gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1301 {
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1304
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
1308
1309 if (gsymbol->obj_section != NULL)
1310 {
1311 struct objfile *objf = gsymbol->obj_section->objfile;
1312
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
1315 }
1316 /* Sometimes, we can't find a corresponding objfile, in which
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
1320 if (*resultp == NULL)
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0, &type_print_raw_options);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 const struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4412
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4415 {
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4419
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4429
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4436
4437 return NULL;
4438 }
4439
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4445
4446 static void
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4449 int wild_match_p)
4450 {
4451 }
4452
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4455
4456 static int
4457 is_nondebugging_type (struct type *type)
4458 {
4459 const char *name = ada_type_name (type);
4460
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462 }
4463
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471 static int
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473 {
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527 static int
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529 {
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564 }
4565
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4572
4573 static int
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575 {
4576 int i, j;
4577
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
4584 i = 0;
4585 while (i < nsyms)
4586 {
4587 int remove_p = 0;
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4602 remove_p = 1;
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4622 remove_p = 1;
4623 }
4624 }
4625
4626 if (remove_p)
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
4633 i += 1;
4634 }
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
4651 return nsyms;
4652 }
4653
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4658
4659 static char *
4660 xget_renaming_scope (struct type *renaming_type)
4661 {
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4666
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
4672
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4675
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
4679
4680 /* Make a copy of scope and return it. */
4681
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4684
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4687
4688 return scope;
4689 }
4690
4691 /* Return nonzero if NAME corresponds to a package name. */
4692
4693 static int
4694 is_package_name (const char *name)
4695 {
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4701
4702 char *fun_name;
4703
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
4708
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4711
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4716
4717 fun_name = xstrprintf ("_ada_%s", name);
4718
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720 }
4721
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4724
4725 static int
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4727 {
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4734
4735 make_cleanup (xfree, scope);
4736
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4739 return 0;
4740
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
4743
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
4750
4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
4752 }
4753
4754 /* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
4759
4760 Rationale:
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
4773
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4790
4791 static int
4792 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4794 {
4795 struct symbol *current_function;
4796 const char *current_function_name;
4797 int i;
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
4802 First, zero out such symbols, then compress. */
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
4807 const struct block *block = syms[i].block;
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
4820
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
4845
4846 if (current_block == NULL)
4847 return nsyms;
4848
4849 current_function = block_linkage_function (current_block);
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4867 {
4868 int j;
4869
4870 for (j = i + 1; j < nsyms; j += 1)
4871 syms[j - 1] = syms[j];
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879 }
4880
4881 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891 static void
4892 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
4894 int wild_match_p)
4895 {
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4916 }
4917
4918 /* An object of this type is used as the user_data argument when
4919 calling the map_matching_symbols method. */
4920
4921 struct match_data
4922 {
4923 struct objfile *objfile;
4924 struct obstack *obstackp;
4925 struct symbol *arg_sym;
4926 int found_sym;
4927 };
4928
4929 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
4937
4938 static int
4939 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4940 {
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967 }
4968
4969 /* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
4973
4974 static int
4975 compare_names (const char *string1, const char *string2)
4976 {
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
4993 if (is_name_suffix (string1))
4994 return 0;
4995 else
4996 return 1;
4997 }
4998 /* FALLTHROUGH */
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
5005 }
5006
5007 /* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011 static void
5012 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
5015 {
5016 struct objfile *objfile;
5017 struct match_data data;
5018
5019 memset (&data, 0, sizeof data);
5020 data.obstackp = obstackp;
5021
5022 ALL_OBJFILES (objfile)
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
5048 full_match, compare_names);
5049 }
5050 }
5051 }
5052
5053 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5054 scope and in global scopes, returning the number of matches.
5055 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5056 indicating the symbols found and the blocks and symbol tables (if
5057 any) in which they were found. This vector are transient---good only to
5058 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5059 symbol match within the nest of blocks whose innermost member is BLOCK0,
5060 is the one match returned (no other matches in that or
5061 enclosing blocks is returned). If there are any matches in or
5062 surrounding BLOCK0, then these alone are returned. Otherwise, if
5063 FULL_SEARCH is non-zero, then the search extends to global and
5064 file-scope (static) symbol tables.
5065 Names prefixed with "standard__" are handled specially: "standard__"
5066 is first stripped off, and only static and global symbols are searched. */
5067
5068 int
5069 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5070 domain_enum namespace,
5071 struct ada_symbol_info **results,
5072 int full_search)
5073 {
5074 struct symbol *sym;
5075 struct block *block;
5076 const char *name;
5077 const int wild_match_p = should_use_wild_match (name0);
5078 int cacheIfUnique;
5079 int ndefns;
5080
5081 obstack_free (&symbol_list_obstack, NULL);
5082 obstack_init (&symbol_list_obstack);
5083
5084 cacheIfUnique = 0;
5085
5086 /* Search specified block and its superiors. */
5087
5088 name = name0;
5089 block = (struct block *) block0; /* FIXME: No cast ought to be
5090 needed, but adding const will
5091 have a cascade effect. */
5092
5093 /* Special case: If the user specifies a symbol name inside package
5094 Standard, do a non-wild matching of the symbol name without
5095 the "standard__" prefix. This was primarily introduced in order
5096 to allow the user to specifically access the standard exceptions
5097 using, for instance, Standard.Constraint_Error when Constraint_Error
5098 is ambiguous (due to the user defining its own Constraint_Error
5099 entity inside its program). */
5100 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5101 {
5102 block = NULL;
5103 name = name0 + sizeof ("standard__") - 1;
5104 }
5105
5106 /* Check the non-global symbols. If we have ANY match, then we're done. */
5107
5108 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5109 wild_match_p);
5110 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5111 goto done;
5112
5113 /* No non-global symbols found. Check our cache to see if we have
5114 already performed this search before. If we have, then return
5115 the same result. */
5116
5117 cacheIfUnique = 1;
5118 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5119 {
5120 if (sym != NULL)
5121 add_defn_to_vec (&symbol_list_obstack, sym, block);
5122 goto done;
5123 }
5124
5125 /* Search symbols from all global blocks. */
5126
5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5128 wild_match_p);
5129
5130 /* Now add symbols from all per-file blocks if we've gotten no hits
5131 (not strictly correct, but perhaps better than an error). */
5132
5133 if (num_defns_collected (&symbol_list_obstack) == 0)
5134 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5135 wild_match_p);
5136
5137 done:
5138 ndefns = num_defns_collected (&symbol_list_obstack);
5139 *results = defns_collected (&symbol_list_obstack, 1);
5140
5141 ndefns = remove_extra_symbols (*results, ndefns);
5142
5143 if (ndefns == 0 && full_search)
5144 cache_symbol (name0, namespace, NULL, NULL);
5145
5146 if (ndefns == 1 && full_search && cacheIfUnique)
5147 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5148
5149 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5150
5151 return ndefns;
5152 }
5153
5154 /* If NAME is the name of an entity, return a string that should
5155 be used to look that entity up in Ada units. This string should
5156 be deallocated after use using xfree.
5157
5158 NAME can have any form that the "break" or "print" commands might
5159 recognize. In other words, it does not have to be the "natural"
5160 name, or the "encoded" name. */
5161
5162 char *
5163 ada_name_for_lookup (const char *name)
5164 {
5165 char *canon;
5166 int nlen = strlen (name);
5167
5168 if (name[0] == '<' && name[nlen - 1] == '>')
5169 {
5170 canon = xmalloc (nlen - 1);
5171 memcpy (canon, name + 1, nlen - 2);
5172 canon[nlen - 2] = '\0';
5173 }
5174 else
5175 canon = xstrdup (ada_encode (ada_fold_name (name)));
5176 return canon;
5177 }
5178
5179 /* Implementation of the la_iterate_over_symbols method. */
5180
5181 static void
5182 ada_iterate_over_symbols (const struct block *block,
5183 const char *name, domain_enum domain,
5184 symbol_found_callback_ftype *callback,
5185 void *data)
5186 {
5187 int ndefs, i;
5188 struct ada_symbol_info *results;
5189
5190 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5191 for (i = 0; i < ndefs; ++i)
5192 {
5193 if (! (*callback) (results[i].sym, data))
5194 break;
5195 }
5196 }
5197
5198 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5199 to 1, but choosing the first symbol found if there are multiple
5200 choices.
5201
5202 The result is stored in *INFO, which must be non-NULL.
5203 If no match is found, INFO->SYM is set to NULL. */
5204
5205 void
5206 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5207 domain_enum namespace,
5208 struct ada_symbol_info *info)
5209 {
5210 struct ada_symbol_info *candidates;
5211 int n_candidates;
5212
5213 gdb_assert (info != NULL);
5214 memset (info, 0, sizeof (struct ada_symbol_info));
5215
5216 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5217 1);
5218
5219 if (n_candidates == 0)
5220 return;
5221
5222 *info = candidates[0];
5223 info->sym = fixup_symbol_section (info->sym, NULL);
5224 }
5225
5226 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5227 scope and in global scopes, or NULL if none. NAME is folded and
5228 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5229 choosing the first symbol if there are multiple choices.
5230 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5231
5232 struct symbol *
5233 ada_lookup_symbol (const char *name, const struct block *block0,
5234 domain_enum namespace, int *is_a_field_of_this)
5235 {
5236 struct ada_symbol_info info;
5237
5238 if (is_a_field_of_this != NULL)
5239 *is_a_field_of_this = 0;
5240
5241 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5242 block0, namespace, &info);
5243 return info.sym;
5244 }
5245
5246 static struct symbol *
5247 ada_lookup_symbol_nonlocal (const char *name,
5248 const struct block *block,
5249 const domain_enum domain)
5250 {
5251 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5252 }
5253
5254
5255 /* True iff STR is a possible encoded suffix of a normal Ada name
5256 that is to be ignored for matching purposes. Suffixes of parallel
5257 names (e.g., XVE) are not included here. Currently, the possible suffixes
5258 are given by any of the regular expressions:
5259
5260 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5261 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5262 TKB [subprogram suffix for task bodies]
5263 _E[0-9]+[bs]$ [protected object entry suffixes]
5264 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5265
5266 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5267 match is performed. This sequence is used to differentiate homonyms,
5268 is an optional part of a valid name suffix. */
5269
5270 static int
5271 is_name_suffix (const char *str)
5272 {
5273 int k;
5274 const char *matching;
5275 const int len = strlen (str);
5276
5277 /* Skip optional leading __[0-9]+. */
5278
5279 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5280 {
5281 str += 3;
5282 while (isdigit (str[0]))
5283 str += 1;
5284 }
5285
5286 /* [.$][0-9]+ */
5287
5288 if (str[0] == '.' || str[0] == '$')
5289 {
5290 matching = str + 1;
5291 while (isdigit (matching[0]))
5292 matching += 1;
5293 if (matching[0] == '\0')
5294 return 1;
5295 }
5296
5297 /* ___[0-9]+ */
5298
5299 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5300 {
5301 matching = str + 3;
5302 while (isdigit (matching[0]))
5303 matching += 1;
5304 if (matching[0] == '\0')
5305 return 1;
5306 }
5307
5308 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5309
5310 if (strcmp (str, "TKB") == 0)
5311 return 1;
5312
5313 #if 0
5314 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5315 with a N at the end. Unfortunately, the compiler uses the same
5316 convention for other internal types it creates. So treating
5317 all entity names that end with an "N" as a name suffix causes
5318 some regressions. For instance, consider the case of an enumerated
5319 type. To support the 'Image attribute, it creates an array whose
5320 name ends with N.
5321 Having a single character like this as a suffix carrying some
5322 information is a bit risky. Perhaps we should change the encoding
5323 to be something like "_N" instead. In the meantime, do not do
5324 the following check. */
5325 /* Protected Object Subprograms */
5326 if (len == 1 && str [0] == 'N')
5327 return 1;
5328 #endif
5329
5330 /* _E[0-9]+[bs]$ */
5331 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5332 {
5333 matching = str + 3;
5334 while (isdigit (matching[0]))
5335 matching += 1;
5336 if ((matching[0] == 'b' || matching[0] == 's')
5337 && matching [1] == '\0')
5338 return 1;
5339 }
5340
5341 /* ??? We should not modify STR directly, as we are doing below. This
5342 is fine in this case, but may become problematic later if we find
5343 that this alternative did not work, and want to try matching
5344 another one from the begining of STR. Since we modified it, we
5345 won't be able to find the begining of the string anymore! */
5346 if (str[0] == 'X')
5347 {
5348 str += 1;
5349 while (str[0] != '_' && str[0] != '\0')
5350 {
5351 if (str[0] != 'n' && str[0] != 'b')
5352 return 0;
5353 str += 1;
5354 }
5355 }
5356
5357 if (str[0] == '\000')
5358 return 1;
5359
5360 if (str[0] == '_')
5361 {
5362 if (str[1] != '_' || str[2] == '\000')
5363 return 0;
5364 if (str[2] == '_')
5365 {
5366 if (strcmp (str + 3, "JM") == 0)
5367 return 1;
5368 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5369 the LJM suffix in favor of the JM one. But we will
5370 still accept LJM as a valid suffix for a reasonable
5371 amount of time, just to allow ourselves to debug programs
5372 compiled using an older version of GNAT. */
5373 if (strcmp (str + 3, "LJM") == 0)
5374 return 1;
5375 if (str[3] != 'X')
5376 return 0;
5377 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5378 || str[4] == 'U' || str[4] == 'P')
5379 return 1;
5380 if (str[4] == 'R' && str[5] != 'T')
5381 return 1;
5382 return 0;
5383 }
5384 if (!isdigit (str[2]))
5385 return 0;
5386 for (k = 3; str[k] != '\0'; k += 1)
5387 if (!isdigit (str[k]) && str[k] != '_')
5388 return 0;
5389 return 1;
5390 }
5391 if (str[0] == '$' && isdigit (str[1]))
5392 {
5393 for (k = 2; str[k] != '\0'; k += 1)
5394 if (!isdigit (str[k]) && str[k] != '_')
5395 return 0;
5396 return 1;
5397 }
5398 return 0;
5399 }
5400
5401 /* Return non-zero if the string starting at NAME and ending before
5402 NAME_END contains no capital letters. */
5403
5404 static int
5405 is_valid_name_for_wild_match (const char *name0)
5406 {
5407 const char *decoded_name = ada_decode (name0);
5408 int i;
5409
5410 /* If the decoded name starts with an angle bracket, it means that
5411 NAME0 does not follow the GNAT encoding format. It should then
5412 not be allowed as a possible wild match. */
5413 if (decoded_name[0] == '<')
5414 return 0;
5415
5416 for (i=0; decoded_name[i] != '\0'; i++)
5417 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5418 return 0;
5419
5420 return 1;
5421 }
5422
5423 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5424 that could start a simple name. Assumes that *NAMEP points into
5425 the string beginning at NAME0. */
5426
5427 static int
5428 advance_wild_match (const char **namep, const char *name0, int target0)
5429 {
5430 const char *name = *namep;
5431
5432 while (1)
5433 {
5434 int t0, t1;
5435
5436 t0 = *name;
5437 if (t0 == '_')
5438 {
5439 t1 = name[1];
5440 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5441 {
5442 name += 1;
5443 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5444 break;
5445 else
5446 name += 1;
5447 }
5448 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5449 || name[2] == target0))
5450 {
5451 name += 2;
5452 break;
5453 }
5454 else
5455 return 0;
5456 }
5457 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5458 name += 1;
5459 else
5460 return 0;
5461 }
5462
5463 *namep = name;
5464 return 1;
5465 }
5466
5467 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5468 informational suffixes of NAME (i.e., for which is_name_suffix is
5469 true). Assumes that PATN is a lower-cased Ada simple name. */
5470
5471 static int
5472 wild_match (const char *name, const char *patn)
5473 {
5474 const char *p;
5475 const char *name0 = name;
5476
5477 while (1)
5478 {
5479 const char *match = name;
5480
5481 if (*name == *patn)
5482 {
5483 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5484 if (*p != *name)
5485 break;
5486 if (*p == '\0' && is_name_suffix (name))
5487 return match != name0 && !is_valid_name_for_wild_match (name0);
5488
5489 if (name[-1] == '_')
5490 name -= 1;
5491 }
5492 if (!advance_wild_match (&name, name0, *patn))
5493 return 1;
5494 }
5495 }
5496
5497 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5498 informational suffix. */
5499
5500 static int
5501 full_match (const char *sym_name, const char *search_name)
5502 {
5503 return !match_name (sym_name, search_name, 0);
5504 }
5505
5506
5507 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5508 vector *defn_symbols, updating the list of symbols in OBSTACKP
5509 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5510 OBJFILE is the section containing BLOCK.
5511 SYMTAB is recorded with each symbol added. */
5512
5513 static void
5514 ada_add_block_symbols (struct obstack *obstackp,
5515 struct block *block, const char *name,
5516 domain_enum domain, struct objfile *objfile,
5517 int wild)
5518 {
5519 struct block_iterator iter;
5520 int name_len = strlen (name);
5521 /* A matching argument symbol, if any. */
5522 struct symbol *arg_sym;
5523 /* Set true when we find a matching non-argument symbol. */
5524 int found_sym;
5525 struct symbol *sym;
5526
5527 arg_sym = NULL;
5528 found_sym = 0;
5529 if (wild)
5530 {
5531 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5532 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5533 {
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5537 {
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
5547 block);
5548 }
5549 }
5550 }
5551 }
5552 else
5553 {
5554 for (sym = block_iter_match_first (block, name, full_match, &iter);
5555 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5556 {
5557 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5558 SYMBOL_DOMAIN (sym), domain))
5559 {
5560 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5561 {
5562 if (SYMBOL_IS_ARGUMENT (sym))
5563 arg_sym = sym;
5564 else
5565 {
5566 found_sym = 1;
5567 add_defn_to_vec (obstackp,
5568 fixup_symbol_section (sym, objfile),
5569 block);
5570 }
5571 }
5572 }
5573 }
5574 }
5575
5576 if (!found_sym && arg_sym != NULL)
5577 {
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (arg_sym, objfile),
5580 block);
5581 }
5582
5583 if (!wild)
5584 {
5585 arg_sym = NULL;
5586 found_sym = 0;
5587
5588 ALL_BLOCK_SYMBOLS (block, iter, sym)
5589 {
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
5592 {
5593 int cmp;
5594
5595 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5596 if (cmp == 0)
5597 {
5598 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5599 if (cmp == 0)
5600 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5601 name_len);
5602 }
5603
5604 if (cmp == 0
5605 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5606 {
5607 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5608 {
5609 if (SYMBOL_IS_ARGUMENT (sym))
5610 arg_sym = sym;
5611 else
5612 {
5613 found_sym = 1;
5614 add_defn_to_vec (obstackp,
5615 fixup_symbol_section (sym, objfile),
5616 block);
5617 }
5618 }
5619 }
5620 }
5621 }
5622
5623 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5624 They aren't parameters, right? */
5625 if (!found_sym && arg_sym != NULL)
5626 {
5627 add_defn_to_vec (obstackp,
5628 fixup_symbol_section (arg_sym, objfile),
5629 block);
5630 }
5631 }
5632 }
5633 \f
5634
5635 /* Symbol Completion */
5636
5637 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5638 name in a form that's appropriate for the completion. The result
5639 does not need to be deallocated, but is only good until the next call.
5640
5641 TEXT_LEN is equal to the length of TEXT.
5642 Perform a wild match if WILD_MATCH_P is set.
5643 ENCODED_P should be set if TEXT represents the start of a symbol name
5644 in its encoded form. */
5645
5646 static const char *
5647 symbol_completion_match (const char *sym_name,
5648 const char *text, int text_len,
5649 int wild_match_p, int encoded_p)
5650 {
5651 const int verbatim_match = (text[0] == '<');
5652 int match = 0;
5653
5654 if (verbatim_match)
5655 {
5656 /* Strip the leading angle bracket. */
5657 text = text + 1;
5658 text_len--;
5659 }
5660
5661 /* First, test against the fully qualified name of the symbol. */
5662
5663 if (strncmp (sym_name, text, text_len) == 0)
5664 match = 1;
5665
5666 if (match && !encoded_p)
5667 {
5668 /* One needed check before declaring a positive match is to verify
5669 that iff we are doing a verbatim match, the decoded version
5670 of the symbol name starts with '<'. Otherwise, this symbol name
5671 is not a suitable completion. */
5672 const char *sym_name_copy = sym_name;
5673 int has_angle_bracket;
5674
5675 sym_name = ada_decode (sym_name);
5676 has_angle_bracket = (sym_name[0] == '<');
5677 match = (has_angle_bracket == verbatim_match);
5678 sym_name = sym_name_copy;
5679 }
5680
5681 if (match && !verbatim_match)
5682 {
5683 /* When doing non-verbatim match, another check that needs to
5684 be done is to verify that the potentially matching symbol name
5685 does not include capital letters, because the ada-mode would
5686 not be able to understand these symbol names without the
5687 angle bracket notation. */
5688 const char *tmp;
5689
5690 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5691 if (*tmp != '\0')
5692 match = 0;
5693 }
5694
5695 /* Second: Try wild matching... */
5696
5697 if (!match && wild_match_p)
5698 {
5699 /* Since we are doing wild matching, this means that TEXT
5700 may represent an unqualified symbol name. We therefore must
5701 also compare TEXT against the unqualified name of the symbol. */
5702 sym_name = ada_unqualified_name (ada_decode (sym_name));
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706 }
5707
5708 /* Finally: If we found a mach, prepare the result to return. */
5709
5710 if (!match)
5711 return NULL;
5712
5713 if (verbatim_match)
5714 sym_name = add_angle_brackets (sym_name);
5715
5716 if (!encoded_p)
5717 sym_name = ada_decode (sym_name);
5718
5719 return sym_name;
5720 }
5721
5722 /* A companion function to ada_make_symbol_completion_list().
5723 Check if SYM_NAME represents a symbol which name would be suitable
5724 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5725 it is appended at the end of the given string vector SV.
5726
5727 ORIG_TEXT is the string original string from the user command
5728 that needs to be completed. WORD is the entire command on which
5729 completion should be performed. These two parameters are used to
5730 determine which part of the symbol name should be added to the
5731 completion vector.
5732 if WILD_MATCH_P is set, then wild matching is performed.
5733 ENCODED_P should be set if TEXT represents a symbol name in its
5734 encoded formed (in which case the completion should also be
5735 encoded). */
5736
5737 static void
5738 symbol_completion_add (VEC(char_ptr) **sv,
5739 const char *sym_name,
5740 const char *text, int text_len,
5741 const char *orig_text, const char *word,
5742 int wild_match_p, int encoded_p)
5743 {
5744 const char *match = symbol_completion_match (sym_name, text, text_len,
5745 wild_match_p, encoded_p);
5746 char *completion;
5747
5748 if (match == NULL)
5749 return;
5750
5751 /* We found a match, so add the appropriate completion to the given
5752 string vector. */
5753
5754 if (word == orig_text)
5755 {
5756 completion = xmalloc (strlen (match) + 5);
5757 strcpy (completion, match);
5758 }
5759 else if (word > orig_text)
5760 {
5761 /* Return some portion of sym_name. */
5762 completion = xmalloc (strlen (match) + 5);
5763 strcpy (completion, match + (word - orig_text));
5764 }
5765 else
5766 {
5767 /* Return some of ORIG_TEXT plus sym_name. */
5768 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5769 strncpy (completion, word, orig_text - word);
5770 completion[orig_text - word] = '\0';
5771 strcat (completion, match);
5772 }
5773
5774 VEC_safe_push (char_ptr, *sv, completion);
5775 }
5776
5777 /* An object of this type is passed as the user_data argument to the
5778 expand_partial_symbol_names method. */
5779 struct add_partial_datum
5780 {
5781 VEC(char_ptr) **completions;
5782 char *text;
5783 int text_len;
5784 char *text0;
5785 char *word;
5786 int wild_match;
5787 int encoded;
5788 };
5789
5790 /* A callback for expand_partial_symbol_names. */
5791 static int
5792 ada_expand_partial_symbol_name (const char *name, void *user_data)
5793 {
5794 struct add_partial_datum *data = user_data;
5795
5796 return symbol_completion_match (name, data->text, data->text_len,
5797 data->wild_match, data->encoded) != NULL;
5798 }
5799
5800 /* Return a list of possible symbol names completing TEXT0. WORD is
5801 the entire command on which completion is made. */
5802
5803 static VEC (char_ptr) *
5804 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5805 {
5806 char *text;
5807 int text_len;
5808 int wild_match_p;
5809 int encoded_p;
5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5811 struct symbol *sym;
5812 struct symtab *s;
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
5817 struct block_iterator iter;
5818
5819 gdb_assert (code == TYPE_CODE_UNDEF);
5820
5821 if (text0[0] == '<')
5822 {
5823 text = xstrdup (text0);
5824 make_cleanup (xfree, text);
5825 text_len = strlen (text);
5826 wild_match_p = 0;
5827 encoded_p = 1;
5828 }
5829 else
5830 {
5831 text = xstrdup (ada_encode (text0));
5832 make_cleanup (xfree, text);
5833 text_len = strlen (text);
5834 for (i = 0; i < text_len; i++)
5835 text[i] = tolower (text[i]);
5836
5837 encoded_p = (strstr (text0, "__") != NULL);
5838 /* If the name contains a ".", then the user is entering a fully
5839 qualified entity name, and the match must not be done in wild
5840 mode. Similarly, if the user wants to complete what looks like
5841 an encoded name, the match must not be done in wild mode. */
5842 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5843 }
5844
5845 /* First, look at the partial symtab symbols. */
5846 {
5847 struct add_partial_datum data;
5848
5849 data.completions = &completions;
5850 data.text = text;
5851 data.text_len = text_len;
5852 data.text0 = text0;
5853 data.word = word;
5854 data.wild_match = wild_match_p;
5855 data.encoded = encoded_p;
5856 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5857 }
5858
5859 /* At this point scan through the misc symbol vectors and add each
5860 symbol you find to the list. Eventually we want to ignore
5861 anything that isn't a text symbol (everything else will be
5862 handled by the psymtab code above). */
5863
5864 ALL_MSYMBOLS (objfile, msymbol)
5865 {
5866 QUIT;
5867 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5868 text, text_len, text0, word, wild_match_p,
5869 encoded_p);
5870 }
5871
5872 /* Search upwards from currently selected frame (so that we can
5873 complete on local vars. */
5874
5875 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5876 {
5877 if (!BLOCK_SUPERBLOCK (b))
5878 surrounding_static_block = b; /* For elmin of dups */
5879
5880 ALL_BLOCK_SYMBOLS (b, iter, sym)
5881 {
5882 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5883 text, text_len, text0, word,
5884 wild_match_p, encoded_p);
5885 }
5886 }
5887
5888 /* Go through the symtabs and check the externs and statics for
5889 symbols which match. */
5890
5891 ALL_SYMTABS (objfile, s)
5892 {
5893 QUIT;
5894 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5895 ALL_BLOCK_SYMBOLS (b, iter, sym)
5896 {
5897 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5898 text, text_len, text0, word,
5899 wild_match_p, encoded_p);
5900 }
5901 }
5902
5903 ALL_SYMTABS (objfile, s)
5904 {
5905 QUIT;
5906 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5907 /* Don't do this block twice. */
5908 if (b == surrounding_static_block)
5909 continue;
5910 ALL_BLOCK_SYMBOLS (b, iter, sym)
5911 {
5912 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5913 text, text_len, text0, word,
5914 wild_match_p, encoded_p);
5915 }
5916 }
5917
5918 return completions;
5919 }
5920
5921 /* Field Access */
5922
5923 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5924 for tagged types. */
5925
5926 static int
5927 ada_is_dispatch_table_ptr_type (struct type *type)
5928 {
5929 const char *name;
5930
5931 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5932 return 0;
5933
5934 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5935 if (name == NULL)
5936 return 0;
5937
5938 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5939 }
5940
5941 /* Return non-zero if TYPE is an interface tag. */
5942
5943 static int
5944 ada_is_interface_tag (struct type *type)
5945 {
5946 const char *name = TYPE_NAME (type);
5947
5948 if (name == NULL)
5949 return 0;
5950
5951 return (strcmp (name, "ada__tags__interface_tag") == 0);
5952 }
5953
5954 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5955 to be invisible to users. */
5956
5957 int
5958 ada_is_ignored_field (struct type *type, int field_num)
5959 {
5960 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5961 return 1;
5962
5963 /* Check the name of that field. */
5964 {
5965 const char *name = TYPE_FIELD_NAME (type, field_num);
5966
5967 /* Anonymous field names should not be printed.
