gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269 \f
270
271
272 /* Maximum-sized dynamic type. */
273 static unsigned int varsize_limit;
274
275 /* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277 static char *ada_completer_word_break_characters =
278 #ifdef VMS
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280 #else
281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
282 #endif
283
284 /* The name of the symbol to use to get the name of the main subprogram. */
285 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
286 = "__gnat_ada_main_program_name";
287
288 /* Limit on the number of warnings to raise per expression evaluation. */
289 static int warning_limit = 2;
290
291 /* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293 static int warnings_issued = 0;
294
295 static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
297 };
298
299 static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
301 };
302
303 /* Space for allocating results of ada_lookup_symbol_list. */
304 static struct obstack symbol_list_obstack;
305
306 /* Inferior-specific data. */
307
308 /* Per-inferior data for this module. */
309
310 struct ada_inferior_data
311 {
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
317 };
318
319 /* Our key to this module's inferior data. */
320 static const struct inferior_data *ada_inferior_data;
321
322 /* A cleanup routine for our inferior data. */
323 static void
324 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
325 {
326 struct ada_inferior_data *data;
327
328 data = inferior_data (inf, ada_inferior_data);
329 if (data != NULL)
330 xfree (data);
331 }
332
333 /* Return our inferior data for the given inferior (INF).
334
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
340
341 static struct ada_inferior_data *
342 get_ada_inferior_data (struct inferior *inf)
343 {
344 struct ada_inferior_data *data;
345
346 data = inferior_data (inf, ada_inferior_data);
347 if (data == NULL)
348 {
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
351 }
352
353 return data;
354 }
355
356 /* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
358
359 static void
360 ada_inferior_exit (struct inferior *inf)
361 {
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
364 }
365
366 /* Utilities */
367
368 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
369 all typedef layers have been peeled. Otherwise, return TYPE.
370
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
379
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
383
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
390
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
394
395 static struct type *
396 ada_typedef_target_type (struct type *type)
397 {
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
400 return type;
401 }
402
403 /* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
406
407 static const char *
408 ada_unqualified_name (const char *decoded_name)
409 {
410 const char *result = strrchr (decoded_name, '.');
411
412 if (result != NULL)
413 result++; /* Skip the dot... */
414 else
415 result = decoded_name;
416
417 return result;
418 }
419
420 /* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
422
423 static char *
424 add_angle_brackets (const char *str)
425 {
426 static char *result = NULL;
427
428 xfree (result);
429 result = xstrprintf ("<%s>", str);
430 return result;
431 }
432
433 static char *
434 ada_get_gdb_completer_word_break_characters (void)
435 {
436 return ada_completer_word_break_characters;
437 }
438
439 /* Print an array element index using the Ada syntax. */
440
441 static void
442 ada_print_array_index (struct value *index_value, struct ui_file *stream,
443 const struct value_print_options *options)
444 {
445 LA_VALUE_PRINT (index_value, stream, options);
446 fprintf_filtered (stream, " => ");
447 }
448
449 /* Assuming VECT points to an array of *SIZE objects of size
450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
451 updating *SIZE as necessary and returning the (new) array. */
452
453 void *
454 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
455 {
456 if (*size < min_size)
457 {
458 *size *= 2;
459 if (*size < min_size)
460 *size = min_size;
461 vect = xrealloc (vect, *size * element_size);
462 }
463 return vect;
464 }
465
466 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
467 suffix of FIELD_NAME beginning "___". */
468
469 static int
470 field_name_match (const char *field_name, const char *target)
471 {
472 int len = strlen (target);
473
474 return
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
478 && strcmp (field_name + strlen (field_name) - 6,
479 "___XVN") != 0)));
480 }
481
482
483 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
490
491 int
492 ada_get_field_index (const struct type *type, const char *field_name,
493 int maybe_missing)
494 {
495 int fieldno;
496 struct type *struct_type = check_typedef ((struct type *) type);
497
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
500 return fieldno;
501
502 if (!maybe_missing)
503 error (_("Unable to find field %s in struct %s. Aborting"),
504 field_name, TYPE_NAME (struct_type));
505
506 return -1;
507 }
508
509 /* The length of the prefix of NAME prior to any "___" suffix. */
510
511 int
512 ada_name_prefix_len (const char *name)
513 {
514 if (name == NULL)
515 return 0;
516 else
517 {
518 const char *p = strstr (name, "___");
519
520 if (p == NULL)
521 return strlen (name);
522 else
523 return p - name;
524 }
525 }
526
527 /* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
529
530 static int
531 is_suffix (const char *str, const char *suffix)
532 {
533 int len1, len2;
534
535 if (str == NULL)
536 return 0;
537 len1 = strlen (str);
538 len2 = strlen (suffix);
539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
540 }
541
542 /* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
544
545 static struct value *
546 coerce_unspec_val_to_type (struct value *val, struct type *type)
547 {
548 type = ada_check_typedef (type);
549 if (value_type (val) == type)
550 return val;
551 else
552 {
553 struct value *result;
554
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
557 check_size (type);
558
559 if (value_lazy (val)
560 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
561 result = allocate_value_lazy (type);
562 else
563 {
564 result = allocate_value (type);
565 memcpy (value_contents_raw (result), value_contents (val),
566 TYPE_LENGTH (type));
567 }
568 set_value_component_location (result, val);
569 set_value_bitsize (result, value_bitsize (val));
570 set_value_bitpos (result, value_bitpos (val));
571 set_value_address (result, value_address (val));
572 return result;
573 }
574 }
575
576 static const gdb_byte *
577 cond_offset_host (const gdb_byte *valaddr, long offset)
578 {
579 if (valaddr == NULL)
580 return NULL;
581 else
582 return valaddr + offset;
583 }
584
585 static CORE_ADDR
586 cond_offset_target (CORE_ADDR address, long offset)
587 {
588 if (address == 0)
589 return 0;
590 else
591 return address + offset;
592 }
593
594 /* Issue a warning (as for the definition of warning in utils.c, but
595 with exactly one argument rather than ...), unless the limit on the
596 number of warnings has passed during the evaluation of the current
597 expression. */
598
599 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
600 provided by "complaint". */
601 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
602
603 static void
604 lim_warning (const char *format, ...)
605 {
606 va_list args;
607
608 va_start (args, format);
609 warnings_issued += 1;
610 if (warnings_issued <= warning_limit)
611 vwarning (format, args);
612
613 va_end (args);
614 }
615
616 /* Issue an error if the size of an object of type T is unreasonable,
617 i.e. if it would be a bad idea to allocate a value of this type in
618 GDB. */
619
620 static void
621 check_size (const struct type *type)
622 {
623 if (TYPE_LENGTH (type) > varsize_limit)
624 error (_("object size is larger than varsize-limit"));
625 }
626
627 /* Maximum value of a SIZE-byte signed integer type. */
628 static LONGEST
629 max_of_size (int size)
630 {
631 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
632
633 return top_bit | (top_bit - 1);
634 }
635
636 /* Minimum value of a SIZE-byte signed integer type. */
637 static LONGEST
638 min_of_size (int size)
639 {
640 return -max_of_size (size) - 1;
641 }
642
643 /* Maximum value of a SIZE-byte unsigned integer type. */
644 static ULONGEST
645 umax_of_size (int size)
646 {
647 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
648
649 return top_bit | (top_bit - 1);
650 }
651
652 /* Maximum value of integral type T, as a signed quantity. */
653 static LONGEST
654 max_of_type (struct type *t)
655 {
656 if (TYPE_UNSIGNED (t))
657 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
658 else
659 return max_of_size (TYPE_LENGTH (t));
660 }
661
662 /* Minimum value of integral type T, as a signed quantity. */
663 static LONGEST
664 min_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return 0;
668 else
669 return min_of_size (TYPE_LENGTH (t));
670 }
671
672 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
673 LONGEST
674 ada_discrete_type_high_bound (struct type *type)
675 {
676 switch (TYPE_CODE (type))
677 {
678 case TYPE_CODE_RANGE:
679 return TYPE_HIGH_BOUND (type);
680 case TYPE_CODE_ENUM:
681 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
682 case TYPE_CODE_BOOL:
683 return 1;
684 case TYPE_CODE_CHAR:
685 case TYPE_CODE_INT:
686 return max_of_type (type);
687 default:
688 error (_("Unexpected type in ada_discrete_type_high_bound."));
689 }
690 }
691
692 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
693 LONGEST
694 ada_discrete_type_low_bound (struct type *type)
695 {
696 switch (TYPE_CODE (type))
697 {
698 case TYPE_CODE_RANGE:
699 return TYPE_LOW_BOUND (type);
700 case TYPE_CODE_ENUM:
701 return TYPE_FIELD_BITPOS (type, 0);
702 case TYPE_CODE_BOOL:
703 return 0;
704 case TYPE_CODE_CHAR:
705 case TYPE_CODE_INT:
706 return min_of_type (type);
707 default:
708 error (_("Unexpected type in ada_discrete_type_low_bound."));
709 }
710 }
711
712 /* The identity on non-range types. For range types, the underlying
713 non-range scalar type. */
714
715 static struct type *
716 base_type (struct type *type)
717 {
718 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
719 {
720 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
721 return type;
722 type = TYPE_TARGET_TYPE (type);
723 }
724 return type;
725 }
726 \f
727
728 /* Language Selection */
729
730 /* If the main program is in Ada, return language_ada, otherwise return LANG
731 (the main program is in Ada iif the adainit symbol is found). */
732
733 enum language
734 ada_update_initial_language (enum language lang)
735 {
736 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
737 (struct objfile *) NULL) != NULL)
738 return language_ada;
739
740 return lang;
741 }
742
743 /* If the main procedure is written in Ada, then return its name.
744 The result is good until the next call. Return NULL if the main
745 procedure doesn't appear to be in Ada. */
746
747 char *
748 ada_main_name (void)
749 {
750 struct minimal_symbol *msym;
751 static char *main_program_name = NULL;
752
753 /* For Ada, the name of the main procedure is stored in a specific
754 string constant, generated by the binder. Look for that symbol,
755 extract its address, and then read that string. If we didn't find
756 that string, then most probably the main procedure is not written
757 in Ada. */
758 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
759
760 if (msym != NULL)
761 {
762 CORE_ADDR main_program_name_addr;
763 int err_code;
764
765 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
766 if (main_program_name_addr == 0)
767 error (_("Invalid address for Ada main program name."));
768
769 xfree (main_program_name);
770 target_read_string (main_program_name_addr, &main_program_name,
771 1024, &err_code);
772
773 if (err_code != 0)
774 return NULL;
775 return main_program_name;
776 }
777
778 /* The main procedure doesn't seem to be in Ada. */
779 return NULL;
780 }
781 \f
782 /* Symbols */
783
784 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
785 of NULLs. */
786
787 const struct ada_opname_map ada_opname_table[] = {
788 {"Oadd", "\"+\"", BINOP_ADD},
789 {"Osubtract", "\"-\"", BINOP_SUB},
790 {"Omultiply", "\"*\"", BINOP_MUL},
791 {"Odivide", "\"/\"", BINOP_DIV},
792 {"Omod", "\"mod\"", BINOP_MOD},
793 {"Orem", "\"rem\"", BINOP_REM},
794 {"Oexpon", "\"**\"", BINOP_EXP},
795 {"Olt", "\"<\"", BINOP_LESS},
796 {"Ole", "\"<=\"", BINOP_LEQ},
797 {"Ogt", "\">\"", BINOP_GTR},
798 {"Oge", "\">=\"", BINOP_GEQ},
799 {"Oeq", "\"=\"", BINOP_EQUAL},
800 {"One", "\"/=\"", BINOP_NOTEQUAL},
801 {"Oand", "\"and\"", BINOP_BITWISE_AND},
802 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
803 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
804 {"Oconcat", "\"&\"", BINOP_CONCAT},
805 {"Oabs", "\"abs\"", UNOP_ABS},
806 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
807 {"Oadd", "\"+\"", UNOP_PLUS},
808 {"Osubtract", "\"-\"", UNOP_NEG},
809 {NULL, NULL}
810 };
811
812 /* The "encoded" form of DECODED, according to GNAT conventions.
813 The result is valid until the next call to ada_encode. */
814
815 char *
816 ada_encode (const char *decoded)
817 {
818 static char *encoding_buffer = NULL;
819 static size_t encoding_buffer_size = 0;
820 const char *p;
821 int k;
822
823 if (decoded == NULL)
824 return NULL;
825
826 GROW_VECT (encoding_buffer, encoding_buffer_size,
827 2 * strlen (decoded) + 10);
828
829 k = 0;
830 for (p = decoded; *p != '\0'; p += 1)
831 {
832 if (*p == '.')
833 {
834 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
835 k += 2;
836 }
837 else if (*p == '"')
838 {
839 const struct ada_opname_map *mapping;
840
841 for (mapping = ada_opname_table;
842 mapping->encoded != NULL
843 && strncmp (mapping->decoded, p,
844 strlen (mapping->decoded)) != 0; mapping += 1)
845 ;
846 if (mapping->encoded == NULL)
847 error (_("invalid Ada operator name: %s"), p);
848 strcpy (encoding_buffer + k, mapping->encoded);
849 k += strlen (mapping->encoded);
850 break;
851 }
852 else
853 {
854 encoding_buffer[k] = *p;
855 k += 1;
856 }
857 }
858
859 encoding_buffer[k] = '\0';
860 return encoding_buffer;
861 }
862
863 /* Return NAME folded to lower case, or, if surrounded by single
864 quotes, unfolded, but with the quotes stripped away. Result good
865 to next call. */
866
867 char *
868 ada_fold_name (const char *name)
869 {
870 static char *fold_buffer = NULL;
871 static size_t fold_buffer_size = 0;
872
873 int len = strlen (name);
874 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
875
876 if (name[0] == '\'')
877 {
878 strncpy (fold_buffer, name + 1, len - 2);
879 fold_buffer[len - 2] = '\000';
880 }
881 else
882 {
883 int i;
884
885 for (i = 0; i <= len; i += 1)
886 fold_buffer[i] = tolower (name[i]);
887 }
888
889 return fold_buffer;
890 }
891
892 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
893
894 static int
895 is_lower_alphanum (const char c)
896 {
897 return (isdigit (c) || (isalpha (c) && islower (c)));
898 }
899
900 /* Remove either of these suffixes:
901 . .{DIGIT}+
902 . ${DIGIT}+
903 . ___{DIGIT}+
904 . __{DIGIT}+.
905 These are suffixes introduced by the compiler for entities such as
906 nested subprogram for instance, in order to avoid name clashes.
907 They do not serve any purpose for the debugger. */
908
909 static void
910 ada_remove_trailing_digits (const char *encoded, int *len)
911 {
912 if (*len > 1 && isdigit (encoded[*len - 1]))
913 {
914 int i = *len - 2;
915
916 while (i > 0 && isdigit (encoded[i]))
917 i--;
918 if (i >= 0 && encoded[i] == '.')
919 *len = i;
920 else if (i >= 0 && encoded[i] == '$')
921 *len = i;
922 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
923 *len = i - 2;
924 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
925 *len = i - 1;
926 }
927 }
928
929 /* Remove the suffix introduced by the compiler for protected object
930 subprograms. */
931
932 static void
933 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
934 {
935 /* Remove trailing N. */
936
937 /* Protected entry subprograms are broken into two
938 separate subprograms: The first one is unprotected, and has
939 a 'N' suffix; the second is the protected version, and has
940 the 'P' suffix. The second calls the first one after handling
941 the protection. Since the P subprograms are internally generated,
942 we leave these names undecoded, giving the user a clue that this
943 entity is internal. */
944
945 if (*len > 1
946 && encoded[*len - 1] == 'N'
947 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
948 *len = *len - 1;
949 }
950
951 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
952
953 static void
954 ada_remove_Xbn_suffix (const char *encoded, int *len)
955 {
956 int i = *len - 1;
957
958 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
959 i--;
960
961 if (encoded[i] != 'X')
962 return;
963
964 if (i == 0)
965 return;
966
967 if (isalnum (encoded[i-1]))
968 *len = i;
969 }
970
971 /* If ENCODED follows the GNAT entity encoding conventions, then return
972 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
973 replaced by ENCODED.
974
975 The resulting string is valid until the next call of ada_decode.
976 If the string is unchanged by decoding, the original string pointer
977 is returned. */
978
979 const char *
980 ada_decode (const char *encoded)
981 {
982 int i, j;
983 int len0;
984 const char *p;
985 char *decoded;
986 int at_start_name;
987 static char *decoding_buffer = NULL;
988 static size_t decoding_buffer_size = 0;
989
990 /* The name of the Ada main procedure starts with "_ada_".
991 This prefix is not part of the decoded name, so skip this part
992 if we see this prefix. */
993 if (strncmp (encoded, "_ada_", 5) == 0)
994 encoded += 5;
995
996 /* If the name starts with '_', then it is not a properly encoded
997 name, so do not attempt to decode it. Similarly, if the name
998 starts with '<', the name should not be decoded. */
999 if (encoded[0] == '_' || encoded[0] == '<')
1000 goto Suppress;
1001
1002 len0 = strlen (encoded);
1003
1004 ada_remove_trailing_digits (encoded, &len0);
1005 ada_remove_po_subprogram_suffix (encoded, &len0);
1006
1007 /* Remove the ___X.* suffix if present. Do not forget to verify that
1008 the suffix is located before the current "end" of ENCODED. We want
1009 to avoid re-matching parts of ENCODED that have previously been
1010 marked as discarded (by decrementing LEN0). */
1011 p = strstr (encoded, "___");
1012 if (p != NULL && p - encoded < len0 - 3)
1013 {
1014 if (p[3] == 'X')
1015 len0 = p - encoded;
1016 else
1017 goto Suppress;
1018 }
1019
1020 /* Remove any trailing TKB suffix. It tells us that this symbol
1021 is for the body of a task, but that information does not actually
1022 appear in the decoded name. */
1023
1024 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1025 len0 -= 3;
1026
1027 /* Remove any trailing TB suffix. The TB suffix is slightly different
1028 from the TKB suffix because it is used for non-anonymous task
1029 bodies. */
1030
1031 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1032 len0 -= 2;
1033
1034 /* Remove trailing "B" suffixes. */
1035 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1036
1037 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1038 len0 -= 1;
1039
1040 /* Make decoded big enough for possible expansion by operator name. */
1041
1042 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1043 decoded = decoding_buffer;
1044
1045 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1046
1047 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1048 {
1049 i = len0 - 2;
1050 while ((i >= 0 && isdigit (encoded[i]))
1051 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1052 i -= 1;
1053 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1054 len0 = i - 1;
1055 else if (encoded[i] == '$')
1056 len0 = i;
1057 }
1058
1059 /* The first few characters that are not alphabetic are not part
1060 of any encoding we use, so we can copy them over verbatim. */
1061
1062 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1063 decoded[j] = encoded[i];
1064
1065 at_start_name = 1;
1066 while (i < len0)
1067 {
1068 /* Is this a symbol function? */
1069 if (at_start_name && encoded[i] == 'O')
1070 {
1071 int k;
1072
1073 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1074 {
1075 int op_len = strlen (ada_opname_table[k].encoded);
1076 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1077 op_len - 1) == 0)
1078 && !isalnum (encoded[i + op_len]))
1079 {
1080 strcpy (decoded + j, ada_opname_table[k].decoded);
1081 at_start_name = 0;
1082 i += op_len;
1083 j += strlen (ada_opname_table[k].decoded);
1084 break;
1085 }
1086 }
1087 if (ada_opname_table[k].encoded != NULL)
1088 continue;
1089 }
1090 at_start_name = 0;
1091
1092 /* Replace "TK__" with "__", which will eventually be translated
1093 into "." (just below). */
1094
1095 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1096 i += 2;
1097
1098 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1099 be translated into "." (just below). These are internal names
1100 generated for anonymous blocks inside which our symbol is nested. */
1101
1102 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1103 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1104 && isdigit (encoded [i+4]))
1105 {
1106 int k = i + 5;
1107
1108 while (k < len0 && isdigit (encoded[k]))
1109 k++; /* Skip any extra digit. */
1110
1111 /* Double-check that the "__B_{DIGITS}+" sequence we found
1112 is indeed followed by "__". */
1113 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1114 i = k;
1115 }
1116
1117 /* Remove _E{DIGITS}+[sb] */
1118
1119 /* Just as for protected object subprograms, there are 2 categories
1120 of subprograms created by the compiler for each entry. The first
1121 one implements the actual entry code, and has a suffix following
1122 the convention above; the second one implements the barrier and
1123 uses the same convention as above, except that the 'E' is replaced
1124 by a 'B'.
1125
1126 Just as above, we do not decode the name of barrier functions
1127 to give the user a clue that the code he is debugging has been
1128 internally generated. */
1129
1130 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1131 && isdigit (encoded[i+2]))
1132 {
1133 int k = i + 3;
1134
1135 while (k < len0 && isdigit (encoded[k]))
1136 k++;
1137
1138 if (k < len0
1139 && (encoded[k] == 'b' || encoded[k] == 's'))
1140 {
1141 k++;
1142 /* Just as an extra precaution, make sure that if this
1143 suffix is followed by anything else, it is a '_'.
1144 Otherwise, we matched this sequence by accident. */
1145 if (k == len0
1146 || (k < len0 && encoded[k] == '_'))
1147 i = k;
1148 }
1149 }
1150
1151 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1152 the GNAT front-end in protected object subprograms. */
1153
1154 if (i < len0 + 3
1155 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1156 {
1157 /* Backtrack a bit up until we reach either the begining of
1158 the encoded name, or "__". Make sure that we only find
1159 digits or lowercase characters. */
1160 const char *ptr = encoded + i - 1;
1161
1162 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1163 ptr--;
1164 if (ptr < encoded
1165 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1166 i++;
1167 }
1168
1169 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1170 {
1171 /* This is a X[bn]* sequence not separated from the previous
1172 part of the name with a non-alpha-numeric character (in other
1173 words, immediately following an alpha-numeric character), then
1174 verify that it is placed at the end of the encoded name. If
1175 not, then the encoding is not valid and we should abort the
1176 decoding. Otherwise, just skip it, it is used in body-nested
1177 package names. */
1178 do
1179 i += 1;
1180 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1181 if (i < len0)
1182 goto Suppress;
1183 }
1184 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1185 {
1186 /* Replace '__' by '.'. */
1187 decoded[j] = '.';
1188 at_start_name = 1;
1189 i += 2;
1190 j += 1;
1191 }
1192 else
1193 {
1194 /* It's a character part of the decoded name, so just copy it
1195 over. */
1196 decoded[j] = encoded[i];
1197 i += 1;
1198 j += 1;
1199 }
1200 }
1201 decoded[j] = '\000';
1202
1203 /* Decoded names should never contain any uppercase character.
1204 Double-check this, and abort the decoding if we find one. */
1205
1206 for (i = 0; decoded[i] != '\0'; i += 1)
1207 if (isupper (decoded[i]) || decoded[i] == ' ')
1208 goto Suppress;
1209
1210 if (strcmp (decoded, encoded) == 0)
1211 return encoded;
1212 else
1213 return decoded;
1214
1215 Suppress:
1216 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1217 decoded = decoding_buffer;
1218 if (encoded[0] == '<')
1219 strcpy (decoded, encoded);
1220 else
1221 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1222 return decoded;
1223
1224 }
1225
1226 /* Table for keeping permanent unique copies of decoded names. Once
1227 allocated, names in this table are never released. While this is a
1228 storage leak, it should not be significant unless there are massive
1229 changes in the set of decoded names in successive versions of a
1230 symbol table loaded during a single session. */
1231 static struct htab *decoded_names_store;
1232
1233 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1234 in the language-specific part of GSYMBOL, if it has not been
1235 previously computed. Tries to save the decoded name in the same
1236 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1237 in any case, the decoded symbol has a lifetime at least that of
1238 GSYMBOL).
1239 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1240 const, but nevertheless modified to a semantically equivalent form
1241 when a decoded name is cached in it. */
1242
1243 char *
1244 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1245 {
1246 char **resultp =
1247 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1248
1249 if (*resultp == NULL)
1250 {
1251 const char *decoded = ada_decode (gsymbol->name);
1252
1253 if (gsymbol->obj_section != NULL)
1254 {
1255 struct objfile *objf = gsymbol->obj_section->objfile;
1256
1257 *resultp = obsavestring (decoded, strlen (decoded),
1258 &objf->objfile_obstack);
1259 }
1260 /* Sometimes, we can't find a corresponding objfile, in which
1261 case, we put the result on the heap. Since we only decode
1262 when needed, we hope this usually does not cause a
1263 significant memory leak (FIXME). */
1264 if (*resultp == NULL)
1265 {
1266 char **slot = (char **) htab_find_slot (decoded_names_store,
1267 decoded, INSERT);
1268
1269 if (*slot == NULL)
1270 *slot = xstrdup (decoded);
1271 *resultp = *slot;
1272 }
1273 }
1274
1275 return *resultp;
1276 }
1277
1278 static char *
1279 ada_la_decode (const char *encoded, int options)
1280 {
1281 return xstrdup (ada_decode (encoded));
1282 }
1283
1284 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1285 suffixes that encode debugging information or leading _ada_ on
1286 SYM_NAME (see is_name_suffix commentary for the debugging
1287 information that is ignored). If WILD, then NAME need only match a
1288 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1289 either argument is NULL. */
1290
1291 static int
1292 match_name (const char *sym_name, const char *name, int wild)
1293 {
1294 if (sym_name == NULL || name == NULL)
1295 return 0;
1296 else if (wild)
1297 return wild_match (sym_name, name) == 0;
1298 else
1299 {
1300 int len_name = strlen (name);
1301
1302 return (strncmp (sym_name, name, len_name) == 0
1303 && is_name_suffix (sym_name + len_name))
1304 || (strncmp (sym_name, "_ada_", 5) == 0
1305 && strncmp (sym_name + 5, name, len_name) == 0
1306 && is_name_suffix (sym_name + len_name + 5));
1307 }
1308 }
1309 \f
1310
1311 /* Arrays */
1312
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
1320 The GNAT encoding used to describle the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336 void
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1338 {
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1343 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1353 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1354 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1359 {
1360 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
1364 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1365 }
1366 }
1367
1368 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1369
1370 static char *bound_name[] = {
1371 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1372 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1373 };
1374
1375 /* Maximum number of array dimensions we are prepared to handle. */
1376
1377 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1378
1379
1380 /* The desc_* routines return primitive portions of array descriptors
1381 (fat pointers). */
1382
1383 /* The descriptor or array type, if any, indicated by TYPE; removes
1384 level of indirection, if needed. */
1385
1386 static struct type *
1387 desc_base_type (struct type *type)
1388 {
1389 if (type == NULL)
1390 return NULL;
1391 type = ada_check_typedef (type);
1392 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1393 type = ada_typedef_target_type (type);
1394
1395 if (type != NULL
1396 && (TYPE_CODE (type) == TYPE_CODE_PTR
1397 || TYPE_CODE (type) == TYPE_CODE_REF))
1398 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1399 else
1400 return type;
1401 }
1402
1403 /* True iff TYPE indicates a "thin" array pointer type. */
1404
1405 static int
1406 is_thin_pntr (struct type *type)
1407 {
1408 return
1409 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1410 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1411 }
1412
1413 /* The descriptor type for thin pointer type TYPE. */
1414
1415 static struct type *
1416 thin_descriptor_type (struct type *type)
1417 {
1418 struct type *base_type = desc_base_type (type);
1419
1420 if (base_type == NULL)
1421 return NULL;
1422 if (is_suffix (ada_type_name (base_type), "___XVE"))
1423 return base_type;
1424 else
1425 {
1426 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1427
1428 if (alt_type == NULL)
1429 return base_type;
1430 else
1431 return alt_type;
1432 }
1433 }
1434
1435 /* A pointer to the array data for thin-pointer value VAL. */
1436
1437 static struct value *
1438 thin_data_pntr (struct value *val)
1439 {
1440 struct type *type = value_type (val);
1441 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1442
1443 data_type = lookup_pointer_type (data_type);
1444
1445 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1446 return value_cast (data_type, value_copy (val));
1447 else
1448 return value_from_longest (data_type, value_address (val));
1449 }
1450
1451 /* True iff TYPE indicates a "thick" array pointer type. */
1452
1453 static int
1454 is_thick_pntr (struct type *type)
1455 {
1456 type = desc_base_type (type);
1457 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1458 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1459 }
1460
1461 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1462 pointer to one, the type of its bounds data; otherwise, NULL. */
1463
1464 static struct type *
1465 desc_bounds_type (struct type *type)
1466 {
1467 struct type *r;
1468
1469 type = desc_base_type (type);
1470
1471 if (type == NULL)
1472 return NULL;
1473 else if (is_thin_pntr (type))
1474 {
1475 type = thin_descriptor_type (type);
1476 if (type == NULL)
1477 return NULL;
1478 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1479 if (r != NULL)
1480 return ada_check_typedef (r);
1481 }
1482 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1483 {
1484 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1485 if (r != NULL)
1486 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1487 }
1488 return NULL;
1489 }
1490
1491 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1492 one, a pointer to its bounds data. Otherwise NULL. */
1493
1494 static struct value *
1495 desc_bounds (struct value *arr)
1496 {
1497 struct type *type = ada_check_typedef (value_type (arr));
1498
1499 if (is_thin_pntr (type))
1500 {
1501 struct type *bounds_type =
1502 desc_bounds_type (thin_descriptor_type (type));
1503 LONGEST addr;
1504
1505 if (bounds_type == NULL)
1506 error (_("Bad GNAT array descriptor"));
1507
1508 /* NOTE: The following calculation is not really kosher, but
1509 since desc_type is an XVE-encoded type (and shouldn't be),
1510 the correct calculation is a real pain. FIXME (and fix GCC). */
1511 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1512 addr = value_as_long (arr);
1513 else
1514 addr = value_address (arr);
1515
1516 return
1517 value_from_longest (lookup_pointer_type (bounds_type),
1518 addr - TYPE_LENGTH (bounds_type));
1519 }
1520
1521 else if (is_thick_pntr (type))
1522 {
1523 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1524 _("Bad GNAT array descriptor"));
1525 struct type *p_bounds_type = value_type (p_bounds);
1526
1527 if (p_bounds_type
1528 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1529 {
1530 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1531
1532 if (TYPE_STUB (target_type))
1533 p_bounds = value_cast (lookup_pointer_type
1534 (ada_check_typedef (target_type)),
1535 p_bounds);
1536 }
1537 else
1538 error (_("Bad GNAT array descriptor"));
1539
1540 return p_bounds;
1541 }
1542 else
1543 return NULL;
1544 }
1545
1546 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1547 position of the field containing the address of the bounds data. */
1548
1549 static int
1550 fat_pntr_bounds_bitpos (struct type *type)
1551 {
1552 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1553 }
1554
1555 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1556 size of the field containing the address of the bounds data. */
1557
1558 static int
1559 fat_pntr_bounds_bitsize (struct type *type)
1560 {
1561 type = desc_base_type (type);
1562
1563 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1564 return TYPE_FIELD_BITSIZE (type, 1);
1565 else
1566 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1567 }
1568
1569 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1570 pointer to one, the type of its array data (a array-with-no-bounds type);
1571 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1572 data. */
1573
1574 static struct type *
1575 desc_data_target_type (struct type *type)
1576 {
1577 type = desc_base_type (type);
1578
1579 /* NOTE: The following is bogus; see comment in desc_bounds. */
1580 if (is_thin_pntr (type))
1581 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1582 else if (is_thick_pntr (type))
1583 {
1584 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1585
1586 if (data_type
1587 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1588 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1589 }
1590
1591 return NULL;
1592 }
1593
1594 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1595 its array data. */
1596
1597 static struct value *
1598 desc_data (struct value *arr)
1599 {
1600 struct type *type = value_type (arr);
1601
1602 if (is_thin_pntr (type))
1603 return thin_data_pntr (arr);
1604 else if (is_thick_pntr (type))
1605 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1606 _("Bad GNAT array descriptor"));
1607 else
1608 return NULL;
1609 }
1610
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 position of the field containing the address of the data. */
1614
1615 static int
1616 fat_pntr_data_bitpos (struct type *type)
1617 {
1618 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1619 }
1620
1621 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1622 size of the field containing the address of the data. */
1623
1624 static int
1625 fat_pntr_data_bitsize (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628
1629 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1630 return TYPE_FIELD_BITSIZE (type, 0);
1631 else
1632 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1633 }
1634
1635 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1636 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1637 bound, if WHICH is 1. The first bound is I=1. */
1638
1639 static struct value *
1640 desc_one_bound (struct value *bounds, int i, int which)
1641 {
1642 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1643 _("Bad GNAT array descriptor bounds"));
1644 }
1645
1646 /* If BOUNDS is an array-bounds structure type, return the bit position
1647 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1648 bound, if WHICH is 1. The first bound is I=1. */
1649
1650 static int
1651 desc_bound_bitpos (struct type *type, int i, int which)
1652 {
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1654 }
1655
1656 /* If BOUNDS is an array-bounds structure type, return the bit field size
1657 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1658 bound, if WHICH is 1. The first bound is I=1. */
1659
1660 static int
1661 desc_bound_bitsize (struct type *type, int i, int which)
1662 {
1663 type = desc_base_type (type);
1664
1665 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1666 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1667 else
1668 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1669 }
1670
1671 /* If TYPE is the type of an array-bounds structure, the type of its
1672 Ith bound (numbering from 1). Otherwise, NULL. */
1673
1674 static struct type *
1675 desc_index_type (struct type *type, int i)
1676 {
1677 type = desc_base_type (type);
1678
1679 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1681 else
1682 return NULL;
1683 }
1684
1685 /* The number of index positions in the array-bounds type TYPE.
1686 Return 0 if TYPE is NULL. */
1687
1688 static int
1689 desc_arity (struct type *type)
1690 {
1691 type = desc_base_type (type);
1692
1693 if (type != NULL)
1694 return TYPE_NFIELDS (type) / 2;
1695 return 0;
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1699 an array descriptor type (representing an unconstrained array
1700 type). */
1701
1702 static int
1703 ada_is_direct_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = ada_check_typedef (type);
1708 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1709 || ada_is_array_descriptor_type (type));
1710 }
1711
1712 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1713 * to one. */
1714
1715 static int
1716 ada_is_array_type (struct type *type)
1717 {
1718 while (type != NULL
1719 && (TYPE_CODE (type) == TYPE_CODE_PTR
1720 || TYPE_CODE (type) == TYPE_CODE_REF))
1721 type = TYPE_TARGET_TYPE (type);
1722 return ada_is_direct_array_type (type);
1723 }
1724
1725 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1726
1727 int
1728 ada_is_simple_array_type (struct type *type)
1729 {
1730 if (type == NULL)
1731 return 0;
1732 type = ada_check_typedef (type);
1733 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1734 || (TYPE_CODE (type) == TYPE_CODE_PTR
1735 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1736 }
1737
1738 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1739
1740 int
1741 ada_is_array_descriptor_type (struct type *type)
1742 {
1743 struct type *data_type = desc_data_target_type (type);
1744
1745 if (type == NULL)
1746 return 0;
1747 type = ada_check_typedef (type);
1748 return (data_type != NULL
1749 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1750 && desc_arity (desc_bounds_type (type)) > 0);
1751 }
1752
1753 /* Non-zero iff type is a partially mal-formed GNAT array
1754 descriptor. FIXME: This is to compensate for some problems with
1755 debugging output from GNAT. Re-examine periodically to see if it
1756 is still needed. */
1757
1758 int
1759 ada_is_bogus_array_descriptor (struct type *type)
1760 {
1761 return
1762 type != NULL
1763 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1765 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1766 && !ada_is_array_descriptor_type (type);
1767 }
1768
1769
1770 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1771 (fat pointer) returns the type of the array data described---specifically,
1772 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1773 in from the descriptor; otherwise, they are left unspecified. If
1774 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1775 returns NULL. The result is simply the type of ARR if ARR is not
1776 a descriptor. */
1777 struct type *
1778 ada_type_of_array (struct value *arr, int bounds)
1779 {
1780 if (ada_is_constrained_packed_array_type (value_type (arr)))
1781 return decode_constrained_packed_array_type (value_type (arr));
1782
1783 if (!ada_is_array_descriptor_type (value_type (arr)))
1784 return value_type (arr);
1785
1786 if (!bounds)
1787 {
1788 struct type *array_type =
1789 ada_check_typedef (desc_data_target_type (value_type (arr)));
1790
1791 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1792 TYPE_FIELD_BITSIZE (array_type, 0) =
1793 decode_packed_array_bitsize (value_type (arr));
1794
1795 return array_type;
1796 }
1797 else
1798 {
1799 struct type *elt_type;
1800 int arity;
1801 struct value *descriptor;
1802
1803 elt_type = ada_array_element_type (value_type (arr), -1);
1804 arity = ada_array_arity (value_type (arr));
1805
1806 if (elt_type == NULL || arity == 0)
1807 return ada_check_typedef (value_type (arr));
1808
1809 descriptor = desc_bounds (arr);
1810 if (value_as_long (descriptor) == 0)
1811 return NULL;
1812 while (arity > 0)
1813 {
1814 struct type *range_type = alloc_type_copy (value_type (arr));
1815 struct type *array_type = alloc_type_copy (value_type (arr));
1816 struct value *low = desc_one_bound (descriptor, arity, 0);
1817 struct value *high = desc_one_bound (descriptor, arity, 1);
1818
1819 arity -= 1;
1820 create_range_type (range_type, value_type (low),
1821 longest_to_int (value_as_long (low)),
1822 longest_to_int (value_as_long (high)));
1823 elt_type = create_array_type (array_type, elt_type, range_type);
1824
1825 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1826 {
1827 /* We need to store the element packed bitsize, as well as
1828 recompute the array size, because it was previously
1829 computed based on the unpacked element size. */
1830 LONGEST lo = value_as_long (low);
1831 LONGEST hi = value_as_long (high);
1832
1833 TYPE_FIELD_BITSIZE (elt_type, 0) =
1834 decode_packed_array_bitsize (value_type (arr));
1835 /* If the array has no element, then the size is already
1836 zero, and does not need to be recomputed. */
1837 if (lo < hi)
1838 {
1839 int array_bitsize =
1840 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1841
1842 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1843 }
1844 }
1845 }
1846
1847 return lookup_pointer_type (elt_type);
1848 }
1849 }
1850
1851 /* If ARR does not represent an array, returns ARR unchanged.
1852 Otherwise, returns either a standard GDB array with bounds set
1853 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1854 GDB array. Returns NULL if ARR is a null fat pointer. */
1855
1856 struct value *
1857 ada_coerce_to_simple_array_ptr (struct value *arr)
1858 {
1859 if (ada_is_array_descriptor_type (value_type (arr)))
1860 {
1861 struct type *arrType = ada_type_of_array (arr, 1);
1862
1863 if (arrType == NULL)
1864 return NULL;
1865 return value_cast (arrType, value_copy (desc_data (arr)));
1866 }
1867 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1868 return decode_constrained_packed_array (arr);
1869 else
1870 return arr;
1871 }
1872
1873 /* If ARR does not represent an array, returns ARR unchanged.
