADDR or ADDRESS (see comments at
7079 the beginning of this section) VAL according to GNAT conventions.
7080 DVAL0 should describe the (portion of a) record that contains any
7081 necessary discriminants. It should be NULL if value_type (VAL) is
7082 an outer-level type (i.e., as opposed to a branch of a variant.) A
7083 variant field (unless unchecked) is replaced by a particular branch
7086 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7087 length are not statically known are discarded. As a consequence,
7088 VALADDR, ADDRESS and DVAL0 are ignored.
7090 NOTE: Limitations: For now, we assume that dynamic fields and
7091 variants occupy whole numbers of bytes. However, they need not be
7095 ada_template_to_fixed_record_type_1 (struct type
*type
,
7096 const gdb_byte
*valaddr
,
7097 CORE_ADDR address
, struct value
*dval0
,
7098 int keep_dynamic_fields
)
7100 struct value
*mark
= value_mark ();
7103 int nfields
, bit_len
;
7109 /* Compute the number of fields in this record type that are going
7110 to be processed: unless keep_dynamic_fields, this includes only
7111 fields whose position and length are static will be processed. */
7112 if (keep_dynamic_fields
)
7113 nfields
= TYPE_NFIELDS (type
);
7117 while (nfields
< TYPE_NFIELDS (type
)
7118 && !ada_is_variant_part (type
, nfields
)
7119 && !is_dynamic_field (type
, nfields
))
7123 rtype
= alloc_type_copy (type
);
7124 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
7125 INIT_CPLUS_SPECIFIC (rtype
);
7126 TYPE_NFIELDS (rtype
) = nfields
;
7127 TYPE_FIELDS (rtype
) = (struct field
*)
7128 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
7129 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
7130 TYPE_NAME (rtype
) = ada_type_name (type
);
7131 TYPE_TAG_NAME (rtype
) = NULL
;
7132 TYPE_FIXED_INSTANCE (rtype
) = 1;
7138 for (f
= 0; f
< nfields
; f
+= 1)
7140 off
= align_value (off
, field_alignment (type
, f
))
7141 + TYPE_FIELD_BITPOS (type
, f
);
7142 TYPE_FIELD_BITPOS (rtype
, f
) = off
;
7143 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
7145 if (ada_is_variant_part (type
, f
))
7150 else if (is_dynamic_field (type
, f
))
7152 const gdb_byte
*field_valaddr
= valaddr
;
7153 CORE_ADDR field_address
= address
;
7154 struct type
*field_type
=
7155 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
7159 /* rtype's length is computed based on the run-time
7160 value of discriminants. If the discriminants are not
7161 initialized, the type size may be completely bogus and
7162 GDB may fail to allocate a value for it. So check the
7163 size first before creating the value. */
7165 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
7170 /* If the type referenced by this field is an aligner type, we need
7171 to unwrap that aligner type, because its size might not be set.
7172 Keeping the aligner type would cause us to compute the wrong
7173 size for this field, impacting the offset of the all the fields
7174 that follow this one. */
7175 if (ada_is_aligner_type (field_type
))
7177 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
7179 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
7180 field_address
= cond_offset_target (field_address
, field_offset
);
7181 field_type
= ada_aligned_type (field_type
);
7184 field_valaddr
= cond_offset_host (field_valaddr
,
7185 off
/ TARGET_CHAR_BIT
);
7186 field_address
= cond_offset_target (field_address
,
7187 off
/ TARGET_CHAR_BIT
);
7189 /* Get the fixed type of the field. Note that, in this case,
7190 we do not want to get the real type out of the tag: if
7191 the current field is the parent part of a tagged record,
7192 we will get the tag of the object. Clearly wrong: the real
7193 type of the parent is not the real type of the child. We
7194 would end up in an infinite loop. */
7195 field_type
= ada_get_base_type (field_type
);
7196 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7197 field_address
, dval
, 0);
7198 /* If the field size is already larger than the maximum
7199 object size, then the record itself will necessarily
7200 be larger than the maximum object size. We need to make
7201 this check now, because the size might be so ridiculously
7202 large (due to an uninitialized variable in the inferior)
7203 that it would cause an overflow when adding it to the
7205 check_size (field_type
);
7207 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
7208 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7209 /* The multiplication can potentially overflow. But because
7210 the field length has been size-checked just above, and
7211 assuming that the maximum size is a reasonable value,
7212 an overflow should not happen in practice. So rather than
7213 adding overflow recovery code to this already complex code,
7214 we just assume that it's not going to happen. */
7216 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
7220 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
7222 /* If our field is a typedef type (most likely a typedef of
7223 a fat pointer, encoding an array access), then we need to
7224 look at its target type to determine its characteristics.
7225 In particular, we would miscompute the field size if we took
7226 the size of the typedef (zero), instead of the size of
7228 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
7229 field_type
= ada_typedef_target_type (field_type
);
7231 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
7232 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7233 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7235 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7238 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7240 if (off
+ fld_bit_len
> bit_len
)
7241 bit_len
= off
+ fld_bit_len
;
7243 TYPE_LENGTH (rtype
) =
7244 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7247 /* We handle the variant part, if any, at the end because of certain
7248 odd cases in which it is re-ordered so as NOT to be the last field of
7249 the record. This can happen in the presence of representation
7251 if (variant_field
>= 0)
7253 struct type
*branch_type
;
7255 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
7258 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
7263 to_fixed_variant_branch_type
7264 (TYPE_FIELD_TYPE (type
, variant_field
),
7265 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
7266 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
7267 if (branch_type
== NULL
)
7269 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
7270 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7271 TYPE_NFIELDS (rtype
) -= 1;
7275 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7276 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7278 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
7280 if (off
+ fld_bit_len
> bit_len
)
7281 bit_len
= off
+ fld_bit_len
;
7282 TYPE_LENGTH (rtype
) =
7283 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7287 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7288 should contain the alignment of that record, which should be a strictly
7289 positive value. If null or negative, then something is wrong, most
7290 probably in the debug info. In that case, we don't round up the size
7291 of the resulting type. If this record is not part of another structure,
7292 the current RTYPE length might be good enough for our purposes. */
7293 if (TYPE_LENGTH (type
) <= 0)
7295 if (TYPE_NAME (rtype
))
7296 warning (_("Invalid type size for `%s' detected: %d."),
7297 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
7299 warning (_("Invalid type size for <unnamed> detected: %d."),
7300 TYPE_LENGTH (type
));
7304 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
7305 TYPE_LENGTH (type
));
7308 value_free_to_mark (mark
);
7309 if (TYPE_LENGTH (rtype
) > varsize_limit
)
7310 error (_("record type with dynamic size is larger than varsize-limit"));
7314 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7317 static struct type
*
7318 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
7319 CORE_ADDR address
, struct value
*dval0
)
7321 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
7325 /* An ordinary record type in which ___XVL-convention fields and
7326 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7327 static approximations, containing all possible fields. Uses
7328 no runtime values. Useless for use in values, but that's OK,
7329 since the results are used only for type determinations. Works on both
7330 structs and unions. Representation note: to save space, we memorize
7331 the result of this function in the TYPE_TARGET_TYPE of the
7334 static struct type
*
7335 template_to_static_fixed_type (struct type
*type0
)
7341 if (TYPE_TARGET_TYPE (type0
) != NULL
)
7342 return TYPE_TARGET_TYPE (type0
);
7344 nfields
= TYPE_NFIELDS (type0
);
7347 for (f
= 0; f
< nfields
; f
+= 1)
7349 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
7350 struct type
*new_type
;
7352 if (is_dynamic_field (type0
, f
))
7353 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
7355 new_type
= static_unwrap_type (field_type
);
7356 if (type
== type0
&& new_type
!= field_type
)
7358 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
7359 TYPE_CODE (type
) = TYPE_CODE (type0
);
7360 INIT_CPLUS_SPECIFIC (type
);
7361 TYPE_NFIELDS (type
) = nfields
;
7362 TYPE_FIELDS (type
) = (struct field
*)
7363 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
7364 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
7365 sizeof (struct field
) * nfields
);
7366 TYPE_NAME (type
) = ada_type_name (type0
);
7367 TYPE_TAG_NAME (type
) = NULL
;
7368 TYPE_FIXED_INSTANCE (type
) = 1;
7369 TYPE_LENGTH (type
) = 0;
7371 TYPE_FIELD_TYPE (type
, f
) = new_type
;
7372 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
7377 /* Given an object of type TYPE whose contents are at VALADDR and
7378 whose address in memory is ADDRESS, returns a revision of TYPE,
7379 which should be a non-dynamic-sized record, in which the variant
7380 part, if any, is replaced with the appropriate branch. Looks
7381 for discriminant values in DVAL0, which can be NULL if the record
7382 contains the necessary discriminant values. */
7384 static struct type
*
7385 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
7386 CORE_ADDR address
, struct value
*dval0
)
7388 struct value
*mark
= value_mark ();
7391 struct type
*branch_type
;
7392 int nfields
= TYPE_NFIELDS (type
);
7393 int variant_field
= variant_field_index (type
);
7395 if (variant_field
== -1)
7399 dval
= value_from_contents_and_address (type
, valaddr
, address
);
7403 rtype
= alloc_type_copy (type
);
7404 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
7405 INIT_CPLUS_SPECIFIC (rtype
);
7406 TYPE_NFIELDS (rtype
) = nfields
;
7407 TYPE_FIELDS (rtype
) =
7408 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
7409 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
7410 sizeof (struct field
) * nfields
);
7411 TYPE_NAME (rtype
) = ada_type_name (type
);
7412 TYPE_TAG_NAME (rtype
) = NULL
;
7413 TYPE_FIXED_INSTANCE (rtype
) = 1;
7414 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
7416 branch_type
= to_fixed_variant_branch_type
7417 (TYPE_FIELD_TYPE (type
, variant_field
),
7418 cond_offset_host (valaddr
,
7419 TYPE_FIELD_BITPOS (type
, variant_field
)
7421 cond_offset_target (address
,
7422 TYPE_FIELD_BITPOS (type
, variant_field
)
7423 / TARGET_CHAR_BIT
), dval
);
7424 if (branch_type
== NULL
)
7428 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
7429 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7430 TYPE_NFIELDS (rtype
) -= 1;
7434 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7435 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7436 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
7437 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
7439 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
7441 value_free_to_mark (mark
);
7445 /* An ordinary record type (with fixed-length fields) that describes
7446 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7447 beginning of this section]. Any necessary discriminants' values
7448 should be in DVAL, a record value; it may be NULL if the object
7449 at ADDR itself contains any necessary discriminant values.
7450 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7451 values from the record are needed. Except in the case that DVAL,
7452 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7453 unchecked) is replaced by a particular branch of the variant.
7455 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7456 is questionable and may be removed. It can arise during the
7457 processing of an unconstrained-array-of-record type where all the
7458 variant branches have exactly the same size. This is because in
7459 such cases, the compiler does not bother to use the XVS convention
7460 when encoding the record. I am currently dubious of this
7461 shortcut and suspect the compiler should be altered. FIXME. */
7463 static struct type
*
7464 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
7465 CORE_ADDR address
, struct value
*dval
)
7467 struct type
*templ_type
;
7469 if (TYPE_FIXED_INSTANCE (type0
))
7472 templ_type
= dynamic_template_type (type0
);
7474 if (templ_type
!= NULL
)
7475 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
7476 else if (variant_field_index (type0
) >= 0)
7478 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
7480 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
7485 TYPE_FIXED_INSTANCE (type0
) = 1;
7491 /* An ordinary record type (with fixed-length fields) that describes
7492 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7493 union type. Any necessary discriminants' values should be in DVAL,
7494 a record value. That is, this routine selects the appropriate
7495 branch of the union at ADDR according to the discriminant value
7496 indicated in the union's type name. Returns VAR_TYPE0 itself if
7497 it represents a variant subject to a pragma Unchecked_Union. */
7499 static struct type
*
7500 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
7501 CORE_ADDR address
, struct value
*dval
)
7504 struct type
*templ_type
;
7505 struct type
*var_type
;
7507 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
7508 var_type
= TYPE_TARGET_TYPE (var_type0
);
7510 var_type
= var_type0
;
7512 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
7514 if (templ_type
!= NULL
)
7515 var_type
= templ_type
;
7517 if (is_unchecked_variant (var_type
, value_type (dval
)))
7520 ada_which_variant_applies (var_type
,
7521 value_type (dval
), value_contents (dval
));
7524 return empty_record (var_type
);
7525 else if (is_dynamic_field (var_type
, which
))
7526 return to_fixed_record_type
7527 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
7528 valaddr
, address
, dval
);
7529 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
7531 to_fixed_record_type
7532 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
7534 return TYPE_FIELD_TYPE (var_type
, which
);
7537 /* Assuming that TYPE0 is an array type describing the type of a value
7538 at ADDR, and that DVAL describes a record containing any
7539 discriminants used in TYPE0, returns a type for the value that
7540 contains no dynamic components (that is, no components whose sizes
7541 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7542 true, gives an error message if the resulting type's size is over
7545 static struct type
*
7546 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
7549 struct type
*index_type_desc
;
7550 struct type
*result
;
7551 int constrained_packed_array_p
;
7553 if (TYPE_FIXED_INSTANCE (type0
))
7556 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
7557 if (constrained_packed_array_p
)
7558 type0
= decode_constrained_packed_array_type (type0
);
7560 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
7561 ada_fixup_array_indexes_type (index_type_desc
);
7562 if (index_type_desc
== NULL
)
7564 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
7566 /* NOTE: elt_type---the fixed version of elt_type0---should never
7567 depend on the contents of the array in properly constructed
7569 /* Create a fixed version of the array element type.
7570 We're not providing the address of an element here,
7571 and thus the actual object value cannot be inspected to do
7572 the conversion. This should not be a problem, since arrays of
7573 unconstrained objects are not allowed. In particular, all
7574 the elements of an array of a tagged type should all be of
7575 the same type specified in the debugging info. No need to
7576 consult the object tag. */
7577 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
7579 /* Make sure we always create a new array type when dealing with
7580 packed array types, since we're going to fix-up the array
7581 type length and element bitsize a little further down. */
7582 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
7585 result
= create_array_type (alloc_type_copy (type0
),
7586 elt_type
, TYPE_INDEX_TYPE (type0
));
7591 struct type
*elt_type0
;
7594 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
7595 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7597 /* NOTE: result---the fixed version of elt_type0---should never
7598 depend on the contents of the array in properly constructed
7600 /* Create a fixed version of the array element type.