5968 brobecker/2007-02-20: I don't think this can actually happen
5969 but we don't want to print the value of annonymous fields anyway. */
5970 if (name == NULL)
5971 return 1;
5972
5973 /* Normally, fields whose name start with an underscore ("_")
5974 are fields that have been internally generated by the compiler,
5975 and thus should not be printed. The "_parent" field is special,
5976 however: This is a field internally generated by the compiler
5977 for tagged types, and it contains the components inherited from
5978 the parent type. This field should not be printed as is, but
5979 should not be ignored either. */
5980 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5981 return 1;
5982 }
5983
5984 /* If this is the dispatch table of a tagged type or an interface tag,
5985 then ignore. */
5986 if (ada_is_tagged_type (type, 1)
5987 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5988 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
5989 return 1;
5990
5991 /* Not a special field, so it should not be ignored. */
5992 return 0;
5993 }
5994
5995 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5996 pointer or reference type whose ultimate target has a tag field. */
5997
5998 int
5999 ada_is_tagged_type (struct type *type, int refok)
6000 {
6001 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6002 }
6003
6004 /* True iff TYPE represents the type of X'Tag */
6005
6006 int
6007 ada_is_tag_type (struct type *type)
6008 {
6009 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6010 return 0;
6011 else
6012 {
6013 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6014
6015 return (name != NULL
6016 && strcmp (name, "ada__tags__dispatch_table") == 0);
6017 }
6018 }
6019
6020 /* The type of the tag on VAL. */
6021
6022 struct type *
6023 ada_tag_type (struct value *val)
6024 {
6025 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6026 }
6027
6028 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6029 retired at Ada 05). */
6030
6031 static int
6032 is_ada95_tag (struct value *tag)
6033 {
6034 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6035 }
6036
6037 /* The value of the tag on VAL. */
6038
6039 struct value *
6040 ada_value_tag (struct value *val)
6041 {
6042 return ada_value_struct_elt (val, "_tag", 0);
6043 }
6044
6045 /* The value of the tag on the object of type TYPE whose contents are
6046 saved at VALADDR, if it is non-null, or is at memory address
6047 ADDRESS. */
6048
6049 static struct value *
6050 value_tag_from_contents_and_address (struct type *type,
6051 const gdb_byte *valaddr,
6052 CORE_ADDR address)
6053 {
6054 int tag_byte_offset;
6055 struct type *tag_type;
6056
6057 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6058 NULL, NULL, NULL))
6059 {
6060 const gdb_byte *valaddr1 = ((valaddr == NULL)
6061 ? NULL
6062 : valaddr + tag_byte_offset);
6063 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6064
6065 return value_from_contents_and_address (tag_type, valaddr1, address1);
6066 }
6067 return NULL;
6068 }
6069
6070 static struct type *
6071 type_from_tag (struct value *tag)
6072 {
6073 const char *type_name = ada_tag_name (tag);
6074
6075 if (type_name != NULL)
6076 return ada_find_any_type (ada_encode (type_name));
6077 return NULL;
6078 }
6079
6080 /* Given a value OBJ of a tagged type, return a value of this
6081 type at the base address of the object. The base address, as
6082 defined in Ada.Tags, it is the address of the primary tag of
6083 the object, and therefore where the field values of its full
6084 view can be fetched. */
6085
6086 struct value *
6087 ada_tag_value_at_base_address (struct value *obj)
6088 {
6089 volatile struct gdb_exception e;
6090 struct value *val;
6091 LONGEST offset_to_top = 0;
6092 struct type *ptr_type, *obj_type;
6093 struct value *tag;
6094 CORE_ADDR base_address;
6095
6096 obj_type = value_type (obj);
6097
6098 /* It is the responsability of the caller to deref pointers. */
6099
6100 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6101 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6102 return obj;
6103
6104 tag = ada_value_tag (obj);
6105 if (!tag)
6106 return obj;
6107
6108 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6109
6110 if (is_ada95_tag (tag))
6111 return obj;
6112
6113 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6114 ptr_type = lookup_pointer_type (ptr_type);
6115 val = value_cast (ptr_type, tag);
6116 if (!val)
6117 return obj;
6118
6119 /* It is perfectly possible that an exception be raised while
6120 trying to determine the base address, just like for the tag;
6121 see ada_tag_name for more details. We do not print the error
6122 message for the same reason. */
6123
6124 TRY_CATCH (e, RETURN_MASK_ERROR)
6125 {
6126 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6127 }
6128
6129 if (e.reason < 0)
6130 return obj;
6131
6132 /* If offset is null, nothing to do. */
6133
6134 if (offset_to_top == 0)
6135 return obj;
6136
6137 /* -1 is a special case in Ada.Tags; however, what should be done
6138 is not quite clear from the documentation. So do nothing for
6139 now. */
6140
6141 if (offset_to_top == -1)
6142 return obj;
6143
6144 base_address = value_address (obj) - offset_to_top;
6145 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6146
6147 /* Make sure that we have a proper tag at the new address.
6148 Otherwise, offset_to_top is bogus (which can happen when
6149 the object is not initialized yet). */
6150
6151 if (!tag)
6152 return obj;
6153
6154 obj_type = type_from_tag (tag);
6155
6156 if (!obj_type)
6157 return obj;
6158
6159 return value_from_contents_and_address (obj_type, NULL, base_address);
6160 }
6161
6162 /* Return the "ada__tags__type_specific_data" type. */
6163
6164 static struct type *
6165 ada_get_tsd_type (struct inferior *inf)
6166 {
6167 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6168
6169 if (data->tsd_type == 0)
6170 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6171 return data->tsd_type;
6172 }
6173
6174 /* Return the TSD (type-specific data) associated to the given TAG.
6175 TAG is assumed to be the tag of a tagged-type entity.
6176
6177 May return NULL if we are unable to get the TSD. */
6178
6179 static struct value *
6180 ada_get_tsd_from_tag (struct value *tag)
6181 {
6182 struct value *val;
6183 struct type *type;
6184
6185 /* First option: The TSD is simply stored as a field of our TAG.
6186 Only older versions of GNAT would use this format, but we have
6187 to test it first, because there are no visible markers for
6188 the current approach except the absence of that field. */
6189
6190 val = ada_value_struct_elt (tag, "tsd", 1);
6191 if (val)
6192 return val;
6193
6194 /* Try the second representation for the dispatch table (in which
6195 there is no explicit 'tsd' field in the referent of the tag pointer,
6196 and instead the tsd pointer is stored just before the dispatch
6197 table. */
6198
6199 type = ada_get_tsd_type (current_inferior());
6200 if (type == NULL)
6201 return NULL;
6202 type = lookup_pointer_type (lookup_pointer_type (type));
6203 val = value_cast (type, tag);
6204 if (val == NULL)
6205 return NULL;
6206 return value_ind (value_ptradd (val, -1));
6207 }
6208
6209 /* Given the TSD of a tag (type-specific data), return a string
6210 containing the name of the associated type.
6211
6212 The returned value is good until the next call. May return NULL
6213 if we are unable to determine the tag name. */
6214
6215 static char *
6216 ada_tag_name_from_tsd (struct value *tsd)
6217 {
6218 static char name[1024];
6219 char *p;
6220 struct value *val;
6221
6222 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6223 if (val == NULL)
6224 return NULL;
6225 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6226 for (p = name; *p != '\0'; p += 1)
6227 if (isalpha (*p))
6228 *p = tolower (*p);
6229 return name;
6230 }
6231
6232 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6233 a C string.
6234
6235 Return NULL if the TAG is not an Ada tag, or if we were unable to
6236 determine the name of that tag. The result is good until the next
6237 call. */
6238
6239 const char *
6240 ada_tag_name (struct value *tag)
6241 {
6242 volatile struct gdb_exception e;
6243 char *name = NULL;
6244
6245 if (!ada_is_tag_type (value_type (tag)))
6246 return NULL;
6247
6248 /* It is perfectly possible that an exception be raised while trying
6249 to determine the TAG's name, even under normal circumstances:
6250 The associated variable may be uninitialized or corrupted, for
6251 instance. We do not let any exception propagate past this point.
6252 instead we return NULL.
6253
6254 We also do not print the error message either (which often is very
6255 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6256 the caller print a more meaningful message if necessary. */
6257 TRY_CATCH (e, RETURN_MASK_ERROR)
6258 {
6259 struct value *tsd = ada_get_tsd_from_tag (tag);
6260
6261 if (tsd != NULL)
6262 name = ada_tag_name_from_tsd (tsd);
6263 }
6264
6265 return name;
6266 }
6267
6268 /* The parent type of TYPE, or NULL if none. */
6269
6270 struct type *
6271 ada_parent_type (struct type *type)
6272 {
6273 int i;
6274
6275 type = ada_check_typedef (type);
6276
6277 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6278 return NULL;
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 if (ada_is_parent_field (type, i))
6282 {
6283 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6284
6285 /* If the _parent field is a pointer, then dereference it. */
6286 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6287 parent_type = TYPE_TARGET_TYPE (parent_type);
6288 /* If there is a parallel XVS type, get the actual base type. */
6289 parent_type = ada_get_base_type (parent_type);
6290
6291 return ada_check_typedef (parent_type);
6292 }
6293
6294 return NULL;
6295 }
6296
6297 /* True iff field number FIELD_NUM of structure type TYPE contains the
6298 parent-type (inherited) fields of a derived type. Assumes TYPE is
6299 a structure type with at least FIELD_NUM+1 fields. */
6300
6301 int
6302 ada_is_parent_field (struct type *type, int field_num)
6303 {
6304 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6305
6306 return (name != NULL
6307 && (strncmp (name, "PARENT", 6) == 0
6308 || strncmp (name, "_parent", 7) == 0));
6309 }
6310
6311 /* True iff field number FIELD_NUM of structure type TYPE is a
6312 transparent wrapper field (which should be silently traversed when doing
6313 field selection and flattened when printing). Assumes TYPE is a
6314 structure type with at least FIELD_NUM+1 fields. Such fields are always
6315 structures. */
6316
6317 int
6318 ada_is_wrapper_field (struct type *type, int field_num)
6319 {
6320 const char *name = TYPE_FIELD_NAME (type, field_num);
6321
6322 return (name != NULL
6323 && (strncmp (name, "PARENT", 6) == 0
6324 || strcmp (name, "REP") == 0
6325 || strncmp (name, "_parent", 7) == 0
6326 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6327 }
6328
6329 /* True iff field number FIELD_NUM of structure or union type TYPE
6330 is a variant wrapper. Assumes TYPE is a structure type with at least
6331 FIELD_NUM+1 fields. */
6332
6333 int
6334 ada_is_variant_part (struct type *type, int field_num)
6335 {
6336 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6337
6338 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6339 || (is_dynamic_field (type, field_num)
6340 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6341 == TYPE_CODE_UNION)));
6342 }
6343
6344 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6345 whose discriminants are contained in the record type OUTER_TYPE,
6346 returns the type of the controlling discriminant for the variant.
6347 May return NULL if the type could not be found. */
6348
6349 struct type *
6350 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6351 {
6352 char *name = ada_variant_discrim_name (var_type);
6353
6354 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6355 }
6356
6357 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6358 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6359 represents a 'when others' clause; otherwise 0. */
6360
6361 int
6362 ada_is_others_clause (struct type *type, int field_num)
6363 {
6364 const char *name = TYPE_FIELD_NAME (type, field_num);
6365
6366 return (name != NULL && name[0] == 'O');
6367 }
6368
6369 /* Assuming that TYPE0 is the type of the variant part of a record,
6370 returns the name of the discriminant controlling the variant.
6371 The value is valid until the next call to ada_variant_discrim_name. */
6372
6373 char *
6374 ada_variant_discrim_name (struct type *type0)
6375 {
6376 static char *result = NULL;
6377 static size_t result_len = 0;
6378 struct type *type;
6379 const char *name;
6380 const char *discrim_end;
6381 const char *discrim_start;
6382
6383 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6384 type = TYPE_TARGET_TYPE (type0);
6385 else
6386 type = type0;
6387
6388 name = ada_type_name (type);
6389
6390 if (name == NULL || name[0] == '\000')
6391 return "";
6392
6393 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6394 discrim_end -= 1)
6395 {
6396 if (strncmp (discrim_end, "___XVN", 6) == 0)
6397 break;
6398 }
6399 if (discrim_end == name)
6400 return "";
6401
6402 for (discrim_start = discrim_end; discrim_start != name + 3;
6403 discrim_start -= 1)
6404 {
6405 if (discrim_start == name + 1)
6406 return "";
6407 if ((discrim_start > name + 3
6408 && strncmp (discrim_start - 3, "___", 3) == 0)
6409 || discrim_start[-1] == '.')
6410 break;
6411 }
6412
6413 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6414 strncpy (result, discrim_start, discrim_end - discrim_start);
6415 result[discrim_end - discrim_start] = '\0';
6416 return result;
6417 }
6418
6419 /* Scan STR for a subtype-encoded number, beginning at position K.
6420 Put the position of the character just past the number scanned in
6421 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6422 Return 1 if there was a valid number at the given position, and 0
6423 otherwise. A "subtype-encoded" number consists of the absolute value
6424 in decimal, followed by the letter 'm' to indicate a negative number.
6425 Assumes 0m does not occur. */
6426
6427 int
6428 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6429 {
6430 ULONGEST RU;
6431
6432 if (!isdigit (str[k]))
6433 return 0;
6434
6435 /* Do it the hard way so as not to make any assumption about
6436 the relationship of unsigned long (%lu scan format code) and
6437 LONGEST. */
6438 RU = 0;
6439 while (isdigit (str[k]))
6440 {
6441 RU = RU * 10 + (str[k] - '0');
6442 k += 1;
6443 }
6444
6445 if (str[k] == 'm')
6446 {
6447 if (R != NULL)
6448 *R = (-(LONGEST) (RU - 1)) - 1;
6449 k += 1;
6450 }
6451 else if (R != NULL)
6452 *R = (LONGEST) RU;
6453
6454 /* NOTE on the above: Technically, C does not say what the results of
6455 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6456 number representable as a LONGEST (although either would probably work
6457 in most implementations). When RU>0, the locution in the then branch
6458 above is always equivalent to the negative of RU. */
6459
6460 if (new_k != NULL)
6461 *new_k = k;
6462 return 1;
6463 }
6464
6465 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6466 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6467 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6468
6469 int
6470 ada_in_variant (LONGEST val, struct type *type, int field_num)
6471 {
6472 const char *name = TYPE_FIELD_NAME (type, field_num);
6473 int p;
6474
6475 p = 0;
6476 while (1)
6477 {
6478 switch (name[p])
6479 {
6480 case '\0':
6481 return 0;
6482 case 'S':
6483 {
6484 LONGEST W;
6485
6486 if (!ada_scan_number (name, p + 1, &W, &p))
6487 return 0;
6488 if (val == W)
6489 return 1;
6490 break;
6491 }
6492 case 'R':
6493 {
6494 LONGEST L, U;
6495
6496 if (!ada_scan_number (name, p + 1, &L, &p)
6497 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6498 return 0;
6499 if (val >= L && val <= U)
6500 return 1;
6501 break;
6502 }
6503 case 'O':
6504 return 1;
6505 default:
6506 return 0;
6507 }
6508 }
6509 }
6510
6511 /* FIXME: Lots of redundancy below. Try to consolidate. */
6512
6513 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6514 ARG_TYPE, extract and return the value of one of its (non-static)
6515 fields. FIELDNO says which field. Differs from value_primitive_field
6516 only in that it can handle packed values of arbitrary type. */
6517
6518 static struct value *
6519 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6520 struct type *arg_type)
6521 {
6522 struct type *type;
6523
6524 arg_type = ada_check_typedef (arg_type);
6525 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6526
6527 /* Handle packed fields. */
6528
6529 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6530 {
6531 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6532 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6533
6534 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6535 offset + bit_pos / 8,
6536 bit_pos % 8, bit_size, type);
6537 }
6538 else
6539 return value_primitive_field (arg1, offset, fieldno, arg_type);
6540 }
6541
6542 /* Find field with name NAME in object of type TYPE. If found,
6543 set the following for each argument that is non-null:
6544 - *FIELD_TYPE_P to the field's type;
6545 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6546 an object of that type;
6547 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6548 - *BIT_SIZE_P to its size in bits if the field is packed, and
6549 0 otherwise;
6550 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6551 fields up to but not including the desired field, or by the total
6552 number of fields if not found. A NULL value of NAME never
6553 matches; the function just counts visible fields in this case.
6554
6555 Returns 1 if found, 0 otherwise. */
6556
6557 static int
6558 find_struct_field (const char *name, struct type *type, int offset,
6559 struct type **field_type_p,
6560 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6561 int *index_p)
6562 {
6563 int i;
6564
6565 type = ada_check_typedef (type);
6566
6567 if (field_type_p != NULL)
6568 *field_type_p = NULL;
6569 if (byte_offset_p != NULL)
6570 *byte_offset_p = 0;
6571 if (bit_offset_p != NULL)
6572 *bit_offset_p = 0;
6573 if (bit_size_p != NULL)
6574 *bit_size_p = 0;
6575
6576 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6577 {
6578 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6579 int fld_offset = offset + bit_pos / 8;
6580 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6581
6582 if (t_field_name == NULL)
6583 continue;
6584
6585 else if (name != NULL && field_name_match (t_field_name, name))
6586 {
6587 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6588
6589 if (field_type_p != NULL)
6590 *field_type_p = TYPE_FIELD_TYPE (type, i);
6591 if (byte_offset_p != NULL)
6592 *byte_offset_p = fld_offset;
6593 if (bit_offset_p != NULL)
6594 *bit_offset_p = bit_pos % 8;
6595 if (bit_size_p != NULL)
6596 *bit_size_p = bit_size;
6597 return 1;
6598 }
6599 else if (ada_is_wrapper_field (type, i))
6600 {
6601 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6602 field_type_p, byte_offset_p, bit_offset_p,
6603 bit_size_p, index_p))
6604 return 1;
6605 }
6606 else if (ada_is_variant_part (type, i))
6607 {
6608 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6609 fixed type?? */
6610 int j;
6611 struct type *field_type
6612 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6613
6614 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6615 {
6616 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6617 fld_offset
6618 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6619 field_type_p, byte_offset_p,
6620 bit_offset_p, bit_size_p, index_p))
6621 return 1;
6622 }
6623 }
6624 else if (index_p != NULL)
6625 *index_p += 1;
6626 }
6627 return 0;
6628 }
6629
6630 /* Number of user-visible fields in record type TYPE. */
6631
6632 static int
6633 num_visible_fields (struct type *type)
6634 {
6635 int n;
6636
6637 n = 0;
6638 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6639 return n;
6640 }
6641
6642 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6643 and search in it assuming it has (class) type TYPE.
6644 If found, return value, else return NULL.
6645
6646 Searches recursively through wrapper fields (e.g., '_parent'). */
6647
6648 static struct value *
6649 ada_search_struct_field (char *name, struct value *arg, int offset,
6650 struct type *type)
6651 {
6652 int i;
6653
6654 type = ada_check_typedef (type);
6655 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6656 {
6657 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6658
6659 if (t_field_name == NULL)
6660 continue;
6661
6662 else if (field_name_match (t_field_name, name))
6663 return ada_value_primitive_field (arg, offset, i, type);
6664
6665 else if (ada_is_wrapper_field (type, i))
6666 {
6667 struct value *v = /* Do not let indent join lines here. */
6668 ada_search_struct_field (name, arg,
6669 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6670 TYPE_FIELD_TYPE (type, i));
6671
6672 if (v != NULL)
6673 return v;
6674 }
6675
6676 else if (ada_is_variant_part (type, i))
6677 {
6678 /* PNH: Do we ever get here? See find_struct_field. */
6679 int j;
6680 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6681 i));
6682 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6683
6684 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6685 {
6686 struct value *v = ada_search_struct_field /* Force line
6687 break. */
6688 (name, arg,
6689 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6690 TYPE_FIELD_TYPE (field_type, j));
6691
6692 if (v != NULL)
6693 return v;
6694 }
6695 }
6696 }
6697 return NULL;
6698 }
6699
6700 static struct value *ada_index_struct_field_1 (int *, struct value *,
6701 int, struct type *);
6702
6703
6704 /* Return field #INDEX in ARG, where the index is that returned by
6705 * find_struct_field through its INDEX_P argument. Adjust the address
6706 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6707 * If found, return value, else return NULL. */
6708
6709 static struct value *
6710 ada_index_struct_field (int index, struct value *arg, int offset,
6711 struct type *type)
6712 {
6713 return ada_index_struct_field_1 (&index, arg, offset, type);
6714 }
6715
6716
6717 /* Auxiliary function for ada_index_struct_field. Like
6718 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6719 * *INDEX_P. */
6720
6721 static struct value *
6722 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6723 struct type *type)
6724 {
6725 int i;
6726 type = ada_check_typedef (type);
6727
6728 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6729 {
6730 if (TYPE_FIELD_NAME (type, i) == NULL)
6731 continue;
6732 else if (ada_is_wrapper_field (type, i))
6733 {
6734 struct value *v = /* Do not let indent join lines here. */
6735 ada_index_struct_field_1 (index_p, arg,
6736 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6737 TYPE_FIELD_TYPE (type, i));
6738
6739 if (v != NULL)
6740 return v;
6741 }
6742
6743 else if (ada_is_variant_part (type, i))
6744 {
6745 /* PNH: Do we ever get here? See ada_search_struct_field,
6746 find_struct_field. */
6747 error (_("Cannot assign this kind of variant record"));
6748 }
6749 else if (*index_p == 0)
6750 return ada_value_primitive_field (arg, offset, i, type);
6751 else
6752 *index_p -= 1;
6753 }
6754 return NULL;
6755 }
6756
6757 /* Given ARG, a value of type (pointer or reference to a)*
6758 structure/union, extract the component named NAME from the ultimate
6759 target structure/union and return it as a value with its
6760 appropriate type.
6761
6762 The routine searches for NAME among all members of the structure itself
6763 and (recursively) among all members of any wrapper members
6764 (e.g., '_parent').
6765
6766 If NO_ERR, then simply return NULL in case of error, rather than
6767 calling error. */
6768
6769 struct value *
6770 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6771 {
6772 struct type *t, *t1;
6773 struct value *v;
6774
6775 v = NULL;
6776 t1 = t = ada_check_typedef (value_type (arg));
6777 if (TYPE_CODE (t) == TYPE_CODE_REF)
6778 {
6779 t1 = TYPE_TARGET_TYPE (t);
6780 if (t1 == NULL)
6781 goto BadValue;
6782 t1 = ada_check_typedef (t1);
6783 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6784 {
6785 arg = coerce_ref (arg);
6786 t = t1;
6787 }
6788 }
6789
6790 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6791 {
6792 t1 = TYPE_TARGET_TYPE (t);
6793 if (t1 == NULL)
6794 goto BadValue;
6795 t1 = ada_check_typedef (t1);
6796 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6797 {
6798 arg = value_ind (arg);
6799 t = t1;
6800 }
6801 else
6802 break;
6803 }
6804
6805 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6806 goto BadValue;
6807
6808 if (t1 == t)
6809 v = ada_search_struct_field (name, arg, 0, t);
6810 else
6811 {
6812 int bit_offset, bit_size, byte_offset;
6813 struct type *field_type;
6814 CORE_ADDR address;
6815
6816 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6817 address = value_address (ada_value_ind (arg));
6818 else
6819 address = value_address (ada_coerce_ref (arg));
6820
6821 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6822 if (find_struct_field (name, t1, 0,
6823 &field_type, &byte_offset, &bit_offset,
6824 &bit_size, NULL))
6825 {
6826 if (bit_size != 0)
6827 {
6828 if (TYPE_CODE (t) == TYPE_CODE_REF)
6829 arg = ada_coerce_ref (arg);
6830 else
6831 arg = ada_value_ind (arg);
6832 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6833 bit_offset, bit_size,
6834 field_type);
6835 }
6836 else
6837 v = value_at_lazy (field_type, address + byte_offset);
6838 }
6839 }
6840
6841 if (v != NULL || no_err)
6842 return v;
6843 else
6844 error (_("There is no member named %s."), name);
6845
6846 BadValue:
6847 if (no_err)
6848 return NULL;
6849 else
6850 error (_("Attempt to extract a component of "
6851 "a value that is not a record."));
6852 }
6853
6854 /* Given a type TYPE, look up the type of the component of type named NAME.
6855 If DISPP is non-null, add its byte displacement from the beginning of a
6856 structure (pointed to by a value) of type TYPE to *DISPP (does not
6857 work for packed fields).
6858
6859 Matches any field whose name has NAME as a prefix, possibly
6860 followed by "___".
6861
6862 TYPE can be either a struct or union. If REFOK, TYPE may also
6863 be a (pointer or reference)+ to a struct or union, and the
6864 ultimate target type will be searched.
6865
6866 Looks recursively into variant clauses and parent types.
6867
6868 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6869 TYPE is not a type of the right kind. */
6870
6871 static struct type *
6872 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6873 int noerr, int *dispp)
6874 {
6875 int i;
6876
6877 if (name == NULL)
6878 goto BadName;
6879
6880 if (refok && type != NULL)
6881 while (1)
6882 {
6883 type = ada_check_typedef (type);
6884 if (TYPE_CODE (type) != TYPE_CODE_PTR
6885 && TYPE_CODE (type) != TYPE_CODE_REF)
6886 break;
6887 type = TYPE_TARGET_TYPE (type);
6888 }
6889
6890 if (type == NULL
6891 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6892 && TYPE_CODE (type) != TYPE_CODE_UNION))
6893 {
6894 if (noerr)
6895 return NULL;
6896 else
6897 {
6898 target_terminal_ours ();
6899 gdb_flush (gdb_stdout);
6900 if (type == NULL)
6901 error (_("Type (null) is not a structure or union type"));
6902 else
6903 {
6904 /* XXX: type_sprint */
6905 fprintf_unfiltered (gdb_stderr, _("Type "));
6906 type_print (type, "", gdb_stderr, -1);
6907 error (_(" is not a structure or union type"));
6908 }
6909 }
6910 }
6911
6912 type = to_static_fixed_type (type);
6913
6914 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6915 {
6916 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6917 struct type *t;
6918 int disp;
6919
6920 if (t_field_name == NULL)
6921 continue;
6922
6923 else if (field_name_match (t_field_name, name))
6924 {
6925 if (dispp != NULL)
6926 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6927 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6928 }
6929
6930 else if (ada_is_wrapper_field (type, i))
6931 {
6932 disp = 0;
6933 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6934 0, 1, &disp);
6935 if (t != NULL)
6936 {
6937 if (dispp != NULL)
6938 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6939 return t;
6940 }
6941 }
6942
6943 else if (ada_is_variant_part (type, i))
6944 {
6945 int j;
6946 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6947 i));
6948
6949 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6950 {
6951 /* FIXME pnh 2008/01/26: We check for a field that is
6952 NOT wrapped in a struct, since the compiler sometimes
6953 generates these for unchecked variant types. Revisit
6954 if the compiler changes this practice. */
6955 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6956 disp = 0;
6957 if (v_field_name != NULL
6958 && field_name_match (v_field_name, name))
6959 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6960 else
6961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6962 j),
6963 name, 0, 1, &disp);
6964
6965 if (t != NULL)
6966 {
6967 if (dispp != NULL)
6968 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6969 return t;
6970 }
6971 }
6972 }
6973
6974 }
6975
6976 BadName:
6977 if (!noerr)
6978 {
6979 target_terminal_ours ();
6980 gdb_flush (gdb_stdout);
6981 if (name == NULL)
6982 {
6983 /* XXX: type_sprint */
6984 fprintf_unfiltered (gdb_stderr, _("Type "));
6985 type_print (type, "", gdb_stderr, -1);
6986 error (_(" has no component named <null>"));
6987 }
6988 else
6989 {
6990 /* XXX: type_sprint */
6991 fprintf_unfiltered (gdb_stderr, _("Type "));
6992 type_print (type, "", gdb_stderr, -1);
6993 error (_(" has no component named %s"), name);
6994 }
6995 }
6996
6997 return NULL;
6998 }
6999
7000 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7001 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7002 represents an unchecked union (that is, the variant part of a
7003 record that is named in an Unchecked_Union pragma). */
7004
7005 static int
7006 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7007 {
7008 char *discrim_name = ada_variant_discrim_name (var_type);
7009
7010 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7011 == NULL);
7012 }
7013
7014
7015 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7016 within a value of type OUTER_TYPE that is stored in GDB at
7017 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7018 numbering from 0) is applicable. Returns -1 if none are. */
7019
7020 int
7021 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7022 const gdb_byte *outer_valaddr)
7023 {
7024 int others_clause;
7025 int i;
7026 char *discrim_name = ada_variant_discrim_name (var_type);
7027 struct value *outer;
7028 struct value *discrim;
7029 LONGEST discrim_val;
7030
7031 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7032 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7033 if (discrim == NULL)
7034 return -1;
7035 discrim_val = value_as_long (discrim);
7036
7037 others_clause = -1;
7038 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7039 {
7040 if (ada_is_others_clause (var_type, i))
7041 others_clause = i;
7042 else if (ada_in_variant (discrim_val, var_type, i))
7043 return i;
7044 }
7045
7046 return others_clause;
7047 }
7048 \f
7049
7050
7051 /* Dynamic-Sized Records */
7052
7053 /* Strategy: The type ostensibly attached to a value with dynamic size
7054 (i.e., a size that is not statically recorded in the debugging
7055 data) does not accurately reflect the size or layout of the value.
7056 Our strategy is to convert these values to values with accurate,
7057 conventional types that are constructed on the fly. */
7058
7059 /* There is a subtle and tricky problem here. In general, we cannot
7060 determine the size of dynamic records without its data. However,
7061 the 'struct value' data structure, which GDB uses to represent
7062 quantities in the inferior process (the target), requires the size
7063 of the type at the time of its allocation in order to reserve space
7064 for GDB's internal copy of the data. That's why the
7065 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7066 rather than struct value*s.
7067
7068 However, GDB's internal history variables ($1, $2, etc.) are
7069 struct value*s containing internal copies of the data that are not, in
7070 general, the same as the data at their corresponding addresses in
7071 the target. Fortunately, the types we give to these values are all
7072 conventional, fixed-size types (as per the strategy described
7073 above), so that we don't usually have to perform the
7074 'to_fixed_xxx_type' conversions to look at their values.
