f79f7279150e0ce818fb1460cbc7a742da7aae54
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59 #include "observer.h"
60
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
63 #endif
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73
74 static void extract_string (CORE_ADDR addr, char *buf);
75
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
77
78 static void modify_general_field (char *, LONGEST, int, int);
79
80 static struct type *desc_base_type (struct type *);
81
82 static struct type *desc_bounds_type (struct type *);
83
84 static struct value *desc_bounds (struct value *);
85
86 static int fat_pntr_bounds_bitpos (struct type *);
87
88 static int fat_pntr_bounds_bitsize (struct type *);
89
90 static struct type *desc_data_type (struct type *);
91
92 static struct value *desc_data (struct value *);
93
94 static int fat_pntr_data_bitpos (struct type *);
95
96 static int fat_pntr_data_bitsize (struct type *);
97
98 static struct value *desc_one_bound (struct value *, int, int);
99
100 static int desc_bound_bitpos (struct type *, int, int);
101
102 static int desc_bound_bitsize (struct type *, int, int);
103
104 static struct type *desc_index_type (struct type *, int);
105
106 static int desc_arity (struct type *);
107
108 static int ada_type_match (struct type *, struct type *, int);
109
110 static int ada_args_match (struct symbol *, struct value **, int);
111
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113
114 static struct value *convert_actual (struct value *, struct type *,
115 CORE_ADDR *);
116
117 static struct value *make_array_descriptor (struct type *, struct value *,
118 CORE_ADDR *);
119
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
124
125 static int is_nonfunction (struct ada_symbol_info *, int);
126
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
129
130 static int num_defns_collected (struct obstack *);
131
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
136 domain_enum, int);
137
138 static struct symtab *symtab_for_sym (struct symbol *);
139
140 static struct value *resolve_subexp (struct expression **, int *, int,
141 struct type *);
142
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
145
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
147
148 static char *ada_op_name (enum exp_opcode);
149
150 static const char *ada_decoded_op_name (enum exp_opcode);
151
152 static int numeric_type_p (struct type *);
153
154 static int integer_type_p (struct type *);
155
156 static int scalar_type_p (struct type *);
157
158 static int discrete_type_p (struct type *);
159
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
161 int, int, int *);
162
163 static struct value *evaluate_subexp (struct type *, struct expression *,
164 int *, enum noside);
165
166 static struct value *evaluate_subexp_type (struct expression *, int *);
167
168 static int is_dynamic_field (struct type *, int);
169
170 static struct type *to_fixed_variant_branch_type (struct type *,
171 const gdb_byte *,
172 CORE_ADDR, struct value *);
173
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175
176 static struct type *to_fixed_range_type (char *, struct value *,
177 struct objfile *);
178
179 static struct type *to_static_fixed_type (struct type *);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314
315 static char *
316 ada_get_gdb_completer_word_break_characters (void)
317 {
318 return ada_completer_word_break_characters;
319 }
320
321 /* Print an array element index using the Ada syntax. */
322
323 static void
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
326 {
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
329 }
330
331 /* Read the string located at ADDR from the inferior and store the
332 result into BUF. */
333
334 static void
335 extract_string (CORE_ADDR addr, char *buf)
336 {
337 int char_index = 0;
338
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
341 do
342 {
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
345 char_index++;
346 }
347 while (buf[char_index - 1] != '\000');
348 }
349
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
353
354 void *
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
356 {
357 if (*size < min_size)
358 {
359 *size *= 2;
360 if (*size < min_size)
361 *size = min_size;
362 vect = xrealloc (vect, *size * element_size);
363 }
364 return vect;
365 }
366
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
369
370 static int
371 field_name_match (const char *field_name, const char *target)
372 {
373 int len = strlen (target);
374 return
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
379 "___XVN") != 0)));
380 }
381
382
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
389
390 int
391 ada_get_field_index (const struct type *type, const char *field_name,
392 int maybe_missing)
393 {
394 int fieldno;
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
397 return fieldno;
398
399 if (!maybe_missing)
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
402
403 return -1;
404 }
405
406 /* The length of the prefix of NAME prior to any "___" suffix. */
407
408 int
409 ada_name_prefix_len (const char *name)
410 {
411 if (name == NULL)
412 return 0;
413 else
414 {
415 const char *p = strstr (name, "___");
416 if (p == NULL)
417 return strlen (name);
418 else
419 return p - name;
420 }
421 }
422
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
425
426 static int
427 is_suffix (const char *str, const char *suffix)
428 {
429 int len1, len2;
430 if (str == NULL)
431 return 0;
432 len1 = strlen (str);
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
435 }
436
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
439 ADDRESS. */
440
441 struct value *
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
444 CORE_ADDR address)
445 {
446 struct value *v = allocate_value (type);
447 if (valaddr == NULL)
448 set_value_lazy (v, 1);
449 else
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
452 if (address != 0)
453 VALUE_LVAL (v) = lval_memory;
454 return v;
455 }
456
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
459
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
462 {
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
465 return val;
466 else
467 {
468 struct value *result;
469
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
472 check_size (type);
473
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
479 if (value_lazy (val)
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
482 else
483 memcpy (value_contents_raw (result), value_contents (val),
484 TYPE_LENGTH (type));
485 return result;
486 }
487 }
488
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
491 {
492 if (valaddr == NULL)
493 return NULL;
494 else
495 return valaddr + offset;
496 }
497
498 static CORE_ADDR
499 cond_offset_target (CORE_ADDR address, long offset)
500 {
501 if (address == 0)
502 return 0;
503 else
504 return address + offset;
505 }
506
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
510 expression. */
511
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
515
516 static void
517 lim_warning (const char *format, ...)
518 {
519 va_list args;
520 va_start (args, format);
521
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
525
526 va_end (args);
527 }
528
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
531 GDB. */
532
533 static void
534 check_size (const struct type *type)
535 {
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
538 }
539
540
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
544
545 /* Maximum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 max_of_size (int size)
548 {
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
551 }
552
553 /* Minimum value of a SIZE-byte signed integer type. */
554 static LONGEST
555 min_of_size (int size)
556 {
557 return -max_of_size (size) - 1;
558 }
559
560 /* Maximum value of a SIZE-byte unsigned integer type. */
561 static ULONGEST
562 umax_of_size (int size)
563 {
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
566 }
567
568 /* Maximum value of integral type T, as a signed quantity. */
569 static LONGEST
570 max_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
574 else
575 return max_of_size (TYPE_LENGTH (t));
576 }
577
578 /* Minimum value of integral type T, as a signed quantity. */
579 static LONGEST
580 min_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return 0;
584 else
585 return min_of_size (TYPE_LENGTH (t));
586 }
587
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
591 {
592 switch (TYPE_CODE (type))
593 {
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
597 case TYPE_CODE_ENUM:
598 return
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
602 case TYPE_CODE_INT:
603 return value_from_longest (type, max_of_type (type));
604 default:
605 error (_("Unexpected type in discrete_type_high_bound."));
606 }
607 }
608
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
612 {
613 switch (TYPE_CODE (type))
614 {
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
618 case TYPE_CODE_ENUM:
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
620 case TYPE_CODE_INT:
621 return value_from_longest (type, min_of_type (type));
622 default:
623 error (_("Unexpected type in discrete_type_low_bound."));
624 }
625 }
626
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
629
630 static struct type *
631 base_type (struct type *type)
632 {
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
634 {
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
636 return type;
637 type = TYPE_TARGET_TYPE (type);
638 }
639 return type;
640 }
641 \f
642
643 /* Language Selection */
644
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
647
648 MAIN_PST is not used. */
649
650 enum language
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
653 {
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
656 return language_ada;
657
658 return lang;
659 }
660
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
664
665 char *
666 ada_main_name (void)
667 {
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
671
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
676 in Ada. */
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
678
679 if (msym != NULL)
680 {
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
684
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
687 }
688
689 /* The main procedure doesn't seem to be in Ada. */
690 return NULL;
691 }
692 \f
693 /* Symbols */
694
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
696 of NULLs. */
697
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
720 {NULL, NULL}
721 };
722
723 /* Return non-zero if STR should be suppressed in info listings. */
724
725 static int
726 is_suppressed_name (const char *str)
727 {
728 if (strncmp (str, "_ada_", 5) == 0)
729 str += 5;
730 if (str[0] == '_' || str[0] == '\000')
731 return 1;
732 else
733 {
734 const char *p;
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
737 return 1;
738 if (suffix == NULL)
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
741 if (isupper (*p))
742 {
743 int i;
744 if (p[0] == 'X' && p[-1] != '_')
745 goto OK;
746 if (*p != 'O')
747 return 1;
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
751 goto OK;
752 return 1;
753 OK:;
754 }
755 return 0;
756 }
757 }
758
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
761
762 char *
763 ada_encode (const char *decoded)
764 {
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
767 const char *p;
768 int k;
769
770 if (decoded == NULL)
771 return NULL;
772
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
775
776 k = 0;
777 for (p = decoded; *p != '\0'; p += 1)
778 {
779 if (!ADA_RETAIN_DOTS && *p == '.')
780 {
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
782 k += 2;
783 }
784 else if (*p == '"')
785 {
786 const struct ada_opname_map *mapping;
787
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
792 ;
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
797 break;
798 }
799 else
800 {
801 encoding_buffer[k] = *p;
802 k += 1;
803 }
804 }
805
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
808 }
809
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
812 to next call. */
813
814 char *
815 ada_fold_name (const char *name)
816 {
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
819
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
822
823 if (name[0] == '\'')
824 {
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
827 }
828 else
829 {
830 int i;
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
833 }
834
835 return fold_buffer;
836 }
837
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
839
840 static int
841 is_lower_alphanum (const char c)
842 {
843 return (isdigit (c) || (isalpha (c) && islower (c)));
844 }
845
846 /* Decode:
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
857 'X'.
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
862
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
865 is returned. */
866
867 const char *
868 ada_decode (const char *encoded)
869 {
870 int i, j;
871 int len0;
872 const char *p;
873 char *decoded;
874 int at_start_name;
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
877
878 if (strncmp (encoded, "_ada_", 5) == 0)
879 encoded += 5;
880
881 if (encoded[0] == '_' || encoded[0] == '<')
882 goto Suppress;
883
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
887 {
888 i = len0 - 2;
889 while (i > 0 && isdigit (encoded[i]))
890 i--;
891 if (i >= 0 && encoded[i] == '.')
892 len0 = i;
893 else if (i >= 0 && encoded[i] == '$')
894 len0 = i;
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
896 len0 = i - 2;
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
898 len0 = i - 1;
899 }
900
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (len0 > 1
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
914 len0--;
915
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
922 {
923 if (p[3] == 'X')
924 len0 = p - encoded;
925 else
926 goto Suppress;
927 }
928
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 len0 -= 3;
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
940 {
941 i = len0 - 2;
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
944 i -= 1;
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
946 len0 = i - 1;
947 else if (encoded[i] == '$')
948 len0 = i;
949 }
950
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
953
954 at_start_name = 1;
955 while (i < len0)
956 {
957 if (at_start_name && encoded[i] == 'O')
958 {
959 int k;
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
961 {
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
964 op_len - 1) == 0)
965 && !isalnum (encoded[i + op_len]))
966 {
967 strcpy (decoded + j, ada_opname_table[k].decoded);
968 at_start_name = 0;
969 i += op_len;
970 j += strlen (ada_opname_table[k].decoded);
971 break;
972 }
973 }
974 if (ada_opname_table[k].encoded != NULL)
975 continue;
976 }
977 at_start_name = 0;
978
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
981
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
983 i += 2;
984
985 /* Remove _E{DIGITS}+[sb] */
986
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
992 by a 'B'.
993
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
997
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1000 {
1001 int k = i + 3;
1002
1003 while (k < len0 && isdigit (encoded[k]))
1004 k++;
1005
1006 if (k < len0
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1008 {
1009 k++;
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1013 if (k == len0
1014 || (k < len0 && encoded[k] == '_'))
1015 i = k;
1016 }
1017 }
1018
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1021
1022 if (i < len0 + 3
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1024 {
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1029
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1031 ptr--;
1032 if (ptr < encoded
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1034 i++;
1035 }
1036
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1038 {
1039 do
1040 i += 1;
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1042 if (i < len0)
1043 goto Suppress;
1044 }
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1047 {
1048 decoded[j] = '.';
1049 at_start_name = 1;
1050 i += 2;
1051 j += 1;
1052 }
1053 else
1054 {
1055 decoded[j] = encoded[i];
1056 i += 1;
1057 j += 1;
1058 }
1059 }
1060 decoded[j] = '\000';
1061
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1064 goto Suppress;
1065
1066 if (strcmp (decoded, encoded) == 0)
1067 return encoded;
1068 else
1069 return decoded;
1070
1071 Suppress:
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1076 else
1077 sprintf (decoded, "<%s>", encoded);
1078 return decoded;
1079
1080 }
1081
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1088
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1094 GSYMBOL).
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1098 */
1099
1100 char *
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1102 {
1103 char **resultp =
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1106 {
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1109 {
1110 bfd *obfd = gsymbol->bfd_section->owner;
1111 if (obfd != NULL)
1112 {
1113 struct objfile *objf;
1114 ALL_OBJFILES (objf)
1115 {
1116 if (obfd == objf->obfd)
1117 {
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1120 break;
1121 }
1122 }
1123 }
1124 }
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1130 {
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1132 decoded, INSERT);
1133 if (*slot == NULL)
1134 *slot = xstrdup (decoded);
1135 *resultp = *slot;
1136 }
1137 }
1138
1139 return *resultp;
1140 }
1141
1142 char *
1143 ada_la_decode (const char *encoded, int options)
1144 {
1145 return xstrdup (ada_decode (encoded));
1146 }
1147
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1154
1155 int
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1157 {
1158 if (sym_name == NULL || name == NULL)
1159 return 0;
1160 else if (wild)
1161 return wild_match (name, strlen (name), sym_name);
1162 else
1163 {
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1170 }
1171 }
1172
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1175
1176 int
1177 ada_suppress_symbol_printing (struct symbol *sym)
1178 {
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1180 return 1;
1181 else
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1183 }
1184 \f
1185
1186 /* Arrays */
1187
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1189
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1193 };
1194
1195 /* Maximum number of array dimensions we are prepared to handle. */
1196
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1198
1199 /* Like modify_field, but allows bitpos > wordlength. */
1200
1201 static void
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1203 {
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1205 }
1206
1207
1208 /* The desc_* routines return primitive portions of array descriptors
1209 (fat pointers). */
1210
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1213
1214 static struct type *
1215 desc_base_type (struct type *type)
1216 {
1217 if (type == NULL)
1218 return NULL;
1219 type = ada_check_typedef (type);
1220 if (type != NULL
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1224 else
1225 return type;
1226 }
1227
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1229
1230 static int
1231 is_thin_pntr (struct type *type)
1232 {
1233 return
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1236 }
1237
1238 /* The descriptor type for thin pointer type TYPE. */
1239
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1242 {
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1245 return NULL;
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1247 return base_type;
1248 else
1249 {
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1252 return base_type;
1253 else
1254 return alt_type;
1255 }
1256 }
1257
1258 /* A pointer to the array data for thin-pointer value VAL. */
1259
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1262 {
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1266 value_copy (val));
1267 else
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1270 }
1271
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1273
1274 static int
1275 is_thick_pntr (struct type *type)
1276 {
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1280 }
1281
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1284
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1287 {
1288 struct type *r;
1289
1290 type = desc_base_type (type);
1291
1292 if (type == NULL)
1293 return NULL;
1294 else if (is_thin_pntr (type))
1295 {
1296 type = thin_descriptor_type (type);
1297 if (type == NULL)
1298 return NULL;
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1300 if (r != NULL)
1301 return ada_check_typedef (r);
1302 }
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1304 {
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1306 if (r != NULL)
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1308 }
1309 return NULL;
1310 }
1311
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1314
1315 static struct value *
1316 desc_bounds (struct value *arr)
1317 {
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1320 {
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1323 LONGEST addr;
1324
1325 if (desc_bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1327
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1333 else
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1335
1336 return
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1339 }
1340
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1344 else
1345 return NULL;
1346 }
1347
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1350
1351 static int
1352 fat_pntr_bounds_bitpos (struct type *type)
1353 {
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1355 }
1356
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1359
1360 static int
1361 fat_pntr_bounds_bitsize (struct type *type)
1362 {
1363 type = desc_base_type (type);
1364
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1367 else
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1375
1376 static struct type *
1377 desc_data_type (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1387 else
1388 return NULL;
1389 }
1390
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1392 its array data. */
1393
1394 static struct value *
1395 desc_data (struct value *arr)
1396 {
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1403 else
1404 return NULL;
1405 }
1406
1407
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1410
1411 static int
1412 fat_pntr_data_bitpos (struct type *type)
1413 {
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1415 }
1416
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1419
1420 static int
1421 fat_pntr_data_bitsize (struct type *type)
1422 {
1423 type = desc_base_type (type);
1424
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1427 else
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1429 }
1430
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1434
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1437 {
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1440 }
1441
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1445
1446 static int
1447 desc_bound_bitpos (struct type *type, int i, int which)
1448 {
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static int
1457 desc_bound_bitsize (struct type *type, int i, int which)
1458 {
1459 type = desc_base_type (type);
1460
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1463 else
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1465 }
1466
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1469
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1477 else
1478 return NULL;
1479 }
1480
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1483
1484 static int
1485 desc_arity (struct type *type)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (type != NULL)
1490 return TYPE_NFIELDS (type) / 2;
1491 return 0;
1492 }
1493
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1496 type). */
1497
1498 static int
1499 ada_is_direct_array_type (struct type *type)
1500 {
1501 if (type == NULL)
1502 return 0;
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1506 }
1507
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1509 * to one. */
1510
1511 int
1512 ada_is_array_type (struct type *type)
1513 {
1514 while (type != NULL
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1519 }
1520
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1522
1523 int
1524 ada_is_simple_array_type (struct type *type)
1525 {
1526 if (type == NULL)
1527 return 0;
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1532 }
1533
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1535
1536 int
1537 ada_is_array_descriptor_type (struct type *type)
1538 {
1539 struct type *data_type = desc_data_type (type);
1540
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return
1545 data_type != NULL
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1551 }
1552
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1556 is still needed. */
1557
1558 int
1559 ada_is_bogus_array_descriptor (struct type *type)
1560 {
1561 return
1562 type != NULL
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1567 }
1568
1569
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1576 a descriptor. */
1577 struct type *
1578 ada_type_of_array (struct value *arr, int bounds)
1579 {
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1582
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1585
1586 if (!bounds)
1587 return
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1589 else
1590 {
1591 struct type *elt_type;
1592 int arity;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1595
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1598
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1601
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1604 return NULL;
1605 while (arity > 0)
1606 {
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1611 arity -= 1;
1612
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1617 }
1618
1619 return lookup_pointer_type (elt_type);
1620 }
1621 }
1622
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1627
1628 struct value *
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1630 {
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1632 {
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1635 return NULL;
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1637 }
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1640 else
1641 return arr;
1642 }
1643
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1647
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1650 {
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1652 {
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1654 if (arrVal == NULL)
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1658 }
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1661 else
1662 return arr;
1663 }
1664
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1668
1669 struct type *
1670 ada_coerce_to_simple_array_type (struct type *type)
1671 {
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1678 return result;
1679 }
1680
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1682