1874 Otherwise, returns a standard GDB array describing ARR (which may
1875 be ARR itself if it already is in the proper form). */
1876
1877 struct value *
1878 ada_coerce_to_simple_array (struct value *arr)
1879 {
1880 if (ada_is_array_descriptor_type (value_type (arr)))
1881 {
1882 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1883
1884 if (arrVal == NULL)
1885 error (_("Bounds unavailable for null array pointer."));
1886 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1887 return value_ind (arrVal);
1888 }
1889 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1890 return decode_constrained_packed_array (arr);
1891 else
1892 return arr;
1893 }
1894
1895 /* If TYPE represents a GNAT array type, return it translated to an
1896 ordinary GDB array type (possibly with BITSIZE fields indicating
1897 packing). For other types, is the identity. */
1898
1899 struct type *
1900 ada_coerce_to_simple_array_type (struct type *type)
1901 {
1902 if (ada_is_constrained_packed_array_type (type))
1903 return decode_constrained_packed_array_type (type);
1904
1905 if (ada_is_array_descriptor_type (type))
1906 return ada_check_typedef (desc_data_target_type (type));
1907
1908 return type;
1909 }
1910
1911 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1912
1913 static int
1914 ada_is_packed_array_type (struct type *type)
1915 {
1916 if (type == NULL)
1917 return 0;
1918 type = desc_base_type (type);
1919 type = ada_check_typedef (type);
1920 return
1921 ada_type_name (type) != NULL
1922 && strstr (ada_type_name (type), "___XP") != NULL;
1923 }
1924
1925 /* Non-zero iff TYPE represents a standard GNAT constrained
1926 packed-array type. */
1927
1928 int
1929 ada_is_constrained_packed_array_type (struct type *type)
1930 {
1931 return ada_is_packed_array_type (type)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE represents an array descriptor for a
1936 unconstrained packed-array type. */
1937
1938 static int
1939 ada_is_unconstrained_packed_array_type (struct type *type)
1940 {
1941 return ada_is_packed_array_type (type)
1942 && ada_is_array_descriptor_type (type);
1943 }
1944
1945 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1946 return the size of its elements in bits. */
1947
1948 static long
1949 decode_packed_array_bitsize (struct type *type)
1950 {
1951 char *raw_name;
1952 char *tail;
1953 long bits;
1954
1955 /* Access to arrays implemented as fat pointers are encoded as a typedef
1956 of the fat pointer type. We need the name of the fat pointer type
1957 to do the decoding, so strip the typedef layer. */
1958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1959 type = ada_typedef_target_type (type);
1960
1961 raw_name = ada_type_name (ada_check_typedef (type));
1962 if (!raw_name)
1963 raw_name = ada_type_name (desc_base_type (type));
1964
1965 if (!raw_name)
1966 return 0;
1967
1968 tail = strstr (raw_name, "___XP");
1969 gdb_assert (tail != NULL);
1970
1971 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1972 {
1973 lim_warning
1974 (_("could not understand bit size information on packed array"));
1975 return 0;
1976 }
1977
1978 return bits;
1979 }
1980
1981 /* Given that TYPE is a standard GDB array type with all bounds filled
1982 in, and that the element size of its ultimate scalar constituents
1983 (that is, either its elements, or, if it is an array of arrays, its
1984 elements' elements, etc.) is *ELT_BITS, return an identical type,
1985 but with the bit sizes of its elements (and those of any
1986 constituent arrays) recorded in the BITSIZE components of its
1987 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1988 in bits. */
1989
1990 static struct type *
1991 constrained_packed_array_type (struct type *type, long *elt_bits)
1992 {
1993 struct type *new_elt_type;
1994 struct type *new_type;
1995 LONGEST low_bound, high_bound;
1996
1997 type = ada_check_typedef (type);
1998 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1999 return type;
2000
2001 new_type = alloc_type_copy (type);
2002 new_elt_type =
2003 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2004 elt_bits);
2005 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2006 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2007 TYPE_NAME (new_type) = ada_type_name (type);
2008
2009 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2010 &low_bound, &high_bound) < 0)
2011 low_bound = high_bound = 0;
2012 if (high_bound < low_bound)
2013 *elt_bits = TYPE_LENGTH (new_type) = 0;
2014 else
2015 {
2016 *elt_bits *= (high_bound - low_bound + 1);
2017 TYPE_LENGTH (new_type) =
2018 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2019 }
2020
2021 TYPE_FIXED_INSTANCE (new_type) = 1;
2022 return new_type;
2023 }
2024
2025 /* The array type encoded by TYPE, where
2026 ada_is_constrained_packed_array_type (TYPE). */
2027
2028 static struct type *
2029 decode_constrained_packed_array_type (struct type *type)
2030 {
2031 char *raw_name = ada_type_name (ada_check_typedef (type));
2032 char *name;
2033 char *tail;
2034 struct type *shadow_type;
2035 long bits;
2036
2037 if (!raw_name)
2038 raw_name = ada_type_name (desc_base_type (type));
2039
2040 if (!raw_name)
2041 return NULL;
2042
2043 name = (char *) alloca (strlen (raw_name) + 1);
2044 tail = strstr (raw_name, "___XP");
2045 type = desc_base_type (type);
2046
2047 memcpy (name, raw_name, tail - raw_name);
2048 name[tail - raw_name] = '\000';
2049
2050 shadow_type = ada_find_parallel_type_with_name (type, name);
2051
2052 if (shadow_type == NULL)
2053 {
2054 lim_warning (_("could not find bounds information on packed array"));
2055 return NULL;
2056 }
2057 CHECK_TYPEDEF (shadow_type);
2058
2059 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2060 {
2061 lim_warning (_("could not understand bounds "
2062 "information on packed array"));
2063 return NULL;
2064 }
2065
2066 bits = decode_packed_array_bitsize (type);
2067 return constrained_packed_array_type (shadow_type, &bits);
2068 }
2069
2070 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2071 array, returns a simple array that denotes that array. Its type is a
2072 standard GDB array type except that the BITSIZEs of the array
2073 target types are set to the number of bits in each element, and the
2074 type length is set appropriately. */
2075
2076 static struct value *
2077 decode_constrained_packed_array (struct value *arr)
2078 {
2079 struct type *type;
2080
2081 arr = ada_coerce_ref (arr);
2082
2083 /* If our value is a pointer, then dererence it. Make sure that
2084 this operation does not cause the target type to be fixed, as
2085 this would indirectly cause this array to be decoded. The rest
2086 of the routine assumes that the array hasn't been decoded yet,
2087 so we use the basic "value_ind" routine to perform the dereferencing,
2088 as opposed to using "ada_value_ind". */
2089 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2090 arr = value_ind (arr);
2091
2092 type = decode_constrained_packed_array_type (value_type (arr));
2093 if (type == NULL)
2094 {
2095 error (_("can't unpack array"));
2096 return NULL;
2097 }
2098
2099 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2100 && ada_is_modular_type (value_type (arr)))
2101 {
2102 /* This is a (right-justified) modular type representing a packed
2103 array with no wrapper. In order to interpret the value through
2104 the (left-justified) packed array type we just built, we must
2105 first left-justify it. */
2106 int bit_size, bit_pos;
2107 ULONGEST mod;
2108
2109 mod = ada_modulus (value_type (arr)) - 1;
2110 bit_size = 0;
2111 while (mod > 0)
2112 {
2113 bit_size += 1;
2114 mod >>= 1;
2115 }
2116 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2117 arr = ada_value_primitive_packed_val (arr, NULL,
2118 bit_pos / HOST_CHAR_BIT,
2119 bit_pos % HOST_CHAR_BIT,
2120 bit_size,
2121 type);
2122 }
2123
2124 return coerce_unspec_val_to_type (arr, type);
2125 }
2126
2127
2128 /* The value of the element of packed array ARR at the ARITY indices
2129 given in IND. ARR must be a simple array. */
2130
2131 static struct value *
2132 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2133 {
2134 int i;
2135 int bits, elt_off, bit_off;
2136 long elt_total_bit_offset;
2137 struct type *elt_type;
2138 struct value *v;
2139
2140 bits = 0;
2141 elt_total_bit_offset = 0;
2142 elt_type = ada_check_typedef (value_type (arr));
2143 for (i = 0; i < arity; i += 1)
2144 {
2145 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2146 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2147 error
2148 (_("attempt to do packed indexing of "
2149 "something other than a packed array"));
2150 else
2151 {
2152 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2153 LONGEST lowerbound, upperbound;
2154 LONGEST idx;
2155
2156 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2157 {
2158 lim_warning (_("don't know bounds of array"));
2159 lowerbound = upperbound = 0;
2160 }
2161
2162 idx = pos_atr (ind[i]);
2163 if (idx < lowerbound || idx > upperbound)
2164 lim_warning (_("packed array index %ld out of bounds"),
2165 (long) idx);
2166 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2167 elt_total_bit_offset += (idx - lowerbound) * bits;
2168 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2169 }
2170 }
2171 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2172 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2173
2174 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2175 bits, elt_type);
2176 return v;
2177 }
2178
2179 /* Non-zero iff TYPE includes negative integer values. */
2180
2181 static int
2182 has_negatives (struct type *type)
2183 {
2184 switch (TYPE_CODE (type))
2185 {
2186 default:
2187 return 0;
2188 case TYPE_CODE_INT:
2189 return !TYPE_UNSIGNED (type);
2190 case TYPE_CODE_RANGE:
2191 return TYPE_LOW_BOUND (type) < 0;
2192 }
2193 }
2194
2195
2196 /* Create a new value of type TYPE from the contents of OBJ starting
2197 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2198 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2199 assigning through the result will set the field fetched from.
2200 VALADDR is ignored unless OBJ is NULL, in which case,
2201 VALADDR+OFFSET must address the start of storage containing the
2202 packed value. The value returned in this case is never an lval.
2203 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2204
2205 struct value *
2206 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2207 long offset, int bit_offset, int bit_size,
2208 struct type *type)
2209 {
2210 struct value *v;
2211 int src, /* Index into the source area */
2212 targ, /* Index into the target area */
2213 srcBitsLeft, /* Number of source bits left to move */
2214 nsrc, ntarg, /* Number of source and target bytes */
2215 unusedLS, /* Number of bits in next significant
2216 byte of source that are unused */
2217 accumSize; /* Number of meaningful bits in accum */
2218 unsigned char *bytes; /* First byte containing data to unpack */
2219 unsigned char *unpacked;
2220 unsigned long accum; /* Staging area for bits being transferred */
2221 unsigned char sign;
2222 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2223 /* Transmit bytes from least to most significant; delta is the direction
2224 the indices move. */
2225 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2226
2227 type = ada_check_typedef (type);
2228
2229 if (obj == NULL)
2230 {
2231 v = allocate_value (type);
2232 bytes = (unsigned char *) (valaddr + offset);
2233 }
2234 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2235 {
2236 v = value_at (type,
2237 value_address (obj) + offset);
2238 bytes = (unsigned char *) alloca (len);
2239 read_memory (value_address (v), bytes, len);
2240 }
2241 else
2242 {
2243 v = allocate_value (type);
2244 bytes = (unsigned char *) value_contents (obj) + offset;
2245 }
2246
2247 if (obj != NULL)
2248 {
2249 CORE_ADDR new_addr;
2250
2251 set_value_component_location (v, obj);
2252 new_addr = value_address (obj) + offset;
2253 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2254 set_value_bitsize (v, bit_size);
2255 if (value_bitpos (v) >= HOST_CHAR_BIT)
2256 {
2257 ++new_addr;
2258 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2259 }
2260 set_value_address (v, new_addr);
2261 }
2262 else
2263 set_value_bitsize (v, bit_size);
2264 unpacked = (unsigned char *) value_contents (v);
2265
2266 srcBitsLeft = bit_size;
2267 nsrc = len;
2268 ntarg = TYPE_LENGTH (type);
2269 sign = 0;
2270 if (bit_size == 0)
2271 {
2272 memset (unpacked, 0, TYPE_LENGTH (type));
2273 return v;
2274 }
2275 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2276 {
2277 src = len - 1;
2278 if (has_negatives (type)
2279 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2280 sign = ~0;
2281
2282 unusedLS =
2283 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2284 % HOST_CHAR_BIT;
2285
2286 switch (TYPE_CODE (type))
2287 {
2288 case TYPE_CODE_ARRAY:
2289 case TYPE_CODE_UNION:
2290 case TYPE_CODE_STRUCT:
2291 /* Non-scalar values must be aligned at a byte boundary... */
2292 accumSize =
2293 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2294 /* ... And are placed at the beginning (most-significant) bytes
2295 of the target. */
2296 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2297 ntarg = targ + 1;
2298 break;
2299 default:
2300 accumSize = 0;
2301 targ = TYPE_LENGTH (type) - 1;
2302 break;
2303 }
2304 }
2305 else
2306 {
2307 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2308
2309 src = targ = 0;
2310 unusedLS = bit_offset;
2311 accumSize = 0;
2312
2313 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2314 sign = ~0;
2315 }
2316
2317 accum = 0;
2318 while (nsrc > 0)
2319 {
2320 /* Mask for removing bits of the next source byte that are not
2321 part of the value. */
2322 unsigned int unusedMSMask =
2323 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2324 1;
2325 /* Sign-extend bits for this byte. */
2326 unsigned int signMask = sign & ~unusedMSMask;
2327
2328 accum |=
2329 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2330 accumSize += HOST_CHAR_BIT - unusedLS;
2331 if (accumSize >= HOST_CHAR_BIT)
2332 {
2333 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2334 accumSize -= HOST_CHAR_BIT;
2335 accum >>= HOST_CHAR_BIT;
2336 ntarg -= 1;
2337 targ += delta;
2338 }
2339 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2340 unusedLS = 0;
2341 nsrc -= 1;
2342 src += delta;
2343 }
2344 while (ntarg > 0)
2345 {
2346 accum |= sign << accumSize;
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353
2354 return v;
2355 }
2356
2357 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2358 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2359 not overlap. */
2360 static void
2361 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2362 int src_offset, int n, int bits_big_endian_p)
2363 {
2364 unsigned int accum, mask;
2365 int accum_bits, chunk_size;
2366
2367 target += targ_offset / HOST_CHAR_BIT;
2368 targ_offset %= HOST_CHAR_BIT;
2369 source += src_offset / HOST_CHAR_BIT;
2370 src_offset %= HOST_CHAR_BIT;
2371 if (bits_big_endian_p)
2372 {
2373 accum = (unsigned char) *source;
2374 source += 1;
2375 accum_bits = HOST_CHAR_BIT - src_offset;
2376
2377 while (n > 0)
2378 {
2379 int unused_right;
2380
2381 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2382 accum_bits += HOST_CHAR_BIT;
2383 source += 1;
2384 chunk_size = HOST_CHAR_BIT - targ_offset;
2385 if (chunk_size > n)
2386 chunk_size = n;
2387 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2388 mask = ((1 << chunk_size) - 1) << unused_right;
2389 *target =
2390 (*target & ~mask)
2391 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2392 n -= chunk_size;
2393 accum_bits -= chunk_size;
2394 target += 1;
2395 targ_offset = 0;
2396 }
2397 }
2398 else
2399 {
2400 accum = (unsigned char) *source >> src_offset;
2401 source += 1;
2402 accum_bits = HOST_CHAR_BIT - src_offset;
2403
2404 while (n > 0)
2405 {
2406 accum = accum + ((unsigned char) *source << accum_bits);
2407 accum_bits += HOST_CHAR_BIT;
2408 source += 1;
2409 chunk_size = HOST_CHAR_BIT - targ_offset;
2410 if (chunk_size > n)
2411 chunk_size = n;
2412 mask = ((1 << chunk_size) - 1) << targ_offset;
2413 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2414 n -= chunk_size;
2415 accum_bits -= chunk_size;
2416 accum >>= chunk_size;
2417 target += 1;
2418 targ_offset = 0;
2419 }
2420 }
2421 }
2422
2423 /* Store the contents of FROMVAL into the location of TOVAL.
2424 Return a new value with the location of TOVAL and contents of
2425 FROMVAL. Handles assignment into packed fields that have
2426 floating-point or non-scalar types. */
2427
2428 static struct value *
2429 ada_value_assign (struct value *toval, struct value *fromval)
2430 {
2431 struct type *type = value_type (toval);
2432 int bits = value_bitsize (toval);
2433
2434 toval = ada_coerce_ref (toval);
2435 fromval = ada_coerce_ref (fromval);
2436
2437 if (ada_is_direct_array_type (value_type (toval)))
2438 toval = ada_coerce_to_simple_array (toval);
2439 if (ada_is_direct_array_type (value_type (fromval)))
2440 fromval = ada_coerce_to_simple_array (fromval);
2441
2442 if (!deprecated_value_modifiable (toval))
2443 error (_("Left operand of assignment is not a modifiable lvalue."));
2444
2445 if (VALUE_LVAL (toval) == lval_memory
2446 && bits > 0
2447 && (TYPE_CODE (type) == TYPE_CODE_FLT
2448 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2449 {
2450 int len = (value_bitpos (toval)
2451 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2452 int from_size;
2453 char *buffer = (char *) alloca (len);
2454 struct value *val;
2455 CORE_ADDR to_addr = value_address (toval);
2456
2457 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2458 fromval = value_cast (type, fromval);
2459
2460 read_memory (to_addr, buffer, len);
2461 from_size = value_bitsize (fromval);
2462 if (from_size == 0)
2463 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2464 if (gdbarch_bits_big_endian (get_type_arch (type)))
2465 move_bits (buffer, value_bitpos (toval),
2466 value_contents (fromval), from_size - bits, bits, 1);
2467 else
2468 move_bits (buffer, value_bitpos (toval),
2469 value_contents (fromval), 0, bits, 0);
2470 write_memory (to_addr, buffer, len);
2471 observer_notify_memory_changed (to_addr, len, buffer);
2472
2473 val = value_copy (toval);
2474 memcpy (value_contents_raw (val), value_contents (fromval),
2475 TYPE_LENGTH (type));
2476 deprecated_set_value_type (val, type);
2477
2478 return val;
2479 }
2480
2481 return value_assign (toval, fromval);
2482 }
2483
2484
2485 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2486 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2487 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2488 * COMPONENT, and not the inferior's memory. The current contents
2489 * of COMPONENT are ignored. */
2490 static void
2491 value_assign_to_component (struct value *container, struct value *component,
2492 struct value *val)
2493 {
2494 LONGEST offset_in_container =
2495 (LONGEST) (value_address (component) - value_address (container));
2496 int bit_offset_in_container =
2497 value_bitpos (component) - value_bitpos (container);
2498 int bits;
2499
2500 val = value_cast (value_type (component), val);
2501
2502 if (value_bitsize (component) == 0)
2503 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2504 else
2505 bits = value_bitsize (component);
2506
2507 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2508 move_bits (value_contents_writeable (container) + offset_in_container,
2509 value_bitpos (container) + bit_offset_in_container,
2510 value_contents (val),
2511 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2512 bits, 1);
2513 else
2514 move_bits (value_contents_writeable (container) + offset_in_container,
2515 value_bitpos (container) + bit_offset_in_container,
2516 value_contents (val), 0, bits, 0);
2517 }
2518
2519 /* The value of the element of array ARR at the ARITY indices given in IND.
2520 ARR may be either a simple array, GNAT array descriptor, or pointer
2521 thereto. */
2522
2523 struct value *
2524 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2525 {
2526 int k;
2527 struct value *elt;
2528 struct type *elt_type;
2529
2530 elt = ada_coerce_to_simple_array (arr);
2531
2532 elt_type = ada_check_typedef (value_type (elt));
2533 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2534 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2535 return value_subscript_packed (elt, arity, ind);
2536
2537 for (k = 0; k < arity; k += 1)
2538 {
2539 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2540 error (_("too many subscripts (%d expected)"), k);
2541 elt = value_subscript (elt, pos_atr (ind[k]));
2542 }
2543 return elt;
2544 }
2545
2546 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2547 value of the element of *ARR at the ARITY indices given in
2548 IND. Does not read the entire array into memory. */
2549
2550 static struct value *
2551 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2552 struct value **ind)
2553 {
2554 int k;
2555
2556 for (k = 0; k < arity; k += 1)
2557 {
2558 LONGEST lwb, upb;
2559
2560 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2561 error (_("too many subscripts (%d expected)"), k);
2562 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2563 value_copy (arr));
2564 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2565 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2566 type = TYPE_TARGET_TYPE (type);
2567 }
2568
2569 return value_ind (arr);
2570 }
2571
2572 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2573 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2574 elements starting at index LOW. The lower bound of this array is LOW, as
2575 per Ada rules. */
2576 static struct value *
2577 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2578 int low, int high)
2579 {
2580 CORE_ADDR base = value_as_address (array_ptr)
2581 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2582 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2583 struct type *index_type =
2584 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2585 low, high);
2586 struct type *slice_type =
2587 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2588
2589 return value_at_lazy (slice_type, base);
2590 }
2591
2592
2593 static struct value *
2594 ada_value_slice (struct value *array, int low, int high)
2595 {
2596 struct type *type = value_type (array);
2597 struct type *index_type =
2598 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2599 struct type *slice_type =
2600 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2601
2602 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2603 }
2604
2605 /* If type is a record type in the form of a standard GNAT array
2606 descriptor, returns the number of dimensions for type. If arr is a
2607 simple array, returns the number of "array of"s that prefix its
2608 type designation. Otherwise, returns 0. */
2609
2610 int
2611 ada_array_arity (struct type *type)
2612 {
2613 int arity;
2614
2615 if (type == NULL)
2616 return 0;
2617
2618 type = desc_base_type (type);
2619
2620 arity = 0;
2621 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2622 return desc_arity (desc_bounds_type (type));
2623 else
2624 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2625 {
2626 arity += 1;
2627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2628 }
2629
2630 return arity;
2631 }
2632
2633 /* If TYPE is a record type in the form of a standard GNAT array
2634 descriptor or a simple array type, returns the element type for
2635 TYPE after indexing by NINDICES indices, or by all indices if
2636 NINDICES is -1. Otherwise, returns NULL. */
2637
2638 struct type *
2639 ada_array_element_type (struct type *type, int nindices)
2640 {
2641 type = desc_base_type (type);
2642
2643 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2644 {
2645 int k;
2646 struct type *p_array_type;
2647
2648 p_array_type = desc_data_target_type (type);
2649
2650 k = ada_array_arity (type);
2651 if (k == 0)
2652 return NULL;
2653
2654 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2655 if (nindices >= 0 && k > nindices)
2656 k = nindices;
2657 while (k > 0 && p_array_type != NULL)
2658 {
2659 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2660 k -= 1;
2661 }
2662 return p_array_type;
2663 }
2664 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2665 {
2666 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2667 {
2668 type = TYPE_TARGET_TYPE (type);
2669 nindices -= 1;
2670 }
2671 return type;
2672 }
2673
2674 return NULL;
2675 }
2676
2677 /* The type of nth index in arrays of given type (n numbering from 1).
2678 Does not examine memory. Throws an error if N is invalid or TYPE
2679 is not an array type. NAME is the name of the Ada attribute being
2680 evaluated ('range, 'first, 'last, or 'length); it is used in building
2681 the error message. */
2682
2683 static struct type *
2684 ada_index_type (struct type *type, int n, const char *name)
2685 {
2686 struct type *result_type;
2687
2688 type = desc_base_type (type);
2689
2690 if (n < 0 || n > ada_array_arity (type))
2691 error (_("invalid dimension number to '%s"), name);
2692
2693 if (ada_is_simple_array_type (type))
2694 {
2695 int i;
2696
2697 for (i = 1; i < n; i += 1)
2698 type = TYPE_TARGET_TYPE (type);
2699 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2700 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2701 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2702 perhaps stabsread.c would make more sense. */
2703 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2704 result_type = NULL;
2705 }
2706 else
2707 {
2708 result_type = desc_index_type (desc_bounds_type (type), n);
2709 if (result_type == NULL)
2710 error (_("attempt to take bound of something that is not an array"));
2711 }
2712
2713 return result_type;
2714 }
2715
2716 /* Given that arr is an array type, returns the lower bound of the
2717 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2718 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2719 array-descriptor type. It works for other arrays with bounds supplied
2720 by run-time quantities other than discriminants. */
2721
2722 static LONGEST
2723 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2724 {
2725 struct type *type, *elt_type, *index_type_desc, *index_type;
2726 int i;
2727
2728 gdb_assert (which == 0 || which == 1);
2729
2730 if (ada_is_constrained_packed_array_type (arr_type))
2731 arr_type = decode_constrained_packed_array_type (arr_type);
2732
2733 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2734 return (LONGEST) - which;
2735
2736 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2737 type = TYPE_TARGET_TYPE (arr_type);
2738 else
2739 type = arr_type;
2740
2741 elt_type = type;
2742 for (i = n; i > 1; i--)
2743 elt_type = TYPE_TARGET_TYPE (type);
2744
2745 index_type_desc = ada_find_parallel_type (type, "___XA");
2746 ada_fixup_array_indexes_type (index_type_desc);
2747 if (index_type_desc != NULL)
2748 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2749 NULL);
2750 else
2751 index_type = TYPE_INDEX_TYPE (elt_type);
2752
2753 return
2754 (LONGEST) (which == 0
2755 ? ada_discrete_type_low_bound (index_type)
2756 : ada_discrete_type_high_bound (index_type));
2757 }
2758
2759 /* Given that arr is an array value, returns the lower bound of the
2760 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2761 WHICH is 1. This routine will also work for arrays with bounds
2762 supplied by run-time quantities other than discriminants. */
2763
2764 static LONGEST
2765 ada_array_bound (struct value *arr, int n, int which)
2766 {
2767 struct type *arr_type = value_type (arr);
2768
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2771 else if (ada_is_simple_array_type (arr_type))
2772 return ada_array_bound_from_type (arr_type, n, which);
2773 else
2774 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2775 }
2776
2777 /* Given that arr is an array value, returns the length of the
2778 nth index. This routine will also work for arrays with bounds
2779 supplied by run-time quantities other than discriminants.
2780 Does not work for arrays indexed by enumeration types with representation
2781 clauses at the moment. */
2782
2783 static LONGEST
2784 ada_array_length (struct value *arr, int n)
2785 {
2786 struct type *arr_type = ada_check_typedef (value_type (arr));
2787
2788 if (ada_is_constrained_packed_array_type (arr_type))
2789 return ada_array_length (decode_constrained_packed_array (arr), n);
2790
2791 if (ada_is_simple_array_type (arr_type))
2792 return (ada_array_bound_from_type (arr_type, n, 1)
2793 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2794 else
2795 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2796 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2797 }
2798
2799 /* An empty array whose type is that of ARR_TYPE (an array type),
2800 with bounds LOW to LOW-1. */
2801
2802 static struct value *
2803 empty_array (struct type *arr_type, int low)
2804 {
2805 struct type *index_type =
2806 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2807 low, low - 1);
2808 struct type *elt_type = ada_array_element_type (arr_type, 1);
2809
2810 return allocate_value (create_array_type (NULL, elt_type, index_type));
2811 }
2812 \f
2813
2814 /* Name resolution */
2815
2816 /* The "decoded" name for the user-definable Ada operator corresponding
2817 to OP. */
2818
2819 static const char *
2820 ada_decoded_op_name (enum exp_opcode op)
2821 {
2822 int i;
2823
2824 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2825 {
2826 if (ada_opname_table[i].op == op)
2827 return ada_opname_table[i].decoded;
2828 }
2829 error (_("Could not find operator name for opcode"));
2830 }
2831
2832
2833 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2834 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2835 undefined namespace) and converts operators that are
2836 user-defined into appropriate function calls. If CONTEXT_TYPE is
2837 non-null, it provides a preferred result type [at the moment, only
2838 type void has any effect---causing procedures to be preferred over
2839 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2840 return type is preferred. May change (expand) *EXP. */
2841
2842 static void
2843 resolve (struct expression **expp, int void_context_p)
2844 {
2845 struct type *context_type = NULL;
2846 int pc = 0;
2847
2848 if (void_context_p)
2849 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2850
2851 resolve_subexp (expp, &pc, 1, context_type);
2852 }
2853
2854 /* Resolve the operator of the subexpression beginning at
2855 position *POS of *EXPP. "Resolving" consists of replacing
2856 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2857 with their resolutions, replacing built-in operators with
2858 function calls to user-defined operators, where appropriate, and,
2859 when DEPROCEDURE_P is non-zero, converting function-valued variables
2860 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2861 are as in ada_resolve, above. */
2862
2863 static struct value *
2864 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2865 struct type *context_type)
2866 {
2867 int pc = *pos;
2868 int i;
2869 struct expression *exp; /* Convenience: == *expp. */
2870 enum exp_opcode op = (*expp)->elts[pc].opcode;
2871 struct value **argvec; /* Vector of operand types (alloca'ed). */
2872 int nargs; /* Number of operands. */
2873 int oplen;
2874
2875 argvec = NULL;
2876 nargs = 0;
2877 exp = *expp;
2878
2879 /* Pass one: resolve operands, saving their types and updating *pos,
2880 if needed. */
2881 switch (op)
2882 {
2883 case OP_FUNCALL:
2884 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2885 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2886 *pos += 7;
2887 else
2888 {
2889 *pos += 3;
2890 resolve_subexp (expp, pos, 0, NULL);
2891 }
2892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2893 break;
2894
2895 case UNOP_ADDR:
2896 *pos += 1;
2897 resolve_subexp (expp, pos, 0, NULL);
2898 break;
2899
2900 case UNOP_QUAL:
2901 *pos += 3;
2902 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2903 break;
2904
2905 case OP_ATR_MODULUS:
2906 case OP_ATR_SIZE:
2907 case OP_ATR_TAG:
2908 case OP_ATR_FIRST:
2909 case OP_ATR_LAST:
2910 case OP_ATR_LENGTH:
2911 case OP_ATR_POS:
2912 case OP_ATR_VAL:
2913 case OP_ATR_MIN:
2914 case OP_ATR_MAX:
2915 case TERNOP_IN_RANGE:
2916 case BINOP_IN_BOUNDS:
2917 case UNOP_IN_RANGE:
2918 case OP_AGGREGATE:
2919 case OP_OTHERS:
2920 case OP_CHOICES:
2921 case OP_POSITIONAL:
2922 case OP_DISCRETE_RANGE:
2923 case OP_NAME:
2924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2925 *pos += oplen;
2926 break;
2927
2928 case BINOP_ASSIGN:
2929 {
2930 struct value *arg1;
2931
2932 *pos += 1;
2933 arg1 = resolve_subexp (expp, pos, 0, NULL);
2934 if (arg1 == NULL)
2935 resolve_subexp (expp, pos, 1, NULL);
2936 else
2937 resolve_subexp (expp, pos, 1, value_type (arg1));
2938 break;
2939 }
2940
2941 case UNOP_CAST:
2942 *pos += 3;
2943 nargs = 1;
2944 break;
2945
2946 case BINOP_ADD:
2947 case BINOP_SUB:
2948 case BINOP_MUL:
2949 case BINOP_DIV:
2950 case BINOP_REM:
2951 case BINOP_MOD:
2952 case BINOP_EXP:
2953 case BINOP_CONCAT:
2954 case BINOP_LOGICAL_AND:
2955 case BINOP_LOGICAL_OR:
2956 case BINOP_BITWISE_AND:
2957 case BINOP_BITWISE_IOR:
2958 case BINOP_BITWISE_XOR:
2959
2960 case BINOP_EQUAL:
2961 case BINOP_NOTEQUAL:
2962 case BINOP_LESS:
2963 case BINOP_GTR:
2964 case BINOP_LEQ:
2965 case BINOP_GEQ:
2966
2967 case BINOP_REPEAT:
2968 case BINOP_SUBSCRIPT:
2969 case BINOP_COMMA:
2970 *pos += 1;
2971 nargs = 2;
2972 break;
2973
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 case UNOP_IND:
2979 *pos += 1;
2980 nargs = 1;
2981 break;
2982
2983 case OP_LONG:
2984 case OP_DOUBLE:
2985 case OP_VAR_VALUE:
2986 *pos += 4;
2987 break;
2988
2989 case OP_TYPE:
2990 case OP_BOOL:
2991 case OP_LAST:
2992 case OP_INTERNALVAR:
2993 *pos += 3;
2994 break;
2995
2996 case UNOP_MEMVAL:
2997 *pos += 3;
2998 nargs = 1;
2999 break;
3000
3001 case OP_REGISTER:
3002 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3003 break;
3004
3005 case STRUCTOP_STRUCT:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 nargs = 1;
3008 break;
3009
3010 case TERNOP_SLICE:
3011 *pos += 1;
3012 nargs = 3;
3013 break;
3014
3015 case OP_STRING:
3016 break;
3017
3018 default:
3019 error (_("Unexpected operator during name resolution"));
3020 }
3021
3022 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3023 for (i = 0; i < nargs; i += 1)
3024 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3025 argvec[i] = NULL;
3026 exp = *expp;
3027
3028 /* Pass two: perform any resolution on principal operator. */
3029 switch (op)
3030 {
3031 default:
3032 break;
3033
3034 case OP_VAR_VALUE:
3035 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3036 {
3037 struct ada_symbol_info *candidates;
3038 int n_candidates;
3039
3040 n_candidates =
3041 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3042 (exp->elts[pc + 2].symbol),
3043 exp->elts[pc + 1].block, VAR_DOMAIN,
3044 &candidates);
3045
3046 if (n_candidates > 1)
3047 {
3048 /* Types tend to get re-introduced locally, so if there
3049 are any local symbols that are not types, first filter
3050 out all types. */
3051 int j;
3052 for (j = 0; j < n_candidates; j += 1)
3053 switch (SYMBOL_CLASS (candidates[j].sym))
3054 {
3055 case LOC_REGISTER:
3056 case LOC_ARG:
3057 case LOC_REF_ARG:
3058 case LOC_REGPARM_ADDR:
3059 case LOC_LOCAL:
3060 case LOC_COMPUTED:
3061 goto FoundNonType;
3062 default:
3063 break;
3064 }
3065 FoundNonType:
3066 if (j < n_candidates)
3067 {
3068 j = 0;
3069 while (j < n_candidates)
3070 {
3071 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3072 {
3073 candidates[j] = candidates[n_candidates - 1];
3074 n_candidates -= 1;
3075 }
3076 else
3077 j += 1;
3078 }
3079 }
3080 }
3081
3082 if (n_candidates == 0)
3083 error (_("No definition found for %s"),
3084 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3085 else if (n_candidates == 1)
3086 i = 0;
3087 else if (deprocedure_p
3088 && !is_nonfunction (candidates, n_candidates))
3089 {
3090 i = ada_resolve_function
3091 (candidates, n_candidates, NULL, 0,
3092 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3093 context_type);
3094 if (i < 0)
3095 error (_("Could not find a match for %s"),
3096 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3097 }
3098 else
3099 {
3100 printf_filtered (_("Multiple matches for %s\n"),
3101 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3102 user_select_syms (candidates, n_candidates, 1);
3103 i = 0;
3104 }
3105
3106 exp->elts[pc + 1].block = candidates[i].block;
3107 exp->elts[pc + 2].symbol = candidates[i].sym;
3108 if (innermost_block == NULL
3109 || contained_in (candidates[i].block, innermost_block))
3110 innermost_block = candidates[i].block;
3111 }
3112
3113 if (deprocedure_p
3114 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3115 == TYPE_CODE_FUNC))
3116 {
3117 replace_operator_with_call (expp, pc, 0, 0,
3118 exp->elts[pc + 2].symbol,
3119 exp->elts[pc + 1].block);
3120 exp = *expp;
3121 }
3122 break;
3123
3124 case OP_FUNCALL:
3125 {
3126 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3127 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3128 {
3129 struct ada_symbol_info *candidates;
3130 int n_candidates;
3131
3132 n_candidates =
3133 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3134 (exp->elts[pc + 5].symbol),
3135 exp->elts[pc + 4].block, VAR_DOMAIN,
3136 &candidates);
3137 if (n_candidates == 1)
3138 i = 0;
3139 else
3140 {
3141 i = ada_resolve_function
3142 (candidates, n_candidates,
3143 argvec, nargs,
3144 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3145 context_type);
3146 if (i < 0)
3147 error (_("Could not find a match for %s"),
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3149 }
3150
3151 exp->elts[pc + 4].block = candidates[i].block;
3152 exp->elts[pc + 5].symbol = candidates[i].sym;
3153 if (innermost_block == NULL
3154 || contained_in (candidates[i].block, innermost_block))
3155 innermost_block = candidates[i].block;
3156 }
3157 }
3158 break;
3159 case BINOP_ADD:
3160 case BINOP_SUB:
3161 case BINOP_MUL:
3162 case BINOP_DIV:
3163 case BINOP_REM:
3164 case BINOP_MOD:
3165 case BINOP_CONCAT:
3166 case BINOP_BITWISE_AND:
3167 case BINOP_BITWISE_IOR:
3168 case BINOP_BITWISE_XOR:
3169 case BINOP_EQUAL:
3170 case BINOP_NOTEQUAL:
3171 case BINOP_LESS:
3172 case BINOP_GTR:
3173 case BINOP_LEQ:
3174 case BINOP_GEQ:
3175 case BINOP_EXP:
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 if (possible_user_operator_p (op, argvec))
3181 {
3182 struct ada_symbol_info *candidates;
3183 int n_candidates;
3184
3185 n_candidates =
3186 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3187 (struct block *) NULL, VAR_DOMAIN,
3188 &candidates);
3189 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3190 ada_decoded_op_name (op), NULL);
3191 if (i < 0)
3192 break;
3193
3194 replace_operator_with_call (expp, pc, nargs, 1,
3195 candidates[i].sym, candidates[i].block);
3196 exp = *expp;
3197 }
3198 break;
3199
3200 case OP_TYPE:
3201 case OP_REGISTER:
3202 return NULL;
3203 }
3204
3205 *pos = pc;
3206 return evaluate_subexp_type (exp, pos);
3207 }
3208
3209 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3210 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3211 a non-pointer. */
3212 /* The term "match" here is rather loose. The match is heuristic and
3213 liberal. */
3214
3215 static int
3216 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3217 {
3218 ftype = ada_check_typedef (ftype);
3219 atype = ada_check_typedef (atype);
3220
3221 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3222 ftype = TYPE_TARGET_TYPE (ftype);
3223 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3224 atype = TYPE_TARGET_TYPE (atype);
3225
3226 switch (TYPE_CODE (ftype))
3227 {
3228 default:
3229 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3230 case TYPE_CODE_PTR:
3231 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3232 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3233 TYPE_TARGET_TYPE (atype), 0);
3234 else
3235 return (may_deref
3236 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3237 case TYPE_CODE_INT:
3238 case TYPE_CODE_ENUM:
3239 case TYPE_CODE_RANGE:
3240 switch (TYPE_CODE (atype))
3241 {
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_ENUM:
3244 case TYPE_CODE_RANGE:
3245 return 1;
3246 default:
3247 return 0;
3248 }
3249
3250 case TYPE_CODE_ARRAY:
3251 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3252 || ada_is_array_descriptor_type (atype));
3253
3254 case TYPE_CODE_STRUCT:
3255 if (ada_is_array_descriptor_type (ftype))
3256 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype));
3258 else
3259 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3260 && !ada_is_array_descriptor_type (atype));
3261
3262 case TYPE_CODE_UNION:
3263 case TYPE_CODE_FLT:
3264 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3265 }
3266 }
3267
3268 /* Return non-zero if the formals of FUNC "sufficiently match" the
3269 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3270 may also be an enumeral, in which case it is treated as a 0-
3271 argument function. */
3272
3273 static int
3274 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3275 {
3276 int i;
3277 struct type *func_type = SYMBOL_TYPE (func);
3278
3279 if (SYMBOL_CLASS (func) == LOC_CONST
3280 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3281 return (n_actuals == 0);
3282 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3283 return 0;
3284
3285 if (TYPE_NFIELDS (func_type) != n_actuals)
3286 return 0;
3287
3288 for (i = 0; i < n_actuals; i += 1)
3289 {
3290 if (actuals[i] == NULL)
3291 return 0;
3292 else
3293 {
3294 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3295 i));
3296 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3297
3298 if (!ada_type_match (ftype, atype, 1))
3299 return 0;
3300 }
3301 }
3302 return 1;
3303 }
3304
3305 /* False iff function type FUNC_TYPE definitely does not produce a value
3306 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3307 FUNC_TYPE is not a valid function type with a non-null return type
3308 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3309
3310 static int
3311 return_match (struct type *func_type, struct type *context_type)
3312 {
3313 struct type *return_type;
3314
3315 if (func_type == NULL)
3316 return 1;
3317
3318 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3319 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3320 else
3321 return_type = base_type (func_type);
3322 if (return_type == NULL)
3323 return 1;
3324
3325 context_type = base_type (context_type);
3326
3327 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3328 return context_type == NULL || return_type == context_type;
3329 else if (context_type == NULL)
3330 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3331 else
3332 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3333 }
3334
3335
3336 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3337 function (if any) that matches the types of the NARGS arguments in
3338 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3339 that returns that type, then eliminate matches that don't. If
3340 CONTEXT_TYPE is void and there is at least one match that does not
3341 return void, eliminate all matches that do.
3342
3343 Asks the user if there is more than one match remaining. Returns -1
3344 if there is no such symbol or none is selected. NAME is used
3345 solely for messages. May re-arrange and modify SYMS in
3346 the process; the index returned is for the modified vector. */
3347
3348 static int
3349 ada_resolve_function (struct ada_symbol_info syms[],
3350 int nsyms, struct value **args, int nargs,
3351 const char *name, struct type *context_type)
3352 {
3353 int fallback;
3354 int k;
3355 int m; /* Number of hits */
3356
3357 m = 0;
3358 /* In the first pass of the loop, we only accept functions matching
3359 context_type. If none are found, we add a second pass of the loop
3360 where every function is accepted. */
3361 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3362 {
3363 for (k = 0; k < nsyms; k += 1)
3364 {
3365 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3366
3367 if (ada_args_match (syms[k].sym, args, nargs)
3368 && (fallback || return_match (type, context_type)))
3369 {
3370 syms[m] = syms[k];
3371 m += 1;
3372 }
3373 }
3374 }
3375
3376 if (m == 0)
3377 return -1;
3378 else if (m > 1)
3379 {
3380 printf_filtered (_("Multiple matches for %s\n"), name);
3381 user_select_syms (syms, m, 1);
3382 return 0;
3383 }
3384 return 0;
3385 }
3386
3387 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3388 in a listing of choices during disambiguation (see sort_choices, below).