7075 Unfortunately, there is one exception: if one of the internal
7076 history variables is an array whose elements are unconstrained
7077 records, then we will need to create distinct fixed types for each
7078 element selected. */
7079
7080 /* The upshot of all of this is that many routines take a (type, host
7081 address, target address) triple as arguments to represent a value.
7082 The host address, if non-null, is supposed to contain an internal
7083 copy of the relevant data; otherwise, the program is to consult the
7084 target at the target address. */
7085
7086 /* Assuming that VAL0 represents a pointer value, the result of
7087 dereferencing it. Differs from value_ind in its treatment of
7088 dynamic-sized types. */
7089
7090 struct value *
7091 ada_value_ind (struct value *val0)
7092 {
7093 struct value *val = value_ind (val0);
7094
7095 if (ada_is_tagged_type (value_type (val), 0))
7096 val = ada_tag_value_at_base_address (val);
7097
7098 return ada_to_fixed_value (val);
7099 }
7100
7101 /* The value resulting from dereferencing any "reference to"
7102 qualifiers on VAL0. */
7103
7104 static struct value *
7105 ada_coerce_ref (struct value *val0)
7106 {
7107 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7108 {
7109 struct value *val = val0;
7110
7111 val = coerce_ref (val);
7112
7113 if (ada_is_tagged_type (value_type (val), 0))
7114 val = ada_tag_value_at_base_address (val);
7115
7116 return ada_to_fixed_value (val);
7117 }
7118 else
7119 return val0;
7120 }
7121
7122 /* Return OFF rounded upward if necessary to a multiple of
7123 ALIGNMENT (a power of 2). */
7124
7125 static unsigned int
7126 align_value (unsigned int off, unsigned int alignment)
7127 {
7128 return (off + alignment - 1) & ~(alignment - 1);
7129 }
7130
7131 /* Return the bit alignment required for field #F of template type TYPE. */
7132
7133 static unsigned int
7134 field_alignment (struct type *type, int f)
7135 {
7136 const char *name = TYPE_FIELD_NAME (type, f);
7137 int len;
7138 int align_offset;
7139
7140 /* The field name should never be null, unless the debugging information
7141 is somehow malformed. In this case, we assume the field does not
7142 require any alignment. */
7143 if (name == NULL)
7144 return 1;
7145
7146 len = strlen (name);
7147
7148 if (!isdigit (name[len - 1]))
7149 return 1;
7150
7151 if (isdigit (name[len - 2]))
7152 align_offset = len - 2;
7153 else
7154 align_offset = len - 1;
7155
7156 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7157 return TARGET_CHAR_BIT;
7158
7159 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7160 }
7161
7162 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7163
7164 static struct symbol *
7165 ada_find_any_type_symbol (const char *name)
7166 {
7167 struct symbol *sym;
7168
7169 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7170 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7171 return sym;
7172
7173 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7174 return sym;
7175 }
7176
7177 /* Find a type named NAME. Ignores ambiguity. This routine will look
7178 solely for types defined by debug info, it will not search the GDB
7179 primitive types. */
7180
7181 static struct type *
7182 ada_find_any_type (const char *name)
7183 {
7184 struct symbol *sym = ada_find_any_type_symbol (name);
7185
7186 if (sym != NULL)
7187 return SYMBOL_TYPE (sym);
7188
7189 return NULL;
7190 }
7191
7192 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7193 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7194 symbol, in which case it is returned. Otherwise, this looks for
7195 symbols whose name is that of NAME_SYM suffixed with "___XR".
7196 Return symbol if found, and NULL otherwise. */
7197
7198 struct symbol *
7199 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7200 {
7201 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7202 struct symbol *sym;
7203
7204 if (strstr (name, "___XR") != NULL)
7205 return name_sym;
7206
7207 sym = find_old_style_renaming_symbol (name, block);
7208
7209 if (sym != NULL)
7210 return sym;
7211
7212 /* Not right yet. FIXME pnh 7/20/2007. */
7213 sym = ada_find_any_type_symbol (name);
7214 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7215 return sym;
7216 else
7217 return NULL;
7218 }
7219
7220 static struct symbol *
7221 find_old_style_renaming_symbol (const char *name, const struct block *block)
7222 {
7223 const struct symbol *function_sym = block_linkage_function (block);
7224 char *rename;
7225
7226 if (function_sym != NULL)
7227 {
7228 /* If the symbol is defined inside a function, NAME is not fully
7229 qualified. This means we need to prepend the function name
7230 as well as adding the ``___XR'' suffix to build the name of
7231 the associated renaming symbol. */
7232 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7233 /* Function names sometimes contain suffixes used
7234 for instance to qualify nested subprograms. When building
7235 the XR type name, we need to make sure that this suffix is
7236 not included. So do not include any suffix in the function
7237 name length below. */
7238 int function_name_len = ada_name_prefix_len (function_name);
7239 const int rename_len = function_name_len + 2 /* "__" */
7240 + strlen (name) + 6 /* "___XR\0" */ ;
7241
7242 /* Strip the suffix if necessary. */
7243 ada_remove_trailing_digits (function_name, &function_name_len);
7244 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7245 ada_remove_Xbn_suffix (function_name, &function_name_len);
7246
7247 /* Library-level functions are a special case, as GNAT adds
7248 a ``_ada_'' prefix to the function name to avoid namespace
7249 pollution. However, the renaming symbols themselves do not
7250 have this prefix, so we need to skip this prefix if present. */
7251 if (function_name_len > 5 /* "_ada_" */
7252 && strstr (function_name, "_ada_") == function_name)
7253 {
7254 function_name += 5;
7255 function_name_len -= 5;
7256 }
7257
7258 rename = (char *) alloca (rename_len * sizeof (char));
7259 strncpy (rename, function_name, function_name_len);
7260 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7261 "__%s___XR", name);
7262 }
7263 else
7264 {
7265 const int rename_len = strlen (name) + 6;
7266
7267 rename = (char *) alloca (rename_len * sizeof (char));
7268 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7269 }
7270
7271 return ada_find_any_type_symbol (rename);
7272 }
7273
7274 /* Because of GNAT encoding conventions, several GDB symbols may match a
7275 given type name. If the type denoted by TYPE0 is to be preferred to
7276 that of TYPE1 for purposes of type printing, return non-zero;
7277 otherwise return 0. */
7278
7279 int
7280 ada_prefer_type (struct type *type0, struct type *type1)
7281 {
7282 if (type1 == NULL)
7283 return 1;
7284 else if (type0 == NULL)
7285 return 0;
7286 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7287 return 1;
7288 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7289 return 0;
7290 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7291 return 1;
7292 else if (ada_is_constrained_packed_array_type (type0))
7293 return 1;
7294 else if (ada_is_array_descriptor_type (type0)
7295 && !ada_is_array_descriptor_type (type1))
7296 return 1;
7297 else
7298 {
7299 const char *type0_name = type_name_no_tag (type0);
7300 const char *type1_name = type_name_no_tag (type1);
7301
7302 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7303 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7304 return 1;
7305 }
7306 return 0;
7307 }
7308
7309 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7310 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7311
7312 const char *
7313 ada_type_name (struct type *type)
7314 {
7315 if (type == NULL)
7316 return NULL;
7317 else if (TYPE_NAME (type) != NULL)
7318 return TYPE_NAME (type);
7319 else
7320 return TYPE_TAG_NAME (type);
7321 }
7322
7323 /* Search the list of "descriptive" types associated to TYPE for a type
7324 whose name is NAME. */
7325
7326 static struct type *
7327 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7328 {
7329 struct type *result;
7330
7331 /* If there no descriptive-type info, then there is no parallel type
7332 to be found. */
7333 if (!HAVE_GNAT_AUX_INFO (type))
7334 return NULL;
7335
7336 result = TYPE_DESCRIPTIVE_TYPE (type);
7337 while (result != NULL)
7338 {
7339 const char *result_name = ada_type_name (result);
7340
7341 if (result_name == NULL)
7342 {
7343 warning (_("unexpected null name on descriptive type"));
7344 return NULL;
7345 }
7346
7347 /* If the names match, stop. */
7348 if (strcmp (result_name, name) == 0)
7349 break;
7350
7351 /* Otherwise, look at the next item on the list, if any. */
7352 if (HAVE_GNAT_AUX_INFO (result))
7353 result = TYPE_DESCRIPTIVE_TYPE (result);
7354 else
7355 result = NULL;
7356 }
7357
7358 /* If we didn't find a match, see whether this is a packed array. With
7359 older compilers, the descriptive type information is either absent or
7360 irrelevant when it comes to packed arrays so the above lookup fails.
7361 Fall back to using a parallel lookup by name in this case. */
7362 if (result == NULL && ada_is_constrained_packed_array_type (type))
7363 return ada_find_any_type (name);
7364
7365 return result;
7366 }
7367
7368 /* Find a parallel type to TYPE with the specified NAME, using the
7369 descriptive type taken from the debugging information, if available,
7370 and otherwise using the (slower) name-based method. */
7371
7372 static struct type *
7373 ada_find_parallel_type_with_name (struct type *type, const char *name)
7374 {
7375 struct type *result = NULL;
7376
7377 if (HAVE_GNAT_AUX_INFO (type))
7378 result = find_parallel_type_by_descriptive_type (type, name);
7379 else
7380 result = ada_find_any_type (name);
7381
7382 return result;
7383 }
7384
7385 /* Same as above, but specify the name of the parallel type by appending
7386 SUFFIX to the name of TYPE. */
7387
7388 struct type *
7389 ada_find_parallel_type (struct type *type, const char *suffix)
7390 {
7391 char *name;
7392 const char *typename = ada_type_name (type);
7393 int len;
7394
7395 if (typename == NULL)
7396 return NULL;
7397
7398 len = strlen (typename);
7399
7400 name = (char *) alloca (len + strlen (suffix) + 1);
7401
7402 strcpy (name, typename);
7403 strcpy (name + len, suffix);
7404
7405 return ada_find_parallel_type_with_name (type, name);
7406 }
7407
7408 /* If TYPE is a variable-size record type, return the corresponding template
7409 type describing its fields. Otherwise, return NULL. */
7410
7411 static struct type *
7412 dynamic_template_type (struct type *type)
7413 {
7414 type = ada_check_typedef (type);
7415
7416 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7417 || ada_type_name (type) == NULL)
7418 return NULL;
7419 else
7420 {
7421 int len = strlen (ada_type_name (type));
7422
7423 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7424 return type;
7425 else
7426 return ada_find_parallel_type (type, "___XVE");
7427 }
7428 }
7429
7430 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7431 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7432
7433 static int
7434 is_dynamic_field (struct type *templ_type, int field_num)
7435 {
7436 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7437
7438 return name != NULL
7439 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7440 && strstr (name, "___XVL") != NULL;
7441 }
7442
7443 /* The index of the variant field of TYPE, or -1 if TYPE does not
7444 represent a variant record type. */
7445
7446 static int
7447 variant_field_index (struct type *type)
7448 {
7449 int f;
7450
7451 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7452 return -1;
7453
7454 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7455 {
7456 if (ada_is_variant_part (type, f))
7457 return f;
7458 }
7459 return -1;
7460 }
7461
7462 /* A record type with no fields. */
7463
7464 static struct type *
7465 empty_record (struct type *template)
7466 {
7467 struct type *type = alloc_type_copy (template);
7468
7469 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7470 TYPE_NFIELDS (type) = 0;
7471 TYPE_FIELDS (type) = NULL;
7472 INIT_CPLUS_SPECIFIC (type);
7473 TYPE_NAME (type) = "<empty>";
7474 TYPE_TAG_NAME (type) = NULL;
7475 TYPE_LENGTH (type) = 0;
7476 return type;
7477 }
7478
7479 /* An ordinary record type (with fixed-length fields) that describes
7480 the value of type TYPE at VALADDR or ADDRESS (see comments at
7481 the beginning of this section) VAL according to GNAT conventions.
7482 DVAL0 should describe the (portion of a) record that contains any
7483 necessary discriminants. It should be NULL if value_type (VAL) is
7484 an outer-level type (i.e., as opposed to a branch of a variant.) A
7485 variant field (unless unchecked) is replaced by a particular branch
7486 of the variant.
7487
7488 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7489 length are not statically known are discarded. As a consequence,
7490 VALADDR, ADDRESS and DVAL0 are ignored.
7491
7492 NOTE: Limitations: For now, we assume that dynamic fields and
7493 variants occupy whole numbers of bytes. However, they need not be
7494 byte-aligned. */
7495
7496 struct type *
7497 ada_template_to_fixed_record_type_1 (struct type *type,
7498 const gdb_byte *valaddr,
7499 CORE_ADDR address, struct value *dval0,
7500 int keep_dynamic_fields)
7501 {
7502 struct value *mark = value_mark ();
7503 struct value *dval;
7504 struct type *rtype;
7505 int nfields, bit_len;
7506 int variant_field;
7507 long off;
7508 int fld_bit_len;
7509 int f;
7510
7511 /* Compute the number of fields in this record type that are going
7512 to be processed: unless keep_dynamic_fields, this includes only
7513 fields whose position and length are static will be processed. */
7514 if (keep_dynamic_fields)
7515 nfields = TYPE_NFIELDS (type);
7516 else
7517 {
7518 nfields = 0;
7519 while (nfields < TYPE_NFIELDS (type)
7520 && !ada_is_variant_part (type, nfields)
7521 && !is_dynamic_field (type, nfields))
7522 nfields++;
7523 }
7524
7525 rtype = alloc_type_copy (type);
7526 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7527 INIT_CPLUS_SPECIFIC (rtype);
7528 TYPE_NFIELDS (rtype) = nfields;
7529 TYPE_FIELDS (rtype) = (struct field *)
7530 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7531 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7532 TYPE_NAME (rtype) = ada_type_name (type);
7533 TYPE_TAG_NAME (rtype) = NULL;
7534 TYPE_FIXED_INSTANCE (rtype) = 1;
7535
7536 off = 0;
7537 bit_len = 0;
7538 variant_field = -1;
7539
7540 for (f = 0; f < nfields; f += 1)
7541 {
7542 off = align_value (off, field_alignment (type, f))
7543 + TYPE_FIELD_BITPOS (type, f);
7544 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7545 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7546
7547 if (ada_is_variant_part (type, f))
7548 {
7549 variant_field = f;
7550 fld_bit_len = 0;
7551 }
7552 else if (is_dynamic_field (type, f))
7553 {
7554 const gdb_byte *field_valaddr = valaddr;
7555 CORE_ADDR field_address = address;
7556 struct type *field_type =
7557 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7558
7559 if (dval0 == NULL)
7560 {
7561 /* rtype's length is computed based on the run-time
7562 value of discriminants. If the discriminants are not
7563 initialized, the type size may be completely bogus and
7564 GDB may fail to allocate a value for it. So check the
7565 size first before creating the value. */
7566 check_size (rtype);
7567 dval = value_from_contents_and_address (rtype, valaddr, address);
7568 }
7569 else
7570 dval = dval0;
7571
7572 /* If the type referenced by this field is an aligner type, we need
7573 to unwrap that aligner type, because its size might not be set.
7574 Keeping the aligner type would cause us to compute the wrong
7575 size for this field, impacting the offset of the all the fields
7576 that follow this one. */
7577 if (ada_is_aligner_type (field_type))
7578 {
7579 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7580
7581 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7582 field_address = cond_offset_target (field_address, field_offset);
7583 field_type = ada_aligned_type (field_type);
7584 }
7585
7586 field_valaddr = cond_offset_host (field_valaddr,
7587 off / TARGET_CHAR_BIT);
7588 field_address = cond_offset_target (field_address,
7589 off / TARGET_CHAR_BIT);
7590
7591 /* Get the fixed type of the field. Note that, in this case,
7592 we do not want to get the real type out of the tag: if
7593 the current field is the parent part of a tagged record,
7594 we will get the tag of the object. Clearly wrong: the real
7595 type of the parent is not the real type of the child. We
7596 would end up in an infinite loop. */
7597 field_type = ada_get_base_type (field_type);
7598 field_type = ada_to_fixed_type (field_type, field_valaddr,
7599 field_address, dval, 0);
7600 /* If the field size is already larger than the maximum
7601 object size, then the record itself will necessarily
7602 be larger than the maximum object size. We need to make
7603 this check now, because the size might be so ridiculously
7604 large (due to an uninitialized variable in the inferior)
7605 that it would cause an overflow when adding it to the
7606 record size. */
7607 check_size (field_type);
7608
7609 TYPE_FIELD_TYPE (rtype, f) = field_type;
7610 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7611 /* The multiplication can potentially overflow. But because
7612 the field length has been size-checked just above, and
7613 assuming that the maximum size is a reasonable value,
7614 an overflow should not happen in practice. So rather than
7615 adding overflow recovery code to this already complex code,
7616 we just assume that it's not going to happen. */
7617 fld_bit_len =
7618 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7619 }
7620 else
7621 {
7622 /* Note: If this field's type is a typedef, it is important
7623 to preserve the typedef layer.
7624
7625 Otherwise, we might be transforming a typedef to a fat
7626 pointer (encoding a pointer to an unconstrained array),
7627 into a basic fat pointer (encoding an unconstrained
7628 array). As both types are implemented using the same
7629 structure, the typedef is the only clue which allows us
7630 to distinguish between the two options. Stripping it
7631 would prevent us from printing this field appropriately. */
7632 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7633 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7634 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7635 fld_bit_len =
7636 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7637 else
7638 {
7639 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7640
7641 /* We need to be careful of typedefs when computing
7642 the length of our field. If this is a typedef,
7643 get the length of the target type, not the length
7644 of the typedef. */
7645 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7646 field_type = ada_typedef_target_type (field_type);
7647
7648 fld_bit_len =
7649 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7650 }
7651 }
7652 if (off + fld_bit_len > bit_len)
7653 bit_len = off + fld_bit_len;
7654 off += fld_bit_len;
7655 TYPE_LENGTH (rtype) =
7656 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7657 }
7658
7659 /* We handle the variant part, if any, at the end because of certain
7660 odd cases in which it is re-ordered so as NOT to be the last field of
7661 the record. This can happen in the presence of representation
7662 clauses. */
7663 if (variant_field >= 0)
7664 {
7665 struct type *branch_type;
7666
7667 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7668
7669 if (dval0 == NULL)
7670 dval = value_from_contents_and_address (rtype, valaddr, address);
7671 else
7672 dval = dval0;
7673
7674 branch_type =
7675 to_fixed_variant_branch_type
7676 (TYPE_FIELD_TYPE (type, variant_field),
7677 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7678 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7679 if (branch_type == NULL)
7680 {
7681 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7682 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7683 TYPE_NFIELDS (rtype) -= 1;
7684 }
7685 else
7686 {
7687 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7688 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7689 fld_bit_len =
7690 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7691 TARGET_CHAR_BIT;
7692 if (off + fld_bit_len > bit_len)
7693 bit_len = off + fld_bit_len;
7694 TYPE_LENGTH (rtype) =
7695 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7696 }
7697 }
7698
7699 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7700 should contain the alignment of that record, which should be a strictly
7701 positive value. If null or negative, then something is wrong, most
7702 probably in the debug info. In that case, we don't round up the size
7703 of the resulting type. If this record is not part of another structure,
7704 the current RTYPE length might be good enough for our purposes. */
7705 if (TYPE_LENGTH (type) <= 0)
7706 {
7707 if (TYPE_NAME (rtype))
7708 warning (_("Invalid type size for `%s' detected: %d."),
7709 TYPE_NAME (rtype), TYPE_LENGTH (type));
7710 else
7711 warning (_("Invalid type size for <unnamed> detected: %d."),
7712 TYPE_LENGTH (type));
7713 }
7714 else
7715 {
7716 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7717 TYPE_LENGTH (type));
7718 }
7719
7720 value_free_to_mark (mark);
7721 if (TYPE_LENGTH (rtype) > varsize_limit)
7722 error (_("record type with dynamic size is larger than varsize-limit"));
7723 return rtype;
7724 }
7725
7726 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7727 of 1. */
7728
7729 static struct type *
7730 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7731 CORE_ADDR address, struct value *dval0)
7732 {
7733 return ada_template_to_fixed_record_type_1 (type, valaddr,
7734 address, dval0, 1);
7735 }
7736
7737 /* An ordinary record type in which ___XVL-convention fields and
7738 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7739 static approximations, containing all possible fields. Uses
7740 no runtime values. Useless for use in values, but that's OK,
7741 since the results are used only for type determinations. Works on both
7742 structs and unions. Representation note: to save space, we memorize
7743 the result of this function in the TYPE_TARGET_TYPE of the
7744 template type. */
7745
7746 static struct type *
7747 template_to_static_fixed_type (struct type *type0)
7748 {
7749 struct type *type;
7750 int nfields;
7751 int f;
7752
7753 if (TYPE_TARGET_TYPE (type0) != NULL)
7754 return TYPE_TARGET_TYPE (type0);
7755
7756 nfields = TYPE_NFIELDS (type0);
7757 type = type0;
7758
7759 for (f = 0; f < nfields; f += 1)
7760 {
7761 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7762 struct type *new_type;
7763
7764 if (is_dynamic_field (type0, f))
7765 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7766 else
7767 new_type = static_unwrap_type (field_type);
7768 if (type == type0 && new_type != field_type)
7769 {
7770 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7771 TYPE_CODE (type) = TYPE_CODE (type0);
7772 INIT_CPLUS_SPECIFIC (type);
7773 TYPE_NFIELDS (type) = nfields;
7774 TYPE_FIELDS (type) = (struct field *)
7775 TYPE_ALLOC (type, nfields * sizeof (struct field));
7776 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7777 sizeof (struct field) * nfields);
7778 TYPE_NAME (type) = ada_type_name (type0);
7779 TYPE_TAG_NAME (type) = NULL;
7780 TYPE_FIXED_INSTANCE (type) = 1;
7781 TYPE_LENGTH (type) = 0;
7782 }
7783 TYPE_FIELD_TYPE (type, f) = new_type;
7784 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7785 }
7786 return type;
7787 }
7788
7789 /* Given an object of type TYPE whose contents are at VALADDR and
7790 whose address in memory is ADDRESS, returns a revision of TYPE,
7791 which should be a non-dynamic-sized record, in which the variant
7792 part, if any, is replaced with the appropriate branch. Looks
7793 for discriminant values in DVAL0, which can be NULL if the record
7794 contains the necessary discriminant values. */
7795
7796 static struct type *
7797 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7798 CORE_ADDR address, struct value *dval0)
7799 {
7800 struct value *mark = value_mark ();
7801 struct value *dval;
7802 struct type *rtype;
7803 struct type *branch_type;
7804 int nfields = TYPE_NFIELDS (type);
7805 int variant_field = variant_field_index (type);
7806
7807 if (variant_field == -1)
7808 return type;
7809
7810 if (dval0 == NULL)
7811 dval = value_from_contents_and_address (type, valaddr, address);
7812 else
7813 dval = dval0;
7814
7815 rtype = alloc_type_copy (type);
7816 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7817 INIT_CPLUS_SPECIFIC (rtype);
7818 TYPE_NFIELDS (rtype) = nfields;
7819 TYPE_FIELDS (rtype) =
7820 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7821 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7822 sizeof (struct field) * nfields);
7823 TYPE_NAME (rtype) = ada_type_name (type);
7824 TYPE_TAG_NAME (rtype) = NULL;
7825 TYPE_FIXED_INSTANCE (rtype) = 1;
7826 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7827
7828 branch_type = to_fixed_variant_branch_type
7829 (TYPE_FIELD_TYPE (type, variant_field),
7830 cond_offset_host (valaddr,
7831 TYPE_FIELD_BITPOS (type, variant_field)
7832 / TARGET_CHAR_BIT),
7833 cond_offset_target (address,
7834 TYPE_FIELD_BITPOS (type, variant_field)
7835 / TARGET_CHAR_BIT), dval);
7836 if (branch_type == NULL)
7837 {
7838 int f;
7839
7840 for (f = variant_field + 1; f < nfields; f += 1)
7841 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7842 TYPE_NFIELDS (rtype) -= 1;
7843 }
7844 else
7845 {
7846 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7847 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7848 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7849 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7850 }
7851 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7852
7853 value_free_to_mark (mark);
7854 return rtype;
7855 }
7856
7857 /* An ordinary record type (with fixed-length fields) that describes
7858 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7859 beginning of this section]. Any necessary discriminants' values
7860 should be in DVAL, a record value; it may be NULL if the object
7861 at ADDR itself contains any necessary discriminant values.
7862 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7863 values from the record are needed. Except in the case that DVAL,
7864 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7865 unchecked) is replaced by a particular branch of the variant.
7866
7867 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7868 is questionable and may be removed. It can arise during the
7869 processing of an unconstrained-array-of-record type where all the
7870 variant branches have exactly the same size. This is because in
7871 such cases, the compiler does not bother to use the XVS convention
7872 when encoding the record. I am currently dubious of this
7873 shortcut and suspect the compiler should be altered. FIXME. */
7874
7875 static struct type *
7876 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7877 CORE_ADDR address, struct value *dval)
7878 {
7879 struct type *templ_type;
7880
7881 if (TYPE_FIXED_INSTANCE (type0))
7882 return type0;
7883
7884 templ_type = dynamic_template_type (type0);
7885
7886 if (templ_type != NULL)
7887 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7888 else if (variant_field_index (type0) >= 0)
7889 {
7890 if (dval == NULL && valaddr == NULL && address == 0)
7891 return type0;
7892 return to_record_with_fixed_variant_part (type0, valaddr, address,
7893 dval);
7894 }
7895 else
7896 {
7897 TYPE_FIXED_INSTANCE (type0) = 1;
7898 return type0;
7899 }
7900
7901 }
7902
7903 /* An ordinary record type (with fixed-length fields) that describes
7904 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7905 union type. Any necessary discriminants' values should be in DVAL,
7906 a record value. That is, this routine selects the appropriate
7907 branch of the union at ADDR according to the discriminant value
7908 indicated in the union's type name. Returns VAR_TYPE0 itself if
7909 it represents a variant subject to a pragma Unchecked_Union. */
7910
7911 static struct type *
7912 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7913 CORE_ADDR address, struct value *dval)
7914 {
7915 int which;
7916 struct type *templ_type;
7917 struct type *var_type;
7918
7919 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7920 var_type = TYPE_TARGET_TYPE (var_type0);
7921 else
7922 var_type = var_type0;
7923
7924 templ_type = ada_find_parallel_type (var_type, "___XVU");
7925
7926 if (templ_type != NULL)
7927 var_type = templ_type;
7928
7929 if (is_unchecked_variant (var_type, value_type (dval)))
7930 return var_type0;
7931 which =
7932 ada_which_variant_applies (var_type,
7933 value_type (dval), value_contents (dval));
7934
7935 if (which < 0)
7936 return empty_record (var_type);
7937 else if (is_dynamic_field (var_type, which))
7938 return to_fixed_record_type
7939 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7940 valaddr, address, dval);
7941 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7942 return
7943 to_fixed_record_type
7944 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7945 else
7946 return TYPE_FIELD_TYPE (var_type, which);
7947 }
7948
7949 /* Assuming that TYPE0 is an array type describing the type of a value
7950 at ADDR, and that DVAL describes a record containing any
7951 discriminants used in TYPE0, returns a type for the value that
7952 contains no dynamic components (that is, no components whose sizes
7953 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7954 true, gives an error message if the resulting type's size is over
7955 varsize_limit. */
7956
7957 static struct type *
7958 to_fixed_array_type (struct type *type0, struct value *dval,
7959 int ignore_too_big)
7960 {
7961 struct type *index_type_desc;
7962 struct type *result;
7963 int constrained_packed_array_p;
7964
7965 type0 = ada_check_typedef (type0);
7966 if (TYPE_FIXED_INSTANCE (type0))
7967 return type0;
7968
7969 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7970 if (constrained_packed_array_p)
7971 type0 = decode_constrained_packed_array_type (type0);
7972
7973 index_type_desc = ada_find_parallel_type (type0, "___XA");
7974 ada_fixup_array_indexes_type (index_type_desc);
7975 if (index_type_desc == NULL)
7976 {
7977 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7978
7979 /* NOTE: elt_type---the fixed version of elt_type0---should never
7980 depend on the contents of the array in properly constructed
7981 debugging data. */
7982 /* Create a fixed version of the array element type.
7983 We're not providing the address of an element here,
7984 and thus the actual object value cannot be inspected to do
7985 the conversion. This should not be a problem, since arrays of
7986 unconstrained objects are not allowed. In particular, all
7987 the elements of an array of a tagged type should all be of
7988 the same type specified in the debugging info. No need to
7989 consult the object tag. */
7990 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7991
7992 /* Make sure we always create a new array type when dealing with
7993 packed array types, since we're going to fix-up the array
7994 type length and element bitsize a little further down. */
7995 if (elt_type0 == elt_type && !constrained_packed_array_p)
7996 result = type0;
7997 else
7998 result = create_array_type (alloc_type_copy (type0),
7999 elt_type, TYPE_INDEX_TYPE (type0));
8000 }
8001 else
8002 {
8003 int i;
8004 struct type *elt_type0;
8005
8006 elt_type0 = type0;
8007 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8008 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8009
8010 /* NOTE: result---the fixed version of elt_type0---should never
8011 depend on the contents of the array in properly constructed
8012 debugging data. */
8013 /* Create a fixed version of the array element type.