1683 int
1684 ada_is_packed_array_type (struct type *type)
1685 {
1686 if (type == NULL)
1687 return 0;
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1690 return
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1693 }
1694
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1702 in bits. */
1703
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1706 {
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1710
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1713 return type;
1714
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1717 elt_bits);
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1721
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1727 else
1728 {
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1732 }
1733
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1735 return new_type;
1736 }
1737
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1739
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1742 {
1743 struct symbol *sym;
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1749 long bits;
1750 int i, n;
1751
1752 type = desc_base_type (type);
1753
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1756
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1759 {
1760 lim_warning (_("could not find bounds information on packed array"));
1761 return NULL;
1762 }
1763 shadow_type = SYMBOL_TYPE (sym);
1764
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1766 {
1767 lim_warning (_("could not understand bounds information on packed array"));
1768 return NULL;
1769 }
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return NULL;
1776 }
1777
1778 return packed_array_type (shadow_type, &bits);
1779 }
1780
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1786
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1789 {
1790 struct type *type;
1791
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1795
1796 type = decode_packed_array_type (value_type (arr));
1797 if (type == NULL)
1798 {
1799 error (_("can't unpack array"));
1800 return NULL;
1801 }
1802
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1804 {
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1810 ULONGEST mod;
1811
1812 mod = ada_modulus (value_type (arr)) - 1;
1813 bit_size = 0;
1814 while (mod > 0)
1815 {
1816 bit_size += 1;
1817 mod >>= 1;
1818 }
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1823 bit_size,
1824 type);
1825 }
1826
1827 return coerce_unspec_val_to_type (arr, type);
1828 }
1829
1830
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1833
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1836 {
1837 int i;
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1841 struct value *v;
1842
1843 bits = 0;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1847 {
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1850 error
1851 (_("attempt to do packed indexing of something other than a packed array"));
1852 else
1853 {
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1856 LONGEST idx;
1857
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1859 {
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1862 }
1863
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1870 }
1871 }
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1874
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1876 bits, elt_type);
1877 return v;
1878 }
1879
1880 /* Non-zero iff TYPE includes negative integer values. */
1881
1882 static int
1883 has_negatives (struct type *type)
1884 {
1885 switch (TYPE_CODE (type))
1886 {
1887 default:
1888 return 0;
1889 case TYPE_CODE_INT:
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1893 }
1894 }
1895
1896
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1905
1906 struct value *
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1909 struct type *type)
1910 {
1911 struct value *v;
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1922 unsigned char sign;
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1927
1928 type = ada_check_typedef (type);
1929
1930 if (obj == NULL)
1931 {
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1934 }
1935 else if (value_lazy (obj))
1936 {
1937 v = value_at (type,
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1941 }
1942 else
1943 {
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1946 }
1947
1948 if (obj != NULL)
1949 {
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1957 {
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1960 }
1961 }
1962 else
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1965
1966 srcBitsLeft = bit_size;
1967 nsrc = len;
1968 ntarg = TYPE_LENGTH (type);
1969 sign = 0;
1970 if (bit_size == 0)
1971 {
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1973 return v;
1974 }
1975 else if (BITS_BIG_ENDIAN)
1976 {
1977 src = len - 1;
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1980 sign = ~0;
1981
1982 unusedLS =
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1984 % HOST_CHAR_BIT;
1985
1986 switch (TYPE_CODE (type))
1987 {
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1992 accumSize =
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1995 of the target. */
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1997 break;
1998 default:
1999 accumSize = 0;
2000 targ = TYPE_LENGTH (type) - 1;
2001 break;
2002 }
2003 }
2004 else
2005 {
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2007
2008 src = targ = 0;
2009 unusedLS = bit_offset;
2010 accumSize = 0;
2011
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2013 sign = ~0;
2014 }
2015
2016 accum = 0;
2017 while (nsrc > 0)
2018 {
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2023 1;
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2026 accum |=
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2030 {
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2034 ntarg -= 1;
2035 targ += delta;
2036 }
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2038 unusedLS = 0;
2039 nsrc -= 1;
2040 src += delta;
2041 }
2042 while (ntarg > 0)
2043 {
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2048 ntarg -= 1;
2049 targ += delta;
2050 }
2051
2052 return v;
2053 }
2054
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2057 not overlap. */
2058 static void
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2061 {
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2064
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2070 {
2071 accum = (unsigned char) *source;
2072 source += 1;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2074
2075 while (n > 0)
2076 {
2077 int unused_right;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2080 source += 1;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2082 if (chunk_size > n)
2083 chunk_size = n;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2086 *target =
2087 (*target & ~mask)
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2089 n -= chunk_size;
2090 accum_bits -= chunk_size;
2091 target += 1;
2092 targ_offset = 0;
2093 }
2094 }
2095 else
2096 {
2097 accum = (unsigned char) *source >> src_offset;
2098 source += 1;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2100
2101 while (n > 0)
2102 {
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2105 source += 1;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2107 if (chunk_size > n)
2108 chunk_size = n;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2114 target += 1;
2115 targ_offset = 0;
2116 }
2117 }
2118 }
2119
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2124
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2127 {
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2130
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2133
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2138
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2141
2142 if (VALUE_LVAL (toval) == lval_memory
2143 && bits > 0
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2146 {
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2150 struct value *val;
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2152
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2155
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2161 bits, bits);
2162 else
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2164 0, bits);
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2168
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2173
2174 return val;
2175 }
2176
2177 return value_assign (toval, fromval);
2178 }
2179
2180
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2186 static void
2187 value_assign_to_component (struct value *container, struct value *component,
2188 struct value *val)
2189 {
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2195 int bits;
2196
2197 val = value_cast (value_type (component), val);
2198
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2201 else
2202 bits = value_bitsize (component);
2203
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2209 bits);
2210 else
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2214 }
2215
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2218 thereto. */
2219
2220 struct value *
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2222 {
2223 int k;
2224 struct value *elt;
2225 struct type *elt_type;
2226
2227 elt = ada_coerce_to_simple_array (arr);
2228
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2233
2234 for (k = 0; k < arity; k += 1)
2235 {
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2239 }
2240 return elt;
2241 }
2242
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2246
2247 struct value *
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2249 struct value **ind)
2250 {
2251 int k;
2252
2253 for (k = 0; k < arity; k += 1)
2254 {
2255 LONGEST lwb, upb;
2256 struct value *idx;
2257
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2261 value_copy (arr));
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2264 if (lwb != 0)
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2268 }
2269
2270 return value_ind (arr);
2271 }
2272
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2279 int low, int high)
2280 {
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2286 low, high);
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2290 }
2291
2292
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2295 {
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2302 }
2303
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2308
2309 int
2310 ada_array_arity (struct type *type)
2311 {
2312 int arity;
2313
2314 if (type == NULL)
2315 return 0;
2316
2317 type = desc_base_type (type);
2318
2319 arity = 0;
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2322 else
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2324 {
2325 arity += 1;
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2327 }
2328
2329 return arity;
2330 }
2331
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2336
2337 struct type *
2338 ada_array_element_type (struct type *type, int nindices)
2339 {
2340 type = desc_base_type (type);
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2343 {
2344 int k;
2345 struct type *p_array_type;
2346
2347 p_array_type = desc_data_type (type);
2348
2349 k = ada_array_arity (type);
2350 if (k == 0)
2351 return NULL;
2352
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2355 k = nindices;
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2358 {
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2360 k -= 1;
2361 }
2362 return p_array_type;
2363 }
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2365 {
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
2369 nindices -= 1;
2370 }
2371 return type;
2372 }
2373
2374 return NULL;
2375 }
2376
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2379
2380 struct type *
2381 ada_index_type (struct type *type, int n)
2382 {
2383 struct type *result_type;
2384
2385 type = desc_base_type (type);
2386
2387 if (n > ada_array_arity (type))
2388 return NULL;
2389
2390 if (ada_is_simple_array_type (type))
2391 {
2392 int i;
2393
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2402
2403 return result_type;
2404 }
2405 else
2406 return desc_index_type (desc_bounds_type (type), n);
2407 }
2408
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2415
2416 LONGEST
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2419 {
2420 struct type *type;
2421 struct type *index_type_desc;
2422
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2425
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2427 {
2428 if (typep != NULL)
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2431 }
2432
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2435 else
2436 type = arr_type;
2437
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2440 {
2441 struct type *range_type;
2442 struct type *index_type;
2443
2444 while (n > 1)
2445 {
2446 type = TYPE_TARGET_TYPE (type);
2447 n -= 1;
2448 }
2449
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2454 if (typep != NULL)
2455 *typep = index_type;
2456 return
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2460 }
2461 else
2462 {
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2466 if (typep != NULL)
2467 *typep = TYPE_TARGET_TYPE (index_type);
2468 return
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2472 }
2473 }
2474
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2479
2480 struct value *
2481 ada_array_bound (struct value *arr, int n, int which)
2482 {
2483 struct type *arr_type = value_type (arr);
2484
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2488 {
2489 struct type *type;
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2492 }
2493 else
2494 return desc_one_bound (desc_bounds (arr), n, which);
2495 }
2496
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2502
2503 struct value *
2504 ada_array_length (struct value *arr, int n)
2505 {
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2507
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2510
2511 if (ada_is_simple_array_type (arr_type))
2512 {
2513 struct type *type;
2514 LONGEST v =
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 1))
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2525 n, 0)) + 1);
2526 }
2527
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2530
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2533 {
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2536 low, low - 1);
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2539 }
2540 \f
2541
2542 /* Name resolution */
2543
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2545 to OP. */
2546
2547 static const char *
2548 ada_decoded_op_name (enum exp_opcode op)
2549 {
2550 int i;
2551
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2553 {
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2556 }
2557 error (_("Could not find operator name for opcode"));
2558 }
2559
2560
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2569
2570 static void
2571 resolve (struct expression **expp, int void_context_p)
2572 {
2573 int pc;
2574 pc = 0;
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2576 }
2577
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2586
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2590 {
2591 int pc = *pos;
2592 int i;
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2597 int oplen;
2598
2599 argvec = NULL;
2600 nargs = 0;
2601 exp = *expp;
2602
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2604 if needed. */
2605 switch (op)
2606 {
2607 case OP_FUNCALL:
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2610 *pos += 7;
2611 else
2612 {
2613 *pos += 3;
2614 resolve_subexp (expp, pos, 0, NULL);
2615 }
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2617 break;
2618
2619 case UNOP_ADDR:
2620 *pos += 1;
2621 resolve_subexp (expp, pos, 0, NULL);
2622 break;
2623
2624 case UNOP_QUAL:
2625 *pos += 3;
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2627 break;
2628
2629 case OP_ATR_MODULUS:
2630 case OP_ATR_SIZE:
2631 case OP_ATR_TAG:
2632 case OP_ATR_FIRST:
2633 case OP_ATR_LAST:
2634 case OP_ATR_LENGTH:
2635 case OP_ATR_POS:
2636 case OP_ATR_VAL:
2637 case OP_ATR_MIN:
2638 case OP_ATR_MAX:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2641 case UNOP_IN_RANGE:
2642 case OP_AGGREGATE:
2643 case OP_OTHERS:
2644 case OP_CHOICES:
2645 case OP_POSITIONAL:
2646 case OP_DISCRETE_RANGE:
2647 case OP_NAME:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2649 *pos += oplen;
2650 break;
2651
2652 case BINOP_ASSIGN:
2653 {
2654 struct value *arg1;
2655
2656 *pos += 1;
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2658 if (arg1 == NULL)
2659 resolve_subexp (expp, pos, 1, NULL);
2660 else
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2662 break;
2663 }
2664
2665 case UNOP_CAST:
2666 *pos += 3;
2667 nargs = 1;
2668 break;
2669
2670 case BINOP_ADD:
2671 case BINOP_SUB:
2672 case BINOP_MUL:
2673 case BINOP_DIV:
2674 case BINOP_REM:
2675 case BINOP_MOD:
2676 case BINOP_EXP:
2677 case BINOP_CONCAT:
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2683
2684 case BINOP_EQUAL:
2685 case BINOP_NOTEQUAL:
2686 case BINOP_LESS:
2687 case BINOP_GTR:
2688 case BINOP_LEQ:
2689 case BINOP_GEQ:
2690
2691 case BINOP_REPEAT:
2692 case BINOP_SUBSCRIPT:
2693 case BINOP_COMMA:
2694
2695 case UNOP_NEG:
2696 case UNOP_PLUS:
2697 case UNOP_LOGICAL_NOT:
2698 case UNOP_ABS:
2699 case UNOP_IND:
2700 *pos += 1;
2701 nargs = 1;
2702 break;
2703
2704 case OP_LONG:
2705 case OP_DOUBLE:
2706 case OP_VAR_VALUE:
2707 *pos += 4;
2708 break;
2709
2710 case OP_TYPE:
2711 case OP_BOOL:
2712 case OP_LAST:
2713 case OP_REGISTER:
2714 case OP_INTERNALVAR:
2715 *pos += 3;
2716 break;
2717
2718 case UNOP_MEMVAL:
2719 *pos += 3;
2720 nargs = 1;
2721 break;
2722
2723 case STRUCTOP_STRUCT:
2724 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2725 nargs = 1;
2726 break;
2727
2728 case TERNOP_SLICE:
2729 *pos += 1;
2730 nargs = 3;
2731 break;
2732
2733 case OP_STRING:
2734 break;
2735
2736 default:
2737 error (_("Unexpected operator during name resolution"));
2738 }
2739
2740 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2741 for (i = 0; i < nargs; i += 1)
2742 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2743 argvec[i] = NULL;
2744 exp = *expp;
2745
2746 /* Pass two: perform any resolution on principal operator. */
2747 switch (op)
2748 {
2749 default:
2750 break;
2751
2752 case OP_VAR_VALUE:
2753 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2754 {
2755 struct ada_symbol_info *candidates;
2756 int n_candidates;
2757
2758 n_candidates =
2759 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2760 (exp->elts[pc + 2].symbol),
2761 exp->elts[pc + 1].block, VAR_DOMAIN,
2762 &candidates);
2763
2764 if (n_candidates > 1)
2765 {
2766 /* Types tend to get re-introduced locally, so if there
2767 are any local symbols that are not types, first filter
2768 out all types. */
2769 int j;
2770 for (j = 0; j < n_candidates; j += 1)
2771 switch (SYMBOL_CLASS (candidates[j].sym))
2772 {
2773 case LOC_REGISTER:
2774 case LOC_ARG:
2775 case LOC_REF_ARG:
2776 case LOC_REGPARM:
2777 case LOC_REGPARM_ADDR:
2778 case LOC_LOCAL:
2779 case LOC_LOCAL_ARG:
2780 case LOC_BASEREG:
2781 case LOC_BASEREG_ARG:
2782 case LOC_COMPUTED:
2783 case LOC_COMPUTED_ARG:
2784 goto FoundNonType;
2785 default:
2786 break;
2787 }
2788 FoundNonType:
2789 if (j < n_candidates)
2790 {
2791 j = 0;
2792 while (j < n_candidates)
2793 {
2794 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2795 {
2796 candidates[j] = candidates[n_candidates - 1];
2797 n_candidates -= 1;
2798 }
2799 else
2800 j += 1;
2801 }
2802 }
2803 }
2804
2805 if (n_candidates == 0)
2806 error (_("No definition found for %s"),
2807 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2808 else if (n_candidates == 1)
2809 i = 0;
2810 else if (deprocedure_p
2811 && !is_nonfunction (candidates, n_candidates))
2812 {
2813 i = ada_resolve_function
2814 (candidates, n_candidates, NULL, 0,
2815 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2816 context_type);
2817 if (i < 0)
2818 error (_("Could not find a match for %s"),
2819 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2820 }
2821 else
2822 {
2823 printf_filtered (_("Multiple matches for %s\n"),
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 user_select_syms (candidates, n_candidates, 1);
2826 i = 0;
2827 }
2828
2829 exp->elts[pc + 1].block = candidates[i].block;
2830 exp->elts[pc + 2].symbol = candidates[i].sym;
2831 if (innermost_block == NULL
2832 || contained_in (candidates[i].block, innermost_block))
2833 innermost_block = candidates[i].block;
2834 }
2835
2836 if (deprocedure_p
2837 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2838 == TYPE_CODE_FUNC))
2839 {
2840 replace_operator_with_call (expp, pc, 0, 0,
2841 exp->elts[pc + 2].symbol,
2842 exp->elts[pc + 1].block);
2843 exp = *expp;
2844 }
2845 break;
2846
2847 case OP_FUNCALL:
2848 {
2849 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2850 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2851 {
2852 struct ada_symbol_info *candidates;
2853 int n_candidates;
2854
2855 n_candidates =
2856 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2857 (exp->elts[pc + 5].symbol),
2858 exp->elts[pc + 4].block, VAR_DOMAIN,
2859 &candidates);
2860 if (n_candidates == 1)
2861 i = 0;
2862 else
2863 {
2864 i = ada_resolve_function
2865 (candidates, n_candidates,
2866 argvec, nargs,
2867 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2868 context_type);
2869 if (i < 0)
2870 error (_("Could not find a match for %s"),
2871 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2872 }
2873
2874 exp->elts[pc + 4].block = candidates[i].block;
2875 exp->elts[pc + 5].symbol = candidates[i].sym;
2876 if (innermost_block == NULL
2877 || contained_in (candidates[i].block, innermost_block))
2878 innermost_block = candidates[i].block;
2879 }
2880 }
2881 break;
2882 case BINOP_ADD:
2883 case BINOP_SUB:
2884 case BINOP_MUL:
2885 case BINOP_DIV:
2886 case BINOP_REM:
2887 case BINOP_MOD:
2888 case BINOP_CONCAT:
2889 case BINOP_BITWISE_AND:
2890 case BINOP_BITWISE_IOR:
2891 case BINOP_BITWISE_XOR:
2892 case BINOP_EQUAL:
2893 case BINOP_NOTEQUAL:
2894 case BINOP_LESS:
2895 case BINOP_GTR:
2896 case BINOP_LEQ:
2897 case BINOP_GEQ:
2898 case BINOP_EXP:
2899 case UNOP_NEG:
2900 case UNOP_PLUS:
2901 case UNOP_LOGICAL_NOT:
2902 case UNOP_ABS:
2903 if (possible_user_operator_p (op, argvec))
2904 {
2905 struct ada_symbol_info *candidates;
2906 int n_candidates;
2907
2908 n_candidates =
2909 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2910 (struct block *) NULL, VAR_DOMAIN,
2911 &candidates);
2912 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2913 ada_decoded_op_name (op), NULL);
2914 if (i < 0)
2915 break;
2916
2917 replace_operator_with_call (expp, pc, nargs, 1,
2918 candidates[i].sym, candidates[i].block);
2919 exp = *expp;
2920 }
2921 break;
2922
2923 case OP_TYPE:
2924 return NULL;
2925 }
2926
2927 *pos = pc;
2928 return evaluate_subexp_type (exp, pos);
2929 }
2930
2931 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2932 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2933 a non-pointer. A type of 'void' (which is never a valid expression type)
2934 by convention matches anything. */
2935 /* The term "match" here is rather loose. The match is heuristic and
2936 liberal. FIXME: TOO liberal, in fact. */
2937
2938 static int
2939 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2940 {
2941 ftype = ada_check_typedef (ftype);
2942 atype = ada_check_typedef (atype);
2943
2944 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2945 ftype = TYPE_TARGET_TYPE (ftype);
2946 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2947 atype = TYPE_TARGET_TYPE (atype);
2948
2949 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2950 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2951 return 1;
2952
2953 switch (TYPE_CODE (ftype))
2954 {
2955 default:
2956 return 1;
2957 case TYPE_CODE_PTR:
2958 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2959 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2960 TYPE_TARGET_TYPE (atype), 0);
2961 else
2962 return (may_deref
2963 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2964 case TYPE_CODE_INT:
2965 case TYPE_CODE_ENUM:
2966 case TYPE_CODE_RANGE:
2967 switch (TYPE_CODE (atype))
2968 {
2969 case TYPE_CODE_INT:
2970 case TYPE_CODE_ENUM:
2971 case TYPE_CODE_RANGE:
2972 return 1;
2973 default:
2974 return 0;
2975 }
2976
2977 case TYPE_CODE_ARRAY:
2978 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2979 || ada_is_array_descriptor_type (atype));
2980
2981 case TYPE_CODE_STRUCT:
2982 if (ada_is_array_descriptor_type (ftype))
2983 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2984 || ada_is_array_descriptor_type (atype));
2985 else
2986 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2987 && !ada_is_array_descriptor_type (atype));
2988
2989 case TYPE_CODE_UNION:
2990 case TYPE_CODE_FLT:
2991 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2992 }
2993 }
2994
2995 /* Return non-zero if the formals of FUNC "sufficiently match" the
2996 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2997 may also be an enumeral, in which case it is treated as a 0-
2998 argument function. */
2999
3000 static int
3001 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3002 {
3003 int i;
3004 struct type *func_type = SYMBOL_TYPE (func);
3005
3006 if (SYMBOL_CLASS (func) == LOC_CONST
3007 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3008 return (n_actuals == 0);
3009 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3010 return 0;
3011
3012 if (TYPE_NFIELDS (func_type) != n_actuals)
3013 return 0;
3014
3015 for (i = 0; i < n_actuals; i += 1)
3016 {
3017 if (actuals[i] == NULL)
3018 return 0;
3019 else
3020 {
3021 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3022 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3023
3024 if (!ada_type_match (ftype, atype, 1))
3025 return 0;
3026 }
3027 }
3028 return 1;
3029 }
3030
3031 /* False iff function type FUNC_TYPE definitely does not produce a value
3032 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3033 FUNC_TYPE is not a valid function type with a non-null return type
3034 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3035
3036 static int
3037 return_match (struct type *func_type, struct type *context_type)
3038 {
3039 struct type *return_type;
3040
3041 if (func_type == NULL)
3042 return 1;
3043
3044 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3045 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3046 else
3047 return_type = base_type (func_type);
3048 if (return_type == NULL)
3049 return 1;
3050
3051 context_type = base_type (context_type);
3052
3053 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3054 return context_type == NULL || return_type == context_type;
3055 else if (context_type == NULL)
3056 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3057 else
3058 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3059 }
3060
3061
3062 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3063 function (if any) that matches the types of the NARGS arguments in
3064 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3065 that returns that type, then eliminate matches that don't. If
3066 CONTEXT_TYPE is void and there is at least one match that does not
3067 return void, eliminate all matches that do.