7601 We're not providing the address of an element here,
7602 and thus the actual object value cannot be inspected to do
7603 the conversion. This should not be a problem, since arrays of
7604 unconstrained objects are not allowed. In particular, all
7605 the elements of an array of a tagged type should all be of
7606 the same type specified in the debugging info. No need to
7607 consult the object tag. */
7609 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
7612 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
7614 struct type
*range_type
=
7615 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
7617 result
= create_array_type (alloc_type_copy (elt_type0
),
7618 result
, range_type
);
7619 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7621 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
7622 error (_("array type with dynamic size is larger than varsize-limit"));
7625 if (constrained_packed_array_p
)
7627 /* So far, the resulting type has been created as if the original
7628 type was a regular (non-packed) array type. As a result, the
7629 bitsize of the array elements needs to be set again, and the array
7630 length needs to be recomputed based on that bitsize. */
7631 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
7632 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
7634 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
7635 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
7636 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
7637 TYPE_LENGTH (result
)++;
7640 TYPE_FIXED_INSTANCE (result
) = 1;
7645 /* A standard type (containing no dynamically sized components)
7646 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7647 DVAL describes a record containing any discriminants used in TYPE0,
7648 and may be NULL if there are none, or if the object of type TYPE at
7649 ADDRESS or in VALADDR contains these discriminants.
7651 If CHECK_TAG is not null, in the case of tagged types, this function
7652 attempts to locate the object's tag and use it to compute the actual
7653 type. However, when ADDRESS is null, we cannot use it to determine the
7654 location of the tag, and therefore compute the tagged type's actual type.
7655 So we return the tagged type without consulting the tag. */
7657 static struct type
*
7658 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
7659 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7661 type
= ada_check_typedef (type
);
7662 switch (TYPE_CODE (type
))
7666 case TYPE_CODE_STRUCT
:
7668 struct type
*static_type
= to_static_fixed_type (type
);
7669 struct type
*fixed_record_type
=
7670 to_fixed_record_type (type
, valaddr
, address
, NULL
);
7672 /* If STATIC_TYPE is a tagged type and we know the object's address,
7673 then we can determine its tag, and compute the object's actual
7674 type from there. Note that we have to use the fixed record
7675 type (the parent part of the record may have dynamic fields
7676 and the way the location of _tag is expressed may depend on
7679 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
7681 struct type
*real_type
=
7682 type_from_tag (value_tag_from_contents_and_address
7687 if (real_type
!= NULL
)
7688 return to_fixed_record_type (real_type
, valaddr
, address
, NULL
);
7691 /* Check to see if there is a parallel ___XVZ variable.
7692 If there is, then it provides the actual size of our type. */
7693 else if (ada_type_name (fixed_record_type
) != NULL
)
7695 char *name
= ada_type_name (fixed_record_type
);
7696 char *xvz_name
= alloca (strlen (name
) + 7 /* "___XVZ\0" */);
7700 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
7701 size
= get_int_var_value (xvz_name
, &xvz_found
);
7702 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
7704 fixed_record_type
= copy_type (fixed_record_type
);
7705 TYPE_LENGTH (fixed_record_type
) = size
;
7707 /* The FIXED_RECORD_TYPE may have be a stub. We have
7708 observed this when the debugging info is STABS, and
7709 apparently it is something that is hard to fix.
7711 In practice, we don't need the actual type definition
7712 at all, because the presence of the XVZ variable allows us
7713 to assume that there must be a XVS type as well, which we
7714 should be able to use later, when we need the actual type
7717 In the meantime, pretend that the "fixed" type we are
7718 returning is NOT a stub, because this can cause trouble
7719 when using this type to create new types targeting it.
7720 Indeed, the associated creation routines often check
7721 whether the target type is a stub and will try to replace
7722 it, thus using a type with the wrong size. This, in turn,
7723 might cause the new type to have the wrong size too.
7724 Consider the case of an array, for instance, where the size
7725 of the array is computed from the number of elements in
7726 our array multiplied by the size of its element. */
7727 TYPE_STUB (fixed_record_type
) = 0;
7730 return fixed_record_type
;
7732 case TYPE_CODE_ARRAY
:
7733 return to_fixed_array_type (type
, dval
, 1);
7734 case TYPE_CODE_UNION
:
7738 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
7742 /* The same as ada_to_fixed_type_1, except that it preserves the type
7743 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7745 The typedef layer needs be preserved in order to differentiate between
7746 arrays and array pointers when both types are implemented using the same
7747 fat pointer. In the array pointer case, the pointer is encoded as
7748 a typedef of the pointer type. For instance, considering:
7750 type String_Access is access String;
7751 S1 : String_Access := null;
7753 To the debugger, S1 is defined as a typedef of type String. But
7754 to the user, it is a pointer. So if the user tries to print S1,
7755 we should not dereference the array, but print the array address
7758 If we didn't preserve the typedef layer, we would lose the fact that
7759 the type is to be presented as a pointer (needs de-reference before
7760 being printed). And we would also use the source-level type name. */
7763 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
7764 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7767 struct type
*fixed_type
=
7768 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
7770 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7771 then preserve the typedef layer.
7773 Implementation note: We can only check the main-type portion of
7774 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7775 from TYPE now returns a type that has the same instance flags
7776 as TYPE. For instance, if TYPE is a "typedef const", and its
7777 target type is a "struct", then the typedef elimination will return
7778 a "const" version of the target type. See check_typedef for more
7779 details about how the typedef layer elimination is done.
7781 brobecker/2010-11-19: It seems to me that the only case where it is
7782 useful to preserve the typedef layer is when dealing with fat pointers.
7783 Perhaps, we could add a check for that and preserve the typedef layer
7784 only in that situation. But this seems unecessary so far, probably
7785 because we call check_typedef/ada_check_typedef pretty much everywhere.
7787 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
7788 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
7789 == TYPE_MAIN_TYPE (fixed_type
)))
7795 /* A standard (static-sized) type corresponding as well as possible to
7796 TYPE0, but based on no runtime data. */
7798 static struct type
*
7799 to_static_fixed_type (struct type
*type0
)
7806 if (TYPE_FIXED_INSTANCE (type0
))
7809 type0
= ada_check_typedef (type0
);
7811 switch (TYPE_CODE (type0
))
7815 case TYPE_CODE_STRUCT
:
7816 type
= dynamic_template_type (type0
);
7818 return template_to_static_fixed_type (type
);
7820 return template_to_static_fixed_type (type0
);
7821 case TYPE_CODE_UNION
:
7822 type
= ada_find_parallel_type (type0
, "___XVU");
7824 return template_to_static_fixed_type (type
);
7826 return template_to_static_fixed_type (type0
);
7830 /* A static approximation of TYPE with all type wrappers removed. */
7832 static struct type
*
7833 static_unwrap_type (struct type
*type
)
7835 if (ada_is_aligner_type (type
))
7837 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
7838 if (ada_type_name (type1
) == NULL
)
7839 TYPE_NAME (type1
) = ada_type_name (type
);
7841 return static_unwrap_type (type1
);
7845 struct type
*raw_real_type
= ada_get_base_type (type
);
7847 if (raw_real_type
== type
)
7850 return to_static_fixed_type (raw_real_type
);
7854 /* In some cases, incomplete and private types require
7855 cross-references that are not resolved as records (for example,
7857 type FooP is access Foo;
7859 type Foo is array ...;
7860 ). In these cases, since there is no mechanism for producing
7861 cross-references to such types, we instead substitute for FooP a
7862 stub enumeration type that is nowhere resolved, and whose tag is
7863 the name of the actual type. Call these types "non-record stubs". */
7865 /* A type equivalent to TYPE that is not a non-record stub, if one
7866 exists, otherwise TYPE. */
7869 ada_check_typedef (struct type
*type
)
7874 /* If our type is a typedef type of a fat pointer, then we're done.
7875 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7876 what allows us to distinguish between fat pointers that represent
7877 array types, and fat pointers that represent array access types
7878 (in both cases, the compiler implements them as fat pointers). */
7879 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
7880 && is_thick_pntr (ada_typedef_target_type (type
)))
7883 CHECK_TYPEDEF (type
);
7884 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
7885 || !TYPE_STUB (type
)
7886 || TYPE_TAG_NAME (type
) == NULL
)
7890 char *name
= TYPE_TAG_NAME (type
);
7891 struct type
*type1
= ada_find_any_type (name
);
7896 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7897 stubs pointing to arrays, as we don't create symbols for array
7898 types, only for the typedef-to-array types). If that's the case,
7899 strip the typedef layer. */
7900 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
7901 type1
= ada_check_typedef (type1
);
7907 /* A value representing the data at VALADDR/ADDRESS as described by
7908 type TYPE0, but with a standard (static-sized) type that correctly
7909 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7910 type, then return VAL0 [this feature is simply to avoid redundant
7911 creation of struct values]. */
7913 static struct value
*
7914 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
7917 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
7919 if (type
== type0
&& val0
!= NULL
)
7922 return value_from_contents_and_address (type
, 0, address
);
7925 /* A value representing VAL, but with a standard (static-sized) type
7926 that correctly describes it. Does not necessarily create a new
7930 ada_to_fixed_value (struct value
*val
)
7932 return ada_to_fixed_value_create (value_type (val
),
7933 value_address (val
),
7940 /* Table mapping attribute numbers to names.
7941 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7943 static const char *attribute_names
[] = {
7961 ada_attribute_name (enum exp_opcode n
)
7963 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
7964 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
7966 return attribute_names
[0];
7969 /* Evaluate the 'POS attribute applied to ARG. */
7972 pos_atr (struct value
*arg
)
7974 struct value
*val
= coerce_ref (arg
);
7975 struct type
*type
= value_type (val
);
7977 if (!discrete_type_p (type
))
7978 error (_("'POS only defined on discrete types"));
7980 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7983 LONGEST v
= value_as_long (val
);
7985 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7987 if (v
== TYPE_FIELD_BITPOS (type
, i
))
7990 error (_("enumeration value is invalid: can't find 'POS"));
7993 return value_as_long (val
);
7996 static struct value
*
7997 value_pos_atr (struct type
*type
, struct value
*arg
)
7999 return value_from_longest (type
, pos_atr (arg
));
8002 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8004 static struct value
*
8005 value_val_atr (struct type
*type
, struct value
*arg
)
8007 if (!discrete_type_p (type
))
8008 error (_("'VAL only defined on discrete types"));
8009 if (!integer_type_p (value_type (arg
)))
8010 error (_("'VAL requires integral argument"));
8012 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
8014 long pos
= value_as_long (arg
);
8016 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
8017 error (_("argument to 'VAL out of range"));
8018 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, pos
));
8021 return value_from_longest (type
, value_as_long (arg
));
8027 /* True if TYPE appears to be an Ada character type.
8028 [At the moment, this is true only for Character and Wide_Character;
8029 It is a heuristic test that could stand improvement]. */
8032 ada_is_character_type (struct type
*type
)
8036 /* If the type code says it's a character, then assume it really is,
8037 and don't check any further. */
8038 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
8041 /* Otherwise, assume it's a character type iff it is a discrete type
8042 with a known character type name. */
8043 name
= ada_type_name (type
);
8044 return (name
!= NULL
8045 && (TYPE_CODE (type
) == TYPE_CODE_INT
8046 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
8047 && (strcmp (name
, "character") == 0
8048 || strcmp (name
, "wide_character") == 0
8049 || strcmp (name
, "wide_wide_character") == 0
8050 || strcmp (name
, "unsigned char") == 0));
8053 /* True if TYPE appears to be an Ada string type. */
8056 ada_is_string_type (struct type
*type
)
8058 type
= ada_check_typedef (type
);
8060 && TYPE_CODE (type
) != TYPE_CODE_PTR
8061 && (ada_is_simple_array_type (type
)
8062 || ada_is_array_descriptor_type (type
))
8063 && ada_array_arity (type
) == 1)
8065 struct type
*elttype
= ada_array_element_type (type
, 1);
8067 return ada_is_character_type (elttype
);
8073 /* The compiler sometimes provides a parallel XVS type for a given
8074 PAD type. Normally, it is safe to follow the PAD type directly,
8075 but older versions of the compiler have a bug that causes the offset
8076 of its "F" field to be wrong. Following that field in that case
8077 would lead to incorrect results, but this can be worked around
8078 by ignoring the PAD type and using the associated XVS type instead.
8080 Set to True if the debugger should trust the contents of PAD types.
8081 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8082 static int trust_pad_over_xvs
= 1;
8084 /* True if TYPE is a struct type introduced by the compiler to force the
8085 alignment of a value. Such types have a single field with a
8086 distinctive name. */
8089 ada_is_aligner_type (struct type
*type
)
8091 type
= ada_check_typedef (type
);
8093 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
8096 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
8097 && TYPE_NFIELDS (type
) == 1
8098 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
8101 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8102 the parallel type. */
8105 ada_get_base_type (struct type
*raw_type
)
8107 struct type
*real_type_namer
;
8108 struct type
*raw_real_type
;
8110 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
8113 if (ada_is_aligner_type (raw_type
))
8114 /* The encoding specifies that we should always use the aligner type.
8115 So, even if this aligner type has an associated XVS type, we should
8118 According to the compiler gurus, an XVS type parallel to an aligner
8119 type may exist because of a stabs limitation. In stabs, aligner
8120 types are empty because the field has a variable-sized type, and
8121 thus cannot actually be used as an aligner type. As a result,
8122 we need the associated parallel XVS type to decode the type.
8123 Since the policy in the compiler is to not change the internal
8124 representation based on the debugging info format, we sometimes
8125 end up having a redundant XVS type parallel to the aligner type. */
8128 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
8129 if (real_type_namer
== NULL
8130 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
8131 || TYPE_NFIELDS (real_type_namer
) != 1)
8134 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
8136 /* This is an older encoding form where the base type needs to be
8137 looked up by name. We prefer the newer enconding because it is
8139 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
8140 if (raw_real_type
== NULL
)
8143 return raw_real_type
;
8146 /* The field in our XVS type is a reference to the base type. */
8147 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
8150 /* The type of value designated by TYPE, with all aligners removed. */
8153 ada_aligned_type (struct type
*type
)
8155 if (ada_is_aligner_type (type
))
8156 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
8158 return ada_get_base_type (type
);
8162 /* The address of the aligned value in an object at address VALADDR
8163 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8166 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
8168 if (ada_is_aligner_type (type
))
8169 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
8171 TYPE_FIELD_BITPOS (type
,
8172 0) / TARGET_CHAR_BIT
);
8179 /* The printed representation of an enumeration literal with encoded
8180 name NAME. The value is good to the next call of ada_enum_name. */
8182 ada_enum_name (const char *name
)
8184 static char *result
;
8185 static size_t result_len
= 0;
8188 /* First, unqualify the enumeration name:
8189 1. Search for the last '.' character. If we find one, then skip
8190 all the preceeding characters, the unqualified name starts
8191 right after that dot.