8014 We're not providing the address of an element here,
8015 and thus the actual object value cannot be inspected to do
8016 the conversion. This should not be a problem, since arrays of
8017 unconstrained objects are not allowed. In particular, all
8018 the elements of an array of a tagged type should all be of
8019 the same type specified in the debugging info. No need to
8020 consult the object tag. */
8021 result =
8022 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8023
8024 elt_type0 = type0;
8025 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8026 {
8027 struct type *range_type =
8028 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8029
8030 result = create_array_type (alloc_type_copy (elt_type0),
8031 result, range_type);
8032 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8033 }
8034 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8035 error (_("array type with dynamic size is larger than varsize-limit"));
8036 }
8037
8038 /* We want to preserve the type name. This can be useful when
8039 trying to get the type name of a value that has already been
8040 printed (for instance, if the user did "print VAR; whatis $". */
8041 TYPE_NAME (result) = TYPE_NAME (type0);
8042
8043 if (constrained_packed_array_p)
8044 {
8045 /* So far, the resulting type has been created as if the original
8046 type was a regular (non-packed) array type. As a result, the
8047 bitsize of the array elements needs to be set again, and the array
8048 length needs to be recomputed based on that bitsize. */
8049 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8050 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8051
8052 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8053 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8054 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8055 TYPE_LENGTH (result)++;
8056 }
8057
8058 TYPE_FIXED_INSTANCE (result) = 1;
8059 return result;
8060 }
8061
8062
8063 /* A standard type (containing no dynamically sized components)
8064 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8065 DVAL describes a record containing any discriminants used in TYPE0,
8066 and may be NULL if there are none, or if the object of type TYPE at
8067 ADDRESS or in VALADDR contains these discriminants.
8068
8069 If CHECK_TAG is not null, in the case of tagged types, this function
8070 attempts to locate the object's tag and use it to compute the actual
8071 type. However, when ADDRESS is null, we cannot use it to determine the
8072 location of the tag, and therefore compute the tagged type's actual type.
8073 So we return the tagged type without consulting the tag. */
8074
8075 static struct type *
8076 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8077 CORE_ADDR address, struct value *dval, int check_tag)
8078 {
8079 type = ada_check_typedef (type);
8080 switch (TYPE_CODE (type))
8081 {
8082 default:
8083 return type;
8084 case TYPE_CODE_STRUCT:
8085 {
8086 struct type *static_type = to_static_fixed_type (type);
8087 struct type *fixed_record_type =
8088 to_fixed_record_type (type, valaddr, address, NULL);
8089
8090 /* If STATIC_TYPE is a tagged type and we know the object's address,
8091 then we can determine its tag, and compute the object's actual
8092 type from there. Note that we have to use the fixed record
8093 type (the parent part of the record may have dynamic fields
8094 and the way the location of _tag is expressed may depend on
8095 them). */
8096
8097 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8098 {
8099 struct value *tag =
8100 value_tag_from_contents_and_address
8101 (fixed_record_type,
8102 valaddr,
8103 address);
8104 struct type *real_type = type_from_tag (tag);
8105 struct value *obj =
8106 value_from_contents_and_address (fixed_record_type,
8107 valaddr,
8108 address);
8109 if (real_type != NULL)
8110 return to_fixed_record_type
8111 (real_type, NULL,
8112 value_address (ada_tag_value_at_base_address (obj)), NULL);
8113 }
8114
8115 /* Check to see if there is a parallel ___XVZ variable.
8116 If there is, then it provides the actual size of our type. */
8117 else if (ada_type_name (fixed_record_type) != NULL)
8118 {
8119 const char *name = ada_type_name (fixed_record_type);
8120 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8121 int xvz_found = 0;
8122 LONGEST size;
8123
8124 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8125 size = get_int_var_value (xvz_name, &xvz_found);
8126 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8127 {
8128 fixed_record_type = copy_type (fixed_record_type);
8129 TYPE_LENGTH (fixed_record_type) = size;
8130
8131 /* The FIXED_RECORD_TYPE may have be a stub. We have
8132 observed this when the debugging info is STABS, and
8133 apparently it is something that is hard to fix.
8134
8135 In practice, we don't need the actual type definition
8136 at all, because the presence of the XVZ variable allows us
8137 to assume that there must be a XVS type as well, which we
8138 should be able to use later, when we need the actual type
8139 definition.
8140
8141 In the meantime, pretend that the "fixed" type we are
8142 returning is NOT a stub, because this can cause trouble
8143 when using this type to create new types targeting it.
8144 Indeed, the associated creation routines often check
8145 whether the target type is a stub and will try to replace
8146 it, thus using a type with the wrong size. This, in turn,
8147 might cause the new type to have the wrong size too.
8148 Consider the case of an array, for instance, where the size
8149 of the array is computed from the number of elements in
8150 our array multiplied by the size of its element. */
8151 TYPE_STUB (fixed_record_type) = 0;
8152 }
8153 }
8154 return fixed_record_type;
8155 }
8156 case TYPE_CODE_ARRAY:
8157 return to_fixed_array_type (type, dval, 1);
8158 case TYPE_CODE_UNION:
8159 if (dval == NULL)
8160 return type;
8161 else
8162 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8163 }
8164 }
8165
8166 /* The same as ada_to_fixed_type_1, except that it preserves the type
8167 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8168
8169 The typedef layer needs be preserved in order to differentiate between
8170 arrays and array pointers when both types are implemented using the same
8171 fat pointer. In the array pointer case, the pointer is encoded as
8172 a typedef of the pointer type. For instance, considering:
8173
8174 type String_Access is access String;
8175 S1 : String_Access := null;
8176
8177 To the debugger, S1 is defined as a typedef of type String. But
8178 to the user, it is a pointer. So if the user tries to print S1,
8179 we should not dereference the array, but print the array address
8180 instead.
8181
8182 If we didn't preserve the typedef layer, we would lose the fact that
8183 the type is to be presented as a pointer (needs de-reference before
8184 being printed). And we would also use the source-level type name. */
8185
8186 struct type *
8187 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8188 CORE_ADDR address, struct value *dval, int check_tag)
8189
8190 {
8191 struct type *fixed_type =
8192 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8193
8194 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8195 then preserve the typedef layer.
8196
8197 Implementation note: We can only check the main-type portion of
8198 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8199 from TYPE now returns a type that has the same instance flags
8200 as TYPE. For instance, if TYPE is a "typedef const", and its
8201 target type is a "struct", then the typedef elimination will return
8202 a "const" version of the target type. See check_typedef for more
8203 details about how the typedef layer elimination is done.
8204
8205 brobecker/2010-11-19: It seems to me that the only case where it is
8206 useful to preserve the typedef layer is when dealing with fat pointers.
8207 Perhaps, we could add a check for that and preserve the typedef layer
8208 only in that situation. But this seems unecessary so far, probably
8209 because we call check_typedef/ada_check_typedef pretty much everywhere.
8210 */
8211 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8212 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8213 == TYPE_MAIN_TYPE (fixed_type)))
8214 return type;
8215
8216 return fixed_type;
8217 }
8218
8219 /* A standard (static-sized) type corresponding as well as possible to
8220 TYPE0, but based on no runtime data. */
8221
8222 static struct type *
8223 to_static_fixed_type (struct type *type0)
8224 {
8225 struct type *type;
8226
8227 if (type0 == NULL)
8228 return NULL;
8229
8230 if (TYPE_FIXED_INSTANCE (type0))
8231 return type0;
8232
8233 type0 = ada_check_typedef (type0);
8234
8235 switch (TYPE_CODE (type0))
8236 {
8237 default:
8238 return type0;
8239 case TYPE_CODE_STRUCT:
8240 type = dynamic_template_type (type0);
8241 if (type != NULL)
8242 return template_to_static_fixed_type (type);
8243 else
8244 return template_to_static_fixed_type (type0);
8245 case TYPE_CODE_UNION:
8246 type = ada_find_parallel_type (type0, "___XVU");
8247 if (type != NULL)
8248 return template_to_static_fixed_type (type);
8249 else
8250 return template_to_static_fixed_type (type0);
8251 }
8252 }
8253
8254 /* A static approximation of TYPE with all type wrappers removed. */
8255
8256 static struct type *
8257 static_unwrap_type (struct type *type)
8258 {
8259 if (ada_is_aligner_type (type))
8260 {
8261 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8262 if (ada_type_name (type1) == NULL)
8263 TYPE_NAME (type1) = ada_type_name (type);
8264
8265 return static_unwrap_type (type1);
8266 }
8267 else
8268 {
8269 struct type *raw_real_type = ada_get_base_type (type);
8270
8271 if (raw_real_type == type)
8272 return type;
8273 else
8274 return to_static_fixed_type (raw_real_type);
8275 }
8276 }
8277
8278 /* In some cases, incomplete and private types require
8279 cross-references that are not resolved as records (for example,
8280 type Foo;
8281 type FooP is access Foo;
8282 V: FooP;
8283 type Foo is array ...;
8284 ). In these cases, since there is no mechanism for producing
8285 cross-references to such types, we instead substitute for FooP a
8286 stub enumeration type that is nowhere resolved, and whose tag is
8287 the name of the actual type. Call these types "non-record stubs". */
8288
8289 /* A type equivalent to TYPE that is not a non-record stub, if one
8290 exists, otherwise TYPE. */
8291
8292 struct type *
8293 ada_check_typedef (struct type *type)
8294 {
8295 if (type == NULL)
8296 return NULL;
8297
8298 /* If our type is a typedef type of a fat pointer, then we're done.
8299 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8300 what allows us to distinguish between fat pointers that represent
8301 array types, and fat pointers that represent array access types
8302 (in both cases, the compiler implements them as fat pointers). */
8303 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8304 && is_thick_pntr (ada_typedef_target_type (type)))
8305 return type;
8306
8307 CHECK_TYPEDEF (type);
8308 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8309 || !TYPE_STUB (type)
8310 || TYPE_TAG_NAME (type) == NULL)
8311 return type;
8312 else
8313 {
8314 const char *name = TYPE_TAG_NAME (type);
8315 struct type *type1 = ada_find_any_type (name);
8316
8317 if (type1 == NULL)
8318 return type;
8319
8320 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8321 stubs pointing to arrays, as we don't create symbols for array
8322 types, only for the typedef-to-array types). If that's the case,
8323 strip the typedef layer. */
8324 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8325 type1 = ada_check_typedef (type1);
8326
8327 return type1;
8328 }
8329 }
8330
8331 /* A value representing the data at VALADDR/ADDRESS as described by
8332 type TYPE0, but with a standard (static-sized) type that correctly
8333 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8334 type, then return VAL0 [this feature is simply to avoid redundant
8335 creation of struct values]. */
8336
8337 static struct value *
8338 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8339 struct value *val0)
8340 {
8341 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8342
8343 if (type == type0 && val0 != NULL)
8344 return val0;
8345 else
8346 return value_from_contents_and_address (type, 0, address);
8347 }
8348
8349 /* A value representing VAL, but with a standard (static-sized) type
8350 that correctly describes it. Does not necessarily create a new
8351 value. */
8352
8353 struct value *
8354 ada_to_fixed_value (struct value *val)
8355 {
8356 val = unwrap_value (val);
8357 val = ada_to_fixed_value_create (value_type (val),
8358 value_address (val),
8359 val);
8360 return val;
8361 }
8362 \f
8363
8364 /* Attributes */
8365
8366 /* Table mapping attribute numbers to names.
8367 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8368
8369 static const char *attribute_names[] = {
8370 "<?>",
8371
8372 "first",
8373 "last",
8374 "length",
8375 "image",
8376 "max",
8377 "min",
8378 "modulus",
8379 "pos",
8380 "size",
8381 "tag",
8382 "val",
8383 0
8384 };
8385
8386 const char *
8387 ada_attribute_name (enum exp_opcode n)
8388 {
8389 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8390 return attribute_names[n - OP_ATR_FIRST + 1];
8391 else
8392 return attribute_names[0];
8393 }
8394
8395 /* Evaluate the 'POS attribute applied to ARG. */
8396
8397 static LONGEST
8398 pos_atr (struct value *arg)
8399 {
8400 struct value *val = coerce_ref (arg);
8401 struct type *type = value_type (val);
8402
8403 if (!discrete_type_p (type))
8404 error (_("'POS only defined on discrete types"));
8405
8406 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8407 {
8408 int i;
8409 LONGEST v = value_as_long (val);
8410
8411 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8412 {
8413 if (v == TYPE_FIELD_ENUMVAL (type, i))
8414 return i;
8415 }
8416 error (_("enumeration value is invalid: can't find 'POS"));
8417 }
8418 else
8419 return value_as_long (val);
8420 }
8421
8422 static struct value *
8423 value_pos_atr (struct type *type, struct value *arg)
8424 {
8425 return value_from_longest (type, pos_atr (arg));
8426 }
8427
8428 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8429
8430 static struct value *
8431 value_val_atr (struct type *type, struct value *arg)
8432 {
8433 if (!discrete_type_p (type))
8434 error (_("'VAL only defined on discrete types"));
8435 if (!integer_type_p (value_type (arg)))
8436 error (_("'VAL requires integral argument"));
8437
8438 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8439 {
8440 long pos = value_as_long (arg);
8441
8442 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8443 error (_("argument to 'VAL out of range"));
8444 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8445 }
8446 else
8447 return value_from_longest (type, value_as_long (arg));
8448 }
8449 \f
8450
8451 /* Evaluation */
8452
8453 /* True if TYPE appears to be an Ada character type.
8454 [At the moment, this is true only for Character and Wide_Character;
8455 It is a heuristic test that could stand improvement]. */
8456
8457 int
8458 ada_is_character_type (struct type *type)
8459 {
8460 const char *name;
8461
8462 /* If the type code says it's a character, then assume it really is,
8463 and don't check any further. */
8464 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8465 return 1;
8466
8467 /* Otherwise, assume it's a character type iff it is a discrete type
8468 with a known character type name. */
8469 name = ada_type_name (type);
8470 return (name != NULL
8471 && (TYPE_CODE (type) == TYPE_CODE_INT
8472 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8473 && (strcmp (name, "character") == 0
8474 || strcmp (name, "wide_character") == 0
8475 || strcmp (name, "wide_wide_character") == 0
8476 || strcmp (name, "unsigned char") == 0));
8477 }
8478
8479 /* True if TYPE appears to be an Ada string type. */
8480
8481 int
8482 ada_is_string_type (struct type *type)
8483 {
8484 type = ada_check_typedef (type);
8485 if (type != NULL
8486 && TYPE_CODE (type) != TYPE_CODE_PTR
8487 && (ada_is_simple_array_type (type)
8488 || ada_is_array_descriptor_type (type))
8489 && ada_array_arity (type) == 1)
8490 {
8491 struct type *elttype = ada_array_element_type (type, 1);
8492
8493 return ada_is_character_type (elttype);
8494 }
8495 else
8496 return 0;
8497 }
8498
8499 /* The compiler sometimes provides a parallel XVS type for a given
8500 PAD type. Normally, it is safe to follow the PAD type directly,
8501 but older versions of the compiler have a bug that causes the offset
8502 of its "F" field to be wrong. Following that field in that case
8503 would lead to incorrect results, but this can be worked around
8504 by ignoring the PAD type and using the associated XVS type instead.
8505
8506 Set to True if the debugger should trust the contents of PAD types.
8507 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8508 static int trust_pad_over_xvs = 1;
8509
8510 /* True if TYPE is a struct type introduced by the compiler to force the
8511 alignment of a value. Such types have a single field with a
8512 distinctive name. */
8513
8514 int
8515 ada_is_aligner_type (struct type *type)
8516 {
8517 type = ada_check_typedef (type);
8518
8519 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8520 return 0;
8521
8522 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8523 && TYPE_NFIELDS (type) == 1
8524 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8525 }
8526
8527 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8528 the parallel type. */
8529
8530 struct type *
8531 ada_get_base_type (struct type *raw_type)
8532 {
8533 struct type *real_type_namer;
8534 struct type *raw_real_type;
8535
8536 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8537 return raw_type;
8538
8539 if (ada_is_aligner_type (raw_type))
8540 /* The encoding specifies that we should always use the aligner type.
8541 So, even if this aligner type has an associated XVS type, we should
8542 simply ignore it.
8543
8544 According to the compiler gurus, an XVS type parallel to an aligner
8545 type may exist because of a stabs limitation. In stabs, aligner
8546 types are empty because the field has a variable-sized type, and
8547 thus cannot actually be used as an aligner type. As a result,
8548 we need the associated parallel XVS type to decode the type.
8549 Since the policy in the compiler is to not change the internal
8550 representation based on the debugging info format, we sometimes
8551 end up having a redundant XVS type parallel to the aligner type. */
8552 return raw_type;
8553
8554 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8555 if (real_type_namer == NULL
8556 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8557 || TYPE_NFIELDS (real_type_namer) != 1)
8558 return raw_type;
8559
8560 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8561 {
8562 /* This is an older encoding form where the base type needs to be
8563 looked up by name. We prefer the newer enconding because it is
8564 more efficient. */
8565 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8566 if (raw_real_type == NULL)
8567 return raw_type;
8568 else
8569 return raw_real_type;
8570 }
8571
8572 /* The field in our XVS type is a reference to the base type. */
8573 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8574 }
8575
8576 /* The type of value designated by TYPE, with all aligners removed. */
8577
8578 struct type *
8579 ada_aligned_type (struct type *type)
8580 {
8581 if (ada_is_aligner_type (type))
8582 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8583 else
8584 return ada_get_base_type (type);
8585 }
8586
8587
8588 /* The address of the aligned value in an object at address VALADDR
8589 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8590
8591 const gdb_byte *
8592 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8593 {
8594 if (ada_is_aligner_type (type))
8595 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8596 valaddr +
8597 TYPE_FIELD_BITPOS (type,
8598 0) / TARGET_CHAR_BIT);
8599 else
8600 return valaddr;
8601 }
8602
8603
8604
8605 /* The printed representation of an enumeration literal with encoded
8606 name NAME. The value is good to the next call of ada_enum_name. */
8607 const char *
8608 ada_enum_name (const char *name)
8609 {
8610 static char *result;
8611 static size_t result_len = 0;
8612 char *tmp;
8613
8614 /* First, unqualify the enumeration name:
8615 1. Search for the last '.' character. If we find one, then skip
8616 all the preceding characters, the unqualified name starts
8617 right after that dot.
8618 2. Otherwise, we may be debugging on a target where the compiler
8619 translates dots into "__". Search forward for double underscores,
8620 but stop searching when we hit an overloading suffix, which is
8621 of the form "__" followed by digits. */
8622
8623 tmp = strrchr (name, '.');
8624 if (tmp != NULL)
8625 name = tmp + 1;
8626 else
8627 {
8628 while ((tmp = strstr (name, "__")) != NULL)
8629 {
8630 if (isdigit (tmp[2]))
8631 break;
8632 else
8633 name = tmp + 2;
8634 }
8635 }
8636
8637 if (name[0] == 'Q')
8638 {
8639 int v;
8640
8641 if (name[1] == 'U' || name[1] == 'W')
8642 {
8643 if (sscanf (name + 2, "%x", &v) != 1)
8644 return name;
8645 }
8646 else
8647 return name;
8648
8649 GROW_VECT (result, result_len, 16);
8650 if (isascii (v) && isprint (v))
8651 xsnprintf (result, result_len, "'%c'", v);
8652 else if (name[1] == 'U')
8653 xsnprintf (result, result_len, "[\"%02x\"]", v);
8654 else
8655 xsnprintf (result, result_len, "[\"%04x\"]", v);
8656
8657 return result;
8658 }
8659 else
8660 {
8661 tmp = strstr (name, "__");
8662 if (tmp == NULL)
8663 tmp = strstr (name, "$");
8664 if (tmp != NULL)
8665 {
8666 GROW_VECT (result, result_len, tmp - name + 1);
8667 strncpy (result, name, tmp - name);
8668 result[tmp - name] = '\0';
8669 return result;
8670 }
8671
8672 return name;
8673 }
8674 }
8675
8676 /* Evaluate the subexpression of EXP starting at *POS as for
8677 evaluate_type, updating *POS to point just past the evaluated
8678 expression. */
8679
8680 static struct value *
8681 evaluate_subexp_type (struct expression *exp, int *pos)
8682 {
8683 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8684 }
8685
8686 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8687 value it wraps. */
8688
8689 static struct value *
8690 unwrap_value (struct value *val)
8691 {
8692 struct type *type = ada_check_typedef (value_type (val));
8693
8694 if (ada_is_aligner_type (type))
8695 {
8696 struct value *v = ada_value_struct_elt (val, "F", 0);
8697 struct type *val_type = ada_check_typedef (value_type (v));
8698
8699 if (ada_type_name (val_type) == NULL)
8700 TYPE_NAME (val_type) = ada_type_name (type);
8701
8702 return unwrap_value (v);
8703 }
8704 else
8705 {
8706 struct type *raw_real_type =
8707 ada_check_typedef (ada_get_base_type (type));
8708
8709 /* If there is no parallel XVS or XVE type, then the value is
8710 already unwrapped. Return it without further modification. */
8711 if ((type == raw_real_type)
8712 && ada_find_parallel_type (type, "___XVE") == NULL)
8713 return val;
8714
8715 return
8716 coerce_unspec_val_to_type
8717 (val, ada_to_fixed_type (raw_real_type, 0,
8718 value_address (val),
8719 NULL, 1));
8720 }
8721 }
8722
8723 static struct value *
8724 cast_to_fixed (struct type *type, struct value *arg)
8725 {
8726 LONGEST val;
8727
8728 if (type == value_type (arg))
8729 return arg;
8730 else if (ada_is_fixed_point_type (value_type (arg)))
8731 val = ada_float_to_fixed (type,
8732 ada_fixed_to_float (value_type (arg),
8733 value_as_long (arg)));
8734 else
8735 {
8736 DOUBLEST argd = value_as_double (arg);
8737
8738 val = ada_float_to_fixed (type, argd);
8739 }
8740
8741 return value_from_longest (type, val);
8742 }
8743
8744 static struct value *
8745 cast_from_fixed (struct type *type, struct value *arg)
8746 {
8747 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8748 value_as_long (arg));
8749
8750 return value_from_double (type, val);
8751 }
8752
8753 /* Given two array types T1 and T2, return nonzero iff both arrays
8754 contain the same number of elements. */
8755
8756 static int
8757 ada_same_array_size_p (struct type *t1, struct type *t2)
8758 {
8759 LONGEST lo1, hi1, lo2, hi2;
8760
8761 /* Get the array bounds in order to verify that the size of
8762 the two arrays match. */
8763 if (!get_array_bounds (t1, &lo1, &hi1)
8764 || !get_array_bounds (t2, &lo2, &hi2))
8765 error (_("unable to determine array bounds"));
8766
8767 /* To make things easier for size comparison, normalize a bit
8768 the case of empty arrays by making sure that the difference
8769 between upper bound and lower bound is always -1. */
8770 if (lo1 > hi1)
8771 hi1 = lo1 - 1;
8772 if (lo2 > hi2)
8773 hi2 = lo2 - 1;
8774
8775 return (hi1 - lo1 == hi2 - lo2);
8776 }
8777
8778 /* Assuming that VAL is an array of integrals, and TYPE represents
8779 an array with the same number of elements, but with wider integral
8780 elements, return an array "casted" to TYPE. In practice, this
8781 means that the returned array is built by casting each element
8782 of the original array into TYPE's (wider) element type. */
8783
8784 static struct value *
8785 ada_promote_array_of_integrals (struct type *type, struct value *val)
8786 {
8787 struct type *elt_type = TYPE_TARGET_TYPE (type);
8788 LONGEST lo, hi;
8789 struct value *res;
8790 LONGEST i;
8791
8792 /* Verify that both val and type are arrays of scalars, and
8793 that the size of val's elements is smaller than the size
8794 of type's element. */
8795 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8796 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8797 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8798 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8799 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8800 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8801
8802 if (!get_array_bounds (type, &lo, &hi))
8803 error (_("unable to determine array bounds"));
8804
8805 res = allocate_value (type);
8806
8807 /* Promote each array element. */
8808 for (i = 0; i < hi - lo + 1; i++)
8809 {
8810 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8811
8812 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8813 value_contents_all (elt), TYPE_LENGTH (elt_type));
8814 }
8815
8816 return res;
8817 }
8818
8819 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8820 return the converted value. */
8821
8822 static struct value *
8823 coerce_for_assign (struct type *type, struct value *val)
8824 {
8825 struct type *type2 = value_type (val);
8826
8827 if (type == type2)
8828 return val;
8829
8830 type2 = ada_check_typedef (type2);
8831 type = ada_check_typedef (type);
8832
8833 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8834 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8835 {
8836 val = ada_value_ind (val);
8837 type2 = value_type (val);
8838 }
8839
8840 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8841 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8842 {
8843 if (!ada_same_array_size_p (type, type2))
8844 error (_("cannot assign arrays of different length"));
8845
8846 if (is_integral_type (TYPE_TARGET_TYPE (type))
8847 && is_integral_type (TYPE_TARGET_TYPE (type2))
8848 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8849 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8850 {
8851 /* Allow implicit promotion of the array elements to
8852 a wider type. */
8853 return ada_promote_array_of_integrals (type, val);
8854 }
8855
8856 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8857 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8858 error (_("Incompatible types in assignment"));
8859 deprecated_set_value_type (val, type);
8860 }
8861 return val;
8862 }
8863
8864 static struct value *
8865 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8866 {
8867 struct value *val;
8868 struct type *type1, *type2;
8869 LONGEST v, v1, v2;
8870
8871 arg1 = coerce_ref (arg1);
8872 arg2 = coerce_ref (arg2);
8873 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8874 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8875
8876 if (TYPE_CODE (type1) != TYPE_CODE_INT
8877 || TYPE_CODE (type2) != TYPE_CODE_INT)
8878 return value_binop (arg1, arg2, op);
8879
8880 switch (op)
8881 {
8882 case BINOP_MOD:
8883 case BINOP_DIV:
8884 case BINOP_REM:
8885 break;
8886 default:
8887 return value_binop (arg1, arg2, op);
8888 }
8889
8890 v2 = value_as_long (arg2);
8891 if (v2 == 0)
8892 error (_("second operand of %s must not be zero."), op_string (op));
8893
8894 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8895 return value_binop (arg1, arg2, op);
8896
8897 v1 = value_as_long (arg1);
8898 switch (op)
8899 {
8900 case BINOP_DIV:
8901 v = v1 / v2;
8902 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8903 v += v > 0 ? -1 : 1;
8904 break;
8905 case BINOP_REM:
8906 v = v1 % v2;
8907 if (v * v1 < 0)
8908 v -= v2;
8909 break;
8910 default:
8911 /* Should not reach this point. */
8912 v = 0;
8913 }
8914
8915 val = allocate_value (type1);
8916 store_unsigned_integer (value_contents_raw (val),
8917 TYPE_LENGTH (value_type (val)),
8918 gdbarch_byte_order (get_type_arch (type1)), v);
8919 return val;
8920 }
8921
8922 static int
8923 ada_value_equal (struct value *arg1, struct value *arg2)
8924 {
8925 if (ada_is_direct_array_type (value_type (arg1))
8926 || ada_is_direct_array_type (value_type (arg2)))
8927 {
8928 /* Automatically dereference any array reference before
8929 we attempt to perform the comparison. */
8930 arg1 = ada_coerce_ref (arg1);
8931 arg2 = ada_coerce_ref (arg2);
8932
8933 arg1 = ada_coerce_to_simple_array (arg1);
8934 arg2 = ada_coerce_to_simple_array (arg2);
8935 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8936 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8937 error (_("Attempt to compare array with non-array"));
8938 /* FIXME: The following works only for types whose
8939 representations use all bits (no padding or undefined bits)
8940 and do not have user-defined equality. */
8941 return
8942 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8943 && memcmp (value_contents (arg1), value_contents (arg2),
8944 TYPE_LENGTH (value_type (arg1))) == 0;
8945 }
8946 return value_equal (arg1, arg2);
8947 }
8948
8949 /* Total number of component associations in the aggregate starting at
8950 index PC in EXP. Assumes that index PC is the start of an
8951 OP_AGGREGATE. */
8952
8953 static int
8954 num_component_specs (struct expression *exp, int pc)
8955 {
8956 int n, m, i;
8957
8958 m = exp->elts[pc + 1].longconst;
8959 pc += 3;
8960 n = 0;
8961 for (i = 0; i < m; i += 1)
8962 {
8963 switch (exp->elts[pc].opcode)
8964 {
8965 default:
8966 n += 1;
8967 break;
8968 case OP_CHOICES:
8969 n += exp->elts[pc + 1].longconst;
8970 break;
8971 }
8972 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8973 }
8974 return n;
8975 }
8976
8977 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8978 component of LHS (a simple array or a record), updating *POS past
8979 the expression, assuming that LHS is contained in CONTAINER. Does
8980 not modify the inferior's memory, nor does it modify LHS (unless
8981 LHS == CONTAINER). */
8982
8983 static void
8984 assign_component (struct value *container, struct value *lhs, LONGEST index,
8985 struct expression *exp, int *pos)
8986 {
8987 struct value *mark = value_mark ();
8988 struct value *elt;
8989
8990 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8991 {
8992 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8993 struct value *index_val = value_from_longest (index_type, index);
8994
8995 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8996 }
8997 else
8998 {
8999 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9000 elt = ada_to_fixed_value (elt);
9001 }
9002
9003 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9004 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9005 else
9006 value_assign_to_component (container, elt,
9007 ada_evaluate_subexp (NULL, exp, pos,
9008 EVAL_NORMAL));
9009
9010 value_free_to_mark (mark);
9011 }
9012
9013 /* Assuming that LHS represents an lvalue having a record or array
9014 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9015 of that aggregate's value to LHS, advancing *POS past the
9016 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9017 lvalue containing LHS (possibly LHS itself). Does not modify
9018 the inferior's memory, nor does it modify the contents of
9019 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9020
9021 static struct value *
9022 assign_aggregate (struct value *container,
9023 struct value *lhs, struct expression *exp,
9024 int *pos, enum noside noside)
9025 {
9026 struct type *lhs_type;
9027 int n = exp->elts[*pos+1].longconst;
9028 LONGEST low_index, high_index;
9029 int num_specs;
9030 LONGEST *indices;
9031 int max_indices, num_indices;
9032 int is_array_aggregate;
9033 int i;
9034
9035 *pos += 3;
9036 if (noside != EVAL_NORMAL)
9037 {
9038 for (i = 0; i < n; i += 1)
9039 ada_evaluate_subexp (NULL, exp, pos, noside);
9040 return container;
9041 }
9042
9043 container = ada_coerce_ref (container);
9044 if (ada_is_direct_array_type (value_type (container)))
9045 container = ada_coerce_to_simple_array (container);
9046 lhs = ada_coerce_ref (lhs);
9047 if (!deprecated_value_modifiable (lhs))
9048 error (_("Left operand of assignment is not a modifiable lvalue."));
9049
9050 lhs_type = value_type (lhs);
9051 if (ada_is_direct_array_type (lhs_type))
9052 {
9053 lhs = ada_coerce_to_simple_array (lhs);
9054 lhs_type = value_type (lhs);
9055 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9056 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9057 is_array_aggregate = 1;
9058 }
9059 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9060 {
9061 low_index = 0;
9062 high_index = num_visible_fields (lhs_type) - 1;
9063 is_array_aggregate = 0;
9064 }
9065 else
9066 error (_("Left-hand side must be array or record."));
9067
9068 num_specs = num_component_specs (exp, *pos - 3);
9069 max_indices = 4 * num_specs + 4;
9070 indices = alloca (max_indices * sizeof (indices[0]));
9071 indices[0] = indices[1] = low_index - 1;
9072 indices[2] = indices[3] = high_index + 1;
9073 num_indices = 4;
9074
9075 for (i = 0; i < n; i += 1)
9076 {
9077 switch (exp->elts[*pos].opcode)
9078 {
9079 case OP_CHOICES:
9080 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9081 &num_indices, max_indices,
9082 low_index, high_index);
9083 break;
9084 case OP_POSITIONAL:
9085 aggregate_assign_positional (container, lhs, exp, pos, indices,
9086 &num_indices, max_indices,
9087 low_index, high_index);
9088 break;
9089 case OP_OTHERS:
9090 if (i != n-1)
9091 error (_("Misplaced 'others' clause"));
9092 aggregate_assign_others (container, lhs, exp, pos, indices,
9093 num_indices, low_index, high_index);
9094 break;
9095 default:
9096 error (_("Internal error: bad aggregate clause"));
9097 }
9098 }
9099
9100 return container;
9101 }
9102
9103 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9104 construct at *POS, updating *POS past the construct, given that
9105 the positions are relative to lower bound LOW, where HIGH is the
9106 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9107 updating *NUM_INDICES as needed. CONTAINER is as for
9108 assign_aggregate. */
9109 static void
9110 aggregate_assign_positional (struct value *container,
9111 struct value *lhs, struct expression *exp,
9112 int *pos, LONGEST *indices, int *num_indices,
9113 int max_indices, LONGEST low, LONGEST high)
9114 {
9115 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9116
9117 if (ind - 1 == high)
9118 warning (_("Extra components in aggregate ignored."));
9119 if (ind <= high)
9120 {
9121 add_component_interval (ind, ind, indices, num_indices, max_indices);
9122 *pos += 3;
9123 assign_component (container, lhs, ind, exp, pos);
9124 }
9125 else
9126 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9127 }
9128
9129 /* Assign into the components of LHS indexed by the OP_CHOICES
9130 construct at *POS, updating *POS past the construct, given that
9131 the allowable indices are LOW..HIGH. Record the indices assigned
9132 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9133 needed. CONTAINER is as for assign_aggregate. */
9134 static void
9135 aggregate_assign_from_choices (struct value *container,
9136 struct value *lhs, struct expression *exp,
9137 int *pos, LONGEST *indices, int *num_indices,
9138 int max_indices, LONGEST low, LONGEST high)
9139 {
9140 int j;
9141 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9142 int choice_pos, expr_pc;
9143 int is_array = ada_is_direct_array_type (value_type (lhs));
9144
9145 choice_pos = *pos += 3;
9146
9147 for (j = 0; j < n_choices; j += 1)
9148 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9149 expr_pc = *pos;
9150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9151
9152 for (j = 0; j < n_choices; j += 1)
9153 {
9154 LONGEST lower, upper;
9155 enum exp_opcode op = exp->elts[choice_pos].opcode;
9156
9157 if (op == OP_DISCRETE_RANGE)
9158 {
9159 choice_pos += 1;
9160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9161 EVAL_NORMAL));
9162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9163 EVAL_NORMAL));
9164 }
9165 else if (is_array)
9166 {
9167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9168 EVAL_NORMAL));
9169 upper = lower;
9170 }
9171 else
9172 {
9173 int ind;
9174 const char *name;
9175
9176 switch (op)
9177 {
9178 case OP_NAME:
9179 name = &exp->elts[choice_pos + 2].string;
9180 break;
9181 case OP_VAR_VALUE:
9182 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9183 break;
9184 default:
9185 error (_("Invalid record component association."));
9186 }
9187 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9188 ind = 0;
9189 if (! find_struct_field (name, value_type (lhs), 0,
9190 NULL, NULL, NULL, NULL, &ind))
9191 error (_("Unknown component name: %s."), name);
9192 lower = upper = ind;
9193 }
9194
9195 if (lower <= upper && (lower < low || upper > high))
9196 error (_("Index in component association out of bounds."));
9197
9198 add_component_interval (lower, upper, indices, num_indices,
9199 max_indices);
9200 while (lower <= upper)
9201 {
9202 int pos1;
9203
9204 pos1 = expr_pc;
9205 assign_component (container, lhs, lower, exp, &pos1);
9206 lower += 1;
9207 }
9208 }
9209 }
9210
9211 /* Assign the value of the expression in the OP_OTHERS construct in
9212 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9213 have not been previously assigned. The index intervals already assigned
9214 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9215 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9216 static void
9217 aggregate_assign_others (struct value *container,
9218 struct value *lhs, struct expression *exp,
9219 int *pos, LONGEST *indices, int num_indices,
9220 LONGEST low, LONGEST high)
9221 {
9222 int i;
9223 int expr_pc = *pos + 1;
9224
9225 for (i = 0; i < num_indices - 2; i += 2)
9226 {
9227 LONGEST ind;
9228
9229 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9230 {
9231 int localpos;
9232
9233 localpos = expr_pc;
9234 assign_component (container, lhs, ind, exp, &localpos);
9235 }
9236 }
9237 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9238 }
9239
9240 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9241 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9242 modifying *SIZE as needed. It is an error if *SIZE exceeds
9243 MAX_SIZE. The resulting intervals do not overlap. */
9244 static void
9245 add_component_interval (LONGEST low, LONGEST high,
9246 LONGEST* indices, int *size, int max_size)
9247 {
9248 int i, j;
9249
9250 for (i = 0; i < *size; i += 2) {
9251 if (high >= indices[i] && low <= indices[i + 1])
9252 {
9253 int kh;
9254
9255 for (kh = i + 2; kh < *size; kh += 2)
9256 if (high < indices[kh])
9257 break;
9258 if (low < indices[i])
9259 indices[i] = low;
9260 indices[i + 1] = indices[kh - 1];
9261 if (high > indices[i + 1])
9262 indices[i + 1] = high;
9263 memcpy (indices + i + 2, indices + kh, *size - kh);
9264 *size -= kh - i - 2;
9265 return;
9266 }
9267 else if (high < indices[i])
9268 break;
9269 }
9270
9271 if (*size == max_size)
9272 error (_("Internal error: miscounted aggregate components."));
9273 *size += 2;
9274 for (j = *size-1; j >= i+2; j -= 1)
9275 indices[j] = indices[j - 2];
9276 indices[i] = low;
9277 indices[i + 1] = high;
9278 }
9279
9280 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9281 is different. */
9282
9283 static struct value *
9284 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9285 {
9286 if (type == ada_check_typedef (value_type (arg2)))
9287 return arg2;
9288
9289 if (ada_is_fixed_point_type (type))
9290 return (cast_to_fixed (type, arg2));
9291
9292 if (ada_is_fixed_point_type (value_type (arg2)))
9293 return cast_from_fixed (type, arg2);
9294
9295 return value_cast (type, arg2);
9296 }
9297
9298 /* Evaluating Ada expressions, and printing their result.