3389 The idea is that overloadings of a subprogram name from the
3390 same package should sort in their source order. We settle for ordering
3391 such symbols by their trailing number (__N or $N). */
3392
3393 static int
3394 encoded_ordered_before (char *N0, char *N1)
3395 {
3396 if (N1 == NULL)
3397 return 0;
3398 else if (N0 == NULL)
3399 return 1;
3400 else
3401 {
3402 int k0, k1;
3403
3404 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3405 ;
3406 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3407 ;
3408 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3409 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3410 {
3411 int n0, n1;
3412
3413 n0 = k0;
3414 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3415 n0 -= 1;
3416 n1 = k1;
3417 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3418 n1 -= 1;
3419 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3420 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3421 }
3422 return (strcmp (N0, N1) < 0);
3423 }
3424 }
3425
3426 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3427 encoded names. */
3428
3429 static void
3430 sort_choices (struct ada_symbol_info syms[], int nsyms)
3431 {
3432 int i;
3433
3434 for (i = 1; i < nsyms; i += 1)
3435 {
3436 struct ada_symbol_info sym = syms[i];
3437 int j;
3438
3439 for (j = i - 1; j >= 0; j -= 1)
3440 {
3441 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3442 SYMBOL_LINKAGE_NAME (sym.sym)))
3443 break;
3444 syms[j + 1] = syms[j];
3445 }
3446 syms[j + 1] = sym;
3447 }
3448 }
3449
3450 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3451 by asking the user (if necessary), returning the number selected,
3452 and setting the first elements of SYMS items. Error if no symbols
3453 selected. */
3454
3455 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3456 to be re-integrated one of these days. */
3457
3458 int
3459 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3460 {
3461 int i;
3462 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3463 int n_chosen;
3464 int first_choice = (max_results == 1) ? 1 : 2;
3465 const char *select_mode = multiple_symbols_select_mode ();
3466
3467 if (max_results < 1)
3468 error (_("Request to select 0 symbols!"));
3469 if (nsyms <= 1)
3470 return nsyms;
3471
3472 if (select_mode == multiple_symbols_cancel)
3473 error (_("\
3474 canceled because the command is ambiguous\n\
3475 See set/show multiple-symbol."));
3476
3477 /* If select_mode is "all", then return all possible symbols.
3478 Only do that if more than one symbol can be selected, of course.
3479 Otherwise, display the menu as usual. */
3480 if (select_mode == multiple_symbols_all && max_results > 1)
3481 return nsyms;
3482
3483 printf_unfiltered (_("[0] cancel\n"));
3484 if (max_results > 1)
3485 printf_unfiltered (_("[1] all\n"));
3486
3487 sort_choices (syms, nsyms);
3488
3489 for (i = 0; i < nsyms; i += 1)
3490 {
3491 if (syms[i].sym == NULL)
3492 continue;
3493
3494 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3495 {
3496 struct symtab_and_line sal =
3497 find_function_start_sal (syms[i].sym, 1);
3498
3499 if (sal.symtab == NULL)
3500 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3501 i + first_choice,
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3503 sal.line);
3504 else
3505 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.symtab->filename, sal.line);
3508 continue;
3509 }
3510 else
3511 {
3512 int is_enumeral =
3513 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3514 && SYMBOL_TYPE (syms[i].sym) != NULL
3515 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3516 struct symtab *symtab = syms[i].sym->symtab;
3517
3518 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3520 i + first_choice,
3521 SYMBOL_PRINT_NAME (syms[i].sym),
3522 symtab->filename, SYMBOL_LINE (syms[i].sym));
3523 else if (is_enumeral
3524 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3525 {
3526 printf_unfiltered (("[%d] "), i + first_choice);
3527 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3528 gdb_stdout, -1, 0);
3529 printf_unfiltered (_("'(%s) (enumeral)\n"),
3530 SYMBOL_PRINT_NAME (syms[i].sym));
3531 }
3532 else if (symtab != NULL)
3533 printf_unfiltered (is_enumeral
3534 ? _("[%d] %s in %s (enumeral)\n")
3535 : _("[%d] %s at %s:?\n"),
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename);
3539 else
3540 printf_unfiltered (is_enumeral
3541 ? _("[%d] %s (enumeral)\n")
3542 : _("[%d] %s at ?\n"),
3543 i + first_choice,
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3545 }
3546 }
3547
3548 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3549 "overload-choice");
3550
3551 for (i = 0; i < n_chosen; i += 1)
3552 syms[i] = syms[chosen[i]];
3553
3554 return n_chosen;
3555 }
3556
3557 /* Read and validate a set of numeric choices from the user in the
3558 range 0 .. N_CHOICES-1. Place the results in increasing
3559 order in CHOICES[0 .. N-1], and return N.
3560
3561 The user types choices as a sequence of numbers on one line
3562 separated by blanks, encoding them as follows:
3563
3564 + A choice of 0 means to cancel the selection, throwing an error.
3565 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3566 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3567
3568 The user is not allowed to choose more than MAX_RESULTS values.
3569
3570 ANNOTATION_SUFFIX, if present, is used to annotate the input
3571 prompts (for use with the -f switch). */
3572
3573 int
3574 get_selections (int *choices, int n_choices, int max_results,
3575 int is_all_choice, char *annotation_suffix)
3576 {
3577 char *args;
3578 char *prompt;
3579 int n_chosen;
3580 int first_choice = is_all_choice ? 2 : 1;
3581
3582 prompt = getenv ("PS2");
3583 if (prompt == NULL)
3584 prompt = "> ";
3585
3586 args = command_line_input (prompt, 0, annotation_suffix);
3587
3588 if (args == NULL)
3589 error_no_arg (_("one or more choice numbers"));
3590
3591 n_chosen = 0;
3592
3593 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3594 order, as given in args. Choices are validated. */
3595 while (1)
3596 {
3597 char *args2;
3598 int choice, j;
3599
3600 while (isspace (*args))
3601 args += 1;
3602 if (*args == '\0' && n_chosen == 0)
3603 error_no_arg (_("one or more choice numbers"));
3604 else if (*args == '\0')
3605 break;
3606
3607 choice = strtol (args, &args2, 10);
3608 if (args == args2 || choice < 0
3609 || choice > n_choices + first_choice - 1)
3610 error (_("Argument must be choice number"));
3611 args = args2;
3612
3613 if (choice == 0)
3614 error (_("cancelled"));
3615
3616 if (choice < first_choice)
3617 {
3618 n_chosen = n_choices;
3619 for (j = 0; j < n_choices; j += 1)
3620 choices[j] = j;
3621 break;
3622 }
3623 choice -= first_choice;
3624
3625 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3626 {
3627 }
3628
3629 if (j < 0 || choice != choices[j])
3630 {
3631 int k;
3632
3633 for (k = n_chosen - 1; k > j; k -= 1)
3634 choices[k + 1] = choices[k];
3635 choices[j + 1] = choice;
3636 n_chosen += 1;
3637 }
3638 }
3639
3640 if (n_chosen > max_results)
3641 error (_("Select no more than %d of the above"), max_results);
3642
3643 return n_chosen;
3644 }
3645
3646 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3647 on the function identified by SYM and BLOCK, and taking NARGS
3648 arguments. Update *EXPP as needed to hold more space. */
3649
3650 static void
3651 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3652 int oplen, struct symbol *sym,
3653 struct block *block)
3654 {
3655 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3656 symbol, -oplen for operator being replaced). */
3657 struct expression *newexp = (struct expression *)
3658 xmalloc (sizeof (struct expression)
3659 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3660 struct expression *exp = *expp;
3661
3662 newexp->nelts = exp->nelts + 7 - oplen;
3663 newexp->language_defn = exp->language_defn;
3664 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3665 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3666 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3667
3668 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3669 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3670
3671 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3672 newexp->elts[pc + 4].block = block;
3673 newexp->elts[pc + 5].symbol = sym;
3674
3675 *expp = newexp;
3676 xfree (exp);
3677 }
3678
3679 /* Type-class predicates */
3680
3681 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3682 or FLOAT). */
3683
3684 static int
3685 numeric_type_p (struct type *type)
3686 {
3687 if (type == NULL)
3688 return 0;
3689 else
3690 {
3691 switch (TYPE_CODE (type))
3692 {
3693 case TYPE_CODE_INT:
3694 case TYPE_CODE_FLT:
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3706
3707 static int
3708 integer_type_p (struct type *type)
3709 {
3710 if (type == NULL)
3711 return 0;
3712 else
3713 {
3714 switch (TYPE_CODE (type))
3715 {
3716 case TYPE_CODE_INT:
3717 return 1;
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3721 default:
3722 return 0;
3723 }
3724 }
3725 }
3726
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3728
3729 static int
3730 scalar_type_p (struct type *type)
3731 {
3732 if (type == NULL)
3733 return 0;
3734 else
3735 {
3736 switch (TYPE_CODE (type))
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_FLT:
3742 return 1;
3743 default:
3744 return 0;
3745 }
3746 }
3747 }
3748
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3750
3751 static int
3752 discrete_type_p (struct type *type)
3753 {
3754 if (type == NULL)
3755 return 0;
3756 else
3757 {
3758 switch (TYPE_CODE (type))
3759 {
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3764 return 1;
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3774
3775 static int
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3777 {
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3782
3783 if (type0 == NULL)
3784 return 0;
3785
3786 switch (op)
3787 {
3788 default:
3789 return 0;
3790
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3796
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3803
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3811
3812 case BINOP_CONCAT:
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3814
3815 case BINOP_EXP:
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3817
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
3823
3824 }
3825 }
3826 \f
3827 /* Renaming */
3828
3829 /* NOTES:
3830
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3840
3841 /* If SYM encodes a renaming,
3842
3843 <renaming> renames <renamed entity>,
3844
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3857
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3859
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3864 {
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3872 {
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_TYPEDEF:
3876 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3877 renamed_entity, len, renaming_expr);
3878 case LOC_LOCAL:
3879 case LOC_STATIC:
3880 case LOC_COMPUTED:
3881 case LOC_OPTIMIZED_OUT:
3882 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3883 if (info == NULL)
3884 return ADA_NOT_RENAMING;
3885 switch (info[5])
3886 {
3887 case '_':
3888 kind = ADA_OBJECT_RENAMING;
3889 info += 6;
3890 break;
3891 case 'E':
3892 kind = ADA_EXCEPTION_RENAMING;
3893 info += 7;
3894 break;
3895 case 'P':
3896 kind = ADA_PACKAGE_RENAMING;
3897 info += 7;
3898 break;
3899 case 'S':
3900 kind = ADA_SUBPROGRAM_RENAMING;
3901 info += 7;
3902 break;
3903 default:
3904 return ADA_NOT_RENAMING;
3905 }
3906 }
3907
3908 if (renamed_entity != NULL)
3909 *renamed_entity = info;
3910 suffix = strstr (info, "___XE");
3911 if (suffix == NULL || suffix == info)
3912 return ADA_NOT_RENAMING;
3913 if (len != NULL)
3914 *len = strlen (info) - strlen (suffix);
3915 suffix += 5;
3916 if (renaming_expr != NULL)
3917 *renaming_expr = suffix;
3918 return kind;
3919 }
3920
3921 /* Assuming TYPE encodes a renaming according to the old encoding in
3922 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3923 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3924 ADA_NOT_RENAMING otherwise. */
3925 static enum ada_renaming_category
3926 parse_old_style_renaming (struct type *type,
3927 const char **renamed_entity, int *len,
3928 const char **renaming_expr)
3929 {
3930 enum ada_renaming_category kind;
3931 const char *name;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3936 || TYPE_NFIELDS (type) != 1)
3937 return ADA_NOT_RENAMING;
3938
3939 name = type_name_no_tag (type);
3940 if (name == NULL)
3941 return ADA_NOT_RENAMING;
3942
3943 name = strstr (name, "___XR");
3944 if (name == NULL)
3945 return ADA_NOT_RENAMING;
3946 switch (name[5])
3947 {
3948 case '\0':
3949 case '_':
3950 kind = ADA_OBJECT_RENAMING;
3951 break;
3952 case 'E':
3953 kind = ADA_EXCEPTION_RENAMING;
3954 break;
3955 case 'P':
3956 kind = ADA_PACKAGE_RENAMING;
3957 break;
3958 case 'S':
3959 kind = ADA_SUBPROGRAM_RENAMING;
3960 break;
3961 default:
3962 return ADA_NOT_RENAMING;
3963 }
3964
3965 info = TYPE_FIELD_NAME (type, 0);
3966 if (info == NULL)
3967 return ADA_NOT_RENAMING;
3968 if (renamed_entity != NULL)
3969 *renamed_entity = info;
3970 suffix = strstr (info, "___XE");
3971 if (renaming_expr != NULL)
3972 *renaming_expr = suffix + 5;
3973 if (suffix == NULL || suffix == info)
3974 return ADA_NOT_RENAMING;
3975 if (len != NULL)
3976 *len = suffix - info;
3977 return kind;
3978 }
3979
3980 \f
3981
3982 /* Evaluation: Function Calls */
3983
3984 /* Return an lvalue containing the value VAL. This is the identity on
3985 lvalues, and otherwise has the side-effect of allocating memory
3986 in the inferior where a copy of the value contents is copied. */
3987
3988 static struct value *
3989 ensure_lval (struct value *val)
3990 {
3991 if (VALUE_LVAL (val) == not_lval
3992 || VALUE_LVAL (val) == lval_internalvar)
3993 {
3994 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3995 const CORE_ADDR addr =
3996 value_as_long (value_allocate_space_in_inferior (len));
3997
3998 set_value_address (val, addr);
3999 VALUE_LVAL (val) = lval_memory;
4000 write_memory (addr, value_contents (val), len);
4001 }
4002
4003 return val;
4004 }
4005
4006 /* Return the value ACTUAL, converted to be an appropriate value for a
4007 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4008 allocating any necessary descriptors (fat pointers), or copies of
4009 values not residing in memory, updating it as needed. */
4010
4011 struct value *
4012 ada_convert_actual (struct value *actual, struct type *formal_type0)
4013 {
4014 struct type *actual_type = ada_check_typedef (value_type (actual));
4015 struct type *formal_type = ada_check_typedef (formal_type0);
4016 struct type *formal_target =
4017 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4018 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4019 struct type *actual_target =
4020 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4021 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4022
4023 if (ada_is_array_descriptor_type (formal_target)
4024 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4025 return make_array_descriptor (formal_type, actual);
4026 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4027 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4028 {
4029 struct value *result;
4030
4031 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4032 && ada_is_array_descriptor_type (actual_target))
4033 result = desc_data (actual);
4034 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4035 {
4036 if (VALUE_LVAL (actual) != lval_memory)
4037 {
4038 struct value *val;
4039
4040 actual_type = ada_check_typedef (value_type (actual));
4041 val = allocate_value (actual_type);
4042 memcpy ((char *) value_contents_raw (val),
4043 (char *) value_contents (actual),
4044 TYPE_LENGTH (actual_type));
4045 actual = ensure_lval (val);
4046 }
4047 result = value_addr (actual);
4048 }
4049 else
4050 return actual;
4051 return value_cast_pointers (formal_type, result);
4052 }
4053 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4054 return ada_value_ind (actual);
4055
4056 return actual;
4057 }
4058
4059 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4060 type TYPE. This is usually an inefficient no-op except on some targets
4061 (such as AVR) where the representation of a pointer and an address
4062 differs. */
4063
4064 static CORE_ADDR
4065 value_pointer (struct value *value, struct type *type)
4066 {
4067 struct gdbarch *gdbarch = get_type_arch (type);
4068 unsigned len = TYPE_LENGTH (type);
4069 gdb_byte *buf = alloca (len);
4070 CORE_ADDR addr;
4071
4072 addr = value_address (value);
4073 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4074 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4075 return addr;
4076 }
4077
4078
4079 /* Push a descriptor of type TYPE for array value ARR on the stack at
4080 *SP, updating *SP to reflect the new descriptor. Return either
4081 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4082 to-descriptor type rather than a descriptor type), a struct value *
4083 representing a pointer to this descriptor. */
4084
4085 static struct value *
4086 make_array_descriptor (struct type *type, struct value *arr)
4087 {
4088 struct type *bounds_type = desc_bounds_type (type);
4089 struct type *desc_type = desc_base_type (type);
4090 struct value *descriptor = allocate_value (desc_type);
4091 struct value *bounds = allocate_value (bounds_type);
4092 int i;
4093
4094 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4095 i > 0; i -= 1)
4096 {
4097 modify_field (value_type (bounds), value_contents_writeable (bounds),
4098 ada_array_bound (arr, i, 0),
4099 desc_bound_bitpos (bounds_type, i, 0),
4100 desc_bound_bitsize (bounds_type, i, 0));
4101 modify_field (value_type (bounds), value_contents_writeable (bounds),
4102 ada_array_bound (arr, i, 1),
4103 desc_bound_bitpos (bounds_type, i, 1),
4104 desc_bound_bitsize (bounds_type, i, 1));
4105 }
4106
4107 bounds = ensure_lval (bounds);
4108
4109 modify_field (value_type (descriptor),
4110 value_contents_writeable (descriptor),
4111 value_pointer (ensure_lval (arr),
4112 TYPE_FIELD_TYPE (desc_type, 0)),
4113 fat_pntr_data_bitpos (desc_type),
4114 fat_pntr_data_bitsize (desc_type));
4115
4116 modify_field (value_type (descriptor),
4117 value_contents_writeable (descriptor),
4118 value_pointer (bounds,
4119 TYPE_FIELD_TYPE (desc_type, 1)),
4120 fat_pntr_bounds_bitpos (desc_type),
4121 fat_pntr_bounds_bitsize (desc_type));
4122
4123 descriptor = ensure_lval (descriptor);
4124
4125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4126 return value_addr (descriptor);
4127 else
4128 return descriptor;
4129 }
4130 \f
4131 /* Dummy definitions for an experimental caching module that is not
4132 * used in the public sources. */
4133
4134 static int
4135 lookup_cached_symbol (const char *name, domain_enum namespace,
4136 struct symbol **sym, struct block **block)
4137 {
4138 return 0;
4139 }
4140
4141 static void
4142 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4143 struct block *block)
4144 {
4145 }
4146 \f
4147 /* Symbol Lookup */
4148
4149 /* Return the result of a standard (literal, C-like) lookup of NAME in
4150 given DOMAIN, visible from lexical block BLOCK. */
4151
4152 static struct symbol *
4153 standard_lookup (const char *name, const struct block *block,
4154 domain_enum domain)
4155 {
4156 struct symbol *sym;
4157
4158 if (lookup_cached_symbol (name, domain, &sym, NULL))
4159 return sym;
4160 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4161 cache_symbol (name, domain, sym, block_found);
4162 return sym;
4163 }
4164
4165
4166 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4167 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4168 since they contend in overloading in the same way. */
4169 static int
4170 is_nonfunction (struct ada_symbol_info syms[], int n)
4171 {
4172 int i;
4173
4174 for (i = 0; i < n; i += 1)
4175 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4176 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4177 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4178 return 1;
4179
4180 return 0;
4181 }
4182
4183 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4184 struct types. Otherwise, they may not. */
4185
4186 static int
4187 equiv_types (struct type *type0, struct type *type1)
4188 {
4189 if (type0 == type1)
4190 return 1;
4191 if (type0 == NULL || type1 == NULL
4192 || TYPE_CODE (type0) != TYPE_CODE (type1))
4193 return 0;
4194 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4195 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4196 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4197 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4198 return 1;
4199
4200 return 0;
4201 }
4202
4203 /* True iff SYM0 represents the same entity as SYM1, or one that is
4204 no more defined than that of SYM1. */
4205
4206 static int
4207 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4208 {
4209 if (sym0 == sym1)
4210 return 1;
4211 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4212 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4213 return 0;
4214
4215 switch (SYMBOL_CLASS (sym0))
4216 {
4217 case LOC_UNDEF:
4218 return 1;
4219 case LOC_TYPEDEF:
4220 {
4221 struct type *type0 = SYMBOL_TYPE (sym0);
4222 struct type *type1 = SYMBOL_TYPE (sym1);
4223 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4224 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4225 int len0 = strlen (name0);
4226
4227 return
4228 TYPE_CODE (type0) == TYPE_CODE (type1)
4229 && (equiv_types (type0, type1)
4230 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4231 && strncmp (name1 + len0, "___XV", 5) == 0));
4232 }
4233 case LOC_CONST:
4234 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4235 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4236 default:
4237 return 0;
4238 }
4239 }
4240
4241 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4242 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4243
4244 static void
4245 add_defn_to_vec (struct obstack *obstackp,
4246 struct symbol *sym,
4247 struct block *block)
4248 {
4249 int i;
4250 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4251
4252 /* Do not try to complete stub types, as the debugger is probably
4253 already scanning all symbols matching a certain name at the
4254 time when this function is called. Trying to replace the stub
4255 type by its associated full type will cause us to restart a scan
4256 which may lead to an infinite recursion. Instead, the client
4257 collecting the matching symbols will end up collecting several
4258 matches, with at least one of them complete. It can then filter
4259 out the stub ones if needed. */
4260
4261 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4262 {
4263 if (lesseq_defined_than (sym, prevDefns[i].sym))
4264 return;
4265 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4266 {
4267 prevDefns[i].sym = sym;
4268 prevDefns[i].block = block;
4269 return;
4270 }
4271 }
4272
4273 {
4274 struct ada_symbol_info info;
4275
4276 info.sym = sym;
4277 info.block = block;
4278 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4279 }
4280 }
4281
4282 /* Number of ada_symbol_info structures currently collected in
4283 current vector in *OBSTACKP. */
4284
4285 static int
4286 num_defns_collected (struct obstack *obstackp)
4287 {
4288 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4289 }
4290
4291 /* Vector of ada_symbol_info structures currently collected in current
4292 vector in *OBSTACKP. If FINISH, close off the vector and return
4293 its final address. */
4294
4295 static struct ada_symbol_info *
4296 defns_collected (struct obstack *obstackp, int finish)
4297 {
4298 if (finish)
4299 return obstack_finish (obstackp);
4300 else
4301 return (struct ada_symbol_info *) obstack_base (obstackp);
4302 }
4303
4304 /* Return a minimal symbol matching NAME according to Ada decoding
4305 rules. Returns NULL if there is no such minimal symbol. Names
4306 prefixed with "standard__" are handled specially: "standard__" is
4307 first stripped off, and only static and global symbols are searched. */
4308
4309 struct minimal_symbol *
4310 ada_lookup_simple_minsym (const char *name)
4311 {
4312 struct objfile *objfile;
4313 struct minimal_symbol *msymbol;
4314 int wild_match;
4315
4316 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4317 {
4318 name += sizeof ("standard__") - 1;
4319 wild_match = 0;
4320 }
4321 else
4322 wild_match = (strstr (name, "__") == NULL);
4323
4324 ALL_MSYMBOLS (objfile, msymbol)
4325 {
4326 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4327 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4328 return msymbol;
4329 }
4330
4331 return NULL;
4332 }
4333
4334 /* For all subprograms that statically enclose the subprogram of the
4335 selected frame, add symbols matching identifier NAME in DOMAIN
4336 and their blocks to the list of data in OBSTACKP, as for
4337 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4338 wildcard prefix. */
4339
4340 static void
4341 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4342 const char *name, domain_enum namespace,
4343 int wild_match)
4344 {
4345 }
4346
4347 /* True if TYPE is definitely an artificial type supplied to a symbol
4348 for which no debugging information was given in the symbol file. */
4349
4350 static int
4351 is_nondebugging_type (struct type *type)
4352 {
4353 char *name = ada_type_name (type);
4354
4355 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4356 }
4357
4358 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4359 duplicate other symbols in the list (The only case I know of where
4360 this happens is when object files containing stabs-in-ecoff are
4361 linked with files containing ordinary ecoff debugging symbols (or no
4362 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4363 Returns the number of items in the modified list. */
4364
4365 static int
4366 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4367 {
4368 int i, j;
4369
4370 i = 0;
4371 while (i < nsyms)
4372 {
4373 int remove = 0;
4374
4375 /* If two symbols have the same name and one of them is a stub type,
4376 the get rid of the stub. */
4377
4378 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4379 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4380 {
4381 for (j = 0; j < nsyms; j++)
4382 {
4383 if (j != i
4384 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4388 remove = 1;
4389 }
4390 }
4391
4392 /* Two symbols with the same name, same class and same address
4393 should be identical. */
4394
4395 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4396 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4397 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4398 {
4399 for (j = 0; j < nsyms; j += 1)
4400 {
4401 if (i != j
4402 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4403 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4404 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4405 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4406 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4407 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4408 remove = 1;
4409 }
4410 }
4411
4412 if (remove)
4413 {
4414 for (j = i + 1; j < nsyms; j += 1)
4415 syms[j - 1] = syms[j];
4416 nsyms -= 1;
4417 }
4418
4419 i += 1;
4420 }
4421 return nsyms;
4422 }
4423
4424 /* Given a type that corresponds to a renaming entity, use the type name
4425 to extract the scope (package name or function name, fully qualified,
4426 and following the GNAT encoding convention) where this renaming has been
4427 defined. The string returned needs to be deallocated after use. */
4428
4429 static char *
4430 xget_renaming_scope (struct type *renaming_type)
4431 {
4432 /* The renaming types adhere to the following convention:
4433 <scope>__<rename>___<XR extension>.
4434 So, to extract the scope, we search for the "___XR" extension,
4435 and then backtrack until we find the first "__". */
4436
4437 const char *name = type_name_no_tag (renaming_type);
4438 char *suffix = strstr (name, "___XR");
4439 char *last;
4440 int scope_len;
4441 char *scope;
4442
4443 /* Now, backtrack a bit until we find the first "__". Start looking
4444 at suffix - 3, as the <rename> part is at least one character long. */
4445
4446 for (last = suffix - 3; last > name; last--)
4447 if (last[0] == '_' && last[1] == '_')
4448 break;
4449
4450 /* Make a copy of scope and return it. */
4451
4452 scope_len = last - name;
4453 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4454
4455 strncpy (scope, name, scope_len);
4456 scope[scope_len] = '\0';
4457
4458 return scope;
4459 }
4460
4461 /* Return nonzero if NAME corresponds to a package name. */
4462
4463 static int
4464 is_package_name (const char *name)
4465 {
4466 /* Here, We take advantage of the fact that no symbols are generated
4467 for packages, while symbols are generated for each function.
4468 So the condition for NAME represent a package becomes equivalent
4469 to NAME not existing in our list of symbols. There is only one
4470 small complication with library-level functions (see below). */
4471
4472 char *fun_name;
4473
4474 /* If it is a function that has not been defined at library level,
4475 then we should be able to look it up in the symbols. */
4476 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4477 return 0;
4478
4479 /* Library-level function names start with "_ada_". See if function
4480 "_ada_" followed by NAME can be found. */
4481
4482 /* Do a quick check that NAME does not contain "__", since library-level
4483 functions names cannot contain "__" in them. */
4484 if (strstr (name, "__") != NULL)
4485 return 0;
4486
4487 fun_name = xstrprintf ("_ada_%s", name);
4488
4489 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4490 }
4491
4492 /* Return nonzero if SYM corresponds to a renaming entity that is
4493 not visible from FUNCTION_NAME. */
4494
4495 static int
4496 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4497 {
4498 char *scope;
4499
4500 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4501 return 0;
4502
4503 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4504
4505 make_cleanup (xfree, scope);
4506
4507 /* If the rename has been defined in a package, then it is visible. */
4508 if (is_package_name (scope))
4509 return 0;
4510
4511 /* Check that the rename is in the current function scope by checking
4512 that its name starts with SCOPE. */
4513
4514 /* If the function name starts with "_ada_", it means that it is
4515 a library-level function. Strip this prefix before doing the
4516 comparison, as the encoding for the renaming does not contain
4517 this prefix. */
4518 if (strncmp (function_name, "_ada_", 5) == 0)
4519 function_name += 5;
4520
4521 return (strncmp (function_name, scope, strlen (scope)) != 0);
4522 }
4523
4524 /* Remove entries from SYMS that corresponds to a renaming entity that
4525 is not visible from the function associated with CURRENT_BLOCK or
4526 that is superfluous due to the presence of more specific renaming
4527 information. Places surviving symbols in the initial entries of
4528 SYMS and returns the number of surviving symbols.
4529
4530 Rationale:
4531 First, in cases where an object renaming is implemented as a
4532 reference variable, GNAT may produce both the actual reference
4533 variable and the renaming encoding. In this case, we discard the
4534 latter.
4535
4536 Second, GNAT emits a type following a specified encoding for each renaming
4537 entity. Unfortunately, STABS currently does not support the definition
4538 of types that are local to a given lexical block, so all renamings types
4539 are emitted at library level. As a consequence, if an application
4540 contains two renaming entities using the same name, and a user tries to
4541 print the value of one of these entities, the result of the ada symbol
4542 lookup will also contain the wrong renaming type.
4543
4544 This function partially covers for this limitation by attempting to
4545 remove from the SYMS list renaming symbols that should be visible
4546 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4547 method with the current information available. The implementation
4548 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4549
4550 - When the user tries to print a rename in a function while there
4551 is another rename entity defined in a package: Normally, the
4552 rename in the function has precedence over the rename in the
4553 package, so the latter should be removed from the list. This is
4554 currently not the case.
4555
4556 - This function will incorrectly remove valid renames if
4557 the CURRENT_BLOCK corresponds to a function which symbol name
4558 has been changed by an "Export" pragma. As a consequence,
4559 the user will be unable to print such rename entities. */
4560
4561 static int
4562 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4563 int nsyms, const struct block *current_block)
4564 {
4565 struct symbol *current_function;
4566 char *current_function_name;
4567 int i;
4568 int is_new_style_renaming;
4569
4570 /* If there is both a renaming foo___XR... encoded as a variable and
4571 a simple variable foo in the same block, discard the latter.
4572 First, zero out such symbols, then compress. */
4573 is_new_style_renaming = 0;
4574 for (i = 0; i < nsyms; i += 1)
4575 {
4576 struct symbol *sym = syms[i].sym;
4577 struct block *block = syms[i].block;
4578 const char *name;
4579 const char *suffix;
4580
4581 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4582 continue;
4583 name = SYMBOL_LINKAGE_NAME (sym);
4584 suffix = strstr (name, "___XR");
4585
4586 if (suffix != NULL)
4587 {
4588 int name_len = suffix - name;
4589 int j;
4590
4591 is_new_style_renaming = 1;
4592 for (j = 0; j < nsyms; j += 1)
4593 if (i != j && syms[j].sym != NULL
4594 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4595 name_len) == 0
4596 && block == syms[j].block)
4597 syms[j].sym = NULL;
4598 }
4599 }
4600 if (is_new_style_renaming)
4601 {
4602 int j, k;
4603
4604 for (j = k = 0; j < nsyms; j += 1)
4605 if (syms[j].sym != NULL)
4606 {
4607 syms[k] = syms[j];
4608 k += 1;
4609 }
4610 return k;
4611 }
4612
4613 /* Extract the function name associated to CURRENT_BLOCK.
4614 Abort if unable to do so. */
4615
4616 if (current_block == NULL)
4617 return nsyms;
4618
4619 current_function = block_linkage_function (current_block);
4620 if (current_function == NULL)
4621 return nsyms;
4622
4623 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4624 if (current_function_name == NULL)
4625 return nsyms;
4626
4627 /* Check each of the symbols, and remove it from the list if it is
4628 a type corresponding to a renaming that is out of the scope of
4629 the current block. */
4630
4631 i = 0;
4632 while (i < nsyms)
4633 {
4634 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4635 == ADA_OBJECT_RENAMING
4636 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4637 {
4638 int j;
4639
4640 for (j = i + 1; j < nsyms; j += 1)
4641 syms[j - 1] = syms[j];
4642 nsyms -= 1;
4643 }
4644 else
4645 i += 1;
4646 }
4647
4648 return nsyms;
4649 }
4650
4651 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4652 whose name and domain match NAME and DOMAIN respectively.
4653 If no match was found, then extend the search to "enclosing"
4654 routines (in other words, if we're inside a nested function,
4655 search the symbols defined inside the enclosing functions).
4656
4657 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4658
4659 static void
4660 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4661 struct block *block, domain_enum domain,
4662 int wild_match)
4663 {
4664 int block_depth = 0;
4665
4666 while (block != NULL)
4667 {
4668 block_depth += 1;
4669 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4670
4671 /* If we found a non-function match, assume that's the one. */
4672 if (is_nonfunction (defns_collected (obstackp, 0),
4673 num_defns_collected (obstackp)))
4674 return;
4675
4676 block = BLOCK_SUPERBLOCK (block);
4677 }
4678
4679 /* If no luck so far, try to find NAME as a local symbol in some lexically
4680 enclosing subprogram. */
4681 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4682 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4683 }
4684
4685 /* An object of this type is used as the user_data argument when
4686 calling the map_matching_symbols method. */
4687
4688 struct match_data
4689 {
4690 struct objfile *objfile;
4691 struct obstack *obstackp;
4692 struct symbol *arg_sym;
4693 int found_sym;
4694 };
4695
4696 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4697 to a list of symbols. DATA0 is a pointer to a struct match_data *
4698 containing the obstack that collects the symbol list, the file that SYM
4699 must come from, a flag indicating whether a non-argument symbol has
4700 been found in the current block, and the last argument symbol
4701 passed in SYM within the current block (if any). When SYM is null,
4702 marking the end of a block, the argument symbol is added if no
4703 other has been found. */
4704
4705 static int
4706 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4707 {
4708 struct match_data *data = (struct match_data *) data0;
4709
4710 if (sym == NULL)
4711 {
4712 if (!data->found_sym && data->arg_sym != NULL)
4713 add_defn_to_vec (data->obstackp,
4714 fixup_symbol_section (data->arg_sym, data->objfile),
4715 block);
4716 data->found_sym = 0;
4717 data->arg_sym = NULL;
4718 }
4719 else
4720 {
4721 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4722 return 0;
4723 else if (SYMBOL_IS_ARGUMENT (sym))
4724 data->arg_sym = sym;
4725 else
4726 {
4727 data->found_sym = 1;
4728 add_defn_to_vec (data->obstackp,
4729 fixup_symbol_section (sym, data->objfile),
4730 block);
4731 }
4732 }
4733 return 0;
4734 }
4735
4736 /* Compare STRING1 to STRING2, with results as for strcmp.
4737 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4738 implies compare_names (STRING1, STRING2) (they may differ as to
4739 what symbols compare equal). */
4740
4741 static int
4742 compare_names (const char *string1, const char *string2)
4743 {
4744 while (*string1 != '\0' && *string2 != '\0')
4745 {
4746 if (isspace (*string1) || isspace (*string2))
4747 return strcmp_iw_ordered (string1, string2);
4748 if (*string1 != *string2)
4749 break;
4750 string1 += 1;
4751 string2 += 1;
4752 }
4753 switch (*string1)
4754 {
4755 case '(':
4756 return strcmp_iw_ordered (string1, string2);
4757 case '_':
4758 if (*string2 == '\0')
4759 {
4760 if (is_name_suffix (string1))
4761 return 0;
4762 else
4763 return -1;
4764 }
4765 /* FALLTHROUGH */
4766 default:
4767 if (*string2 == '(')
4768 return strcmp_iw_ordered (string1, string2);
4769 else
4770 return *string1 - *string2;
4771 }
4772 }
4773
4774 /* Add to OBSTACKP all non-local symbols whose name and domain match
4775 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4776 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4777
4778 static void
4779 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4780 domain_enum domain, int global,
4781 int is_wild_match)
4782 {
4783 struct objfile *objfile;
4784 struct match_data data;
4785
4786 data.obstackp = obstackp;
4787 data.arg_sym = NULL;
4788
4789 ALL_OBJFILES (objfile)
4790 {
4791 data.objfile = objfile;
4792
4793 if (is_wild_match)
4794 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4795 aux_add_nonlocal_symbols, &data,
4796 wild_match, NULL);
4797 else
4798 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4799 aux_add_nonlocal_symbols, &data,
4800 full_match, compare_names);
4801 }
4802
4803 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4804 {
4805 ALL_OBJFILES (objfile)
4806 {
4807 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4808 strcpy (name1, "_ada_");
4809 strcpy (name1 + sizeof ("_ada_") - 1, name);
4810 data.objfile = objfile;
4811 objfile->sf->qf->map_matching_symbols (name1, domain,
4812 objfile, global,
4813 aux_add_nonlocal_symbols,
4814 &data,
4815 full_match, compare_names);
4816 }
4817 }
4818 }
4819
4820 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4821 scope and in global scopes, returning the number of matches. Sets
4822 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4823 indicating the symbols found and the blocks and symbol tables (if
4824 any) in which they were found. This vector are transient---good only to
4825 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4826 symbol match within the nest of blocks whose innermost member is BLOCK0,
4827 is the one match returned (no other matches in that or
4828 enclosing blocks is returned). If there are any matches in or
4829 surrounding BLOCK0, then these alone are returned. Otherwise, the
4830 search extends to global and file-scope (static) symbol tables.
4831 Names prefixed with "standard__" are handled specially: "standard__"
4832 is first stripped off, and only static and global symbols are searched. */
4833
4834 int
4835 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4836 domain_enum namespace,
4837 struct ada_symbol_info **results)
4838 {
4839 struct symbol *sym;
4840 struct block *block;
4841 const char *name;
4842 int wild_match;
4843 int cacheIfUnique;
4844 int ndefns;
4845
4846 obstack_free (&symbol_list_obstack, NULL);
4847 obstack_init (&symbol_list_obstack);
4848
4849 cacheIfUnique = 0;
4850
4851 /* Search specified block and its superiors. */
4852
4853 wild_match = (strstr (name0, "__") == NULL);
4854 name = name0;
4855 block = (struct block *) block0; /* FIXME: No cast ought to be
4856 needed, but adding const will
4857 have a cascade effect. */
4858
4859 /* Special case: If the user specifies a symbol name inside package
4860 Standard, do a non-wild matching of the symbol name without
4861 the "standard__" prefix. This was primarily introduced in order
4862 to allow the user to specifically access the standard exceptions
4863 using, for instance, Standard.Constraint_Error when Constraint_Error
4864 is ambiguous (due to the user defining its own Constraint_Error
4865 entity inside its program). */
4866 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4867 {
4868 wild_match = 0;
4869 block = NULL;
4870 name = name0 + sizeof ("standard__") - 1;
4871 }
4872
4873 /* Check the non-global symbols. If we have ANY match, then we're done. */
4874
4875 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4876 wild_match);
4877 if (num_defns_collected (&symbol_list_obstack) > 0)
4878 goto done;
4879
4880 /* No non-global symbols found. Check our cache to see if we have
4881 already performed this search before. If we have, then return
4882 the same result. */
4883
4884 cacheIfUnique = 1;
4885 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4886 {
4887 if (sym != NULL)
4888 add_defn_to_vec (&symbol_list_obstack, sym, block);
4889 goto done;
4890 }
4891
4892 /* Search symbols from all global blocks. */
4893
4894 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4895 wild_match);
4896
4897 /* Now add symbols from all per-file blocks if we've gotten no hits
4898 (not strictly correct, but perhaps better than an error). */
4899
4900 if (num_defns_collected (&symbol_list_obstack) == 0)
4901 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4902 wild_match);
4903
4904 done:
4905 ndefns = num_defns_collected (&symbol_list_obstack);
4906 *results = defns_collected (&symbol_list_obstack, 1);
4907
4908 ndefns = remove_extra_symbols (*results, ndefns);
4909
4910 if (ndefns == 0)
4911 cache_symbol (name0, namespace, NULL, NULL);
4912
4913 if (ndefns == 1 && cacheIfUnique)
4914 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4915
4916 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4917
4918 return ndefns;
4919 }
4920
4921 struct symbol *
4922 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4923 domain_enum namespace, struct block **block_found)
4924 {
4925 struct ada_symbol_info *candidates;
4926 int n_candidates;
4927
4928 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4929
4930 if (n_candidates == 0)
4931 return NULL;
4932
4933 if (block_found != NULL)
4934 *block_found = candidates[0].block;
4935
4936 return fixup_symbol_section (candidates[0].sym, NULL);
4937 }
4938
4939 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4940 scope and in global scopes, or NULL if none. NAME is folded and
4941 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4942 choosing the first symbol if there are multiple choices.