3068
3069 Asks the user if there is more than one match remaining. Returns -1
3070 if there is no such symbol or none is selected. NAME is used
3071 solely for messages. May re-arrange and modify SYMS in
3072 the process; the index returned is for the modified vector. */
3073
3074 static int
3075 ada_resolve_function (struct ada_symbol_info syms[],
3076 int nsyms, struct value **args, int nargs,
3077 const char *name, struct type *context_type)
3078 {
3079 int k;
3080 int m; /* Number of hits */
3081 struct type *fallback;
3082 struct type *return_type;
3083
3084 return_type = context_type;
3085 if (context_type == NULL)
3086 fallback = builtin_type_void;
3087 else
3088 fallback = NULL;
3089
3090 m = 0;
3091 while (1)
3092 {
3093 for (k = 0; k < nsyms; k += 1)
3094 {
3095 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3096
3097 if (ada_args_match (syms[k].sym, args, nargs)
3098 && return_match (type, return_type))
3099 {
3100 syms[m] = syms[k];
3101 m += 1;
3102 }
3103 }
3104 if (m > 0 || return_type == fallback)
3105 break;
3106 else
3107 return_type = fallback;
3108 }
3109
3110 if (m == 0)
3111 return -1;
3112 else if (m > 1)
3113 {
3114 printf_filtered (_("Multiple matches for %s\n"), name);
3115 user_select_syms (syms, m, 1);
3116 return 0;
3117 }
3118 return 0;
3119 }
3120
3121 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3122 in a listing of choices during disambiguation (see sort_choices, below).
3123 The idea is that overloadings of a subprogram name from the
3124 same package should sort in their source order. We settle for ordering
3125 such symbols by their trailing number (__N or $N). */
3126
3127 static int
3128 encoded_ordered_before (char *N0, char *N1)
3129 {
3130 if (N1 == NULL)
3131 return 0;
3132 else if (N0 == NULL)
3133 return 1;
3134 else
3135 {
3136 int k0, k1;
3137 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3138 ;
3139 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3140 ;
3141 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3142 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3143 {
3144 int n0, n1;
3145 n0 = k0;
3146 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3147 n0 -= 1;
3148 n1 = k1;
3149 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3150 n1 -= 1;
3151 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3152 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3153 }
3154 return (strcmp (N0, N1) < 0);
3155 }
3156 }
3157
3158 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3159 encoded names. */
3160
3161 static void
3162 sort_choices (struct ada_symbol_info syms[], int nsyms)
3163 {
3164 int i;
3165 for (i = 1; i < nsyms; i += 1)
3166 {
3167 struct ada_symbol_info sym = syms[i];
3168 int j;
3169
3170 for (j = i - 1; j >= 0; j -= 1)
3171 {
3172 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3173 SYMBOL_LINKAGE_NAME (sym.sym)))
3174 break;
3175 syms[j + 1] = syms[j];
3176 }
3177 syms[j + 1] = sym;
3178 }
3179 }
3180
3181 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3182 by asking the user (if necessary), returning the number selected,
3183 and setting the first elements of SYMS items. Error if no symbols
3184 selected. */
3185
3186 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3187 to be re-integrated one of these days. */
3188
3189 int
3190 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3191 {
3192 int i;
3193 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3194 int n_chosen;
3195 int first_choice = (max_results == 1) ? 1 : 2;
3196
3197 if (max_results < 1)
3198 error (_("Request to select 0 symbols!"));
3199 if (nsyms <= 1)
3200 return nsyms;
3201
3202 printf_unfiltered (_("[0] cancel\n"));
3203 if (max_results > 1)
3204 printf_unfiltered (_("[1] all\n"));
3205
3206 sort_choices (syms, nsyms);
3207
3208 for (i = 0; i < nsyms; i += 1)
3209 {
3210 if (syms[i].sym == NULL)
3211 continue;
3212
3213 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3214 {
3215 struct symtab_and_line sal =
3216 find_function_start_sal (syms[i].sym, 1);
3217 if (sal.symtab == NULL)
3218 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3219 i + first_choice,
3220 SYMBOL_PRINT_NAME (syms[i].sym),
3221 sal.line);
3222 else
3223 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3224 SYMBOL_PRINT_NAME (syms[i].sym),
3225 sal.symtab->filename, sal.line);
3226 continue;
3227 }
3228 else
3229 {
3230 int is_enumeral =
3231 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3232 && SYMBOL_TYPE (syms[i].sym) != NULL
3233 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3234 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3235
3236 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3237 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3238 i + first_choice,
3239 SYMBOL_PRINT_NAME (syms[i].sym),
3240 symtab->filename, SYMBOL_LINE (syms[i].sym));
3241 else if (is_enumeral
3242 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3243 {
3244 printf_unfiltered (("[%d] "), i + first_choice);
3245 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3246 gdb_stdout, -1, 0);
3247 printf_unfiltered (_("'(%s) (enumeral)\n"),
3248 SYMBOL_PRINT_NAME (syms[i].sym));
3249 }
3250 else if (symtab != NULL)
3251 printf_unfiltered (is_enumeral
3252 ? _("[%d] %s in %s (enumeral)\n")
3253 : _("[%d] %s at %s:?\n"),
3254 i + first_choice,
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename);
3257 else
3258 printf_unfiltered (is_enumeral
3259 ? _("[%d] %s (enumeral)\n")
3260 : _("[%d] %s at ?\n"),
3261 i + first_choice,
3262 SYMBOL_PRINT_NAME (syms[i].sym));
3263 }
3264 }
3265
3266 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3267 "overload-choice");
3268
3269 for (i = 0; i < n_chosen; i += 1)
3270 syms[i] = syms[chosen[i]];
3271
3272 return n_chosen;
3273 }
3274
3275 /* Read and validate a set of numeric choices from the user in the
3276 range 0 .. N_CHOICES-1. Place the results in increasing
3277 order in CHOICES[0 .. N-1], and return N.
3278
3279 The user types choices as a sequence of numbers on one line
3280 separated by blanks, encoding them as follows:
3281
3282 + A choice of 0 means to cancel the selection, throwing an error.
3283 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3284 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3285
3286 The user is not allowed to choose more than MAX_RESULTS values.
3287
3288 ANNOTATION_SUFFIX, if present, is used to annotate the input
3289 prompts (for use with the -f switch). */
3290
3291 int
3292 get_selections (int *choices, int n_choices, int max_results,
3293 int is_all_choice, char *annotation_suffix)
3294 {
3295 char *args;
3296 const char *prompt;
3297 int n_chosen;
3298 int first_choice = is_all_choice ? 2 : 1;
3299
3300 prompt = getenv ("PS2");
3301 if (prompt == NULL)
3302 prompt = ">";
3303
3304 printf_unfiltered (("%s "), prompt);
3305 gdb_flush (gdb_stdout);
3306
3307 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3308
3309 if (args == NULL)
3310 error_no_arg (_("one or more choice numbers"));
3311
3312 n_chosen = 0;
3313
3314 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3315 order, as given in args. Choices are validated. */
3316 while (1)
3317 {
3318 char *args2;
3319 int choice, j;
3320
3321 while (isspace (*args))
3322 args += 1;
3323 if (*args == '\0' && n_chosen == 0)
3324 error_no_arg (_("one or more choice numbers"));
3325 else if (*args == '\0')
3326 break;
3327
3328 choice = strtol (args, &args2, 10);
3329 if (args == args2 || choice < 0
3330 || choice > n_choices + first_choice - 1)
3331 error (_("Argument must be choice number"));
3332 args = args2;
3333
3334 if (choice == 0)
3335 error (_("cancelled"));
3336
3337 if (choice < first_choice)
3338 {
3339 n_chosen = n_choices;
3340 for (j = 0; j < n_choices; j += 1)
3341 choices[j] = j;
3342 break;
3343 }
3344 choice -= first_choice;
3345
3346 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3347 {
3348 }
3349
3350 if (j < 0 || choice != choices[j])
3351 {
3352 int k;
3353 for (k = n_chosen - 1; k > j; k -= 1)
3354 choices[k + 1] = choices[k];
3355 choices[j + 1] = choice;
3356 n_chosen += 1;
3357 }
3358 }
3359
3360 if (n_chosen > max_results)
3361 error (_("Select no more than %d of the above"), max_results);
3362
3363 return n_chosen;
3364 }
3365
3366 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3367 on the function identified by SYM and BLOCK, and taking NARGS
3368 arguments. Update *EXPP as needed to hold more space. */
3369
3370 static void
3371 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3372 int oplen, struct symbol *sym,
3373 struct block *block)
3374 {
3375 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3376 symbol, -oplen for operator being replaced). */
3377 struct expression *newexp = (struct expression *)
3378 xmalloc (sizeof (struct expression)
3379 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3380 struct expression *exp = *expp;
3381
3382 newexp->nelts = exp->nelts + 7 - oplen;
3383 newexp->language_defn = exp->language_defn;
3384 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3385 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3386 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3387
3388 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3389 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3390
3391 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3392 newexp->elts[pc + 4].block = block;
3393 newexp->elts[pc + 5].symbol = sym;
3394
3395 *expp = newexp;
3396 xfree (exp);
3397 }
3398
3399 /* Type-class predicates */
3400
3401 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3402 or FLOAT). */
3403
3404 static int
3405 numeric_type_p (struct type *type)
3406 {
3407 if (type == NULL)
3408 return 0;
3409 else
3410 {
3411 switch (TYPE_CODE (type))
3412 {
3413 case TYPE_CODE_INT:
3414 case TYPE_CODE_FLT:
3415 return 1;
3416 case TYPE_CODE_RANGE:
3417 return (type == TYPE_TARGET_TYPE (type)
3418 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3419 default:
3420 return 0;
3421 }
3422 }
3423 }
3424
3425 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3426
3427 static int
3428 integer_type_p (struct type *type)
3429 {
3430 if (type == NULL)
3431 return 0;
3432 else
3433 {
3434 switch (TYPE_CODE (type))
3435 {
3436 case TYPE_CODE_INT:
3437 return 1;
3438 case TYPE_CODE_RANGE:
3439 return (type == TYPE_TARGET_TYPE (type)
3440 || integer_type_p (TYPE_TARGET_TYPE (type)));
3441 default:
3442 return 0;
3443 }
3444 }
3445 }
3446
3447 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3448
3449 static int
3450 scalar_type_p (struct type *type)
3451 {
3452 if (type == NULL)
3453 return 0;
3454 else
3455 {
3456 switch (TYPE_CODE (type))
3457 {
3458 case TYPE_CODE_INT:
3459 case TYPE_CODE_RANGE:
3460 case TYPE_CODE_ENUM:
3461 case TYPE_CODE_FLT:
3462 return 1;
3463 default:
3464 return 0;
3465 }
3466 }
3467 }
3468
3469 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3470
3471 static int
3472 discrete_type_p (struct type *type)
3473 {
3474 if (type == NULL)
3475 return 0;
3476 else
3477 {
3478 switch (TYPE_CODE (type))
3479 {
3480 case TYPE_CODE_INT:
3481 case TYPE_CODE_RANGE:
3482 case TYPE_CODE_ENUM:
3483 return 1;
3484 default:
3485 return 0;
3486 }
3487 }
3488 }
3489
3490 /* Returns non-zero if OP with operands in the vector ARGS could be
3491 a user-defined function. Errs on the side of pre-defined operators
3492 (i.e., result 0). */
3493
3494 static int
3495 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3496 {
3497 struct type *type0 =
3498 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3499 struct type *type1 =
3500 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3501
3502 if (type0 == NULL)
3503 return 0;
3504
3505 switch (op)
3506 {
3507 default:
3508 return 0;
3509
3510 case BINOP_ADD:
3511 case BINOP_SUB:
3512 case BINOP_MUL:
3513 case BINOP_DIV:
3514 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3515
3516 case BINOP_REM:
3517 case BINOP_MOD:
3518 case BINOP_BITWISE_AND:
3519 case BINOP_BITWISE_IOR:
3520 case BINOP_BITWISE_XOR:
3521 return (!(integer_type_p (type0) && integer_type_p (type1)));
3522
3523 case BINOP_EQUAL:
3524 case BINOP_NOTEQUAL:
3525 case BINOP_LESS:
3526 case BINOP_GTR:
3527 case BINOP_LEQ:
3528 case BINOP_GEQ:
3529 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3530
3531 case BINOP_CONCAT:
3532 return
3533 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3534 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3535 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3536 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3537 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3538 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3539 != TYPE_CODE_ARRAY))));
3540
3541 case BINOP_EXP:
3542 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3543
3544 case UNOP_NEG:
3545 case UNOP_PLUS:
3546 case UNOP_LOGICAL_NOT:
3547 case UNOP_ABS:
3548 return (!numeric_type_p (type0));
3549
3550 }
3551 }
3552 \f
3553 /* Renaming */
3554
3555 /* NOTE: In the following, we assume that a renaming type's name may
3556 have an ___XD suffix. It would be nice if this went away at some
3557 point. */
3558
3559 /* If TYPE encodes a renaming, returns the renaming suffix, which
3560 is XR for an object renaming, XRP for a procedure renaming, XRE for
3561 an exception renaming, and XRS for a subprogram renaming. Returns
3562 NULL if NAME encodes none of these. */
3563
3564 const char *
3565 ada_renaming_type (struct type *type)
3566 {
3567 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3568 {
3569 const char *name = type_name_no_tag (type);
3570 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3571 if (suffix == NULL
3572 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3573 return NULL;
3574 else
3575 return suffix + 3;
3576 }
3577 else
3578 return NULL;
3579 }
3580
3581 /* Return non-zero iff SYM encodes an object renaming. */
3582
3583 int
3584 ada_is_object_renaming (struct symbol *sym)
3585 {
3586 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3587 return renaming_type != NULL
3588 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3589 }
3590
3591 /* Assuming that SYM encodes a non-object renaming, returns the original
3592 name of the renamed entity. The name is good until the end of
3593 parsing. */
3594
3595 char *
3596 ada_simple_renamed_entity (struct symbol *sym)
3597 {
3598 struct type *type;
3599 const char *raw_name;
3600 int len;
3601 char *result;
3602
3603 type = SYMBOL_TYPE (sym);
3604 if (type == NULL || TYPE_NFIELDS (type) < 1)
3605 error (_("Improperly encoded renaming."));
3606
3607 raw_name = TYPE_FIELD_NAME (type, 0);
3608 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3609 if (len <= 0)
3610 error (_("Improperly encoded renaming."));
3611
3612 result = xmalloc (len + 1);
3613 strncpy (result, raw_name, len);
3614 result[len] = '\000';
3615 return result;
3616 }
3617
3618 \f
3619
3620 /* Evaluation: Function Calls */
3621
3622 /* Return an lvalue containing the value VAL. This is the identity on
3623 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3624 on the stack, using and updating *SP as the stack pointer, and
3625 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3626
3627 static struct value *
3628 ensure_lval (struct value *val, CORE_ADDR *sp)
3629 {
3630 if (! VALUE_LVAL (val))
3631 {
3632 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3633
3634 /* The following is taken from the structure-return code in
3635 call_function_by_hand. FIXME: Therefore, some refactoring seems
3636 indicated. */
3637 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3638 {
3639 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3640 reserving sufficient space. */
3641 *sp -= len;
3642 if (gdbarch_frame_align_p (current_gdbarch))
3643 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3644 VALUE_ADDRESS (val) = *sp;
3645 }
3646 else
3647 {
3648 /* Stack grows upward. Align the frame, allocate space, and
3649 then again, re-align the frame. */
3650 if (gdbarch_frame_align_p (current_gdbarch))
3651 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3652 VALUE_ADDRESS (val) = *sp;
3653 *sp += len;
3654 if (gdbarch_frame_align_p (current_gdbarch))
3655 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3656 }
3657
3658 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3659 }
3660
3661 return val;
3662 }
3663
3664 /* Return the value ACTUAL, converted to be an appropriate value for a
3665 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3666 allocating any necessary descriptors (fat pointers), or copies of
3667 values not residing in memory, updating it as needed. */
3668
3669 static struct value *
3670 convert_actual (struct value *actual, struct type *formal_type0,
3671 CORE_ADDR *sp)
3672 {
3673 struct type *actual_type = ada_check_typedef (value_type (actual));
3674 struct type *formal_type = ada_check_typedef (formal_type0);
3675 struct type *formal_target =
3676 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3677 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3678 struct type *actual_target =
3679 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3680 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3681
3682 if (ada_is_array_descriptor_type (formal_target)
3683 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3684 return make_array_descriptor (formal_type, actual, sp);
3685 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3686 {
3687 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3688 && ada_is_array_descriptor_type (actual_target))
3689 return desc_data (actual);
3690 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3691 {
3692 if (VALUE_LVAL (actual) != lval_memory)
3693 {
3694 struct value *val;
3695 actual_type = ada_check_typedef (value_type (actual));
3696 val = allocate_value (actual_type);
3697 memcpy ((char *) value_contents_raw (val),
3698 (char *) value_contents (actual),
3699 TYPE_LENGTH (actual_type));
3700 actual = ensure_lval (val, sp);
3701 }
3702 return value_addr (actual);
3703 }
3704 }
3705 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3706 return ada_value_ind (actual);
3707
3708 return actual;
3709 }
3710
3711
3712 /* Push a descriptor of type TYPE for array value ARR on the stack at
3713 *SP, updating *SP to reflect the new descriptor. Return either
3714 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3715 to-descriptor type rather than a descriptor type), a struct value *
3716 representing a pointer to this descriptor. */
3717
3718 static struct value *
3719 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3720 {
3721 struct type *bounds_type = desc_bounds_type (type);
3722 struct type *desc_type = desc_base_type (type);
3723 struct value *descriptor = allocate_value (desc_type);
3724 struct value *bounds = allocate_value (bounds_type);
3725 int i;
3726
3727 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3728 {
3729 modify_general_field (value_contents_writeable (bounds),
3730 value_as_long (ada_array_bound (arr, i, 0)),
3731 desc_bound_bitpos (bounds_type, i, 0),
3732 desc_bound_bitsize (bounds_type, i, 0));
3733 modify_general_field (value_contents_writeable (bounds),
3734 value_as_long (ada_array_bound (arr, i, 1)),
3735 desc_bound_bitpos (bounds_type, i, 1),
3736 desc_bound_bitsize (bounds_type, i, 1));
3737 }
3738
3739 bounds = ensure_lval (bounds, sp);
3740
3741 modify_general_field (value_contents_writeable (descriptor),
3742 VALUE_ADDRESS (ensure_lval (arr, sp)),
3743 fat_pntr_data_bitpos (desc_type),
3744 fat_pntr_data_bitsize (desc_type));
3745
3746 modify_general_field (value_contents_writeable (descriptor),
3747 VALUE_ADDRESS (bounds),
3748 fat_pntr_bounds_bitpos (desc_type),
3749 fat_pntr_bounds_bitsize (desc_type));
3750
3751 descriptor = ensure_lval (descriptor, sp);
3752
3753 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3754 return value_addr (descriptor);
3755 else
3756 return descriptor;
3757 }
3758
3759
3760 /* Assuming a dummy frame has been established on the target, perform any
3761 conversions needed for calling function FUNC on the NARGS actual
3762 parameters in ARGS, other than standard C conversions. Does
3763 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3764 does not match the number of arguments expected. Use *SP as a
3765 stack pointer for additional data that must be pushed, updating its
3766 value as needed. */
3767
3768 void
3769 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3770 CORE_ADDR *sp)
3771 {
3772 int i;
3773
3774 if (TYPE_NFIELDS (value_type (func)) == 0
3775 || nargs != TYPE_NFIELDS (value_type (func)))
3776 return;
3777
3778 for (i = 0; i < nargs; i += 1)
3779 args[i] =
3780 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3781 }
3782 \f
3783 /* Dummy definitions for an experimental caching module that is not
3784 * used in the public sources. */
3785
3786 static int
3787 lookup_cached_symbol (const char *name, domain_enum namespace,
3788 struct symbol **sym, struct block **block,
3789 struct symtab **symtab)
3790 {
3791 return 0;
3792 }
3793
3794 static void
3795 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3796 struct block *block, struct symtab *symtab)
3797 {
3798 }
3799 \f
3800 /* Symbol Lookup */
3801
3802 /* Return the result of a standard (literal, C-like) lookup of NAME in
3803 given DOMAIN, visible from lexical block BLOCK. */
3804
3805 static struct symbol *
3806 standard_lookup (const char *name, const struct block *block,
3807 domain_enum domain)
3808 {
3809 struct symbol *sym;
3810 struct symtab *symtab;
3811
3812 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3813 return sym;
3814 sym =
3815 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3816 cache_symbol (name, domain, sym, block_found, symtab);
3817 return sym;
3818 }
3819
3820
3821 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3822 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3823 since they contend in overloading in the same way. */
3824 static int
3825 is_nonfunction (struct ada_symbol_info syms[], int n)
3826 {
3827 int i;
3828
3829 for (i = 0; i < n; i += 1)
3830 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3831 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3832 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3833 return 1;
3834
3835 return 0;
3836 }
3837
3838 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3839 struct types. Otherwise, they may not. */
3840
3841 static int
3842 equiv_types (struct type *type0, struct type *type1)
3843 {
3844 if (type0 == type1)
3845 return 1;
3846 if (type0 == NULL || type1 == NULL
3847 || TYPE_CODE (type0) != TYPE_CODE (type1))
3848 return 0;
3849 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3850 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3851 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3852 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3853 return 1;
3854
3855 return 0;
3856 }
3857
3858 /* True iff SYM0 represents the same entity as SYM1, or one that is
3859 no more defined than that of SYM1. */
3860
3861 static int
3862 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3863 {
3864 if (sym0 == sym1)
3865 return 1;
3866 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3867 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3868 return 0;
3869
3870 switch (SYMBOL_CLASS (sym0))
3871 {
3872 case LOC_UNDEF:
3873 return 1;
3874 case LOC_TYPEDEF:
3875 {
3876 struct type *type0 = SYMBOL_TYPE (sym0);
3877 struct type *type1 = SYMBOL_TYPE (sym1);
3878 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3879 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3880 int len0 = strlen (name0);
3881 return
3882 TYPE_CODE (type0) == TYPE_CODE (type1)
3883 && (equiv_types (type0, type1)
3884 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3885 && strncmp (name1 + len0, "___XV", 5) == 0));
3886 }
3887 case LOC_CONST:
3888 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3889 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3890 default:
3891 return 0;
3892 }
3893 }
3894
3895 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3896 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3897
3898 static void
3899 add_defn_to_vec (struct obstack *obstackp,
3900 struct symbol *sym,
3901 struct block *block, struct symtab *symtab)
3902 {
3903 int i;
3904 size_t tmp;
3905 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3906
3907 /* Do not try to complete stub types, as the debugger is probably
3908 already scanning all symbols matching a certain name at the
3909 time when this function is called. Trying to replace the stub
3910 type by its associated full type will cause us to restart a scan
3911 which may lead to an infinite recursion. Instead, the client
3912 collecting the matching symbols will end up collecting several
3913 matches, with at least one of them complete. It can then filter
3914 out the stub ones if needed. */
3915
3916 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3917 {
3918 if (lesseq_defined_than (sym, prevDefns[i].sym))
3919 return;
3920 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3921 {
3922 prevDefns[i].sym = sym;
3923 prevDefns[i].block = block;
3924 prevDefns[i].symtab = symtab;
3925 return;
3926 }
3927 }
3928
3929 {
3930 struct ada_symbol_info info;
3931
3932 info.sym = sym;
3933 info.block = block;
3934 info.symtab = symtab;
3935 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3936 }
3937 }
3938
3939 /* Number of ada_symbol_info structures currently collected in
3940 current vector in *OBSTACKP. */
3941
3942 static int
3943 num_defns_collected (struct obstack *obstackp)
3944 {
3945 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3946 }
3947
3948 /* Vector of ada_symbol_info structures currently collected in current
3949 vector in *OBSTACKP. If FINISH, close off the vector and return
3950 its final address. */
3951
3952 static struct ada_symbol_info *
3953 defns_collected (struct obstack *obstackp, int finish)
3954 {
3955 if (finish)
3956 return obstack_finish (obstackp);
3957 else
3958 return (struct ada_symbol_info *) obstack_base (obstackp);
3959 }
3960
3961 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3962 Check the global symbols if GLOBAL, the static symbols if not.