9299 ------------------------------------------------------
9300
9301 1. Introduction:
9302 ----------------
9303
9304 We usually evaluate an Ada expression in order to print its value.
9305 We also evaluate an expression in order to print its type, which
9306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9310 similar.
9311
9312 Evaluating expressions is a little more complicated for Ada entities
9313 than it is for entities in languages such as C. The main reason for
9314 this is that Ada provides types whose definition might be dynamic.
9315 One example of such types is variant records. Or another example
9316 would be an array whose bounds can only be known at run time.
9317
9318 The following description is a general guide as to what should be
9319 done (and what should NOT be done) in order to evaluate an expression
9320 involving such types, and when. This does not cover how the semantic
9321 information is encoded by GNAT as this is covered separatly. For the
9322 document used as the reference for the GNAT encoding, see exp_dbug.ads
9323 in the GNAT sources.
9324
9325 Ideally, we should embed each part of this description next to its
9326 associated code. Unfortunately, the amount of code is so vast right
9327 now that it's hard to see whether the code handling a particular
9328 situation might be duplicated or not. One day, when the code is
9329 cleaned up, this guide might become redundant with the comments
9330 inserted in the code, and we might want to remove it.
9331
9332 2. ``Fixing'' an Entity, the Simple Case:
9333 -----------------------------------------
9334
9335 When evaluating Ada expressions, the tricky issue is that they may
9336 reference entities whose type contents and size are not statically
9337 known. Consider for instance a variant record:
9338
9339 type Rec (Empty : Boolean := True) is record
9340 case Empty is
9341 when True => null;
9342 when False => Value : Integer;
9343 end case;
9344 end record;
9345 Yes : Rec := (Empty => False, Value => 1);
9346 No : Rec := (empty => True);
9347
9348 The size and contents of that record depends on the value of the
9349 descriminant (Rec.Empty). At this point, neither the debugging
9350 information nor the associated type structure in GDB are able to
9351 express such dynamic types. So what the debugger does is to create
9352 "fixed" versions of the type that applies to the specific object.
9353 We also informally refer to this opperation as "fixing" an object,
9354 which means creating its associated fixed type.
9355
9356 Example: when printing the value of variable "Yes" above, its fixed
9357 type would look like this:
9358
9359 type Rec is record
9360 Empty : Boolean;
9361 Value : Integer;
9362 end record;
9363
9364 On the other hand, if we printed the value of "No", its fixed type
9365 would become:
9366
9367 type Rec is record
9368 Empty : Boolean;
9369 end record;
9370
9371 Things become a little more complicated when trying to fix an entity
9372 with a dynamic type that directly contains another dynamic type,
9373 such as an array of variant records, for instance. There are
9374 two possible cases: Arrays, and records.
9375
9376 3. ``Fixing'' Arrays:
9377 ---------------------
9378
9379 The type structure in GDB describes an array in terms of its bounds,
9380 and the type of its elements. By design, all elements in the array
9381 have the same type and we cannot represent an array of variant elements
9382 using the current type structure in GDB. When fixing an array,
9383 we cannot fix the array element, as we would potentially need one
9384 fixed type per element of the array. As a result, the best we can do
9385 when fixing an array is to produce an array whose bounds and size
9386 are correct (allowing us to read it from memory), but without having
9387 touched its element type. Fixing each element will be done later,
9388 when (if) necessary.
9389
9390 Arrays are a little simpler to handle than records, because the same
9391 amount of memory is allocated for each element of the array, even if
9392 the amount of space actually used by each element differs from element
9393 to element. Consider for instance the following array of type Rec:
9394
9395 type Rec_Array is array (1 .. 2) of Rec;
9396
9397 The actual amount of memory occupied by each element might be different
9398 from element to element, depending on the value of their discriminant.
9399 But the amount of space reserved for each element in the array remains
9400 fixed regardless. So we simply need to compute that size using
9401 the debugging information available, from which we can then determine
9402 the array size (we multiply the number of elements of the array by
9403 the size of each element).
9404
9405 The simplest case is when we have an array of a constrained element
9406 type. For instance, consider the following type declarations:
9407
9408 type Bounded_String (Max_Size : Integer) is
9409 Length : Integer;
9410 Buffer : String (1 .. Max_Size);
9411 end record;
9412 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9413
9414 In this case, the compiler describes the array as an array of
9415 variable-size elements (identified by its XVS suffix) for which
9416 the size can be read in the parallel XVZ variable.
9417
9418 In the case of an array of an unconstrained element type, the compiler
9419 wraps the array element inside a private PAD type. This type should not
9420 be shown to the user, and must be "unwrap"'ed before printing. Note
9421 that we also use the adjective "aligner" in our code to designate
9422 these wrapper types.
9423
9424 In some cases, the size allocated for each element is statically
9425 known. In that case, the PAD type already has the correct size,
9426 and the array element should remain unfixed.
9427
9428 But there are cases when this size is not statically known.
9429 For instance, assuming that "Five" is an integer variable:
9430
9431 type Dynamic is array (1 .. Five) of Integer;
9432 type Wrapper (Has_Length : Boolean := False) is record
9433 Data : Dynamic;
9434 case Has_Length is
9435 when True => Length : Integer;
9436 when False => null;
9437 end case;
9438 end record;
9439 type Wrapper_Array is array (1 .. 2) of Wrapper;
9440
9441 Hello : Wrapper_Array := (others => (Has_Length => True,
9442 Data => (others => 17),
9443 Length => 1));
9444
9445
9446 The debugging info would describe variable Hello as being an
9447 array of a PAD type. The size of that PAD type is not statically
9448 known, but can be determined using a parallel XVZ variable.
9449 In that case, a copy of the PAD type with the correct size should
9450 be used for the fixed array.
9451
9452 3. ``Fixing'' record type objects:
9453 ----------------------------------
9454
9455 Things are slightly different from arrays in the case of dynamic
9456 record types. In this case, in order to compute the associated
9457 fixed type, we need to determine the size and offset of each of
9458 its components. This, in turn, requires us to compute the fixed
9459 type of each of these components.
9460
9461 Consider for instance the example:
9462
9463 type Bounded_String (Max_Size : Natural) is record
9464 Str : String (1 .. Max_Size);
9465 Length : Natural;
9466 end record;
9467 My_String : Bounded_String (Max_Size => 10);
9468
9469 In that case, the position of field "Length" depends on the size
9470 of field Str, which itself depends on the value of the Max_Size
9471 discriminant. In order to fix the type of variable My_String,
9472 we need to fix the type of field Str. Therefore, fixing a variant
9473 record requires us to fix each of its components.
9474
9475 However, if a component does not have a dynamic size, the component
9476 should not be fixed. In particular, fields that use a PAD type
9477 should not fixed. Here is an example where this might happen
9478 (assuming type Rec above):
9479
9480 type Container (Big : Boolean) is record
9481 First : Rec;
9482 After : Integer;
9483 case Big is
9484 when True => Another : Integer;
9485 when False => null;
9486 end case;
9487 end record;
9488 My_Container : Container := (Big => False,
9489 First => (Empty => True),
9490 After => 42);
9491
9492 In that example, the compiler creates a PAD type for component First,
9493 whose size is constant, and then positions the component After just
9494 right after it. The offset of component After is therefore constant
9495 in this case.
9496
9497 The debugger computes the position of each field based on an algorithm
9498 that uses, among other things, the actual position and size of the field
9499 preceding it. Let's now imagine that the user is trying to print
9500 the value of My_Container. If the type fixing was recursive, we would
9501 end up computing the offset of field After based on the size of the
9502 fixed version of field First. And since in our example First has
9503 only one actual field, the size of the fixed type is actually smaller
9504 than the amount of space allocated to that field, and thus we would
9505 compute the wrong offset of field After.
9506
9507 To make things more complicated, we need to watch out for dynamic
9508 components of variant records (identified by the ___XVL suffix in
9509 the component name). Even if the target type is a PAD type, the size
9510 of that type might not be statically known. So the PAD type needs
9511 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9512 we might end up with the wrong size for our component. This can be
9513 observed with the following type declarations:
9514
9515 type Octal is new Integer range 0 .. 7;
9516 type Octal_Array is array (Positive range <>) of Octal;
9517 pragma Pack (Octal_Array);
9518
9519 type Octal_Buffer (Size : Positive) is record
9520 Buffer : Octal_Array (1 .. Size);
9521 Length : Integer;
9522 end record;
9523
9524 In that case, Buffer is a PAD type whose size is unset and needs
9525 to be computed by fixing the unwrapped type.
9526
9527 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9528 ----------------------------------------------------------
9529
9530 Lastly, when should the sub-elements of an entity that remained unfixed
9531 thus far, be actually fixed?
9532
9533 The answer is: Only when referencing that element. For instance
9534 when selecting one component of a record, this specific component
9535 should be fixed at that point in time. Or when printing the value
9536 of a record, each component should be fixed before its value gets
9537 printed. Similarly for arrays, the element of the array should be
9538 fixed when printing each element of the array, or when extracting
9539 one element out of that array. On the other hand, fixing should
9540 not be performed on the elements when taking a slice of an array!
9541
9542 Note that one of the side-effects of miscomputing the offset and
9543 size of each field is that we end up also miscomputing the size
9544 of the containing type. This can have adverse results when computing
9545 the value of an entity. GDB fetches the value of an entity based
9546 on the size of its type, and thus a wrong size causes GDB to fetch
9547 the wrong amount of memory. In the case where the computed size is
9548 too small, GDB fetches too little data to print the value of our
9549 entiry. Results in this case as unpredicatble, as we usually read
9550 past the buffer containing the data =:-o. */
9551
9552 /* Implement the evaluate_exp routine in the exp_descriptor structure
9553 for the Ada language. */
9554
9555 static struct value *
9556 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9557 int *pos, enum noside noside)
9558 {
9559 enum exp_opcode op;
9560 int tem;
9561 int pc;
9562 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9563 struct type *type;
9564 int nargs, oplen;
9565 struct value **argvec;
9566
9567 pc = *pos;
9568 *pos += 1;
9569 op = exp->elts[pc].opcode;
9570
9571 switch (op)
9572 {
9573 default:
9574 *pos -= 1;
9575 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9576
9577 if (noside == EVAL_NORMAL)
9578 arg1 = unwrap_value (arg1);
9579
9580 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9581 then we need to perform the conversion manually, because
9582 evaluate_subexp_standard doesn't do it. This conversion is
9583 necessary in Ada because the different kinds of float/fixed
9584 types in Ada have different representations.
9585
9586 Similarly, we need to perform the conversion from OP_LONG
9587 ourselves. */
9588 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9589 arg1 = ada_value_cast (expect_type, arg1, noside);
9590
9591 return arg1;
9592
9593 case OP_STRING:
9594 {
9595 struct value *result;
9596
9597 *pos -= 1;
9598 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9599 /* The result type will have code OP_STRING, bashed there from
9600 OP_ARRAY. Bash it back. */
9601 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9602 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9603 return result;
9604 }
9605
9606 case UNOP_CAST:
9607 (*pos) += 2;
9608 type = exp->elts[pc + 1].type;
9609 arg1 = evaluate_subexp (type, exp, pos, noside);
9610 if (noside == EVAL_SKIP)
9611 goto nosideret;
9612 arg1 = ada_value_cast (type, arg1, noside);
9613 return arg1;
9614
9615 case UNOP_QUAL:
9616 (*pos) += 2;
9617 type = exp->elts[pc + 1].type;
9618 return ada_evaluate_subexp (type, exp, pos, noside);
9619
9620 case BINOP_ASSIGN:
9621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9622 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9623 {
9624 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9625 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9626 return arg1;
9627 return ada_value_assign (arg1, arg1);
9628 }
9629 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9630 except if the lhs of our assignment is a convenience variable.
9631 In the case of assigning to a convenience variable, the lhs
9632 should be exactly the result of the evaluation of the rhs. */
9633 type = value_type (arg1);
9634 if (VALUE_LVAL (arg1) == lval_internalvar)
9635 type = NULL;
9636 arg2 = evaluate_subexp (type, exp, pos, noside);
9637 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9638 return arg1;
9639 if (ada_is_fixed_point_type (value_type (arg1)))
9640 arg2 = cast_to_fixed (value_type (arg1), arg2);
9641 else if (ada_is_fixed_point_type (value_type (arg2)))
9642 error
9643 (_("Fixed-point values must be assigned to fixed-point variables"));
9644 else
9645 arg2 = coerce_for_assign (value_type (arg1), arg2);
9646 return ada_value_assign (arg1, arg2);
9647
9648 case BINOP_ADD:
9649 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9650 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9651 if (noside == EVAL_SKIP)
9652 goto nosideret;
9653 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9654 return (value_from_longest
9655 (value_type (arg1),
9656 value_as_long (arg1) + value_as_long (arg2)));
9657 if ((ada_is_fixed_point_type (value_type (arg1))
9658 || ada_is_fixed_point_type (value_type (arg2)))
9659 && value_type (arg1) != value_type (arg2))
9660 error (_("Operands of fixed-point addition must have the same type"));
9661 /* Do the addition, and cast the result to the type of the first
9662 argument. We cannot cast the result to a reference type, so if
9663 ARG1 is a reference type, find its underlying type. */
9664 type = value_type (arg1);
9665 while (TYPE_CODE (type) == TYPE_CODE_REF)
9666 type = TYPE_TARGET_TYPE (type);
9667 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9668 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9669
9670 case BINOP_SUB:
9671 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9672 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 if (noside == EVAL_SKIP)
9674 goto nosideret;
9675 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9676 return (value_from_longest
9677 (value_type (arg1),
9678 value_as_long (arg1) - value_as_long (arg2)));
9679 if ((ada_is_fixed_point_type (value_type (arg1))
9680 || ada_is_fixed_point_type (value_type (arg2)))
9681 && value_type (arg1) != value_type (arg2))
9682 error (_("Operands of fixed-point subtraction "
9683 "must have the same type"));
9684 /* Do the substraction, and cast the result to the type of the first
9685 argument. We cannot cast the result to a reference type, so if
9686 ARG1 is a reference type, find its underlying type. */
9687 type = value_type (arg1);
9688 while (TYPE_CODE (type) == TYPE_CODE_REF)
9689 type = TYPE_TARGET_TYPE (type);
9690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9691 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9692
9693 case BINOP_MUL:
9694 case BINOP_DIV:
9695 case BINOP_REM:
9696 case BINOP_MOD:
9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9699 if (noside == EVAL_SKIP)
9700 goto nosideret;
9701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9702 {
9703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9704 return value_zero (value_type (arg1), not_lval);
9705 }
9706 else
9707 {
9708 type = builtin_type (exp->gdbarch)->builtin_double;
9709 if (ada_is_fixed_point_type (value_type (arg1)))
9710 arg1 = cast_from_fixed (type, arg1);
9711 if (ada_is_fixed_point_type (value_type (arg2)))
9712 arg2 = cast_from_fixed (type, arg2);
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9714 return ada_value_binop (arg1, arg2, op);
9715 }
9716
9717 case BINOP_EQUAL:
9718 case BINOP_NOTEQUAL:
9719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9720 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9721 if (noside == EVAL_SKIP)
9722 goto nosideret;
9723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9724 tem = 0;
9725 else
9726 {
9727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9728 tem = ada_value_equal (arg1, arg2);
9729 }
9730 if (op == BINOP_NOTEQUAL)
9731 tem = !tem;
9732 type = language_bool_type (exp->language_defn, exp->gdbarch);
9733 return value_from_longest (type, (LONGEST) tem);
9734
9735 case UNOP_NEG:
9736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9737 if (noside == EVAL_SKIP)
9738 goto nosideret;
9739 else if (ada_is_fixed_point_type (value_type (arg1)))
9740 return value_cast (value_type (arg1), value_neg (arg1));
9741 else
9742 {
9743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9744 return value_neg (arg1);
9745 }
9746
9747 case BINOP_LOGICAL_AND:
9748 case BINOP_LOGICAL_OR:
9749 case UNOP_LOGICAL_NOT:
9750 {
9751 struct value *val;
9752
9753 *pos -= 1;
9754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_cast (type, val);
9757 }
9758
9759 case BINOP_BITWISE_AND:
9760 case BINOP_BITWISE_IOR:
9761 case BINOP_BITWISE_XOR:
9762 {
9763 struct value *val;
9764
9765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9766 *pos = pc;
9767 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9768
9769 return value_cast (value_type (arg1), val);
9770 }
9771
9772 case OP_VAR_VALUE:
9773 *pos -= 1;
9774
9775 if (noside == EVAL_SKIP)
9776 {
9777 *pos += 4;
9778 goto nosideret;
9779 }
9780 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9781 /* Only encountered when an unresolved symbol occurs in a
9782 context other than a function call, in which case, it is
9783 invalid. */
9784 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9785 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9787 {
9788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9789 /* Check to see if this is a tagged type. We also need to handle
9790 the case where the type is a reference to a tagged type, but
9791 we have to be careful to exclude pointers to tagged types.
9792 The latter should be shown as usual (as a pointer), whereas
9793 a reference should mostly be transparent to the user. */
9794 if (ada_is_tagged_type (type, 0)
9795 || (TYPE_CODE(type) == TYPE_CODE_REF
9796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9797 {
9798 /* Tagged types are a little special in the fact that the real
9799 type is dynamic and can only be determined by inspecting the
9800 object's tag. This means that we need to get the object's
9801 value first (EVAL_NORMAL) and then extract the actual object
9802 type from its tag.
9803
9804 Note that we cannot skip the final step where we extract
9805 the object type from its tag, because the EVAL_NORMAL phase
9806 results in dynamic components being resolved into fixed ones.
9807 This can cause problems when trying to print the type
9808 description of tagged types whose parent has a dynamic size:
9809 We use the type name of the "_parent" component in order
9810 to print the name of the ancestor type in the type description.
9811 If that component had a dynamic size, the resolution into
9812 a fixed type would result in the loss of that type name,
9813 thus preventing us from printing the name of the ancestor
9814 type in the type description. */
9815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9816
9817 if (TYPE_CODE (type) != TYPE_CODE_REF)
9818 {
9819 struct type *actual_type;
9820
9821 actual_type = type_from_tag (ada_value_tag (arg1));
9822 if (actual_type == NULL)
9823 /* If, for some reason, we were unable to determine
9824 the actual type from the tag, then use the static
9825 approximation that we just computed as a fallback.