8192 2. Otherwise, we may be debugging on a target where the compiler
8193 translates dots into "__". Search forward for double underscores,
8194 but stop searching when we hit an overloading suffix, which is
8195 of the form "__" followed by digits. */
8197 tmp
= strrchr (name
, '.');
8202 while ((tmp
= strstr (name
, "__")) != NULL
)
8204 if (isdigit (tmp
[2]))
8215 if (name
[1] == 'U' || name
[1] == 'W')
8217 if (sscanf (name
+ 2, "%x", &v
) != 1)
8223 GROW_VECT (result
, result_len
, 16);
8224 if (isascii (v
) && isprint (v
))
8225 xsnprintf (result
, result_len
, "'%c'", v
);
8226 else if (name
[1] == 'U')
8227 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
8229 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
8235 tmp
= strstr (name
, "__");
8237 tmp
= strstr (name
, "$");
8240 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
8241 strncpy (result
, name
, tmp
- name
);
8242 result
[tmp
- name
] = '\0';
8250 /* Evaluate the subexpression of EXP starting at *POS as for
8251 evaluate_type, updating *POS to point just past the evaluated
8254 static struct value
*
8255 evaluate_subexp_type (struct expression
*exp
, int *pos
)
8257 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
8260 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8263 static struct value
*
8264 unwrap_value (struct value
*val
)
8266 struct type
*type
= ada_check_typedef (value_type (val
));
8268 if (ada_is_aligner_type (type
))
8270 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
8271 struct type
*val_type
= ada_check_typedef (value_type (v
));
8273 if (ada_type_name (val_type
) == NULL
)
8274 TYPE_NAME (val_type
) = ada_type_name (type
);
8276 return unwrap_value (v
);
8280 struct type
*raw_real_type
=
8281 ada_check_typedef (ada_get_base_type (type
));
8283 /* If there is no parallel XVS or XVE type, then the value is
8284 already unwrapped. Return it without further modification. */
8285 if ((type
== raw_real_type
)
8286 && ada_find_parallel_type (type
, "___XVE") == NULL
)
8290 coerce_unspec_val_to_type
8291 (val
, ada_to_fixed_type (raw_real_type
, 0,
8292 value_address (val
),
8297 static struct value
*
8298 cast_to_fixed (struct type
*type
, struct value
*arg
)
8302 if (type
== value_type (arg
))
8304 else if (ada_is_fixed_point_type (value_type (arg
)))
8305 val
= ada_float_to_fixed (type
,
8306 ada_fixed_to_float (value_type (arg
),
8307 value_as_long (arg
)));
8310 DOUBLEST argd
= value_as_double (arg
);
8312 val
= ada_float_to_fixed (type
, argd
);
8315 return value_from_longest (type
, val
);
8318 static struct value
*
8319 cast_from_fixed (struct type
*type
, struct value
*arg
)
8321 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
8322 value_as_long (arg
));
8324 return value_from_double (type
, val
);
8327 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8328 return the converted value. */
8330 static struct value
*
8331 coerce_for_assign (struct type
*type
, struct value
*val
)
8333 struct type
*type2
= value_type (val
);
8338 type2
= ada_check_typedef (type2
);
8339 type
= ada_check_typedef (type
);
8341 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
8342 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8344 val
= ada_value_ind (val
);
8345 type2
= value_type (val
);
8348 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
8349 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8351 if (TYPE_LENGTH (type2
) != TYPE_LENGTH (type
)
8352 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
8353 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2
)))
8354 error (_("Incompatible types in assignment"));
8355 deprecated_set_value_type (val
, type
);
8360 static struct value
*
8361 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
8364 struct type
*type1
, *type2
;
8367 arg1
= coerce_ref (arg1
);
8368 arg2
= coerce_ref (arg2
);
8369 type1
= base_type (ada_check_typedef (value_type (arg1
)));
8370 type2
= base_type (ada_check_typedef (value_type (arg2
)));
8372 if (TYPE_CODE (type1
) != TYPE_CODE_INT
8373 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
8374 return value_binop (arg1
, arg2
, op
);
8383 return value_binop (arg1
, arg2
, op
);
8386 v2
= value_as_long (arg2
);
8388 error (_("second operand of %s must not be zero."), op_string (op
));
8390 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
8391 return value_binop (arg1
, arg2
, op
);
8393 v1
= value_as_long (arg1
);
8398 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
8399 v
+= v
> 0 ? -1 : 1;
8407 /* Should not reach this point. */
8411 val
= allocate_value (type1
);
8412 store_unsigned_integer (value_contents_raw (val
),
8413 TYPE_LENGTH (value_type (val
)),
8414 gdbarch_byte_order (get_type_arch (type1
)), v
);
8419 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
8421 if (ada_is_direct_array_type (value_type (arg1
))
8422 || ada_is_direct_array_type (value_type (arg2
)))
8424 /* Automatically dereference any array reference before
8425 we attempt to perform the comparison. */
8426 arg1
= ada_coerce_ref (arg1
);
8427 arg2
= ada_coerce_ref (arg2
);
8429 arg1
= ada_coerce_to_simple_array (arg1
);
8430 arg2
= ada_coerce_to_simple_array (arg2
);
8431 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
8432 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
8433 error (_("Attempt to compare array with non-array"));
8434 /* FIXME: The following works only for types whose
8435 representations use all bits (no padding or undefined bits)
8436 and do not have user-defined equality. */
8438 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
8439 && memcmp (value_contents (arg1
), value_contents (arg2
),
8440 TYPE_LENGTH (value_type (arg1
))) == 0;
8442 return value_equal (arg1
, arg2
);
8445 /* Total number of component associations in the aggregate starting at
8446 index PC in EXP. Assumes that index PC is the start of an
8450 num_component_specs (struct expression
*exp
, int pc
)
8454 m
= exp
->elts
[pc
+ 1].longconst
;
8457 for (i
= 0; i
< m
; i
+= 1)
8459 switch (exp
->elts
[pc
].opcode
)
8465 n
+= exp
->elts
[pc
+ 1].longconst
;
8468 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
8473 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8474 component of LHS (a simple array or a record), updating *POS past
8475 the expression, assuming that LHS is contained in CONTAINER. Does
8476 not modify the inferior's memory, nor does it modify LHS (unless
8477 LHS == CONTAINER). */
8480 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
8481 struct expression
*exp
, int *pos
)
8483 struct value
*mark
= value_mark ();
8486 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
8488 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
8489 struct value
*index_val
= value_from_longest (index_type
, index
);
8491 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
8495 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
8496 elt
= ada_to_fixed_value (unwrap_value (elt
));
8499 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
8500 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
8502 value_assign_to_component (container
, elt
,
8503 ada_evaluate_subexp (NULL
, exp
, pos
,
8506 value_free_to_mark (mark
);
8509 /* Assuming that LHS represents an lvalue having a record or array
8510 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8511 of that aggregate's value to LHS, advancing *POS past the
8512 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8513 lvalue containing LHS (possibly LHS itself). Does not modify
8514 the inferior's memory, nor does it modify the contents of
8515 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8517 static struct value
*
8518 assign_aggregate (struct value
*container
,
8519 struct value
*lhs
, struct expression
*exp
,
8520 int *pos
, enum noside noside
)
8522 struct type
*lhs_type
;
8523 int n
= exp
->elts
[*pos
+1].longconst
;
8524 LONGEST low_index
, high_index
;
8527 int max_indices
, num_indices
;
8528 int is_array_aggregate
;
8532 if (noside
!= EVAL_NORMAL
)
8536 for (i
= 0; i
< n
; i
+= 1)
8537 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
8541 container
= ada_coerce_ref (container
);
8542 if (ada_is_direct_array_type (value_type (container
)))
8543 container
= ada_coerce_to_simple_array (container
);
8544 lhs
= ada_coerce_ref (lhs
);
8545 if (!deprecated_value_modifiable (lhs
))
8546 error (_("Left operand of assignment is not a modifiable lvalue."));
8548 lhs_type
= value_type (lhs
);
8549 if (ada_is_direct_array_type (lhs_type
))
8551 lhs
= ada_coerce_to_simple_array (lhs
);
8552 lhs_type
= value_type (lhs
);
8553 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
8554 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
8555 is_array_aggregate
= 1;
8557 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
8560 high_index
= num_visible_fields (lhs_type
) - 1;
8561 is_array_aggregate
= 0;
8564 error (_("Left-hand side must be array or record."));
8566 num_specs
= num_component_specs (exp
, *pos
- 3);
8567 max_indices
= 4 * num_specs
+ 4;
8568 indices
= alloca (max_indices
* sizeof (indices
[0]));
8569 indices
[0] = indices
[1] = low_index
- 1;
8570 indices
[2] = indices
[3] = high_index
+ 1;
8573 for (i
= 0; i
< n
; i
+= 1)
8575 switch (exp
->elts
[*pos
].opcode
)
8578 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
8579 &num_indices
, max_indices
,
8580 low_index
, high_index
);
8583 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
8584 &num_indices
, max_indices
,
8585 low_index
, high_index
);
8589 error (_("Misplaced 'others' clause"));
8590 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
8591 num_indices
, low_index
, high_index
);
8594 error (_("Internal error: bad aggregate clause"));
8601 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8602 construct at *POS, updating *POS past the construct, given that
8603 the positions are relative to lower bound LOW, where HIGH is the
8604 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8605 updating *NUM_INDICES as needed. CONTAINER is as for
8606 assign_aggregate. */
8608 aggregate_assign_positional (struct value
*container
,
8609 struct value
*lhs
, struct expression
*exp
,
8610 int *pos
, LONGEST
*indices
, int *num_indices
,
8611 int max_indices
, LONGEST low
, LONGEST high
)
8613 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
8615 if (ind
- 1 == high
)
8616 warning (_("Extra components in aggregate ignored."));
8619 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
8621 assign_component (container
, lhs
, ind
, exp
, pos
);
8624 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8627 /* Assign into the components of LHS indexed by the OP_CHOICES
8628 construct at *POS, updating *POS past the construct, given that
8629 the allowable indices are LOW..HIGH. Record the indices assigned
8630 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8631 needed. CONTAINER is as for assign_aggregate. */
8633 aggregate_assign_from_choices (struct value
*container
,
8634 struct value
*lhs
, struct expression
*exp
,
8635 int *pos
, LONGEST
*indices
, int *num_indices
,
8636 int max_indices
, LONGEST low
, LONGEST high
)
8639 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
8640 int choice_pos
, expr_pc
;
8641 int is_array
= ada_is_direct_array_type (value_type (lhs
));
8643 choice_pos
= *pos
+= 3;
8645 for (j
= 0; j
< n_choices
; j
+= 1)
8646 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8648 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8650 for (j
= 0; j
< n_choices
; j
+= 1)
8652 LONGEST lower
, upper
;
8653 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
8655 if (op
== OP_DISCRETE_RANGE
)
8658 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8660 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8665 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
8677 name
= &exp
->elts
[choice_pos
+ 2].string
;
8680 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
8683 error (_("Invalid record component association."));
8685 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
8687 if (! find_struct_field (name
, value_type (lhs
), 0,
8688 NULL
, NULL
, NULL
, NULL
, &ind
))
8689 error (_("Unknown component name: %s."), name
);
8690 lower
= upper
= ind
;
8693 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
8694 error (_("Index in component association out of bounds."));
8696 add_component_interval (lower
, upper
, indices
, num_indices
,
8698 while (lower
<= upper
)
8703 assign_component (container
, lhs
, lower
, exp
, &pos1
);
8709 /* Assign the value of the expression in the OP_OTHERS construct in
8710 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8711 have not been previously assigned. The index intervals already assigned
8712 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8713 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8715 aggregate_assign_others (struct value
*container
,
8716 struct value
*lhs
, struct expression
*exp
,
8717 int *pos
, LONGEST
*indices
, int num_indices
,
8718 LONGEST low
, LONGEST high
)
8721 int expr_pc
= *pos
+ 1;
8723 for (i
= 0; i
< num_indices
- 2; i
+= 2)
8727 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
8732 assign_component (container
, lhs
, ind
, exp
, &localpos
);
8735 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8738 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8739 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8740 modifying *SIZE as needed. It is an error if *SIZE exceeds
8741 MAX_SIZE. The resulting intervals do not overlap. */
8743 add_component_interval (LONGEST low
, LONGEST high
,
8744 LONGEST
* indices
, int *size
, int max_size
)
8748 for (i
= 0; i
< *size
; i
+= 2) {
8749 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
8753 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
8754 if (high
< indices
[kh
])
8756 if (low
< indices
[i
])
8758 indices
[i
+ 1] = indices
[kh
- 1];
8759 if (high
> indices
[i
+ 1])
8760 indices
[i
+ 1] = high
;
8761 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
8762 *size
-= kh
- i
- 2;
8765 else if (high
< indices
[i
])
8769 if (*size
== max_size
)
8770 error (_("Internal error: miscounted aggregate components."));
8772 for (j
= *size
-1; j
>= i
+2; j
-= 1)
8773 indices
[j
] = indices
[j
- 2];
8775 indices
[i
+ 1] = high
;
8778 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8781 static struct value
*
8782 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
8784 if (type
== ada_check_typedef (value_type (arg2
)))
8787 if (ada_is_fixed_point_type (type
))
8788 return (cast_to_fixed (type
, arg2
));
8790 if (ada_is_fixed_point_type (value_type (arg2
)))
8791 return cast_from_fixed (type
, arg2
);
8793 return value_cast (type
, arg2
);
8796 /* Evaluating Ada expressions, and printing their result.
8797 ------------------------------------------------------
8802 We usually evaluate an Ada expression in order to print its value.
8803 We also evaluate an expression in order to print its type, which
8804 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8805 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8806 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8807 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8810 Evaluating expressions is a little more complicated for Ada entities
8811 than it is for entities in languages such as C. The main reason for
8812 this is that Ada provides types whose definition might be dynamic.
8813 One example of such types is variant records. Or another example
8814 would be an array whose bounds can only be known at run time.
8816 The following description is a general guide as to what should be
8817 done (and what should NOT be done) in order to evaluate an expression
8818 involving such types, and when. This does not cover how the semantic
8819 information is encoded by GNAT as this is covered separatly. For the
8820 document used as the reference for the GNAT encoding, see exp_dbug.ads
8821 in the GNAT sources.