4943 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4944 table in which the symbol was found (in both cases, these
4945 assignments occur only if the pointers are non-null). */
4946 struct symbol *
4947 ada_lookup_symbol (const char *name, const struct block *block0,
4948 domain_enum namespace, int *is_a_field_of_this)
4949 {
4950 if (is_a_field_of_this != NULL)
4951 *is_a_field_of_this = 0;
4952
4953 return
4954 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4955 block0, namespace, NULL);
4956 }
4957
4958 static struct symbol *
4959 ada_lookup_symbol_nonlocal (const char *name,
4960 const struct block *block,
4961 const domain_enum domain)
4962 {
4963 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4964 }
4965
4966
4967 /* True iff STR is a possible encoded suffix of a normal Ada name
4968 that is to be ignored for matching purposes. Suffixes of parallel
4969 names (e.g., XVE) are not included here. Currently, the possible suffixes
4970 are given by any of the regular expressions:
4971
4972 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4973 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4974 _E[0-9]+[bs]$ [protected object entry suffixes]
4975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4976
4977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4978 match is performed. This sequence is used to differentiate homonyms,
4979 is an optional part of a valid name suffix. */
4980
4981 static int
4982 is_name_suffix (const char *str)
4983 {
4984 int k;
4985 const char *matching;
4986 const int len = strlen (str);
4987
4988 /* Skip optional leading __[0-9]+. */
4989
4990 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4991 {
4992 str += 3;
4993 while (isdigit (str[0]))
4994 str += 1;
4995 }
4996
4997 /* [.$][0-9]+ */
4998
4999 if (str[0] == '.' || str[0] == '$')
5000 {
5001 matching = str + 1;
5002 while (isdigit (matching[0]))
5003 matching += 1;
5004 if (matching[0] == '\0')
5005 return 1;
5006 }
5007
5008 /* ___[0-9]+ */
5009
5010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5011 {
5012 matching = str + 3;
5013 while (isdigit (matching[0]))
5014 matching += 1;
5015 if (matching[0] == '\0')
5016 return 1;
5017 }
5018
5019 #if 0
5020 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5021 with a N at the end. Unfortunately, the compiler uses the same
5022 convention for other internal types it creates. So treating
5023 all entity names that end with an "N" as a name suffix causes
5024 some regressions. For instance, consider the case of an enumerated
5025 type. To support the 'Image attribute, it creates an array whose
5026 name ends with N.
5027 Having a single character like this as a suffix carrying some
5028 information is a bit risky. Perhaps we should change the encoding
5029 to be something like "_N" instead. In the meantime, do not do
5030 the following check. */
5031 /* Protected Object Subprograms */
5032 if (len == 1 && str [0] == 'N')
5033 return 1;
5034 #endif
5035
5036 /* _E[0-9]+[bs]$ */
5037 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5038 {
5039 matching = str + 3;
5040 while (isdigit (matching[0]))
5041 matching += 1;
5042 if ((matching[0] == 'b' || matching[0] == 's')
5043 && matching [1] == '\0')
5044 return 1;
5045 }
5046
5047 /* ??? We should not modify STR directly, as we are doing below. This
5048 is fine in this case, but may become problematic later if we find
5049 that this alternative did not work, and want to try matching
5050 another one from the begining of STR. Since we modified it, we
5051 won't be able to find the begining of the string anymore! */
5052 if (str[0] == 'X')
5053 {
5054 str += 1;
5055 while (str[0] != '_' && str[0] != '\0')
5056 {
5057 if (str[0] != 'n' && str[0] != 'b')
5058 return 0;
5059 str += 1;
5060 }
5061 }
5062
5063 if (str[0] == '\000')
5064 return 1;
5065
5066 if (str[0] == '_')
5067 {
5068 if (str[1] != '_' || str[2] == '\000')
5069 return 0;
5070 if (str[2] == '_')
5071 {
5072 if (strcmp (str + 3, "JM") == 0)
5073 return 1;
5074 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5075 the LJM suffix in favor of the JM one. But we will
5076 still accept LJM as a valid suffix for a reasonable
5077 amount of time, just to allow ourselves to debug programs
5078 compiled using an older version of GNAT. */
5079 if (strcmp (str + 3, "LJM") == 0)
5080 return 1;
5081 if (str[3] != 'X')
5082 return 0;
5083 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5084 || str[4] == 'U' || str[4] == 'P')
5085 return 1;
5086 if (str[4] == 'R' && str[5] != 'T')
5087 return 1;
5088 return 0;
5089 }
5090 if (!isdigit (str[2]))
5091 return 0;
5092 for (k = 3; str[k] != '\0'; k += 1)
5093 if (!isdigit (str[k]) && str[k] != '_')
5094 return 0;
5095 return 1;
5096 }
5097 if (str[0] == '$' && isdigit (str[1]))
5098 {
5099 for (k = 2; str[k] != '\0'; k += 1)
5100 if (!isdigit (str[k]) && str[k] != '_')
5101 return 0;
5102 return 1;
5103 }
5104 return 0;
5105 }
5106
5107 /* Return non-zero if the string starting at NAME and ending before
5108 NAME_END contains no capital letters. */
5109
5110 static int
5111 is_valid_name_for_wild_match (const char *name0)
5112 {
5113 const char *decoded_name = ada_decode (name0);
5114 int i;
5115
5116 /* If the decoded name starts with an angle bracket, it means that
5117 NAME0 does not follow the GNAT encoding format. It should then
5118 not be allowed as a possible wild match. */
5119 if (decoded_name[0] == '<')
5120 return 0;
5121
5122 for (i=0; decoded_name[i] != '\0'; i++)
5123 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5124 return 0;
5125
5126 return 1;
5127 }
5128
5129 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5130 that could start a simple name. Assumes that *NAMEP points into
5131 the string beginning at NAME0. */
5132
5133 static int
5134 advance_wild_match (const char **namep, const char *name0, int target0)
5135 {
5136 const char *name = *namep;
5137
5138 while (1)
5139 {
5140 int t0, t1;
5141
5142 t0 = *name;
5143 if (t0 == '_')
5144 {
5145 t1 = name[1];
5146 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5147 {
5148 name += 1;
5149 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5150 break;
5151 else
5152 name += 1;
5153 }
5154 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5155 || name[2] == target0))
5156 {
5157 name += 2;
5158 break;
5159 }
5160 else
5161 return 0;
5162 }
5163 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5164 name += 1;
5165 else
5166 return 0;
5167 }
5168
5169 *namep = name;
5170 return 1;
5171 }
5172
5173 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5174 informational suffixes of NAME (i.e., for which is_name_suffix is
5175 true). Assumes that PATN is a lower-cased Ada simple name. */
5176
5177 static int
5178 wild_match (const char *name, const char *patn)
5179 {
5180 const char *p, *n;
5181 const char *name0 = name;
5182
5183 while (1)
5184 {
5185 const char *match = name;
5186
5187 if (*name == *patn)
5188 {
5189 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5190 if (*p != *name)
5191 break;
5192 if (*p == '\0' && is_name_suffix (name))
5193 return match != name0 && !is_valid_name_for_wild_match (name0);
5194
5195 if (name[-1] == '_')
5196 name -= 1;
5197 }
5198 if (!advance_wild_match (&name, name0, *patn))
5199 return 1;
5200 }
5201 }
5202
5203 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5204 informational suffix. */
5205
5206 static int
5207 full_match (const char *sym_name, const char *search_name)
5208 {
5209 return !match_name (sym_name, search_name, 0);
5210 }
5211
5212
5213 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5214 vector *defn_symbols, updating the list of symbols in OBSTACKP
5215 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5216 OBJFILE is the section containing BLOCK.
5217 SYMTAB is recorded with each symbol added. */
5218
5219 static void
5220 ada_add_block_symbols (struct obstack *obstackp,
5221 struct block *block, const char *name,
5222 domain_enum domain, struct objfile *objfile,
5223 int wild)
5224 {
5225 struct dict_iterator iter;
5226 int name_len = strlen (name);
5227 /* A matching argument symbol, if any. */
5228 struct symbol *arg_sym;
5229 /* Set true when we find a matching non-argument symbol. */
5230 int found_sym;
5231 struct symbol *sym;
5232
5233 arg_sym = NULL;
5234 found_sym = 0;
5235 if (wild)
5236 {
5237 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5238 wild_match, &iter);
5239 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5240 {
5241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5242 SYMBOL_DOMAIN (sym), domain)
5243 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5244 {
5245 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5246 continue;
5247 else if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block);
5255 }
5256 }
5257 }
5258 }
5259 else
5260 {
5261 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5262 full_match, &iter);
5263 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5264 {
5265 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5266 SYMBOL_DOMAIN (sym), domain))
5267 {
5268 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5269 {
5270 if (SYMBOL_IS_ARGUMENT (sym))
5271 arg_sym = sym;
5272 else
5273 {
5274 found_sym = 1;
5275 add_defn_to_vec (obstackp,
5276 fixup_symbol_section (sym, objfile),
5277 block);
5278 }
5279 }
5280 }
5281 }
5282 }
5283
5284 if (!found_sym && arg_sym != NULL)
5285 {
5286 add_defn_to_vec (obstackp,
5287 fixup_symbol_section (arg_sym, objfile),
5288 block);
5289 }
5290
5291 if (!wild)
5292 {
5293 arg_sym = NULL;
5294 found_sym = 0;
5295
5296 ALL_BLOCK_SYMBOLS (block, iter, sym)
5297 {
5298 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5299 SYMBOL_DOMAIN (sym), domain))
5300 {
5301 int cmp;
5302
5303 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5304 if (cmp == 0)
5305 {
5306 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5307 if (cmp == 0)
5308 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5309 name_len);
5310 }
5311
5312 if (cmp == 0
5313 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5314 {
5315 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5316 {
5317 if (SYMBOL_IS_ARGUMENT (sym))
5318 arg_sym = sym;
5319 else
5320 {
5321 found_sym = 1;
5322 add_defn_to_vec (obstackp,
5323 fixup_symbol_section (sym, objfile),
5324 block);
5325 }
5326 }
5327 }
5328 }
5329 }
5330
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym && arg_sym != NULL)
5334 {
5335 add_defn_to_vec (obstackp,
5336 fixup_symbol_section (arg_sym, objfile),
5337 block);
5338 }
5339 }
5340 }
5341 \f
5342
5343 /* Symbol Completion */
5344
5345 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5346 name in a form that's appropriate for the completion. The result
5347 does not need to be deallocated, but is only good until the next call.
5348
5349 TEXT_LEN is equal to the length of TEXT.
5350 Perform a wild match if WILD_MATCH is set.
5351 ENCODED should be set if TEXT represents the start of a symbol name
5352 in its encoded form. */
5353
5354 static const char *
5355 symbol_completion_match (const char *sym_name,
5356 const char *text, int text_len,
5357 int wild_match, int encoded)
5358 {
5359 const int verbatim_match = (text[0] == '<');
5360 int match = 0;
5361
5362 if (verbatim_match)
5363 {
5364 /* Strip the leading angle bracket. */
5365 text = text + 1;
5366 text_len--;
5367 }
5368
5369 /* First, test against the fully qualified name of the symbol. */
5370
5371 if (strncmp (sym_name, text, text_len) == 0)
5372 match = 1;
5373
5374 if (match && !encoded)
5375 {
5376 /* One needed check before declaring a positive match is to verify
5377 that iff we are doing a verbatim match, the decoded version
5378 of the symbol name starts with '<'. Otherwise, this symbol name
5379 is not a suitable completion. */
5380 const char *sym_name_copy = sym_name;
5381 int has_angle_bracket;
5382
5383 sym_name = ada_decode (sym_name);
5384 has_angle_bracket = (sym_name[0] == '<');
5385 match = (has_angle_bracket == verbatim_match);
5386 sym_name = sym_name_copy;
5387 }
5388
5389 if (match && !verbatim_match)
5390 {
5391 /* When doing non-verbatim match, another check that needs to
5392 be done is to verify that the potentially matching symbol name
5393 does not include capital letters, because the ada-mode would
5394 not be able to understand these symbol names without the
5395 angle bracket notation. */
5396 const char *tmp;
5397
5398 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5399 if (*tmp != '\0')
5400 match = 0;
5401 }
5402
5403 /* Second: Try wild matching... */
5404
5405 if (!match && wild_match)
5406 {
5407 /* Since we are doing wild matching, this means that TEXT
5408 may represent an unqualified symbol name. We therefore must
5409 also compare TEXT against the unqualified name of the symbol. */
5410 sym_name = ada_unqualified_name (ada_decode (sym_name));
5411
5412 if (strncmp (sym_name, text, text_len) == 0)
5413 match = 1;
5414 }
5415
5416 /* Finally: If we found a mach, prepare the result to return. */
5417
5418 if (!match)
5419 return NULL;
5420
5421 if (verbatim_match)
5422 sym_name = add_angle_brackets (sym_name);
5423
5424 if (!encoded)
5425 sym_name = ada_decode (sym_name);
5426
5427 return sym_name;
5428 }
5429
5430 DEF_VEC_P (char_ptr);
5431
5432 /* A companion function to ada_make_symbol_completion_list().
5433 Check if SYM_NAME represents a symbol which name would be suitable
5434 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5435 it is appended at the end of the given string vector SV.
5436
5437 ORIG_TEXT is the string original string from the user command
5438 that needs to be completed. WORD is the entire command on which
5439 completion should be performed. These two parameters are used to
5440 determine which part of the symbol name should be added to the
5441 completion vector.
5442 if WILD_MATCH is set, then wild matching is performed.
5443 ENCODED should be set if TEXT represents a symbol name in its
5444 encoded formed (in which case the completion should also be
5445 encoded). */
5446
5447 static void
5448 symbol_completion_add (VEC(char_ptr) **sv,
5449 const char *sym_name,
5450 const char *text, int text_len,
5451 const char *orig_text, const char *word,
5452 int wild_match, int encoded)
5453 {
5454 const char *match = symbol_completion_match (sym_name, text, text_len,
5455 wild_match, encoded);
5456 char *completion;
5457
5458 if (match == NULL)
5459 return;
5460
5461 /* We found a match, so add the appropriate completion to the given
5462 string vector. */
5463
5464 if (word == orig_text)
5465 {
5466 completion = xmalloc (strlen (match) + 5);
5467 strcpy (completion, match);
5468 }
5469 else if (word > orig_text)
5470 {
5471 /* Return some portion of sym_name. */
5472 completion = xmalloc (strlen (match) + 5);
5473 strcpy (completion, match + (word - orig_text));
5474 }
5475 else
5476 {
5477 /* Return some of ORIG_TEXT plus sym_name. */
5478 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5479 strncpy (completion, word, orig_text - word);
5480 completion[orig_text - word] = '\0';
5481 strcat (completion, match);
5482 }
5483
5484 VEC_safe_push (char_ptr, *sv, completion);
5485 }
5486
5487 /* An object of this type is passed as the user_data argument to the
5488 map_partial_symbol_names method. */
5489 struct add_partial_datum
5490 {
5491 VEC(char_ptr) **completions;
5492 char *text;
5493 int text_len;
5494 char *text0;
5495 char *word;
5496 int wild_match;
5497 int encoded;
5498 };
5499
5500 /* A callback for map_partial_symbol_names. */
5501 static void
5502 ada_add_partial_symbol_completions (const char *name, void *user_data)
5503 {
5504 struct add_partial_datum *data = user_data;
5505
5506 symbol_completion_add (data->completions, name,
5507 data->text, data->text_len, data->text0, data->word,
5508 data->wild_match, data->encoded);
5509 }
5510
5511 /* Return a list of possible symbol names completing TEXT0. The list
5512 is NULL terminated. WORD is the entire command on which completion
5513 is made. */
5514
5515 static char **
5516 ada_make_symbol_completion_list (char *text0, char *word)
5517 {
5518 char *text;
5519 int text_len;
5520 int wild_match;
5521 int encoded;
5522 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5523 struct symbol *sym;
5524 struct symtab *s;
5525 struct minimal_symbol *msymbol;
5526 struct objfile *objfile;
5527 struct block *b, *surrounding_static_block = 0;
5528 int i;
5529 struct dict_iterator iter;
5530
5531 if (text0[0] == '<')
5532 {
5533 text = xstrdup (text0);
5534 make_cleanup (xfree, text);
5535 text_len = strlen (text);
5536 wild_match = 0;
5537 encoded = 1;
5538 }
5539 else
5540 {
5541 text = xstrdup (ada_encode (text0));
5542 make_cleanup (xfree, text);
5543 text_len = strlen (text);
5544 for (i = 0; i < text_len; i++)
5545 text[i] = tolower (text[i]);
5546
5547 encoded = (strstr (text0, "__") != NULL);
5548 /* If the name contains a ".", then the user is entering a fully
5549 qualified entity name, and the match must not be done in wild
5550 mode. Similarly, if the user wants to complete what looks like
5551 an encoded name, the match must not be done in wild mode. */
5552 wild_match = (strchr (text0, '.') == NULL && !encoded);
5553 }
5554
5555 /* First, look at the partial symtab symbols. */
5556 {
5557 struct add_partial_datum data;
5558
5559 data.completions = &completions;
5560 data.text = text;
5561 data.text_len = text_len;
5562 data.text0 = text0;
5563 data.word = word;
5564 data.wild_match = wild_match;
5565 data.encoded = encoded;
5566 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5567 }
5568
5569 /* At this point scan through the misc symbol vectors and add each
5570 symbol you find to the list. Eventually we want to ignore
5571 anything that isn't a text symbol (everything else will be
5572 handled by the psymtab code above). */
5573
5574 ALL_MSYMBOLS (objfile, msymbol)
5575 {
5576 QUIT;
5577 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5578 text, text_len, text0, word, wild_match, encoded);
5579 }
5580
5581 /* Search upwards from currently selected frame (so that we can
5582 complete on local vars. */
5583
5584 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5585 {
5586 if (!BLOCK_SUPERBLOCK (b))
5587 surrounding_static_block = b; /* For elmin of dups */
5588
5589 ALL_BLOCK_SYMBOLS (b, iter, sym)
5590 {
5591 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5592 text, text_len, text0, word,
5593 wild_match, encoded);
5594 }
5595 }
5596
5597 /* Go through the symtabs and check the externs and statics for
5598 symbols which match. */
5599
5600 ALL_SYMTABS (objfile, s)
5601 {
5602 QUIT;
5603 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5604 ALL_BLOCK_SYMBOLS (b, iter, sym)
5605 {
5606 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5607 text, text_len, text0, word,
5608 wild_match, encoded);
5609 }
5610 }
5611
5612 ALL_SYMTABS (objfile, s)
5613 {
5614 QUIT;
5615 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5616 /* Don't do this block twice. */
5617 if (b == surrounding_static_block)
5618 continue;
5619 ALL_BLOCK_SYMBOLS (b, iter, sym)
5620 {
5621 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5622 text, text_len, text0, word,
5623 wild_match, encoded);
5624 }
5625 }
5626
5627 /* Append the closing NULL entry. */
5628 VEC_safe_push (char_ptr, completions, NULL);
5629
5630 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5631 return the copy. It's unfortunate that we have to make a copy
5632 of an array that we're about to destroy, but there is nothing much
5633 we can do about it. Fortunately, it's typically not a very large
5634 array. */
5635 {
5636 const size_t completions_size =
5637 VEC_length (char_ptr, completions) * sizeof (char *);
5638 char **result = xmalloc (completions_size);
5639
5640 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5641
5642 VEC_free (char_ptr, completions);
5643 return result;
5644 }
5645 }
5646
5647 /* Field Access */
5648
5649 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5650 for tagged types. */
5651
5652 static int
5653 ada_is_dispatch_table_ptr_type (struct type *type)
5654 {
5655 char *name;
5656
5657 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5658 return 0;
5659
5660 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5661 if (name == NULL)
5662 return 0;
5663
5664 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5665 }
5666
5667 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5668 to be invisible to users. */
5669
5670 int
5671 ada_is_ignored_field (struct type *type, int field_num)
5672 {
5673 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5674 return 1;
5675
5676 /* Check the name of that field. */
5677 {
5678 const char *name = TYPE_FIELD_NAME (type, field_num);
5679
5680 /* Anonymous field names should not be printed.
5681 brobecker/2007-02-20: I don't think this can actually happen
5682 but we don't want to print the value of annonymous fields anyway. */
5683 if (name == NULL)
5684 return 1;
5685
5686 /* A field named "_parent" is internally generated by GNAT for
5687 tagged types, and should not be printed either. */
5688 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5689 return 1;
5690 }
5691
5692 /* If this is the dispatch table of a tagged type, then ignore. */
5693 if (ada_is_tagged_type (type, 1)
5694 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5695 return 1;
5696
5697 /* Not a special field, so it should not be ignored. */
5698 return 0;
5699 }
5700
5701 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5702 pointer or reference type whose ultimate target has a tag field. */
5703
5704 int
5705 ada_is_tagged_type (struct type *type, int refok)
5706 {
5707 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5708 }
5709
5710 /* True iff TYPE represents the type of X'Tag */
5711
5712 int
5713 ada_is_tag_type (struct type *type)
5714 {
5715 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5716 return 0;
5717 else
5718 {
5719 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5720
5721 return (name != NULL
5722 && strcmp (name, "ada__tags__dispatch_table") == 0);
5723 }
5724 }
5725
5726 /* The type of the tag on VAL. */
5727
5728 struct type *
5729 ada_tag_type (struct value *val)
5730 {
5731 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5732 }
5733
5734 /* The value of the tag on VAL. */
5735
5736 struct value *
5737 ada_value_tag (struct value *val)
5738 {
5739 return ada_value_struct_elt (val, "_tag", 0);
5740 }
5741
5742 /* The value of the tag on the object of type TYPE whose contents are
5743 saved at VALADDR, if it is non-null, or is at memory address
5744 ADDRESS. */
5745
5746 static struct value *
5747 value_tag_from_contents_and_address (struct type *type,
5748 const gdb_byte *valaddr,
5749 CORE_ADDR address)
5750 {
5751 int tag_byte_offset;
5752 struct type *tag_type;
5753
5754 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5755 NULL, NULL, NULL))
5756 {
5757 const gdb_byte *valaddr1 = ((valaddr == NULL)
5758 ? NULL
5759 : valaddr + tag_byte_offset);
5760 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5761
5762 return value_from_contents_and_address (tag_type, valaddr1, address1);
5763 }
5764 return NULL;
5765 }
5766
5767 static struct type *
5768 type_from_tag (struct value *tag)
5769 {
5770 const char *type_name = ada_tag_name (tag);
5771
5772 if (type_name != NULL)
5773 return ada_find_any_type (ada_encode (type_name));
5774 return NULL;
5775 }
5776
5777 struct tag_args
5778 {
5779 struct value *tag;
5780 char *name;
5781 };
5782
5783
5784 static int ada_tag_name_1 (void *);
5785 static int ada_tag_name_2 (struct tag_args *);
5786
5787 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5788 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5789 The value stored in ARGS->name is valid until the next call to
5790 ada_tag_name_1. */
5791
5792 static int
5793 ada_tag_name_1 (void *args0)
5794 {
5795 struct tag_args *args = (struct tag_args *) args0;
5796 static char name[1024];
5797 char *p;
5798 struct value *val;
5799
5800 args->name = NULL;
5801 val = ada_value_struct_elt (args->tag, "tsd", 1);
5802 if (val == NULL)
5803 return ada_tag_name_2 (args);
5804 val = ada_value_struct_elt (val, "expanded_name", 1);
5805 if (val == NULL)
5806 return 0;
5807 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5808 for (p = name; *p != '\0'; p += 1)
5809 if (isalpha (*p))
5810 *p = tolower (*p);
5811 args->name = name;
5812 return 0;
5813 }
5814
5815 /* Return the "ada__tags__type_specific_data" type. */
5816
5817 static struct type *
5818 ada_get_tsd_type (struct inferior *inf)
5819 {
5820 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5821
5822 if (data->tsd_type == 0)
5823 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5824 return data->tsd_type;
5825 }
5826
5827 /* Utility function for ada_tag_name_1 that tries the second
5828 representation for the dispatch table (in which there is no
5829 explicit 'tsd' field in the referent of the tag pointer, and instead
5830 the tsd pointer is stored just before the dispatch table. */
5831
5832 static int
5833 ada_tag_name_2 (struct tag_args *args)
5834 {
5835 struct type *info_type;
5836 static char name[1024];
5837 char *p;
5838 struct value *val, *valp;
5839
5840 args->name = NULL;
5841 info_type = ada_get_tsd_type (current_inferior());
5842 if (info_type == NULL)
5843 return 0;
5844 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5845 valp = value_cast (info_type, args->tag);
5846 if (valp == NULL)
5847 return 0;
5848 val = value_ind (value_ptradd (valp, -1));
5849 if (val == NULL)
5850 return 0;
5851 val = ada_value_struct_elt (val, "expanded_name", 1);
5852 if (val == NULL)
5853 return 0;
5854 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5855 for (p = name; *p != '\0'; p += 1)
5856 if (isalpha (*p))
5857 *p = tolower (*p);
5858 args->name = name;
5859 return 0;
5860 }
5861
5862 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5863 a C string. */
5864
5865 const char *
5866 ada_tag_name (struct value *tag)
5867 {
5868 struct tag_args args;
5869
5870 if (!ada_is_tag_type (value_type (tag)))
5871 return NULL;
5872 args.tag = tag;
5873 args.name = NULL;
5874 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5875 return args.name;
5876 }
5877
5878 /* The parent type of TYPE, or NULL if none. */
5879
5880 struct type *
5881 ada_parent_type (struct type *type)
5882 {
5883 int i;
5884
5885 type = ada_check_typedef (type);
5886
5887 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5888 return NULL;
5889
5890 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5891 if (ada_is_parent_field (type, i))
5892 {
5893 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5894
5895 /* If the _parent field is a pointer, then dereference it. */
5896 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5897 parent_type = TYPE_TARGET_TYPE (parent_type);
5898 /* If there is a parallel XVS type, get the actual base type. */
5899 parent_type = ada_get_base_type (parent_type);
5900
5901 return ada_check_typedef (parent_type);
5902 }
5903
5904 return NULL;
5905 }
5906
5907 /* True iff field number FIELD_NUM of structure type TYPE contains the
5908 parent-type (inherited) fields of a derived type. Assumes TYPE is
5909 a structure type with at least FIELD_NUM+1 fields. */
5910
5911 int
5912 ada_is_parent_field (struct type *type, int field_num)
5913 {
5914 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5915
5916 return (name != NULL
5917 && (strncmp (name, "PARENT", 6) == 0
5918 || strncmp (name, "_parent", 7) == 0));
5919 }
5920
5921 /* True iff field number FIELD_NUM of structure type TYPE is a
5922 transparent wrapper field (which should be silently traversed when doing
5923 field selection and flattened when printing). Assumes TYPE is a
5924 structure type with at least FIELD_NUM+1 fields. Such fields are always
5925 structures. */
5926
5927 int
5928 ada_is_wrapper_field (struct type *type, int field_num)
5929 {
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931
5932 return (name != NULL
5933 && (strncmp (name, "PARENT", 6) == 0
5934 || strcmp (name, "REP") == 0
5935 || strncmp (name, "_parent", 7) == 0
5936 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5937 }
5938
5939 /* True iff field number FIELD_NUM of structure or union type TYPE
5940 is a variant wrapper. Assumes TYPE is a structure type with at least
5941 FIELD_NUM+1 fields. */
5942
5943 int
5944 ada_is_variant_part (struct type *type, int field_num)
5945 {
5946 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5947
5948 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5949 || (is_dynamic_field (type, field_num)
5950 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5951 == TYPE_CODE_UNION)));
5952 }
5953
5954 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5955 whose discriminants are contained in the record type OUTER_TYPE,
5956 returns the type of the controlling discriminant for the variant.
5957 May return NULL if the type could not be found. */
5958
5959 struct type *
5960 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5961 {
5962 char *name = ada_variant_discrim_name (var_type);
5963
5964 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5965 }
5966
5967 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5968 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5969 represents a 'when others' clause; otherwise 0. */
5970
5971 int
5972 ada_is_others_clause (struct type *type, int field_num)
5973 {
5974 const char *name = TYPE_FIELD_NAME (type, field_num);
5975
5976 return (name != NULL && name[0] == 'O');
5977 }
5978
5979 /* Assuming that TYPE0 is the type of the variant part of a record,
5980 returns the name of the discriminant controlling the variant.
5981 The value is valid until the next call to ada_variant_discrim_name. */
5982
5983 char *
5984 ada_variant_discrim_name (struct type *type0)
5985 {
5986 static char *result = NULL;
5987 static size_t result_len = 0;
5988 struct type *type;
5989 const char *name;
5990 const char *discrim_end;
5991 const char *discrim_start;
5992
5993 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5994 type = TYPE_TARGET_TYPE (type0);
5995 else
5996 type = type0;
5997
5998 name = ada_type_name (type);
5999
6000 if (name == NULL || name[0] == '\000')
6001 return "";
6002
6003 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6004 discrim_end -= 1)
6005 {
6006 if (strncmp (discrim_end, "___XVN", 6) == 0)
6007 break;
6008 }
6009 if (discrim_end == name)
6010 return "";
6011
6012 for (discrim_start = discrim_end; discrim_start != name + 3;
6013 discrim_start -= 1)
6014 {
6015 if (discrim_start == name + 1)
6016 return "";
6017 if ((discrim_start > name + 3
6018 && strncmp (discrim_start - 3, "___", 3) == 0)
6019 || discrim_start[-1] == '.')
6020 break;
6021 }
6022
6023 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6024 strncpy (result, discrim_start, discrim_end - discrim_start);
6025 result[discrim_end - discrim_start] = '\0';
6026 return result;
6027 }
6028
6029 /* Scan STR for a subtype-encoded number, beginning at position K.
6030 Put the position of the character just past the number scanned in
6031 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6032 Return 1 if there was a valid number at the given position, and 0
6033 otherwise. A "subtype-encoded" number consists of the absolute value
6034 in decimal, followed by the letter 'm' to indicate a negative number.
6035 Assumes 0m does not occur. */
6036
6037 int
6038 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6039 {
6040 ULONGEST RU;
6041
6042 if (!isdigit (str[k]))
6043 return 0;
6044
6045 /* Do it the hard way so as not to make any assumption about
6046 the relationship of unsigned long (%lu scan format code) and
6047 LONGEST. */
6048 RU = 0;
6049 while (isdigit (str[k]))
6050 {
6051 RU = RU * 10 + (str[k] - '0');
6052 k += 1;
6053 }
6054
6055 if (str[k] == 'm')
6056 {
6057 if (R != NULL)
6058 *R = (-(LONGEST) (RU - 1)) - 1;
6059 k += 1;
6060 }
6061 else if (R != NULL)
6062 *R = (LONGEST) RU;
6063
6064 /* NOTE on the above: Technically, C does not say what the results of
6065 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6066 number representable as a LONGEST (although either would probably work
6067 in most implementations). When RU>0, the locution in the then branch
6068 above is always equivalent to the negative of RU. */
6069
6070 if (new_k != NULL)
6071 *new_k = k;
6072 return 1;
6073 }
6074
6075 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6076 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6077 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6078
6079 int
6080 ada_in_variant (LONGEST val, struct type *type, int field_num)
6081 {
6082 const char *name = TYPE_FIELD_NAME (type, field_num);
6083 int p;
6084
6085 p = 0;
6086 while (1)
6087 {
6088 switch (name[p])
6089 {
6090 case '\0':
6091 return 0;
6092 case 'S':
6093 {
6094 LONGEST W;
6095
6096 if (!ada_scan_number (name, p + 1, &W, &p))
6097 return 0;
6098 if (val == W)
6099 return 1;
6100 break;
6101 }
6102 case 'R':
6103 {
6104 LONGEST L, U;
6105
6106 if (!ada_scan_number (name, p + 1, &L, &p)
6107 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6108 return 0;
6109 if (val >= L && val <= U)
6110 return 1;
6111 break;
6112 }
6113 case 'O':
6114 return 1;
6115 default:
6116 return 0;
6117 }
6118 }
6119 }
6120
6121 /* FIXME: Lots of redundancy below. Try to consolidate. */
6122
6123 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6124 ARG_TYPE, extract and return the value of one of its (non-static)
6125 fields. FIELDNO says which field. Differs from value_primitive_field
6126 only in that it can handle packed values of arbitrary type. */
6127
6128 static struct value *
6129 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6130 struct type *arg_type)
6131 {
6132 struct type *type;
6133
6134 arg_type = ada_check_typedef (arg_type);
6135 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6136
6137 /* Handle packed fields. */
6138
6139 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6140 {
6141 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6142 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6143
6144 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6145 offset + bit_pos / 8,
6146 bit_pos % 8, bit_size, type);
6147 }
6148 else
6149 return value_primitive_field (arg1, offset, fieldno, arg_type);
6150 }
6151
6152 /* Find field with name NAME in object of type TYPE. If found,
6153 set the following for each argument that is non-null:
6154 - *FIELD_TYPE_P to the field's type;
6155 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6156 an object of that type;
6157 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6158 - *BIT_SIZE_P to its size in bits if the field is packed, and
6159 0 otherwise;
6160 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6161 fields up to but not including the desired field, or by the total
6162 number of fields if not found. A NULL value of NAME never
6163 matches; the function just counts visible fields in this case.
6164
6165 Returns 1 if found, 0 otherwise. */
6166
6167 static int
6168 find_struct_field (char *name, struct type *type, int offset,
6169 struct type **field_type_p,
6170 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6171 int *index_p)
6172 {
6173 int i;
6174
6175 type = ada_check_typedef (type);
6176
6177 if (field_type_p != NULL)
6178 *field_type_p = NULL;
6179 if (byte_offset_p != NULL)
6180 *byte_offset_p = 0;
6181 if (bit_offset_p != NULL)
6182 *bit_offset_p = 0;
6183 if (bit_size_p != NULL)
6184 *bit_size_p = 0;
6185
6186 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6187 {
6188 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6189 int fld_offset = offset + bit_pos / 8;
6190 char *t_field_name = TYPE_FIELD_NAME (type, i);
6191
6192 if (t_field_name == NULL)
6193 continue;
6194
6195 else if (name != NULL && field_name_match (t_field_name, name))
6196 {
6197 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6198
6199 if (field_type_p != NULL)
6200 *field_type_p = TYPE_FIELD_TYPE (type, i);
6201 if (byte_offset_p != NULL)
6202 *byte_offset_p = fld_offset;
6203 if (bit_offset_p != NULL)
6204 *bit_offset_p = bit_pos % 8;
6205 if (bit_size_p != NULL)
6206 *bit_size_p = bit_size;
6207 return 1;
6208 }
6209 else if (ada_is_wrapper_field (type, i))
6210 {
6211 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6212 field_type_p, byte_offset_p, bit_offset_p,
6213 bit_size_p, index_p))
6214 return 1;
6215 }
6216 else if (ada_is_variant_part (type, i))
6217 {
6218 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6219 fixed type?? */
6220 int j;
6221 struct type *field_type
6222 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6223
6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6225 {
6226 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6227 fld_offset
6228 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 field_type_p, byte_offset_p,
6230 bit_offset_p, bit_size_p, index_p))
6231 return 1;
6232 }
6233 }
6234 else if (index_p != NULL)
6235 *index_p += 1;
6236 }
6237 return 0;
6238 }
6239
6240 /* Number of user-visible fields in record type TYPE. */
6241
6242 static int
6243 num_visible_fields (struct type *type)
6244 {
6245 int n;
6246
6247 n = 0;
6248 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6249 return n;
6250 }
6251
6252 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6253 and search in it assuming it has (class) type TYPE.
6254 If found, return value, else return NULL.
6255
6256 Searches recursively through wrapper fields (e.g., '_parent'). */
6257
6258 static struct value *
6259 ada_search_struct_field (char *name, struct value *arg, int offset,
6260 struct type *type)
6261 {
6262 int i;
6263
6264 type = ada_check_typedef (type);
6265 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6266 {
6267 char *t_field_name = TYPE_FIELD_NAME (type, i);
6268
6269 if (t_field_name == NULL)
6270 continue;
6271
6272 else if (field_name_match (t_field_name, name))
6273 return ada_value_primitive_field (arg, offset, i, type);
6274
6275 else if (ada_is_wrapper_field (type, i))
6276 {
6277 struct value *v = /* Do not let indent join lines here. */
6278 ada_search_struct_field (name, arg,
6279 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6280 TYPE_FIELD_TYPE (type, i));
6281
6282 if (v != NULL)
6283 return v;
6284 }
6285
6286 else if (ada_is_variant_part (type, i))
6287 {
6288 /* PNH: Do we ever get here? See find_struct_field. */
6289 int j;
6290 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6291 i));
6292 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6293
6294 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6295 {
6296 struct value *v = ada_search_struct_field /* Force line
6297 break. */
6298 (name, arg,
6299 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6300 TYPE_FIELD_TYPE (field_type, j));
6301
6302 if (v != NULL)
6303 return v;
6304 }
6305 }
6306 }
6307 return NULL;
6308 }
6309
6310 static struct value *ada_index_struct_field_1 (int *, struct value *,
6311 int, struct type *);
6312
6313
6314 /* Return field #INDEX in ARG, where the index is that returned by
6315 * find_struct_field through its INDEX_P argument. Adjust the address
6316 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6317 * If found, return value, else return NULL. */
6318
6319 static struct value *
6320 ada_index_struct_field (int index, struct value *arg, int offset,
6321 struct type *type)
6322 {
6323 return ada_index_struct_field_1 (&index, arg, offset, type);
6324 }
6325
6326
6327 /* Auxiliary function for ada_index_struct_field. Like
6328 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6329 * *INDEX_P. */
6330
6331 static struct value *
6332 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6333 struct type *type)
6334 {
6335 int i;
6336 type = ada_check_typedef (type);
6337
6338 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6339 {
6340 if (TYPE_FIELD_NAME (type, i) == NULL)
6341 continue;
6342 else if (ada_is_wrapper_field (type, i))
6343 {
6344 struct value *v = /* Do not let indent join lines here. */
6345 ada_index_struct_field_1 (index_p, arg,
6346 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6347 TYPE_FIELD_TYPE (type, i));
6348
6349 if (v != NULL)
6350 return v;
6351 }
6352
6353 else if (ada_is_variant_part (type, i))
6354 {
6355 /* PNH: Do we ever get here? See ada_search_struct_field,
6356 find_struct_field. */
6357 error (_("Cannot assign this kind of variant record"));
6358 }
6359 else if (*index_p == 0)
6360 return ada_value_primitive_field (arg, offset, i, type);
6361 else
6362 *index_p -= 1;
6363 }
6364 return NULL;
6365 }
6366
6367 /* Given ARG, a value of type (pointer or reference to a)*
6368 structure/union, extract the component named NAME from the ultimate
6369 target structure/union and return it as a value with its
6370 appropriate type.
6371
6372 The routine searches for NAME among all members of the structure itself
6373 and (recursively) among all members of any wrapper members
6374 (e.g., '_parent').
6375
6376 If NO_ERR, then simply return NULL in case of error, rather than
6377 calling error. */
6378
6379 struct value *
6380 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6381 {
6382 struct type *t, *t1;
6383 struct value *v;
6384
6385 v = NULL;
6386 t1 = t = ada_check_typedef (value_type (arg));
6387 if (TYPE_CODE (t) == TYPE_CODE_REF)
6388 {
6389 t1 = TYPE_TARGET_TYPE (t);
6390 if (t1 == NULL)
6391 goto BadValue;
6392 t1 = ada_check_typedef (t1);
6393 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6394 {
6395 arg = coerce_ref (arg);
6396 t = t1;
6397 }
6398 }
6399
6400 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6401 {
6402 t1 = TYPE_TARGET_TYPE (t);
6403 if (t1 == NULL)
6404 goto BadValue;
6405 t1 = ada_check_typedef (t1);
6406 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6407 {
6408 arg = value_ind (arg);
6409 t = t1;
6410 }
6411 else
6412 break;
6413 }
6414
6415 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6416 goto BadValue;
6417
6418 if (t1 == t)
6419 v = ada_search_struct_field (name, arg, 0, t);
6420 else
6421 {
6422 int bit_offset, bit_size, byte_offset;
6423 struct type *field_type;
6424 CORE_ADDR address;
6425
6426 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6427 address = value_as_address (arg);
6428 else
6429 address = unpack_pointer (t, value_contents (arg));
6430
6431 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6432 if (find_struct_field (name, t1, 0,
6433 &field_type, &byte_offset, &bit_offset,
6434 &bit_size, NULL))
6435 {
6436 if (bit_size != 0)
6437 {
6438 if (TYPE_CODE (t) == TYPE_CODE_REF)
6439 arg = ada_coerce_ref (arg);
6440 else
6441 arg = ada_value_ind (arg);
6442 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6443 bit_offset, bit_size,
6444 field_type);
6445 }
6446 else
6447 v = value_at_lazy (field_type, address + byte_offset);
6448 }
6449 }
6450
6451 if (v != NULL || no_err)
6452 return v;
6453 else
6454 error (_("There is no member named %s."), name);
6455
6456 BadValue:
6457 if (no_err)
6458 return NULL;
6459 else
6460 error (_("Attempt to extract a component of "
6461 "a value that is not a record."));
6462 }
6463
6464 /* Given a type TYPE, look up the type of the component of type named NAME.
6465 If DISPP is non-null, add its byte displacement from the beginning of a
6466 structure (pointed to by a value) of type TYPE to *DISPP (does not
6467 work for packed fields).
6468
6469 Matches any field whose name has NAME as a prefix, possibly
6470 followed by "___".
6471
6472 TYPE can be either a struct or union. If REFOK, TYPE may also
6473 be a (pointer or reference)+ to a struct or union, and the
6474 ultimate target type will be searched.