9826 This can happen if the debugging information is
9827 incomplete, for instance. */
9828 actual_type = type;
9829 return value_zero (actual_type, not_lval);
9830 }
9831 else
9832 {
9833 /* In the case of a ref, ada_coerce_ref takes care
9834 of determining the actual type. But the evaluation
9835 should return a ref as it should be valid to ask
9836 for its address; so rebuild a ref after coerce. */
9837 arg1 = ada_coerce_ref (arg1);
9838 return value_ref (arg1);
9839 }
9840 }
9841
9842 *pos += 4;
9843 return value_zero
9844 (to_static_fixed_type
9845 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9846 not_lval);
9847 }
9848 else
9849 {
9850 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9851 return ada_to_fixed_value (arg1);
9852 }
9853
9854 case OP_FUNCALL:
9855 (*pos) += 2;
9856
9857 /* Allocate arg vector, including space for the function to be
9858 called in argvec[0] and a terminating NULL. */
9859 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9860 argvec =
9861 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9862
9863 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9864 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9865 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9866 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9867 else
9868 {
9869 for (tem = 0; tem <= nargs; tem += 1)
9870 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9871 argvec[tem] = 0;
9872
9873 if (noside == EVAL_SKIP)
9874 goto nosideret;
9875 }
9876
9877 if (ada_is_constrained_packed_array_type
9878 (desc_base_type (value_type (argvec[0]))))
9879 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9880 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9881 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9882 /* This is a packed array that has already been fixed, and
9883 therefore already coerced to a simple array. Nothing further
9884 to do. */
9885 ;
9886 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9887 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9888 && VALUE_LVAL (argvec[0]) == lval_memory))
9889 argvec[0] = value_addr (argvec[0]);
9890
9891 type = ada_check_typedef (value_type (argvec[0]));
9892
9893 /* Ada allows us to implicitly dereference arrays when subscripting
9894 them. So, if this is an array typedef (encoding use for array
9895 access types encoded as fat pointers), strip it now. */
9896 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9897 type = ada_typedef_target_type (type);
9898
9899 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9900 {
9901 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9902 {
9903 case TYPE_CODE_FUNC:
9904 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9905 break;
9906 case TYPE_CODE_ARRAY:
9907 break;
9908 case TYPE_CODE_STRUCT:
9909 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9910 argvec[0] = ada_value_ind (argvec[0]);
9911 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9912 break;
9913 default:
9914 error (_("cannot subscript or call something of type `%s'"),
9915 ada_type_name (value_type (argvec[0])));
9916 break;
9917 }
9918 }
9919
9920 switch (TYPE_CODE (type))
9921 {
9922 case TYPE_CODE_FUNC:
9923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9924 {
9925 struct type *rtype = TYPE_TARGET_TYPE (type);
9926
9927 if (TYPE_GNU_IFUNC (type))
9928 return allocate_value (TYPE_TARGET_TYPE (rtype));
9929 return allocate_value (rtype);
9930 }
9931 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9932 case TYPE_CODE_INTERNAL_FUNCTION:
9933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9934 /* We don't know anything about what the internal
9935 function might return, but we have to return
9936 something. */
9937 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9938 not_lval);
9939 else
9940 return call_internal_function (exp->gdbarch, exp->language_defn,
9941 argvec[0], nargs, argvec + 1);
9942
9943 case TYPE_CODE_STRUCT:
9944 {
9945 int arity;
9946
9947 arity = ada_array_arity (type);
9948 type = ada_array_element_type (type, nargs);
9949 if (type == NULL)
9950 error (_("cannot subscript or call a record"));
9951 if (arity != nargs)
9952 error (_("wrong number of subscripts; expecting %d"), arity);
9953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9954 return value_zero (ada_aligned_type (type), lval_memory);
9955 return
9956 unwrap_value (ada_value_subscript
9957 (argvec[0], nargs, argvec + 1));
9958 }
9959 case TYPE_CODE_ARRAY:
9960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9961 {
9962 type = ada_array_element_type (type, nargs);
9963 if (type == NULL)
9964 error (_("element type of array unknown"));
9965 else
9966 return value_zero (ada_aligned_type (type), lval_memory);
9967 }
9968 return
9969 unwrap_value (ada_value_subscript
9970 (ada_coerce_to_simple_array (argvec[0]),
9971 nargs, argvec + 1));
9972 case TYPE_CODE_PTR: /* Pointer to array */
9973 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9975 {
9976 type = ada_array_element_type (type, nargs);
9977 if (type == NULL)
9978 error (_("element type of array unknown"));
9979 else
9980 return value_zero (ada_aligned_type (type), lval_memory);
9981 }
9982 return
9983 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9984 nargs, argvec + 1));
9985
9986 default:
9987 error (_("Attempt to index or call something other than an "
9988 "array or function"));
9989 }
9990
9991 case TERNOP_SLICE:
9992 {
9993 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9994 struct value *low_bound_val =
9995 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9996 struct value *high_bound_val =
9997 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9998 LONGEST low_bound;
9999 LONGEST high_bound;
10000
10001 low_bound_val = coerce_ref (low_bound_val);
10002 high_bound_val = coerce_ref (high_bound_val);
10003 low_bound = pos_atr (low_bound_val);
10004 high_bound = pos_atr (high_bound_val);
10005
10006 if (noside == EVAL_SKIP)
10007 goto nosideret;
10008
10009 /* If this is a reference to an aligner type, then remove all
10010 the aligners. */
10011 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10012 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10013 TYPE_TARGET_TYPE (value_type (array)) =
10014 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10015
10016 if (ada_is_constrained_packed_array_type (value_type (array)))
10017 error (_("cannot slice a packed array"));
10018
10019 /* If this is a reference to an array or an array lvalue,
10020 convert to a pointer. */
10021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10022 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10023 && VALUE_LVAL (array) == lval_memory))
10024 array = value_addr (array);
10025
10026 if (noside == EVAL_AVOID_SIDE_EFFECTS
10027 && ada_is_array_descriptor_type (ada_check_typedef
10028 (value_type (array))))
10029 return empty_array (ada_type_of_array (array, 0), low_bound);
10030
10031 array = ada_coerce_to_simple_array_ptr (array);
10032
10033 /* If we have more than one level of pointer indirection,
10034 dereference the value until we get only one level. */
10035 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10036 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10037 == TYPE_CODE_PTR))
10038 array = value_ind (array);
10039
10040 /* Make sure we really do have an array type before going further,
10041 to avoid a SEGV when trying to get the index type or the target
10042 type later down the road if the debug info generated by
10043 the compiler is incorrect or incomplete. */
10044 if (!ada_is_simple_array_type (value_type (array)))
10045 error (_("cannot take slice of non-array"));
10046
10047 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10048 == TYPE_CODE_PTR)
10049 {
10050 struct type *type0 = ada_check_typedef (value_type (array));
10051
10052 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10053 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10054 else
10055 {
10056 struct type *arr_type0 =
10057 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10058
10059 return ada_value_slice_from_ptr (array, arr_type0,
10060 longest_to_int (low_bound),
10061 longest_to_int (high_bound));
10062 }
10063 }
10064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10065 return array;
10066 else if (high_bound < low_bound)
10067 return empty_array (value_type (array), low_bound);
10068 else
10069 return ada_value_slice (array, longest_to_int (low_bound),
10070 longest_to_int (high_bound));
10071 }
10072
10073 case UNOP_IN_RANGE:
10074 (*pos) += 2;
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10076 type = check_typedef (exp->elts[pc + 1].type);
10077
10078 if (noside == EVAL_SKIP)
10079 goto nosideret;
10080
10081 switch (TYPE_CODE (type))
10082 {
10083 default:
10084 lim_warning (_("Membership test incompletely implemented; "
10085 "always returns true"));
10086 type = language_bool_type (exp->language_defn, exp->gdbarch);
10087 return value_from_longest (type, (LONGEST) 1);
10088
10089 case TYPE_CODE_RANGE:
10090 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10091 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10094 type = language_bool_type (exp->language_defn, exp->gdbarch);
10095 return
10096 value_from_longest (type,
10097 (value_less (arg1, arg3)
10098 || value_equal (arg1, arg3))
10099 && (value_less (arg2, arg1)
10100 || value_equal (arg2, arg1)));
10101 }
10102
10103 case BINOP_IN_BOUNDS:
10104 (*pos) += 2;
10105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107
10108 if (noside == EVAL_SKIP)
10109 goto nosideret;
10110
10111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10112 {
10113 type = language_bool_type (exp->language_defn, exp->gdbarch);
10114 return value_zero (type, not_lval);
10115 }
10116
10117 tem = longest_to_int (exp->elts[pc + 1].longconst);
10118
10119 type = ada_index_type (value_type (arg2), tem, "range");
10120 if (!type)
10121 type = value_type (arg1);
10122
10123 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10124 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10125
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10128 type = language_bool_type (exp->language_defn, exp->gdbarch);
10129 return
10130 value_from_longest (type,
10131 (value_less (arg1, arg3)
10132 || value_equal (arg1, arg3))
10133 && (value_less (arg2, arg1)
10134 || value_equal (arg2, arg1)));
10135
10136 case TERNOP_IN_RANGE:
10137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140
10141 if (noside == EVAL_SKIP)
10142 goto nosideret;
10143
10144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
10147 return
10148 value_from_longest (type,
10149 (value_less (arg1, arg3)
10150 || value_equal (arg1, arg3))
10151 && (value_less (arg2, arg1)
10152 || value_equal (arg2, arg1)));
10153
10154 case OP_ATR_FIRST:
10155 case OP_ATR_LAST:
10156 case OP_ATR_LENGTH:
10157 {
10158 struct type *type_arg;
10159
10160 if (exp->elts[*pos].opcode == OP_TYPE)
10161 {
10162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10163 arg1 = NULL;
10164 type_arg = check_typedef (exp->elts[pc + 2].type);
10165 }
10166 else
10167 {
10168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10169 type_arg = NULL;
10170 }
10171
10172 if (exp->elts[*pos].opcode != OP_LONG)
10173 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10174 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10175 *pos += 4;
10176
10177 if (noside == EVAL_SKIP)
10178 goto nosideret;
10179
10180 if (type_arg == NULL)
10181 {
10182 arg1 = ada_coerce_ref (arg1);
10183
10184 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10185 arg1 = ada_coerce_to_simple_array (arg1);
10186
10187 type = ada_index_type (value_type (arg1), tem,
10188 ada_attribute_name (op));
10189 if (type == NULL)
10190 type = builtin_type (exp->gdbarch)->builtin_int;
10191
10192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10193 return allocate_value (type);
10194
10195 switch (op)
10196 {
10197 default: /* Should never happen. */
10198 error (_("unexpected attribute encountered"));
10199 case OP_ATR_FIRST:
10200 return value_from_longest
10201 (type, ada_array_bound (arg1, tem, 0));
10202 case OP_ATR_LAST:
10203 return value_from_longest
10204 (type, ada_array_bound (arg1, tem, 1));
10205 case OP_ATR_LENGTH:
10206 return value_from_longest
10207 (type, ada_array_length (arg1, tem));
10208 }
10209 }
10210 else if (discrete_type_p (type_arg))
10211 {
10212 struct type *range_type;
10213 const char *name = ada_type_name (type_arg);
10214
10215 range_type = NULL;
10216 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10217 range_type = to_fixed_range_type (type_arg, NULL);
10218 if (range_type == NULL)
10219 range_type = type_arg;
10220 switch (op)
10221 {
10222 default:
10223 error (_("unexpected attribute encountered"));
10224 case OP_ATR_FIRST:
10225 return value_from_longest
10226 (range_type, ada_discrete_type_low_bound (range_type));
10227 case OP_ATR_LAST:
10228 return value_from_longest
10229 (range_type, ada_discrete_type_high_bound (range_type));
10230 case OP_ATR_LENGTH:
10231 error (_("the 'length attribute applies only to array types"));
10232 }
10233 }
10234 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10235 error (_("unimplemented type attribute"));
10236 else
10237 {
10238 LONGEST low, high;
10239
10240 if (ada_is_constrained_packed_array_type (type_arg))
10241 type_arg = decode_constrained_packed_array_type (type_arg);
10242
10243 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10244 if (type == NULL)
10245 type = builtin_type (exp->gdbarch)->builtin_int;
10246
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10248 return allocate_value (type);
10249
10250 switch (op)
10251 {
10252 default:
10253 error (_("unexpected attribute encountered"));
10254 case OP_ATR_FIRST:
10255 low = ada_array_bound_from_type (type_arg, tem, 0);
10256 return value_from_longest (type, low);
10257 case OP_ATR_LAST:
10258 high = ada_array_bound_from_type (type_arg, tem, 1);
10259 return value_from_longest (type, high);
10260 case OP_ATR_LENGTH:
10261 low = ada_array_bound_from_type (type_arg, tem, 0);
10262 high = ada_array_bound_from_type (type_arg, tem, 1);
10263 return value_from_longest (type, high - low + 1);
10264 }
10265 }
10266 }
10267
10268 case OP_ATR_TAG:
10269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10270 if (noside == EVAL_SKIP)
10271 goto nosideret;
10272
10273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10274 return value_zero (ada_tag_type (arg1), not_lval);
10275
10276 return ada_value_tag (arg1);
10277
10278 case OP_ATR_MIN:
10279 case OP_ATR_MAX:
10280 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10283 if (noside == EVAL_SKIP)
10284 goto nosideret;
10285 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10286 return value_zero (value_type (arg1), not_lval);
10287 else
10288 {
10289 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10290 return value_binop (arg1, arg2,
10291 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10292 }
10293
10294 case OP_ATR_MODULUS:
10295 {
10296 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10297
10298 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10299 if (noside == EVAL_SKIP)
10300 goto nosideret;
10301
10302 if (!ada_is_modular_type (type_arg))
10303 error (_("'modulus must be applied to modular type"));
10304
10305 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10306 ada_modulus (type_arg));
10307 }
10308
10309
10310 case OP_ATR_POS:
10311 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10313 if (noside == EVAL_SKIP)
10314 goto nosideret;
10315 type = builtin_type (exp->gdbarch)->builtin_int;
10316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10317 return value_zero (type, not_lval);
10318 else
10319 return value_pos_atr (type, arg1);
10320
10321 case OP_ATR_SIZE:
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 type = value_type (arg1);
10324
10325 /* If the argument is a reference, then dereference its type, since
10326 the user is really asking for the size of the actual object,
10327 not the size of the pointer. */
10328 if (TYPE_CODE (type) == TYPE_CODE_REF)
10329 type = TYPE_TARGET_TYPE (type);
10330
10331 if (noside == EVAL_SKIP)
10332 goto nosideret;
10333 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10335 else
10336 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10337 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10338
10339 case OP_ATR_VAL:
10340 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10342 type = exp->elts[pc + 2].type;
10343 if (noside == EVAL_SKIP)
10344 goto nosideret;
10345 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10346 return value_zero (type, not_lval);
10347 else
10348 return value_val_atr (type, arg1);
10349
10350 case BINOP_EXP:
10351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10353 if (noside == EVAL_SKIP)
10354 goto nosideret;
10355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10356 return value_zero (value_type (arg1), not_lval);
10357 else
10358 {
10359 /* For integer exponentiation operations,
10360 only promote the first argument. */
10361 if (is_integral_type (value_type (arg2)))
10362 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10363 else
10364 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10365
10366 return value_binop (arg1, arg2, op);
10367 }
10368
10369 case UNOP_PLUS:
10370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 if (noside == EVAL_SKIP)
10372 goto nosideret;
10373 else
10374 return arg1;
10375
10376 case UNOP_ABS:
10377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10379 goto nosideret;
10380 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10381 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10382 return value_neg (arg1);
10383 else
10384 return arg1;
10385
10386 case UNOP_IND:
10387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10388 if (noside == EVAL_SKIP)
10389 goto nosideret;
10390 type = ada_check_typedef (value_type (arg1));
10391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10392 {
10393 if (ada_is_array_descriptor_type (type))
10394 /* GDB allows dereferencing GNAT array descriptors. */
10395 {
10396 struct type *arrType = ada_type_of_array (arg1, 0);
10397
10398 if (arrType == NULL)
10399 error (_("Attempt to dereference null array pointer."));
10400 return value_at_lazy (arrType, 0);
10401 }
10402 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10403 || TYPE_CODE (type) == TYPE_CODE_REF
10404 /* In C you can dereference an array to get the 1st elt. */
10405 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10406 {
10407 type = to_static_fixed_type
10408 (ada_aligned_type
10409 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10410 check_size (type);
10411 return value_zero (type, lval_memory);
10412 }
10413 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10414 {
10415 /* GDB allows dereferencing an int. */
10416 if (expect_type == NULL)
10417 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10418 lval_memory);
10419 else
10420 {
10421 expect_type =
10422 to_static_fixed_type (ada_aligned_type (expect_type));
10423 return value_zero (expect_type, lval_memory);
10424 }
10425 }
10426 else
10427 error (_("Attempt to take contents of a non-pointer value."));
10428 }
10429 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10430 type = ada_check_typedef (value_type (arg1));
10431
10432 if (TYPE_CODE (type) == TYPE_CODE_INT)
10433 /* GDB allows dereferencing an int. If we were given
10434 the expect_type, then use that as the target type.
10435 Otherwise, assume that the target type is an int. */
10436 {
10437 if (expect_type != NULL)
10438 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10439 arg1));
10440 else
10441 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10442 (CORE_ADDR) value_as_address (arg1));
10443 }
10444
10445 if (ada_is_array_descriptor_type (type))
10446 /* GDB allows dereferencing GNAT array descriptors. */
10447 return ada_coerce_to_simple_array (arg1);
10448 else
10449 return ada_value_ind (arg1);
10450
10451 case STRUCTOP_STRUCT:
10452 tem = longest_to_int (exp->elts[pc + 1].longconst);
10453 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10455 if (noside == EVAL_SKIP)
10456 goto nosideret;
10457 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10458 {
10459 struct type *type1 = value_type (arg1);
10460
10461 if (ada_is_tagged_type (type1, 1))
10462 {
10463 type = ada_lookup_struct_elt_type (type1,
10464 &exp->elts[pc + 2].string,
10465 1, 1, NULL);
10466 if (type == NULL)
10467 /* In this case, we assume that the field COULD exist
10468 in some extension of the type. Return an object of
10469 "type" void, which will match any formal
10470 (see ada_type_match). */
10471 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10472 lval_memory);
10473 }
10474 else
10475 type =
10476 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10477 0, NULL);
10478
10479 return value_zero (ada_aligned_type (type), lval_memory);
10480 }
10481 else
10482 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10483 arg1 = unwrap_value (arg1);
10484 return ada_to_fixed_value (arg1);
10485
10486 case OP_TYPE:
10487 /* The value is not supposed to be used. This is here to make it
10488 easier to accommodate expressions that contain types. */
10489 (*pos) += 2;
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10493 return allocate_value (exp->elts[pc + 1].type);
10494 else
10495 error (_("Attempt to use a type name as an expression"));
10496
10497 case OP_AGGREGATE:
10498 case OP_CHOICES:
10499 case OP_OTHERS:
10500 case OP_DISCRETE_RANGE:
10501 case OP_POSITIONAL:
10502 case OP_NAME:
10503 if (noside == EVAL_NORMAL)
10504 switch (op)
10505 {
10506 case OP_NAME:
10507 error (_("Undefined name, ambiguous name, or renaming used in "
10508 "component association: %s."), &exp->elts[pc+2].string);
10509 case OP_AGGREGATE:
10510 error (_("Aggregates only allowed on the right of an assignment"));
10511 default:
10512 internal_error (__FILE__, __LINE__,
10513 _("aggregate apparently mangled"));
10514 }
10515
10516 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10517 *pos += oplen - 1;
10518 for (tem = 0; tem < nargs; tem += 1)
10519 ada_evaluate_subexp (NULL, exp, pos, noside);
10520 goto nosideret;
10521 }
10522
10523 nosideret:
10524 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10525 }
10526 \f
10527
10528 /* Fixed point */
10529
10530 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10531 type name that encodes the 'small and 'delta information.
10532 Otherwise, return NULL. */
10533
10534 static const char *
10535 fixed_type_info (struct type *type)
10536 {
10537 const char *name = ada_type_name (type);
10538 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10539
10540 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10541 {
10542 const char *tail = strstr (name, "___XF_");
10543
10544 if (tail == NULL)
10545 return NULL;
10546 else
10547 return tail + 5;
10548 }
10549 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10550 return fixed_type_info (TYPE_TARGET_TYPE (type));
10551 else
10552 return NULL;
10553 }
10554
10555 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10556
10557 int
10558 ada_is_fixed_point_type (struct type *type)
10559 {
10560 return fixed_type_info (type) != NULL;
10561 }
10562
10563 /* Return non-zero iff TYPE represents a System.Address type. */
10564
10565 int
10566 ada_is_system_address_type (struct type *type)
10567 {
10568 return (TYPE_NAME (type)
10569 && strcmp (TYPE_NAME (type), "system__address") == 0);
10570 }
10571
10572 /* Assuming that TYPE is the representation of an Ada fixed-point
10573 type, return its delta, or -1 if the type is malformed and the
10574 delta cannot be determined. */
10575
10576 DOUBLEST
10577 ada_delta (struct type *type)
10578 {
10579 const char *encoding = fixed_type_info (type);
10580 DOUBLEST num, den;
10581
10582 /* Strictly speaking, num and den are encoded as integer. However,
10583 they may not fit into a long, and they will have to be converted
10584 to DOUBLEST anyway. So scan them as DOUBLEST. */
10585 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10586 &num, &den) < 2)
10587 return -1.0;
10588 else
10589 return num / den;
10590 }
10591
10592 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10593 factor ('SMALL value) associated with the type. */
10594
10595 static DOUBLEST
10596 scaling_factor (struct type *type)
10597 {
10598 const char *encoding = fixed_type_info (type);
10599 DOUBLEST num0, den0, num1, den1;
10600 int n;
10601
10602 /* Strictly speaking, num's and den's are encoded as integer. However,
10603 they may not fit into a long, and they will have to be converted
10604 to DOUBLEST anyway. So scan them as DOUBLEST. */
10605 n = sscanf (encoding,
10606 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10607 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10608 &num0, &den0, &num1, &den1);
10609
10610 if (n < 2)
10611 return 1.0;
10612 else if (n == 4)
10613 return num1 / den1;
10614 else
10615 return num0 / den0;
10616 }
10617
10618
10619 /* Assuming that X is the representation of a value of fixed-point
10620 type TYPE, return its floating-point equivalent. */
10621
10622 DOUBLEST
10623 ada_fixed_to_float (struct type *type, LONGEST x)
10624 {
10625 return (DOUBLEST) x *scaling_factor (type);
10626 }
10627
10628 /* The representation of a fixed-point value of type TYPE
10629 corresponding to the value X. */
10630
10631 LONGEST
10632 ada_float_to_fixed (struct type *type, DOUBLEST x)
10633 {
10634 return (LONGEST) (x / scaling_factor (type) + 0.5);
10635 }
10636
10637 \f
10638
10639 /* Range types */
10640
10641 /* Scan STR beginning at position K for a discriminant name, and
10642 return the value of that discriminant field of DVAL in *PX. If
10643 PNEW_K is not null, put the position of the character beyond the
10644 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10645 not alter *PX and *PNEW_K if unsuccessful. */
10646
10647 static int
10648 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10649 int *pnew_k)
10650 {
10651 static char *bound_buffer = NULL;
10652 static size_t bound_buffer_len = 0;
10653 char *bound;
10654 char *pend;
10655 struct value *bound_val;
10656
10657 if (dval == NULL || str == NULL || str[k] == '\0')
10658 return 0;
10659
10660 pend = strstr (str + k, "__");
10661 if (pend == NULL)
10662 {
10663 bound = str + k;
10664 k += strlen (bound);
10665 }
10666 else
10667 {
10668 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10669 bound = bound_buffer;
10670 strncpy (bound_buffer, str + k, pend - (str + k));
10671 bound[pend - (str + k)] = '\0';
10672 k = pend - str;
10673 }
10674
10675 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10676 if (bound_val == NULL)
10677 return 0;
10678
10679 *px = value_as_long (bound_val);
10680 if (pnew_k != NULL)
10681 *pnew_k = k;
10682 return 1;
10683 }
10684
10685 /* Value of variable named NAME in the current environment. If
10686 no such variable found, then if ERR_MSG is null, returns 0, and
10687 otherwise causes an error with message ERR_MSG. */
10688
10689 static struct value *
10690 get_var_value (char *name, char *err_msg)
10691 {
10692 struct ada_symbol_info *syms;
10693 int nsyms;
10694
10695 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10696 &syms, 1);
10697
10698 if (nsyms != 1)
10699 {
10700 if (err_msg == NULL)
10701 return 0;
10702 else
10703 error (("%s"), err_msg);
10704 }
10705
10706 return value_of_variable (syms[0].sym, syms[0].block);
10707 }
10708
10709 /* Value of integer variable named NAME in the current environment. If
10710 no such variable found, returns 0, and sets *FLAG to 0. If
10711 successful, sets *FLAG to 1. */
10712
10713 LONGEST
10714 get_int_var_value (char *name, int *flag)
10715 {
10716 struct value *var_val = get_var_value (name, 0);
10717
10718 if (var_val == 0)
10719 {
10720 if (flag != NULL)
10721 *flag = 0;
10722 return 0;
10723 }
10724 else
10725 {
10726 if (flag != NULL)
10727 *flag = 1;
10728 return value_as_long (var_val);
10729 }
10730 }
10731
10732
10733 /* Return a range type whose base type is that of the range type named
10734 NAME in the current environment, and whose bounds are calculated
10735 from NAME according to the GNAT range encoding conventions.
10736 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10737 corresponding range type from debug information; fall back to using it
10738 if symbol lookup fails. If a new type must be created, allocate it
10739 like ORIG_TYPE was. The bounds information, in general, is encoded
10740 in NAME, the base type given in the named range type. */
10741
10742 static struct type *
10743 to_fixed_range_type (struct type *raw_type, struct value *dval)
10744 {
10745 const char *name;
10746 struct type *base_type;
10747 char *subtype_info;
10748
10749 gdb_assert (raw_type != NULL);
10750 gdb_assert (TYPE_NAME (raw_type) != NULL);
10751
10752 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10753 base_type = TYPE_TARGET_TYPE (raw_type);
10754 else
10755 base_type = raw_type;
10756
10757 name = TYPE_NAME (raw_type);
10758 subtype_info = strstr (name, "___XD");
10759 if (subtype_info == NULL)
10760 {
10761 LONGEST L = ada_discrete_type_low_bound (raw_type);
10762 LONGEST U = ada_discrete_type_high_bound (raw_type);
10763
10764 if (L < INT_MIN || U > INT_MAX)
10765 return raw_type;
10766 else
10767 return create_range_type (alloc_type_copy (raw_type), raw_type,
10768 ada_discrete_type_low_bound (raw_type),
10769 ada_discrete_type_high_bound (raw_type));
10770 }
10771 else
10772 {
10773 static char *name_buf = NULL;
10774 static size_t name_len = 0;
10775 int prefix_len = subtype_info - name;
10776 LONGEST L, U;
10777 struct type *type;
10778 char *bounds_str;
10779 int n;
10780
10781 GROW_VECT (name_buf, name_len, prefix_len + 5);
10782 strncpy (name_buf, name, prefix_len);
10783 name_buf[prefix_len] = '\0';
10784
10785 subtype_info += 5;
10786 bounds_str = strchr (subtype_info, '_');
10787 n = 1;
10788
10789 if (*subtype_info == 'L')
10790 {
10791 if (!ada_scan_number (bounds_str, n, &L, &n)
10792 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10793 return raw_type;
10794 if (bounds_str[n] == '_')
10795 n += 2;
10796 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10797 n += 1;
10798 subtype_info += 1;
10799 }
10800 else
10801 {
10802 int ok;
10803
10804 strcpy (name_buf + prefix_len, "___L");
10805 L = get_int_var_value (name_buf, &ok);
10806 if (!ok)
10807 {
10808 lim_warning (_("Unknown lower bound, using 1."));
10809 L = 1;
10810 }
10811 }
10812
10813 if (*subtype_info == 'U')
10814 {
10815 if (!ada_scan_number (bounds_str, n, &U, &n)
10816 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10817 return raw_type;
10818 }
10819 else
10820 {
10821 int ok;
10822
10823 strcpy (name_buf + prefix_len, "___U");
10824 U = get_int_var_value (name_buf, &ok);
10825 if (!ok)
10826 {
10827 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10828 U = L;
10829 }
10830 }
10831
10832 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10833 TYPE_NAME (type) = name;
10834 return type;
10835 }
10836 }
10837
10838 /* True iff NAME is the name of a range type. */
10839
10840 int
10841 ada_is_range_type_name (const char *name)
10842 {
10843 return (name != NULL && strstr (name, "___XD"));
10844 }
10845 \f
10846
10847 /* Modular types */
10848
10849 /* True iff TYPE is an Ada modular type. */
10850
10851 int
10852 ada_is_modular_type (struct type *type)
10853 {
10854 struct type *subranged_type = get_base_type (type);
10855
10856 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10857 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10858 && TYPE_UNSIGNED (subranged_type));
10859 }
10860
10861 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10862
10863 ULONGEST
10864 ada_modulus (struct type *type)
10865 {
10866 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10867 }
10868 \f
10869
10870 /* Ada exception catchpoint support:
10871 ---------------------------------
10872
10873 We support 3 kinds of exception catchpoints:
10874 . catchpoints on Ada exceptions
10875 . catchpoints on unhandled Ada exceptions
10876 . catchpoints on failed assertions
10877
10878 Exceptions raised during failed assertions, or unhandled exceptions
10879 could perfectly be caught with the general catchpoint on Ada exceptions.
10880 However, we can easily differentiate these two special cases, and having
10881 the option to distinguish these two cases from the rest can be useful
10882 to zero-in on certain situations.
10883
10884 Exception catchpoints are a specialized form of breakpoint,
10885 since they rely on inserting breakpoints inside known routines
10886 of the GNAT runtime. The implementation therefore uses a standard
10887 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10888 of breakpoint_ops.
10889
10890 Support in the runtime for exception catchpoints have been changed
10891 a few times already, and these changes affect the implementation
10892 of these catchpoints. In order to be able to support several
10893 variants of the runtime, we use a sniffer that will determine
10894 the runtime variant used by the program being debugged. */
10895
10896 /* The different types of catchpoints that we introduced for catching
10897 Ada exceptions. */
10898
10899 enum exception_catchpoint_kind
10900 {
10901 ex_catch_exception,
10902 ex_catch_exception_unhandled,
10903 ex_catch_assert
10904 };
10905
10906 /* Ada's standard exceptions. */
10907
10908 static char *standard_exc[] = {
10909 "constraint_error",
10910 "program_error",
10911 "storage_error",
10912 "tasking_error"
10913 };
10914
10915 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10916
10917 /* A structure that describes how to support exception catchpoints
10918 for a given executable. */
10919
10920 struct exception_support_info
10921 {
10922 /* The name of the symbol to break on in order to insert
10923 a catchpoint on exceptions. */
10924 const char *catch_exception_sym;
10925
10926 /* The name of the symbol to break on in order to insert
10927 a catchpoint on unhandled exceptions. */
10928 const char *catch_exception_unhandled_sym;
10929
10930 /* The name of the symbol to break on in order to insert
10931 a catchpoint on failed assertions. */
10932 const char *catch_assert_sym;
10933
10934 /* Assuming that the inferior just triggered an unhandled exception
10935 catchpoint, this function is responsible for returning the address
10936 in inferior memory where the name of that exception is stored.
10937 Return zero if the address could not be computed. */
10938 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10939 };
10940
10941 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10942 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10943
10944 /* The following exception support info structure describes how to
10945 implement exception catchpoints with the latest version of the
10946 Ada runtime (as of 2007-03-06). */
10947
10948 static const struct exception_support_info default_exception_support_info =
10949 {
10950 "__gnat_debug_raise_exception", /* catch_exception_sym */
10951 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10952 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10953 ada_unhandled_exception_name_addr
10954 };
10955
10956 /* The following exception support info structure describes how to
10957 implement exception catchpoints with a slightly older version
10958 of the Ada runtime. */
10959
10960 static const struct exception_support_info exception_support_info_fallback =
10961 {
10962 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10963 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10964 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10965 ada_unhandled_exception_name_addr_from_raise
10966 };
10967
10968 /* Return nonzero if we can detect the exception support routines
10969 described in EINFO.