8823 Ideally, we should embed each part of this description next to its
8824 associated code. Unfortunately, the amount of code is so vast right
8825 now that it's hard to see whether the code handling a particular
8826 situation might be duplicated or not. One day, when the code is
8827 cleaned up, this guide might become redundant with the comments
8828 inserted in the code, and we might want to remove it.
8830 2. ``Fixing'' an Entity, the Simple Case:
8831 -----------------------------------------
8833 When evaluating Ada expressions, the tricky issue is that they may
8834 reference entities whose type contents and size are not statically
8835 known. Consider for instance a variant record:
8837 type Rec (Empty : Boolean := True) is record
8840 when False => Value : Integer;
8843 Yes : Rec := (Empty => False, Value => 1);
8844 No : Rec := (empty => True);
8846 The size and contents of that record depends on the value of the
8847 descriminant (Rec.Empty). At this point, neither the debugging
8848 information nor the associated type structure in GDB are able to
8849 express such dynamic types. So what the debugger does is to create
8850 "fixed" versions of the type that applies to the specific object.
8851 We also informally refer to this opperation as "fixing" an object,
8852 which means creating its associated fixed type.
8854 Example: when printing the value of variable "Yes" above, its fixed
8855 type would look like this:
8862 On the other hand, if we printed the value of "No", its fixed type
8869 Things become a little more complicated when trying to fix an entity
8870 with a dynamic type that directly contains another dynamic type,
8871 such as an array of variant records, for instance. There are
8872 two possible cases: Arrays, and records.
8874 3. ``Fixing'' Arrays:
8875 ---------------------
8877 The type structure in GDB describes an array in terms of its bounds,
8878 and the type of its elements. By design, all elements in the array
8879 have the same type and we cannot represent an array of variant elements
8880 using the current type structure in GDB. When fixing an array,
8881 we cannot fix the array element, as we would potentially need one
8882 fixed type per element of the array. As a result, the best we can do
8883 when fixing an array is to produce an array whose bounds and size
8884 are correct (allowing us to read it from memory), but without having
8885 touched its element type. Fixing each element will be done later,
8886 when (if) necessary.
8888 Arrays are a little simpler to handle than records, because the same
8889 amount of memory is allocated for each element of the array, even if
8890 the amount of space actually used by each element differs from element
8891 to element. Consider for instance the following array of type Rec:
8893 type Rec_Array is array (1 .. 2) of Rec;
8895 The actual amount of memory occupied by each element might be different
8896 from element to element, depending on the value of their discriminant.
8897 But the amount of space reserved for each element in the array remains
8898 fixed regardless. So we simply need to compute that size using
8899 the debugging information available, from which we can then determine
8900 the array size (we multiply the number of elements of the array by
8901 the size of each element).
8903 The simplest case is when we have an array of a constrained element
8904 type. For instance, consider the following type declarations:
8906 type Bounded_String (Max_Size : Integer) is
8908 Buffer : String (1 .. Max_Size);
8910 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8912 In this case, the compiler describes the array as an array of
8913 variable-size elements (identified by its XVS suffix) for which
8914 the size can be read in the parallel XVZ variable.
8916 In the case of an array of an unconstrained element type, the compiler
8917 wraps the array element inside a private PAD type. This type should not
8918 be shown to the user, and must be "unwrap"'ed before printing. Note
8919 that we also use the adjective "aligner" in our code to designate
8920 these wrapper types.
8922 In some cases, the size allocated for each element is statically
8923 known. In that case, the PAD type already has the correct size,
8924 and the array element should remain unfixed.
8926 But there are cases when this size is not statically known.
8927 For instance, assuming that "Five" is an integer variable:
8929 type Dynamic is array (1 .. Five) of Integer;
8930 type Wrapper (Has_Length : Boolean := False) is record
8933 when True => Length : Integer;
8937 type Wrapper_Array is array (1 .. 2) of Wrapper;
8939 Hello : Wrapper_Array := (others => (Has_Length => True,
8940 Data => (others => 17),
8944 The debugging info would describe variable Hello as being an
8945 array of a PAD type. The size of that PAD type is not statically
8946 known, but can be determined using a parallel XVZ variable.
8947 In that case, a copy of the PAD type with the correct size should
8948 be used for the fixed array.
8950 3. ``Fixing'' record type objects:
8951 ----------------------------------
8953 Things are slightly different from arrays in the case of dynamic
8954 record types. In this case, in order to compute the associated
8955 fixed type, we need to determine the size and offset of each of
8956 its components. This, in turn, requires us to compute the fixed
8957 type of each of these components.
8959 Consider for instance the example:
8961 type Bounded_String (Max_Size : Natural) is record
8962 Str : String (1 .. Max_Size);
8965 My_String : Bounded_String (Max_Size => 10);
8967 In that case, the position of field "Length" depends on the size
8968 of field Str, which itself depends on the value of the Max_Size
8969 discriminant. In order to fix the type of variable My_String,
8970 we need to fix the type of field Str. Therefore, fixing a variant
8971 record requires us to fix each of its components.
8973 However, if a component does not have a dynamic size, the component
8974 should not be fixed. In particular, fields that use a PAD type
8975 should not fixed. Here is an example where this might happen
8976 (assuming type Rec above):
8978 type Container (Big : Boolean) is record
8982 when True => Another : Integer;
8986 My_Container : Container := (Big => False,
8987 First => (Empty => True),
8990 In that example, the compiler creates a PAD type for component First,
8991 whose size is constant, and then positions the component After just
8992 right after it. The offset of component After is therefore constant
8995 The debugger computes the position of each field based on an algorithm
8996 that uses, among other things, the actual position and size of the field
8997 preceding it. Let's now imagine that the user is trying to print
8998 the value of My_Container. If the type fixing was recursive, we would
8999 end up computing the offset of field After based on the size of the
9000 fixed version of field First. And since in our example First has
9001 only one actual field, the size of the fixed type is actually smaller
9002 than the amount of space allocated to that field, and thus we would
9003 compute the wrong offset of field After.
9005 To make things more complicated, we need to watch out for dynamic
9006 components of variant records (identified by the ___XVL suffix in
9007 the component name). Even if the target type is a PAD type, the size
9008 of that type might not be statically known. So the PAD type needs
9009 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9010 we might end up with the wrong size for our component. This can be
9011 observed with the following type declarations:
9013 type Octal is new Integer range 0 .. 7;
9014 type Octal_Array is array (Positive range <>) of Octal;
9015 pragma Pack (Octal_Array);
9017 type Octal_Buffer (Size : Positive) is record
9018 Buffer : Octal_Array (1 .. Size);
9022 In that case, Buffer is a PAD type whose size is unset and needs
9023 to be computed by fixing the unwrapped type.
9025 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9026 ----------------------------------------------------------
9028 Lastly, when should the sub-elements of an entity that remained unfixed
9029 thus far, be actually fixed?
9031 The answer is: Only when referencing that element. For instance
9032 when selecting one component of a record, this specific component
9033 should be fixed at that point in time. Or when printing the value
9034 of a record, each component should be fixed before its value gets
9035 printed. Similarly for arrays, the element of the array should be
9036 fixed when printing each element of the array, or when extracting
9037 one element out of that array. On the other hand, fixing should
9038 not be performed on the elements when taking a slice of an array!
9040 Note that one of the side-effects of miscomputing the offset and
9041 size of each field is that we end up also miscomputing the size
9042 of the containing type. This can have adverse results when computing
9043 the value of an entity. GDB fetches the value of an entity based
9044 on the size of its type, and thus a wrong size causes GDB to fetch
9045 the wrong amount of memory. In the case where the computed size is
9046 too small, GDB fetches too little data to print the value of our
9047 entiry. Results in this case as unpredicatble, as we usually read
9048 past the buffer containing the data =:-o. */
9050 /* Implement the evaluate_exp routine in the exp_descriptor structure
9051 for the Ada language. */
9053 static struct value
*
9054 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
9055 int *pos
, enum noside noside
)
9060 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
9063 struct value
**argvec
;
9067 op
= exp
->elts
[pc
].opcode
;
9073 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9074 arg1
= unwrap_value (arg1
);
9076 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9077 then we need to perform the conversion manually, because
9078 evaluate_subexp_standard doesn't do it. This conversion is
9079 necessary in Ada because the different kinds of float/fixed
9080 types in Ada have different representations.
9082 Similarly, we need to perform the conversion from OP_LONG
9084 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
9085 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
9091 struct value
*result
;
9094 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9095 /* The result type will have code OP_STRING, bashed there from
9096 OP_ARRAY. Bash it back. */
9097 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
9098 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
9104 type
= exp
->elts
[pc
+ 1].type
;
9105 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
9106 if (noside
== EVAL_SKIP
)
9108 arg1
= ada_value_cast (type
, arg1
, noside
);
9113 type
= exp
->elts
[pc
+ 1].type
;
9114 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
9117 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9118 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9120 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
9121 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9123 return ada_value_assign (arg1
, arg1
);
9125 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9126 except if the lhs of our assignment is a convenience variable.
9127 In the case of assigning to a convenience variable, the lhs
9128 should be exactly the result of the evaluation of the rhs. */
9129 type
= value_type (arg1
);
9130 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9132 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
9133 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9135 if (ada_is_fixed_point_type (value_type (arg1
)))
9136 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
9137 else if (ada_is_fixed_point_type (value_type (arg2
)))
9139 (_("Fixed-point values must be assigned to fixed-point variables"));
9141 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
9142 return ada_value_assign (arg1
, arg2
);
9145 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9146 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9147 if (noside
== EVAL_SKIP
)
9149 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
9150 return (value_from_longest
9152 value_as_long (arg1
) + value_as_long (arg2
)));
9153 if ((ada_is_fixed_point_type (value_type (arg1
))
9154 || ada_is_fixed_point_type (value_type (arg2
)))
9155 && value_type (arg1
) != value_type (arg2
))
9156 error (_("Operands of fixed-point addition must have the same type"));
9157 /* Do the addition, and cast the result to the type of the first
9158 argument. We cannot cast the result to a reference type, so if
9159 ARG1 is a reference type, find its underlying type. */
9160 type
= value_type (arg1
);
9161 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
9162 type
= TYPE_TARGET_TYPE (type
);
9163 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9164 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
9167 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9168 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9169 if (noside
== EVAL_SKIP
)
9171 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
9172 return (value_from_longest
9174 value_as_long (arg1
) - value_as_long (arg2
)));
9175 if ((ada_is_fixed_point_type (value_type (arg1
))
9176 || ada_is_fixed_point_type (value_type (arg2
)))
9177 && value_type (arg1
) != value_type (arg2
))
9178 error (_("Operands of fixed-point subtraction "
9179 "must have the same type"));
9180 /* Do the substraction, and cast the result to the type of the first
9181 argument. We cannot cast the result to a reference type, so if
9182 ARG1 is a reference type, find its underlying type. */
9183 type
= value_type (arg1
);
9184 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
9185 type
= TYPE_TARGET_TYPE (type
);
9186 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9187 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
9193 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9194 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9195 if (noside
== EVAL_SKIP
)
9197 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9199 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9200 return value_zero (value_type (arg1
), not_lval
);
9204 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
9205 if (ada_is_fixed_point_type (value_type (arg1
)))
9206 arg1
= cast_from_fixed (type
, arg1
);
9207 if (ada_is_fixed_point_type (value_type (arg2
)))
9208 arg2
= cast_from_fixed (type
, arg2
);
9209 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9210 return ada_value_binop (arg1
, arg2
, op
);
9214 case BINOP_NOTEQUAL
:
9215 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9216 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
9217 if (noside
== EVAL_SKIP
)
9219 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9223 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9224 tem
= ada_value_equal (arg1
, arg2
);
9226 if (op
== BINOP_NOTEQUAL
)
9228 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9229 return value_from_longest (type
, (LONGEST
) tem
);
9232 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9233 if (noside
== EVAL_SKIP
)
9235 else if (ada_is_fixed_point_type (value_type (arg1
)))
9236 return value_cast (value_type (arg1
), value_neg (arg1
));
9239 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9240 return value_neg (arg1
);
9243 case BINOP_LOGICAL_AND
:
9244 case BINOP_LOGICAL_OR
:
9245 case UNOP_LOGICAL_NOT
:
9250 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9251 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9252 return value_cast (type
, val
);
9255 case BINOP_BITWISE_AND
:
9256 case BINOP_BITWISE_IOR
:
9257 case BINOP_BITWISE_XOR
:
9261 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9263 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9265 return value_cast (value_type (arg1
), val
);
9271 if (noside
== EVAL_SKIP
)
9276 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
9277 /* Only encountered when an unresolved symbol occurs in a
9278 context other than a function call, in which case, it is
9280 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9281 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
9282 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9284 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
9285 /* Check to see if this is a tagged type. We also need to handle
9286 the case where the type is a reference to a tagged type, but
9287 we have to be careful to exclude pointers to tagged types.
9288 The latter should be shown as usual (as a pointer), whereas
9289 a reference should mostly be transparent to the user. */
9290 if (ada_is_tagged_type (type
, 0)
9291 || (TYPE_CODE(type
) == TYPE_CODE_REF
9292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
9294 /* Tagged types are a little special in the fact that the real
9295 type is dynamic and can only be determined by inspecting the
9296 object's tag. This means that we need to get the object's
9297 value first (EVAL_NORMAL) and then extract the actual object
9300 Note that we cannot skip the final step where we extract
9301 the object type from its tag, because the EVAL_NORMAL phase
9302 results in dynamic components being resolved into fixed ones.
9303 This can cause problems when trying to print the type
9304 description of tagged types whose parent has a dynamic size:
9305 We use the type name of the "_parent" component in order
9306 to print the name of the ancestor type in the type description.
9307 If that component had a dynamic size, the resolution into
9308 a fixed type would result in the loss of that type name,
9309 thus preventing us from printing the name of the ancestor
9310 type in the type description. */
9311 struct type
*actual_type
;
9313 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
9314 actual_type
= type_from_tag (ada_value_tag (arg1
));
9315 if (actual_type
== NULL
)
9316 /* If, for some reason, we were unable to determine
9317 the actual type from the tag, then use the static
9318 approximation that we just computed as a fallback.