6475
6476 Looks recursively into variant clauses and parent types.
6477
6478 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6479 TYPE is not a type of the right kind. */
6480
6481 static struct type *
6482 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6483 int noerr, int *dispp)
6484 {
6485 int i;
6486
6487 if (name == NULL)
6488 goto BadName;
6489
6490 if (refok && type != NULL)
6491 while (1)
6492 {
6493 type = ada_check_typedef (type);
6494 if (TYPE_CODE (type) != TYPE_CODE_PTR
6495 && TYPE_CODE (type) != TYPE_CODE_REF)
6496 break;
6497 type = TYPE_TARGET_TYPE (type);
6498 }
6499
6500 if (type == NULL
6501 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6502 && TYPE_CODE (type) != TYPE_CODE_UNION))
6503 {
6504 if (noerr)
6505 return NULL;
6506 else
6507 {
6508 target_terminal_ours ();
6509 gdb_flush (gdb_stdout);
6510 if (type == NULL)
6511 error (_("Type (null) is not a structure or union type"));
6512 else
6513 {
6514 /* XXX: type_sprint */
6515 fprintf_unfiltered (gdb_stderr, _("Type "));
6516 type_print (type, "", gdb_stderr, -1);
6517 error (_(" is not a structure or union type"));
6518 }
6519 }
6520 }
6521
6522 type = to_static_fixed_type (type);
6523
6524 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6525 {
6526 char *t_field_name = TYPE_FIELD_NAME (type, i);
6527 struct type *t;
6528 int disp;
6529
6530 if (t_field_name == NULL)
6531 continue;
6532
6533 else if (field_name_match (t_field_name, name))
6534 {
6535 if (dispp != NULL)
6536 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6537 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6538 }
6539
6540 else if (ada_is_wrapper_field (type, i))
6541 {
6542 disp = 0;
6543 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6544 0, 1, &disp);
6545 if (t != NULL)
6546 {
6547 if (dispp != NULL)
6548 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6549 return t;
6550 }
6551 }
6552
6553 else if (ada_is_variant_part (type, i))
6554 {
6555 int j;
6556 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6557 i));
6558
6559 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6560 {
6561 /* FIXME pnh 2008/01/26: We check for a field that is
6562 NOT wrapped in a struct, since the compiler sometimes
6563 generates these for unchecked variant types. Revisit
6564 if the compiler changes this practice. */
6565 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6566 disp = 0;
6567 if (v_field_name != NULL
6568 && field_name_match (v_field_name, name))
6569 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6570 else
6571 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6572 j),
6573 name, 0, 1, &disp);
6574
6575 if (t != NULL)
6576 {
6577 if (dispp != NULL)
6578 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6579 return t;
6580 }
6581 }
6582 }
6583
6584 }
6585
6586 BadName:
6587 if (!noerr)
6588 {
6589 target_terminal_ours ();
6590 gdb_flush (gdb_stdout);
6591 if (name == NULL)
6592 {
6593 /* XXX: type_sprint */
6594 fprintf_unfiltered (gdb_stderr, _("Type "));
6595 type_print (type, "", gdb_stderr, -1);
6596 error (_(" has no component named <null>"));
6597 }
6598 else
6599 {
6600 /* XXX: type_sprint */
6601 fprintf_unfiltered (gdb_stderr, _("Type "));
6602 type_print (type, "", gdb_stderr, -1);
6603 error (_(" has no component named %s"), name);
6604 }
6605 }
6606
6607 return NULL;
6608 }
6609
6610 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6611 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6612 represents an unchecked union (that is, the variant part of a
6613 record that is named in an Unchecked_Union pragma). */
6614
6615 static int
6616 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6617 {
6618 char *discrim_name = ada_variant_discrim_name (var_type);
6619
6620 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6621 == NULL);
6622 }
6623
6624
6625 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6626 within a value of type OUTER_TYPE that is stored in GDB at
6627 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6628 numbering from 0) is applicable. Returns -1 if none are. */
6629
6630 int
6631 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6632 const gdb_byte *outer_valaddr)
6633 {
6634 int others_clause;
6635 int i;
6636 char *discrim_name = ada_variant_discrim_name (var_type);
6637 struct value *outer;
6638 struct value *discrim;
6639 LONGEST discrim_val;
6640
6641 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6642 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6643 if (discrim == NULL)
6644 return -1;
6645 discrim_val = value_as_long (discrim);
6646
6647 others_clause = -1;
6648 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6649 {
6650 if (ada_is_others_clause (var_type, i))
6651 others_clause = i;
6652 else if (ada_in_variant (discrim_val, var_type, i))
6653 return i;
6654 }
6655
6656 return others_clause;
6657 }
6658 \f
6659
6660
6661 /* Dynamic-Sized Records */
6662
6663 /* Strategy: The type ostensibly attached to a value with dynamic size
6664 (i.e., a size that is not statically recorded in the debugging
6665 data) does not accurately reflect the size or layout of the value.
6666 Our strategy is to convert these values to values with accurate,
6667 conventional types that are constructed on the fly. */
6668
6669 /* There is a subtle and tricky problem here. In general, we cannot
6670 determine the size of dynamic records without its data. However,
6671 the 'struct value' data structure, which GDB uses to represent
6672 quantities in the inferior process (the target), requires the size
6673 of the type at the time of its allocation in order to reserve space
6674 for GDB's internal copy of the data. That's why the
6675 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6676 rather than struct value*s.
6677
6678 However, GDB's internal history variables ($1, $2, etc.) are
6679 struct value*s containing internal copies of the data that are not, in
6680 general, the same as the data at their corresponding addresses in
6681 the target. Fortunately, the types we give to these values are all
6682 conventional, fixed-size types (as per the strategy described
6683 above), so that we don't usually have to perform the
6684 'to_fixed_xxx_type' conversions to look at their values.
6685 Unfortunately, there is one exception: if one of the internal
6686 history variables is an array whose elements are unconstrained
6687 records, then we will need to create distinct fixed types for each
6688 element selected. */
6689
6690 /* The upshot of all of this is that many routines take a (type, host
6691 address, target address) triple as arguments to represent a value.
6692 The host address, if non-null, is supposed to contain an internal
6693 copy of the relevant data; otherwise, the program is to consult the
6694 target at the target address. */
6695
6696 /* Assuming that VAL0 represents a pointer value, the result of
6697 dereferencing it. Differs from value_ind in its treatment of
6698 dynamic-sized types. */
6699
6700 struct value *
6701 ada_value_ind (struct value *val0)
6702 {
6703 struct value *val = unwrap_value (value_ind (val0));
6704
6705 return ada_to_fixed_value (val);
6706 }
6707
6708 /* The value resulting from dereferencing any "reference to"
6709 qualifiers on VAL0. */
6710
6711 static struct value *
6712 ada_coerce_ref (struct value *val0)
6713 {
6714 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6715 {
6716 struct value *val = val0;
6717
6718 val = coerce_ref (val);
6719 val = unwrap_value (val);
6720 return ada_to_fixed_value (val);
6721 }
6722 else
6723 return val0;
6724 }
6725
6726 /* Return OFF rounded upward if necessary to a multiple of
6727 ALIGNMENT (a power of 2). */
6728
6729 static unsigned int
6730 align_value (unsigned int off, unsigned int alignment)
6731 {
6732 return (off + alignment - 1) & ~(alignment - 1);
6733 }
6734
6735 /* Return the bit alignment required for field #F of template type TYPE. */
6736
6737 static unsigned int
6738 field_alignment (struct type *type, int f)
6739 {
6740 const char *name = TYPE_FIELD_NAME (type, f);
6741 int len;
6742 int align_offset;
6743
6744 /* The field name should never be null, unless the debugging information
6745 is somehow malformed. In this case, we assume the field does not
6746 require any alignment. */
6747 if (name == NULL)
6748 return 1;
6749
6750 len = strlen (name);
6751
6752 if (!isdigit (name[len - 1]))
6753 return 1;
6754
6755 if (isdigit (name[len - 2]))
6756 align_offset = len - 2;
6757 else
6758 align_offset = len - 1;
6759
6760 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6761 return TARGET_CHAR_BIT;
6762
6763 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6764 }
6765
6766 /* Find a symbol named NAME. Ignores ambiguity. */
6767
6768 struct symbol *
6769 ada_find_any_symbol (const char *name)
6770 {
6771 struct symbol *sym;
6772
6773 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6774 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6775 return sym;
6776
6777 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6778 return sym;
6779 }
6780
6781 /* Find a type named NAME. Ignores ambiguity. This routine will look
6782 solely for types defined by debug info, it will not search the GDB
6783 primitive types. */
6784
6785 struct type *
6786 ada_find_any_type (const char *name)
6787 {
6788 struct symbol *sym = ada_find_any_symbol (name);
6789
6790 if (sym != NULL)
6791 return SYMBOL_TYPE (sym);
6792
6793 return NULL;
6794 }
6795
6796 /* Given NAME and an associated BLOCK, search all symbols for
6797 NAME suffixed with "___XR", which is the ``renaming'' symbol
6798 associated to NAME. Return this symbol if found, return
6799 NULL otherwise. */
6800
6801 struct symbol *
6802 ada_find_renaming_symbol (const char *name, struct block *block)
6803 {
6804 struct symbol *sym;
6805
6806 sym = find_old_style_renaming_symbol (name, block);
6807
6808 if (sym != NULL)
6809 return sym;
6810
6811 /* Not right yet. FIXME pnh 7/20/2007. */
6812 sym = ada_find_any_symbol (name);
6813 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6814 return sym;
6815 else
6816 return NULL;
6817 }
6818
6819 static struct symbol *
6820 find_old_style_renaming_symbol (const char *name, struct block *block)
6821 {
6822 const struct symbol *function_sym = block_linkage_function (block);
6823 char *rename;
6824
6825 if (function_sym != NULL)
6826 {
6827 /* If the symbol is defined inside a function, NAME is not fully
6828 qualified. This means we need to prepend the function name
6829 as well as adding the ``___XR'' suffix to build the name of
6830 the associated renaming symbol. */
6831 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6832 /* Function names sometimes contain suffixes used
6833 for instance to qualify nested subprograms. When building
6834 the XR type name, we need to make sure that this suffix is
6835 not included. So do not include any suffix in the function
6836 name length below. */
6837 int function_name_len = ada_name_prefix_len (function_name);
6838 const int rename_len = function_name_len + 2 /* "__" */
6839 + strlen (name) + 6 /* "___XR\0" */ ;
6840
6841 /* Strip the suffix if necessary. */
6842 ada_remove_trailing_digits (function_name, &function_name_len);
6843 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6844 ada_remove_Xbn_suffix (function_name, &function_name_len);
6845
6846 /* Library-level functions are a special case, as GNAT adds
6847 a ``_ada_'' prefix to the function name to avoid namespace
6848 pollution. However, the renaming symbols themselves do not
6849 have this prefix, so we need to skip this prefix if present. */
6850 if (function_name_len > 5 /* "_ada_" */
6851 && strstr (function_name, "_ada_") == function_name)
6852 {
6853 function_name += 5;
6854 function_name_len -= 5;
6855 }
6856
6857 rename = (char *) alloca (rename_len * sizeof (char));
6858 strncpy (rename, function_name, function_name_len);
6859 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6860 "__%s___XR", name);
6861 }
6862 else
6863 {
6864 const int rename_len = strlen (name) + 6;
6865
6866 rename = (char *) alloca (rename_len * sizeof (char));
6867 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6868 }
6869
6870 return ada_find_any_symbol (rename);
6871 }
6872
6873 /* Because of GNAT encoding conventions, several GDB symbols may match a
6874 given type name. If the type denoted by TYPE0 is to be preferred to
6875 that of TYPE1 for purposes of type printing, return non-zero;
6876 otherwise return 0. */
6877
6878 int
6879 ada_prefer_type (struct type *type0, struct type *type1)
6880 {
6881 if (type1 == NULL)
6882 return 1;
6883 else if (type0 == NULL)
6884 return 0;
6885 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6886 return 1;
6887 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6888 return 0;
6889 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6890 return 1;
6891 else if (ada_is_constrained_packed_array_type (type0))
6892 return 1;
6893 else if (ada_is_array_descriptor_type (type0)
6894 && !ada_is_array_descriptor_type (type1))
6895 return 1;
6896 else
6897 {
6898 const char *type0_name = type_name_no_tag (type0);
6899 const char *type1_name = type_name_no_tag (type1);
6900
6901 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6902 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6903 return 1;
6904 }
6905 return 0;
6906 }
6907
6908 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6909 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6910
6911 char *
6912 ada_type_name (struct type *type)
6913 {
6914 if (type == NULL)
6915 return NULL;
6916 else if (TYPE_NAME (type) != NULL)
6917 return TYPE_NAME (type);
6918 else
6919 return TYPE_TAG_NAME (type);
6920 }
6921
6922 /* Search the list of "descriptive" types associated to TYPE for a type
6923 whose name is NAME. */
6924
6925 static struct type *
6926 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6927 {
6928 struct type *result;
6929
6930 /* If there no descriptive-type info, then there is no parallel type
6931 to be found. */
6932 if (!HAVE_GNAT_AUX_INFO (type))
6933 return NULL;
6934
6935 result = TYPE_DESCRIPTIVE_TYPE (type);
6936 while (result != NULL)
6937 {
6938 char *result_name = ada_type_name (result);
6939
6940 if (result_name == NULL)
6941 {
6942 warning (_("unexpected null name on descriptive type"));
6943 return NULL;
6944 }
6945
6946 /* If the names match, stop. */
6947 if (strcmp (result_name, name) == 0)
6948 break;
6949
6950 /* Otherwise, look at the next item on the list, if any. */
6951 if (HAVE_GNAT_AUX_INFO (result))
6952 result = TYPE_DESCRIPTIVE_TYPE (result);
6953 else
6954 result = NULL;
6955 }
6956
6957 /* If we didn't find a match, see whether this is a packed array. With
6958 older compilers, the descriptive type information is either absent or
6959 irrelevant when it comes to packed arrays so the above lookup fails.
6960 Fall back to using a parallel lookup by name in this case. */
6961 if (result == NULL && ada_is_constrained_packed_array_type (type))
6962 return ada_find_any_type (name);
6963
6964 return result;
6965 }
6966
6967 /* Find a parallel type to TYPE with the specified NAME, using the
6968 descriptive type taken from the debugging information, if available,
6969 and otherwise using the (slower) name-based method. */
6970
6971 static struct type *
6972 ada_find_parallel_type_with_name (struct type *type, const char *name)
6973 {
6974 struct type *result = NULL;
6975
6976 if (HAVE_GNAT_AUX_INFO (type))
6977 result = find_parallel_type_by_descriptive_type (type, name);
6978 else
6979 result = ada_find_any_type (name);
6980
6981 return result;
6982 }
6983
6984 /* Same as above, but specify the name of the parallel type by appending
6985 SUFFIX to the name of TYPE. */
6986
6987 struct type *
6988 ada_find_parallel_type (struct type *type, const char *suffix)
6989 {
6990 char *name, *typename = ada_type_name (type);
6991 int len;
6992
6993 if (typename == NULL)
6994 return NULL;
6995
6996 len = strlen (typename);
6997
6998 name = (char *) alloca (len + strlen (suffix) + 1);
6999
7000 strcpy (name, typename);
7001 strcpy (name + len, suffix);
7002
7003 return ada_find_parallel_type_with_name (type, name);
7004 }
7005
7006 /* If TYPE is a variable-size record type, return the corresponding template
7007 type describing its fields. Otherwise, return NULL. */
7008
7009 static struct type *
7010 dynamic_template_type (struct type *type)
7011 {
7012 type = ada_check_typedef (type);
7013
7014 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7015 || ada_type_name (type) == NULL)
7016 return NULL;
7017 else
7018 {
7019 int len = strlen (ada_type_name (type));
7020
7021 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7022 return type;
7023 else
7024 return ada_find_parallel_type (type, "___XVE");
7025 }
7026 }
7027
7028 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7029 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7030
7031 static int
7032 is_dynamic_field (struct type *templ_type, int field_num)
7033 {
7034 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7035
7036 return name != NULL
7037 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7038 && strstr (name, "___XVL") != NULL;
7039 }
7040
7041 /* The index of the variant field of TYPE, or -1 if TYPE does not
7042 represent a variant record type. */
7043
7044 static int
7045 variant_field_index (struct type *type)
7046 {
7047 int f;
7048
7049 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7050 return -1;
7051
7052 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7053 {
7054 if (ada_is_variant_part (type, f))
7055 return f;
7056 }
7057 return -1;
7058 }
7059
7060 /* A record type with no fields. */
7061
7062 static struct type *
7063 empty_record (struct type *template)
7064 {
7065 struct type *type = alloc_type_copy (template);
7066
7067 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7068 TYPE_NFIELDS (type) = 0;
7069 TYPE_FIELDS (type) = NULL;
7070 INIT_CPLUS_SPECIFIC (type);
7071 TYPE_NAME (type) = "<empty>";
7072 TYPE_TAG_NAME (type) = NULL;
7073 TYPE_LENGTH (type) = 0;
7074 return type;
7075 }
7076
7077 /* An ordinary record type (with fixed-length fields) that describes
7078 the value of type TYPE at VALADDR or ADDRESS (see comments at
7079 the beginning of this section) VAL according to GNAT conventions.
7080 DVAL0 should describe the (portion of a) record that contains any
7081 necessary discriminants. It should be NULL if value_type (VAL) is
7082 an outer-level type (i.e., as opposed to a branch of a variant.) A
7083 variant field (unless unchecked) is replaced by a particular branch
7084 of the variant.
7085
7086 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7087 length are not statically known are discarded. As a consequence,
7088 VALADDR, ADDRESS and DVAL0 are ignored.
7089
7090 NOTE: Limitations: For now, we assume that dynamic fields and
7091 variants occupy whole numbers of bytes. However, they need not be
7092 byte-aligned. */
7093
7094 struct type *
7095 ada_template_to_fixed_record_type_1 (struct type *type,
7096 const gdb_byte *valaddr,
7097 CORE_ADDR address, struct value *dval0,
7098 int keep_dynamic_fields)
7099 {
7100 struct value *mark = value_mark ();
7101 struct value *dval;
7102 struct type *rtype;
7103 int nfields, bit_len;
7104 int variant_field;
7105 long off;
7106 int fld_bit_len;
7107 int f;
7108
7109 /* Compute the number of fields in this record type that are going
7110 to be processed: unless keep_dynamic_fields, this includes only
7111 fields whose position and length are static will be processed. */
7112 if (keep_dynamic_fields)
7113 nfields = TYPE_NFIELDS (type);
7114 else
7115 {
7116 nfields = 0;
7117 while (nfields < TYPE_NFIELDS (type)
7118 && !ada_is_variant_part (type, nfields)
7119 && !is_dynamic_field (type, nfields))
7120 nfields++;
7121 }
7122
7123 rtype = alloc_type_copy (type);
7124 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7125 INIT_CPLUS_SPECIFIC (rtype);
7126 TYPE_NFIELDS (rtype) = nfields;
7127 TYPE_FIELDS (rtype) = (struct field *)
7128 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7129 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7130 TYPE_NAME (rtype) = ada_type_name (type);
7131 TYPE_TAG_NAME (rtype) = NULL;
7132 TYPE_FIXED_INSTANCE (rtype) = 1;
7133
7134 off = 0;
7135 bit_len = 0;
7136 variant_field = -1;
7137
7138 for (f = 0; f < nfields; f += 1)
7139 {
7140 off = align_value (off, field_alignment (type, f))
7141 + TYPE_FIELD_BITPOS (type, f);
7142 TYPE_FIELD_BITPOS (rtype, f) = off;
7143 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7144
7145 if (ada_is_variant_part (type, f))
7146 {
7147 variant_field = f;
7148 fld_bit_len = 0;
7149 }
7150 else if (is_dynamic_field (type, f))
7151 {
7152 const gdb_byte *field_valaddr = valaddr;
7153 CORE_ADDR field_address = address;
7154 struct type *field_type =
7155 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7156
7157 if (dval0 == NULL)
7158 {
7159 /* rtype's length is computed based on the run-time
7160 value of discriminants. If the discriminants are not
7161 initialized, the type size may be completely bogus and
7162 GDB may fail to allocate a value for it. So check the
7163 size first before creating the value. */
7164 check_size (rtype);
7165 dval = value_from_contents_and_address (rtype, valaddr, address);
7166 }
7167 else
7168 dval = dval0;
7169
7170 /* If the type referenced by this field is an aligner type, we need
7171 to unwrap that aligner type, because its size might not be set.
7172 Keeping the aligner type would cause us to compute the wrong
7173 size for this field, impacting the offset of the all the fields
7174 that follow this one. */
7175 if (ada_is_aligner_type (field_type))
7176 {
7177 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7178
7179 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7180 field_address = cond_offset_target (field_address, field_offset);
7181 field_type = ada_aligned_type (field_type);
7182 }
7183
7184 field_valaddr = cond_offset_host (field_valaddr,
7185 off / TARGET_CHAR_BIT);
7186 field_address = cond_offset_target (field_address,
7187 off / TARGET_CHAR_BIT);
7188
7189 /* Get the fixed type of the field. Note that, in this case,
7190 we do not want to get the real type out of the tag: if
7191 the current field is the parent part of a tagged record,
7192 we will get the tag of the object. Clearly wrong: the real
7193 type of the parent is not the real type of the child. We
7194 would end up in an infinite loop. */
7195 field_type = ada_get_base_type (field_type);
7196 field_type = ada_to_fixed_type (field_type, field_valaddr,
7197 field_address, dval, 0);
7198 /* If the field size is already larger than the maximum
7199 object size, then the record itself will necessarily
7200 be larger than the maximum object size. We need to make
7201 this check now, because the size might be so ridiculously
7202 large (due to an uninitialized variable in the inferior)
7203 that it would cause an overflow when adding it to the
7204 record size. */
7205 check_size (field_type);
7206
7207 TYPE_FIELD_TYPE (rtype, f) = field_type;
7208 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7209 /* The multiplication can potentially overflow. But because
7210 the field length has been size-checked just above, and
7211 assuming that the maximum size is a reasonable value,
7212 an overflow should not happen in practice. So rather than
7213 adding overflow recovery code to this already complex code,
7214 we just assume that it's not going to happen. */
7215 fld_bit_len =
7216 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7217 }
7218 else
7219 {
7220 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7221
7222 /* If our field is a typedef type (most likely a typedef of
7223 a fat pointer, encoding an array access), then we need to
7224 look at its target type to determine its characteristics.
7225 In particular, we would miscompute the field size if we took
7226 the size of the typedef (zero), instead of the size of
7227 the target type. */
7228 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7229 field_type = ada_typedef_target_type (field_type);
7230
7231 TYPE_FIELD_TYPE (rtype, f) = field_type;
7232 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7233 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7234 fld_bit_len =
7235 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7236 else
7237 fld_bit_len =
7238 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7239 }
7240 if (off + fld_bit_len > bit_len)
7241 bit_len = off + fld_bit_len;
7242 off += fld_bit_len;
7243 TYPE_LENGTH (rtype) =
7244 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7245 }
7246
7247 /* We handle the variant part, if any, at the end because of certain
7248 odd cases in which it is re-ordered so as NOT to be the last field of
7249 the record. This can happen in the presence of representation
7250 clauses. */
7251 if (variant_field >= 0)
7252 {
7253 struct type *branch_type;
7254
7255 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7256
7257 if (dval0 == NULL)
7258 dval = value_from_contents_and_address (rtype, valaddr, address);
7259 else
7260 dval = dval0;
7261
7262 branch_type =
7263 to_fixed_variant_branch_type
7264 (TYPE_FIELD_TYPE (type, variant_field),
7265 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7266 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7267 if (branch_type == NULL)
7268 {
7269 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7270 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7271 TYPE_NFIELDS (rtype) -= 1;
7272 }
7273 else
7274 {
7275 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7276 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7277 fld_bit_len =
7278 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7279 TARGET_CHAR_BIT;
7280 if (off + fld_bit_len > bit_len)
7281 bit_len = off + fld_bit_len;
7282 TYPE_LENGTH (rtype) =
7283 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7284 }
7285 }
7286
7287 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7288 should contain the alignment of that record, which should be a strictly
7289 positive value. If null or negative, then something is wrong, most
7290 probably in the debug info. In that case, we don't round up the size
7291 of the resulting type. If this record is not part of another structure,
7292 the current RTYPE length might be good enough for our purposes. */
7293 if (TYPE_LENGTH (type) <= 0)
7294 {
7295 if (TYPE_NAME (rtype))
7296 warning (_("Invalid type size for `%s' detected: %d."),
7297 TYPE_NAME (rtype), TYPE_LENGTH (type));
7298 else
7299 warning (_("Invalid type size for <unnamed> detected: %d."),
7300 TYPE_LENGTH (type));
7301 }
7302 else
7303 {
7304 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7305 TYPE_LENGTH (type));
7306 }
7307
7308 value_free_to_mark (mark);
7309 if (TYPE_LENGTH (rtype) > varsize_limit)
7310 error (_("record type with dynamic size is larger than varsize-limit"));
7311 return rtype;
7312 }
7313
7314 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7315 of 1. */
7316
7317 static struct type *
7318 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7319 CORE_ADDR address, struct value *dval0)
7320 {
7321 return ada_template_to_fixed_record_type_1 (type, valaddr,
7322 address, dval0, 1);
7323 }
7324
7325 /* An ordinary record type in which ___XVL-convention fields and
7326 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7327 static approximations, containing all possible fields. Uses
7328 no runtime values. Useless for use in values, but that's OK,
7329 since the results are used only for type determinations. Works on both
7330 structs and unions. Representation note: to save space, we memorize
7331 the result of this function in the TYPE_TARGET_TYPE of the
7332 template type. */
7333
7334 static struct type *
7335 template_to_static_fixed_type (struct type *type0)
7336 {
7337 struct type *type;
7338 int nfields;
7339 int f;
7340
7341 if (TYPE_TARGET_TYPE (type0) != NULL)
7342 return TYPE_TARGET_TYPE (type0);
7343
7344 nfields = TYPE_NFIELDS (type0);
7345 type = type0;
7346
7347 for (f = 0; f < nfields; f += 1)
7348 {
7349 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7350 struct type *new_type;
7351
7352 if (is_dynamic_field (type0, f))
7353 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7354 else
7355 new_type = static_unwrap_type (field_type);
7356 if (type == type0 && new_type != field_type)
7357 {
7358 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7359 TYPE_CODE (type) = TYPE_CODE (type0);
7360 INIT_CPLUS_SPECIFIC (type);
7361 TYPE_NFIELDS (type) = nfields;
7362 TYPE_FIELDS (type) = (struct field *)
7363 TYPE_ALLOC (type, nfields * sizeof (struct field));
7364 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7365 sizeof (struct field) * nfields);
7366 TYPE_NAME (type) = ada_type_name (type0);
7367 TYPE_TAG_NAME (type) = NULL;
7368 TYPE_FIXED_INSTANCE (type) = 1;
7369 TYPE_LENGTH (type) = 0;
7370 }
7371 TYPE_FIELD_TYPE (type, f) = new_type;
7372 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7373 }
7374 return type;
7375 }
7376
7377 /* Given an object of type TYPE whose contents are at VALADDR and
7378 whose address in memory is ADDRESS, returns a revision of TYPE,
7379 which should be a non-dynamic-sized record, in which the variant
7380 part, if any, is replaced with the appropriate branch. Looks
7381 for discriminant values in DVAL0, which can be NULL if the record
7382 contains the necessary discriminant values. */
7383
7384 static struct type *
7385 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7386 CORE_ADDR address, struct value *dval0)
7387 {
7388 struct value *mark = value_mark ();
7389 struct value *dval;
7390 struct type *rtype;
7391 struct type *branch_type;
7392 int nfields = TYPE_NFIELDS (type);
7393 int variant_field = variant_field_index (type);
7394
7395 if (variant_field == -1)
7396 return type;
7397
7398 if (dval0 == NULL)
7399 dval = value_from_contents_and_address (type, valaddr, address);
7400 else
7401 dval = dval0;
7402
7403 rtype = alloc_type_copy (type);
7404 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7405 INIT_CPLUS_SPECIFIC (rtype);
7406 TYPE_NFIELDS (rtype) = nfields;
7407 TYPE_FIELDS (rtype) =
7408 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7409 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7410 sizeof (struct field) * nfields);
7411 TYPE_NAME (rtype) = ada_type_name (type);
7412 TYPE_TAG_NAME (rtype) = NULL;
7413 TYPE_FIXED_INSTANCE (rtype) = 1;
7414 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7415
7416 branch_type = to_fixed_variant_branch_type
7417 (TYPE_FIELD_TYPE (type, variant_field),
7418 cond_offset_host (valaddr,
7419 TYPE_FIELD_BITPOS (type, variant_field)
7420 / TARGET_CHAR_BIT),
7421 cond_offset_target (address,
7422 TYPE_FIELD_BITPOS (type, variant_field)
7423 / TARGET_CHAR_BIT), dval);
7424 if (branch_type == NULL)
7425 {
7426 int f;
7427
7428 for (f = variant_field + 1; f < nfields; f += 1)
7429 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7430 TYPE_NFIELDS (rtype) -= 1;
7431 }
7432 else
7433 {
7434 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7435 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7436 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7437 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7438 }
7439 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7440
7441 value_free_to_mark (mark);
7442 return rtype;
7443 }
7444
7445 /* An ordinary record type (with fixed-length fields) that describes
7446 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7447 beginning of this section]. Any necessary discriminants' values
7448 should be in DVAL, a record value; it may be NULL if the object
7449 at ADDR itself contains any necessary discriminant values.
7450 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7451 values from the record are needed. Except in the case that DVAL,
7452 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7453 unchecked) is replaced by a particular branch of the variant.
7454
7455 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7456 is questionable and may be removed. It can arise during the
7457 processing of an unconstrained-array-of-record type where all the
7458 variant branches have exactly the same size. This is because in
7459 such cases, the compiler does not bother to use the XVS convention
7460 when encoding the record. I am currently dubious of this
7461 shortcut and suspect the compiler should be altered. FIXME. */
7462
7463 static struct type *
7464 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7465 CORE_ADDR address, struct value *dval)
7466 {
7467 struct type *templ_type;
7468
7469 if (TYPE_FIXED_INSTANCE (type0))
7470 return type0;
7471
7472 templ_type = dynamic_template_type (type0);
7473
7474 if (templ_type != NULL)
7475 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7476 else if (variant_field_index (type0) >= 0)
7477 {
7478 if (dval == NULL && valaddr == NULL && address == 0)
7479 return type0;
7480 return to_record_with_fixed_variant_part (type0, valaddr, address,
7481 dval);
7482 }
7483 else
7484 {
7485 TYPE_FIXED_INSTANCE (type0) = 1;
7486 return type0;
7487 }
7488
7489 }
7490
7491 /* An ordinary record type (with fixed-length fields) that describes
7492 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7493 union type. Any necessary discriminants' values should be in DVAL,
7494 a record value. That is, this routine selects the appropriate
7495 branch of the union at ADDR according to the discriminant value
7496 indicated in the union's type name. Returns VAR_TYPE0 itself if
7497 it represents a variant subject to a pragma Unchecked_Union. */
7498
7499 static struct type *
7500 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7501 CORE_ADDR address, struct value *dval)
7502 {
7503 int which;
7504 struct type *templ_type;
7505 struct type *var_type;
7506
7507 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7508 var_type = TYPE_TARGET_TYPE (var_type0);
7509 else
7510 var_type = var_type0;
7511
7512 templ_type = ada_find_parallel_type (var_type, "___XVU");
7513
7514 if (templ_type != NULL)
7515 var_type = templ_type;
7516
7517 if (is_unchecked_variant (var_type, value_type (dval)))
7518 return var_type0;
7519 which =
7520 ada_which_variant_applies (var_type,
7521 value_type (dval), value_contents (dval));
7522
7523 if (which < 0)
7524 return empty_record (var_type);
7525 else if (is_dynamic_field (var_type, which))
7526 return to_fixed_record_type
7527 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7528 valaddr, address, dval);
7529 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7530 return
7531 to_fixed_record_type
7532 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7533 else
7534 return TYPE_FIELD_TYPE (var_type, which);
7535 }
7536
7537 /* Assuming that TYPE0 is an array type describing the type of a value
7538 at ADDR, and that DVAL describes a record containing any
7539 discriminants used in TYPE0, returns a type for the value that
7540 contains no dynamic components (that is, no components whose sizes
7541 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7542 true, gives an error message if the resulting type's size is over
7543 varsize_limit. */
7544
7545 static struct type *
7546 to_fixed_array_type (struct type *type0, struct value *dval,
7547 int ignore_too_big)
7548 {
7549 struct type *index_type_desc;
7550 struct type *result;
7551 int constrained_packed_array_p;
7552
7553 if (TYPE_FIXED_INSTANCE (type0))
7554 return type0;
7555
7556 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7557 if (constrained_packed_array_p)
7558 type0 = decode_constrained_packed_array_type (type0);
7559
7560 index_type_desc = ada_find_parallel_type (type0, "___XA");
7561 ada_fixup_array_indexes_type (index_type_desc);
7562 if (index_type_desc == NULL)
7563 {
7564 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7565
7566 /* NOTE: elt_type---the fixed version of elt_type0---should never
7567 depend on the contents of the array in properly constructed
7568 debugging data. */
7569 /* Create a fixed version of the array element type.
7570 We're not providing the address of an element here,
7571 and thus the actual object value cannot be inspected to do
7572 the conversion. This should not be a problem, since arrays of
7573 unconstrained objects are not allowed. In particular, all
7574 the elements of an array of a tagged type should all be of
7575 the same type specified in the debugging info. No need to
7576 consult the object tag. */
7577 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7578
7579 /* Make sure we always create a new array type when dealing with
7580 packed array types, since we're going to fix-up the array
7581 type length and element bitsize a little further down. */
7582 if (elt_type0 == elt_type && !constrained_packed_array_p)
7583 result = type0;
7584 else
7585 result = create_array_type (alloc_type_copy (type0),
7586 elt_type, TYPE_INDEX_TYPE (type0));
7587 }
7588 else
7589 {
7590 int i;
7591 struct type *elt_type0;
7592
7593 elt_type0 = type0;
7594 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7595 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7596
7597 /* NOTE: result---the fixed version of elt_type0---should never
7598 depend on the contents of the array in properly constructed
7599 debugging data. */
7600 /* Create a fixed version of the array element type.
7601 We're not providing the address of an element here,
7602 and thus the actual object value cannot be inspected to do
7603 the conversion. This should not be a problem, since arrays of
7604 unconstrained objects are not allowed. In particular, all
7605 the elements of an array of a tagged type should all be of
7606 the same type specified in the debugging info. No need to
7607 consult the object tag. */
7608 result =
7609 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7610
7611 elt_type0 = type0;
7612 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7613 {
7614 struct type *range_type =
7615 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7616
7617 result = create_array_type (alloc_type_copy (elt_type0),
7618 result, range_type);
7619 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7620 }
7621 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7622 error (_("array type with dynamic size is larger than varsize-limit"));
7623 }
7624
7625 if (constrained_packed_array_p)
7626 {
7627 /* So far, the resulting type has been created as if the original
7628 type was a regular (non-packed) array type. As a result, the
7629 bitsize of the array elements needs to be set again, and the array
7630 length needs to be recomputed based on that bitsize. */
7631 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7632 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7633
7634 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7635 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7636 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7637 TYPE_LENGTH (result)++;
7638 }
7639
7640 TYPE_FIXED_INSTANCE (result) = 1;
7641 return result;
7642 }
7643
7644
7645 /* A standard type (containing no dynamically sized components)
7646 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7647 DVAL describes a record containing any discriminants used in TYPE0,
7648 and may be NULL if there are none, or if the object of type TYPE at
7649 ADDRESS or in VALADDR contains these discriminants.
7650
7651 If CHECK_TAG is not null, in the case of tagged types, this function
7652 attempts to locate the object's tag and use it to compute the actual
7653 type. However, when ADDRESS is null, we cannot use it to determine the
7654 location of the tag, and therefore compute the tagged type's actual type.
7655 So we return the tagged type without consulting the tag. */
7656
7657 static struct type *
7658 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7659 CORE_ADDR address, struct value *dval, int check_tag)
7660 {
7661 type = ada_check_typedef (type);
7662 switch (TYPE_CODE (type))
7663 {
7664 default:
7665 return type;
7666 case TYPE_CODE_STRUCT:
7667 {
7668 struct type *static_type = to_static_fixed_type (type);
7669 struct type *fixed_record_type =
7670 to_fixed_record_type (type, valaddr, address, NULL);
7671
7672 /* If STATIC_TYPE is a tagged type and we know the object's address,
7673 then we can determine its tag, and compute the object's actual
7674 type from there. Note that we have to use the fixed record
7675 type (the parent part of the record may have dynamic fields
7676 and the way the location of _tag is expressed may depend on
7677 them). */
7678
7679 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7680 {
7681 struct type *real_type =
7682 type_from_tag (value_tag_from_contents_and_address
7683 (fixed_record_type,
7684 valaddr,
7685 address));
7686
7687 if (real_type != NULL)
7688 return to_fixed_record_type (real_type, valaddr, address, NULL);
7689 }
7690
7691 /* Check to see if there is a parallel ___XVZ variable.
7692 If there is, then it provides the actual size of our type. */
7693 else if (ada_type_name (fixed_record_type) != NULL)
7694 {
7695 char *name = ada_type_name (fixed_record_type);
7696 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7697 int xvz_found = 0;
7698 LONGEST size;
7699
7700 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7701 size = get_int_var_value (xvz_name, &xvz_found);
7702 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7703 {
7704 fixed_record_type = copy_type (fixed_record_type);
7705 TYPE_LENGTH (fixed_record_type) = size;
7706
7707 /* The FIXED_RECORD_TYPE may have be a stub. We have
7708 observed this when the debugging info is STABS, and
7709 apparently it is something that is hard to fix.
7710
7711 In practice, we don't need the actual type definition
7712 at all, because the presence of the XVZ variable allows us
7713 to assume that there must be a XVS type as well, which we
7714 should be able to use later, when we need the actual type
7715 definition.
7716
7717 In the meantime, pretend that the "fixed" type we are
7718 returning is NOT a stub, because this can cause trouble
7719 when using this type to create new types targeting it.
7720 Indeed, the associated creation routines often check
7721 whether the target type is a stub and will try to replace
7722 it, thus using a type with the wrong size. This, in turn,
7723 might cause the new type to have the wrong size too.
7724 Consider the case of an array, for instance, where the size
7725 of the array is computed from the number of elements in
7726 our array multiplied by the size of its element. */
7727 TYPE_STUB (fixed_record_type) = 0;
7728 }
7729 }
7730 return fixed_record_type;
7731 }
7732 case TYPE_CODE_ARRAY:
7733 return to_fixed_array_type (type, dval, 1);
7734 case TYPE_CODE_UNION:
7735 if (dval == NULL)
7736 return type;
7737 else
7738 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7739 }
7740 }
7741
7742 /* The same as ada_to_fixed_type_1, except that it preserves the type
7743 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7744
7745 The typedef layer needs be preserved in order to differentiate between
7746 arrays and array pointers when both types are implemented using the same
7747 fat pointer. In the array pointer case, the pointer is encoded as
7748 a typedef of the pointer type. For instance, considering:
7749
7750 type String_Access is access String;
7751 S1 : String_Access := null;
7752
7753 To the debugger, S1 is defined as a typedef of type String. But
7754 to the user, it is a pointer. So if the user tries to print S1,
7755 we should not dereference the array, but print the array address
7756 instead.
7757
7758 If we didn't preserve the typedef layer, we would lose the fact that
7759 the type is to be presented as a pointer (needs de-reference before
7760 being printed). And we would also use the source-level type name. */
7761
7762 struct type *
7763 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7764 CORE_ADDR address, struct value *dval, int check_tag)
7765
7766 {
7767 struct type *fixed_type =
7768 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7769
7770 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7771 then preserve the typedef layer.
7772
7773 Implementation note: We can only check the main-type portion of
7774 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7775 from TYPE now returns a type that has the same instance flags
7776 as TYPE. For instance, if TYPE is a "typedef const", and its
7777 target type is a "struct", then the typedef elimination will return
7778 a "const" version of the target type. See check_typedef for more
7779 details about how the typedef layer elimination is done.
7780
7781 brobecker/2010-11-19: It seems to me that the only case where it is
7782 useful to preserve the typedef layer is when dealing with fat pointers.
7783 Perhaps, we could add a check for that and preserve the typedef layer
7784 only in that situation. But this seems unecessary so far, probably
7785 because we call check_typedef/ada_check_typedef pretty much everywhere.