10970
10971 This function errors out if an abnormal situation is detected
10972 (for instance, if we find the exception support routines, but
10973 that support is found to be incomplete). */
10974
10975 static int
10976 ada_has_this_exception_support (const struct exception_support_info *einfo)
10977 {
10978 struct symbol *sym;
10979
10980 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10981 that should be compiled with debugging information. As a result, we
10982 expect to find that symbol in the symtabs. */
10983
10984 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10985 if (sym == NULL)
10986 {
10987 /* Perhaps we did not find our symbol because the Ada runtime was
10988 compiled without debugging info, or simply stripped of it.
10989 It happens on some GNU/Linux distributions for instance, where
10990 users have to install a separate debug package in order to get
10991 the runtime's debugging info. In that situation, let the user
10992 know why we cannot insert an Ada exception catchpoint.
10993
10994 Note: Just for the purpose of inserting our Ada exception
10995 catchpoint, we could rely purely on the associated minimal symbol.
10996 But we would be operating in degraded mode anyway, since we are
10997 still lacking the debugging info needed later on to extract
10998 the name of the exception being raised (this name is printed in
10999 the catchpoint message, and is also used when trying to catch
11000 a specific exception). We do not handle this case for now. */
11001 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11002 error (_("Your Ada runtime appears to be missing some debugging "
11003 "information.\nCannot insert Ada exception catchpoint "
11004 "in this configuration."));
11005
11006 return 0;
11007 }
11008
11009 /* Make sure that the symbol we found corresponds to a function. */
11010
11011 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11012 error (_("Symbol \"%s\" is not a function (class = %d)"),
11013 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11014
11015 return 1;
11016 }
11017
11018 /* Inspect the Ada runtime and determine which exception info structure
11019 should be used to provide support for exception catchpoints.
11020
11021 This function will always set the per-inferior exception_info,
11022 or raise an error. */
11023
11024 static void
11025 ada_exception_support_info_sniffer (void)
11026 {
11027 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11028
11029 /* If the exception info is already known, then no need to recompute it. */
11030 if (data->exception_info != NULL)
11031 return;
11032
11033 /* Check the latest (default) exception support info. */
11034 if (ada_has_this_exception_support (&default_exception_support_info))
11035 {
11036 data->exception_info = &default_exception_support_info;
11037 return;
11038 }
11039
11040 /* Try our fallback exception suport info. */
11041 if (ada_has_this_exception_support (&exception_support_info_fallback))
11042 {
11043 data->exception_info = &exception_support_info_fallback;
11044 return;
11045 }
11046
11047 /* Sometimes, it is normal for us to not be able to find the routine
11048 we are looking for. This happens when the program is linked with
11049 the shared version of the GNAT runtime, and the program has not been
11050 started yet. Inform the user of these two possible causes if
11051 applicable. */
11052
11053 if (ada_update_initial_language (language_unknown) != language_ada)
11054 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11055
11056 /* If the symbol does not exist, then check that the program is
11057 already started, to make sure that shared libraries have been
11058 loaded. If it is not started, this may mean that the symbol is
11059 in a shared library. */
11060
11061 if (ptid_get_pid (inferior_ptid) == 0)
11062 error (_("Unable to insert catchpoint. Try to start the program first."));
11063
11064 /* At this point, we know that we are debugging an Ada program and
11065 that the inferior has been started, but we still are not able to
11066 find the run-time symbols. That can mean that we are in
11067 configurable run time mode, or that a-except as been optimized
11068 out by the linker... In any case, at this point it is not worth
11069 supporting this feature. */
11070
11071 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11072 }
11073
11074 /* True iff FRAME is very likely to be that of a function that is
11075 part of the runtime system. This is all very heuristic, but is
11076 intended to be used as advice as to what frames are uninteresting
11077 to most users. */
11078
11079 static int
11080 is_known_support_routine (struct frame_info *frame)
11081 {
11082 struct symtab_and_line sal;
11083 const char *func_name;
11084 enum language func_lang;
11085 int i;
11086 const char *fullname;
11087
11088 /* If this code does not have any debugging information (no symtab),
11089 This cannot be any user code. */
11090
11091 find_frame_sal (frame, &sal);
11092 if (sal.symtab == NULL)
11093 return 1;
11094
11095 /* If there is a symtab, but the associated source file cannot be
11096 located, then assume this is not user code: Selecting a frame
11097 for which we cannot display the code would not be very helpful
11098 for the user. This should also take care of case such as VxWorks
11099 where the kernel has some debugging info provided for a few units. */
11100
11101 fullname = symtab_to_fullname (sal.symtab);
11102 if (access (fullname, R_OK) != 0)
11103 return 1;
11104
11105 /* Check the unit filename againt the Ada runtime file naming.
11106 We also check the name of the objfile against the name of some
11107 known system libraries that sometimes come with debugging info
11108 too. */
11109
11110 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11111 {
11112 re_comp (known_runtime_file_name_patterns[i]);
11113 if (re_exec (lbasename (sal.symtab->filename)))
11114 return 1;
11115 if (sal.symtab->objfile != NULL
11116 && re_exec (sal.symtab->objfile->name))
11117 return 1;
11118 }
11119
11120 /* Check whether the function is a GNAT-generated entity. */
11121
11122 find_frame_funname (frame, &func_name, &func_lang, NULL);
11123 if (func_name == NULL)
11124 return 1;
11125
11126 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11127 {
11128 re_comp (known_auxiliary_function_name_patterns[i]);
11129 if (re_exec (func_name))
11130 return 1;
11131 }
11132
11133 return 0;
11134 }
11135
11136 /* Find the first frame that contains debugging information and that is not
11137 part of the Ada run-time, starting from FI and moving upward. */
11138
11139 void
11140 ada_find_printable_frame (struct frame_info *fi)
11141 {
11142 for (; fi != NULL; fi = get_prev_frame (fi))
11143 {
11144 if (!is_known_support_routine (fi))
11145 {
11146 select_frame (fi);
11147 break;
11148 }
11149 }
11150
11151 }
11152
11153 /* Assuming that the inferior just triggered an unhandled exception
11154 catchpoint, return the address in inferior memory where the name
11155 of the exception is stored.
11156
11157 Return zero if the address could not be computed. */
11158
11159 static CORE_ADDR
11160 ada_unhandled_exception_name_addr (void)
11161 {
11162 return parse_and_eval_address ("e.full_name");
11163 }
11164
11165 /* Same as ada_unhandled_exception_name_addr, except that this function
11166 should be used when the inferior uses an older version of the runtime,
11167 where the exception name needs to be extracted from a specific frame
11168 several frames up in the callstack. */
11169
11170 static CORE_ADDR
11171 ada_unhandled_exception_name_addr_from_raise (void)
11172 {
11173 int frame_level;
11174 struct frame_info *fi;
11175 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11176
11177 /* To determine the name of this exception, we need to select
11178 the frame corresponding to RAISE_SYM_NAME. This frame is
11179 at least 3 levels up, so we simply skip the first 3 frames
11180 without checking the name of their associated function. */
11181 fi = get_current_frame ();
11182 for (frame_level = 0; frame_level < 3; frame_level += 1)
11183 if (fi != NULL)
11184 fi = get_prev_frame (fi);
11185
11186 while (fi != NULL)
11187 {
11188 const char *func_name;
11189 enum language func_lang;
11190
11191 find_frame_funname (fi, &func_name, &func_lang, NULL);
11192 if (func_name != NULL
11193 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11194 break; /* We found the frame we were looking for... */
11195 fi = get_prev_frame (fi);
11196 }
11197
11198 if (fi == NULL)
11199 return 0;
11200
11201 select_frame (fi);
11202 return parse_and_eval_address ("id.full_name");
11203 }
11204
11205 /* Assuming the inferior just triggered an Ada exception catchpoint
11206 (of any type), return the address in inferior memory where the name
11207 of the exception is stored, if applicable.
11208
11209 Return zero if the address could not be computed, or if not relevant. */
11210
11211 static CORE_ADDR
11212 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11213 struct breakpoint *b)
11214 {
11215 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11216
11217 switch (ex)
11218 {
11219 case ex_catch_exception:
11220 return (parse_and_eval_address ("e.full_name"));
11221 break;
11222
11223 case ex_catch_exception_unhandled:
11224 return data->exception_info->unhandled_exception_name_addr ();
11225 break;
11226
11227 case ex_catch_assert:
11228 return 0; /* Exception name is not relevant in this case. */
11229 break;
11230
11231 default:
11232 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11233 break;
11234 }
11235
11236 return 0; /* Should never be reached. */
11237 }
11238
11239 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11240 any error that ada_exception_name_addr_1 might cause to be thrown.
11241 When an error is intercepted, a warning with the error message is printed,
11242 and zero is returned. */
11243
11244 static CORE_ADDR
11245 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11246 struct breakpoint *b)
11247 {
11248 volatile struct gdb_exception e;
11249 CORE_ADDR result = 0;
11250
11251 TRY_CATCH (e, RETURN_MASK_ERROR)
11252 {
11253 result = ada_exception_name_addr_1 (ex, b);
11254 }
11255
11256 if (e.reason < 0)
11257 {
11258 warning (_("failed to get exception name: %s"), e.message);
11259 return 0;
11260 }
11261
11262 return result;
11263 }
11264
11265 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11266 char *, char **,
11267 const struct breakpoint_ops **);
11268 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11269
11270 /* Ada catchpoints.
11271
11272 In the case of catchpoints on Ada exceptions, the catchpoint will
11273 stop the target on every exception the program throws. When a user
11274 specifies the name of a specific exception, we translate this
11275 request into a condition expression (in text form), and then parse
11276 it into an expression stored in each of the catchpoint's locations.
11277 We then use this condition to check whether the exception that was
11278 raised is the one the user is interested in. If not, then the
11279 target is resumed again. We store the name of the requested
11280 exception, in order to be able to re-set the condition expression
11281 when symbols change. */
11282
11283 /* An instance of this type is used to represent an Ada catchpoint
11284 breakpoint location. It includes a "struct bp_location" as a kind
11285 of base class; users downcast to "struct bp_location *" when
11286 needed. */
11287
11288 struct ada_catchpoint_location
11289 {
11290 /* The base class. */
11291 struct bp_location base;
11292
11293 /* The condition that checks whether the exception that was raised
11294 is the specific exception the user specified on catchpoint
11295 creation. */
11296 struct expression *excep_cond_expr;
11297 };
11298
11299 /* Implement the DTOR method in the bp_location_ops structure for all
11300 Ada exception catchpoint kinds. */
11301
11302 static void
11303 ada_catchpoint_location_dtor (struct bp_location *bl)
11304 {
11305 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11306
11307 xfree (al->excep_cond_expr);
11308 }
11309
11310 /* The vtable to be used in Ada catchpoint locations. */
11311
11312 static const struct bp_location_ops ada_catchpoint_location_ops =
11313 {
11314 ada_catchpoint_location_dtor
11315 };
11316
11317 /* An instance of this type is used to represent an Ada catchpoint.
11318 It includes a "struct breakpoint" as a kind of base class; users
11319 downcast to "struct breakpoint *" when needed. */
11320
11321 struct ada_catchpoint
11322 {
11323 /* The base class. */
11324 struct breakpoint base;
11325
11326 /* The name of the specific exception the user specified. */
11327 char *excep_string;
11328 };
11329
11330 /* Parse the exception condition string in the context of each of the
11331 catchpoint's locations, and store them for later evaluation. */
11332
11333 static void
11334 create_excep_cond_exprs (struct ada_catchpoint *c)
11335 {
11336 struct cleanup *old_chain;
11337 struct bp_location *bl;
11338 char *cond_string;
11339
11340 /* Nothing to do if there's no specific exception to catch. */
11341 if (c->excep_string == NULL)
11342 return;
11343
11344 /* Same if there are no locations... */
11345 if (c->base.loc == NULL)
11346 return;
11347
11348 /* Compute the condition expression in text form, from the specific
11349 expection we want to catch. */
11350 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11351 old_chain = make_cleanup (xfree, cond_string);
11352
11353 /* Iterate over all the catchpoint's locations, and parse an
11354 expression for each. */
11355 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11356 {
11357 struct ada_catchpoint_location *ada_loc
11358 = (struct ada_catchpoint_location *) bl;
11359 struct expression *exp = NULL;
11360
11361 if (!bl->shlib_disabled)
11362 {
11363 volatile struct gdb_exception e;
11364 char *s;
11365
11366 s = cond_string;
11367 TRY_CATCH (e, RETURN_MASK_ERROR)
11368 {
11369 exp = parse_exp_1 (&s, bl->address,
11370 block_for_pc (bl->address), 0);
11371 }
11372 if (e.reason < 0)
11373 warning (_("failed to reevaluate internal exception condition "
11374 "for catchpoint %d: %s"),
11375 c->base.number, e.message);
11376 }
11377
11378 ada_loc->excep_cond_expr = exp;
11379 }
11380
11381 do_cleanups (old_chain);
11382 }
11383
11384 /* Implement the DTOR method in the breakpoint_ops structure for all
11385 exception catchpoint kinds. */
11386
11387 static void
11388 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11389 {
11390 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11391
11392 xfree (c->excep_string);
11393
11394 bkpt_breakpoint_ops.dtor (b);
11395 }
11396
11397 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11398 structure for all exception catchpoint kinds. */
11399
11400 static struct bp_location *
11401 allocate_location_exception (enum exception_catchpoint_kind ex,
11402 struct breakpoint *self)
11403 {
11404 struct ada_catchpoint_location *loc;
11405
11406 loc = XNEW (struct ada_catchpoint_location);
11407 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11408 loc->excep_cond_expr = NULL;
11409 return &loc->base;
11410 }
11411
11412 /* Implement the RE_SET method in the breakpoint_ops structure for all
11413 exception catchpoint kinds. */
11414
11415 static void
11416 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11417 {
11418 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11419
11420 /* Call the base class's method. This updates the catchpoint's
11421 locations. */
11422 bkpt_breakpoint_ops.re_set (b);
11423
11424 /* Reparse the exception conditional expressions. One for each
11425 location. */
11426 create_excep_cond_exprs (c);
11427 }
11428
11429 /* Returns true if we should stop for this breakpoint hit. If the
11430 user specified a specific exception, we only want to cause a stop
11431 if the program thrown that exception. */
11432
11433 static int
11434 should_stop_exception (const struct bp_location *bl)
11435 {
11436 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11437 const struct ada_catchpoint_location *ada_loc
11438 = (const struct ada_catchpoint_location *) bl;
11439 volatile struct gdb_exception ex;
11440 int stop;
11441
11442 /* With no specific exception, should always stop. */
11443 if (c->excep_string == NULL)
11444 return 1;
11445
11446 if (ada_loc->excep_cond_expr == NULL)
11447 {
11448 /* We will have a NULL expression if back when we were creating
11449 the expressions, this location's had failed to parse. */
11450 return 1;
11451 }
11452
11453 stop = 1;
11454 TRY_CATCH (ex, RETURN_MASK_ALL)
11455 {
11456 struct value *mark;
11457
11458 mark = value_mark ();
11459 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11460 value_free_to_mark (mark);
11461 }
11462 if (ex.reason < 0)
11463 exception_fprintf (gdb_stderr, ex,
11464 _("Error in testing exception condition:\n"));
11465 return stop;
11466 }
11467
11468 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11469 for all exception catchpoint kinds. */
11470
11471 static void
11472 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11473 {
11474 bs->stop = should_stop_exception (bs->bp_location_at);
11475 }
11476
11477 /* Implement the PRINT_IT method in the breakpoint_ops structure
11478 for all exception catchpoint kinds. */
11479
11480 static enum print_stop_action
11481 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11482 {
11483 struct ui_out *uiout = current_uiout;
11484 struct breakpoint *b = bs->breakpoint_at;
11485
11486 annotate_catchpoint (b->number);
11487
11488 if (ui_out_is_mi_like_p (uiout))
11489 {
11490 ui_out_field_string (uiout, "reason",
11491 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11492 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11493 }
11494
11495 ui_out_text (uiout,
11496 b->disposition == disp_del ? "\nTemporary catchpoint "
11497 : "\nCatchpoint ");
11498 ui_out_field_int (uiout, "bkptno", b->number);
11499 ui_out_text (uiout, ", ");
11500
11501 switch (ex)
11502 {
11503 case ex_catch_exception:
11504 case ex_catch_exception_unhandled:
11505 {
11506 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11507 char exception_name[256];
11508
11509 if (addr != 0)
11510 {
11511 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11512 exception_name [sizeof (exception_name) - 1] = '\0';
11513 }
11514 else
11515 {
11516 /* For some reason, we were unable to read the exception
11517 name. This could happen if the Runtime was compiled
11518 without debugging info, for instance. In that case,
11519 just replace the exception name by the generic string
11520 "exception" - it will read as "an exception" in the
11521 notification we are about to print. */
11522 memcpy (exception_name, "exception", sizeof ("exception"));
11523 }
11524 /* In the case of unhandled exception breakpoints, we print
11525 the exception name as "unhandled EXCEPTION_NAME", to make
11526 it clearer to the user which kind of catchpoint just got
11527 hit. We used ui_out_text to make sure that this extra
11528 info does not pollute the exception name in the MI case. */
11529 if (ex == ex_catch_exception_unhandled)
11530 ui_out_text (uiout, "unhandled ");
11531 ui_out_field_string (uiout, "exception-name", exception_name);
11532 }
11533 break;
11534 case ex_catch_assert:
11535 /* In this case, the name of the exception is not really
11536 important. Just print "failed assertion" to make it clearer
11537 that his program just hit an assertion-failure catchpoint.
11538 We used ui_out_text because this info does not belong in
11539 the MI output. */
11540 ui_out_text (uiout, "failed assertion");
11541 break;
11542 }
11543 ui_out_text (uiout, " at ");
11544 ada_find_printable_frame (get_current_frame ());
11545
11546 return PRINT_SRC_AND_LOC;
11547 }
11548
11549 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11550 for all exception catchpoint kinds. */
11551
11552 static void
11553 print_one_exception (enum exception_catchpoint_kind ex,
11554 struct breakpoint *b, struct bp_location **last_loc)
11555 {
11556 struct ui_out *uiout = current_uiout;
11557 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11558 struct value_print_options opts;
11559
11560 get_user_print_options (&opts);
11561 if (opts.addressprint)
11562 {
11563 annotate_field (4);
11564 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11565 }
11566
11567 annotate_field (5);
11568 *last_loc = b->loc;
11569 switch (ex)
11570 {
11571 case ex_catch_exception:
11572 if (c->excep_string != NULL)
11573 {
11574 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11575
11576 ui_out_field_string (uiout, "what", msg);
11577 xfree (msg);
11578 }
11579 else
11580 ui_out_field_string (uiout, "what", "all Ada exceptions");
11581
11582 break;
11583
11584 case ex_catch_exception_unhandled:
11585 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11586 break;
11587
11588 case ex_catch_assert:
11589 ui_out_field_string (uiout, "what", "failed Ada assertions");
11590 break;
11591
11592 default:
11593 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11594 break;
11595 }
11596 }
11597
11598 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11599 for all exception catchpoint kinds. */
11600
11601 static void
11602 print_mention_exception (enum exception_catchpoint_kind ex,
11603 struct breakpoint *b)
11604 {
11605 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11606 struct ui_out *uiout = current_uiout;
11607
11608 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11609 : _("Catchpoint "));
11610 ui_out_field_int (uiout, "bkptno", b->number);
11611 ui_out_text (uiout, ": ");
11612
11613 switch (ex)
11614 {
11615 case ex_catch_exception:
11616 if (c->excep_string != NULL)
11617 {
11618 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11619 struct cleanup *old_chain = make_cleanup (xfree, info);
11620
11621 ui_out_text (uiout, info);
11622 do_cleanups (old_chain);
11623 }
11624 else
11625 ui_out_text (uiout, _("all Ada exceptions"));
11626 break;
11627
11628 case ex_catch_exception_unhandled:
11629 ui_out_text (uiout, _("unhandled Ada exceptions"));
11630 break;
11631
11632 case ex_catch_assert:
11633 ui_out_text (uiout, _("failed Ada assertions"));
11634 break;
11635
11636 default:
11637 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11638 break;
11639 }
11640 }
11641
11642 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11643 for all exception catchpoint kinds. */
11644
11645 static void
11646 print_recreate_exception (enum exception_catchpoint_kind ex,
11647 struct breakpoint *b, struct ui_file *fp)
11648 {
11649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11650
11651 switch (ex)
11652 {
11653 case ex_catch_exception:
11654 fprintf_filtered (fp, "catch exception");
11655 if (c->excep_string != NULL)
11656 fprintf_filtered (fp, " %s", c->excep_string);
11657 break;
11658
11659 case ex_catch_exception_unhandled:
11660 fprintf_filtered (fp, "catch exception unhandled");
11661 break;
11662
11663 case ex_catch_assert:
11664 fprintf_filtered (fp, "catch assert");
11665 break;
11666
11667 default:
11668 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11669 }
11670 print_recreate_thread (b, fp);
11671 }
11672
11673 /* Virtual table for "catch exception" breakpoints. */
11674
11675 static void
11676 dtor_catch_exception (struct breakpoint *b)
11677 {
11678 dtor_exception (ex_catch_exception, b);
11679 }
11680
11681 static struct bp_location *
11682 allocate_location_catch_exception (struct breakpoint *self)
11683 {
11684 return allocate_location_exception (ex_catch_exception, self);
11685 }
11686
11687 static void
11688 re_set_catch_exception (struct breakpoint *b)
11689 {
11690 re_set_exception (ex_catch_exception, b);
11691 }
11692
11693 static void
11694 check_status_catch_exception (bpstat bs)
11695 {
11696 check_status_exception (ex_catch_exception, bs);
11697 }
11698
11699 static enum print_stop_action
11700 print_it_catch_exception (bpstat bs)
11701 {
11702 return print_it_exception (ex_catch_exception, bs);
11703 }
11704
11705 static void
11706 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11707 {
11708 print_one_exception (ex_catch_exception, b, last_loc);
11709 }
11710
11711 static void
11712 print_mention_catch_exception (struct breakpoint *b)
11713 {
11714 print_mention_exception (ex_catch_exception, b);
11715 }
11716
11717 static void
11718 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11719 {
11720 print_recreate_exception (ex_catch_exception, b, fp);
11721 }
11722
11723 static struct breakpoint_ops catch_exception_breakpoint_ops;
11724
11725 /* Virtual table for "catch exception unhandled" breakpoints. */
11726
11727 static void
11728 dtor_catch_exception_unhandled (struct breakpoint *b)
11729 {
11730 dtor_exception (ex_catch_exception_unhandled, b);
11731 }
11732
11733 static struct bp_location *
11734 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11735 {
11736 return allocate_location_exception (ex_catch_exception_unhandled, self);
11737 }
11738
11739 static void
11740 re_set_catch_exception_unhandled (struct breakpoint *b)
11741 {
11742 re_set_exception (ex_catch_exception_unhandled, b);
11743 }
11744
11745 static void
11746 check_status_catch_exception_unhandled (bpstat bs)
11747 {
11748 check_status_exception (ex_catch_exception_unhandled, bs);
11749 }
11750
11751 static enum print_stop_action
11752 print_it_catch_exception_unhandled (bpstat bs)
11753 {
11754 return print_it_exception (ex_catch_exception_unhandled, bs);
11755 }
11756
11757 static void
11758 print_one_catch_exception_unhandled (struct breakpoint *b,
11759 struct bp_location **last_loc)
11760 {
11761 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11762 }
11763
11764 static void
11765 print_mention_catch_exception_unhandled (struct breakpoint *b)
11766 {
11767 print_mention_exception (ex_catch_exception_unhandled, b);
11768 }
11769
11770 static void
11771 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11772 struct ui_file *fp)
11773 {
11774 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11775 }
11776
11777 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11778
11779 /* Virtual table for "catch assert" breakpoints. */
11780
11781 static void
11782 dtor_catch_assert (struct breakpoint *b)
11783 {
11784 dtor_exception (ex_catch_assert, b);
11785 }
11786
11787 static struct bp_location *
11788 allocate_location_catch_assert (struct breakpoint *self)
11789 {
11790 return allocate_location_exception (ex_catch_assert, self);
11791 }
11792
11793 static void
11794 re_set_catch_assert (struct breakpoint *b)
11795 {
11796 re_set_exception (ex_catch_assert, b);
11797 }
11798
11799 static void
11800 check_status_catch_assert (bpstat bs)
11801 {
11802 check_status_exception (ex_catch_assert, bs);
11803 }
11804
11805 static enum print_stop_action
11806 print_it_catch_assert (bpstat bs)
11807 {
11808 return print_it_exception (ex_catch_assert, bs);
11809 }
11810
11811 static void
11812 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11813 {
11814 print_one_exception (ex_catch_assert, b, last_loc);
11815 }
11816
11817 static void
11818 print_mention_catch_assert (struct breakpoint *b)
11819 {
11820 print_mention_exception (ex_catch_assert, b);
11821 }
11822
11823 static void
11824 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11825 {
11826 print_recreate_exception (ex_catch_assert, b, fp);
11827 }
11828
11829 static struct breakpoint_ops catch_assert_breakpoint_ops;
11830
11831 /* Return a newly allocated copy of the first space-separated token
11832 in ARGSP, and then adjust ARGSP to point immediately after that
11833 token.
11834
11835 Return NULL if ARGPS does not contain any more tokens. */
11836
11837 static char *
11838 ada_get_next_arg (char **argsp)
11839 {
11840 char *args = *argsp;
11841 char *end;
11842 char *result;
11843
11844 args = skip_spaces (args);
11845 if (args[0] == '\0')
11846 return NULL; /* No more arguments. */
11847
11848 /* Find the end of the current argument. */
11849
11850 end = skip_to_space (args);
11851
11852 /* Adjust ARGSP to point to the start of the next argument. */
11853
11854 *argsp = end;
11855
11856 /* Make a copy of the current argument and return it. */
11857
11858 result = xmalloc (end - args + 1);
11859 strncpy (result, args, end - args);
11860 result[end - args] = '\0';
11861
11862 return result;
11863 }
11864
11865 /* Split the arguments specified in a "catch exception" command.
11866 Set EX to the appropriate catchpoint type.
11867 Set EXCEP_STRING to the name of the specific exception if
11868 specified by the user.
11869 If a condition is found at the end of the arguments, the condition
11870 expression is stored in COND_STRING (memory must be deallocated
11871 after use). Otherwise COND_STRING is set to NULL. */
11872
11873 static void
11874 catch_ada_exception_command_split (char *args,
11875 enum exception_catchpoint_kind *ex,
11876 char **excep_string,
11877 char **cond_string)
11878 {
11879 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11880 char *exception_name;
11881 char *cond = NULL;
11882
11883 exception_name = ada_get_next_arg (&args);
11884 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11885 {
11886 /* This is not an exception name; this is the start of a condition
11887 expression for a catchpoint on all exceptions. So, "un-get"
11888 this token, and set exception_name to NULL. */
11889 xfree (exception_name);
11890 exception_name = NULL;
11891 args -= 2;
11892 }
11893 make_cleanup (xfree, exception_name);
11894
11895 /* Check to see if we have a condition. */
11896
11897 args = skip_spaces (args);
11898 if (strncmp (args, "if", 2) == 0
11899 && (isspace (args[2]) || args[2] == '\0'))
11900 {
11901 args += 2;
11902 args = skip_spaces (args);
11903
11904 if (args[0] == '\0')
11905 error (_("Condition missing after `if' keyword"));
11906 cond = xstrdup (args);
11907 make_cleanup (xfree, cond);
11908
11909 args += strlen (args);
11910 }
11911
11912 /* Check that we do not have any more arguments. Anything else
11913 is unexpected. */
11914
11915 if (args[0] != '\0')
11916 error (_("Junk at end of expression"));
11917
11918 discard_cleanups (old_chain);
11919
11920 if (exception_name == NULL)
11921 {
11922 /* Catch all exceptions. */
11923 *ex = ex_catch_exception;
11924 *excep_string = NULL;
11925 }
11926 else if (strcmp (exception_name, "unhandled") == 0)
11927 {
11928 /* Catch unhandled exceptions. */
11929 *ex = ex_catch_exception_unhandled;
11930 *excep_string = NULL;
11931 }
11932 else
11933 {
11934 /* Catch a specific exception. */
11935 *ex = ex_catch_exception;
11936 *excep_string = exception_name;
11937 }
11938 *cond_string = cond;
11939 }
11940
11941 /* Return the name of the symbol on which we should break in order to
11942 implement a catchpoint of the EX kind. */
11943
11944 static const char *
11945 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11946 {
11947 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11948
11949 gdb_assert (data->exception_info != NULL);
11950
11951 switch (ex)
11952 {
11953 case ex_catch_exception:
11954 return (data->exception_info->catch_exception_sym);
11955 break;
11956 case ex_catch_exception_unhandled:
11957 return (data->exception_info->catch_exception_unhandled_sym);
11958 break;
11959 case ex_catch_assert:
11960 return (data->exception_info->catch_assert_sym);
11961 break;
11962 default:
11963 internal_error (__FILE__, __LINE__,
11964 _("unexpected catchpoint kind (%d)"), ex);
11965 }
11966 }
11967
11968 /* Return the breakpoint ops "virtual table" used for catchpoints
11969 of the EX kind. */
11970
11971 static const struct breakpoint_ops *
11972 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11973 {
11974 switch (ex)
11975 {
11976 case ex_catch_exception:
11977 return (&catch_exception_breakpoint_ops);
11978 break;
11979 case ex_catch_exception_unhandled:
11980 return (&catch_exception_unhandled_breakpoint_ops);
11981 break;
11982 case ex_catch_assert:
11983 return (&catch_assert_breakpoint_ops);
11984 break;
11985 default:
11986 internal_error (__FILE__, __LINE__,
11987 _("unexpected catchpoint kind (%d)"), ex);
11988 }
11989 }
11990
11991 /* Return the condition that will be used to match the current exception
11992 being raised with the exception that the user wants to catch. This
11993 assumes that this condition is used when the inferior just triggered
11994 an exception catchpoint.