3963 Do wild-card match if WILD. */
3964
3965 static struct partial_symbol *
3966 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3967 int global, domain_enum namespace, int wild)
3968 {
3969 struct partial_symbol **start;
3970 int name_len = strlen (name);
3971 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3972 int i;
3973
3974 if (length == 0)
3975 {
3976 return (NULL);
3977 }
3978
3979 start = (global ?
3980 pst->objfile->global_psymbols.list + pst->globals_offset :
3981 pst->objfile->static_psymbols.list + pst->statics_offset);
3982
3983 if (wild)
3984 {
3985 for (i = 0; i < length; i += 1)
3986 {
3987 struct partial_symbol *psym = start[i];
3988
3989 if (SYMBOL_DOMAIN (psym) == namespace
3990 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3991 return psym;
3992 }
3993 return NULL;
3994 }
3995 else
3996 {
3997 if (global)
3998 {
3999 int U;
4000 i = 0;
4001 U = length - 1;
4002 while (U - i > 4)
4003 {
4004 int M = (U + i) >> 1;
4005 struct partial_symbol *psym = start[M];
4006 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4007 i = M + 1;
4008 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4009 U = M - 1;
4010 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4011 i = M + 1;
4012 else
4013 U = M;
4014 }
4015 }
4016 else
4017 i = 0;
4018
4019 while (i < length)
4020 {
4021 struct partial_symbol *psym = start[i];
4022
4023 if (SYMBOL_DOMAIN (psym) == namespace)
4024 {
4025 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4026
4027 if (cmp < 0)
4028 {
4029 if (global)
4030 break;
4031 }
4032 else if (cmp == 0
4033 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4034 + name_len))
4035 return psym;
4036 }
4037 i += 1;
4038 }
4039
4040 if (global)
4041 {
4042 int U;
4043 i = 0;
4044 U = length - 1;
4045 while (U - i > 4)
4046 {
4047 int M = (U + i) >> 1;
4048 struct partial_symbol *psym = start[M];
4049 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4050 i = M + 1;
4051 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4052 U = M - 1;
4053 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4054 i = M + 1;
4055 else
4056 U = M;
4057 }
4058 }
4059 else
4060 i = 0;
4061
4062 while (i < length)
4063 {
4064 struct partial_symbol *psym = start[i];
4065
4066 if (SYMBOL_DOMAIN (psym) == namespace)
4067 {
4068 int cmp;
4069
4070 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4071 if (cmp == 0)
4072 {
4073 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4074 if (cmp == 0)
4075 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4076 name_len);
4077 }
4078
4079 if (cmp < 0)
4080 {
4081 if (global)
4082 break;
4083 }
4084 else if (cmp == 0
4085 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4086 + name_len + 5))
4087 return psym;
4088 }
4089 i += 1;
4090 }
4091 }
4092 return NULL;
4093 }
4094
4095 /* Find a symbol table containing symbol SYM or NULL if none. */
4096
4097 static struct symtab *
4098 symtab_for_sym (struct symbol *sym)
4099 {
4100 struct symtab *s;
4101 struct objfile *objfile;
4102 struct block *b;
4103 struct symbol *tmp_sym;
4104 struct dict_iterator iter;
4105 int j;
4106
4107 ALL_PRIMARY_SYMTABS (objfile, s)
4108 {
4109 switch (SYMBOL_CLASS (sym))
4110 {
4111 case LOC_CONST:
4112 case LOC_STATIC:
4113 case LOC_TYPEDEF:
4114 case LOC_REGISTER:
4115 case LOC_LABEL:
4116 case LOC_BLOCK:
4117 case LOC_CONST_BYTES:
4118 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4119 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4120 return s;
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4123 return s;
4124 break;
4125 default:
4126 break;
4127 }
4128 switch (SYMBOL_CLASS (sym))
4129 {
4130 case LOC_REGISTER:
4131 case LOC_ARG:
4132 case LOC_REF_ARG:
4133 case LOC_REGPARM:
4134 case LOC_REGPARM_ADDR:
4135 case LOC_LOCAL:
4136 case LOC_TYPEDEF:
4137 case LOC_LOCAL_ARG:
4138 case LOC_BASEREG:
4139 case LOC_BASEREG_ARG:
4140 case LOC_COMPUTED:
4141 case LOC_COMPUTED_ARG:
4142 for (j = FIRST_LOCAL_BLOCK;
4143 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4144 {
4145 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4146 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4147 return s;
4148 }
4149 break;
4150 default:
4151 break;
4152 }
4153 }
4154 return NULL;
4155 }
4156
4157 /* Return a minimal symbol matching NAME according to Ada decoding
4158 rules. Returns NULL if there is no such minimal symbol. Names
4159 prefixed with "standard__" are handled specially: "standard__" is
4160 first stripped off, and only static and global symbols are searched. */
4161
4162 struct minimal_symbol *
4163 ada_lookup_simple_minsym (const char *name)
4164 {
4165 struct objfile *objfile;
4166 struct minimal_symbol *msymbol;
4167 int wild_match;
4168
4169 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4170 {
4171 name += sizeof ("standard__") - 1;
4172 wild_match = 0;
4173 }
4174 else
4175 wild_match = (strstr (name, "__") == NULL);
4176
4177 ALL_MSYMBOLS (objfile, msymbol)
4178 {
4179 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4180 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4181 return msymbol;
4182 }
4183
4184 return NULL;
4185 }
4186
4187 /* For all subprograms that statically enclose the subprogram of the
4188 selected frame, add symbols matching identifier NAME in DOMAIN
4189 and their blocks to the list of data in OBSTACKP, as for
4190 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4191 wildcard prefix. */
4192
4193 static void
4194 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4195 const char *name, domain_enum namespace,
4196 int wild_match)
4197 {
4198 }
4199
4200 /* True if TYPE is definitely an artificial type supplied to a symbol
4201 for which no debugging information was given in the symbol file. */
4202
4203 static int
4204 is_nondebugging_type (struct type *type)
4205 {
4206 char *name = ada_type_name (type);
4207 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4208 }
4209
4210 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4211 duplicate other symbols in the list (The only case I know of where
4212 this happens is when object files containing stabs-in-ecoff are
4213 linked with files containing ordinary ecoff debugging symbols (or no
4214 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4215 Returns the number of items in the modified list. */
4216
4217 static int
4218 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4219 {
4220 int i, j;
4221
4222 i = 0;
4223 while (i < nsyms)
4224 {
4225 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4226 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4227 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4228 {
4229 for (j = 0; j < nsyms; j += 1)
4230 {
4231 if (i != j
4232 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4233 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4234 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4235 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4236 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4237 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4238 {
4239 int k;
4240 for (k = i + 1; k < nsyms; k += 1)
4241 syms[k - 1] = syms[k];
4242 nsyms -= 1;
4243 goto NextSymbol;
4244 }
4245 }
4246 }
4247 i += 1;
4248 NextSymbol:
4249 ;
4250 }
4251 return nsyms;
4252 }
4253
4254 /* Given a type that corresponds to a renaming entity, use the type name
4255 to extract the scope (package name or function name, fully qualified,
4256 and following the GNAT encoding convention) where this renaming has been
4257 defined. The string returned needs to be deallocated after use. */
4258
4259 static char *
4260 xget_renaming_scope (struct type *renaming_type)
4261 {
4262 /* The renaming types adhere to the following convention:
4263 <scope>__<rename>___<XR extension>.
4264 So, to extract the scope, we search for the "___XR" extension,
4265 and then backtrack until we find the first "__". */
4266
4267 const char *name = type_name_no_tag (renaming_type);
4268 char *suffix = strstr (name, "___XR");
4269 char *last;
4270 int scope_len;
4271 char *scope;
4272
4273 /* Now, backtrack a bit until we find the first "__". Start looking
4274 at suffix - 3, as the <rename> part is at least one character long. */
4275
4276 for (last = suffix - 3; last > name; last--)
4277 if (last[0] == '_' && last[1] == '_')
4278 break;
4279
4280 /* Make a copy of scope and return it. */
4281
4282 scope_len = last - name;
4283 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4284
4285 strncpy (scope, name, scope_len);
4286 scope[scope_len] = '\0';
4287
4288 return scope;
4289 }
4290
4291 /* Return nonzero if NAME corresponds to a package name. */
4292
4293 static int
4294 is_package_name (const char *name)
4295 {
4296 /* Here, We take advantage of the fact that no symbols are generated
4297 for packages, while symbols are generated for each function.
4298 So the condition for NAME represent a package becomes equivalent
4299 to NAME not existing in our list of symbols. There is only one
4300 small complication with library-level functions (see below). */
4301
4302 char *fun_name;
4303
4304 /* If it is a function that has not been defined at library level,
4305 then we should be able to look it up in the symbols. */
4306 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4307 return 0;
4308
4309 /* Library-level function names start with "_ada_". See if function
4310 "_ada_" followed by NAME can be found. */
4311
4312 /* Do a quick check that NAME does not contain "__", since library-level
4313 functions names cannot contain "__" in them. */
4314 if (strstr (name, "__") != NULL)
4315 return 0;
4316
4317 fun_name = xstrprintf ("_ada_%s", name);
4318
4319 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4320 }
4321
4322 /* Return nonzero if SYM corresponds to a renaming entity that is
4323 visible from FUNCTION_NAME. */
4324
4325 static int
4326 renaming_is_visible (const struct symbol *sym, char *function_name)
4327 {
4328 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4329
4330 make_cleanup (xfree, scope);
4331
4332 /* If the rename has been defined in a package, then it is visible. */
4333 if (is_package_name (scope))
4334 return 1;
4335
4336 /* Check that the rename is in the current function scope by checking
4337 that its name starts with SCOPE. */
4338
4339 /* If the function name starts with "_ada_", it means that it is
4340 a library-level function. Strip this prefix before doing the
4341 comparison, as the encoding for the renaming does not contain
4342 this prefix. */
4343 if (strncmp (function_name, "_ada_", 5) == 0)
4344 function_name += 5;
4345
4346 return (strncmp (function_name, scope, strlen (scope)) == 0);
4347 }
4348
4349 /* Iterates over the SYMS list and remove any entry that corresponds to
4350 a renaming entity that is not visible from the function associated
4351 with CURRENT_BLOCK.
4352
4353 Rationale:
4354 GNAT emits a type following a specified encoding for each renaming
4355 entity. Unfortunately, STABS currently does not support the definition
4356 of types that are local to a given lexical block, so all renamings types
4357 are emitted at library level. As a consequence, if an application
4358 contains two renaming entities using the same name, and a user tries to
4359 print the value of one of these entities, the result of the ada symbol
4360 lookup will also contain the wrong renaming type.
4361
4362 This function partially covers for this limitation by attempting to
4363 remove from the SYMS list renaming symbols that should be visible
4364 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4365 method with the current information available. The implementation
4366 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4367
4368 - When the user tries to print a rename in a function while there
4369 is another rename entity defined in a package: Normally, the
4370 rename in the function has precedence over the rename in the
4371 package, so the latter should be removed from the list. This is
4372 currently not the case.
4373
4374 - This function will incorrectly remove valid renames if
4375 the CURRENT_BLOCK corresponds to a function which symbol name
4376 has been changed by an "Export" pragma. As a consequence,
4377 the user will be unable to print such rename entities. */
4378
4379 static int
4380 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4381 int nsyms, const struct block *current_block)
4382 {
4383 struct symbol *current_function;
4384 char *current_function_name;
4385 int i;
4386
4387 /* Extract the function name associated to CURRENT_BLOCK.
4388 Abort if unable to do so. */
4389
4390 if (current_block == NULL)
4391 return nsyms;
4392
4393 current_function = block_function (current_block);
4394 if (current_function == NULL)
4395 return nsyms;
4396
4397 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4398 if (current_function_name == NULL)
4399 return nsyms;
4400
4401 /* Check each of the symbols, and remove it from the list if it is
4402 a type corresponding to a renaming that is out of the scope of
4403 the current block. */
4404
4405 i = 0;
4406 while (i < nsyms)
4407 {
4408 if (ada_is_object_renaming (syms[i].sym)
4409 && !renaming_is_visible (syms[i].sym, current_function_name))
4410 {
4411 int j;
4412 for (j = i + 1; j < nsyms; j++)
4413 syms[j - 1] = syms[j];
4414 nsyms -= 1;
4415 }
4416 else
4417 i += 1;
4418 }
4419
4420 return nsyms;
4421 }
4422
4423 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4424 scope and in global scopes, returning the number of matches. Sets
4425 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4426 indicating the symbols found and the blocks and symbol tables (if
4427 any) in which they were found. This vector are transient---good only to
4428 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4429 symbol match within the nest of blocks whose innermost member is BLOCK0,
4430 is the one match returned (no other matches in that or
4431 enclosing blocks is returned). If there are any matches in or
4432 surrounding BLOCK0, then these alone are returned. Otherwise, the
4433 search extends to global and file-scope (static) symbol tables.
4434 Names prefixed with "standard__" are handled specially: "standard__"
4435 is first stripped off, and only static and global symbols are searched. */
4436
4437 int
4438 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4439 domain_enum namespace,
4440 struct ada_symbol_info **results)
4441 {
4442 struct symbol *sym;
4443 struct symtab *s;
4444 struct partial_symtab *ps;
4445 struct blockvector *bv;
4446 struct objfile *objfile;
4447 struct block *block;
4448 const char *name;
4449 struct minimal_symbol *msymbol;
4450 int wild_match;
4451 int cacheIfUnique;
4452 int block_depth;
4453 int ndefns;
4454
4455 obstack_free (&symbol_list_obstack, NULL);
4456 obstack_init (&symbol_list_obstack);
4457
4458 cacheIfUnique = 0;
4459
4460 /* Search specified block and its superiors. */
4461
4462 wild_match = (strstr (name0, "__") == NULL);
4463 name = name0;
4464 block = (struct block *) block0; /* FIXME: No cast ought to be
4465 needed, but adding const will
4466 have a cascade effect. */
4467 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4468 {
4469 wild_match = 0;
4470 block = NULL;
4471 name = name0 + sizeof ("standard__") - 1;
4472 }
4473
4474 block_depth = 0;
4475 while (block != NULL)
4476 {
4477 block_depth += 1;
4478 ada_add_block_symbols (&symbol_list_obstack, block, name,
4479 namespace, NULL, NULL, wild_match);
4480
4481 /* If we found a non-function match, assume that's the one. */
4482 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4483 num_defns_collected (&symbol_list_obstack)))
4484 goto done;
4485
4486 block = BLOCK_SUPERBLOCK (block);
4487 }
4488
4489 /* If no luck so far, try to find NAME as a local symbol in some lexically
4490 enclosing subprogram. */
4491 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4492 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4493 name, namespace, wild_match);
4494
4495 /* If we found ANY matches among non-global symbols, we're done. */
4496
4497 if (num_defns_collected (&symbol_list_obstack) > 0)
4498 goto done;
4499
4500 cacheIfUnique = 1;
4501 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4502 {
4503 if (sym != NULL)
4504 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4505 goto done;
4506 }
4507
4508 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4509 tables, and psymtab's. */
4510
4511 ALL_PRIMARY_SYMTABS (objfile, s)
4512 {
4513 QUIT;
4514 bv = BLOCKVECTOR (s);
4515 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4516 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4517 objfile, s, wild_match);
4518 }
4519
4520 if (namespace == VAR_DOMAIN)
4521 {
4522 ALL_MSYMBOLS (objfile, msymbol)
4523 {
4524 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4525 {
4526 switch (MSYMBOL_TYPE (msymbol))
4527 {
4528 case mst_solib_trampoline:
4529 break;
4530 default:
4531 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4532 if (s != NULL)
4533 {
4534 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4535 QUIT;
4536 bv = BLOCKVECTOR (s);
4537 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4538 ada_add_block_symbols (&symbol_list_obstack, block,
4539 SYMBOL_LINKAGE_NAME (msymbol),
4540 namespace, objfile, s, wild_match);
4541
4542 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4543 {
4544 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4545 ada_add_block_symbols (&symbol_list_obstack, block,
4546 SYMBOL_LINKAGE_NAME (msymbol),
4547 namespace, objfile, s,
4548 wild_match);
4549 }
4550 }
4551 }
4552 }
4553 }
4554 }
4555
4556 ALL_PSYMTABS (objfile, ps)
4557 {
4558 QUIT;
4559 if (!ps->readin
4560 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4561 {
4562 s = PSYMTAB_TO_SYMTAB (ps);
4563 if (!s->primary)
4564 continue;
4565 bv = BLOCKVECTOR (s);
4566 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4567 ada_add_block_symbols (&symbol_list_obstack, block, name,
4568 namespace, objfile, s, wild_match);
4569 }
4570 }
4571
4572 /* Now add symbols from all per-file blocks if we've gotten no hits
4573 (Not strictly correct, but perhaps better than an error).