9319 This can happen if the debugging information is
9320 incomplete, for instance. */
9323 return value_zero (actual_type
, not_lval
);
9328 (to_static_fixed_type
9329 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
9334 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9335 arg1
= unwrap_value (arg1
);
9336 return ada_to_fixed_value (arg1
);
9342 /* Allocate arg vector, including space for the function to be
9343 called in argvec[0] and a terminating NULL. */
9344 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9346 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
9348 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
9349 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
9350 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9351 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
9354 for (tem
= 0; tem
<= nargs
; tem
+= 1)
9355 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9358 if (noside
== EVAL_SKIP
)
9362 if (ada_is_constrained_packed_array_type
9363 (desc_base_type (value_type (argvec
[0]))))
9364 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
9365 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9366 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
9367 /* This is a packed array that has already been fixed, and
9368 therefore already coerced to a simple array. Nothing further
9371 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
9372 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9373 && VALUE_LVAL (argvec
[0]) == lval_memory
))
9374 argvec
[0] = value_addr (argvec
[0]);
9376 type
= ada_check_typedef (value_type (argvec
[0]));
9378 /* Ada allows us to implicitly dereference arrays when subscripting
9379 them. So, if this is an typedef (encoding use for array access
9380 types encoded as fat pointers), strip it now. */
9381 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
9382 type
= ada_typedef_target_type (type
);
9384 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
9386 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
9388 case TYPE_CODE_FUNC
:
9389 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
9391 case TYPE_CODE_ARRAY
:
9393 case TYPE_CODE_STRUCT
:
9394 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
9395 argvec
[0] = ada_value_ind (argvec
[0]);
9396 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
9399 error (_("cannot subscript or call something of type `%s'"),
9400 ada_type_name (value_type (argvec
[0])));
9405 switch (TYPE_CODE (type
))
9407 case TYPE_CODE_FUNC
:
9408 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9409 return allocate_value (TYPE_TARGET_TYPE (type
));
9410 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
9411 case TYPE_CODE_STRUCT
:
9415 arity
= ada_array_arity (type
);
9416 type
= ada_array_element_type (type
, nargs
);
9418 error (_("cannot subscript or call a record"));
9420 error (_("wrong number of subscripts; expecting %d"), arity
);
9421 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9422 return value_zero (ada_aligned_type (type
), lval_memory
);
9424 unwrap_value (ada_value_subscript
9425 (argvec
[0], nargs
, argvec
+ 1));
9427 case TYPE_CODE_ARRAY
:
9428 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9430 type
= ada_array_element_type (type
, nargs
);
9432 error (_("element type of array unknown"));
9434 return value_zero (ada_aligned_type (type
), lval_memory
);
9437 unwrap_value (ada_value_subscript
9438 (ada_coerce_to_simple_array (argvec
[0]),
9439 nargs
, argvec
+ 1));
9440 case TYPE_CODE_PTR
: /* Pointer to array */
9441 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
9442 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9444 type
= ada_array_element_type (type
, nargs
);
9446 error (_("element type of array unknown"));
9448 return value_zero (ada_aligned_type (type
), lval_memory
);
9451 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
9452 nargs
, argvec
+ 1));
9455 error (_("Attempt to index or call something other than an "
9456 "array or function"));
9461 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9462 struct value
*low_bound_val
=
9463 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9464 struct value
*high_bound_val
=
9465 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9469 low_bound_val
= coerce_ref (low_bound_val
);
9470 high_bound_val
= coerce_ref (high_bound_val
);
9471 low_bound
= pos_atr (low_bound_val
);
9472 high_bound
= pos_atr (high_bound_val
);
9474 if (noside
== EVAL_SKIP
)
9477 /* If this is a reference to an aligner type, then remove all
9479 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
9480 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
9481 TYPE_TARGET_TYPE (value_type (array
)) =
9482 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
9484 if (ada_is_constrained_packed_array_type (value_type (array
)))
9485 error (_("cannot slice a packed array"));
9487 /* If this is a reference to an array or an array lvalue,
9488 convert to a pointer. */
9489 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
9490 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
9491 && VALUE_LVAL (array
) == lval_memory
))
9492 array
= value_addr (array
);
9494 if (noside
== EVAL_AVOID_SIDE_EFFECTS
9495 && ada_is_array_descriptor_type (ada_check_typedef
9496 (value_type (array
))))
9497 return empty_array (ada_type_of_array (array
, 0), low_bound
);
9499 array
= ada_coerce_to_simple_array_ptr (array
);
9501 /* If we have more than one level of pointer indirection,
9502 dereference the value until we get only one level. */
9503 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
9504 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
9506 array
= value_ind (array
);
9508 /* Make sure we really do have an array type before going further,
9509 to avoid a SEGV when trying to get the index type or the target
9510 type later down the road if the debug info generated by
9511 the compiler is incorrect or incomplete. */
9512 if (!ada_is_simple_array_type (value_type (array
)))
9513 error (_("cannot take slice of non-array"));
9515 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
)
9517 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9518 return empty_array (TYPE_TARGET_TYPE (value_type (array
)),
9522 struct type
*arr_type0
=
9523 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array
)),
9526 return ada_value_slice_from_ptr (array
, arr_type0
,
9527 longest_to_int (low_bound
),
9528 longest_to_int (high_bound
));
9531 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9533 else if (high_bound
< low_bound
)
9534 return empty_array (value_type (array
), low_bound
);
9536 return ada_value_slice (array
, longest_to_int (low_bound
),
9537 longest_to_int (high_bound
));
9542 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9543 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
9545 if (noside
== EVAL_SKIP
)
9548 switch (TYPE_CODE (type
))
9551 lim_warning (_("Membership test incompletely implemented; "
9552 "always returns true"));
9553 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9554 return value_from_longest (type
, (LONGEST
) 1);
9556 case TYPE_CODE_RANGE
:
9557 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
9558 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
9559 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9560 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9561 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9563 value_from_longest (type
,
9564 (value_less (arg1
, arg3
)
9565 || value_equal (arg1
, arg3
))
9566 && (value_less (arg2
, arg1
)
9567 || value_equal (arg2
, arg1
)));
9570 case BINOP_IN_BOUNDS
:
9572 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9573 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9575 if (noside
== EVAL_SKIP
)
9578 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9580 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9581 return value_zero (type
, not_lval
);
9584 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9586 type
= ada_index_type (value_type (arg2
), tem
, "range");
9588 type
= value_type (arg1
);
9590 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
9591 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
9593 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9594 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9595 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9597 value_from_longest (type
,
9598 (value_less (arg1
, arg3
)
9599 || value_equal (arg1
, arg3
))
9600 && (value_less (arg2
, arg1
)
9601 || value_equal (arg2
, arg1
)));
9603 case TERNOP_IN_RANGE
:
9604 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9605 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9606 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9608 if (noside
== EVAL_SKIP
)
9611 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9612 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9613 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9615 value_from_longest (type
,
9616 (value_less (arg1
, arg3
)
9617 || value_equal (arg1
, arg3
))
9618 && (value_less (arg2
, arg1
)
9619 || value_equal (arg2
, arg1
)));
9625 struct type
*type_arg
;
9627 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
9629 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9631 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9635 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9639 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
9640 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
9641 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
9644 if (noside
== EVAL_SKIP
)
9647 if (type_arg
== NULL
)
9649 arg1
= ada_coerce_ref (arg1
);
9651 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
9652 arg1
= ada_coerce_to_simple_array (arg1
);
9654 type
= ada_index_type (value_type (arg1
), tem
,
9655 ada_attribute_name (op
));
9657 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9659 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9660 return allocate_value (type
);
9664 default: /* Should never happen. */
9665 error (_("unexpected attribute encountered"));
9667 return value_from_longest
9668 (type
, ada_array_bound (arg1
, tem
, 0));
9670 return value_from_longest
9671 (type
, ada_array_bound (arg1
, tem
, 1));
9673 return value_from_longest
9674 (type
, ada_array_length (arg1
, tem
));
9677 else if (discrete_type_p (type_arg
))
9679 struct type
*range_type
;
9680 char *name
= ada_type_name (type_arg
);
9683 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
9684 range_type
= to_fixed_range_type (type_arg
, NULL
);
9685 if (range_type
== NULL
)
9686 range_type
= type_arg
;
9690 error (_("unexpected attribute encountered"));
9692 return value_from_longest
9693 (range_type
, ada_discrete_type_low_bound (range_type
));
9695 return value_from_longest
9696 (range_type
, ada_discrete_type_high_bound (range_type
));
9698 error (_("the 'length attribute applies only to array types"));
9701 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
9702 error (_("unimplemented type attribute"));
9707 if (ada_is_constrained_packed_array_type (type_arg
))
9708 type_arg
= decode_constrained_packed_array_type (type_arg
);
9710 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
9712 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9714 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9715 return allocate_value (type
);
9720 error (_("unexpected attribute encountered"));
9722 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9723 return value_from_longest (type
, low
);
9725 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9726 return value_from_longest (type
, high
);
9728 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9729 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9730 return value_from_longest (type
, high
- low
+ 1);
9736 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9737 if (noside
== EVAL_SKIP
)
9740 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9741 return value_zero (ada_tag_type (arg1
), not_lval
);
9743 return ada_value_tag (arg1
);
9747 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9748 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9749 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9750 if (noside
== EVAL_SKIP
)
9752 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9753 return value_zero (value_type (arg1
), not_lval
);
9756 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9757 return value_binop (arg1
, arg2
,
9758 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
9761 case OP_ATR_MODULUS
:
9763 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9765 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9766 if (noside
== EVAL_SKIP
)
9769 if (!ada_is_modular_type (type_arg
))
9770 error (_("'modulus must be applied to modular type"));
9772 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
9773 ada_modulus (type_arg
));
9778 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9779 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9780 if (noside
== EVAL_SKIP
)
9782 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9783 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9784 return value_zero (type
, not_lval
);
9786 return value_pos_atr (type
, arg1
);
9789 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9790 type
= value_type (arg1
);
9792 /* If the argument is a reference, then dereference its type, since
9793 the user is really asking for the size of the actual object,
9794 not the size of the pointer. */
9795 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
9796 type
= TYPE_TARGET_TYPE (type
);
9798 if (noside
== EVAL_SKIP
)
9800 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9801 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
9803 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
9804 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
9807 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9808 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9809 type
= exp
->elts
[pc
+ 2].type
;
9810 if (noside
== EVAL_SKIP
)
9812 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9813 return value_zero (type
, not_lval
);
9815 return value_val_atr (type
, arg1
);
9818 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9819 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9820 if (noside
== EVAL_SKIP
)
9822 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9823 return value_zero (value_type (arg1
), not_lval
);
9826 /* For integer exponentiation operations,
9827 only promote the first argument. */
9828 if (is_integral_type (value_type (arg2
)))
9829 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9831 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9833 return value_binop (arg1
, arg2
, op
);
9837 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9838 if (noside
== EVAL_SKIP
)
9844 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9845 if (noside
== EVAL_SKIP
)
9847 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9848 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
9849 return value_neg (arg1
);
9854 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9855 if (noside
== EVAL_SKIP
)
9857 type
= ada_check_typedef (value_type (arg1
));
9858 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9860 if (ada_is_array_descriptor_type (type
))
9861 /* GDB allows dereferencing GNAT array descriptors. */
9863 struct type
*arrType
= ada_type_of_array (arg1
, 0);
9865 if (arrType
== NULL
)
9866 error (_("Attempt to dereference null array pointer."));
9867 return value_at_lazy (arrType
, 0);
9869 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
9870 || TYPE_CODE (type
) == TYPE_CODE_REF
9871 /* In C you can dereference an array to get the 1st elt. */
9872 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9874 type
= to_static_fixed_type
9876 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
9878 return value_zero (type
, lval_memory
);
9880 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9882 /* GDB allows dereferencing an int. */
9883 if (expect_type
== NULL
)
9884 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
9889 to_static_fixed_type (ada_aligned_type (expect_type
));
9890 return value_zero (expect_type
, lval_memory
);
9894 error (_("Attempt to take contents of a non-pointer value."));
9896 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
9897 type
= ada_check_typedef (value_type (arg1
));
9899 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9900 /* GDB allows dereferencing an int. If we were given
9901 the expect_type, then use that as the target type.
9902 Otherwise, assume that the target type is an int. */
9904 if (expect_type
!= NULL
)
9905 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
9908 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
9909 (CORE_ADDR
) value_as_address (arg1
));
9912 if (ada_is_array_descriptor_type (type
))
9913 /* GDB allows dereferencing GNAT array descriptors. */
9914 return ada_coerce_to_simple_array (arg1
);
9916 return ada_value_ind (arg1
);
9918 case STRUCTOP_STRUCT
:
9919 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9920 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
9921 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9922 if (noside
== EVAL_SKIP
)
9924 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9926 struct type
*type1
= value_type (arg1
);
9928 if (ada_is_tagged_type (type1
, 1))
9930 type
= ada_lookup_struct_elt_type (type1
,
9931 &exp
->elts
[pc
+ 2].string
,
9934 /* In this case, we assume that the field COULD exist
9935 in some extension of the type. Return an object of
9936 "type" void, which will match any formal
9937 (see ada_type_match). */
9938 return value_zero (builtin_type (exp
->gdbarch
)->builtin_void
,
9943 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
9946 return value_zero (ada_aligned_type (type
), lval_memory
);
9949 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
9950 arg1
= unwrap_value (arg1
);
9951 return ada_to_fixed_value (arg1
);
9954 /* The value is not supposed to be used. This is here to make it
9955 easier to accommodate expressions that contain types. */
9957 if (noside
== EVAL_SKIP
)
9959 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9960 return allocate_value (exp
->elts
[pc
+ 1].type
);
9962 error (_("Attempt to use a type name as an expression"));
9967 case OP_DISCRETE_RANGE
:
9970 if (noside
== EVAL_NORMAL
)
9974 error (_("Undefined name, ambiguous name, or renaming used in "
9975 "component association: %s."), &exp
->elts
[pc
+2].string
);
9977 error (_("Aggregates only allowed on the right of an assignment"));
9979 internal_error (__FILE__
, __LINE__
,
9980 _("aggregate apparently mangled"));
9983 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
9985 for (tem
= 0; tem
< nargs
; tem
+= 1)
9986 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9991 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
9997 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9998 type name that encodes the 'small and 'delta information.