7786 */
7787 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7788 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7789 == TYPE_MAIN_TYPE (fixed_type)))
7790 return type;
7791
7792 return fixed_type;
7793 }
7794
7795 /* A standard (static-sized) type corresponding as well as possible to
7796 TYPE0, but based on no runtime data. */
7797
7798 static struct type *
7799 to_static_fixed_type (struct type *type0)
7800 {
7801 struct type *type;
7802
7803 if (type0 == NULL)
7804 return NULL;
7805
7806 if (TYPE_FIXED_INSTANCE (type0))
7807 return type0;
7808
7809 type0 = ada_check_typedef (type0);
7810
7811 switch (TYPE_CODE (type0))
7812 {
7813 default:
7814 return type0;
7815 case TYPE_CODE_STRUCT:
7816 type = dynamic_template_type (type0);
7817 if (type != NULL)
7818 return template_to_static_fixed_type (type);
7819 else
7820 return template_to_static_fixed_type (type0);
7821 case TYPE_CODE_UNION:
7822 type = ada_find_parallel_type (type0, "___XVU");
7823 if (type != NULL)
7824 return template_to_static_fixed_type (type);
7825 else
7826 return template_to_static_fixed_type (type0);
7827 }
7828 }
7829
7830 /* A static approximation of TYPE with all type wrappers removed. */
7831
7832 static struct type *
7833 static_unwrap_type (struct type *type)
7834 {
7835 if (ada_is_aligner_type (type))
7836 {
7837 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7838 if (ada_type_name (type1) == NULL)
7839 TYPE_NAME (type1) = ada_type_name (type);
7840
7841 return static_unwrap_type (type1);
7842 }
7843 else
7844 {
7845 struct type *raw_real_type = ada_get_base_type (type);
7846
7847 if (raw_real_type == type)
7848 return type;
7849 else
7850 return to_static_fixed_type (raw_real_type);
7851 }
7852 }
7853
7854 /* In some cases, incomplete and private types require
7855 cross-references that are not resolved as records (for example,
7856 type Foo;
7857 type FooP is access Foo;
7858 V: FooP;
7859 type Foo is array ...;
7860 ). In these cases, since there is no mechanism for producing
7861 cross-references to such types, we instead substitute for FooP a
7862 stub enumeration type that is nowhere resolved, and whose tag is
7863 the name of the actual type. Call these types "non-record stubs". */
7864
7865 /* A type equivalent to TYPE that is not a non-record stub, if one
7866 exists, otherwise TYPE. */
7867
7868 struct type *
7869 ada_check_typedef (struct type *type)
7870 {
7871 if (type == NULL)
7872 return NULL;
7873
7874 /* If our type is a typedef type of a fat pointer, then we're done.
7875 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7876 what allows us to distinguish between fat pointers that represent
7877 array types, and fat pointers that represent array access types
7878 (in both cases, the compiler implements them as fat pointers). */
7879 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7880 && is_thick_pntr (ada_typedef_target_type (type)))
7881 return type;
7882
7883 CHECK_TYPEDEF (type);
7884 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7885 || !TYPE_STUB (type)
7886 || TYPE_TAG_NAME (type) == NULL)
7887 return type;
7888 else
7889 {
7890 char *name = TYPE_TAG_NAME (type);
7891 struct type *type1 = ada_find_any_type (name);
7892
7893 if (type1 == NULL)
7894 return type;
7895
7896 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7897 stubs pointing to arrays, as we don't create symbols for array
7898 types, only for the typedef-to-array types). If that's the case,
7899 strip the typedef layer. */
7900 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7901 type1 = ada_check_typedef (type1);
7902
7903 return type1;
7904 }
7905 }
7906
7907 /* A value representing the data at VALADDR/ADDRESS as described by
7908 type TYPE0, but with a standard (static-sized) type that correctly
7909 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7910 type, then return VAL0 [this feature is simply to avoid redundant
7911 creation of struct values]. */
7912
7913 static struct value *
7914 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7915 struct value *val0)
7916 {
7917 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7918
7919 if (type == type0 && val0 != NULL)
7920 return val0;
7921 else
7922 return value_from_contents_and_address (type, 0, address);
7923 }
7924
7925 /* A value representing VAL, but with a standard (static-sized) type
7926 that correctly describes it. Does not necessarily create a new
7927 value. */
7928
7929 struct value *
7930 ada_to_fixed_value (struct value *val)
7931 {
7932 return ada_to_fixed_value_create (value_type (val),
7933 value_address (val),
7934 val);
7935 }
7936 \f
7937
7938 /* Attributes */
7939
7940 /* Table mapping attribute numbers to names.
7941 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7942
7943 static const char *attribute_names[] = {
7944 "<?>",
7945
7946 "first",
7947 "last",
7948 "length",
7949 "image",
7950 "max",
7951 "min",
7952 "modulus",
7953 "pos",
7954 "size",
7955 "tag",
7956 "val",
7957 0
7958 };
7959
7960 const char *
7961 ada_attribute_name (enum exp_opcode n)
7962 {
7963 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7964 return attribute_names[n - OP_ATR_FIRST + 1];
7965 else
7966 return attribute_names[0];
7967 }
7968
7969 /* Evaluate the 'POS attribute applied to ARG. */
7970
7971 static LONGEST
7972 pos_atr (struct value *arg)
7973 {
7974 struct value *val = coerce_ref (arg);
7975 struct type *type = value_type (val);
7976
7977 if (!discrete_type_p (type))
7978 error (_("'POS only defined on discrete types"));
7979
7980 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7981 {
7982 int i;
7983 LONGEST v = value_as_long (val);
7984
7985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7986 {
7987 if (v == TYPE_FIELD_BITPOS (type, i))
7988 return i;
7989 }
7990 error (_("enumeration value is invalid: can't find 'POS"));
7991 }
7992 else
7993 return value_as_long (val);
7994 }
7995
7996 static struct value *
7997 value_pos_atr (struct type *type, struct value *arg)
7998 {
7999 return value_from_longest (type, pos_atr (arg));
8000 }
8001
8002 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8003
8004 static struct value *
8005 value_val_atr (struct type *type, struct value *arg)
8006 {
8007 if (!discrete_type_p (type))
8008 error (_("'VAL only defined on discrete types"));
8009 if (!integer_type_p (value_type (arg)))
8010 error (_("'VAL requires integral argument"));
8011
8012 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8013 {
8014 long pos = value_as_long (arg);
8015
8016 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8017 error (_("argument to 'VAL out of range"));
8018 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8019 }
8020 else
8021 return value_from_longest (type, value_as_long (arg));
8022 }
8023 \f
8024
8025 /* Evaluation */
8026
8027 /* True if TYPE appears to be an Ada character type.
8028 [At the moment, this is true only for Character and Wide_Character;
8029 It is a heuristic test that could stand improvement]. */
8030
8031 int
8032 ada_is_character_type (struct type *type)
8033 {
8034 const char *name;
8035
8036 /* If the type code says it's a character, then assume it really is,
8037 and don't check any further. */
8038 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8039 return 1;
8040
8041 /* Otherwise, assume it's a character type iff it is a discrete type
8042 with a known character type name. */
8043 name = ada_type_name (type);
8044 return (name != NULL
8045 && (TYPE_CODE (type) == TYPE_CODE_INT
8046 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8047 && (strcmp (name, "character") == 0
8048 || strcmp (name, "wide_character") == 0
8049 || strcmp (name, "wide_wide_character") == 0
8050 || strcmp (name, "unsigned char") == 0));
8051 }
8052
8053 /* True if TYPE appears to be an Ada string type. */
8054
8055 int
8056 ada_is_string_type (struct type *type)
8057 {
8058 type = ada_check_typedef (type);
8059 if (type != NULL
8060 && TYPE_CODE (type) != TYPE_CODE_PTR
8061 && (ada_is_simple_array_type (type)
8062 || ada_is_array_descriptor_type (type))
8063 && ada_array_arity (type) == 1)
8064 {
8065 struct type *elttype = ada_array_element_type (type, 1);
8066
8067 return ada_is_character_type (elttype);
8068 }
8069 else
8070 return 0;
8071 }
8072
8073 /* The compiler sometimes provides a parallel XVS type for a given
8074 PAD type. Normally, it is safe to follow the PAD type directly,
8075 but older versions of the compiler have a bug that causes the offset
8076 of its "F" field to be wrong. Following that field in that case
8077 would lead to incorrect results, but this can be worked around
8078 by ignoring the PAD type and using the associated XVS type instead.
8079
8080 Set to True if the debugger should trust the contents of PAD types.
8081 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8082 static int trust_pad_over_xvs = 1;
8083
8084 /* True if TYPE is a struct type introduced by the compiler to force the
8085 alignment of a value. Such types have a single field with a
8086 distinctive name. */
8087
8088 int
8089 ada_is_aligner_type (struct type *type)
8090 {
8091 type = ada_check_typedef (type);
8092
8093 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8094 return 0;
8095
8096 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8097 && TYPE_NFIELDS (type) == 1
8098 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8099 }
8100
8101 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8102 the parallel type. */
8103
8104 struct type *
8105 ada_get_base_type (struct type *raw_type)
8106 {
8107 struct type *real_type_namer;
8108 struct type *raw_real_type;
8109
8110 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8111 return raw_type;
8112
8113 if (ada_is_aligner_type (raw_type))
8114 /* The encoding specifies that we should always use the aligner type.
8115 So, even if this aligner type has an associated XVS type, we should
8116 simply ignore it.
8117
8118 According to the compiler gurus, an XVS type parallel to an aligner
8119 type may exist because of a stabs limitation. In stabs, aligner
8120 types are empty because the field has a variable-sized type, and
8121 thus cannot actually be used as an aligner type. As a result,
8122 we need the associated parallel XVS type to decode the type.
8123 Since the policy in the compiler is to not change the internal
8124 representation based on the debugging info format, we sometimes
8125 end up having a redundant XVS type parallel to the aligner type. */
8126 return raw_type;
8127
8128 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8129 if (real_type_namer == NULL
8130 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8131 || TYPE_NFIELDS (real_type_namer) != 1)
8132 return raw_type;
8133
8134 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8135 {
8136 /* This is an older encoding form where the base type needs to be
8137 looked up by name. We prefer the newer enconding because it is
8138 more efficient. */
8139 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8140 if (raw_real_type == NULL)
8141 return raw_type;
8142 else
8143 return raw_real_type;
8144 }
8145
8146 /* The field in our XVS type is a reference to the base type. */
8147 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8148 }
8149
8150 /* The type of value designated by TYPE, with all aligners removed. */
8151
8152 struct type *
8153 ada_aligned_type (struct type *type)
8154 {
8155 if (ada_is_aligner_type (type))
8156 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8157 else
8158 return ada_get_base_type (type);
8159 }
8160
8161
8162 /* The address of the aligned value in an object at address VALADDR
8163 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8164
8165 const gdb_byte *
8166 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8167 {
8168 if (ada_is_aligner_type (type))
8169 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8170 valaddr +
8171 TYPE_FIELD_BITPOS (type,
8172 0) / TARGET_CHAR_BIT);
8173 else
8174 return valaddr;
8175 }
8176
8177
8178
8179 /* The printed representation of an enumeration literal with encoded
8180 name NAME. The value is good to the next call of ada_enum_name. */
8181 const char *
8182 ada_enum_name (const char *name)
8183 {
8184 static char *result;
8185 static size_t result_len = 0;
8186 char *tmp;
8187
8188 /* First, unqualify the enumeration name:
8189 1. Search for the last '.' character. If we find one, then skip
8190 all the preceeding characters, the unqualified name starts
8191 right after that dot.
8192 2. Otherwise, we may be debugging on a target where the compiler
8193 translates dots into "__". Search forward for double underscores,
8194 but stop searching when we hit an overloading suffix, which is
8195 of the form "__" followed by digits. */
8196
8197 tmp = strrchr (name, '.');
8198 if (tmp != NULL)
8199 name = tmp + 1;
8200 else
8201 {
8202 while ((tmp = strstr (name, "__")) != NULL)
8203 {
8204 if (isdigit (tmp[2]))
8205 break;
8206 else
8207 name = tmp + 2;
8208 }
8209 }
8210
8211 if (name[0] == 'Q')
8212 {
8213 int v;
8214
8215 if (name[1] == 'U' || name[1] == 'W')
8216 {
8217 if (sscanf (name + 2, "%x", &v) != 1)
8218 return name;
8219 }
8220 else
8221 return name;
8222
8223 GROW_VECT (result, result_len, 16);
8224 if (isascii (v) && isprint (v))
8225 xsnprintf (result, result_len, "'%c'", v);
8226 else if (name[1] == 'U')
8227 xsnprintf (result, result_len, "[\"%02x\"]", v);
8228 else
8229 xsnprintf (result, result_len, "[\"%04x\"]", v);
8230
8231 return result;
8232 }
8233 else
8234 {
8235 tmp = strstr (name, "__");
8236 if (tmp == NULL)
8237 tmp = strstr (name, "$");
8238 if (tmp != NULL)
8239 {
8240 GROW_VECT (result, result_len, tmp - name + 1);
8241 strncpy (result, name, tmp - name);
8242 result[tmp - name] = '\0';
8243 return result;
8244 }
8245
8246 return name;
8247 }
8248 }
8249
8250 /* Evaluate the subexpression of EXP starting at *POS as for
8251 evaluate_type, updating *POS to point just past the evaluated
8252 expression. */
8253
8254 static struct value *
8255 evaluate_subexp_type (struct expression *exp, int *pos)
8256 {
8257 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8258 }
8259
8260 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8261 value it wraps. */
8262
8263 static struct value *
8264 unwrap_value (struct value *val)
8265 {
8266 struct type *type = ada_check_typedef (value_type (val));
8267
8268 if (ada_is_aligner_type (type))
8269 {
8270 struct value *v = ada_value_struct_elt (val, "F", 0);
8271 struct type *val_type = ada_check_typedef (value_type (v));
8272
8273 if (ada_type_name (val_type) == NULL)
8274 TYPE_NAME (val_type) = ada_type_name (type);
8275
8276 return unwrap_value (v);
8277 }
8278 else
8279 {
8280 struct type *raw_real_type =
8281 ada_check_typedef (ada_get_base_type (type));
8282
8283 /* If there is no parallel XVS or XVE type, then the value is
8284 already unwrapped. Return it without further modification. */
8285 if ((type == raw_real_type)
8286 && ada_find_parallel_type (type, "___XVE") == NULL)
8287 return val;
8288
8289 return
8290 coerce_unspec_val_to_type
8291 (val, ada_to_fixed_type (raw_real_type, 0,
8292 value_address (val),
8293 NULL, 1));
8294 }
8295 }
8296
8297 static struct value *
8298 cast_to_fixed (struct type *type, struct value *arg)
8299 {
8300 LONGEST val;
8301
8302 if (type == value_type (arg))
8303 return arg;
8304 else if (ada_is_fixed_point_type (value_type (arg)))
8305 val = ada_float_to_fixed (type,
8306 ada_fixed_to_float (value_type (arg),
8307 value_as_long (arg)));
8308 else
8309 {
8310 DOUBLEST argd = value_as_double (arg);
8311
8312 val = ada_float_to_fixed (type, argd);
8313 }
8314
8315 return value_from_longest (type, val);
8316 }
8317
8318 static struct value *
8319 cast_from_fixed (struct type *type, struct value *arg)
8320 {
8321 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8322 value_as_long (arg));
8323
8324 return value_from_double (type, val);
8325 }
8326
8327 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8328 return the converted value. */
8329
8330 static struct value *
8331 coerce_for_assign (struct type *type, struct value *val)
8332 {
8333 struct type *type2 = value_type (val);
8334
8335 if (type == type2)
8336 return val;
8337
8338 type2 = ada_check_typedef (type2);
8339 type = ada_check_typedef (type);
8340
8341 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8342 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8343 {
8344 val = ada_value_ind (val);
8345 type2 = value_type (val);
8346 }
8347
8348 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8349 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8350 {
8351 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8352 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8353 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8354 error (_("Incompatible types in assignment"));
8355 deprecated_set_value_type (val, type);
8356 }
8357 return val;
8358 }
8359
8360 static struct value *
8361 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8362 {
8363 struct value *val;
8364 struct type *type1, *type2;
8365 LONGEST v, v1, v2;
8366
8367 arg1 = coerce_ref (arg1);
8368 arg2 = coerce_ref (arg2);
8369 type1 = base_type (ada_check_typedef (value_type (arg1)));
8370 type2 = base_type (ada_check_typedef (value_type (arg2)));
8371
8372 if (TYPE_CODE (type1) != TYPE_CODE_INT
8373 || TYPE_CODE (type2) != TYPE_CODE_INT)
8374 return value_binop (arg1, arg2, op);
8375
8376 switch (op)
8377 {
8378 case BINOP_MOD:
8379 case BINOP_DIV:
8380 case BINOP_REM:
8381 break;
8382 default:
8383 return value_binop (arg1, arg2, op);
8384 }
8385
8386 v2 = value_as_long (arg2);
8387 if (v2 == 0)
8388 error (_("second operand of %s must not be zero."), op_string (op));
8389
8390 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8391 return value_binop (arg1, arg2, op);
8392
8393 v1 = value_as_long (arg1);
8394 switch (op)
8395 {
8396 case BINOP_DIV:
8397 v = v1 / v2;
8398 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8399 v += v > 0 ? -1 : 1;
8400 break;
8401 case BINOP_REM:
8402 v = v1 % v2;
8403 if (v * v1 < 0)
8404 v -= v2;
8405 break;
8406 default:
8407 /* Should not reach this point. */
8408 v = 0;
8409 }
8410
8411 val = allocate_value (type1);
8412 store_unsigned_integer (value_contents_raw (val),
8413 TYPE_LENGTH (value_type (val)),
8414 gdbarch_byte_order (get_type_arch (type1)), v);
8415 return val;
8416 }
8417
8418 static int
8419 ada_value_equal (struct value *arg1, struct value *arg2)
8420 {
8421 if (ada_is_direct_array_type (value_type (arg1))
8422 || ada_is_direct_array_type (value_type (arg2)))
8423 {
8424 /* Automatically dereference any array reference before
8425 we attempt to perform the comparison. */
8426 arg1 = ada_coerce_ref (arg1);
8427 arg2 = ada_coerce_ref (arg2);
8428
8429 arg1 = ada_coerce_to_simple_array (arg1);
8430 arg2 = ada_coerce_to_simple_array (arg2);
8431 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8432 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8433 error (_("Attempt to compare array with non-array"));
8434 /* FIXME: The following works only for types whose
8435 representations use all bits (no padding or undefined bits)
8436 and do not have user-defined equality. */
8437 return
8438 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8439 && memcmp (value_contents (arg1), value_contents (arg2),
8440 TYPE_LENGTH (value_type (arg1))) == 0;
8441 }
8442 return value_equal (arg1, arg2);
8443 }
8444
8445 /* Total number of component associations in the aggregate starting at
8446 index PC in EXP. Assumes that index PC is the start of an
8447 OP_AGGREGATE. */
8448
8449 static int
8450 num_component_specs (struct expression *exp, int pc)
8451 {
8452 int n, m, i;
8453
8454 m = exp->elts[pc + 1].longconst;
8455 pc += 3;
8456 n = 0;
8457 for (i = 0; i < m; i += 1)
8458 {
8459 switch (exp->elts[pc].opcode)
8460 {
8461 default:
8462 n += 1;
8463 break;
8464 case OP_CHOICES:
8465 n += exp->elts[pc + 1].longconst;
8466 break;
8467 }
8468 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8469 }
8470 return n;
8471 }
8472
8473 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8474 component of LHS (a simple array or a record), updating *POS past
8475 the expression, assuming that LHS is contained in CONTAINER. Does
8476 not modify the inferior's memory, nor does it modify LHS (unless
8477 LHS == CONTAINER). */
8478
8479 static void
8480 assign_component (struct value *container, struct value *lhs, LONGEST index,
8481 struct expression *exp, int *pos)
8482 {
8483 struct value *mark = value_mark ();
8484 struct value *elt;
8485
8486 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8487 {
8488 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8489 struct value *index_val = value_from_longest (index_type, index);
8490
8491 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8492 }
8493 else
8494 {
8495 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8496 elt = ada_to_fixed_value (unwrap_value (elt));
8497 }
8498
8499 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8500 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8501 else
8502 value_assign_to_component (container, elt,
8503 ada_evaluate_subexp (NULL, exp, pos,
8504 EVAL_NORMAL));
8505
8506 value_free_to_mark (mark);
8507 }
8508
8509 /* Assuming that LHS represents an lvalue having a record or array
8510 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8511 of that aggregate's value to LHS, advancing *POS past the
8512 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8513 lvalue containing LHS (possibly LHS itself). Does not modify
8514 the inferior's memory, nor does it modify the contents of
8515 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8516
8517 static struct value *
8518 assign_aggregate (struct value *container,
8519 struct value *lhs, struct expression *exp,
8520 int *pos, enum noside noside)
8521 {
8522 struct type *lhs_type;
8523 int n = exp->elts[*pos+1].longconst;
8524 LONGEST low_index, high_index;
8525 int num_specs;
8526 LONGEST *indices;
8527 int max_indices, num_indices;
8528 int is_array_aggregate;
8529 int i;
8530
8531 *pos += 3;
8532 if (noside != EVAL_NORMAL)
8533 {
8534 int i;
8535
8536 for (i = 0; i < n; i += 1)
8537 ada_evaluate_subexp (NULL, exp, pos, noside);
8538 return container;
8539 }
8540
8541 container = ada_coerce_ref (container);
8542 if (ada_is_direct_array_type (value_type (container)))
8543 container = ada_coerce_to_simple_array (container);
8544 lhs = ada_coerce_ref (lhs);
8545 if (!deprecated_value_modifiable (lhs))
8546 error (_("Left operand of assignment is not a modifiable lvalue."));
8547
8548 lhs_type = value_type (lhs);
8549 if (ada_is_direct_array_type (lhs_type))
8550 {
8551 lhs = ada_coerce_to_simple_array (lhs);
8552 lhs_type = value_type (lhs);
8553 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8554 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8555 is_array_aggregate = 1;
8556 }
8557 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8558 {
8559 low_index = 0;
8560 high_index = num_visible_fields (lhs_type) - 1;
8561 is_array_aggregate = 0;
8562 }
8563 else
8564 error (_("Left-hand side must be array or record."));
8565
8566 num_specs = num_component_specs (exp, *pos - 3);
8567 max_indices = 4 * num_specs + 4;
8568 indices = alloca (max_indices * sizeof (indices[0]));
8569 indices[0] = indices[1] = low_index - 1;
8570 indices[2] = indices[3] = high_index + 1;
8571 num_indices = 4;
8572
8573 for (i = 0; i < n; i += 1)
8574 {
8575 switch (exp->elts[*pos].opcode)
8576 {
8577 case OP_CHOICES:
8578 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8579 &num_indices, max_indices,
8580 low_index, high_index);
8581 break;
8582 case OP_POSITIONAL:
8583 aggregate_assign_positional (container, lhs, exp, pos, indices,
8584 &num_indices, max_indices,
8585 low_index, high_index);
8586 break;
8587 case OP_OTHERS:
8588 if (i != n-1)
8589 error (_("Misplaced 'others' clause"));
8590 aggregate_assign_others (container, lhs, exp, pos, indices,
8591 num_indices, low_index, high_index);
8592 break;
8593 default:
8594 error (_("Internal error: bad aggregate clause"));
8595 }
8596 }
8597
8598 return container;
8599 }
8600
8601 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8602 construct at *POS, updating *POS past the construct, given that
8603 the positions are relative to lower bound LOW, where HIGH is the
8604 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8605 updating *NUM_INDICES as needed. CONTAINER is as for
8606 assign_aggregate. */
8607 static void
8608 aggregate_assign_positional (struct value *container,
8609 struct value *lhs, struct expression *exp,
8610 int *pos, LONGEST *indices, int *num_indices,
8611 int max_indices, LONGEST low, LONGEST high)
8612 {
8613 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8614
8615 if (ind - 1 == high)
8616 warning (_("Extra components in aggregate ignored."));
8617 if (ind <= high)
8618 {
8619 add_component_interval (ind, ind, indices, num_indices, max_indices);
8620 *pos += 3;
8621 assign_component (container, lhs, ind, exp, pos);
8622 }
8623 else
8624 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8625 }
8626
8627 /* Assign into the components of LHS indexed by the OP_CHOICES
8628 construct at *POS, updating *POS past the construct, given that
8629 the allowable indices are LOW..HIGH. Record the indices assigned
8630 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8631 needed. CONTAINER is as for assign_aggregate. */
8632 static void
8633 aggregate_assign_from_choices (struct value *container,
8634 struct value *lhs, struct expression *exp,
8635 int *pos, LONGEST *indices, int *num_indices,
8636 int max_indices, LONGEST low, LONGEST high)
8637 {
8638 int j;
8639 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8640 int choice_pos, expr_pc;
8641 int is_array = ada_is_direct_array_type (value_type (lhs));
8642
8643 choice_pos = *pos += 3;
8644
8645 for (j = 0; j < n_choices; j += 1)
8646 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8647 expr_pc = *pos;
8648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8649
8650 for (j = 0; j < n_choices; j += 1)
8651 {
8652 LONGEST lower, upper;
8653 enum exp_opcode op = exp->elts[choice_pos].opcode;
8654
8655 if (op == OP_DISCRETE_RANGE)
8656 {
8657 choice_pos += 1;
8658 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8659 EVAL_NORMAL));
8660 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8661 EVAL_NORMAL));
8662 }
8663 else if (is_array)
8664 {
8665 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8666 EVAL_NORMAL));
8667 upper = lower;
8668 }
8669 else
8670 {
8671 int ind;
8672 char *name;
8673
8674 switch (op)
8675 {
8676 case OP_NAME:
8677 name = &exp->elts[choice_pos + 2].string;
8678 break;
8679 case OP_VAR_VALUE:
8680 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8681 break;
8682 default:
8683 error (_("Invalid record component association."));
8684 }
8685 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8686 ind = 0;
8687 if (! find_struct_field (name, value_type (lhs), 0,
8688 NULL, NULL, NULL, NULL, &ind))
8689 error (_("Unknown component name: %s."), name);
8690 lower = upper = ind;
8691 }
8692
8693 if (lower <= upper && (lower < low || upper > high))
8694 error (_("Index in component association out of bounds."));
8695
8696 add_component_interval (lower, upper, indices, num_indices,
8697 max_indices);
8698 while (lower <= upper)
8699 {
8700 int pos1;
8701
8702 pos1 = expr_pc;
8703 assign_component (container, lhs, lower, exp, &pos1);
8704 lower += 1;
8705 }
8706 }
8707 }
8708
8709 /* Assign the value of the expression in the OP_OTHERS construct in
8710 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8711 have not been previously assigned. The index intervals already assigned
8712 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8713 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8714 static void
8715 aggregate_assign_others (struct value *container,
8716 struct value *lhs, struct expression *exp,
8717 int *pos, LONGEST *indices, int num_indices,
8718 LONGEST low, LONGEST high)
8719 {
8720 int i;
8721 int expr_pc = *pos + 1;
8722
8723 for (i = 0; i < num_indices - 2; i += 2)
8724 {
8725 LONGEST ind;
8726
8727 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8728 {
8729 int localpos;
8730
8731 localpos = expr_pc;
8732 assign_component (container, lhs, ind, exp, &localpos);
8733 }
8734 }
8735 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8736 }
8737
8738 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8739 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8740 modifying *SIZE as needed. It is an error if *SIZE exceeds
8741 MAX_SIZE. The resulting intervals do not overlap. */
8742 static void
8743 add_component_interval (LONGEST low, LONGEST high,
8744 LONGEST* indices, int *size, int max_size)
8745 {
8746 int i, j;
8747
8748 for (i = 0; i < *size; i += 2) {
8749 if (high >= indices[i] && low <= indices[i + 1])
8750 {
8751 int kh;
8752
8753 for (kh = i + 2; kh < *size; kh += 2)
8754 if (high < indices[kh])
8755 break;
8756 if (low < indices[i])
8757 indices[i] = low;
8758 indices[i + 1] = indices[kh - 1];
8759 if (high > indices[i + 1])
8760 indices[i + 1] = high;
8761 memcpy (indices + i + 2, indices + kh, *size - kh);
8762 *size -= kh - i - 2;
8763 return;
8764 }
8765 else if (high < indices[i])
8766 break;
8767 }
8768
8769 if (*size == max_size)
8770 error (_("Internal error: miscounted aggregate components."));
8771 *size += 2;
8772 for (j = *size-1; j >= i+2; j -= 1)
8773 indices[j] = indices[j - 2];
8774 indices[i] = low;
8775 indices[i + 1] = high;
8776 }
8777
8778 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8779 is different. */
8780
8781 static struct value *
8782 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8783 {
8784 if (type == ada_check_typedef (value_type (arg2)))
8785 return arg2;
8786
8787 if (ada_is_fixed_point_type (type))
8788 return (cast_to_fixed (type, arg2));
8789
8790 if (ada_is_fixed_point_type (value_type (arg2)))
8791 return cast_from_fixed (type, arg2);
8792
8793 return value_cast (type, arg2);
8794 }
8795
8796 /* Evaluating Ada expressions, and printing their result.
8797 ------------------------------------------------------
8798
8799 1. Introduction:
8800 ----------------
8801
8802 We usually evaluate an Ada expression in order to print its value.
8803 We also evaluate an expression in order to print its type, which
8804 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8805 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8806 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8807 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8808 similar.
8809
8810 Evaluating expressions is a little more complicated for Ada entities
8811 than it is for entities in languages such as C. The main reason for
8812 this is that Ada provides types whose definition might be dynamic.
8813 One example of such types is variant records. Or another example
8814 would be an array whose bounds can only be known at run time.
8815
8816 The following description is a general guide as to what should be
8817 done (and what should NOT be done) in order to evaluate an expression
8818 involving such types, and when. This does not cover how the semantic
8819 information is encoded by GNAT as this is covered separatly. For the
8820 document used as the reference for the GNAT encoding, see exp_dbug.ads
8821 in the GNAT sources.
8822
8823 Ideally, we should embed each part of this description next to its
8824 associated code. Unfortunately, the amount of code is so vast right
8825 now that it's hard to see whether the code handling a particular
8826 situation might be duplicated or not. One day, when the code is
8827 cleaned up, this guide might become redundant with the comments
8828 inserted in the code, and we might want to remove it.
8829
8830 2. ``Fixing'' an Entity, the Simple Case:
8831 -----------------------------------------
8832
8833 When evaluating Ada expressions, the tricky issue is that they may
8834 reference entities whose type contents and size are not statically
8835 known. Consider for instance a variant record:
8836
8837 type Rec (Empty : Boolean := True) is record
8838 case Empty is
8839 when True => null;
8840 when False => Value : Integer;
8841 end case;
8842 end record;
8843 Yes : Rec := (Empty => False, Value => 1);
8844 No : Rec := (empty => True);
8845
8846 The size and contents of that record depends on the value of the
8847 descriminant (Rec.Empty). At this point, neither the debugging
8848 information nor the associated type structure in GDB are able to
8849 express such dynamic types. So what the debugger does is to create
8850 "fixed" versions of the type that applies to the specific object.
8851 We also informally refer to this opperation as "fixing" an object,
8852 which means creating its associated fixed type.
8853
8854 Example: when printing the value of variable "Yes" above, its fixed
8855 type would look like this:
8856
8857 type Rec is record
8858 Empty : Boolean;
8859 Value : Integer;
8860 end record;
8861
8862 On the other hand, if we printed the value of "No", its fixed type
8863 would become:
8864
8865 type Rec is record
8866 Empty : Boolean;
8867 end record;
8868
8869 Things become a little more complicated when trying to fix an entity
8870 with a dynamic type that directly contains another dynamic type,
8871 such as an array of variant records, for instance. There are
8872 two possible cases: Arrays, and records.
8873
8874 3. ``Fixing'' Arrays:
8875 ---------------------
8876
8877 The type structure in GDB describes an array in terms of its bounds,
8878 and the type of its elements. By design, all elements in the array
8879 have the same type and we cannot represent an array of variant elements
8880 using the current type structure in GDB. When fixing an array,
8881 we cannot fix the array element, as we would potentially need one
8882 fixed type per element of the array. As a result, the best we can do
8883 when fixing an array is to produce an array whose bounds and size
8884 are correct (allowing us to read it from memory), but without having
8885 touched its element type. Fixing each element will be done later,
8886 when (if) necessary.
8887
8888 Arrays are a little simpler to handle than records, because the same
8889 amount of memory is allocated for each element of the array, even if
8890 the amount of space actually used by each element differs from element
8891 to element. Consider for instance the following array of type Rec:
8892
8893 type Rec_Array is array (1 .. 2) of Rec;
8894
8895 The actual amount of memory occupied by each element might be different
8896 from element to element, depending on the value of their discriminant.
8897 But the amount of space reserved for each element in the array remains
8898 fixed regardless. So we simply need to compute that size using
8899 the debugging information available, from which we can then determine
8900 the array size (we multiply the number of elements of the array by
8901 the size of each element).
8902
8903 The simplest case is when we have an array of a constrained element
8904 type. For instance, consider the following type declarations:
8905
8906 type Bounded_String (Max_Size : Integer) is
8907 Length : Integer;
8908 Buffer : String (1 .. Max_Size);
8909 end record;
8910 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8911
8912 In this case, the compiler describes the array as an array of
8913 variable-size elements (identified by its XVS suffix) for which
8914 the size can be read in the parallel XVZ variable.
8915
8916 In the case of an array of an unconstrained element type, the compiler
8917 wraps the array element inside a private PAD type. This type should not
8918 be shown to the user, and must be "unwrap"'ed before printing. Note
8919 that we also use the adjective "aligner" in our code to designate
8920 these wrapper types.
8921
8922 In some cases, the size allocated for each element is statically
8923 known. In that case, the PAD type already has the correct size,
8924 and the array element should remain unfixed.
8925
8926 But there are cases when this size is not statically known.
8927 For instance, assuming that "Five" is an integer variable:
8928
8929 type Dynamic is array (1 .. Five) of Integer;
8930 type Wrapper (Has_Length : Boolean := False) is record
8931 Data : Dynamic;
8932 case Has_Length is
8933 when True => Length : Integer;
8934 when False => null;
8935 end case;
8936 end record;
8937 type Wrapper_Array is array (1 .. 2) of Wrapper;
8938
8939 Hello : Wrapper_Array := (others => (Has_Length => True,
8940 Data => (others => 17),
8941 Length => 1));
8942
8943
8944 The debugging info would describe variable Hello as being an
8945 array of a PAD type. The size of that PAD type is not statically
8946 known, but can be determined using a parallel XVZ variable.
8947 In that case, a copy of the PAD type with the correct size should
8948 be used for the fixed array.
8949
8950 3. ``Fixing'' record type objects:
8951 ----------------------------------
8952
8953 Things are slightly different from arrays in the case of dynamic
8954 record types. In this case, in order to compute the associated
8955 fixed type, we need to determine the size and offset of each of
8956 its components. This, in turn, requires us to compute the fixed
8957 type of each of these components.
8958
8959 Consider for instance the example:
8960
8961 type Bounded_String (Max_Size : Natural) is record
8962 Str : String (1 .. Max_Size);
8963 Length : Natural;
8964 end record;
8965 My_String : Bounded_String (Max_Size => 10);
8966
8967 In that case, the position of field "Length" depends on the size
8968 of field Str, which itself depends on the value of the Max_Size
8969 discriminant. In order to fix the type of variable My_String,
8970 we need to fix the type of field Str. Therefore, fixing a variant
8971 record requires us to fix each of its components.
8972
8973 However, if a component does not have a dynamic size, the component
8974 should not be fixed. In particular, fields that use a PAD type
8975 should not fixed. Here is an example where this might happen
8976 (assuming type Rec above):
8977
8978 type Container (Big : Boolean) is record
8979 First : Rec;
8980 After : Integer;
8981 case Big is
8982 when True => Another : Integer;
8983 when False => null;
8984 end case;
8985 end record;
8986 My_Container : Container := (Big => False,
8987 First => (Empty => True),
8988 After => 42);
8989
8990 In that example, the compiler creates a PAD type for component First,
8991 whose size is constant, and then positions the component After just
8992 right after it. The offset of component After is therefore constant
8993 in this case.
8994
8995 The debugger computes the position of each field based on an algorithm
8996 that uses, among other things, the actual position and size of the field
8997 preceding it. Let's now imagine that the user is trying to print
8998 the value of My_Container. If the type fixing was recursive, we would
8999 end up computing the offset of field After based on the size of the
9000 fixed version of field First. And since in our example First has
9001 only one actual field, the size of the fixed type is actually smaller
9002 than the amount of space allocated to that field, and thus we would
9003 compute the wrong offset of field After.
9004
9005 To make things more complicated, we need to watch out for dynamic
9006 components of variant records (identified by the ___XVL suffix in
9007 the component name). Even if the target type is a PAD type, the size
9008 of that type might not be statically known. So the PAD type needs
9009 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9010 we might end up with the wrong size for our component. This can be
9011 observed with the following type declarations:
9012
9013 type Octal is new Integer range 0 .. 7;
9014 type Octal_Array is array (Positive range <>) of Octal;
9015 pragma Pack (Octal_Array);
9016
9017 type Octal_Buffer (Size : Positive) is record
9018 Buffer : Octal_Array (1 .. Size);
9019 Length : Integer;
9020 end record;
9021
9022 In that case, Buffer is a PAD type whose size is unset and needs
9023 to be computed by fixing the unwrapped type.
9024
9025 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9026 ----------------------------------------------------------
9027
9028 Lastly, when should the sub-elements of an entity that remained unfixed
9029 thus far, be actually fixed?
9030
9031 The answer is: Only when referencing that element. For instance
9032 when selecting one component of a record, this specific component
9033 should be fixed at that point in time. Or when printing the value
9034 of a record, each component should be fixed before its value gets
9035 printed. Similarly for arrays, the element of the array should be
9036 fixed when printing each element of the array, or when extracting
9037 one element out of that array. On the other hand, fixing should
9038 not be performed on the elements when taking a slice of an array!
9039
9040 Note that one of the side-effects of miscomputing the offset and
9041 size of each field is that we end up also miscomputing the size
9042 of the containing type. This can have adverse results when computing
9043 the value of an entity. GDB fetches the value of an entity based
9044 on the size of its type, and thus a wrong size causes GDB to fetch
9045 the wrong amount of memory. In the case where the computed size is
9046 too small, GDB fetches too little data to print the value of our
9047 entiry. Results in this case as unpredicatble, as we usually read
9048 past the buffer containing the data =:-o. */
9049
9050 /* Implement the evaluate_exp routine in the exp_descriptor structure
9051 for the Ada language. */
9052
9053 static struct value *
9054 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9055 int *pos, enum noside noside)
9056 {
9057 enum exp_opcode op;
9058 int tem;
9059 int pc;
9060 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9061 struct type *type;
9062 int nargs, oplen;
9063 struct value **argvec;
9064
9065 pc = *pos;
9066 *pos += 1;
9067 op = exp->elts[pc].opcode;
9068
9069 switch (op)
9070 {
9071 default:
9072 *pos -= 1;
9073 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9074 arg1 = unwrap_value (arg1);
9075
9076 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9077 then we need to perform the conversion manually, because
9078 evaluate_subexp_standard doesn't do it. This conversion is
9079 necessary in Ada because the different kinds of float/fixed
9080 types in Ada have different representations.
9081
9082 Similarly, we need to perform the conversion from OP_LONG
9083 ourselves. */
9084 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9085 arg1 = ada_value_cast (expect_type, arg1, noside);
9086
9087 return arg1;
9088
9089 case OP_STRING:
9090 {
9091 struct value *result;
9092
9093 *pos -= 1;
9094 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9095 /* The result type will have code OP_STRING, bashed there from
9096 OP_ARRAY. Bash it back. */
9097 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9098 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9099 return result;
9100 }
9101
9102 case UNOP_CAST:
9103 (*pos) += 2;
9104 type = exp->elts[pc + 1].type;
9105 arg1 = evaluate_subexp (type, exp, pos, noside);
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
9108 arg1 = ada_value_cast (type, arg1, noside);
9109 return arg1;
9110
9111 case UNOP_QUAL:
9112 (*pos) += 2;
9113 type = exp->elts[pc + 1].type;
9114 return ada_evaluate_subexp (type, exp, pos, noside);
9115
9116 case BINOP_ASSIGN:
9117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9118 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9119 {
9120 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9121 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9122 return arg1;
9123 return ada_value_assign (arg1, arg1);
9124 }
9125 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9126 except if the lhs of our assignment is a convenience variable.