4574 Do the symtabs first, then check the psymtabs. */
4575
4576 if (num_defns_collected (&symbol_list_obstack) == 0)
4577 {
4578
4579 ALL_PRIMARY_SYMTABS (objfile, s)
4580 {
4581 QUIT;
4582 bv = BLOCKVECTOR (s);
4583 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4584 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4585 objfile, s, wild_match);
4586 }
4587
4588 ALL_PSYMTABS (objfile, ps)
4589 {
4590 QUIT;
4591 if (!ps->readin
4592 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4593 {
4594 s = PSYMTAB_TO_SYMTAB (ps);
4595 bv = BLOCKVECTOR (s);
4596 if (!s->primary)
4597 continue;
4598 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4599 ada_add_block_symbols (&symbol_list_obstack, block, name,
4600 namespace, objfile, s, wild_match);
4601 }
4602 }
4603 }
4604
4605 done:
4606 ndefns = num_defns_collected (&symbol_list_obstack);
4607 *results = defns_collected (&symbol_list_obstack, 1);
4608
4609 ndefns = remove_extra_symbols (*results, ndefns);
4610
4611 if (ndefns == 0)
4612 cache_symbol (name0, namespace, NULL, NULL, NULL);
4613
4614 if (ndefns == 1 && cacheIfUnique)
4615 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4616 (*results)[0].symtab);
4617
4618 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4619
4620 return ndefns;
4621 }
4622
4623 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4624 scope and in global scopes, or NULL if none. NAME is folded and
4625 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4626 choosing the first symbol if there are multiple choices.
4627 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4628 table in which the symbol was found (in both cases, these
4629 assignments occur only if the pointers are non-null). */
4630
4631 struct symbol *
4632 ada_lookup_symbol (const char *name, const struct block *block0,
4633 domain_enum namespace, int *is_a_field_of_this,
4634 struct symtab **symtab)
4635 {
4636 struct ada_symbol_info *candidates;
4637 int n_candidates;
4638
4639 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4640 block0, namespace, &candidates);
4641
4642 if (n_candidates == 0)
4643 return NULL;
4644
4645 if (is_a_field_of_this != NULL)
4646 *is_a_field_of_this = 0;
4647
4648 if (symtab != NULL)
4649 {
4650 *symtab = candidates[0].symtab;
4651 if (*symtab == NULL && candidates[0].block != NULL)
4652 {
4653 struct objfile *objfile;
4654 struct symtab *s;
4655 struct block *b;
4656 struct blockvector *bv;
4657
4658 /* Search the list of symtabs for one which contains the
4659 address of the start of this block. */
4660 ALL_PRIMARY_SYMTABS (objfile, s)
4661 {
4662 bv = BLOCKVECTOR (s);
4663 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4664 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4665 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4666 {
4667 *symtab = s;
4668 return fixup_symbol_section (candidates[0].sym, objfile);
4669 }
4670 }
4671 /* FIXME: brobecker/2004-11-12: I think that we should never
4672 reach this point. I don't see a reason why we would not
4673 find a symtab for a given block, so I suggest raising an
4674 internal_error exception here. Otherwise, we end up
4675 returning a symbol but no symtab, which certain parts of
4676 the code that rely (indirectly) on this function do not
4677 expect, eventually causing a SEGV. */
4678 return fixup_symbol_section (candidates[0].sym, NULL);
4679 }
4680 }
4681 return candidates[0].sym;
4682 }
4683
4684 static struct symbol *
4685 ada_lookup_symbol_nonlocal (const char *name,
4686 const char *linkage_name,
4687 const struct block *block,
4688 const domain_enum domain, struct symtab **symtab)
4689 {
4690 if (linkage_name == NULL)
4691 linkage_name = name;
4692 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4693 NULL, symtab);
4694 }
4695
4696
4697 /* True iff STR is a possible encoded suffix of a normal Ada name
4698 that is to be ignored for matching purposes. Suffixes of parallel
4699 names (e.g., XVE) are not included here. Currently, the possible suffixes
4700 are given by either of the regular expression:
4701
4702 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4703 as GNU/Linux]
4704 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4705 _E[0-9]+[bs]$ [protected object entry suffixes]
4706 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4707 */
4708
4709 static int
4710 is_name_suffix (const char *str)
4711 {
4712 int k;
4713 const char *matching;
4714 const int len = strlen (str);
4715
4716 /* (__[0-9]+)?\.[0-9]+ */
4717 matching = str;
4718 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4719 {
4720 matching += 3;
4721 while (isdigit (matching[0]))
4722 matching += 1;
4723 if (matching[0] == '\0')
4724 return 1;
4725 }
4726
4727 if (matching[0] == '.' || matching[0] == '$')
4728 {
4729 matching += 1;
4730 while (isdigit (matching[0]))
4731 matching += 1;
4732 if (matching[0] == '\0')
4733 return 1;
4734 }
4735
4736 /* ___[0-9]+ */
4737 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4738 {
4739 matching = str + 3;
4740 while (isdigit (matching[0]))
4741 matching += 1;
4742 if (matching[0] == '\0')
4743 return 1;
4744 }
4745
4746 #if 0
4747 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4748 with a N at the end. Unfortunately, the compiler uses the same
4749 convention for other internal types it creates. So treating
4750 all entity names that end with an "N" as a name suffix causes
4751 some regressions. For instance, consider the case of an enumerated
4752 type. To support the 'Image attribute, it creates an array whose
4753 name ends with N.
4754 Having a single character like this as a suffix carrying some
4755 information is a bit risky. Perhaps we should change the encoding
4756 to be something like "_N" instead. In the meantime, do not do
4757 the following check. */
4758 /* Protected Object Subprograms */
4759 if (len == 1 && str [0] == 'N')
4760 return 1;
4761 #endif
4762
4763 /* _E[0-9]+[bs]$ */
4764 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4765 {
4766 matching = str + 3;
4767 while (isdigit (matching[0]))
4768 matching += 1;
4769 if ((matching[0] == 'b' || matching[0] == 's')
4770 && matching [1] == '\0')
4771 return 1;
4772 }
4773
4774 /* ??? We should not modify STR directly, as we are doing below. This
4775 is fine in this case, but may become problematic later if we find
4776 that this alternative did not work, and want to try matching
4777 another one from the begining of STR. Since we modified it, we
4778 won't be able to find the begining of the string anymore! */
4779 if (str[0] == 'X')
4780 {
4781 str += 1;
4782 while (str[0] != '_' && str[0] != '\0')
4783 {
4784 if (str[0] != 'n' && str[0] != 'b')
4785 return 0;
4786 str += 1;
4787 }
4788 }
4789 if (str[0] == '\000')
4790 return 1;
4791 if (str[0] == '_')
4792 {
4793 if (str[1] != '_' || str[2] == '\000')
4794 return 0;
4795 if (str[2] == '_')
4796 {
4797 if (strcmp (str + 3, "JM") == 0)
4798 return 1;
4799 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4800 the LJM suffix in favor of the JM one. But we will
4801 still accept LJM as a valid suffix for a reasonable
4802 amount of time, just to allow ourselves to debug programs
4803 compiled using an older version of GNAT. */
4804 if (strcmp (str + 3, "LJM") == 0)
4805 return 1;
4806 if (str[3] != 'X')
4807 return 0;
4808 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4809 || str[4] == 'U' || str[4] == 'P')
4810 return 1;
4811 if (str[4] == 'R' && str[5] != 'T')
4812 return 1;
4813 return 0;
4814 }
4815 if (!isdigit (str[2]))
4816 return 0;
4817 for (k = 3; str[k] != '\0'; k += 1)
4818 if (!isdigit (str[k]) && str[k] != '_')
4819 return 0;
4820 return 1;
4821 }
4822 if (str[0] == '$' && isdigit (str[1]))
4823 {
4824 for (k = 2; str[k] != '\0'; k += 1)
4825 if (!isdigit (str[k]) && str[k] != '_')
4826 return 0;
4827 return 1;
4828 }
4829 return 0;
4830 }
4831
4832 /* Return nonzero if the given string starts with a dot ('.')
4833 followed by zero or more digits.
4834
4835 Note: brobecker/2003-11-10: A forward declaration has not been
4836 added at the begining of this file yet, because this function
4837 is only used to work around a problem found during wild matching
4838 when trying to match minimal symbol names against symbol names
4839 obtained from dwarf-2 data. This function is therefore currently
4840 only used in wild_match() and is likely to be deleted when the
4841 problem in dwarf-2 is fixed. */
4842
4843 static int
4844 is_dot_digits_suffix (const char *str)
4845 {
4846 if (str[0] != '.')
4847 return 0;
4848
4849 str++;
4850 while (isdigit (str[0]))
4851 str++;
4852 return (str[0] == '\0');
4853 }
4854
4855 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4856 Certain symbols appear at first to match, except that they turn out
4857 not to follow the Ada encoding and hence should not be used as a wild
4858 match of a given pattern. */
4859
4860 static int
4861 is_valid_name_for_wild_match (const char *name0)
4862 {
4863 const char *decoded_name = ada_decode (name0);
4864 int i;
4865
4866 for (i=0; decoded_name[i] != '\0'; i++)
4867 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4868 return 0;
4869
4870 return 1;
4871 }
4872
4873 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4874 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4875 informational suffixes of NAME (i.e., for which is_name_suffix is
4876 true). */
4877
4878 static int
4879 wild_match (const char *patn0, int patn_len, const char *name0)
4880 {
4881 int name_len;
4882 char *name;
4883 char *patn;
4884
4885 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4886 stored in the symbol table for nested function names is sometimes
4887 different from the name of the associated entity stored in
4888 the dwarf-2 data: This is the case for nested subprograms, where
4889 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4890 while the symbol name from the dwarf-2 data does not.
4891
4892 Although the DWARF-2 standard documents that entity names stored
4893 in the dwarf-2 data should be identical to the name as seen in
4894 the source code, GNAT takes a different approach as we already use
4895 a special encoding mechanism to convey the information so that
4896 a C debugger can still use the information generated to debug
4897 Ada programs. A corollary is that the symbol names in the dwarf-2
4898 data should match the names found in the symbol table. I therefore
4899 consider this issue as a compiler defect.
4900
4901 Until the compiler is properly fixed, we work-around the problem
4902 by ignoring such suffixes during the match. We do so by making
4903 a copy of PATN0 and NAME0, and then by stripping such a suffix
4904 if present. We then perform the match on the resulting strings. */
4905 {
4906 char *dot;
4907 name_len = strlen (name0);
4908
4909 name = (char *) alloca ((name_len + 1) * sizeof (char));
4910 strcpy (name, name0);
4911 dot = strrchr (name, '.');
4912 if (dot != NULL && is_dot_digits_suffix (dot))
4913 *dot = '\0';
4914
4915 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4916 strncpy (patn, patn0, patn_len);
4917 patn[patn_len] = '\0';
4918 dot = strrchr (patn, '.');
4919 if (dot != NULL && is_dot_digits_suffix (dot))
4920 {
4921 *dot = '\0';
4922 patn_len = dot - patn;
4923 }
4924 }
4925
4926 /* Now perform the wild match. */
4927
4928 name_len = strlen (name);
4929 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4930 && strncmp (patn, name + 5, patn_len) == 0
4931 && is_name_suffix (name + patn_len + 5))
4932 return 1;
4933
4934 while (name_len >= patn_len)
4935 {
4936 if (strncmp (patn, name, patn_len) == 0
4937 && is_name_suffix (name + patn_len))
4938 return (is_valid_name_for_wild_match (name0));
4939 do
4940 {
4941 name += 1;
4942 name_len -= 1;
4943 }
4944 while (name_len > 0
4945 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4946 if (name_len <= 0)
4947 return 0;
4948 if (name[0] == '_')
4949 {
4950 if (!islower (name[2]))
4951 return 0;
4952 name += 2;
4953 name_len -= 2;
4954 }
4955 else
4956 {
4957 if (!islower (name[1]))
4958 return 0;
4959 name += 1;
4960 name_len -= 1;
4961 }
4962 }
4963
4964 return 0;
4965 }
4966
4967
4968 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4969 vector *defn_symbols, updating the list of symbols in OBSTACKP
4970 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4971 OBJFILE is the section containing BLOCK.
4972 SYMTAB is recorded with each symbol added. */
4973
4974 static void
4975 ada_add_block_symbols (struct obstack *obstackp,
4976 struct block *block, const char *name,
4977 domain_enum domain, struct objfile *objfile,
4978 struct symtab *symtab, int wild)
4979 {
4980 struct dict_iterator iter;
4981 int name_len = strlen (name);
4982 /* A matching argument symbol, if any. */
4983 struct symbol *arg_sym;
4984 /* Set true when we find a matching non-argument symbol. */
4985 int found_sym;
4986 struct symbol *sym;
4987
4988 arg_sym = NULL;
4989 found_sym = 0;
4990 if (wild)
4991 {
4992 struct symbol *sym;
4993 ALL_BLOCK_SYMBOLS (block, iter, sym)
4994 {
4995 if (SYMBOL_DOMAIN (sym) == domain
4996 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4997 {
4998 switch (SYMBOL_CLASS (sym))
4999 {
5000 case LOC_ARG:
5001 case LOC_LOCAL_ARG:
5002 case LOC_REF_ARG:
5003 case LOC_REGPARM:
5004 case LOC_REGPARM_ADDR:
5005 case LOC_BASEREG_ARG:
5006 case LOC_COMPUTED_ARG:
5007 arg_sym = sym;
5008 break;
5009 case LOC_UNRESOLVED:
5010 continue;
5011 default:
5012 found_sym = 1;
5013 add_defn_to_vec (obstackp,
5014 fixup_symbol_section (sym, objfile),
5015 block, symtab);
5016 break;
5017 }
5018 }
5019 }
5020 }
5021 else
5022 {
5023 ALL_BLOCK_SYMBOLS (block, iter, sym)
5024 {
5025 if (SYMBOL_DOMAIN (sym) == domain)
5026 {
5027 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5028 if (cmp == 0
5029 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5030 {
5031 switch (SYMBOL_CLASS (sym))
5032 {
5033 case LOC_ARG:
5034 case LOC_LOCAL_ARG:
5035 case LOC_REF_ARG:
5036 case LOC_REGPARM:
5037 case LOC_REGPARM_ADDR:
5038 case LOC_BASEREG_ARG:
5039 case LOC_COMPUTED_ARG:
5040 arg_sym = sym;
5041 break;
5042 case LOC_UNRESOLVED:
5043 break;
5044 default:
5045 found_sym = 1;
5046 add_defn_to_vec (obstackp,
5047 fixup_symbol_section (sym, objfile),
5048 block, symtab);
5049 break;
5050 }
5051 }
5052 }
5053 }
5054 }
5055
5056 if (!found_sym && arg_sym != NULL)
5057 {
5058 add_defn_to_vec (obstackp,
5059 fixup_symbol_section (arg_sym, objfile),
5060 block, symtab);
5061 }
5062
5063 if (!wild)
5064 {
5065 arg_sym = NULL;
5066 found_sym = 0;
5067
5068 ALL_BLOCK_SYMBOLS (block, iter, sym)
5069 {
5070 if (SYMBOL_DOMAIN (sym) == domain)
5071 {
5072 int cmp;
5073
5074 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5075 if (cmp == 0)
5076 {
5077 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5078 if (cmp == 0)
5079 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5080 name_len);
5081 }
5082
5083 if (cmp == 0
5084 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5085 {
5086 switch (SYMBOL_CLASS (sym))
5087 {
5088 case LOC_ARG:
5089 case LOC_LOCAL_ARG:
5090 case LOC_REF_ARG:
5091 case LOC_REGPARM:
5092 case LOC_REGPARM_ADDR:
5093 case LOC_BASEREG_ARG:
5094 case LOC_COMPUTED_ARG:
5095 arg_sym = sym;
5096 break;
5097 case LOC_UNRESOLVED:
5098 break;
5099 default:
5100 found_sym = 1;
5101 add_defn_to_vec (obstackp,
5102 fixup_symbol_section (sym, objfile),
5103 block, symtab);
5104 break;
5105 }
5106 }
5107 }
5108 }
5109
5110 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5111 They aren't parameters, right? */
5112 if (!found_sym && arg_sym != NULL)
5113 {
5114 add_defn_to_vec (obstackp,
5115 fixup_symbol_section (arg_sym, objfile),
5116 block, symtab);
5117 }
5118 }
5119 }
5120 \f
5121 /* Field Access */
5122
5123 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5124 to be invisible to users. */
5125
5126 int
5127 ada_is_ignored_field (struct type *type, int field_num)
5128 {
5129 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5130 return 1;
5131 else
5132 {
5133 const char *name = TYPE_FIELD_NAME (type, field_num);
5134 return (name == NULL
5135 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5136 }
5137 }
5138
5139 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5140 pointer or reference type whose ultimate target has a tag field. */
5141
5142 int
5143 ada_is_tagged_type (struct type *type, int refok)
5144 {
5145 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5146 }
5147
5148 /* True iff TYPE represents the type of X'Tag */
5149
5150 int
5151 ada_is_tag_type (struct type *type)
5152 {
5153 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5154 return 0;
5155 else
5156 {
5157 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5158 return (name != NULL
5159 && strcmp (name, "ada__tags__dispatch_table") == 0);
5160 }
5161 }
5162
5163 /* The type of the tag on VAL. */
5164
5165 struct type *
5166 ada_tag_type (struct value *val)
5167 {
5168 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5169 }
5170
5171 /* The value of the tag on VAL. */
5172
5173 struct value *
5174 ada_value_tag (struct value *val)
5175 {
5176 return ada_value_struct_elt (val, "_tag", 0);
5177 }
5178
5179 /* The value of the tag on the object of type TYPE whose contents are
5180 saved at VALADDR, if it is non-null, or is at memory address
5181 ADDRESS. */
5182
5183 static struct value *
5184 value_tag_from_contents_and_address (struct type *type,
5185 const gdb_byte *valaddr,
5186 CORE_ADDR address)
5187 {
5188 int tag_byte_offset, dummy1, dummy2;
5189 struct type *tag_type;
5190 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5191 NULL, NULL, NULL))
5192 {
5193 const gdb_byte *valaddr1 = ((valaddr == NULL)
5194 ? NULL
5195 : valaddr + tag_byte_offset);
5196 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5197
5198 return value_from_contents_and_address (tag_type, valaddr1, address1);
5199 }
5200 return NULL;
5201 }
5202
5203 static struct type *
5204 type_from_tag (struct value *tag)
5205 {
5206 const char *type_name = ada_tag_name (tag);
5207 if (type_name != NULL)
5208 return ada_find_any_type (ada_encode (type_name));
5209 return NULL;
5210 }
5211
5212 struct tag_args
5213 {
5214 struct value *tag;
5215 char *name;
5216 };
5217
5218
5219 static int ada_tag_name_1 (void *);
5220 static int ada_tag_name_2 (struct tag_args *);
5221
5222 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5223 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5224 The value stored in ARGS->name is valid until the next call to
5225 ada_tag_name_1. */
5226
5227 static int
5228 ada_tag_name_1 (void *args0)
5229 {
5230 struct tag_args *args = (struct tag_args *) args0;
5231 static char name[1024];
5232 char *p;
5233 struct value *val;
5234 args->name = NULL;
5235 val = ada_value_struct_elt (args->tag, "tsd", 1);
5236 if (val == NULL)
5237 return ada_tag_name_2 (args);
5238 val = ada_value_struct_elt (val, "expanded_name", 1);
5239 if (val == NULL)
5240 return 0;
5241 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5242 for (p = name; *p != '\0'; p += 1)
5243 if (isalpha (*p))
5244 *p = tolower (*p);
5245 args->name = name;
5246 return 0;
5247 }
5248
5249 /* Utility function for ada_tag_name_1 that tries the second
5250 representation for the dispatch table (in which there is no
5251 explicit 'tsd' field in the referent of the tag pointer, and instead
5252 the tsd pointer is stored just before the dispatch table. */
5253
5254 static int
5255 ada_tag_name_2 (struct tag_args *args)
5256 {
5257 struct type *info_type;
5258 static char name[1024];
5259 char *p;
5260 struct value *val, *valp;
5261
5262 args->name = NULL;
5263 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5264 if (info_type == NULL)
5265 return 0;
5266 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5267 valp = value_cast (info_type, args->tag);
5268 if (valp == NULL)
5269 return 0;
5270 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5271 if (val == NULL)
5272 return 0;
5273 val = ada_value_struct_elt (val, "expanded_name", 1);
5274 if (val == NULL)
5275 return 0;
5276 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5277 for (p = name; *p != '\0'; p += 1)
5278 if (isalpha (*p))
5279 *p = tolower (*p);
5280 args->name = name;
5281 return 0;
5282 }
5283
5284 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5285 * a C string. */
5286
5287 const char *
5288 ada_tag_name (struct value *tag)
5289 {
5290 struct tag_args args;
5291 if (!ada_is_tag_type (value_type (tag)))
5292 return NULL;
5293 args.tag = tag;
5294 args.name = NULL;
5295 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5296 return args.name;
5297 }
5298
5299 /* The parent type of TYPE, or NULL if none. */
5300
5301 struct type *
5302 ada_parent_type (struct type *type)
5303 {
5304 int i;
5305
5306 type = ada_check_typedef (type);
5307
5308 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5309 return NULL;
5310
5311 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5312 if (ada_is_parent_field (type, i))
5313 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5314
5315 return NULL;
5316 }
5317
5318 /* True iff field number FIELD_NUM of structure type TYPE contains the
5319 parent-type (inherited) fields of a derived type. Assumes TYPE is
5320 a structure type with at least FIELD_NUM+1 fields. */
5321
5322 int
5323 ada_is_parent_field (struct type *type, int field_num)
5324 {
5325 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5326 return (name != NULL
5327 && (strncmp (name, "PARENT", 6) == 0
5328 || strncmp (name, "_parent", 7) == 0));
5329 }
5330
5331 /* True iff field number FIELD_NUM of structure type TYPE is a
5332 transparent wrapper field (which should be silently traversed when doing
5333 field selection and flattened when printing). Assumes TYPE is a
5334 structure type with at least FIELD_NUM+1 fields. Such fields are always
5335 structures. */
5336
5337 int
5338 ada_is_wrapper_field (struct type *type, int field_num)
5339 {
5340 const char *name = TYPE_FIELD_NAME (type, field_num);
5341 return (name != NULL
5342 && (strncmp (name, "PARENT", 6) == 0
5343 || strcmp (name, "REP") == 0
5344 || strncmp (name, "_parent", 7) == 0
5345 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5346 }
5347
5348 /* True iff field number FIELD_NUM of structure or union type TYPE
5349 is a variant wrapper. Assumes TYPE is a structure type with at least
5350 FIELD_NUM+1 fields. */
5351
5352 int
5353 ada_is_variant_part (struct type *type, int field_num)
5354 {
5355 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5356 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5357 || (is_dynamic_field (type, field_num)
5358 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5359 == TYPE_CODE_UNION)));
5360 }
5361
5362 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5363 whose discriminants are contained in the record type OUTER_TYPE,
5364 returns the type of the controlling discriminant for the variant. */
5365
5366 struct type *
5367 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5368 {
5369 char *name = ada_variant_discrim_name (var_type);
5370 struct type *type =
5371 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5372 if (type == NULL)
5373 return builtin_type_int;
5374 else
5375 return type;
5376 }
5377
5378 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5379 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5380 represents a 'when others' clause; otherwise 0. */
5381
5382 int
5383 ada_is_others_clause (struct type *type, int field_num)
5384 {
5385 const char *name = TYPE_FIELD_NAME (type, field_num);
5386 return (name != NULL && name[0] == 'O');
5387 }
5388
5389 /* Assuming that TYPE0 is the type of the variant part of a record,
5390 returns the name of the discriminant controlling the variant.