9999 Otherwise, return NULL. */
10001 static const char *
10002 fixed_type_info (struct type
*type
)
10004 const char *name
= ada_type_name (type
);
10005 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
10007 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
10009 const char *tail
= strstr (name
, "___XF_");
10016 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
10017 return fixed_type_info (TYPE_TARGET_TYPE (type
));
10022 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10025 ada_is_fixed_point_type (struct type
*type
)
10027 return fixed_type_info (type
) != NULL
;
10030 /* Return non-zero iff TYPE represents a System.Address type. */
10033 ada_is_system_address_type (struct type
*type
)
10035 return (TYPE_NAME (type
)
10036 && strcmp (TYPE_NAME (type
), "system__address") == 0);
10039 /* Assuming that TYPE is the representation of an Ada fixed-point
10040 type, return its delta, or -1 if the type is malformed and the
10041 delta cannot be determined. */
10044 ada_delta (struct type
*type
)
10046 const char *encoding
= fixed_type_info (type
);
10049 /* Strictly speaking, num and den are encoded as integer. However,
10050 they may not fit into a long, and they will have to be converted
10051 to DOUBLEST anyway. So scan them as DOUBLEST. */
10052 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
10059 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10060 factor ('SMALL value) associated with the type. */
10063 scaling_factor (struct type
*type
)
10065 const char *encoding
= fixed_type_info (type
);
10066 DOUBLEST num0
, den0
, num1
, den1
;
10069 /* Strictly speaking, num's and den's are encoded as integer. However,
10070 they may not fit into a long, and they will have to be converted
10071 to DOUBLEST anyway. So scan them as DOUBLEST. */
10072 n
= sscanf (encoding
,
10073 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
10074 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
10075 &num0
, &den0
, &num1
, &den1
);
10080 return num1
/ den1
;
10082 return num0
/ den0
;
10086 /* Assuming that X is the representation of a value of fixed-point
10087 type TYPE, return its floating-point equivalent. */
10090 ada_fixed_to_float (struct type
*type
, LONGEST x
)
10092 return (DOUBLEST
) x
*scaling_factor (type
);
10095 /* The representation of a fixed-point value of type TYPE
10096 corresponding to the value X. */
10099 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
10101 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
10108 /* Scan STR beginning at position K for a discriminant name, and
10109 return the value of that discriminant field of DVAL in *PX. If
10110 PNEW_K is not null, put the position of the character beyond the
10111 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10112 not alter *PX and *PNEW_K if unsuccessful. */
10115 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
10118 static char *bound_buffer
= NULL
;
10119 static size_t bound_buffer_len
= 0;
10122 struct value
*bound_val
;
10124 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
10127 pend
= strstr (str
+ k
, "__");
10131 k
+= strlen (bound
);
10135 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
10136 bound
= bound_buffer
;
10137 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
10138 bound
[pend
- (str
+ k
)] = '\0';
10142 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
10143 if (bound_val
== NULL
)
10146 *px
= value_as_long (bound_val
);
10147 if (pnew_k
!= NULL
)
10152 /* Value of variable named NAME in the current environment. If
10153 no such variable found, then if ERR_MSG is null, returns 0, and
10154 otherwise causes an error with message ERR_MSG. */
10156 static struct value
*
10157 get_var_value (char *name
, char *err_msg
)
10159 struct ada_symbol_info
*syms
;
10162 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
10167 if (err_msg
== NULL
)
10170 error (("%s"), err_msg
);
10173 return value_of_variable (syms
[0].sym
, syms
[0].block
);
10176 /* Value of integer variable named NAME in the current environment. If
10177 no such variable found, returns 0, and sets *FLAG to 0. If
10178 successful, sets *FLAG to 1. */
10181 get_int_var_value (char *name
, int *flag
)
10183 struct value
*var_val
= get_var_value (name
, 0);
10195 return value_as_long (var_val
);
10200 /* Return a range type whose base type is that of the range type named
10201 NAME in the current environment, and whose bounds are calculated
10202 from NAME according to the GNAT range encoding conventions.
10203 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10204 corresponding range type from debug information; fall back to using it
10205 if symbol lookup fails. If a new type must be created, allocate it
10206 like ORIG_TYPE was. The bounds information, in general, is encoded
10207 in NAME, the base type given in the named range type. */
10209 static struct type
*
10210 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
10213 struct type
*base_type
;
10214 char *subtype_info
;
10216 gdb_assert (raw_type
!= NULL
);
10217 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
10219 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
10220 base_type
= TYPE_TARGET_TYPE (raw_type
);
10222 base_type
= raw_type
;
10224 name
= TYPE_NAME (raw_type
);
10225 subtype_info
= strstr (name
, "___XD");
10226 if (subtype_info
== NULL
)
10228 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
10229 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
10231 if (L
< INT_MIN
|| U
> INT_MAX
)
10234 return create_range_type (alloc_type_copy (raw_type
), raw_type
,
10235 ada_discrete_type_low_bound (raw_type
),
10236 ada_discrete_type_high_bound (raw_type
));
10240 static char *name_buf
= NULL
;
10241 static size_t name_len
= 0;
10242 int prefix_len
= subtype_info
- name
;
10248 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
10249 strncpy (name_buf
, name
, prefix_len
);
10250 name_buf
[prefix_len
] = '\0';
10253 bounds_str
= strchr (subtype_info
, '_');
10256 if (*subtype_info
== 'L')
10258 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
10259 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
10261 if (bounds_str
[n
] == '_')
10263 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
10271 strcpy (name_buf
+ prefix_len
, "___L");
10272 L
= get_int_var_value (name_buf
, &ok
);
10275 lim_warning (_("Unknown lower bound, using 1."));
10280 if (*subtype_info
== 'U')
10282 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
10283 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
10290 strcpy (name_buf
+ prefix_len
, "___U");
10291 U
= get_int_var_value (name_buf
, &ok
);
10294 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
10299 type
= create_range_type (alloc_type_copy (raw_type
), base_type
, L
, U
);
10300 TYPE_NAME (type
) = name
;
10305 /* True iff NAME is the name of a range type. */
10308 ada_is_range_type_name (const char *name
)
10310 return (name
!= NULL
&& strstr (name
, "___XD"));
10314 /* Modular types */
10316 /* True iff TYPE is an Ada modular type. */
10319 ada_is_modular_type (struct type
*type
)
10321 struct type
*subranged_type
= base_type (type
);
10323 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
10324 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
10325 && TYPE_UNSIGNED (subranged_type
));
10328 /* Try to determine the lower and upper bounds of the given modular type
10329 using the type name only. Return non-zero and set L and U as the lower
10330 and upper bounds (respectively) if successful. */
10333 ada_modulus_from_name (struct type
*type
, ULONGEST
*modulus
)
10335 char *name
= ada_type_name (type
);
10343 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10344 we are looking for static bounds, which means an __XDLU suffix.
10345 Moreover, we know that the lower bound of modular types is always
10346 zero, so the actual suffix should start with "__XDLU_0__", and
10347 then be followed by the upper bound value. */
10348 suffix
= strstr (name
, "__XDLU_0__");
10349 if (suffix
== NULL
)
10352 if (!ada_scan_number (suffix
, k
, &U
, NULL
))
10355 *modulus
= (ULONGEST
) U
+ 1;
10359 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10362 ada_modulus (struct type
*type
)
10364 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
10368 /* Ada exception catchpoint support:
10369 ---------------------------------
10371 We support 3 kinds of exception catchpoints:
10372 . catchpoints on Ada exceptions
10373 . catchpoints on unhandled Ada exceptions
10374 . catchpoints on failed assertions
10376 Exceptions raised during failed assertions, or unhandled exceptions
10377 could perfectly be caught with the general catchpoint on Ada exceptions.
10378 However, we can easily differentiate these two special cases, and having
10379 the option to distinguish these two cases from the rest can be useful
10380 to zero-in on certain situations.
10382 Exception catchpoints are a specialized form of breakpoint,
10383 since they rely on inserting breakpoints inside known routines
10384 of the GNAT runtime. The implementation therefore uses a standard
10385 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10388 Support in the runtime for exception catchpoints have been changed
10389 a few times already, and these changes affect the implementation
10390 of these catchpoints. In order to be able to support several
10391 variants of the runtime, we use a sniffer that will determine
10392 the runtime variant used by the program being debugged.
10394 At this time, we do not support the use of conditions on Ada exception
10395 catchpoints. The COND and COND_STRING fields are therefore set
10396 to NULL (most of the time, see below).
10398 Conditions where EXP_STRING, COND, and COND_STRING are used:
10400 When a user specifies the name of a specific exception in the case
10401 of catchpoints on Ada exceptions, we store the name of that exception
10402 in the EXP_STRING. We then translate this request into an actual
10403 condition stored in COND_STRING, and then parse it into an expression
10406 /* The different types of catchpoints that we introduced for catching
10409 enum exception_catchpoint_kind
10411 ex_catch_exception
,
10412 ex_catch_exception_unhandled
,
10416 /* Ada's standard exceptions. */
10418 static char *standard_exc
[] = {
10419 "constraint_error",
10425 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
10427 /* A structure that describes how to support exception catchpoints
10428 for a given executable. */
10430 struct exception_support_info
10432 /* The name of the symbol to break on in order to insert
10433 a catchpoint on exceptions. */
10434 const char *catch_exception_sym
;
10436 /* The name of the symbol to break on in order to insert
10437 a catchpoint on unhandled exceptions. */
10438 const char *catch_exception_unhandled_sym
;
10440 /* The name of the symbol to break on in order to insert
10441 a catchpoint on failed assertions. */
10442 const char *catch_assert_sym
;
10444 /* Assuming that the inferior just triggered an unhandled exception
10445 catchpoint, this function is responsible for returning the address
10446 in inferior memory where the name of that exception is stored.
10447 Return zero if the address could not be computed. */
10448 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
10451 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
10452 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
10454 /* The following exception support info structure describes how to
10455 implement exception catchpoints with the latest version of the
10456 Ada runtime (as of 2007-03-06). */
10458 static const struct exception_support_info default_exception_support_info
=
10460 "__gnat_debug_raise_exception", /* catch_exception_sym */
10461 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10462 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10463 ada_unhandled_exception_name_addr
10466 /* The following exception support info structure describes how to
10467 implement exception catchpoints with a slightly older version
10468 of the Ada runtime. */
10470 static const struct exception_support_info exception_support_info_fallback
=
10472 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10473 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10474 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10475 ada_unhandled_exception_name_addr_from_raise
10478 /* For each executable, we sniff which exception info structure to use
10479 and cache it in the following global variable. */
10481 static const struct exception_support_info
*exception_info
= NULL
;
10483 /* Inspect the Ada runtime and determine which exception info structure
10484 should be used to provide support for exception catchpoints.
10486 This function will always set exception_info, or raise an error. */
10489 ada_exception_support_info_sniffer (void)
10491 struct symbol
*sym
;
10493 /* If the exception info is already known, then no need to recompute it. */
10494 if (exception_info
!= NULL
)
10497 /* Check the latest (default) exception support info. */
10498 sym
= standard_lookup (default_exception_support_info
.catch_exception_sym
,
10502 exception_info
= &default_exception_support_info
;
10506 /* Try our fallback exception suport info. */
10507 sym
= standard_lookup (exception_support_info_fallback
.catch_exception_sym
,
10511 exception_info
= &exception_support_info_fallback
;
10515 /* Sometimes, it is normal for us to not be able to find the routine
10516 we are looking for. This happens when the program is linked with
10517 the shared version of the GNAT runtime, and the program has not been
10518 started yet. Inform the user of these two possible causes if
10521 if (ada_update_initial_language (language_unknown
) != language_ada
)
10522 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10524 /* If the symbol does not exist, then check that the program is
10525 already started, to make sure that shared libraries have been
10526 loaded. If it is not started, this may mean that the symbol is
10527 in a shared library. */
10529 if (ptid_get_pid (inferior_ptid
) == 0)
10530 error (_("Unable to insert catchpoint. Try to start the program first."));
10532 /* At this point, we know that we are debugging an Ada program and
10533 that the inferior has been started, but we still are not able to
10534 find the run-time symbols. That can mean that we are in
10535 configurable run time mode, or that a-except as been optimized
10536 out by the linker... In any case, at this point it is not worth
10537 supporting this feature. */
10539 error (_("Cannot insert catchpoints in this configuration."));
10542 /* An observer of "executable_changed" events.
10543 Its role is to clear certain cached values that need to be recomputed
10544 each time a new executable is loaded by GDB. */
10547 ada_executable_changed_observer (void)
10549 /* If the executable changed, then it is possible that the Ada runtime
10550 is different. So we need to invalidate the exception support info
10552 exception_info
= NULL
;
10555 /* True iff FRAME is very likely to be that of a function that is
10556 part of the runtime system. This is all very heuristic, but is
10557 intended to be used as advice as to what frames are uninteresting
10561 is_known_support_routine (struct frame_info
*frame
)
10563 struct symtab_and_line sal
;
10565 enum language func_lang
;
10568 /* If this code does not have any debugging information (no symtab),
10569 This cannot be any user code. */
10571 find_frame_sal (frame
, &sal
);
10572 if (sal
.symtab
== NULL
)
10575 /* If there is a symtab, but the associated source file cannot be
10576 located, then assume this is not user code: Selecting a frame
10577 for which we cannot display the code would not be very helpful
10578 for the user. This should also take care of case such as VxWorks
10579 where the kernel has some debugging info provided for a few units. */
10581 if (symtab_to_fullname (sal
.symtab
) == NULL
)
10584 /* Check the unit filename againt the Ada runtime file naming.
10585 We also check the name of the objfile against the name of some
10586 known system libraries that sometimes come with debugging info
10589 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
10591 re_comp (known_runtime_file_name_patterns
[i
]);
10592 if (re_exec (sal
.symtab
->filename
))
10594 if (sal
.symtab
->objfile
!= NULL
10595 && re_exec (sal
.symtab
->objfile
->name
))
10599 /* Check whether the function is a GNAT-generated entity. */
10601 find_frame_funname (frame
, &func_name
, &func_lang
, NULL
);
10602 if (func_name
== NULL
)
10605 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
10607 re_comp (known_auxiliary_function_name_patterns
[i
]);
10608 if (re_exec (func_name
))
10615 /* Find the first frame that contains debugging information and that is not
10616 part of the Ada run-time, starting from FI and moving upward. */
10619 ada_find_printable_frame (struct frame_info
*fi
)
10621 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
10623 if (!is_known_support_routine (fi
))
10632 /* Assuming that the inferior just triggered an unhandled exception
10633 catchpoint, return the address in inferior memory where the name
10634 of the exception is stored.