11995
11996 The string returned is a newly allocated string that needs to be
11997 deallocated later. */
11998
11999 static char *
12000 ada_exception_catchpoint_cond_string (const char *excep_string)
12001 {
12002 int i;
12003
12004 /* The standard exceptions are a special case. They are defined in
12005 runtime units that have been compiled without debugging info; if
12006 EXCEP_STRING is the not-fully-qualified name of a standard
12007 exception (e.g. "constraint_error") then, during the evaluation
12008 of the condition expression, the symbol lookup on this name would
12009 *not* return this standard exception. The catchpoint condition
12010 may then be set only on user-defined exceptions which have the
12011 same not-fully-qualified name (e.g. my_package.constraint_error).
12012
12013 To avoid this unexcepted behavior, these standard exceptions are
12014 systematically prefixed by "standard". This means that "catch
12015 exception constraint_error" is rewritten into "catch exception
12016 standard.constraint_error".
12017
12018 If an exception named contraint_error is defined in another package of
12019 the inferior program, then the only way to specify this exception as a
12020 breakpoint condition is to use its fully-qualified named:
12021 e.g. my_package.constraint_error. */
12022
12023 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12024 {
12025 if (strcmp (standard_exc [i], excep_string) == 0)
12026 {
12027 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12028 excep_string);
12029 }
12030 }
12031 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12032 }
12033
12034 /* Return the symtab_and_line that should be used to insert an exception
12035 catchpoint of the TYPE kind.
12036
12037 EXCEP_STRING should contain the name of a specific exception that
12038 the catchpoint should catch, or NULL otherwise.
12039
12040 ADDR_STRING returns the name of the function where the real
12041 breakpoint that implements the catchpoints is set, depending on the
12042 type of catchpoint we need to create. */
12043
12044 static struct symtab_and_line
12045 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12046 char **addr_string, const struct breakpoint_ops **ops)
12047 {
12048 const char *sym_name;
12049 struct symbol *sym;
12050
12051 /* First, find out which exception support info to use. */
12052 ada_exception_support_info_sniffer ();
12053
12054 /* Then lookup the function on which we will break in order to catch
12055 the Ada exceptions requested by the user. */
12056 sym_name = ada_exception_sym_name (ex);
12057 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12058
12059 /* We can assume that SYM is not NULL at this stage. If the symbol
12060 did not exist, ada_exception_support_info_sniffer would have
12061 raised an exception.
12062
12063 Also, ada_exception_support_info_sniffer should have already
12064 verified that SYM is a function symbol. */
12065 gdb_assert (sym != NULL);
12066 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12067
12068 /* Set ADDR_STRING. */
12069 *addr_string = xstrdup (sym_name);
12070
12071 /* Set OPS. */
12072 *ops = ada_exception_breakpoint_ops (ex);
12073
12074 return find_function_start_sal (sym, 1);
12075 }
12076
12077 /* Parse the arguments (ARGS) of the "catch exception" command.
12078
12079 If the user asked the catchpoint to catch only a specific
12080 exception, then save the exception name in ADDR_STRING.
12081
12082 If the user provided a condition, then set COND_STRING to
12083 that condition expression (the memory must be deallocated
12084 after use). Otherwise, set COND_STRING to NULL.
12085
12086 See ada_exception_sal for a description of all the remaining
12087 function arguments of this function. */
12088
12089 static struct symtab_and_line
12090 ada_decode_exception_location (char *args, char **addr_string,
12091 char **excep_string,
12092 char **cond_string,
12093 const struct breakpoint_ops **ops)
12094 {
12095 enum exception_catchpoint_kind ex;
12096
12097 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12098 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12099 }
12100
12101 /* Create an Ada exception catchpoint. */
12102
12103 static void
12104 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12105 struct symtab_and_line sal,
12106 char *addr_string,
12107 char *excep_string,
12108 char *cond_string,
12109 const struct breakpoint_ops *ops,
12110 int tempflag,
12111 int from_tty)
12112 {
12113 struct ada_catchpoint *c;
12114
12115 c = XNEW (struct ada_catchpoint);
12116 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12117 ops, tempflag, from_tty);
12118 c->excep_string = excep_string;
12119 create_excep_cond_exprs (c);
12120 if (cond_string != NULL)
12121 set_breakpoint_condition (&c->base, cond_string, from_tty);
12122 install_breakpoint (0, &c->base, 1);
12123 }
12124
12125 /* Implement the "catch exception" command. */
12126
12127 static void
12128 catch_ada_exception_command (char *arg, int from_tty,
12129 struct cmd_list_element *command)
12130 {
12131 struct gdbarch *gdbarch = get_current_arch ();
12132 int tempflag;
12133 struct symtab_and_line sal;
12134 char *addr_string = NULL;
12135 char *excep_string = NULL;
12136 char *cond_string = NULL;
12137 const struct breakpoint_ops *ops = NULL;
12138
12139 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12140
12141 if (!arg)
12142 arg = "";
12143 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12144 &cond_string, &ops);
12145 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12146 excep_string, cond_string, ops,
12147 tempflag, from_tty);
12148 }
12149
12150 /* Assuming that ARGS contains the arguments of a "catch assert"
12151 command, parse those arguments and return a symtab_and_line object
12152 for a failed assertion catchpoint.
12153
12154 Set ADDR_STRING to the name of the function where the real
12155 breakpoint that implements the catchpoint is set.
12156
12157 If ARGS contains a condition, set COND_STRING to that condition
12158 (the memory needs to be deallocated after use). Otherwise, set
12159 COND_STRING to NULL. */
12160
12161 static struct symtab_and_line
12162 ada_decode_assert_location (char *args, char **addr_string,
12163 char **cond_string,
12164 const struct breakpoint_ops **ops)
12165 {
12166 args = skip_spaces (args);
12167
12168 /* Check whether a condition was provided. */
12169 if (strncmp (args, "if", 2) == 0
12170 && (isspace (args[2]) || args[2] == '\0'))
12171 {
12172 args += 2;
12173 args = skip_spaces (args);
12174 if (args[0] == '\0')
12175 error (_("condition missing after `if' keyword"));
12176 *cond_string = xstrdup (args);
12177 }
12178
12179 /* Otherwise, there should be no other argument at the end of
12180 the command. */
12181 else if (args[0] != '\0')
12182 error (_("Junk at end of arguments."));
12183
12184 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12185 }
12186
12187 /* Implement the "catch assert" command. */
12188
12189 static void
12190 catch_assert_command (char *arg, int from_tty,
12191 struct cmd_list_element *command)
12192 {
12193 struct gdbarch *gdbarch = get_current_arch ();
12194 int tempflag;
12195 struct symtab_and_line sal;
12196 char *addr_string = NULL;
12197 char *cond_string = NULL;
12198 const struct breakpoint_ops *ops = NULL;
12199
12200 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12201
12202 if (!arg)
12203 arg = "";
12204 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12205 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12206 NULL, cond_string, ops, tempflag,
12207 from_tty);
12208 }
12209 /* Operators */
12210 /* Information about operators given special treatment in functions
12211 below. */
12212 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12213
12214 #define ADA_OPERATORS \
12215 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12216 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12217 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12218 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12220 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12221 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12222 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12223 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12224 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12225 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12226 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12227 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12228 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12229 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12230 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12231 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12232 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12233 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12234
12235 static void
12236 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12237 int *argsp)
12238 {
12239 switch (exp->elts[pc - 1].opcode)
12240 {
12241 default:
12242 operator_length_standard (exp, pc, oplenp, argsp);
12243 break;
12244
12245 #define OP_DEFN(op, len, args, binop) \
12246 case op: *oplenp = len; *argsp = args; break;
12247 ADA_OPERATORS;
12248 #undef OP_DEFN
12249
12250 case OP_AGGREGATE:
12251 *oplenp = 3;
12252 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12253 break;
12254
12255 case OP_CHOICES:
12256 *oplenp = 3;
12257 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12258 break;
12259 }
12260 }
12261
12262 /* Implementation of the exp_descriptor method operator_check. */
12263
12264 static int
12265 ada_operator_check (struct expression *exp, int pos,
12266 int (*objfile_func) (struct objfile *objfile, void *data),
12267 void *data)
12268 {
12269 const union exp_element *const elts = exp->elts;
12270 struct type *type = NULL;
12271
12272 switch (elts[pos].opcode)
12273 {
12274 case UNOP_IN_RANGE:
12275 case UNOP_QUAL:
12276 type = elts[pos + 1].type;
12277 break;
12278
12279 default:
12280 return operator_check_standard (exp, pos, objfile_func, data);
12281 }
12282
12283 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12284
12285 if (type && TYPE_OBJFILE (type)
12286 && (*objfile_func) (TYPE_OBJFILE (type), data))
12287 return 1;
12288
12289 return 0;
12290 }
12291
12292 static char *
12293 ada_op_name (enum exp_opcode opcode)
12294 {
12295 switch (opcode)
12296 {
12297 default:
12298 return op_name_standard (opcode);
12299
12300 #define OP_DEFN(op, len, args, binop) case op: return #op;
12301 ADA_OPERATORS;
12302 #undef OP_DEFN
12303
12304 case OP_AGGREGATE:
12305 return "OP_AGGREGATE";
12306 case OP_CHOICES:
12307 return "OP_CHOICES";
12308 case OP_NAME:
12309 return "OP_NAME";
12310 }
12311 }
12312
12313 /* As for operator_length, but assumes PC is pointing at the first
12314 element of the operator, and gives meaningful results only for the
12315 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12316
12317 static void
12318 ada_forward_operator_length (struct expression *exp, int pc,
12319 int *oplenp, int *argsp)
12320 {
12321 switch (exp->elts[pc].opcode)
12322 {
12323 default:
12324 *oplenp = *argsp = 0;
12325 break;
12326
12327 #define OP_DEFN(op, len, args, binop) \
12328 case op: *oplenp = len; *argsp = args; break;
12329 ADA_OPERATORS;
12330 #undef OP_DEFN
12331
12332 case OP_AGGREGATE:
12333 *oplenp = 3;
12334 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12335 break;
12336
12337 case OP_CHOICES:
12338 *oplenp = 3;
12339 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12340 break;
12341
12342 case OP_STRING:
12343 case OP_NAME:
12344 {
12345 int len = longest_to_int (exp->elts[pc + 1].longconst);
12346
12347 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12348 *argsp = 0;
12349 break;
12350 }
12351 }
12352 }
12353
12354 static int
12355 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12356 {
12357 enum exp_opcode op = exp->elts[elt].opcode;
12358 int oplen, nargs;
12359 int pc = elt;
12360 int i;
12361
12362 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12363
12364 switch (op)
12365 {
12366 /* Ada attributes ('Foo). */
12367 case OP_ATR_FIRST:
12368 case OP_ATR_LAST:
12369 case OP_ATR_LENGTH:
12370 case OP_ATR_IMAGE:
12371 case OP_ATR_MAX:
12372 case OP_ATR_MIN:
12373 case OP_ATR_MODULUS:
12374 case OP_ATR_POS:
12375 case OP_ATR_SIZE:
12376 case OP_ATR_TAG:
12377 case OP_ATR_VAL:
12378 break;
12379
12380 case UNOP_IN_RANGE:
12381 case UNOP_QUAL:
12382 /* XXX: gdb_sprint_host_address, type_sprint */
12383 fprintf_filtered (stream, _("Type @"));
12384 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12385 fprintf_filtered (stream, " (");
12386 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12387 fprintf_filtered (stream, ")");
12388 break;
12389 case BINOP_IN_BOUNDS:
12390 fprintf_filtered (stream, " (%d)",
12391 longest_to_int (exp->elts[pc + 2].longconst));
12392 break;
12393 case TERNOP_IN_RANGE:
12394 break;
12395
12396 case OP_AGGREGATE:
12397 case OP_OTHERS:
12398 case OP_DISCRETE_RANGE:
12399 case OP_POSITIONAL:
12400 case OP_CHOICES:
12401 break;
12402
12403 case OP_NAME:
12404 case OP_STRING:
12405 {
12406 char *name = &exp->elts[elt + 2].string;
12407 int len = longest_to_int (exp->elts[elt + 1].longconst);
12408
12409 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12410 break;
12411 }
12412
12413 default:
12414 return dump_subexp_body_standard (exp, stream, elt);
12415 }
12416
12417 elt += oplen;
12418 for (i = 0; i < nargs; i += 1)
12419 elt = dump_subexp (exp, stream, elt);
12420
12421 return elt;
12422 }
12423
12424 /* The Ada extension of print_subexp (q.v.). */
12425
12426 static void
12427 ada_print_subexp (struct expression *exp, int *pos,
12428 struct ui_file *stream, enum precedence prec)
12429 {
12430 int oplen, nargs, i;
12431 int pc = *pos;
12432 enum exp_opcode op = exp->elts[pc].opcode;
12433
12434 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12435
12436 *pos += oplen;
12437 switch (op)
12438 {
12439 default:
12440 *pos -= oplen;
12441 print_subexp_standard (exp, pos, stream, prec);
12442 return;
12443
12444 case OP_VAR_VALUE:
12445 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12446 return;
12447
12448 case BINOP_IN_BOUNDS:
12449 /* XXX: sprint_subexp */
12450 print_subexp (exp, pos, stream, PREC_SUFFIX);
12451 fputs_filtered (" in ", stream);
12452 print_subexp (exp, pos, stream, PREC_SUFFIX);
12453 fputs_filtered ("'range", stream);
12454 if (exp->elts[pc + 1].longconst > 1)
12455 fprintf_filtered (stream, "(%ld)",
12456 (long) exp->elts[pc + 1].longconst);
12457 return;
12458
12459 case TERNOP_IN_RANGE:
12460 if (prec >= PREC_EQUAL)
12461 fputs_filtered ("(", stream);
12462 /* XXX: sprint_subexp */
12463 print_subexp (exp, pos, stream, PREC_SUFFIX);
12464 fputs_filtered (" in ", stream);
12465 print_subexp (exp, pos, stream, PREC_EQUAL);
12466 fputs_filtered (" .. ", stream);
12467 print_subexp (exp, pos, stream, PREC_EQUAL);
12468 if (prec >= PREC_EQUAL)
12469 fputs_filtered (")", stream);
12470 return;
12471
12472 case OP_ATR_FIRST:
12473 case OP_ATR_LAST:
12474 case OP_ATR_LENGTH:
12475 case OP_ATR_IMAGE:
12476 case OP_ATR_MAX:
12477 case OP_ATR_MIN:
12478 case OP_ATR_MODULUS:
12479 case OP_ATR_POS:
12480 case OP_ATR_SIZE:
12481 case OP_ATR_TAG:
12482 case OP_ATR_VAL:
12483 if (exp->elts[*pos].opcode == OP_TYPE)
12484 {
12485 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12486 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12487 &type_print_raw_options);
12488 *pos += 3;
12489 }
12490 else
12491 print_subexp (exp, pos, stream, PREC_SUFFIX);
12492 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12493 if (nargs > 1)
12494 {
12495 int tem;
12496
12497 for (tem = 1; tem < nargs; tem += 1)
12498 {
12499 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12500 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12501 }
12502 fputs_filtered (")", stream);
12503 }
12504 return;
12505
12506 case UNOP_QUAL:
12507 type_print (exp->elts[pc + 1].type, "", stream, 0);
12508 fputs_filtered ("'(", stream);
12509 print_subexp (exp, pos, stream, PREC_PREFIX);
12510 fputs_filtered (")", stream);
12511 return;
12512
12513 case UNOP_IN_RANGE:
12514 /* XXX: sprint_subexp */
12515 print_subexp (exp, pos, stream, PREC_SUFFIX);
12516 fputs_filtered (" in ", stream);
12517 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12518 &type_print_raw_options);
12519 return;
12520
12521 case OP_DISCRETE_RANGE:
12522 print_subexp (exp, pos, stream, PREC_SUFFIX);
12523 fputs_filtered ("..", stream);
12524 print_subexp (exp, pos, stream, PREC_SUFFIX);
12525 return;
12526
12527 case OP_OTHERS:
12528 fputs_filtered ("others => ", stream);
12529 print_subexp (exp, pos, stream, PREC_SUFFIX);
12530 return;
12531
12532 case OP_CHOICES:
12533 for (i = 0; i < nargs-1; i += 1)
12534 {
12535 if (i > 0)
12536 fputs_filtered ("|", stream);
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 }
12539 fputs_filtered (" => ", stream);
12540 print_subexp (exp, pos, stream, PREC_SUFFIX);
12541 return;
12542
12543 case OP_POSITIONAL:
12544 print_subexp (exp, pos, stream, PREC_SUFFIX);
12545 return;
12546
12547 case OP_AGGREGATE:
12548 fputs_filtered ("(", stream);
12549 for (i = 0; i < nargs; i += 1)
12550 {
12551 if (i > 0)
12552 fputs_filtered (", ", stream);
12553 print_subexp (exp, pos, stream, PREC_SUFFIX);
12554 }
12555 fputs_filtered (")", stream);
12556 return;
12557 }
12558 }
12559
12560 /* Table mapping opcodes into strings for printing operators
12561 and precedences of the operators. */
12562
12563 static const struct op_print ada_op_print_tab[] = {
12564 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12565 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12566 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12567 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12568 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12569 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12570 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12571 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12572 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12573 {">=", BINOP_GEQ, PREC_ORDER, 0},
12574 {">", BINOP_GTR, PREC_ORDER, 0},
12575 {"<", BINOP_LESS, PREC_ORDER, 0},
12576 {">>", BINOP_RSH, PREC_SHIFT, 0},
12577 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12578 {"+", BINOP_ADD, PREC_ADD, 0},
12579 {"-", BINOP_SUB, PREC_ADD, 0},
12580 {"&", BINOP_CONCAT, PREC_ADD, 0},
12581 {"*", BINOP_MUL, PREC_MUL, 0},
12582 {"/", BINOP_DIV, PREC_MUL, 0},
12583 {"rem", BINOP_REM, PREC_MUL, 0},
12584 {"mod", BINOP_MOD, PREC_MUL, 0},
12585 {"**", BINOP_EXP, PREC_REPEAT, 0},
12586 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12587 {"-", UNOP_NEG, PREC_PREFIX, 0},
12588 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12589 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12590 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12591 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12592 {".all", UNOP_IND, PREC_SUFFIX, 1},
12593 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12594 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12595 {NULL, 0, 0, 0}
12596 };
12597 \f
12598 enum ada_primitive_types {
12599 ada_primitive_type_int,
12600 ada_primitive_type_long,
12601 ada_primitive_type_short,
12602 ada_primitive_type_char,
12603 ada_primitive_type_float,
12604 ada_primitive_type_double,
12605 ada_primitive_type_void,
12606 ada_primitive_type_long_long,
12607 ada_primitive_type_long_double,
12608 ada_primitive_type_natural,
12609 ada_primitive_type_positive,
12610 ada_primitive_type_system_address,
12611 nr_ada_primitive_types
12612 };
12613
12614 static void
12615 ada_language_arch_info (struct gdbarch *gdbarch,
12616 struct language_arch_info *lai)
12617 {
12618 const struct builtin_type *builtin = builtin_type (gdbarch);
12619
12620 lai->primitive_type_vector
12621 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12622 struct type *);
12623
12624 lai->primitive_type_vector [ada_primitive_type_int]
12625 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12626 0, "integer");
12627 lai->primitive_type_vector [ada_primitive_type_long]
12628 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12629 0, "long_integer");
12630 lai->primitive_type_vector [ada_primitive_type_short]
12631 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12632 0, "short_integer");
12633 lai->string_char_type
12634 = lai->primitive_type_vector [ada_primitive_type_char]
12635 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12636 lai->primitive_type_vector [ada_primitive_type_float]
12637 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12638 "float", NULL);
12639 lai->primitive_type_vector [ada_primitive_type_double]
12640 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12641 "long_float", NULL);
12642 lai->primitive_type_vector [ada_primitive_type_long_long]
12643 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12644 0, "long_long_integer");
12645 lai->primitive_type_vector [ada_primitive_type_long_double]
12646 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12647 "long_long_float", NULL);
12648 lai->primitive_type_vector [ada_primitive_type_natural]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "natural");
12651 lai->primitive_type_vector [ada_primitive_type_positive]
12652 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12653 0, "positive");
12654 lai->primitive_type_vector [ada_primitive_type_void]
12655 = builtin->builtin_void;
12656
12657 lai->primitive_type_vector [ada_primitive_type_system_address]
12658 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12659 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12660 = "system__address";
12661
12662 lai->bool_type_symbol = NULL;
12663 lai->bool_type_default = builtin->builtin_bool;
12664 }
12665 \f
12666 /* Language vector */
12667
12668 /* Not really used, but needed in the ada_language_defn. */
12669
12670 static void
12671 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12672 {
12673 ada_emit_char (c, type, stream, quoter, 1);
12674 }
12675
12676 static int
12677 parse (void)
12678 {
12679 warnings_issued = 0;
12680 return ada_parse ();
12681 }
12682
12683 static const struct exp_descriptor ada_exp_descriptor = {
12684 ada_print_subexp,
12685 ada_operator_length,
12686 ada_operator_check,
12687 ada_op_name,
12688 ada_dump_subexp_body,
12689 ada_evaluate_subexp
12690 };
12691
12692 /* Implement the "la_get_symbol_name_cmp" language_defn method
12693 for Ada. */
12694
12695 static symbol_name_cmp_ftype
12696 ada_get_symbol_name_cmp (const char *lookup_name)
12697 {
12698 if (should_use_wild_match (lookup_name))
12699 return wild_match;
12700 else
12701 return compare_names;
12702 }
12703
12704 /* Implement the "la_read_var_value" language_defn method for Ada. */
12705
12706 static struct value *
12707 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12708 {
12709 struct block *frame_block = NULL;
12710 struct symbol *renaming_sym = NULL;
12711
12712 /* The only case where default_read_var_value is not sufficient
12713 is when VAR is a renaming... */
12714 if (frame)
12715 frame_block = get_frame_block (frame, NULL);
12716 if (frame_block)
12717 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12718 if (renaming_sym != NULL)
12719 return ada_read_renaming_var_value (renaming_sym, frame_block);
12720
12721 /* This is a typical case where we expect the default_read_var_value
12722 function to work. */
12723 return default_read_var_value (var, frame);
12724 }
12725
12726 const struct language_defn ada_language_defn = {
12727 "ada", /* Language name */
12728 language_ada,
12729 range_check_off,
12730 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12731 that's not quite what this means. */
12732 array_row_major,
12733 macro_expansion_no,
12734 &ada_exp_descriptor,
12735 parse,
12736 ada_error,
12737 resolve,
12738 ada_printchar, /* Print a character constant */
12739 ada_printstr, /* Function to print string constant */
12740 emit_char, /* Function to print single char (not used) */
12741 ada_print_type, /* Print a type using appropriate syntax */
12742 ada_print_typedef, /* Print a typedef using appropriate syntax */
12743 ada_val_print, /* Print a value using appropriate syntax */
12744 ada_value_print, /* Print a top-level value */
12745 ada_read_var_value, /* la_read_var_value */
12746 NULL, /* Language specific skip_trampoline */
12747 NULL, /* name_of_this */
12748 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12749 basic_lookup_transparent_type, /* lookup_transparent_type */
12750 ada_la_decode, /* Language specific symbol demangler */
12751 NULL, /* Language specific
12752 class_name_from_physname */
12753 ada_op_print_tab, /* expression operators for printing */
12754 0, /* c-style arrays */
12755 1, /* String lower bound */
12756 ada_get_gdb_completer_word_break_characters,
12757 ada_make_symbol_completion_list,
12758 ada_language_arch_info,
12759 ada_print_array_index,
12760 default_pass_by_reference,
12761 c_get_string,
12762 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12763 ada_iterate_over_symbols,
12764 LANG_MAGIC
12765 };
12766
12767 /* Provide a prototype to silence -Wmissing-prototypes. */
12768 extern initialize_file_ftype _initialize_ada_language;
12769
12770 /* Command-list for the "set/show ada" prefix command. */
12771 static struct cmd_list_element *set_ada_list;
12772 static struct cmd_list_element *show_ada_list;
12773
12774 /* Implement the "set ada" prefix command. */
12775
12776 static void
12777 set_ada_command (char *arg, int from_tty)
12778 {
12779 printf_unfiltered (_(\
12780 "\"set ada\" must be followed by the name of a setting.\n"));
12781 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12782 }
12783
12784 /* Implement the "show ada" prefix command. */
12785
12786 static void
12787 show_ada_command (char *args, int from_tty)
12788 {
12789 cmd_show_list (show_ada_list, from_tty, "");
12790 }
12791
12792 static void
12793 initialize_ada_catchpoint_ops (void)
12794 {
12795 struct breakpoint_ops *ops;
12796
12797 initialize_breakpoint_ops ();
12798
12799 ops = &catch_exception_breakpoint_ops;
12800 *ops = bkpt_breakpoint_ops;
12801 ops->dtor = dtor_catch_exception;
12802 ops->allocate_location = allocate_location_catch_exception;
12803 ops->re_set = re_set_catch_exception;
12804 ops->check_status = check_status_catch_exception;
12805 ops->print_it = print_it_catch_exception;
12806 ops->print_one = print_one_catch_exception;
12807 ops->print_mention = print_mention_catch_exception;
12808 ops->print_recreate = print_recreate_catch_exception;
12809
12810 ops = &catch_exception_unhandled_breakpoint_ops;
12811 *ops = bkpt_breakpoint_ops;
12812 ops->dtor = dtor_catch_exception_unhandled;
12813 ops->allocate_location = allocate_location_catch_exception_unhandled;
12814 ops->re_set = re_set_catch_exception_unhandled;
12815 ops->check_status = check_status_catch_exception_unhandled;
12816 ops->print_it = print_it_catch_exception_unhandled;
12817 ops->print_one = print_one_catch_exception_unhandled;
12818 ops->print_mention = print_mention_catch_exception_unhandled;
12819 ops->print_recreate = print_recreate_catch_exception_unhandled;
12820
12821 ops = &catch_assert_breakpoint_ops;
12822 *ops = bkpt_breakpoint_ops;
12823 ops->dtor = dtor_catch_assert;
12824 ops->allocate_location = allocate_location_catch_assert;
12825 ops->re_set = re_set_catch_assert;
12826 ops->check_status = check_status_catch_assert;
12827 ops->print_it = print_it_catch_assert;
12828 ops->print_one = print_one_catch_assert;
12829 ops->print_mention = print_mention_catch_assert;
12830 ops->print_recreate = print_recreate_catch_assert;
12831 }
12832
12833 void
12834 _initialize_ada_language (void)
12835 {
12836 add_language (&ada_language_defn);
12837
12838 initialize_ada_catchpoint_ops ();
12839
12840 add_prefix_cmd ("ada", no_class, set_ada_command,
12841 _("Prefix command for changing Ada-specfic settings"),
12842 &set_ada_list, "set ada ", 0, &setlist);
12843
12844 add_prefix_cmd ("ada", no_class, show_ada_command,
12845 _("Generic command for showing Ada-specific settings."),
12846 &show_ada_list, "show ada ", 0, &showlist);
12847
12848 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12849 &trust_pad_over_xvs, _("\
12850 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12851 Show whether an optimization trusting PAD types over XVS types is activated"),
12852 _("\
12853 This is related to the encoding used by the GNAT compiler. The debugger\n\
12854 should normally trust the contents of PAD types, but certain older versions\n\
12855 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12856 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12857 work around this bug. It is always safe to turn this option \"off\", but\n\
12858 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12859 this option to \"off\" unless necessary."),
12860 NULL, NULL, &set_ada_list, &show_ada_list);
12861
12862 add_catch_command ("exception", _("\
12863 Catch Ada exceptions, when raised.\n\
12864 With an argument, catch only exceptions with the given name."),
12865 catch_ada_exception_command,
12866 NULL,
12867 CATCH_PERMANENT,
12868 CATCH_TEMPORARY);
12869 add_catch_command ("assert", _("\
12870 Catch failed Ada assertions, when raised.\n\
12871 With an argument, catch only exceptions with the given name."),
12872 catch_assert_command,
12873 NULL,
12874 CATCH_PERMANENT,
12875 CATCH_TEMPORARY);
12876
12877 varsize_limit = 65536;
12878
12879 obstack_init (&symbol_list_obstack);
12880
12881 decoded_names_store = htab_create_alloc
12882 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12883 NULL, xcalloc, xfree);
12884
12885 /* Setup per-inferior data. */
12886 observer_attach_inferior_exit (ada_inferior_exit);
12887 ada_inferior_data
12888 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12889 }
This page took 0.29893 seconds and 4 git commands to generate.