5391 The value is valid until the next call to ada_variant_discrim_name. */
5392
5393 char *
5394 ada_variant_discrim_name (struct type *type0)
5395 {
5396 static char *result = NULL;
5397 static size_t result_len = 0;
5398 struct type *type;
5399 const char *name;
5400 const char *discrim_end;
5401 const char *discrim_start;
5402
5403 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5404 type = TYPE_TARGET_TYPE (type0);
5405 else
5406 type = type0;
5407
5408 name = ada_type_name (type);
5409
5410 if (name == NULL || name[0] == '\000')
5411 return "";
5412
5413 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5414 discrim_end -= 1)
5415 {
5416 if (strncmp (discrim_end, "___XVN", 6) == 0)
5417 break;
5418 }
5419 if (discrim_end == name)
5420 return "";
5421
5422 for (discrim_start = discrim_end; discrim_start != name + 3;
5423 discrim_start -= 1)
5424 {
5425 if (discrim_start == name + 1)
5426 return "";
5427 if ((discrim_start > name + 3
5428 && strncmp (discrim_start - 3, "___", 3) == 0)
5429 || discrim_start[-1] == '.')
5430 break;
5431 }
5432
5433 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5434 strncpy (result, discrim_start, discrim_end - discrim_start);
5435 result[discrim_end - discrim_start] = '\0';
5436 return result;
5437 }
5438
5439 /* Scan STR for a subtype-encoded number, beginning at position K.
5440 Put the position of the character just past the number scanned in
5441 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5442 Return 1 if there was a valid number at the given position, and 0
5443 otherwise. A "subtype-encoded" number consists of the absolute value
5444 in decimal, followed by the letter 'm' to indicate a negative number.
5445 Assumes 0m does not occur. */
5446
5447 int
5448 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5449 {
5450 ULONGEST RU;
5451
5452 if (!isdigit (str[k]))
5453 return 0;
5454
5455 /* Do it the hard way so as not to make any assumption about
5456 the relationship of unsigned long (%lu scan format code) and
5457 LONGEST. */
5458 RU = 0;
5459 while (isdigit (str[k]))
5460 {
5461 RU = RU * 10 + (str[k] - '0');
5462 k += 1;
5463 }
5464
5465 if (str[k] == 'm')
5466 {
5467 if (R != NULL)
5468 *R = (-(LONGEST) (RU - 1)) - 1;
5469 k += 1;
5470 }
5471 else if (R != NULL)
5472 *R = (LONGEST) RU;
5473
5474 /* NOTE on the above: Technically, C does not say what the results of
5475 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5476 number representable as a LONGEST (although either would probably work
5477 in most implementations). When RU>0, the locution in the then branch
5478 above is always equivalent to the negative of RU. */
5479
5480 if (new_k != NULL)
5481 *new_k = k;
5482 return 1;
5483 }
5484
5485 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5486 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5487 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5488
5489 int
5490 ada_in_variant (LONGEST val, struct type *type, int field_num)
5491 {
5492 const char *name = TYPE_FIELD_NAME (type, field_num);
5493 int p;
5494
5495 p = 0;
5496 while (1)
5497 {
5498 switch (name[p])
5499 {
5500 case '\0':
5501 return 0;
5502 case 'S':
5503 {
5504 LONGEST W;
5505 if (!ada_scan_number (name, p + 1, &W, &p))
5506 return 0;
5507 if (val == W)
5508 return 1;
5509 break;
5510 }
5511 case 'R':
5512 {
5513 LONGEST L, U;
5514 if (!ada_scan_number (name, p + 1, &L, &p)
5515 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5516 return 0;
5517 if (val >= L && val <= U)
5518 return 1;
5519 break;
5520 }
5521 case 'O':
5522 return 1;
5523 default:
5524 return 0;
5525 }
5526 }
5527 }
5528
5529 /* FIXME: Lots of redundancy below. Try to consolidate. */
5530
5531 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5532 ARG_TYPE, extract and return the value of one of its (non-static)
5533 fields. FIELDNO says which field. Differs from value_primitive_field
5534 only in that it can handle packed values of arbitrary type. */
5535
5536 static struct value *
5537 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5538 struct type *arg_type)
5539 {
5540 struct type *type;
5541
5542 arg_type = ada_check_typedef (arg_type);
5543 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5544
5545 /* Handle packed fields. */
5546
5547 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5548 {
5549 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5550 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5551
5552 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5553 offset + bit_pos / 8,
5554 bit_pos % 8, bit_size, type);
5555 }
5556 else
5557 return value_primitive_field (arg1, offset, fieldno, arg_type);
5558 }
5559
5560 /* Find field with name NAME in object of type TYPE. If found,
5561 set the following for each argument that is non-null:
5562 - *FIELD_TYPE_P to the field's type;
5563 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5564 an object of that type;
5565 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5566 - *BIT_SIZE_P to its size in bits if the field is packed, and
5567 0 otherwise;
5568 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5569 fields up to but not including the desired field, or by the total
5570 number of fields if not found. A NULL value of NAME never
5571 matches; the function just counts visible fields in this case.
5572
5573 Returns 1 if found, 0 otherwise. */
5574
5575 static int
5576 find_struct_field (char *name, struct type *type, int offset,
5577 struct type **field_type_p,
5578 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5579 int *index_p)
5580 {
5581 int i;
5582
5583 type = ada_check_typedef (type);
5584
5585 if (field_type_p != NULL)
5586 *field_type_p = NULL;
5587 if (byte_offset_p != NULL)
5588 *byte_offset_p = 0;
5589 if (bit_offset_p != NULL)
5590 *bit_offset_p = 0;
5591 if (bit_size_p != NULL)
5592 *bit_size_p = 0;
5593
5594 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5595 {
5596 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5597 int fld_offset = offset + bit_pos / 8;
5598 char *t_field_name = TYPE_FIELD_NAME (type, i);
5599
5600 if (t_field_name == NULL)
5601 continue;
5602
5603 else if (name != NULL && field_name_match (t_field_name, name))
5604 {
5605 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5606 if (field_type_p != NULL)
5607 *field_type_p = TYPE_FIELD_TYPE (type, i);
5608 if (byte_offset_p != NULL)
5609 *byte_offset_p = fld_offset;
5610 if (bit_offset_p != NULL)
5611 *bit_offset_p = bit_pos % 8;
5612 if (bit_size_p != NULL)
5613 *bit_size_p = bit_size;
5614 return 1;
5615 }
5616 else if (ada_is_wrapper_field (type, i))
5617 {
5618 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5619 field_type_p, byte_offset_p, bit_offset_p,
5620 bit_size_p, index_p))
5621 return 1;
5622 }
5623 else if (ada_is_variant_part (type, i))
5624 {
5625 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5626 fixed type?? */
5627 int j;
5628 struct type *field_type
5629 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5630
5631 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5632 {
5633 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5634 fld_offset
5635 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5636 field_type_p, byte_offset_p,
5637 bit_offset_p, bit_size_p, index_p))
5638 return 1;
5639 }
5640 }
5641 else if (index_p != NULL)
5642 *index_p += 1;
5643 }
5644 return 0;
5645 }
5646
5647 /* Number of user-visible fields in record type TYPE. */
5648
5649 static int
5650 num_visible_fields (struct type *type)
5651 {
5652 int n;
5653 n = 0;
5654 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5655 return n;
5656 }
5657
5658 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5659 and search in it assuming it has (class) type TYPE.
5660 If found, return value, else return NULL.
5661
5662 Searches recursively through wrapper fields (e.g., '_parent'). */
5663
5664 static struct value *
5665 ada_search_struct_field (char *name, struct value *arg, int offset,
5666 struct type *type)
5667 {
5668 int i;
5669 type = ada_check_typedef (type);
5670
5671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5672 {
5673 char *t_field_name = TYPE_FIELD_NAME (type, i);
5674
5675 if (t_field_name == NULL)
5676 continue;
5677
5678 else if (field_name_match (t_field_name, name))
5679 return ada_value_primitive_field (arg, offset, i, type);
5680
5681 else if (ada_is_wrapper_field (type, i))
5682 {
5683 struct value *v = /* Do not let indent join lines here. */
5684 ada_search_struct_field (name, arg,
5685 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5686 TYPE_FIELD_TYPE (type, i));
5687 if (v != NULL)
5688 return v;
5689 }
5690
5691 else if (ada_is_variant_part (type, i))
5692 {
5693 /* PNH: Do we ever get here? See find_struct_field. */
5694 int j;
5695 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5696 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5697
5698 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5699 {
5700 struct value *v = ada_search_struct_field /* Force line break. */
5701 (name, arg,
5702 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5703 TYPE_FIELD_TYPE (field_type, j));
5704 if (v != NULL)
5705 return v;
5706 }
5707 }
5708 }
5709 return NULL;
5710 }
5711
5712 static struct value *ada_index_struct_field_1 (int *, struct value *,
5713 int, struct type *);
5714
5715
5716 /* Return field #INDEX in ARG, where the index is that returned by
5717 * find_struct_field through its INDEX_P argument. Adjust the address
5718 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5719 * If found, return value, else return NULL. */
5720
5721 static struct value *
5722 ada_index_struct_field (int index, struct value *arg, int offset,
5723 struct type *type)
5724 {
5725 return ada_index_struct_field_1 (&index, arg, offset, type);
5726 }
5727
5728
5729 /* Auxiliary function for ada_index_struct_field. Like
5730 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5731 * *INDEX_P. */
5732
5733 static struct value *
5734 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5735 struct type *type)
5736 {
5737 int i;
5738 type = ada_check_typedef (type);
5739
5740 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5741 {
5742 if (TYPE_FIELD_NAME (type, i) == NULL)
5743 continue;
5744 else if (ada_is_wrapper_field (type, i))
5745 {
5746 struct value *v = /* Do not let indent join lines here. */
5747 ada_index_struct_field_1 (index_p, arg,
5748 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5749 TYPE_FIELD_TYPE (type, i));
5750 if (v != NULL)
5751 return v;
5752 }
5753
5754 else if (ada_is_variant_part (type, i))
5755 {
5756 /* PNH: Do we ever get here? See ada_search_struct_field,
5757 find_struct_field. */
5758 error (_("Cannot assign this kind of variant record"));
5759 }
5760 else if (*index_p == 0)
5761 return ada_value_primitive_field (arg, offset, i, type);
5762 else
5763 *index_p -= 1;
5764 }
5765 return NULL;
5766 }
5767
5768 /* Given ARG, a value of type (pointer or reference to a)*
5769 structure/union, extract the component named NAME from the ultimate
5770 target structure/union and return it as a value with its
5771 appropriate type. If ARG is a pointer or reference and the field
5772 is not packed, returns a reference to the field, otherwise the
5773 value of the field (an lvalue if ARG is an lvalue).
5774
5775 The routine searches for NAME among all members of the structure itself
5776 and (recursively) among all members of any wrapper members
5777 (e.g., '_parent').
5778
5779 If NO_ERR, then simply return NULL in case of error, rather than
5780 calling error. */
5781
5782 struct value *
5783 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5784 {
5785 struct type *t, *t1;
5786 struct value *v;
5787
5788 v = NULL;
5789 t1 = t = ada_check_typedef (value_type (arg));
5790 if (TYPE_CODE (t) == TYPE_CODE_REF)
5791 {
5792 t1 = TYPE_TARGET_TYPE (t);
5793 if (t1 == NULL)
5794 goto BadValue;
5795 t1 = ada_check_typedef (t1);
5796 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5797 {
5798 arg = coerce_ref (arg);
5799 t = t1;
5800 }
5801 }
5802
5803 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5804 {
5805 t1 = TYPE_TARGET_TYPE (t);
5806 if (t1 == NULL)
5807 goto BadValue;
5808 t1 = ada_check_typedef (t1);
5809 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5810 {
5811 arg = value_ind (arg);
5812 t = t1;
5813 }
5814 else
5815 break;
5816 }
5817
5818 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5819 goto BadValue;
5820
5821 if (t1 == t)
5822 v = ada_search_struct_field (name, arg, 0, t);
5823 else
5824 {
5825 int bit_offset, bit_size, byte_offset;
5826 struct type *field_type;
5827 CORE_ADDR address;
5828
5829 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5830 address = value_as_address (arg);
5831 else
5832 address = unpack_pointer (t, value_contents (arg));
5833
5834 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5835 if (find_struct_field (name, t1, 0,
5836 &field_type, &byte_offset, &bit_offset,
5837 &bit_size, NULL))
5838 {
5839 if (bit_size != 0)
5840 {
5841 if (TYPE_CODE (t) == TYPE_CODE_REF)
5842 arg = ada_coerce_ref (arg);
5843 else
5844 arg = ada_value_ind (arg);
5845 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5846 bit_offset, bit_size,
5847 field_type);
5848 }
5849 else
5850 v = value_from_pointer (lookup_reference_type (field_type),
5851 address + byte_offset);
5852 }
5853 }
5854
5855 if (v != NULL || no_err)
5856 return v;
5857 else
5858 error (_("There is no member named %s."), name);
5859
5860 BadValue:
5861 if (no_err)
5862 return NULL;
5863 else
5864 error (_("Attempt to extract a component of a value that is not a record."));
5865 }
5866
5867 /* Given a type TYPE, look up the type of the component of type named NAME.
5868 If DISPP is non-null, add its byte displacement from the beginning of a
5869 structure (pointed to by a value) of type TYPE to *DISPP (does not
5870 work for packed fields).
5871
5872 Matches any field whose name has NAME as a prefix, possibly
5873 followed by "___".
5874
5875 TYPE can be either a struct or union. If REFOK, TYPE may also
5876 be a (pointer or reference)+ to a struct or union, and the
5877 ultimate target type will be searched.
5878
5879 Looks recursively into variant clauses and parent types.
5880
5881 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5882 TYPE is not a type of the right kind. */
5883
5884 static struct type *
5885 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5886 int noerr, int *dispp)
5887 {
5888 int i;
5889
5890 if (name == NULL)
5891 goto BadName;
5892
5893 if (refok && type != NULL)
5894 while (1)
5895 {
5896 type = ada_check_typedef (type);
5897 if (TYPE_CODE (type) != TYPE_CODE_PTR
5898 && TYPE_CODE (type) != TYPE_CODE_REF)
5899 break;
5900 type = TYPE_TARGET_TYPE (type);
5901 }
5902
5903 if (type == NULL
5904 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5905 && TYPE_CODE (type) != TYPE_CODE_UNION))
5906 {
5907 if (noerr)
5908 return NULL;
5909 else
5910 {
5911 target_terminal_ours ();
5912 gdb_flush (gdb_stdout);
5913 if (type == NULL)
5914 error (_("Type (null) is not a structure or union type"));
5915 else
5916 {
5917 /* XXX: type_sprint */
5918 fprintf_unfiltered (gdb_stderr, _("Type "));
5919 type_print (type, "", gdb_stderr, -1);
5920 error (_(" is not a structure or union type"));
5921 }
5922 }
5923 }
5924
5925 type = to_static_fixed_type (type);
5926
5927 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5928 {
5929 char *t_field_name = TYPE_FIELD_NAME (type, i);
5930 struct type *t;
5931 int disp;
5932
5933 if (t_field_name == NULL)
5934 continue;
5935
5936 else if (field_name_match (t_field_name, name))
5937 {
5938 if (dispp != NULL)
5939 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5940 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5941 }
5942
5943 else if (ada_is_wrapper_field (type, i))
5944 {
5945 disp = 0;
5946 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5947 0, 1, &disp);
5948 if (t != NULL)
5949 {
5950 if (dispp != NULL)
5951 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5952 return t;
5953 }
5954 }
5955
5956 else if (ada_is_variant_part (type, i))
5957 {
5958 int j;
5959 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5960
5961 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5962 {
5963 disp = 0;
5964 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5965 name, 0, 1, &disp);
5966 if (t != NULL)
5967 {
5968 if (dispp != NULL)
5969 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5970 return t;
5971 }
5972 }
5973 }
5974
5975 }
5976
5977 BadName:
5978 if (!noerr)
5979 {
5980 target_terminal_ours ();
5981 gdb_flush (gdb_stdout);
5982 if (name == NULL)
5983 {
5984 /* XXX: type_sprint */
5985 fprintf_unfiltered (gdb_stderr, _("Type "));
5986 type_print (type, "", gdb_stderr, -1);
5987 error (_(" has no component named <null>"));
5988 }
5989 else
5990 {
5991 /* XXX: type_sprint */
5992 fprintf_unfiltered (gdb_stderr, _("Type "));
5993 type_print (type, "", gdb_stderr, -1);
5994 error (_(" has no component named %s"), name);
5995 }
5996 }
5997
5998 return NULL;
5999 }
6000
6001 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6002 within a value of type OUTER_TYPE that is stored in GDB at
6003 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6004 numbering from 0) is applicable. Returns -1 if none are. */
6005
6006 int
6007 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6008 const gdb_byte *outer_valaddr)
6009 {
6010 int others_clause;
6011 int i;
6012 int disp;
6013 struct type *discrim_type;
6014 char *discrim_name = ada_variant_discrim_name (var_type);
6015 LONGEST discrim_val;
6016
6017 disp = 0;
6018 discrim_type =
6019 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6020 if (discrim_type == NULL)
6021 return -1;
6022 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6023
6024 others_clause = -1;
6025 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6026 {
6027 if (ada_is_others_clause (var_type, i))
6028 others_clause = i;
6029 else if (ada_in_variant (discrim_val, var_type, i))
6030 return i;
6031 }
6032
6033 return others_clause;
6034 }
6035 \f
6036
6037
6038 /* Dynamic-Sized Records */
6039
6040 /* Strategy: The type ostensibly attached to a value with dynamic size
6041 (i.e., a size that is not statically recorded in the debugging
6042 data) does not accurately reflect the size or layout of the value.
6043 Our strategy is to convert these values to values with accurate,
6044 conventional types that are constructed on the fly. */
6045
6046 /* There is a subtle and tricky problem here. In general, we cannot
6047 determine the size of dynamic records without its data. However,
6048 the 'struct value' data structure, which GDB uses to represent
6049 quantities in the inferior process (the target), requires the size
6050 of the type at the time of its allocation in order to reserve space
6051 for GDB's internal copy of the data. That's why the
6052 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6053 rather than struct value*s.
6054
6055 However, GDB's internal history variables ($1, $2, etc.) are
6056 struct value*s containing internal copies of the data that are not, in
6057 general, the same as the data at their corresponding addresses in
6058 the target. Fortunately, the types we give to these values are all
6059 conventional, fixed-size types (as per the strategy described
6060 above), so that we don't usually have to perform the
6061 'to_fixed_xxx_type' conversions to look at their values.