10636 Return zero if the address could not be computed. */
10639 ada_unhandled_exception_name_addr (void)
10641 return parse_and_eval_address ("e.full_name");
10644 /* Same as ada_unhandled_exception_name_addr, except that this function
10645 should be used when the inferior uses an older version of the runtime,
10646 where the exception name needs to be extracted from a specific frame
10647 several frames up in the callstack. */
10650 ada_unhandled_exception_name_addr_from_raise (void)
10653 struct frame_info
*fi
;
10655 /* To determine the name of this exception, we need to select
10656 the frame corresponding to RAISE_SYM_NAME. This frame is
10657 at least 3 levels up, so we simply skip the first 3 frames
10658 without checking the name of their associated function. */
10659 fi
= get_current_frame ();
10660 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
10662 fi
= get_prev_frame (fi
);
10667 enum language func_lang
;
10669 find_frame_funname (fi
, &func_name
, &func_lang
, NULL
);
10670 if (func_name
!= NULL
10671 && strcmp (func_name
, exception_info
->catch_exception_sym
) == 0)
10672 break; /* We found the frame we were looking for... */
10673 fi
= get_prev_frame (fi
);
10680 return parse_and_eval_address ("id.full_name");
10683 /* Assuming the inferior just triggered an Ada exception catchpoint
10684 (of any type), return the address in inferior memory where the name
10685 of the exception is stored, if applicable.
10687 Return zero if the address could not be computed, or if not relevant. */
10690 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex
,
10691 struct breakpoint
*b
)
10695 case ex_catch_exception
:
10696 return (parse_and_eval_address ("e.full_name"));
10699 case ex_catch_exception_unhandled
:
10700 return exception_info
->unhandled_exception_name_addr ();
10703 case ex_catch_assert
:
10704 return 0; /* Exception name is not relevant in this case. */
10708 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10712 return 0; /* Should never be reached. */
10715 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10716 any error that ada_exception_name_addr_1 might cause to be thrown.
10717 When an error is intercepted, a warning with the error message is printed,
10718 and zero is returned. */
10721 ada_exception_name_addr (enum exception_catchpoint_kind ex
,
10722 struct breakpoint
*b
)
10724 struct gdb_exception e
;
10725 CORE_ADDR result
= 0;
10727 TRY_CATCH (e
, RETURN_MASK_ERROR
)
10729 result
= ada_exception_name_addr_1 (ex
, b
);
10734 warning (_("failed to get exception name: %s"), e
.message
);
10741 /* Implement the PRINT_IT method in the breakpoint_ops structure
10742 for all exception catchpoint kinds. */
10744 static enum print_stop_action
10745 print_it_exception (enum exception_catchpoint_kind ex
, struct breakpoint
*b
)
10747 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
10748 char exception_name
[256];
10752 read_memory (addr
, exception_name
, sizeof (exception_name
) - 1);
10753 exception_name
[sizeof (exception_name
) - 1] = '\0';
10756 ada_find_printable_frame (get_current_frame ());
10758 annotate_catchpoint (b
->number
);
10761 case ex_catch_exception
:
10763 printf_filtered (_("\nCatchpoint %d, %s at "),
10764 b
->number
, exception_name
);
10766 printf_filtered (_("\nCatchpoint %d, exception at "), b
->number
);
10768 case ex_catch_exception_unhandled
:
10770 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10771 b
->number
, exception_name
);
10773 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10776 case ex_catch_assert
:
10777 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10782 return PRINT_SRC_AND_LOC
;
10785 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10786 for all exception catchpoint kinds. */
10789 print_one_exception (enum exception_catchpoint_kind ex
,
10790 struct breakpoint
*b
, struct bp_location
**last_loc
)
10792 struct value_print_options opts
;
10794 get_user_print_options (&opts
);
10795 if (opts
.addressprint
)
10797 annotate_field (4);
10798 ui_out_field_core_addr (uiout
, "addr", b
->loc
->gdbarch
, b
->loc
->address
);
10801 annotate_field (5);
10802 *last_loc
= b
->loc
;
10805 case ex_catch_exception
:
10806 if (b
->exp_string
!= NULL
)
10808 char *msg
= xstrprintf (_("`%s' Ada exception"), b
->exp_string
);
10810 ui_out_field_string (uiout
, "what", msg
);
10814 ui_out_field_string (uiout
, "what", "all Ada exceptions");
10818 case ex_catch_exception_unhandled
:
10819 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
10822 case ex_catch_assert
:
10823 ui_out_field_string (uiout
, "what", "failed Ada assertions");
10827 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10832 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10833 for all exception catchpoint kinds. */
10836 print_mention_exception (enum exception_catchpoint_kind ex
,
10837 struct breakpoint
*b
)
10841 case ex_catch_exception
:
10842 if (b
->exp_string
!= NULL
)
10843 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10844 b
->number
, b
->exp_string
);
10846 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b
->number
);
10850 case ex_catch_exception_unhandled
:
10851 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10855 case ex_catch_assert
:
10856 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b
->number
);
10860 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10865 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10866 for all exception catchpoint kinds. */
10869 print_recreate_exception (enum exception_catchpoint_kind ex
,
10870 struct breakpoint
*b
, struct ui_file
*fp
)
10874 case ex_catch_exception
:
10875 fprintf_filtered (fp
, "catch exception");
10876 if (b
->exp_string
!= NULL
)
10877 fprintf_filtered (fp
, " %s", b
->exp_string
);
10880 case ex_catch_exception_unhandled
:
10881 fprintf_filtered (fp
, "catch exception unhandled");
10884 case ex_catch_assert
:
10885 fprintf_filtered (fp
, "catch assert");
10889 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10893 /* Virtual table for "catch exception" breakpoints. */
10895 static enum print_stop_action
10896 print_it_catch_exception (struct breakpoint
*b
)
10898 return print_it_exception (ex_catch_exception
, b
);
10902 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
10904 print_one_exception (ex_catch_exception
, b
, last_loc
);
10908 print_mention_catch_exception (struct breakpoint
*b
)
10910 print_mention_exception (ex_catch_exception
, b
);
10914 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
10916 print_recreate_exception (ex_catch_exception
, b
, fp
);
10919 static struct breakpoint_ops catch_exception_breakpoint_ops
=
10923 NULL
, /* breakpoint_hit */
10924 NULL
, /* resources_needed */
10925 print_it_catch_exception
,
10926 print_one_catch_exception
,
10927 print_mention_catch_exception
,
10928 print_recreate_catch_exception
10931 /* Virtual table for "catch exception unhandled" breakpoints. */
10933 static enum print_stop_action
10934 print_it_catch_exception_unhandled (struct breakpoint
*b
)
10936 return print_it_exception (ex_catch_exception_unhandled
, b
);
10940 print_one_catch_exception_unhandled (struct breakpoint
*b
,
10941 struct bp_location
**last_loc
)
10943 print_one_exception (ex_catch_exception_unhandled
, b
, last_loc
);
10947 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
10949 print_mention_exception (ex_catch_exception_unhandled
, b
);
10953 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
10954 struct ui_file
*fp
)
10956 print_recreate_exception (ex_catch_exception_unhandled
, b
, fp
);
10959 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
= {
10962 NULL
, /* breakpoint_hit */
10963 NULL
, /* resources_needed */
10964 print_it_catch_exception_unhandled
,
10965 print_one_catch_exception_unhandled
,
10966 print_mention_catch_exception_unhandled
,
10967 print_recreate_catch_exception_unhandled
10970 /* Virtual table for "catch assert" breakpoints. */
10972 static enum print_stop_action
10973 print_it_catch_assert (struct breakpoint
*b
)
10975 return print_it_exception (ex_catch_assert
, b
);
10979 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
10981 print_one_exception (ex_catch_assert
, b
, last_loc
);
10985 print_mention_catch_assert (struct breakpoint
*b
)
10987 print_mention_exception (ex_catch_assert
, b
);
10991 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
10993 print_recreate_exception (ex_catch_assert
, b
, fp
);
10996 static struct breakpoint_ops catch_assert_breakpoint_ops
= {
10999 NULL
, /* breakpoint_hit */
11000 NULL
, /* resources_needed */
11001 print_it_catch_assert
,
11002 print_one_catch_assert
,
11003 print_mention_catch_assert
,
11004 print_recreate_catch_assert
11007 /* Return non-zero if B is an Ada exception catchpoint. */
11010 ada_exception_catchpoint_p (struct breakpoint
*b
)
11012 return (b
->ops
== &catch_exception_breakpoint_ops
11013 || b
->ops
== &catch_exception_unhandled_breakpoint_ops
11014 || b
->ops
== &catch_assert_breakpoint_ops
);
11017 /* Return a newly allocated copy of the first space-separated token
11018 in ARGSP, and then adjust ARGSP to point immediately after that
11021 Return NULL if ARGPS does not contain any more tokens. */
11024 ada_get_next_arg (char **argsp
)
11026 char *args
= *argsp
;
11030 /* Skip any leading white space. */
11032 while (isspace (*args
))
11035 if (args
[0] == '\0')
11036 return NULL
; /* No more arguments. */
11038 /* Find the end of the current argument. */
11041 while (*end
!= '\0' && !isspace (*end
))
11044 /* Adjust ARGSP to point to the start of the next argument. */
11048 /* Make a copy of the current argument and return it. */
11050 result
= xmalloc (end
- args
+ 1);
11051 strncpy (result
, args
, end
- args
);
11052 result
[end
- args
] = '\0';
11057 /* Split the arguments specified in a "catch exception" command.
11058 Set EX to the appropriate catchpoint type.
11059 Set EXP_STRING to the name of the specific exception if
11060 specified by the user. */
11063 catch_ada_exception_command_split (char *args
,
11064 enum exception_catchpoint_kind
*ex
,
11067 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
11068 char *exception_name
;
11070 exception_name
= ada_get_next_arg (&args
);
11071 make_cleanup (xfree
, exception_name
);
11073 /* Check that we do not have any more arguments. Anything else
11076 while (isspace (*args
))
11079 if (args
[0] != '\0')
11080 error (_("Junk at end of expression"));
11082 discard_cleanups (old_chain
);
11084 if (exception_name
== NULL
)
11086 /* Catch all exceptions. */
11087 *ex
= ex_catch_exception
;
11088 *exp_string
= NULL
;
11090 else if (strcmp (exception_name
, "unhandled") == 0)
11092 /* Catch unhandled exceptions. */
11093 *ex
= ex_catch_exception_unhandled
;
11094 *exp_string
= NULL
;
11098 /* Catch a specific exception. */
11099 *ex
= ex_catch_exception
;
11100 *exp_string
= exception_name
;
11104 /* Return the name of the symbol on which we should break in order to
11105 implement a catchpoint of the EX kind. */
11107 static const char *
11108 ada_exception_sym_name (enum exception_catchpoint_kind ex
)
11110 gdb_assert (exception_info
!= NULL
);
11114 case ex_catch_exception
:
11115 return (exception_info
->catch_exception_sym
);
11117 case ex_catch_exception_unhandled
:
11118 return (exception_info
->catch_exception_unhandled_sym
);
11120 case ex_catch_assert
:
11121 return (exception_info
->catch_assert_sym
);
11124 internal_error (__FILE__
, __LINE__
,
11125 _("unexpected catchpoint kind (%d)"), ex
);
11129 /* Return the breakpoint ops "virtual table" used for catchpoints
11132 static struct breakpoint_ops
*
11133 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex
)
11137 case ex_catch_exception
:
11138 return (&catch_exception_breakpoint_ops
);
11140 case ex_catch_exception_unhandled
:
11141 return (&catch_exception_unhandled_breakpoint_ops
);
11143 case ex_catch_assert
:
11144 return (&catch_assert_breakpoint_ops
);
11147 internal_error (__FILE__
, __LINE__
,
11148 _("unexpected catchpoint kind (%d)"), ex
);
11152 /* Return the condition that will be used to match the current exception
11153 being raised with the exception that the user wants to catch. This
11154 assumes that this condition is used when the inferior just triggered
11155 an exception catchpoint.
11157 The string returned is a newly allocated string that needs to be
11158 deallocated later. */
11161 ada_exception_catchpoint_cond_string (const char *exp_string
)
11165 /* The standard exceptions are a special case. They are defined in
11166 runtime units that have been compiled without debugging info; if
11167 EXP_STRING is the not-fully-qualified name of a standard
11168 exception (e.g. "constraint_error") then, during the evaluation
11169 of the condition expression, the symbol lookup on this name would
11170 *not* return this standard exception. The catchpoint condition
11171 may then be set only on user-defined exceptions which have the
11172 same not-fully-qualified name (e.g. my_package.constraint_error).
11174 To avoid this unexcepted behavior, these standard exceptions are
11175 systematically prefixed by "standard". This means that "catch
11176 exception constraint_error" is rewritten into "catch exception
11177 standard.constraint_error".
11179 If an exception named contraint_error is defined in another package of
11180 the inferior program, then the only way to specify this exception as a
11181 breakpoint condition is to use its fully-qualified named:
11182 e.g. my_package.constraint_error. */
11184 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
11186 if (strcmp (standard_exc
[i
], exp_string
) == 0)
11188 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11192 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string
);
11195 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11197 static struct expression
*
11198 ada_parse_catchpoint_condition (char *cond_string
,
11199 struct symtab_and_line sal
)
11201 return (parse_exp_1 (&cond_string
, block_for_pc (sal
.pc
), 0));
11204 /* Return the symtab_and_line that should be used to insert an exception
11205 catchpoint of the TYPE kind.
11207 EX_STRING should contain the name of a specific exception
11208 that the catchpoint should catch, or NULL otherwise.
11210 The idea behind all the remaining parameters is that their names match
11211 the name of certain fields in the breakpoint structure that are used to
11212 handle exception catchpoints. This function returns the value to which
11213 these fields should be set, depending on the type of catchpoint we need
11216 If COND and COND_STRING are both non-NULL, any value they might
11217 hold will be free'ed, and then replaced by newly allocated ones.
11218 These parameters are left untouched otherwise. */
11220 static struct symtab_and_line
11221 ada_exception_sal (enum exception_catchpoint_kind ex
, char *exp_string
,
11222 char **addr_string
, char **cond_string
,
11223 struct expression
**cond
, struct breakpoint_ops
**ops
)
11225 const char *sym_name
;
11226 struct symbol
*sym
;
11227 struct symtab_and_line sal
;
11229 /* First, find out which exception support info to use. */
11230 ada_exception_support_info_sniffer ();
11232 /* Then lookup the function on which we will break in order to catch
11233 the Ada exceptions requested by the user. */
11235 sym_name
= ada_exception_sym_name (ex
);
11236 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
11238 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11239 that should be compiled with debugging information. As a result, we
11240 expect to find that symbol in the symtabs. If we don't find it, then
11241 the target most likely does not support Ada exceptions, or we cannot
11242 insert exception breakpoints yet, because the GNAT runtime hasn't been
11245 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11246 in such a way that no debugging information is produced for the symbol
11247 we are looking for. In this case, we could search the minimal symbols
11248 as a fall-back mechanism. This would still be operating in degraded
11249 mode, however, as we would still be missing the debugging information
11250 that is needed in order to extract the name of the exception being
11251 raised (this name is printed in the catchpoint message, and is also
11252 used when trying to catch a specific exception). We do not handle
11253 this case for now. */
11256 error (_("Unable to break on '%s' in this configuration."), sym_name
);
11258 /* Make sure that the symbol we found corresponds to a function. */
11259 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11260 error (_("Symbol \"%s\" is not a function (class = %d)"),
11261 sym_name
, SYMBOL_CLASS (sym
));
11263 sal
= find_function_start_sal (sym
, 1);
11265 /* Set ADDR_STRING. */
11267 *addr_string
= xstrdup (sym_name
);
11269 /* Set the COND and COND_STRING (if not NULL). */
11271 if (cond_string
!= NULL
&& cond
!= NULL
)
11273 if (*cond_string
!= NULL
)
11275 xfree (*cond_string
);
11276 *cond_string
= NULL
;
11283 if (exp_string
!= NULL
)
11285 *cond_string
= ada_exception_catchpoint_cond_string (exp_string
);
11286 *cond
= ada_parse_catchpoint_condition (*cond_string
, sal
);
11291 *ops
= ada_exception_breakpoint_ops (ex
);
11296 /* Parse the arguments (ARGS) of the "catch exception" command.