9127 In the case of assigning to a convenience variable, the lhs
9128 should be exactly the result of the evaluation of the rhs. */
9129 type = value_type (arg1);
9130 if (VALUE_LVAL (arg1) == lval_internalvar)
9131 type = NULL;
9132 arg2 = evaluate_subexp (type, exp, pos, noside);
9133 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9134 return arg1;
9135 if (ada_is_fixed_point_type (value_type (arg1)))
9136 arg2 = cast_to_fixed (value_type (arg1), arg2);
9137 else if (ada_is_fixed_point_type (value_type (arg2)))
9138 error
9139 (_("Fixed-point values must be assigned to fixed-point variables"));
9140 else
9141 arg2 = coerce_for_assign (value_type (arg1), arg2);
9142 return ada_value_assign (arg1, arg2);
9143
9144 case BINOP_ADD:
9145 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9146 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9147 if (noside == EVAL_SKIP)
9148 goto nosideret;
9149 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9150 return (value_from_longest
9151 (value_type (arg1),
9152 value_as_long (arg1) + value_as_long (arg2)));
9153 if ((ada_is_fixed_point_type (value_type (arg1))
9154 || ada_is_fixed_point_type (value_type (arg2)))
9155 && value_type (arg1) != value_type (arg2))
9156 error (_("Operands of fixed-point addition must have the same type"));
9157 /* Do the addition, and cast the result to the type of the first
9158 argument. We cannot cast the result to a reference type, so if
9159 ARG1 is a reference type, find its underlying type. */
9160 type = value_type (arg1);
9161 while (TYPE_CODE (type) == TYPE_CODE_REF)
9162 type = TYPE_TARGET_TYPE (type);
9163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9164 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9165
9166 case BINOP_SUB:
9167 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9168 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9169 if (noside == EVAL_SKIP)
9170 goto nosideret;
9171 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9172 return (value_from_longest
9173 (value_type (arg1),
9174 value_as_long (arg1) - value_as_long (arg2)));
9175 if ((ada_is_fixed_point_type (value_type (arg1))
9176 || ada_is_fixed_point_type (value_type (arg2)))
9177 && value_type (arg1) != value_type (arg2))
9178 error (_("Operands of fixed-point subtraction "
9179 "must have the same type"));
9180 /* Do the substraction, and cast the result to the type of the first
9181 argument. We cannot cast the result to a reference type, so if
9182 ARG1 is a reference type, find its underlying type. */
9183 type = value_type (arg1);
9184 while (TYPE_CODE (type) == TYPE_CODE_REF)
9185 type = TYPE_TARGET_TYPE (type);
9186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9187 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9188
9189 case BINOP_MUL:
9190 case BINOP_DIV:
9191 case BINOP_REM:
9192 case BINOP_MOD:
9193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9195 if (noside == EVAL_SKIP)
9196 goto nosideret;
9197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9198 {
9199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9200 return value_zero (value_type (arg1), not_lval);
9201 }
9202 else
9203 {
9204 type = builtin_type (exp->gdbarch)->builtin_double;
9205 if (ada_is_fixed_point_type (value_type (arg1)))
9206 arg1 = cast_from_fixed (type, arg1);
9207 if (ada_is_fixed_point_type (value_type (arg2)))
9208 arg2 = cast_from_fixed (type, arg2);
9209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9210 return ada_value_binop (arg1, arg2, op);
9211 }
9212
9213 case BINOP_EQUAL:
9214 case BINOP_NOTEQUAL:
9215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9216 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9220 tem = 0;
9221 else
9222 {
9223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9224 tem = ada_value_equal (arg1, arg2);
9225 }
9226 if (op == BINOP_NOTEQUAL)
9227 tem = !tem;
9228 type = language_bool_type (exp->language_defn, exp->gdbarch);
9229 return value_from_longest (type, (LONGEST) tem);
9230
9231 case UNOP_NEG:
9232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9233 if (noside == EVAL_SKIP)
9234 goto nosideret;
9235 else if (ada_is_fixed_point_type (value_type (arg1)))
9236 return value_cast (value_type (arg1), value_neg (arg1));
9237 else
9238 {
9239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9240 return value_neg (arg1);
9241 }
9242
9243 case BINOP_LOGICAL_AND:
9244 case BINOP_LOGICAL_OR:
9245 case UNOP_LOGICAL_NOT:
9246 {
9247 struct value *val;
9248
9249 *pos -= 1;
9250 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9251 type = language_bool_type (exp->language_defn, exp->gdbarch);
9252 return value_cast (type, val);
9253 }
9254
9255 case BINOP_BITWISE_AND:
9256 case BINOP_BITWISE_IOR:
9257 case BINOP_BITWISE_XOR:
9258 {
9259 struct value *val;
9260
9261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9262 *pos = pc;
9263 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9264
9265 return value_cast (value_type (arg1), val);
9266 }
9267
9268 case OP_VAR_VALUE:
9269 *pos -= 1;
9270
9271 if (noside == EVAL_SKIP)
9272 {
9273 *pos += 4;
9274 goto nosideret;
9275 }
9276 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9277 /* Only encountered when an unresolved symbol occurs in a
9278 context other than a function call, in which case, it is
9279 invalid. */
9280 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9282 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9283 {
9284 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9285 /* Check to see if this is a tagged type. We also need to handle
9286 the case where the type is a reference to a tagged type, but
9287 we have to be careful to exclude pointers to tagged types.
9288 The latter should be shown as usual (as a pointer), whereas
9289 a reference should mostly be transparent to the user. */
9290 if (ada_is_tagged_type (type, 0)
9291 || (TYPE_CODE(type) == TYPE_CODE_REF
9292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9293 {
9294 /* Tagged types are a little special in the fact that the real
9295 type is dynamic and can only be determined by inspecting the
9296 object's tag. This means that we need to get the object's
9297 value first (EVAL_NORMAL) and then extract the actual object
9298 type from its tag.
9299
9300 Note that we cannot skip the final step where we extract
9301 the object type from its tag, because the EVAL_NORMAL phase
9302 results in dynamic components being resolved into fixed ones.
9303 This can cause problems when trying to print the type
9304 description of tagged types whose parent has a dynamic size:
9305 We use the type name of the "_parent" component in order
9306 to print the name of the ancestor type in the type description.
9307 If that component had a dynamic size, the resolution into
9308 a fixed type would result in the loss of that type name,
9309 thus preventing us from printing the name of the ancestor
9310 type in the type description. */
9311 struct type *actual_type;
9312
9313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9314 actual_type = type_from_tag (ada_value_tag (arg1));
9315 if (actual_type == NULL)
9316 /* If, for some reason, we were unable to determine
9317 the actual type from the tag, then use the static
9318 approximation that we just computed as a fallback.
9319 This can happen if the debugging information is
9320 incomplete, for instance. */
9321 actual_type = type;
9322
9323 return value_zero (actual_type, not_lval);
9324 }
9325
9326 *pos += 4;
9327 return value_zero
9328 (to_static_fixed_type
9329 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9330 not_lval);
9331 }
9332 else
9333 {
9334 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9335 arg1 = unwrap_value (arg1);
9336 return ada_to_fixed_value (arg1);
9337 }
9338
9339 case OP_FUNCALL:
9340 (*pos) += 2;
9341
9342 /* Allocate arg vector, including space for the function to be
9343 called in argvec[0] and a terminating NULL. */
9344 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9345 argvec =
9346 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9347
9348 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9349 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9350 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9351 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9352 else
9353 {
9354 for (tem = 0; tem <= nargs; tem += 1)
9355 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 argvec[tem] = 0;
9357
9358 if (noside == EVAL_SKIP)
9359 goto nosideret;
9360 }
9361
9362 if (ada_is_constrained_packed_array_type
9363 (desc_base_type (value_type (argvec[0]))))
9364 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9365 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9366 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9367 /* This is a packed array that has already been fixed, and
9368 therefore already coerced to a simple array. Nothing further
9369 to do. */
9370 ;
9371 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9372 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9373 && VALUE_LVAL (argvec[0]) == lval_memory))
9374 argvec[0] = value_addr (argvec[0]);
9375
9376 type = ada_check_typedef (value_type (argvec[0]));
9377
9378 /* Ada allows us to implicitly dereference arrays when subscripting
9379 them. So, if this is an typedef (encoding use for array access
9380 types encoded as fat pointers), strip it now. */
9381 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9382 type = ada_typedef_target_type (type);
9383
9384 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9385 {
9386 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9387 {
9388 case TYPE_CODE_FUNC:
9389 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9390 break;
9391 case TYPE_CODE_ARRAY:
9392 break;
9393 case TYPE_CODE_STRUCT:
9394 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9395 argvec[0] = ada_value_ind (argvec[0]);
9396 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9397 break;
9398 default:
9399 error (_("cannot subscript or call something of type `%s'"),
9400 ada_type_name (value_type (argvec[0])));
9401 break;
9402 }
9403 }
9404
9405 switch (TYPE_CODE (type))
9406 {
9407 case TYPE_CODE_FUNC:
9408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9409 return allocate_value (TYPE_TARGET_TYPE (type));
9410 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9411 case TYPE_CODE_STRUCT:
9412 {
9413 int arity;
9414
9415 arity = ada_array_arity (type);
9416 type = ada_array_element_type (type, nargs);
9417 if (type == NULL)
9418 error (_("cannot subscript or call a record"));
9419 if (arity != nargs)
9420 error (_("wrong number of subscripts; expecting %d"), arity);
9421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9422 return value_zero (ada_aligned_type (type), lval_memory);
9423 return
9424 unwrap_value (ada_value_subscript
9425 (argvec[0], nargs, argvec + 1));
9426 }
9427 case TYPE_CODE_ARRAY:
9428 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9429 {
9430 type = ada_array_element_type (type, nargs);
9431 if (type == NULL)
9432 error (_("element type of array unknown"));
9433 else
9434 return value_zero (ada_aligned_type (type), lval_memory);
9435 }
9436 return
9437 unwrap_value (ada_value_subscript
9438 (ada_coerce_to_simple_array (argvec[0]),
9439 nargs, argvec + 1));
9440 case TYPE_CODE_PTR: /* Pointer to array */
9441 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443 {
9444 type = ada_array_element_type (type, nargs);
9445 if (type == NULL)
9446 error (_("element type of array unknown"));
9447 else
9448 return value_zero (ada_aligned_type (type), lval_memory);
9449 }
9450 return
9451 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9452 nargs, argvec + 1));
9453
9454 default:
9455 error (_("Attempt to index or call something other than an "
9456 "array or function"));
9457 }
9458
9459 case TERNOP_SLICE:
9460 {
9461 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9462 struct value *low_bound_val =
9463 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9464 struct value *high_bound_val =
9465 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9466 LONGEST low_bound;
9467 LONGEST high_bound;
9468
9469 low_bound_val = coerce_ref (low_bound_val);
9470 high_bound_val = coerce_ref (high_bound_val);
9471 low_bound = pos_atr (low_bound_val);
9472 high_bound = pos_atr (high_bound_val);
9473
9474 if (noside == EVAL_SKIP)
9475 goto nosideret;
9476
9477 /* If this is a reference to an aligner type, then remove all
9478 the aligners. */
9479 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9480 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9481 TYPE_TARGET_TYPE (value_type (array)) =
9482 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9483
9484 if (ada_is_constrained_packed_array_type (value_type (array)))
9485 error (_("cannot slice a packed array"));
9486
9487 /* If this is a reference to an array or an array lvalue,
9488 convert to a pointer. */
9489 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9490 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9491 && VALUE_LVAL (array) == lval_memory))
9492 array = value_addr (array);
9493
9494 if (noside == EVAL_AVOID_SIDE_EFFECTS
9495 && ada_is_array_descriptor_type (ada_check_typedef
9496 (value_type (array))))
9497 return empty_array (ada_type_of_array (array, 0), low_bound);
9498
9499 array = ada_coerce_to_simple_array_ptr (array);
9500
9501 /* If we have more than one level of pointer indirection,
9502 dereference the value until we get only one level. */
9503 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9504 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9505 == TYPE_CODE_PTR))
9506 array = value_ind (array);
9507
9508 /* Make sure we really do have an array type before going further,
9509 to avoid a SEGV when trying to get the index type or the target
9510 type later down the road if the debug info generated by
9511 the compiler is incorrect or incomplete. */
9512 if (!ada_is_simple_array_type (value_type (array)))
9513 error (_("cannot take slice of non-array"));
9514
9515 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9516 {
9517 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9518 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9519 low_bound);
9520 else
9521 {
9522 struct type *arr_type0 =
9523 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9524 NULL, 1);
9525
9526 return ada_value_slice_from_ptr (array, arr_type0,
9527 longest_to_int (low_bound),
9528 longest_to_int (high_bound));
9529 }
9530 }
9531 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9532 return array;
9533 else if (high_bound < low_bound)
9534 return empty_array (value_type (array), low_bound);
9535 else
9536 return ada_value_slice (array, longest_to_int (low_bound),
9537 longest_to_int (high_bound));
9538 }
9539
9540 case UNOP_IN_RANGE:
9541 (*pos) += 2;
9542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9543 type = check_typedef (exp->elts[pc + 1].type);
9544
9545 if (noside == EVAL_SKIP)
9546 goto nosideret;
9547
9548 switch (TYPE_CODE (type))
9549 {
9550 default:
9551 lim_warning (_("Membership test incompletely implemented; "
9552 "always returns true"));
9553 type = language_bool_type (exp->language_defn, exp->gdbarch);
9554 return value_from_longest (type, (LONGEST) 1);
9555
9556 case TYPE_CODE_RANGE:
9557 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9558 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9561 type = language_bool_type (exp->language_defn, exp->gdbarch);
9562 return
9563 value_from_longest (type,
9564 (value_less (arg1, arg3)
9565 || value_equal (arg1, arg3))
9566 && (value_less (arg2, arg1)
9567 || value_equal (arg2, arg1)));
9568 }
9569
9570 case BINOP_IN_BOUNDS:
9571 (*pos) += 2;
9572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9573 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9574
9575 if (noside == EVAL_SKIP)
9576 goto nosideret;
9577
9578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 {
9580 type = language_bool_type (exp->language_defn, exp->gdbarch);
9581 return value_zero (type, not_lval);
9582 }
9583
9584 tem = longest_to_int (exp->elts[pc + 1].longconst);
9585
9586 type = ada_index_type (value_type (arg2), tem, "range");
9587 if (!type)
9588 type = value_type (arg1);
9589
9590 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9591 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9592
9593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9594 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9595 type = language_bool_type (exp->language_defn, exp->gdbarch);
9596 return
9597 value_from_longest (type,
9598 (value_less (arg1, arg3)
9599 || value_equal (arg1, arg3))
9600 && (value_less (arg2, arg1)
9601 || value_equal (arg2, arg1)));
9602
9603 case TERNOP_IN_RANGE:
9604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9606 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9607
9608 if (noside == EVAL_SKIP)
9609 goto nosideret;
9610
9611 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9612 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9613 type = language_bool_type (exp->language_defn, exp->gdbarch);
9614 return
9615 value_from_longest (type,
9616 (value_less (arg1, arg3)
9617 || value_equal (arg1, arg3))
9618 && (value_less (arg2, arg1)
9619 || value_equal (arg2, arg1)));
9620
9621 case OP_ATR_FIRST:
9622 case OP_ATR_LAST:
9623 case OP_ATR_LENGTH:
9624 {
9625 struct type *type_arg;
9626
9627 if (exp->elts[*pos].opcode == OP_TYPE)
9628 {
9629 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9630 arg1 = NULL;
9631 type_arg = check_typedef (exp->elts[pc + 2].type);
9632 }
9633 else
9634 {
9635 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9636 type_arg = NULL;
9637 }
9638
9639 if (exp->elts[*pos].opcode != OP_LONG)
9640 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9641 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9642 *pos += 4;
9643
9644 if (noside == EVAL_SKIP)
9645 goto nosideret;
9646
9647 if (type_arg == NULL)
9648 {
9649 arg1 = ada_coerce_ref (arg1);
9650
9651 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9652 arg1 = ada_coerce_to_simple_array (arg1);
9653
9654 type = ada_index_type (value_type (arg1), tem,
9655 ada_attribute_name (op));
9656 if (type == NULL)
9657 type = builtin_type (exp->gdbarch)->builtin_int;
9658
9659 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9660 return allocate_value (type);
9661
9662 switch (op)
9663 {
9664 default: /* Should never happen. */
9665 error (_("unexpected attribute encountered"));
9666 case OP_ATR_FIRST:
9667 return value_from_longest
9668 (type, ada_array_bound (arg1, tem, 0));
9669 case OP_ATR_LAST:
9670 return value_from_longest
9671 (type, ada_array_bound (arg1, tem, 1));
9672 case OP_ATR_LENGTH:
9673 return value_from_longest
9674 (type, ada_array_length (arg1, tem));
9675 }
9676 }
9677 else if (discrete_type_p (type_arg))
9678 {
9679 struct type *range_type;
9680 char *name = ada_type_name (type_arg);
9681
9682 range_type = NULL;
9683 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9684 range_type = to_fixed_range_type (type_arg, NULL);
9685 if (range_type == NULL)
9686 range_type = type_arg;
9687 switch (op)
9688 {
9689 default:
9690 error (_("unexpected attribute encountered"));
9691 case OP_ATR_FIRST:
9692 return value_from_longest
9693 (range_type, ada_discrete_type_low_bound (range_type));
9694 case OP_ATR_LAST:
9695 return value_from_longest
9696 (range_type, ada_discrete_type_high_bound (range_type));
9697 case OP_ATR_LENGTH:
9698 error (_("the 'length attribute applies only to array types"));
9699 }
9700 }
9701 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9702 error (_("unimplemented type attribute"));
9703 else
9704 {
9705 LONGEST low, high;
9706
9707 if (ada_is_constrained_packed_array_type (type_arg))
9708 type_arg = decode_constrained_packed_array_type (type_arg);
9709
9710 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9711 if (type == NULL)
9712 type = builtin_type (exp->gdbarch)->builtin_int;
9713
9714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715 return allocate_value (type);
9716
9717 switch (op)
9718 {
9719 default:
9720 error (_("unexpected attribute encountered"));
9721 case OP_ATR_FIRST:
9722 low = ada_array_bound_from_type (type_arg, tem, 0);
9723 return value_from_longest (type, low);
9724 case OP_ATR_LAST:
9725 high = ada_array_bound_from_type (type_arg, tem, 1);
9726 return value_from_longest (type, high);
9727 case OP_ATR_LENGTH:
9728 low = ada_array_bound_from_type (type_arg, tem, 0);
9729 high = ada_array_bound_from_type (type_arg, tem, 1);
9730 return value_from_longest (type, high - low + 1);
9731 }
9732 }
9733 }
9734
9735 case OP_ATR_TAG:
9736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9737 if (noside == EVAL_SKIP)
9738 goto nosideret;
9739
9740 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9741 return value_zero (ada_tag_type (arg1), not_lval);
9742
9743 return ada_value_tag (arg1);
9744
9745 case OP_ATR_MIN:
9746 case OP_ATR_MAX:
9747 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9749 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9750 if (noside == EVAL_SKIP)
9751 goto nosideret;
9752 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9753 return value_zero (value_type (arg1), not_lval);
9754 else
9755 {
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9757 return value_binop (arg1, arg2,
9758 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9759 }
9760
9761 case OP_ATR_MODULUS:
9762 {
9763 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9764
9765 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9766 if (noside == EVAL_SKIP)
9767 goto nosideret;
9768
9769 if (!ada_is_modular_type (type_arg))
9770 error (_("'modulus must be applied to modular type"));
9771
9772 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9773 ada_modulus (type_arg));
9774 }
9775
9776
9777 case OP_ATR_POS:
9778 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9779 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9780 if (noside == EVAL_SKIP)
9781 goto nosideret;
9782 type = builtin_type (exp->gdbarch)->builtin_int;
9783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9784 return value_zero (type, not_lval);
9785 else
9786 return value_pos_atr (type, arg1);
9787
9788 case OP_ATR_SIZE:
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790 type = value_type (arg1);
9791
9792 /* If the argument is a reference, then dereference its type, since
9793 the user is really asking for the size of the actual object,
9794 not the size of the pointer. */
9795 if (TYPE_CODE (type) == TYPE_CODE_REF)
9796 type = TYPE_TARGET_TYPE (type);
9797
9798 if (noside == EVAL_SKIP)
9799 goto nosideret;
9800 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9801 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9802 else
9803 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9804 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9805
9806 case OP_ATR_VAL:
9807 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9809 type = exp->elts[pc + 2].type;
9810 if (noside == EVAL_SKIP)
9811 goto nosideret;
9812 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9813 return value_zero (type, not_lval);
9814 else
9815 return value_val_atr (type, arg1);
9816
9817 case BINOP_EXP:
9818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9820 if (noside == EVAL_SKIP)
9821 goto nosideret;
9822 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9823 return value_zero (value_type (arg1), not_lval);
9824 else
9825 {
9826 /* For integer exponentiation operations,
9827 only promote the first argument. */
9828 if (is_integral_type (value_type (arg2)))
9829 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9830 else
9831 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9832
9833 return value_binop (arg1, arg2, op);
9834 }
9835
9836 case UNOP_PLUS:
9837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9838 if (noside == EVAL_SKIP)
9839 goto nosideret;
9840 else
9841 return arg1;
9842
9843 case UNOP_ABS:
9844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9845 if (noside == EVAL_SKIP)
9846 goto nosideret;
9847 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9848 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9849 return value_neg (arg1);
9850 else
9851 return arg1;
9852
9853 case UNOP_IND:
9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9855 if (noside == EVAL_SKIP)
9856 goto nosideret;
9857 type = ada_check_typedef (value_type (arg1));
9858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9859 {
9860 if (ada_is_array_descriptor_type (type))
9861 /* GDB allows dereferencing GNAT array descriptors. */
9862 {
9863 struct type *arrType = ada_type_of_array (arg1, 0);
9864
9865 if (arrType == NULL)
9866 error (_("Attempt to dereference null array pointer."));
9867 return value_at_lazy (arrType, 0);
9868 }
9869 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9870 || TYPE_CODE (type) == TYPE_CODE_REF
9871 /* In C you can dereference an array to get the 1st elt. */
9872 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9873 {
9874 type = to_static_fixed_type
9875 (ada_aligned_type
9876 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9877 check_size (type);
9878 return value_zero (type, lval_memory);
9879 }
9880 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9881 {
9882 /* GDB allows dereferencing an int. */
9883 if (expect_type == NULL)
9884 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9885 lval_memory);
9886 else
9887 {
9888 expect_type =
9889 to_static_fixed_type (ada_aligned_type (expect_type));
9890 return value_zero (expect_type, lval_memory);
9891 }
9892 }
9893 else
9894 error (_("Attempt to take contents of a non-pointer value."));
9895 }
9896 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9897 type = ada_check_typedef (value_type (arg1));
9898
9899 if (TYPE_CODE (type) == TYPE_CODE_INT)
9900 /* GDB allows dereferencing an int. If we were given
9901 the expect_type, then use that as the target type.
9902 Otherwise, assume that the target type is an int. */
9903 {
9904 if (expect_type != NULL)
9905 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9906 arg1));
9907 else
9908 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9909 (CORE_ADDR) value_as_address (arg1));
9910 }
9911
9912 if (ada_is_array_descriptor_type (type))
9913 /* GDB allows dereferencing GNAT array descriptors. */
9914 return ada_coerce_to_simple_array (arg1);
9915 else
9916 return ada_value_ind (arg1);
9917
9918 case STRUCTOP_STRUCT:
9919 tem = longest_to_int (exp->elts[pc + 1].longconst);
9920 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9922 if (noside == EVAL_SKIP)
9923 goto nosideret;
9924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9925 {
9926 struct type *type1 = value_type (arg1);
9927
9928 if (ada_is_tagged_type (type1, 1))
9929 {
9930 type = ada_lookup_struct_elt_type (type1,
9931 &exp->elts[pc + 2].string,
9932 1, 1, NULL);
9933 if (type == NULL)
9934 /* In this case, we assume that the field COULD exist
9935 in some extension of the type. Return an object of
9936 "type" void, which will match any formal
9937 (see ada_type_match). */
9938 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9939 lval_memory);
9940 }
9941 else
9942 type =
9943 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9944 0, NULL);
9945
9946 return value_zero (ada_aligned_type (type), lval_memory);
9947 }
9948 else
9949 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9950 arg1 = unwrap_value (arg1);
9951 return ada_to_fixed_value (arg1);
9952
9953 case OP_TYPE:
9954 /* The value is not supposed to be used. This is here to make it
9955 easier to accommodate expressions that contain types. */
9956 (*pos) += 2;
9957 if (noside == EVAL_SKIP)
9958 goto nosideret;
9959 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 return allocate_value (exp->elts[pc + 1].type);
9961 else
9962 error (_("Attempt to use a type name as an expression"));
9963
9964 case OP_AGGREGATE:
9965 case OP_CHOICES:
9966 case OP_OTHERS:
9967 case OP_DISCRETE_RANGE:
9968 case OP_POSITIONAL:
9969 case OP_NAME:
9970 if (noside == EVAL_NORMAL)
9971 switch (op)
9972 {
9973 case OP_NAME:
9974 error (_("Undefined name, ambiguous name, or renaming used in "
9975 "component association: %s."), &exp->elts[pc+2].string);
9976 case OP_AGGREGATE:
9977 error (_("Aggregates only allowed on the right of an assignment"));
9978 default:
9979 internal_error (__FILE__, __LINE__,
9980 _("aggregate apparently mangled"));
9981 }
9982
9983 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9984 *pos += oplen - 1;
9985 for (tem = 0; tem < nargs; tem += 1)
9986 ada_evaluate_subexp (NULL, exp, pos, noside);
9987 goto nosideret;
9988 }
9989
9990 nosideret:
9991 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9992 }
9993 \f
9994
9995 /* Fixed point */
9996
9997 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9998 type name that encodes the 'small and 'delta information.
9999 Otherwise, return NULL. */
10000
10001 static const char *
10002 fixed_type_info (struct type *type)
10003 {
10004 const char *name = ada_type_name (type);
10005 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10006
10007 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10008 {
10009 const char *tail = strstr (name, "___XF_");
10010
10011 if (tail == NULL)
10012 return NULL;
10013 else
10014 return tail + 5;
10015 }
10016 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10017 return fixed_type_info (TYPE_TARGET_TYPE (type));
10018 else
10019 return NULL;
10020 }
10021
10022 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10023
10024 int
10025 ada_is_fixed_point_type (struct type *type)
10026 {
10027 return fixed_type_info (type) != NULL;
10028 }
10029
10030 /* Return non-zero iff TYPE represents a System.Address type. */
10031
10032 int
10033 ada_is_system_address_type (struct type *type)
10034 {
10035 return (TYPE_NAME (type)
10036 && strcmp (TYPE_NAME (type), "system__address") == 0);
10037 }
10038
10039 /* Assuming that TYPE is the representation of an Ada fixed-point
10040 type, return its delta, or -1 if the type is malformed and the
10041 delta cannot be determined. */
10042
10043 DOUBLEST
10044 ada_delta (struct type *type)
10045 {
10046 const char *encoding = fixed_type_info (type);
10047 DOUBLEST num, den;
10048
10049 /* Strictly speaking, num and den are encoded as integer. However,
10050 they may not fit into a long, and they will have to be converted
10051 to DOUBLEST anyway. So scan them as DOUBLEST. */
10052 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10053 &num, &den) < 2)
10054 return -1.0;
10055 else
10056 return num / den;
10057 }
10058
10059 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10060 factor ('SMALL value) associated with the type. */
10061
10062 static DOUBLEST
10063 scaling_factor (struct type *type)
10064 {
10065 const char *encoding = fixed_type_info (type);
10066 DOUBLEST num0, den0, num1, den1;
10067 int n;
10068
10069 /* Strictly speaking, num's and den's are encoded as integer. However,
10070 they may not fit into a long, and they will have to be converted
10071 to DOUBLEST anyway. So scan them as DOUBLEST. */
10072 n = sscanf (encoding,
10073 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10074 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10075 &num0, &den0, &num1, &den1);
10076
10077 if (n < 2)
10078 return 1.0;
10079 else if (n == 4)
10080 return num1 / den1;
10081 else
10082 return num0 / den0;
10083 }
10084
10085
10086 /* Assuming that X is the representation of a value of fixed-point
10087 type TYPE, return its floating-point equivalent. */
10088
10089 DOUBLEST
10090 ada_fixed_to_float (struct type *type, LONGEST x)
10091 {
10092 return (DOUBLEST) x *scaling_factor (type);
10093 }
10094
10095 /* The representation of a fixed-point value of type TYPE
10096 corresponding to the value X. */
10097
10098 LONGEST
10099 ada_float_to_fixed (struct type *type, DOUBLEST x)
10100 {
10101 return (LONGEST) (x / scaling_factor (type) + 0.5);
10102 }
10103
10104 \f
10105
10106 /* Range types */
10107
10108 /* Scan STR beginning at position K for a discriminant name, and
10109 return the value of that discriminant field of DVAL in *PX. If
10110 PNEW_K is not null, put the position of the character beyond the
10111 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10112 not alter *PX and *PNEW_K if unsuccessful. */
10113
10114 static int
10115 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10116 int *pnew_k)
10117 {
10118 static char *bound_buffer = NULL;
10119 static size_t bound_buffer_len = 0;
10120 char *bound;
10121 char *pend;
10122 struct value *bound_val;
10123
10124 if (dval == NULL || str == NULL || str[k] == '\0')
10125 return 0;
10126
10127 pend = strstr (str + k, "__");
10128 if (pend == NULL)
10129 {
10130 bound = str + k;
10131 k += strlen (bound);
10132 }
10133 else
10134 {
10135 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10136 bound = bound_buffer;
10137 strncpy (bound_buffer, str + k, pend - (str + k));
10138 bound[pend - (str + k)] = '\0';
10139 k = pend - str;
10140 }
10141
10142 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10143 if (bound_val == NULL)
10144 return 0;
10145
10146 *px = value_as_long (bound_val);
10147 if (pnew_k != NULL)
10148 *pnew_k = k;
10149 return 1;
10150 }
10151
10152 /* Value of variable named NAME in the current environment. If
10153 no such variable found, then if ERR_MSG is null, returns 0, and
10154 otherwise causes an error with message ERR_MSG. */
10155
10156 static struct value *
10157 get_var_value (char *name, char *err_msg)
10158 {
10159 struct ada_symbol_info *syms;
10160 int nsyms;
10161
10162 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10163 &syms);
10164
10165 if (nsyms != 1)
10166 {
10167 if (err_msg == NULL)
10168 return 0;
10169 else
10170 error (("%s"), err_msg);
10171 }
10172
10173 return value_of_variable (syms[0].sym, syms[0].block);
10174 }
10175
10176 /* Value of integer variable named NAME in the current environment. If
10177 no such variable found, returns 0, and sets *FLAG to 0. If
10178 successful, sets *FLAG to 1. */
10179
10180 LONGEST
10181 get_int_var_value (char *name, int *flag)
10182 {
10183 struct value *var_val = get_var_value (name, 0);
10184
10185 if (var_val == 0)
10186 {
10187 if (flag != NULL)
10188 *flag = 0;
10189 return 0;
10190 }
10191 else
10192 {
10193 if (flag != NULL)
10194 *flag = 1;
10195 return value_as_long (var_val);
10196 }
10197 }
10198
10199
10200 /* Return a range type whose base type is that of the range type named
10201 NAME in the current environment, and whose bounds are calculated
10202 from NAME according to the GNAT range encoding conventions.
10203 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10204 corresponding range type from debug information; fall back to using it
10205 if symbol lookup fails. If a new type must be created, allocate it
10206 like ORIG_TYPE was. The bounds information, in general, is encoded
10207 in NAME, the base type given in the named range type. */
10208
10209 static struct type *
10210 to_fixed_range_type (struct type *raw_type, struct value *dval)
10211 {
10212 char *name;
10213 struct type *base_type;
10214 char *subtype_info;
10215
10216 gdb_assert (raw_type != NULL);
10217 gdb_assert (TYPE_NAME (raw_type) != NULL);
10218
10219 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10220 base_type = TYPE_TARGET_TYPE (raw_type);
10221 else
10222 base_type = raw_type;
10223
10224 name = TYPE_NAME (raw_type);
10225 subtype_info = strstr (name, "___XD");
10226 if (subtype_info == NULL)
10227 {
10228 LONGEST L = ada_discrete_type_low_bound (raw_type);
10229 LONGEST U = ada_discrete_type_high_bound (raw_type);
10230
10231 if (L < INT_MIN || U > INT_MAX)
10232 return raw_type;
10233 else
10234 return create_range_type (alloc_type_copy (raw_type), raw_type,
10235 ada_discrete_type_low_bound (raw_type),
10236 ada_discrete_type_high_bound (raw_type));
10237 }
10238 else
10239 {
10240 static char *name_buf = NULL;
10241 static size_t name_len = 0;
10242 int prefix_len = subtype_info - name;
10243 LONGEST L, U;
10244 struct type *type;
10245 char *bounds_str;
10246 int n;
10247
10248 GROW_VECT (name_buf, name_len, prefix_len + 5);
10249 strncpy (name_buf, name, prefix_len);
10250 name_buf[prefix_len] = '\0';
10251
10252 subtype_info += 5;
10253 bounds_str = strchr (subtype_info, '_');
10254 n = 1;
10255
10256 if (*subtype_info == 'L')
10257 {
10258 if (!ada_scan_number (bounds_str, n, &L, &n)
10259 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10260 return raw_type;
10261 if (bounds_str[n] == '_')
10262 n += 2;
10263 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10264 n += 1;
10265 subtype_info += 1;
10266 }
10267 else
10268 {
10269 int ok;
10270
10271 strcpy (name_buf + prefix_len, "___L");
10272 L = get_int_var_value (name_buf, &ok);
10273 if (!ok)
10274 {
10275 lim_warning (_("Unknown lower bound, using 1."));
10276 L = 1;
10277 }
10278 }
10279
10280 if (*subtype_info == 'U')
10281 {
10282 if (!ada_scan_number (bounds_str, n, &U, &n)
10283 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10284 return raw_type;
10285 }
10286 else
10287 {
10288 int ok;
10289
10290 strcpy (name_buf + prefix_len, "___U");
10291 U = get_int_var_value (name_buf, &ok);
10292 if (!ok)
10293 {
10294 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10295 U = L;
10296 }
10297 }
10298
10299 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10300 TYPE_NAME (type) = name;
10301 return type;
10302 }
10303 }
10304
10305 /* True iff NAME is the name of a range type. */
10306
10307 int
10308 ada_is_range_type_name (const char *name)
10309 {
10310 return (name != NULL && strstr (name, "___XD"));
10311 }
10312 \f
10313
10314 /* Modular types */
10315
10316 /* True iff TYPE is an Ada modular type. */
10317
10318 int
10319 ada_is_modular_type (struct type *type)
10320 {
10321 struct type *subranged_type = base_type (type);
10322
10323 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10324 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10325 && TYPE_UNSIGNED (subranged_type));
10326 }
10327
10328 /* Try to determine the lower and upper bounds of the given modular type
10329 using the type name only. Return non-zero and set L and U as the lower
10330 and upper bounds (respectively) if successful. */
10331
10332 int
10333 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10334 {
10335 char *name = ada_type_name (type);
10336 char *suffix;
10337 int k;
10338 LONGEST U;
10339
10340 if (name == NULL)
10341 return 0;
10342
10343 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10344 we are looking for static bounds, which means an __XDLU suffix.
10345 Moreover, we know that the lower bound of modular types is always
10346 zero, so the actual suffix should start with "__XDLU_0__", and
10347 then be followed by the upper bound value. */
10348 suffix = strstr (name, "__XDLU_0__");
10349 if (suffix == NULL)
10350 return 0;
10351 k = 10;
10352 if (!ada_scan_number (suffix, k, &U, NULL))
10353 return 0;
10354
10355 *modulus = (ULONGEST) U + 1;
10356 return 1;
10357 }
10358
10359 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10360
10361 ULONGEST
10362 ada_modulus (struct type *type)
10363 {
10364 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10365 }
10366 \f
10367
10368 /* Ada exception catchpoint support:
10369 ---------------------------------
10370
10371 We support 3 kinds of exception catchpoints:
10372 . catchpoints on Ada exceptions
10373 . catchpoints on unhandled Ada exceptions
10374 . catchpoints on failed assertions
10375
10376 Exceptions raised during failed assertions, or unhandled exceptions
10377 could perfectly be caught with the general catchpoint on Ada exceptions.
10378 However, we can easily differentiate these two special cases, and having
10379 the option to distinguish these two cases from the rest can be useful
10380 to zero-in on certain situations.
10381
10382 Exception catchpoints are a specialized form of breakpoint,
10383 since they rely on inserting breakpoints inside known routines
10384 of the GNAT runtime. The implementation therefore uses a standard
10385 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10386 of breakpoint_ops.
10387
10388 Support in the runtime for exception catchpoints have been changed
10389 a few times already, and these changes affect the implementation
10390 of these catchpoints. In order to be able to support several
10391 variants of the runtime, we use a sniffer that will determine
10392 the runtime variant used by the program being debugged.
10393
10394 At this time, we do not support the use of conditions on Ada exception
10395 catchpoints. The COND and COND_STRING fields are therefore set
10396 to NULL (most of the time, see below).
10397
10398 Conditions where EXP_STRING, COND, and COND_STRING are used:
10399
10400 When a user specifies the name of a specific exception in the case
10401 of catchpoints on Ada exceptions, we store the name of that exception
10402 in the EXP_STRING. We then translate this request into an actual
10403 condition stored in COND_STRING, and then parse it into an expression
10404 stored in COND. */
10405
10406 /* The different types of catchpoints that we introduced for catching
10407 Ada exceptions. */
10408
10409 enum exception_catchpoint_kind
10410 {
10411 ex_catch_exception,
10412 ex_catch_exception_unhandled,
10413 ex_catch_assert
10414 };
10415
10416 /* Ada's standard exceptions. */
10417
10418 static char *standard_exc[] = {
10419 "constraint_error",
10420 "program_error",
10421 "storage_error",
10422 "tasking_error"
10423 };
10424
10425 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10426
10427 /* A structure that describes how to support exception catchpoints
10428 for a given executable. */
10429
10430 struct exception_support_info
10431 {
10432 /* The name of the symbol to break on in order to insert
10433 a catchpoint on exceptions. */
10434 const char *catch_exception_sym;
10435
10436 /* The name of the symbol to break on in order to insert
10437 a catchpoint on unhandled exceptions. */
10438 const char *catch_exception_unhandled_sym;
10439
10440 /* The name of the symbol to break on in order to insert
10441 a catchpoint on failed assertions. */
10442 const char *catch_assert_sym;
10443
10444 /* Assuming that the inferior just triggered an unhandled exception
10445 catchpoint, this function is responsible for returning the address
10446 in inferior memory where the name of that exception is stored.
10447 Return zero if the address could not be computed. */
10448 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10449 };
10450
10451 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10452 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10453
10454 /* The following exception support info structure describes how to
10455 implement exception catchpoints with the latest version of the
10456 Ada runtime (as of 2007-03-06). */
10457
10458 static const struct exception_support_info default_exception_support_info =
10459 {
10460 "__gnat_debug_raise_exception", /* catch_exception_sym */
10461 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10462 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10463 ada_unhandled_exception_name_addr
10464 };
10465
10466 /* The following exception support info structure describes how to
10467 implement exception catchpoints with a slightly older version
10468 of the Ada runtime. */
10469
10470 static const struct exception_support_info exception_support_info_fallback =
10471 {
10472 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10473 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10474 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10475 ada_unhandled_exception_name_addr_from_raise
10476 };
10477
10478 /* For each executable, we sniff which exception info structure to use
10479 and cache it in the following global variable. */
10480
10481 static const struct exception_support_info *exception_info = NULL;
10482
10483 /* Inspect the Ada runtime and determine which exception info structure
10484 should be used to provide support for exception catchpoints.
10485
10486 This function will always set exception_info, or raise an error. */
10487
10488 static void
10489 ada_exception_support_info_sniffer (void)
10490 {
10491 struct symbol *sym;
10492
10493 /* If the exception info is already known, then no need to recompute it. */
10494 if (exception_info != NULL)
10495 return;
10496
10497 /* Check the latest (default) exception support info. */
10498 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10499 NULL, VAR_DOMAIN);
10500 if (sym != NULL)
10501 {
10502 exception_info = &default_exception_support_info;
10503 return;
10504 }
10505
10506 /* Try our fallback exception suport info. */
10507 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10508 NULL, VAR_DOMAIN);
10509 if (sym != NULL)
10510 {
10511 exception_info = &exception_support_info_fallback;
10512 return;
10513 }
10514
10515 /* Sometimes, it is normal for us to not be able to find the routine
10516 we are looking for. This happens when the program is linked with
10517 the shared version of the GNAT runtime, and the program has not been
10518 started yet. Inform the user of these two possible causes if
10519 applicable. */
10520
10521 if (ada_update_initial_language (language_unknown) != language_ada)
10522 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10523
10524 /* If the symbol does not exist, then check that the program is
10525 already started, to make sure that shared libraries have been
10526 loaded. If it is not started, this may mean that the symbol is
10527 in a shared library. */
10528
10529 if (ptid_get_pid (inferior_ptid) == 0)
10530 error (_("Unable to insert catchpoint. Try to start the program first."));
10531
10532 /* At this point, we know that we are debugging an Ada program and
10533 that the inferior has been started, but we still are not able to
10534 find the run-time symbols. That can mean that we are in
10535 configurable run time mode, or that a-except as been optimized
10536 out by the linker... In any case, at this point it is not worth
10537 supporting this feature. */
10538
10539 error (_("Cannot insert catchpoints in this configuration."));
10540 }
10541
10542 /* An observer of "executable_changed" events.