6062 Unfortunately, there is one exception: if one of the internal
6063 history variables is an array whose elements are unconstrained
6064 records, then we will need to create distinct fixed types for each
6065 element selected. */
6066
6067 /* The upshot of all of this is that many routines take a (type, host
6068 address, target address) triple as arguments to represent a value.
6069 The host address, if non-null, is supposed to contain an internal
6070 copy of the relevant data; otherwise, the program is to consult the
6071 target at the target address. */
6072
6073 /* Assuming that VAL0 represents a pointer value, the result of
6074 dereferencing it. Differs from value_ind in its treatment of
6075 dynamic-sized types. */
6076
6077 struct value *
6078 ada_value_ind (struct value *val0)
6079 {
6080 struct value *val = unwrap_value (value_ind (val0));
6081 return ada_to_fixed_value (val);
6082 }
6083
6084 /* The value resulting from dereferencing any "reference to"
6085 qualifiers on VAL0. */
6086
6087 static struct value *
6088 ada_coerce_ref (struct value *val0)
6089 {
6090 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6091 {
6092 struct value *val = val0;
6093 val = coerce_ref (val);
6094 val = unwrap_value (val);
6095 return ada_to_fixed_value (val);
6096 }
6097 else
6098 return val0;
6099 }
6100
6101 /* Return OFF rounded upward if necessary to a multiple of
6102 ALIGNMENT (a power of 2). */
6103
6104 static unsigned int
6105 align_value (unsigned int off, unsigned int alignment)
6106 {
6107 return (off + alignment - 1) & ~(alignment - 1);
6108 }
6109
6110 /* Return the bit alignment required for field #F of template type TYPE. */
6111
6112 static unsigned int
6113 field_alignment (struct type *type, int f)
6114 {
6115 const char *name = TYPE_FIELD_NAME (type, f);
6116 int len = (name == NULL) ? 0 : strlen (name);
6117 int align_offset;
6118
6119 if (!isdigit (name[len - 1]))
6120 return 1;
6121
6122 if (isdigit (name[len - 2]))
6123 align_offset = len - 2;
6124 else
6125 align_offset = len - 1;
6126
6127 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6128 return TARGET_CHAR_BIT;
6129
6130 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6131 }
6132
6133 /* Find a symbol named NAME. Ignores ambiguity. */
6134
6135 struct symbol *
6136 ada_find_any_symbol (const char *name)
6137 {
6138 struct symbol *sym;
6139
6140 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6141 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6142 return sym;
6143
6144 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6145 return sym;
6146 }
6147
6148 /* Find a type named NAME. Ignores ambiguity. */
6149
6150 struct type *
6151 ada_find_any_type (const char *name)
6152 {
6153 struct symbol *sym = ada_find_any_symbol (name);
6154
6155 if (sym != NULL)
6156 return SYMBOL_TYPE (sym);
6157
6158 return NULL;
6159 }
6160
6161 /* Given a symbol NAME and its associated BLOCK, search all symbols
6162 for its ___XR counterpart, which is the ``renaming'' symbol
6163 associated to NAME. Return this symbol if found, return
6164 NULL otherwise. */
6165
6166 struct symbol *
6167 ada_find_renaming_symbol (const char *name, struct block *block)
6168 {
6169 const struct symbol *function_sym = block_function (block);
6170 char *rename;
6171
6172 if (function_sym != NULL)
6173 {
6174 /* If the symbol is defined inside a function, NAME is not fully
6175 qualified. This means we need to prepend the function name
6176 as well as adding the ``___XR'' suffix to build the name of
6177 the associated renaming symbol. */
6178 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6179 /* Function names sometimes contain suffixes used
6180 for instance to qualify nested subprograms. When building
6181 the XR type name, we need to make sure that this suffix is
6182 not included. So do not include any suffix in the function
6183 name length below. */
6184 const int function_name_len = ada_name_prefix_len (function_name);
6185 const int rename_len = function_name_len + 2 /* "__" */
6186 + strlen (name) + 6 /* "___XR\0" */ ;
6187
6188 /* Strip the suffix if necessary. */
6189 function_name[function_name_len] = '\0';
6190
6191 /* Library-level functions are a special case, as GNAT adds
6192 a ``_ada_'' prefix to the function name to avoid namespace
6193 pollution. However, the renaming symbol themselves do not
6194 have this prefix, so we need to skip this prefix if present. */
6195 if (function_name_len > 5 /* "_ada_" */
6196 && strstr (function_name, "_ada_") == function_name)
6197 function_name = function_name + 5;
6198
6199 rename = (char *) alloca (rename_len * sizeof (char));
6200 sprintf (rename, "%s__%s___XR", function_name, name);
6201 }
6202 else
6203 {
6204 const int rename_len = strlen (name) + 6;
6205 rename = (char *) alloca (rename_len * sizeof (char));
6206 sprintf (rename, "%s___XR", name);
6207 }
6208
6209 return ada_find_any_symbol (rename);
6210 }
6211
6212 /* Because of GNAT encoding conventions, several GDB symbols may match a
6213 given type name. If the type denoted by TYPE0 is to be preferred to
6214 that of TYPE1 for purposes of type printing, return non-zero;
6215 otherwise return 0. */
6216
6217 int
6218 ada_prefer_type (struct type *type0, struct type *type1)
6219 {
6220 if (type1 == NULL)
6221 return 1;
6222 else if (type0 == NULL)
6223 return 0;
6224 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6225 return 1;
6226 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6227 return 0;
6228 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6229 return 1;
6230 else if (ada_is_packed_array_type (type0))
6231 return 1;
6232 else if (ada_is_array_descriptor_type (type0)
6233 && !ada_is_array_descriptor_type (type1))
6234 return 1;
6235 else if (ada_renaming_type (type0) != NULL
6236 && ada_renaming_type (type1) == NULL)
6237 return 1;
6238 return 0;
6239 }
6240
6241 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6242 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6243
6244 char *
6245 ada_type_name (struct type *type)
6246 {
6247 if (type == NULL)
6248 return NULL;
6249 else if (TYPE_NAME (type) != NULL)
6250 return TYPE_NAME (type);
6251 else
6252 return TYPE_TAG_NAME (type);
6253 }
6254
6255 /* Find a parallel type to TYPE whose name is formed by appending
6256 SUFFIX to the name of TYPE. */
6257
6258 struct type *
6259 ada_find_parallel_type (struct type *type, const char *suffix)
6260 {
6261 static char *name;
6262 static size_t name_len = 0;
6263 int len;
6264 char *typename = ada_type_name (type);
6265
6266 if (typename == NULL)
6267 return NULL;
6268
6269 len = strlen (typename);
6270
6271 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6272
6273 strcpy (name, typename);
6274 strcpy (name + len, suffix);
6275
6276 return ada_find_any_type (name);
6277 }
6278
6279
6280 /* If TYPE is a variable-size record type, return the corresponding template
6281 type describing its fields. Otherwise, return NULL. */
6282
6283 static struct type *
6284 dynamic_template_type (struct type *type)
6285 {
6286 type = ada_check_typedef (type);
6287
6288 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6289 || ada_type_name (type) == NULL)
6290 return NULL;
6291 else
6292 {
6293 int len = strlen (ada_type_name (type));
6294 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6295 return type;
6296 else
6297 return ada_find_parallel_type (type, "___XVE");
6298 }
6299 }
6300
6301 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6302 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6303
6304 static int
6305 is_dynamic_field (struct type *templ_type, int field_num)
6306 {
6307 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6308 return name != NULL
6309 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6310 && strstr (name, "___XVL") != NULL;
6311 }
6312
6313 /* The index of the variant field of TYPE, or -1 if TYPE does not
6314 represent a variant record type. */
6315
6316 static int
6317 variant_field_index (struct type *type)
6318 {
6319 int f;
6320
6321 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6322 return -1;
6323
6324 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6325 {
6326 if (ada_is_variant_part (type, f))
6327 return f;
6328 }
6329 return -1;
6330 }
6331
6332 /* A record type with no fields. */
6333
6334 static struct type *
6335 empty_record (struct objfile *objfile)
6336 {
6337 struct type *type = alloc_type (objfile);
6338 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6339 TYPE_NFIELDS (type) = 0;
6340 TYPE_FIELDS (type) = NULL;
6341 TYPE_NAME (type) = "<empty>";
6342 TYPE_TAG_NAME (type) = NULL;
6343 TYPE_FLAGS (type) = 0;
6344 TYPE_LENGTH (type) = 0;
6345 return type;
6346 }
6347
6348 /* An ordinary record type (with fixed-length fields) that describes
6349 the value of type TYPE at VALADDR or ADDRESS (see comments at
6350 the beginning of this section) VAL according to GNAT conventions.
6351 DVAL0 should describe the (portion of a) record that contains any
6352 necessary discriminants. It should be NULL if value_type (VAL) is
6353 an outer-level type (i.e., as opposed to a branch of a variant.) A
6354 variant field (unless unchecked) is replaced by a particular branch
6355 of the variant.
6356
6357 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6358 length are not statically known are discarded. As a consequence,
6359 VALADDR, ADDRESS and DVAL0 are ignored.
6360
6361 NOTE: Limitations: For now, we assume that dynamic fields and
6362 variants occupy whole numbers of bytes. However, they need not be
6363 byte-aligned. */
6364
6365 struct type *
6366 ada_template_to_fixed_record_type_1 (struct type *type,
6367 const gdb_byte *valaddr,
6368 CORE_ADDR address, struct value *dval0,
6369 int keep_dynamic_fields)
6370 {
6371 struct value *mark = value_mark ();
6372 struct value *dval;
6373 struct type *rtype;
6374 int nfields, bit_len;
6375 int variant_field;
6376 long off;
6377 int fld_bit_len, bit_incr;
6378 int f;
6379
6380 /* Compute the number of fields in this record type that are going
6381 to be processed: unless keep_dynamic_fields, this includes only
6382 fields whose position and length are static will be processed. */
6383 if (keep_dynamic_fields)
6384 nfields = TYPE_NFIELDS (type);
6385 else
6386 {
6387 nfields = 0;
6388 while (nfields < TYPE_NFIELDS (type)
6389 && !ada_is_variant_part (type, nfields)
6390 && !is_dynamic_field (type, nfields))
6391 nfields++;
6392 }
6393
6394 rtype = alloc_type (TYPE_OBJFILE (type));
6395 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6396 INIT_CPLUS_SPECIFIC (rtype);
6397 TYPE_NFIELDS (rtype) = nfields;
6398 TYPE_FIELDS (rtype) = (struct field *)
6399 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6400 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6401 TYPE_NAME (rtype) = ada_type_name (type);
6402 TYPE_TAG_NAME (rtype) = NULL;
6403 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6404
6405 off = 0;
6406 bit_len = 0;
6407 variant_field = -1;
6408
6409 for (f = 0; f < nfields; f += 1)
6410 {
6411 off = align_value (off, field_alignment (type, f))
6412 + TYPE_FIELD_BITPOS (type, f);
6413 TYPE_FIELD_BITPOS (rtype, f) = off;
6414 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6415
6416 if (ada_is_variant_part (type, f))
6417 {
6418 variant_field = f;
6419 fld_bit_len = bit_incr = 0;
6420 }
6421 else if (is_dynamic_field (type, f))
6422 {
6423 if (dval0 == NULL)
6424 dval = value_from_contents_and_address (rtype, valaddr, address);
6425 else
6426 dval = dval0;
6427
6428 TYPE_FIELD_TYPE (rtype, f) =
6429 ada_to_fixed_type
6430 (ada_get_base_type
6431 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6432 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6433 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6434 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6435 bit_incr = fld_bit_len =
6436 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6437 }
6438 else
6439 {
6440 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6442 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6443 bit_incr = fld_bit_len =
6444 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6445 else
6446 bit_incr = fld_bit_len =
6447 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6448 }
6449 if (off + fld_bit_len > bit_len)
6450 bit_len = off + fld_bit_len;
6451 off += bit_incr;
6452 TYPE_LENGTH (rtype) =
6453 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6454 }
6455
6456 /* We handle the variant part, if any, at the end because of certain
6457 odd cases in which it is re-ordered so as NOT the last field of
6458 the record. This can happen in the presence of representation
6459 clauses. */
6460 if (variant_field >= 0)
6461 {
6462 struct type *branch_type;
6463
6464 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6465
6466 if (dval0 == NULL)
6467 dval = value_from_contents_and_address (rtype, valaddr, address);
6468 else
6469 dval = dval0;
6470
6471 branch_type =
6472 to_fixed_variant_branch_type
6473 (TYPE_FIELD_TYPE (type, variant_field),
6474 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6475 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6476 if (branch_type == NULL)
6477 {
6478 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6479 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6480 TYPE_NFIELDS (rtype) -= 1;
6481 }
6482 else
6483 {
6484 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6485 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6486 fld_bit_len =
6487 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6488 TARGET_CHAR_BIT;
6489 if (off + fld_bit_len > bit_len)
6490 bit_len = off + fld_bit_len;
6491 TYPE_LENGTH (rtype) =
6492 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6493 }
6494 }
6495
6496 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6497 should contain the alignment of that record, which should be a strictly
6498 positive value. If null or negative, then something is wrong, most
6499 probably in the debug info. In that case, we don't round up the size
6500 of the resulting type. If this record is not part of another structure,
6501 the current RTYPE length might be good enough for our purposes. */
6502 if (TYPE_LENGTH (type) <= 0)
6503 {
6504 if (TYPE_NAME (rtype))
6505 warning (_("Invalid type size for `%s' detected: %d."),
6506 TYPE_NAME (rtype), TYPE_LENGTH (type));
6507 else
6508 warning (_("Invalid type size for <unnamed> detected: %d."),
6509 TYPE_LENGTH (type));
6510 }
6511 else
6512 {
6513 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6514 TYPE_LENGTH (type));
6515 }
6516
6517 value_free_to_mark (mark);
6518 if (TYPE_LENGTH (rtype) > varsize_limit)
6519 error (_("record type with dynamic size is larger than varsize-limit"));
6520 return rtype;
6521 }
6522
6523 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6524 of 1. */
6525
6526 static struct type *
6527 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6528 CORE_ADDR address, struct value *dval0)
6529 {
6530 return ada_template_to_fixed_record_type_1 (type, valaddr,
6531 address, dval0, 1);
6532 }
6533
6534 /* An ordinary record type in which ___XVL-convention fields and
6535 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6536 static approximations, containing all possible fields. Uses
6537 no runtime values. Useless for use in values, but that's OK,
6538 since the results are used only for type determinations. Works on both
6539 structs and unions. Representation note: to save space, we memorize
6540 the result of this function in the TYPE_TARGET_TYPE of the
6541 template type. */
6542
6543 static struct type *
6544 template_to_static_fixed_type (struct type *type0)
6545 {
6546 struct type *type;
6547 int nfields;
6548 int f;
6549
6550 if (TYPE_TARGET_TYPE (type0) != NULL)
6551 return TYPE_TARGET_TYPE (type0);
6552
6553 nfields = TYPE_NFIELDS (type0);
6554 type = type0;
6555
6556 for (f = 0; f < nfields; f += 1)
6557 {
6558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6559 struct type *new_type;
6560
6561 if (is_dynamic_field (type0, f))
6562 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6563 else
6564 new_type = to_static_fixed_type (field_type);
6565 if (type == type0 && new_type != field_type)
6566 {
6567 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6568 TYPE_CODE (type) = TYPE_CODE (type0);
6569 INIT_CPLUS_SPECIFIC (type);
6570 TYPE_NFIELDS (type) = nfields;
6571 TYPE_FIELDS (type) = (struct field *)
6572 TYPE_ALLOC (type, nfields * sizeof (struct field));
6573 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6574 sizeof (struct field) * nfields);
6575 TYPE_NAME (type) = ada_type_name (type0);
6576 TYPE_TAG_NAME (type) = NULL;
6577 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6578 TYPE_LENGTH (type) = 0;
6579 }
6580 TYPE_FIELD_TYPE (type, f) = new_type;
6581 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6582 }
6583 return type;
6584 }
6585
6586 /* Given an object of type TYPE whose contents are at VALADDR and
6587 whose address in memory is ADDRESS, returns a revision of TYPE --
6588 a non-dynamic-sized record with a variant part -- in which
6589 the variant part is replaced with the appropriate branch. Looks
6590 for discriminant values in DVAL0, which can be NULL if the record
6591 contains the necessary discriminant values. */
6592
6593 static struct type *
6594 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6595 CORE_ADDR address, struct value *dval0)
6596 {
6597 struct value *mark = value_mark ();
6598 struct value *dval;
6599 struct type *rtype;
6600 struct type *branch_type;
6601 int nfields = TYPE_NFIELDS (type);
6602 int variant_field = variant_field_index (type);
6603
6604 if (variant_field == -1)
6605 return type;
6606
6607 if (dval0 == NULL)
6608 dval = value_from_contents_and_address (type, valaddr, address);
6609 else
6610 dval = dval0;
6611
6612 rtype = alloc_type (TYPE_OBJFILE (type));
6613 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6614 INIT_CPLUS_SPECIFIC (rtype);
6615 TYPE_NFIELDS (rtype) = nfields;
6616 TYPE_FIELDS (rtype) =
6617 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6618 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6619 sizeof (struct field) * nfields);
6620 TYPE_NAME (rtype) = ada_type_name (type);
6621 TYPE_TAG_NAME (rtype) = NULL;
6622 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6623 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6624
6625 branch_type = to_fixed_variant_branch_type
6626 (TYPE_FIELD_TYPE (type, variant_field),
6627 cond_offset_host (valaddr,
6628 TYPE_FIELD_BITPOS (type, variant_field)
6629 / TARGET_CHAR_BIT),
6630 cond_offset_target (address,
6631 TYPE_FIELD_BITPOS (type, variant_field)
6632 / TARGET_CHAR_BIT), dval);
6633 if (branch_type == NULL)
6634 {
6635 int f;
6636 for (f = variant_field + 1; f < nfields; f += 1)
6637 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6638 TYPE_NFIELDS (rtype) -= 1;
6639 }
6640 else
6641 {
6642 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6643 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6644 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6645 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6646 }
6647 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6648
6649 value_free_to_mark (mark);
6650 return rtype;
6651 }
6652
6653 /* An ordinary record type (with fixed-length fields) that describes
6654 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6655 beginning of this section]. Any necessary discriminants' values
6656 should be in DVAL, a record value; it may be NULL if the object
6657 at ADDR itself contains any necessary discriminant values.
6658 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6659 values from the record are needed. Except in the case that DVAL,
6660 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6661 unchecked) is replaced by a particular branch of the variant.
6662
6663 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6664 is questionable and may be removed. It can arise during the
6665 processing of an unconstrained-array-of-record type where all the
6666 variant branches have exactly the same size. This is because in
6667 such cases, the compiler does not bother to use the XVS convention
6668 when encoding the record. I am currently dubious of this
6669 shortcut and suspect the compiler should be altered. FIXME. */
6670
6671 static struct type *
6672 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6673 CORE_ADDR address, struct value *dval)
6674 {
6675 struct type *templ_type;
6676
6677 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6678 return type0;
6679
6680 templ_type = dynamic_template_type (type0);
6681
6682 if (templ_type != NULL)
6683 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6684 else if (variant_field_index (type0) >= 0)
6685 {
6686 if (dval == NULL && valaddr == NULL && address == 0)
6687 return type0;
6688 return to_record_with_fixed_variant_part (type0, valaddr, address,
6689 dval);
6690 }
6691 else
6692 {
6693 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6694 return type0;
6695 }
6696
6697 }
6698
6699 /* An ordinary record type (with fixed-length fields) that describes
6700 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6701 union type. Any necessary discriminants' values should be in DVAL,
6702 a record value. That is, this routine selects the appropriate
6703 branch of the union at ADDR according to the discriminant value
6704 indicated in the union's type name. */
6705
6706 static struct type *
6707 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6708 CORE_ADDR address, struct value *dval)
6709 {
6710 int which;
6711 struct type *templ_type;
6712 struct type *var_type;
6713
6714 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6715 var_type = TYPE_TARGET_TYPE (var_type0);
6716 else
6717 var_type = var_type0;
6718
6719 templ_type = ada_find_parallel_type (var_type, "___XVU");
6720
6721 if (templ_type != NULL)
6722 var_type = templ_type;
6723
6724 which =
6725 ada_which_variant_applies (var_type,
6726 value_type (dval), value_contents (dval));
6727
6728 if (which < 0)
6729 return empty_record (TYPE_OBJFILE (var_type));
6730 else if (is_dynamic_field (var_type, which))
6731 return to_fixed_record_type
6732 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6733 valaddr, address, dval);
6734 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6735 return
6736 to_fixed_record_type
6737 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6738 else
6739 return TYPE_FIELD_TYPE (var_type, which);
6740 }
6741
6742 /* Assuming that TYPE0 is an array type describing the type of a value
6743 at ADDR, and that DVAL describes a record containing any
6744 discriminants used in TYPE0, returns a type for the value that
6745 contains no dynamic components (that is, no components whose sizes
6746 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6747 true, gives an error message if the resulting type's size is over
6748 varsize_limit. */
6749
6750 static struct type *
6751 to_fixed_array_type (struct type *type0, struct value *dval,
6752 int ignore_too_big)
6753 {
6754 struct type *index_type_desc;
6755 struct type *result;
6756
6757 if (ada_is_packed_array_type (type0) /* revisit? */
6758 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6759 return type0;
6760
6761 index_type_desc = ada_find_parallel_type (type0, "___XA");
6762 if (index_type_desc == NULL)
6763 {
6764 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6765 /* NOTE: elt_type---the fixed version of elt_type0---should never
6766 depend on the contents of the array in properly constructed
6767 debugging data. */
6768 /* Create a fixed version of the array element type.