11298 Set TYPE to the appropriate exception catchpoint type.
11299 If the user asked the catchpoint to catch only a specific
11300 exception, then save the exception name in ADDR_STRING.
11302 See ada_exception_sal for a description of all the remaining
11303 function arguments of this function. */
11305 struct symtab_and_line
11306 ada_decode_exception_location (char *args
, char **addr_string
,
11307 char **exp_string
, char **cond_string
,
11308 struct expression
**cond
,
11309 struct breakpoint_ops
**ops
)
11311 enum exception_catchpoint_kind ex
;
11313 catch_ada_exception_command_split (args
, &ex
, exp_string
);
11314 return ada_exception_sal (ex
, *exp_string
, addr_string
, cond_string
,
11318 struct symtab_and_line
11319 ada_decode_assert_location (char *args
, char **addr_string
,
11320 struct breakpoint_ops
**ops
)
11322 /* Check that no argument where provided at the end of the command. */
11326 while (isspace (*args
))
11329 error (_("Junk at end of arguments."));
11332 return ada_exception_sal (ex_catch_assert
, NULL
, addr_string
, NULL
, NULL
,
11337 /* Information about operators given special treatment in functions
11339 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11341 #define ADA_OPERATORS \
11342 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11343 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11344 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11345 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11346 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11347 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11348 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11349 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11350 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11351 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11352 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11353 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11354 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11355 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11356 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11357 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11358 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11359 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11360 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11363 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
11366 switch (exp
->elts
[pc
- 1].opcode
)
11369 operator_length_standard (exp
, pc
, oplenp
, argsp
);
11372 #define OP_DEFN(op, len, args, binop) \
11373 case op: *oplenp = len; *argsp = args; break;
11379 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
11384 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
11389 /* Implementation of the exp_descriptor method operator_check. */
11392 ada_operator_check (struct expression
*exp
, int pos
,
11393 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
11396 const union exp_element
*const elts
= exp
->elts
;
11397 struct type
*type
= NULL
;
11399 switch (elts
[pos
].opcode
)
11401 case UNOP_IN_RANGE
:
11403 type
= elts
[pos
+ 1].type
;
11407 return operator_check_standard (exp
, pos
, objfile_func
, data
);
11410 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11412 if (type
&& TYPE_OBJFILE (type
)
11413 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
11420 ada_op_name (enum exp_opcode opcode
)
11425 return op_name_standard (opcode
);
11427 #define OP_DEFN(op, len, args, binop) case op: return #op;
11432 return "OP_AGGREGATE";
11434 return "OP_CHOICES";
11440 /* As for operator_length, but assumes PC is pointing at the first
11441 element of the operator, and gives meaningful results only for the
11442 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11445 ada_forward_operator_length (struct expression
*exp
, int pc
,
11446 int *oplenp
, int *argsp
)
11448 switch (exp
->elts
[pc
].opcode
)
11451 *oplenp
= *argsp
= 0;
11454 #define OP_DEFN(op, len, args, binop) \
11455 case op: *oplenp = len; *argsp = args; break;
11461 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11466 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
11472 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11474 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
11482 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
11484 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
11489 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
11493 /* Ada attributes ('Foo). */
11496 case OP_ATR_LENGTH
:
11500 case OP_ATR_MODULUS
:
11507 case UNOP_IN_RANGE
:
11509 /* XXX: gdb_sprint_host_address, type_sprint */
11510 fprintf_filtered (stream
, _("Type @"));
11511 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
11512 fprintf_filtered (stream
, " (");
11513 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
11514 fprintf_filtered (stream
, ")");
11516 case BINOP_IN_BOUNDS
:
11517 fprintf_filtered (stream
, " (%d)",
11518 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
11520 case TERNOP_IN_RANGE
:
11525 case OP_DISCRETE_RANGE
:
11526 case OP_POSITIONAL
:
11533 char *name
= &exp
->elts
[elt
+ 2].string
;
11534 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
11536 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
11541 return dump_subexp_body_standard (exp
, stream
, elt
);
11545 for (i
= 0; i
< nargs
; i
+= 1)
11546 elt
= dump_subexp (exp
, stream
, elt
);
11551 /* The Ada extension of print_subexp (q.v.). */
11554 ada_print_subexp (struct expression
*exp
, int *pos
,
11555 struct ui_file
*stream
, enum precedence prec
)
11557 int oplen
, nargs
, i
;
11559 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
11561 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11568 print_subexp_standard (exp
, pos
, stream
, prec
);
11572 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
11575 case BINOP_IN_BOUNDS
:
11576 /* XXX: sprint_subexp */
11577 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11578 fputs_filtered (" in ", stream
);
11579 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11580 fputs_filtered ("'range", stream
);
11581 if (exp
->elts
[pc
+ 1].longconst
> 1)
11582 fprintf_filtered (stream
, "(%ld)",
11583 (long) exp
->elts
[pc
+ 1].longconst
);
11586 case TERNOP_IN_RANGE
:
11587 if (prec
>= PREC_EQUAL
)
11588 fputs_filtered ("(", stream
);
11589 /* XXX: sprint_subexp */
11590 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11591 fputs_filtered (" in ", stream
);
11592 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11593 fputs_filtered (" .. ", stream
);
11594 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11595 if (prec
>= PREC_EQUAL
)
11596 fputs_filtered (")", stream
);
11601 case OP_ATR_LENGTH
:
11605 case OP_ATR_MODULUS
:
11610 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11612 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
11613 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0);
11617 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11618 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
11623 for (tem
= 1; tem
< nargs
; tem
+= 1)
11625 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
11626 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
11628 fputs_filtered (")", stream
);
11633 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
11634 fputs_filtered ("'(", stream
);
11635 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
11636 fputs_filtered (")", stream
);
11639 case UNOP_IN_RANGE
:
11640 /* XXX: sprint_subexp */
11641 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11642 fputs_filtered (" in ", stream
);
11643 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0);
11646 case OP_DISCRETE_RANGE
:
11647 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11648 fputs_filtered ("..", stream
);
11649 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11653 fputs_filtered ("others => ", stream
);
11654 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11658 for (i
= 0; i
< nargs
-1; i
+= 1)
11661 fputs_filtered ("|", stream
);
11662 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11664 fputs_filtered (" => ", stream
);
11665 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11668 case OP_POSITIONAL
:
11669 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11673 fputs_filtered ("(", stream
);
11674 for (i
= 0; i
< nargs
; i
+= 1)
11677 fputs_filtered (", ", stream
);
11678 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11680 fputs_filtered (")", stream
);
11685 /* Table mapping opcodes into strings for printing operators
11686 and precedences of the operators. */
11688 static const struct op_print ada_op_print_tab
[] = {
11689 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
11690 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
11691 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
11692 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
11693 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
11694 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
11695 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
11696 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
11697 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
11698 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
11699 {">", BINOP_GTR
, PREC_ORDER
, 0},
11700 {"<", BINOP_LESS
, PREC_ORDER
, 0},
11701 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
11702 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
11703 {"+", BINOP_ADD
, PREC_ADD
, 0},
11704 {"-", BINOP_SUB
, PREC_ADD
, 0},
11705 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
11706 {"*", BINOP_MUL
, PREC_MUL
, 0},
11707 {"/", BINOP_DIV
, PREC_MUL
, 0},
11708 {"rem", BINOP_REM
, PREC_MUL
, 0},
11709 {"mod", BINOP_MOD
, PREC_MUL
, 0},
11710 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
11711 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
11712 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
11713 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
11714 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
11715 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
11716 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
11717 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
11718 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
11719 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
11723 enum ada_primitive_types
{
11724 ada_primitive_type_int
,
11725 ada_primitive_type_long
,
11726 ada_primitive_type_short
,
11727 ada_primitive_type_char
,
11728 ada_primitive_type_float
,
11729 ada_primitive_type_double
,
11730 ada_primitive_type_void
,
11731 ada_primitive_type_long_long
,
11732 ada_primitive_type_long_double
,
11733 ada_primitive_type_natural
,
11734 ada_primitive_type_positive
,
11735 ada_primitive_type_system_address
,
11736 nr_ada_primitive_types
11740 ada_language_arch_info (struct gdbarch
*gdbarch
,
11741 struct language_arch_info
*lai
)
11743 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
11745 lai
->primitive_type_vector
11746 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
11749 lai
->primitive_type_vector
[ada_primitive_type_int
]
11750 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11752 lai
->primitive_type_vector
[ada_primitive_type_long
]
11753 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
11754 0, "long_integer");
11755 lai
->primitive_type_vector
[ada_primitive_type_short
]
11756 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
11757 0, "short_integer");
11758 lai
->string_char_type
11759 = lai
->primitive_type_vector
[ada_primitive_type_char
]
11760 = arch_integer_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
11761 lai
->primitive_type_vector
[ada_primitive_type_float
]
11762 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
11764 lai
->primitive_type_vector
[ada_primitive_type_double
]
11765 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
11766 "long_float", NULL
);
11767 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
11768 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
11769 0, "long_long_integer");
11770 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
11771 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
11772 "long_long_float", NULL
);
11773 lai
->primitive_type_vector
[ada_primitive_type_natural
]
11774 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11776 lai
->primitive_type_vector
[ada_primitive_type_positive
]
11777 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11779 lai
->primitive_type_vector
[ada_primitive_type_void
]
11780 = builtin
->builtin_void
;
11782 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
11783 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, 1, "void"));
11784 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
11785 = "system__address";
11787 lai
->bool_type_symbol
= NULL
;
11788 lai
->bool_type_default
= builtin
->builtin_bool
;
11791 /* Language vector */
11793 /* Not really used, but needed in the ada_language_defn. */
11796 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
11798 ada_emit_char (c
, type
, stream
, quoter
, 1);
11804 warnings_issued
= 0;
11805 return ada_parse ();
11808 static const struct exp_descriptor ada_exp_descriptor
= {
11810 ada_operator_length
,
11811 ada_operator_check
,
11813 ada_dump_subexp_body
,
11814 ada_evaluate_subexp
11817 const struct language_defn ada_language_defn
= {
11818 "ada", /* Language name */
11822 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
11823 that's not quite what this means. */
11825 macro_expansion_no
,
11826 &ada_exp_descriptor
,
11830 ada_printchar
, /* Print a character constant */
11831 ada_printstr
, /* Function to print string constant */
11832 emit_char
, /* Function to print single char (not used) */
11833 ada_print_type
, /* Print a type using appropriate syntax */
11834 ada_print_typedef
, /* Print a typedef using appropriate syntax */
11835 ada_val_print
, /* Print a value using appropriate syntax */
11836 ada_value_print
, /* Print a top-level value */
11837 NULL
, /* Language specific skip_trampoline */
11838 NULL
, /* name_of_this */
11839 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
11840 basic_lookup_transparent_type
, /* lookup_transparent_type */
11841 ada_la_decode
, /* Language specific symbol demangler */
11842 NULL
, /* Language specific
11843 class_name_from_physname */
11844 ada_op_print_tab
, /* expression operators for printing */
11845 0, /* c-style arrays */
11846 1, /* String lower bound */
11847 ada_get_gdb_completer_word_break_characters
,
11848 ada_make_symbol_completion_list
,
11849 ada_language_arch_info
,
11850 ada_print_array_index
,
11851 default_pass_by_reference
,
11856 /* Provide a prototype to silence -Wmissing-prototypes. */
11857 extern initialize_file_ftype _initialize_ada_language
;
11859 /* Command-list for the "set/show ada" prefix command. */
11860 static struct cmd_list_element
*set_ada_list
;
11861 static struct cmd_list_element
*show_ada_list
;
11863 /* Implement the "set ada" prefix command. */
11866 set_ada_command (char *arg
, int from_tty
)
11868 printf_unfiltered (_(\
11869 "\"set ada\" must be followed by the name of a setting.\n"));
11870 help_list (set_ada_list
, "set ada ", -1, gdb_stdout
);
11873 /* Implement the "show ada" prefix command. */
11876 show_ada_command (char *args
, int from_tty
)
11878 cmd_show_list (show_ada_list
, from_tty
, "");
11882 _initialize_ada_language (void)
11884 add_language (&ada_language_defn
);
11886 add_prefix_cmd ("ada", no_class
, set_ada_command
,
11887 _("Prefix command for changing Ada-specfic settings"),
11888 &set_ada_list
, "set ada ", 0, &setlist
);
11890 add_prefix_cmd ("ada", no_class
, show_ada_command
,
11891 _("Generic command for showing Ada-specific settings."),
11892 &show_ada_list
, "show ada ", 0, &showlist
);
11894 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
11895 &trust_pad_over_xvs
, _("\
11896 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11897 Show whether an optimization trusting PAD types over XVS types is activated"),
11899 This is related to the encoding used by the GNAT compiler. The debugger\n\
11900 should normally trust the contents of PAD types, but certain older versions\n\
11901 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11902 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11903 work around this bug. It is always safe to turn this option \"off\", but\n\
11904 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11905 this option to \"off\" unless necessary."),
11906 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
11908 varsize_limit
= 65536;
11910 obstack_init (&symbol_list_obstack
);
11912 decoded_names_store
= htab_create_alloc
11913 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
11914 NULL
, xcalloc
, xfree
);
11916 observer_attach_executable_changed (ada_executable_changed_observer
);
11918 /* Setup per-inferior data. */
11919 observer_attach_inferior_exit (ada_inferior_exit
);
11921 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup
);