10543 Its role is to clear certain cached values that need to be recomputed
10544 each time a new executable is loaded by GDB. */
10545
10546 static void
10547 ada_executable_changed_observer (void)
10548 {
10549 /* If the executable changed, then it is possible that the Ada runtime
10550 is different. So we need to invalidate the exception support info
10551 cache. */
10552 exception_info = NULL;
10553 }
10554
10555 /* True iff FRAME is very likely to be that of a function that is
10556 part of the runtime system. This is all very heuristic, but is
10557 intended to be used as advice as to what frames are uninteresting
10558 to most users. */
10559
10560 static int
10561 is_known_support_routine (struct frame_info *frame)
10562 {
10563 struct symtab_and_line sal;
10564 char *func_name;
10565 enum language func_lang;
10566 int i;
10567
10568 /* If this code does not have any debugging information (no symtab),
10569 This cannot be any user code. */
10570
10571 find_frame_sal (frame, &sal);
10572 if (sal.symtab == NULL)
10573 return 1;
10574
10575 /* If there is a symtab, but the associated source file cannot be
10576 located, then assume this is not user code: Selecting a frame
10577 for which we cannot display the code would not be very helpful
10578 for the user. This should also take care of case such as VxWorks
10579 where the kernel has some debugging info provided for a few units. */
10580
10581 if (symtab_to_fullname (sal.symtab) == NULL)
10582 return 1;
10583
10584 /* Check the unit filename againt the Ada runtime file naming.
10585 We also check the name of the objfile against the name of some
10586 known system libraries that sometimes come with debugging info
10587 too. */
10588
10589 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10590 {
10591 re_comp (known_runtime_file_name_patterns[i]);
10592 if (re_exec (sal.symtab->filename))
10593 return 1;
10594 if (sal.symtab->objfile != NULL
10595 && re_exec (sal.symtab->objfile->name))
10596 return 1;
10597 }
10598
10599 /* Check whether the function is a GNAT-generated entity. */
10600
10601 find_frame_funname (frame, &func_name, &func_lang, NULL);
10602 if (func_name == NULL)
10603 return 1;
10604
10605 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10606 {
10607 re_comp (known_auxiliary_function_name_patterns[i]);
10608 if (re_exec (func_name))
10609 return 1;
10610 }
10611
10612 return 0;
10613 }
10614
10615 /* Find the first frame that contains debugging information and that is not
10616 part of the Ada run-time, starting from FI and moving upward. */
10617
10618 void
10619 ada_find_printable_frame (struct frame_info *fi)
10620 {
10621 for (; fi != NULL; fi = get_prev_frame (fi))
10622 {
10623 if (!is_known_support_routine (fi))
10624 {
10625 select_frame (fi);
10626 break;
10627 }
10628 }
10629
10630 }
10631
10632 /* Assuming that the inferior just triggered an unhandled exception
10633 catchpoint, return the address in inferior memory where the name
10634 of the exception is stored.
10635
10636 Return zero if the address could not be computed. */
10637
10638 static CORE_ADDR
10639 ada_unhandled_exception_name_addr (void)
10640 {
10641 return parse_and_eval_address ("e.full_name");
10642 }
10643
10644 /* Same as ada_unhandled_exception_name_addr, except that this function
10645 should be used when the inferior uses an older version of the runtime,
10646 where the exception name needs to be extracted from a specific frame
10647 several frames up in the callstack. */
10648
10649 static CORE_ADDR
10650 ada_unhandled_exception_name_addr_from_raise (void)
10651 {
10652 int frame_level;
10653 struct frame_info *fi;
10654
10655 /* To determine the name of this exception, we need to select
10656 the frame corresponding to RAISE_SYM_NAME. This frame is
10657 at least 3 levels up, so we simply skip the first 3 frames
10658 without checking the name of their associated function. */
10659 fi = get_current_frame ();
10660 for (frame_level = 0; frame_level < 3; frame_level += 1)
10661 if (fi != NULL)
10662 fi = get_prev_frame (fi);
10663
10664 while (fi != NULL)
10665 {
10666 char *func_name;
10667 enum language func_lang;
10668
10669 find_frame_funname (fi, &func_name, &func_lang, NULL);
10670 if (func_name != NULL
10671 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10672 break; /* We found the frame we were looking for... */
10673 fi = get_prev_frame (fi);
10674 }
10675
10676 if (fi == NULL)
10677 return 0;
10678
10679 select_frame (fi);
10680 return parse_and_eval_address ("id.full_name");
10681 }
10682
10683 /* Assuming the inferior just triggered an Ada exception catchpoint
10684 (of any type), return the address in inferior memory where the name
10685 of the exception is stored, if applicable.
10686
10687 Return zero if the address could not be computed, or if not relevant. */
10688
10689 static CORE_ADDR
10690 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10691 struct breakpoint *b)
10692 {
10693 switch (ex)
10694 {
10695 case ex_catch_exception:
10696 return (parse_and_eval_address ("e.full_name"));
10697 break;
10698
10699 case ex_catch_exception_unhandled:
10700 return exception_info->unhandled_exception_name_addr ();
10701 break;
10702
10703 case ex_catch_assert:
10704 return 0; /* Exception name is not relevant in this case. */
10705 break;
10706
10707 default:
10708 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10709 break;
10710 }
10711
10712 return 0; /* Should never be reached. */
10713 }
10714
10715 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10716 any error that ada_exception_name_addr_1 might cause to be thrown.
10717 When an error is intercepted, a warning with the error message is printed,
10718 and zero is returned. */
10719
10720 static CORE_ADDR
10721 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10722 struct breakpoint *b)
10723 {
10724 struct gdb_exception e;
10725 CORE_ADDR result = 0;
10726
10727 TRY_CATCH (e, RETURN_MASK_ERROR)
10728 {
10729 result = ada_exception_name_addr_1 (ex, b);
10730 }
10731
10732 if (e.reason < 0)
10733 {
10734 warning (_("failed to get exception name: %s"), e.message);
10735 return 0;
10736 }
10737
10738 return result;
10739 }
10740
10741 /* Implement the PRINT_IT method in the breakpoint_ops structure
10742 for all exception catchpoint kinds. */
10743
10744 static enum print_stop_action
10745 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10746 {
10747 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10748 char exception_name[256];
10749
10750 if (addr != 0)
10751 {
10752 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10753 exception_name [sizeof (exception_name) - 1] = '\0';
10754 }
10755
10756 ada_find_printable_frame (get_current_frame ());
10757
10758 annotate_catchpoint (b->number);
10759 switch (ex)
10760 {
10761 case ex_catch_exception:
10762 if (addr != 0)
10763 printf_filtered (_("\nCatchpoint %d, %s at "),
10764 b->number, exception_name);
10765 else
10766 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10767 break;
10768 case ex_catch_exception_unhandled:
10769 if (addr != 0)
10770 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10771 b->number, exception_name);
10772 else
10773 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10774 b->number);
10775 break;
10776 case ex_catch_assert:
10777 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10778 b->number);
10779 break;
10780 }
10781
10782 return PRINT_SRC_AND_LOC;
10783 }
10784
10785 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10786 for all exception catchpoint kinds. */
10787
10788 static void
10789 print_one_exception (enum exception_catchpoint_kind ex,
10790 struct breakpoint *b, struct bp_location **last_loc)
10791 {
10792 struct value_print_options opts;
10793
10794 get_user_print_options (&opts);
10795 if (opts.addressprint)
10796 {
10797 annotate_field (4);
10798 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10799 }
10800
10801 annotate_field (5);
10802 *last_loc = b->loc;
10803 switch (ex)
10804 {
10805 case ex_catch_exception:
10806 if (b->exp_string != NULL)
10807 {
10808 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10809
10810 ui_out_field_string (uiout, "what", msg);
10811 xfree (msg);
10812 }
10813 else
10814 ui_out_field_string (uiout, "what", "all Ada exceptions");
10815
10816 break;
10817
10818 case ex_catch_exception_unhandled:
10819 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10820 break;
10821
10822 case ex_catch_assert:
10823 ui_out_field_string (uiout, "what", "failed Ada assertions");
10824 break;
10825
10826 default:
10827 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10828 break;
10829 }
10830 }
10831
10832 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10833 for all exception catchpoint kinds. */
10834
10835 static void
10836 print_mention_exception (enum exception_catchpoint_kind ex,
10837 struct breakpoint *b)
10838 {
10839 switch (ex)
10840 {
10841 case ex_catch_exception:
10842 if (b->exp_string != NULL)
10843 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10844 b->number, b->exp_string);
10845 else
10846 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10847
10848 break;
10849
10850 case ex_catch_exception_unhandled:
10851 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10852 b->number);
10853 break;
10854
10855 case ex_catch_assert:
10856 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10857 break;
10858
10859 default:
10860 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10861 break;
10862 }
10863 }
10864
10865 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10866 for all exception catchpoint kinds. */
10867
10868 static void
10869 print_recreate_exception (enum exception_catchpoint_kind ex,
10870 struct breakpoint *b, struct ui_file *fp)
10871 {
10872 switch (ex)
10873 {
10874 case ex_catch_exception:
10875 fprintf_filtered (fp, "catch exception");
10876 if (b->exp_string != NULL)
10877 fprintf_filtered (fp, " %s", b->exp_string);
10878 break;
10879
10880 case ex_catch_exception_unhandled:
10881 fprintf_filtered (fp, "catch exception unhandled");
10882 break;
10883
10884 case ex_catch_assert:
10885 fprintf_filtered (fp, "catch assert");
10886 break;
10887
10888 default:
10889 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10890 }
10891 }
10892
10893 /* Virtual table for "catch exception" breakpoints. */
10894
10895 static enum print_stop_action
10896 print_it_catch_exception (struct breakpoint *b)
10897 {
10898 return print_it_exception (ex_catch_exception, b);
10899 }
10900
10901 static void
10902 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10903 {
10904 print_one_exception (ex_catch_exception, b, last_loc);
10905 }
10906
10907 static void
10908 print_mention_catch_exception (struct breakpoint *b)
10909 {
10910 print_mention_exception (ex_catch_exception, b);
10911 }
10912
10913 static void
10914 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10915 {
10916 print_recreate_exception (ex_catch_exception, b, fp);
10917 }
10918
10919 static struct breakpoint_ops catch_exception_breakpoint_ops =
10920 {
10921 NULL, /* insert */
10922 NULL, /* remove */
10923 NULL, /* breakpoint_hit */
10924 NULL, /* resources_needed */
10925 print_it_catch_exception,
10926 print_one_catch_exception,
10927 print_mention_catch_exception,
10928 print_recreate_catch_exception
10929 };
10930
10931 /* Virtual table for "catch exception unhandled" breakpoints. */
10932
10933 static enum print_stop_action
10934 print_it_catch_exception_unhandled (struct breakpoint *b)
10935 {
10936 return print_it_exception (ex_catch_exception_unhandled, b);
10937 }
10938
10939 static void
10940 print_one_catch_exception_unhandled (struct breakpoint *b,
10941 struct bp_location **last_loc)
10942 {
10943 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10944 }
10945
10946 static void
10947 print_mention_catch_exception_unhandled (struct breakpoint *b)
10948 {
10949 print_mention_exception (ex_catch_exception_unhandled, b);
10950 }
10951
10952 static void
10953 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10954 struct ui_file *fp)
10955 {
10956 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10957 }
10958
10959 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10960 NULL, /* insert */
10961 NULL, /* remove */
10962 NULL, /* breakpoint_hit */
10963 NULL, /* resources_needed */
10964 print_it_catch_exception_unhandled,
10965 print_one_catch_exception_unhandled,
10966 print_mention_catch_exception_unhandled,
10967 print_recreate_catch_exception_unhandled
10968 };
10969
10970 /* Virtual table for "catch assert" breakpoints. */
10971
10972 static enum print_stop_action
10973 print_it_catch_assert (struct breakpoint *b)
10974 {
10975 return print_it_exception (ex_catch_assert, b);
10976 }
10977
10978 static void
10979 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10980 {
10981 print_one_exception (ex_catch_assert, b, last_loc);
10982 }
10983
10984 static void
10985 print_mention_catch_assert (struct breakpoint *b)
10986 {
10987 print_mention_exception (ex_catch_assert, b);
10988 }
10989
10990 static void
10991 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10992 {
10993 print_recreate_exception (ex_catch_assert, b, fp);
10994 }
10995
10996 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10997 NULL, /* insert */
10998 NULL, /* remove */
10999 NULL, /* breakpoint_hit */
11000 NULL, /* resources_needed */
11001 print_it_catch_assert,
11002 print_one_catch_assert,
11003 print_mention_catch_assert,
11004 print_recreate_catch_assert
11005 };
11006
11007 /* Return non-zero if B is an Ada exception catchpoint. */
11008
11009 int
11010 ada_exception_catchpoint_p (struct breakpoint *b)
11011 {
11012 return (b->ops == &catch_exception_breakpoint_ops
11013 || b->ops == &catch_exception_unhandled_breakpoint_ops
11014 || b->ops == &catch_assert_breakpoint_ops);
11015 }
11016
11017 /* Return a newly allocated copy of the first space-separated token
11018 in ARGSP, and then adjust ARGSP to point immediately after that
11019 token.
11020
11021 Return NULL if ARGPS does not contain any more tokens. */
11022
11023 static char *
11024 ada_get_next_arg (char **argsp)
11025 {
11026 char *args = *argsp;
11027 char *end;
11028 char *result;
11029
11030 /* Skip any leading white space. */
11031
11032 while (isspace (*args))
11033 args++;
11034
11035 if (args[0] == '\0')
11036 return NULL; /* No more arguments. */
11037
11038 /* Find the end of the current argument. */
11039
11040 end = args;
11041 while (*end != '\0' && !isspace (*end))
11042 end++;
11043
11044 /* Adjust ARGSP to point to the start of the next argument. */
11045
11046 *argsp = end;
11047
11048 /* Make a copy of the current argument and return it. */
11049
11050 result = xmalloc (end - args + 1);
11051 strncpy (result, args, end - args);
11052 result[end - args] = '\0';
11053
11054 return result;
11055 }
11056
11057 /* Split the arguments specified in a "catch exception" command.
11058 Set EX to the appropriate catchpoint type.
11059 Set EXP_STRING to the name of the specific exception if
11060 specified by the user. */
11061
11062 static void
11063 catch_ada_exception_command_split (char *args,
11064 enum exception_catchpoint_kind *ex,
11065 char **exp_string)
11066 {
11067 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11068 char *exception_name;
11069
11070 exception_name = ada_get_next_arg (&args);
11071 make_cleanup (xfree, exception_name);
11072
11073 /* Check that we do not have any more arguments. Anything else
11074 is unexpected. */
11075
11076 while (isspace (*args))
11077 args++;
11078
11079 if (args[0] != '\0')
11080 error (_("Junk at end of expression"));
11081
11082 discard_cleanups (old_chain);
11083
11084 if (exception_name == NULL)
11085 {
11086 /* Catch all exceptions. */
11087 *ex = ex_catch_exception;
11088 *exp_string = NULL;
11089 }
11090 else if (strcmp (exception_name, "unhandled") == 0)
11091 {
11092 /* Catch unhandled exceptions. */
11093 *ex = ex_catch_exception_unhandled;
11094 *exp_string = NULL;
11095 }
11096 else
11097 {
11098 /* Catch a specific exception. */
11099 *ex = ex_catch_exception;
11100 *exp_string = exception_name;
11101 }
11102 }
11103
11104 /* Return the name of the symbol on which we should break in order to
11105 implement a catchpoint of the EX kind. */
11106
11107 static const char *
11108 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11109 {
11110 gdb_assert (exception_info != NULL);
11111
11112 switch (ex)
11113 {
11114 case ex_catch_exception:
11115 return (exception_info->catch_exception_sym);
11116 break;
11117 case ex_catch_exception_unhandled:
11118 return (exception_info->catch_exception_unhandled_sym);
11119 break;
11120 case ex_catch_assert:
11121 return (exception_info->catch_assert_sym);
11122 break;
11123 default:
11124 internal_error (__FILE__, __LINE__,
11125 _("unexpected catchpoint kind (%d)"), ex);
11126 }
11127 }
11128
11129 /* Return the breakpoint ops "virtual table" used for catchpoints
11130 of the EX kind. */
11131
11132 static struct breakpoint_ops *
11133 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11134 {
11135 switch (ex)
11136 {
11137 case ex_catch_exception:
11138 return (&catch_exception_breakpoint_ops);
11139 break;
11140 case ex_catch_exception_unhandled:
11141 return (&catch_exception_unhandled_breakpoint_ops);
11142 break;
11143 case ex_catch_assert:
11144 return (&catch_assert_breakpoint_ops);
11145 break;
11146 default:
11147 internal_error (__FILE__, __LINE__,
11148 _("unexpected catchpoint kind (%d)"), ex);
11149 }
11150 }
11151
11152 /* Return the condition that will be used to match the current exception
11153 being raised with the exception that the user wants to catch. This
11154 assumes that this condition is used when the inferior just triggered
11155 an exception catchpoint.
11156
11157 The string returned is a newly allocated string that needs to be
11158 deallocated later. */
11159
11160 static char *
11161 ada_exception_catchpoint_cond_string (const char *exp_string)
11162 {
11163 int i;
11164
11165 /* The standard exceptions are a special case. They are defined in
11166 runtime units that have been compiled without debugging info; if
11167 EXP_STRING is the not-fully-qualified name of a standard
11168 exception (e.g. "constraint_error") then, during the evaluation
11169 of the condition expression, the symbol lookup on this name would
11170 *not* return this standard exception. The catchpoint condition
11171 may then be set only on user-defined exceptions which have the
11172 same not-fully-qualified name (e.g. my_package.constraint_error).
11173
11174 To avoid this unexcepted behavior, these standard exceptions are
11175 systematically prefixed by "standard". This means that "catch
11176 exception constraint_error" is rewritten into "catch exception
11177 standard.constraint_error".
11178
11179 If an exception named contraint_error is defined in another package of
11180 the inferior program, then the only way to specify this exception as a
11181 breakpoint condition is to use its fully-qualified named:
11182 e.g. my_package.constraint_error. */
11183
11184 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11185 {
11186 if (strcmp (standard_exc [i], exp_string) == 0)
11187 {
11188 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11189 exp_string);
11190 }
11191 }
11192 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11193 }
11194
11195 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11196
11197 static struct expression *
11198 ada_parse_catchpoint_condition (char *cond_string,
11199 struct symtab_and_line sal)
11200 {
11201 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11202 }
11203
11204 /* Return the symtab_and_line that should be used to insert an exception
11205 catchpoint of the TYPE kind.
11206
11207 EX_STRING should contain the name of a specific exception
11208 that the catchpoint should catch, or NULL otherwise.
11209
11210 The idea behind all the remaining parameters is that their names match
11211 the name of certain fields in the breakpoint structure that are used to
11212 handle exception catchpoints. This function returns the value to which
11213 these fields should be set, depending on the type of catchpoint we need
11214 to create.
11215
11216 If COND and COND_STRING are both non-NULL, any value they might
11217 hold will be free'ed, and then replaced by newly allocated ones.
11218 These parameters are left untouched otherwise. */
11219
11220 static struct symtab_and_line
11221 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11222 char **addr_string, char **cond_string,
11223 struct expression **cond, struct breakpoint_ops **ops)
11224 {
11225 const char *sym_name;
11226 struct symbol *sym;
11227 struct symtab_and_line sal;
11228
11229 /* First, find out which exception support info to use. */
11230 ada_exception_support_info_sniffer ();
11231
11232 /* Then lookup the function on which we will break in order to catch
11233 the Ada exceptions requested by the user. */
11234
11235 sym_name = ada_exception_sym_name (ex);
11236 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11237
11238 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11239 that should be compiled with debugging information. As a result, we
11240 expect to find that symbol in the symtabs. If we don't find it, then
11241 the target most likely does not support Ada exceptions, or we cannot
11242 insert exception breakpoints yet, because the GNAT runtime hasn't been
11243 loaded yet. */
11244
11245 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11246 in such a way that no debugging information is produced for the symbol
11247 we are looking for. In this case, we could search the minimal symbols
11248 as a fall-back mechanism. This would still be operating in degraded
11249 mode, however, as we would still be missing the debugging information
11250 that is needed in order to extract the name of the exception being
11251 raised (this name is printed in the catchpoint message, and is also
11252 used when trying to catch a specific exception). We do not handle
11253 this case for now. */
11254
11255 if (sym == NULL)
11256 error (_("Unable to break on '%s' in this configuration."), sym_name);
11257
11258 /* Make sure that the symbol we found corresponds to a function. */
11259 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11260 error (_("Symbol \"%s\" is not a function (class = %d)"),
11261 sym_name, SYMBOL_CLASS (sym));
11262
11263 sal = find_function_start_sal (sym, 1);
11264
11265 /* Set ADDR_STRING. */
11266
11267 *addr_string = xstrdup (sym_name);
11268
11269 /* Set the COND and COND_STRING (if not NULL). */
11270
11271 if (cond_string != NULL && cond != NULL)
11272 {
11273 if (*cond_string != NULL)
11274 {
11275 xfree (*cond_string);
11276 *cond_string = NULL;
11277 }
11278 if (*cond != NULL)
11279 {
11280 xfree (*cond);
11281 *cond = NULL;
11282 }
11283 if (exp_string != NULL)
11284 {
11285 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11286 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11287 }
11288 }
11289
11290 /* Set OPS. */
11291 *ops = ada_exception_breakpoint_ops (ex);
11292
11293 return sal;
11294 }
11295
11296 /* Parse the arguments (ARGS) of the "catch exception" command.
11297
11298 Set TYPE to the appropriate exception catchpoint type.
11299 If the user asked the catchpoint to catch only a specific
11300 exception, then save the exception name in ADDR_STRING.
11301
11302 See ada_exception_sal for a description of all the remaining
11303 function arguments of this function. */
11304
11305 struct symtab_and_line
11306 ada_decode_exception_location (char *args, char **addr_string,
11307 char **exp_string, char **cond_string,
11308 struct expression **cond,
11309 struct breakpoint_ops **ops)
11310 {
11311 enum exception_catchpoint_kind ex;
11312
11313 catch_ada_exception_command_split (args, &ex, exp_string);
11314 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11315 cond, ops);
11316 }
11317
11318 struct symtab_and_line
11319 ada_decode_assert_location (char *args, char **addr_string,
11320 struct breakpoint_ops **ops)
11321 {
11322 /* Check that no argument where provided at the end of the command. */
11323
11324 if (args != NULL)
11325 {
11326 while (isspace (*args))
11327 args++;
11328 if (*args != '\0')
11329 error (_("Junk at end of arguments."));
11330 }
11331
11332 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11333 ops);
11334 }
11335
11336 /* Operators */
11337 /* Information about operators given special treatment in functions
11338 below. */
11339 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11340
11341 #define ADA_OPERATORS \
11342 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11343 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11344 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11345 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11346 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11347 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11348 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11349 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11350 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11351 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11352 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11353 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11354 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11355 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11356 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11357 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11358 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11359 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11360 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11361
11362 static void
11363 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11364 int *argsp)
11365 {
11366 switch (exp->elts[pc - 1].opcode)
11367 {
11368 default:
11369 operator_length_standard (exp, pc, oplenp, argsp);
11370 break;
11371
11372 #define OP_DEFN(op, len, args, binop) \
11373 case op: *oplenp = len; *argsp = args; break;
11374 ADA_OPERATORS;
11375 #undef OP_DEFN
11376
11377 case OP_AGGREGATE:
11378 *oplenp = 3;
11379 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11380 break;
11381
11382 case OP_CHOICES:
11383 *oplenp = 3;
11384 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11385 break;
11386 }
11387 }
11388
11389 /* Implementation of the exp_descriptor method operator_check. */
11390
11391 static int
11392 ada_operator_check (struct expression *exp, int pos,
11393 int (*objfile_func) (struct objfile *objfile, void *data),
11394 void *data)
11395 {
11396 const union exp_element *const elts = exp->elts;
11397 struct type *type = NULL;
11398
11399 switch (elts[pos].opcode)
11400 {
11401 case UNOP_IN_RANGE:
11402 case UNOP_QUAL:
11403 type = elts[pos + 1].type;
11404 break;
11405
11406 default:
11407 return operator_check_standard (exp, pos, objfile_func, data);
11408 }
11409
11410 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11411
11412 if (type && TYPE_OBJFILE (type)
11413 && (*objfile_func) (TYPE_OBJFILE (type), data))
11414 return 1;
11415
11416 return 0;
11417 }
11418
11419 static char *
11420 ada_op_name (enum exp_opcode opcode)
11421 {
11422 switch (opcode)
11423 {
11424 default:
11425 return op_name_standard (opcode);
11426
11427 #define OP_DEFN(op, len, args, binop) case op: return #op;
11428 ADA_OPERATORS;
11429 #undef OP_DEFN
11430
11431 case OP_AGGREGATE:
11432 return "OP_AGGREGATE";
11433 case OP_CHOICES:
11434 return "OP_CHOICES";
11435 case OP_NAME:
11436 return "OP_NAME";
11437 }
11438 }
11439
11440 /* As for operator_length, but assumes PC is pointing at the first
11441 element of the operator, and gives meaningful results only for the
11442 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11443
11444 static void
11445 ada_forward_operator_length (struct expression *exp, int pc,
11446 int *oplenp, int *argsp)
11447 {
11448 switch (exp->elts[pc].opcode)
11449 {
11450 default:
11451 *oplenp = *argsp = 0;
11452 break;
11453
11454 #define OP_DEFN(op, len, args, binop) \
11455 case op: *oplenp = len; *argsp = args; break;
11456 ADA_OPERATORS;
11457 #undef OP_DEFN
11458
11459 case OP_AGGREGATE:
11460 *oplenp = 3;
11461 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11462 break;
11463
11464 case OP_CHOICES:
11465 *oplenp = 3;
11466 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11467 break;
11468
11469 case OP_STRING:
11470 case OP_NAME:
11471 {
11472 int len = longest_to_int (exp->elts[pc + 1].longconst);
11473
11474 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11475 *argsp = 0;
11476 break;
11477 }
11478 }
11479 }
11480
11481 static int
11482 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11483 {
11484 enum exp_opcode op = exp->elts[elt].opcode;
11485 int oplen, nargs;
11486 int pc = elt;
11487 int i;
11488
11489 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11490
11491 switch (op)
11492 {
11493 /* Ada attributes ('Foo). */
11494 case OP_ATR_FIRST:
11495 case OP_ATR_LAST:
11496 case OP_ATR_LENGTH:
11497 case OP_ATR_IMAGE:
11498 case OP_ATR_MAX:
11499 case OP_ATR_MIN:
11500 case OP_ATR_MODULUS:
11501 case OP_ATR_POS:
11502 case OP_ATR_SIZE:
11503 case OP_ATR_TAG:
11504 case OP_ATR_VAL:
11505 break;
11506
11507 case UNOP_IN_RANGE:
11508 case UNOP_QUAL:
11509 /* XXX: gdb_sprint_host_address, type_sprint */
11510 fprintf_filtered (stream, _("Type @"));
11511 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11512 fprintf_filtered (stream, " (");
11513 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11514 fprintf_filtered (stream, ")");
11515 break;
11516 case BINOP_IN_BOUNDS:
11517 fprintf_filtered (stream, " (%d)",
11518 longest_to_int (exp->elts[pc + 2].longconst));
11519 break;
11520 case TERNOP_IN_RANGE:
11521 break;
11522
11523 case OP_AGGREGATE:
11524 case OP_OTHERS:
11525 case OP_DISCRETE_RANGE:
11526 case OP_POSITIONAL:
11527 case OP_CHOICES:
11528 break;
11529
11530 case OP_NAME:
11531 case OP_STRING:
11532 {
11533 char *name = &exp->elts[elt + 2].string;
11534 int len = longest_to_int (exp->elts[elt + 1].longconst);
11535
11536 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11537 break;
11538 }
11539
11540 default:
11541 return dump_subexp_body_standard (exp, stream, elt);
11542 }
11543
11544 elt += oplen;
11545 for (i = 0; i < nargs; i += 1)
11546 elt = dump_subexp (exp, stream, elt);
11547
11548 return elt;
11549 }
11550
11551 /* The Ada extension of print_subexp (q.v.). */
11552
11553 static void
11554 ada_print_subexp (struct expression *exp, int *pos,
11555 struct ui_file *stream, enum precedence prec)
11556 {
11557 int oplen, nargs, i;
11558 int pc = *pos;
11559 enum exp_opcode op = exp->elts[pc].opcode;
11560
11561 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11562
11563 *pos += oplen;
11564 switch (op)
11565 {
11566 default:
11567 *pos -= oplen;
11568 print_subexp_standard (exp, pos, stream, prec);
11569 return;
11570
11571 case OP_VAR_VALUE:
11572 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11573 return;
11574
11575 case BINOP_IN_BOUNDS:
11576 /* XXX: sprint_subexp */
11577 print_subexp (exp, pos, stream, PREC_SUFFIX);
11578 fputs_filtered (" in ", stream);
11579 print_subexp (exp, pos, stream, PREC_SUFFIX);
11580 fputs_filtered ("'range", stream);
11581 if (exp->elts[pc + 1].longconst > 1)
11582 fprintf_filtered (stream, "(%ld)",
11583 (long) exp->elts[pc + 1].longconst);
11584 return;
11585
11586 case TERNOP_IN_RANGE:
11587 if (prec >= PREC_EQUAL)
11588 fputs_filtered ("(", stream);
11589 /* XXX: sprint_subexp */
11590 print_subexp (exp, pos, stream, PREC_SUFFIX);
11591 fputs_filtered (" in ", stream);
11592 print_subexp (exp, pos, stream, PREC_EQUAL);
11593 fputs_filtered (" .. ", stream);
11594 print_subexp (exp, pos, stream, PREC_EQUAL);
11595 if (prec >= PREC_EQUAL)
11596 fputs_filtered (")", stream);
11597 return;
11598
11599 case OP_ATR_FIRST:
11600 case OP_ATR_LAST:
11601 case OP_ATR_LENGTH:
11602 case OP_ATR_IMAGE:
11603 case OP_ATR_MAX:
11604 case OP_ATR_MIN:
11605 case OP_ATR_MODULUS:
11606 case OP_ATR_POS:
11607 case OP_ATR_SIZE:
11608 case OP_ATR_TAG:
11609 case OP_ATR_VAL:
11610 if (exp->elts[*pos].opcode == OP_TYPE)
11611 {
11612 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11613 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11614 *pos += 3;
11615 }
11616 else
11617 print_subexp (exp, pos, stream, PREC_SUFFIX);
11618 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11619 if (nargs > 1)
11620 {
11621 int tem;
11622
11623 for (tem = 1; tem < nargs; tem += 1)
11624 {
11625 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11626 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11627 }
11628 fputs_filtered (")", stream);
11629 }
11630 return;
11631
11632 case UNOP_QUAL:
11633 type_print (exp->elts[pc + 1].type, "", stream, 0);
11634 fputs_filtered ("'(", stream);
11635 print_subexp (exp, pos, stream, PREC_PREFIX);
11636 fputs_filtered (")", stream);
11637 return;
11638
11639 case UNOP_IN_RANGE:
11640 /* XXX: sprint_subexp */
11641 print_subexp (exp, pos, stream, PREC_SUFFIX);
11642 fputs_filtered (" in ", stream);
11643 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11644 return;
11645
11646 case OP_DISCRETE_RANGE:
11647 print_subexp (exp, pos, stream, PREC_SUFFIX);
11648 fputs_filtered ("..", stream);
11649 print_subexp (exp, pos, stream, PREC_SUFFIX);
11650 return;
11651
11652 case OP_OTHERS:
11653 fputs_filtered ("others => ", stream);
11654 print_subexp (exp, pos, stream, PREC_SUFFIX);
11655 return;
11656
11657 case OP_CHOICES:
11658 for (i = 0; i < nargs-1; i += 1)
11659 {
11660 if (i > 0)
11661 fputs_filtered ("|", stream);
11662 print_subexp (exp, pos, stream, PREC_SUFFIX);
11663 }
11664 fputs_filtered (" => ", stream);
11665 print_subexp (exp, pos, stream, PREC_SUFFIX);
11666 return;
11667
11668 case OP_POSITIONAL:
11669 print_subexp (exp, pos, stream, PREC_SUFFIX);
11670 return;
11671
11672 case OP_AGGREGATE:
11673 fputs_filtered ("(", stream);
11674 for (i = 0; i < nargs; i += 1)
11675 {
11676 if (i > 0)
11677 fputs_filtered (", ", stream);
11678 print_subexp (exp, pos, stream, PREC_SUFFIX);
11679 }
11680 fputs_filtered (")", stream);
11681 return;
11682 }
11683 }
11684
11685 /* Table mapping opcodes into strings for printing operators
11686 and precedences of the operators. */
11687
11688 static const struct op_print ada_op_print_tab[] = {
11689 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11690 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11691 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11692 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11693 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11694 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11695 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11696 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11697 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11698 {">=", BINOP_GEQ, PREC_ORDER, 0},
11699 {">", BINOP_GTR, PREC_ORDER, 0},
11700 {"<", BINOP_LESS, PREC_ORDER, 0},
11701 {">>", BINOP_RSH, PREC_SHIFT, 0},
11702 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11703 {"+", BINOP_ADD, PREC_ADD, 0},
11704 {"-", BINOP_SUB, PREC_ADD, 0},
11705 {"&", BINOP_CONCAT, PREC_ADD, 0},
11706 {"*", BINOP_MUL, PREC_MUL, 0},
11707 {"/", BINOP_DIV, PREC_MUL, 0},
11708 {"rem", BINOP_REM, PREC_MUL, 0},
11709 {"mod", BINOP_MOD, PREC_MUL, 0},
11710 {"**", BINOP_EXP, PREC_REPEAT, 0},
11711 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11712 {"-", UNOP_NEG, PREC_PREFIX, 0},
11713 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11714 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11715 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11716 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11717 {".all", UNOP_IND, PREC_SUFFIX, 1},
11718 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11719 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11720 {NULL, 0, 0, 0}
11721 };
11722 \f
11723 enum ada_primitive_types {
11724 ada_primitive_type_int,
11725 ada_primitive_type_long,
11726 ada_primitive_type_short,
11727 ada_primitive_type_char,
11728 ada_primitive_type_float,
11729 ada_primitive_type_double,
11730 ada_primitive_type_void,
11731 ada_primitive_type_long_long,
11732 ada_primitive_type_long_double,
11733 ada_primitive_type_natural,
11734 ada_primitive_type_positive,
11735 ada_primitive_type_system_address,
11736 nr_ada_primitive_types
11737 };
11738
11739 static void
11740 ada_language_arch_info (struct gdbarch *gdbarch,
11741 struct language_arch_info *lai)
11742 {
11743 const struct builtin_type *builtin = builtin_type (gdbarch);
11744
11745 lai->primitive_type_vector
11746 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11747 struct type *);
11748
11749 lai->primitive_type_vector [ada_primitive_type_int]
11750 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11751 0, "integer");
11752 lai->primitive_type_vector [ada_primitive_type_long]
11753 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11754 0, "long_integer");
11755 lai->primitive_type_vector [ada_primitive_type_short]
11756 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11757 0, "short_integer");
11758 lai->string_char_type
11759 = lai->primitive_type_vector [ada_primitive_type_char]
11760 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11761 lai->primitive_type_vector [ada_primitive_type_float]
11762 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11763 "float", NULL);
11764 lai->primitive_type_vector [ada_primitive_type_double]
11765 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11766 "long_float", NULL);
11767 lai->primitive_type_vector [ada_primitive_type_long_long]
11768 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11769 0, "long_long_integer");
11770 lai->primitive_type_vector [ada_primitive_type_long_double]
11771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11772 "long_long_float", NULL);
11773 lai->primitive_type_vector [ada_primitive_type_natural]
11774 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11775 0, "natural");
11776 lai->primitive_type_vector [ada_primitive_type_positive]
11777 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11778 0, "positive");
11779 lai->primitive_type_vector [ada_primitive_type_void]
11780 = builtin->builtin_void;
11781
11782 lai->primitive_type_vector [ada_primitive_type_system_address]
11783 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11784 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11785 = "system__address";
11786
11787 lai->bool_type_symbol = NULL;
11788 lai->bool_type_default = builtin->builtin_bool;
11789 }
11790 \f
11791 /* Language vector */
11792
11793 /* Not really used, but needed in the ada_language_defn. */
11794
11795 static void
11796 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11797 {
11798 ada_emit_char (c, type, stream, quoter, 1);
11799 }
11800
11801 static int
11802 parse (void)
11803 {
11804 warnings_issued = 0;
11805 return ada_parse ();
11806 }
11807
11808 static const struct exp_descriptor ada_exp_descriptor = {
11809 ada_print_subexp,
11810 ada_operator_length,
11811 ada_operator_check,
11812 ada_op_name,
11813 ada_dump_subexp_body,
11814 ada_evaluate_subexp
11815 };
11816
11817 const struct language_defn ada_language_defn = {
11818 "ada", /* Language name */
11819 language_ada,
11820 range_check_off,
11821 type_check_off,
11822 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11823 that's not quite what this means. */
11824 array_row_major,
11825 macro_expansion_no,
11826 &ada_exp_descriptor,
11827 parse,
11828 ada_error,
11829 resolve,
11830 ada_printchar, /* Print a character constant */
11831 ada_printstr, /* Function to print string constant */
11832 emit_char, /* Function to print single char (not used) */
11833 ada_print_type, /* Print a type using appropriate syntax */
11834 ada_print_typedef, /* Print a typedef using appropriate syntax */
11835 ada_val_print, /* Print a value using appropriate syntax */
11836 ada_value_print, /* Print a top-level value */
11837 NULL, /* Language specific skip_trampoline */
11838 NULL, /* name_of_this */
11839 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11840 basic_lookup_transparent_type, /* lookup_transparent_type */
11841 ada_la_decode, /* Language specific symbol demangler */
11842 NULL, /* Language specific
11843 class_name_from_physname */
11844 ada_op_print_tab, /* expression operators for printing */
11845 0, /* c-style arrays */
11846 1, /* String lower bound */
11847 ada_get_gdb_completer_word_break_characters,
11848 ada_make_symbol_completion_list,
11849 ada_language_arch_info,
11850 ada_print_array_index,
11851 default_pass_by_reference,
11852 c_get_string,
11853 LANG_MAGIC
11854 };
11855
11856 /* Provide a prototype to silence -Wmissing-prototypes. */
11857 extern initialize_file_ftype _initialize_ada_language;
11858
11859 /* Command-list for the "set/show ada" prefix command. */
11860 static struct cmd_list_element *set_ada_list;
11861 static struct cmd_list_element *show_ada_list;
11862
11863 /* Implement the "set ada" prefix command. */
11864
11865 static void
11866 set_ada_command (char *arg, int from_tty)
11867 {
11868 printf_unfiltered (_(\
11869 "\"set ada\" must be followed by the name of a setting.\n"));
11870 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11871 }
11872
11873 /* Implement the "show ada" prefix command. */
11874
11875 static void
11876 show_ada_command (char *args, int from_tty)
11877 {
11878 cmd_show_list (show_ada_list, from_tty, "");
11879 }
11880
11881 void
11882 _initialize_ada_language (void)
11883 {
11884 add_language (&ada_language_defn);
11885
11886 add_prefix_cmd ("ada", no_class, set_ada_command,
11887 _("Prefix command for changing Ada-specfic settings"),
11888 &set_ada_list, "set ada ", 0, &setlist);
11889
11890 add_prefix_cmd ("ada", no_class, show_ada_command,
11891 _("Generic command for showing Ada-specific settings."),
11892 &show_ada_list, "show ada ", 0, &showlist);
11893
11894 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11895 &trust_pad_over_xvs, _("\
11896 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11897 Show whether an optimization trusting PAD types over XVS types is activated"),
11898 _("\
11899 This is related to the encoding used by the GNAT compiler. The debugger\n\
11900 should normally trust the contents of PAD types, but certain older versions\n\
11901 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11902 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11903 work around this bug. It is always safe to turn this option \"off\", but\n\
11904 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11905 this option to \"off\" unless necessary."),
11906 NULL, NULL, &set_ada_list, &show_ada_list);
11907
11908 varsize_limit = 65536;
11909
11910 obstack_init (&symbol_list_obstack);
11911
11912 decoded_names_store = htab_create_alloc
11913 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11914 NULL, xcalloc, xfree);
11915
11916 observer_attach_executable_changed (ada_executable_changed_observer);
11917
11918 /* Setup per-inferior data. */
11919 observer_attach_inferior_exit (ada_inferior_exit);
11920 ada_inferior_data
11921 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11922 }
This page took 0.304043 seconds and 4 git commands to generate.