6769 We're not providing the address of an element here,
6770 and thus the actual object value cannot be inspected to do
6771 the conversion. This should not be a problem, since arrays of
6772 unconstrained objects are not allowed. In particular, all
6773 the elements of an array of a tagged type should all be of
6774 the same type specified in the debugging info. No need to
6775 consult the object tag. */
6776 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6777
6778 if (elt_type0 == elt_type)
6779 result = type0;
6780 else
6781 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6782 elt_type, TYPE_INDEX_TYPE (type0));
6783 }
6784 else
6785 {
6786 int i;
6787 struct type *elt_type0;
6788
6789 elt_type0 = type0;
6790 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6791 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6792
6793 /* NOTE: result---the fixed version of elt_type0---should never
6794 depend on the contents of the array in properly constructed
6795 debugging data. */
6796 /* Create a fixed version of the array element type.
6797 We're not providing the address of an element here,
6798 and thus the actual object value cannot be inspected to do
6799 the conversion. This should not be a problem, since arrays of
6800 unconstrained objects are not allowed. In particular, all
6801 the elements of an array of a tagged type should all be of
6802 the same type specified in the debugging info. No need to
6803 consult the object tag. */
6804 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6805 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6806 {
6807 struct type *range_type =
6808 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6809 dval, TYPE_OBJFILE (type0));
6810 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6811 result, range_type);
6812 }
6813 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6814 error (_("array type with dynamic size is larger than varsize-limit"));
6815 }
6816
6817 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6818 return result;
6819 }
6820
6821
6822 /* A standard type (containing no dynamically sized components)
6823 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6824 DVAL describes a record containing any discriminants used in TYPE0,
6825 and may be NULL if there are none, or if the object of type TYPE at
6826 ADDRESS or in VALADDR contains these discriminants.
6827
6828 In the case of tagged types, this function attempts to locate the object's
6829 tag and use it to compute the actual type. However, when ADDRESS is null,
6830 we cannot use it to determine the location of the tag, and therefore
6831 compute the tagged type's actual type. So we return the tagged type
6832 without consulting the tag. */
6833
6834 struct type *
6835 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6836 CORE_ADDR address, struct value *dval)
6837 {
6838 type = ada_check_typedef (type);
6839 switch (TYPE_CODE (type))
6840 {
6841 default:
6842 return type;
6843 case TYPE_CODE_STRUCT:
6844 {
6845 struct type *static_type = to_static_fixed_type (type);
6846
6847 /* If STATIC_TYPE is a tagged type and we know the object's address,
6848 then we can determine its tag, and compute the object's actual
6849 type from there. */
6850
6851 if (address != 0 && ada_is_tagged_type (static_type, 0))
6852 {
6853 struct type *real_type =
6854 type_from_tag (value_tag_from_contents_and_address (static_type,
6855 valaddr,
6856 address));
6857 if (real_type != NULL)
6858 type = real_type;
6859 }
6860 return to_fixed_record_type (type, valaddr, address, NULL);
6861 }
6862 case TYPE_CODE_ARRAY:
6863 return to_fixed_array_type (type, dval, 1);
6864 case TYPE_CODE_UNION:
6865 if (dval == NULL)
6866 return type;
6867 else
6868 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6869 }
6870 }
6871
6872 /* A standard (static-sized) type corresponding as well as possible to
6873 TYPE0, but based on no runtime data. */
6874
6875 static struct type *
6876 to_static_fixed_type (struct type *type0)
6877 {
6878 struct type *type;
6879
6880 if (type0 == NULL)
6881 return NULL;
6882
6883 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6884 return type0;
6885
6886 type0 = ada_check_typedef (type0);
6887
6888 switch (TYPE_CODE (type0))
6889 {
6890 default:
6891 return type0;
6892 case TYPE_CODE_STRUCT:
6893 type = dynamic_template_type (type0);
6894 if (type != NULL)
6895 return template_to_static_fixed_type (type);
6896 else
6897 return template_to_static_fixed_type (type0);
6898 case TYPE_CODE_UNION:
6899 type = ada_find_parallel_type (type0, "___XVU");
6900 if (type != NULL)
6901 return template_to_static_fixed_type (type);
6902 else
6903 return template_to_static_fixed_type (type0);
6904 }
6905 }
6906
6907 /* A static approximation of TYPE with all type wrappers removed. */
6908
6909 static struct type *
6910 static_unwrap_type (struct type *type)
6911 {
6912 if (ada_is_aligner_type (type))
6913 {
6914 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6915 if (ada_type_name (type1) == NULL)
6916 TYPE_NAME (type1) = ada_type_name (type);
6917
6918 return static_unwrap_type (type1);
6919 }
6920 else
6921 {
6922 struct type *raw_real_type = ada_get_base_type (type);
6923 if (raw_real_type == type)
6924 return type;
6925 else
6926 return to_static_fixed_type (raw_real_type);
6927 }
6928 }
6929
6930 /* In some cases, incomplete and private types require
6931 cross-references that are not resolved as records (for example,
6932 type Foo;
6933 type FooP is access Foo;
6934 V: FooP;
6935 type Foo is array ...;
6936 ). In these cases, since there is no mechanism for producing
6937 cross-references to such types, we instead substitute for FooP a
6938 stub enumeration type that is nowhere resolved, and whose tag is
6939 the name of the actual type. Call these types "non-record stubs". */
6940
6941 /* A type equivalent to TYPE that is not a non-record stub, if one
6942 exists, otherwise TYPE. */
6943
6944 struct type *
6945 ada_check_typedef (struct type *type)
6946 {
6947 CHECK_TYPEDEF (type);
6948 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6949 || !TYPE_STUB (type)
6950 || TYPE_TAG_NAME (type) == NULL)
6951 return type;
6952 else
6953 {
6954 char *name = TYPE_TAG_NAME (type);
6955 struct type *type1 = ada_find_any_type (name);
6956 return (type1 == NULL) ? type : type1;
6957 }
6958 }
6959
6960 /* A value representing the data at VALADDR/ADDRESS as described by
6961 type TYPE0, but with a standard (static-sized) type that correctly
6962 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6963 type, then return VAL0 [this feature is simply to avoid redundant
6964 creation of struct values]. */
6965
6966 static struct value *
6967 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6968 struct value *val0)
6969 {
6970 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6971 if (type == type0 && val0 != NULL)
6972 return val0;
6973 else
6974 return value_from_contents_and_address (type, 0, address);
6975 }
6976
6977 /* A value representing VAL, but with a standard (static-sized) type
6978 that correctly describes it. Does not necessarily create a new
6979 value. */
6980
6981 static struct value *
6982 ada_to_fixed_value (struct value *val)
6983 {
6984 return ada_to_fixed_value_create (value_type (val),
6985 VALUE_ADDRESS (val) + value_offset (val),
6986 val);
6987 }
6988
6989 /* A value representing VAL, but with a standard (static-sized) type
6990 chosen to approximate the real type of VAL as well as possible, but
6991 without consulting any runtime values. For Ada dynamic-sized
6992 types, therefore, the type of the result is likely to be inaccurate. */
6993
6994 struct value *
6995 ada_to_static_fixed_value (struct value *val)
6996 {
6997 struct type *type =
6998 to_static_fixed_type (static_unwrap_type (value_type (val)));
6999 if (type == value_type (val))
7000 return val;
7001 else
7002 return coerce_unspec_val_to_type (val, type);
7003 }
7004 \f
7005
7006 /* Attributes */
7007
7008 /* Table mapping attribute numbers to names.
7009 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7010
7011 static const char *attribute_names[] = {
7012 "<?>",
7013
7014 "first",
7015 "last",
7016 "length",
7017 "image",
7018 "max",
7019 "min",
7020 "modulus",
7021 "pos",
7022 "size",
7023 "tag",
7024 "val",
7025 0
7026 };
7027
7028 const char *
7029 ada_attribute_name (enum exp_opcode n)
7030 {
7031 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7032 return attribute_names[n - OP_ATR_FIRST + 1];
7033 else
7034 return attribute_names[0];
7035 }
7036
7037 /* Evaluate the 'POS attribute applied to ARG. */
7038
7039 static LONGEST
7040 pos_atr (struct value *arg)
7041 {
7042 struct type *type = value_type (arg);
7043
7044 if (!discrete_type_p (type))
7045 error (_("'POS only defined on discrete types"));
7046
7047 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7048 {
7049 int i;
7050 LONGEST v = value_as_long (arg);
7051
7052 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7053 {
7054 if (v == TYPE_FIELD_BITPOS (type, i))
7055 return i;
7056 }
7057 error (_("enumeration value is invalid: can't find 'POS"));
7058 }
7059 else
7060 return value_as_long (arg);
7061 }
7062
7063 static struct value *
7064 value_pos_atr (struct value *arg)
7065 {
7066 return value_from_longest (builtin_type_int, pos_atr (arg));
7067 }
7068
7069 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7070
7071 static struct value *
7072 value_val_atr (struct type *type, struct value *arg)
7073 {
7074 if (!discrete_type_p (type))
7075 error (_("'VAL only defined on discrete types"));
7076 if (!integer_type_p (value_type (arg)))
7077 error (_("'VAL requires integral argument"));
7078
7079 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7080 {
7081 long pos = value_as_long (arg);
7082 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7083 error (_("argument to 'VAL out of range"));
7084 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7085 }
7086 else
7087 return value_from_longest (type, value_as_long (arg));
7088 }
7089 \f
7090
7091 /* Evaluation */
7092
7093 /* True if TYPE appears to be an Ada character type.
7094 [At the moment, this is true only for Character and Wide_Character;
7095 It is a heuristic test that could stand improvement]. */
7096
7097 int
7098 ada_is_character_type (struct type *type)
7099 {
7100 const char *name = ada_type_name (type);
7101 return
7102 name != NULL
7103 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7104 || TYPE_CODE (type) == TYPE_CODE_INT
7105 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7106 && (strcmp (name, "character") == 0
7107 || strcmp (name, "wide_character") == 0
7108 || strcmp (name, "unsigned char") == 0);
7109 }
7110
7111 /* True if TYPE appears to be an Ada string type. */
7112
7113 int
7114 ada_is_string_type (struct type *type)
7115 {
7116 type = ada_check_typedef (type);
7117 if (type != NULL
7118 && TYPE_CODE (type) != TYPE_CODE_PTR
7119 && (ada_is_simple_array_type (type)
7120 || ada_is_array_descriptor_type (type))
7121 && ada_array_arity (type) == 1)
7122 {
7123 struct type *elttype = ada_array_element_type (type, 1);
7124
7125 return ada_is_character_type (elttype);
7126 }
7127 else
7128 return 0;
7129 }
7130
7131
7132 /* True if TYPE is a struct type introduced by the compiler to force the
7133 alignment of a value. Such types have a single field with a
7134 distinctive name. */
7135
7136 int
7137 ada_is_aligner_type (struct type *type)
7138 {
7139 type = ada_check_typedef (type);
7140
7141 /* If we can find a parallel XVS type, then the XVS type should
7142 be used instead of this type. And hence, this is not an aligner
7143 type. */
7144 if (ada_find_parallel_type (type, "___XVS") != NULL)
7145 return 0;
7146
7147 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7148 && TYPE_NFIELDS (type) == 1
7149 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7150 }
7151
7152 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7153 the parallel type. */
7154
7155 struct type *
7156 ada_get_base_type (struct type *raw_type)
7157 {
7158 struct type *real_type_namer;
7159 struct type *raw_real_type;
7160
7161 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7162 return raw_type;
7163
7164 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7165 if (real_type_namer == NULL
7166 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7167 || TYPE_NFIELDS (real_type_namer) != 1)
7168 return raw_type;
7169
7170 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7171 if (raw_real_type == NULL)
7172 return raw_type;
7173 else
7174 return raw_real_type;
7175 }
7176
7177 /* The type of value designated by TYPE, with all aligners removed. */
7178
7179 struct type *
7180 ada_aligned_type (struct type *type)
7181 {
7182 if (ada_is_aligner_type (type))
7183 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7184 else
7185 return ada_get_base_type (type);
7186 }
7187
7188
7189 /* The address of the aligned value in an object at address VALADDR
7190 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7191
7192 const gdb_byte *
7193 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7194 {
7195 if (ada_is_aligner_type (type))
7196 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7197 valaddr +
7198 TYPE_FIELD_BITPOS (type,
7199 0) / TARGET_CHAR_BIT);
7200 else
7201 return valaddr;
7202 }
7203
7204
7205
7206 /* The printed representation of an enumeration literal with encoded
7207 name NAME. The value is good to the next call of ada_enum_name. */
7208 const char *
7209 ada_enum_name (const char *name)
7210 {
7211 static char *result;
7212 static size_t result_len = 0;
7213 char *tmp;
7214
7215 /* First, unqualify the enumeration name:
7216 1. Search for the last '.' character. If we find one, then skip
7217 all the preceeding characters, the unqualified name starts
7218 right after that dot.
7219 2. Otherwise, we may be debugging on a target where the compiler
7220 translates dots into "__". Search forward for double underscores,
7221 but stop searching when we hit an overloading suffix, which is
7222 of the form "__" followed by digits. */
7223
7224 tmp = strrchr (name, '.');
7225 if (tmp != NULL)
7226 name = tmp + 1;
7227 else
7228 {
7229 while ((tmp = strstr (name, "__")) != NULL)
7230 {
7231 if (isdigit (tmp[2]))
7232 break;
7233 else
7234 name = tmp + 2;
7235 }
7236 }
7237
7238 if (name[0] == 'Q')
7239 {
7240 int v;
7241 if (name[1] == 'U' || name[1] == 'W')
7242 {
7243 if (sscanf (name + 2, "%x", &v) != 1)
7244 return name;
7245 }
7246 else
7247 return name;
7248
7249 GROW_VECT (result, result_len, 16);
7250 if (isascii (v) && isprint (v))
7251 sprintf (result, "'%c'", v);
7252 else if (name[1] == 'U')
7253 sprintf (result, "[\"%02x\"]", v);
7254 else
7255 sprintf (result, "[\"%04x\"]", v);
7256
7257 return result;
7258 }
7259 else
7260 {
7261 tmp = strstr (name, "__");
7262 if (tmp == NULL)
7263 tmp = strstr (name, "$");
7264 if (tmp != NULL)
7265 {
7266 GROW_VECT (result, result_len, tmp - name + 1);
7267 strncpy (result, name, tmp - name);
7268 result[tmp - name] = '\0';
7269 return result;
7270 }
7271
7272 return name;
7273 }
7274 }
7275
7276 static struct value *
7277 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7278 enum noside noside)
7279 {
7280 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7281 (expect_type, exp, pos, noside);
7282 }
7283
7284 /* Evaluate the subexpression of EXP starting at *POS as for
7285 evaluate_type, updating *POS to point just past the evaluated
7286 expression. */
7287
7288 static struct value *
7289 evaluate_subexp_type (struct expression *exp, int *pos)
7290 {
7291 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7292 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7293 }
7294
7295 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7296 value it wraps. */
7297
7298 static struct value *
7299 unwrap_value (struct value *val)
7300 {
7301 struct type *type = ada_check_typedef (value_type (val));
7302 if (ada_is_aligner_type (type))
7303 {
7304 struct value *v = value_struct_elt (&val, NULL, "F",
7305 NULL, "internal structure");
7306 struct type *val_type = ada_check_typedef (value_type (v));
7307 if (ada_type_name (val_type) == NULL)
7308 TYPE_NAME (val_type) = ada_type_name (type);
7309
7310 return unwrap_value (v);
7311 }
7312 else
7313 {
7314 struct type *raw_real_type =
7315 ada_check_typedef (ada_get_base_type (type));
7316
7317 if (type == raw_real_type)
7318 return val;
7319
7320 return
7321 coerce_unspec_val_to_type
7322 (val, ada_to_fixed_type (raw_real_type, 0,
7323 VALUE_ADDRESS (val) + value_offset (val),
7324 NULL));
7325 }
7326 }
7327
7328 static struct value *
7329 cast_to_fixed (struct type *type, struct value *arg)
7330 {
7331 LONGEST val;
7332
7333 if (type == value_type (arg))
7334 return arg;
7335 else if (ada_is_fixed_point_type (value_type (arg)))
7336 val = ada_float_to_fixed (type,
7337 ada_fixed_to_float (value_type (arg),
7338 value_as_long (arg)));
7339 else
7340 {
7341 DOUBLEST argd =
7342 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7343 val = ada_float_to_fixed (type, argd);
7344 }
7345
7346 return value_from_longest (type, val);
7347 }
7348
7349 static struct value *
7350 cast_from_fixed_to_double (struct value *arg)
7351 {
7352 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7353 value_as_long (arg));
7354 return value_from_double (builtin_type_double, val);
7355 }
7356
7357 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7358 return the converted value. */
7359
7360 static struct value *
7361 coerce_for_assign (struct type *type, struct value *val)
7362 {
7363 struct type *type2 = value_type (val);
7364 if (type == type2)
7365 return val;
7366
7367 type2 = ada_check_typedef (type2);
7368 type = ada_check_typedef (type);
7369
7370 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7371 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7372 {
7373 val = ada_value_ind (val);
7374 type2 = value_type (val);
7375 }
7376
7377 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7378 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7379 {
7380 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7381 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7382 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7383 error (_("Incompatible types in assignment"));
7384 deprecated_set_value_type (val, type);
7385 }
7386 return val;
7387 }
7388
7389 static struct value *
7390 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7391 {
7392 struct value *val;
7393 struct type *type1, *type2;
7394 LONGEST v, v1, v2;
7395
7396 arg1 = coerce_ref (arg1);
7397 arg2 = coerce_ref (arg2);
7398 type1 = base_type (ada_check_typedef (value_type (arg1)));
7399 type2 = base_type (ada_check_typedef (value_type (arg2)));
7400
7401 if (TYPE_CODE (type1) != TYPE_CODE_INT
7402 || TYPE_CODE (type2) != TYPE_CODE_INT)
7403 return value_binop (arg1, arg2, op);
7404
7405 switch (op)
7406 {
7407 case BINOP_MOD:
7408 case BINOP_DIV:
7409 case BINOP_REM:
7410 break;
7411 default:
7412 return value_binop (arg1, arg2, op);
7413 }
7414
7415 v2 = value_as_long (arg2);
7416 if (v2 == 0)
7417 error (_("second operand of %s must not be zero."), op_string (op));
7418
7419 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7420 return value_binop (arg1, arg2, op);
7421
7422 v1 = value_as_long (arg1);
7423 switch (op)
7424 {
7425 case BINOP_DIV:
7426 v = v1 / v2;
7427 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7428 v += v > 0 ? -1 : 1;
7429 break;
7430 case BINOP_REM:
7431 v = v1 % v2;
7432 if (v * v1 < 0)
7433 v -= v2;
7434 break;
7435 default:
7436 /* Should not reach this point. */
7437 v = 0;
7438 }
7439
7440 val = allocate_value (type1);
7441 store_unsigned_integer (value_contents_raw (val),
7442 TYPE_LENGTH (value_type (val)), v);
7443 return val;
7444 }
7445
7446 static int
7447 ada_value_equal (struct value *arg1, struct value *arg2)
7448 {
7449 if (ada_is_direct_array_type (value_type (arg1))
7450 || ada_is_direct_array_type (value_type (arg2)))
7451 {
7452 arg1 = ada_coerce_to_simple_array (arg1);
7453 arg2 = ada_coerce_to_simple_array (arg2);
7454 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7455 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7456 error (_("Attempt to compare array with non-array"));
7457 /* FIXME: The following works only for types whose
7458 representations use all bits (no padding or undefined bits)
7459 and do not have user-defined equality. */
7460 return
7461 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7462 && memcmp (value_contents (arg1), value_contents (arg2),
7463 TYPE_LENGTH (value_type (arg1))) == 0;
7464 }
7465 return value_equal (arg1, arg2);
7466 }
7467
7468 /* Total number of component associations in the aggregate starting at
7469 index PC in EXP. Assumes that index PC is the start of an
7470 OP_AGGREGATE. */
7471
7472 static int
7473 num_component_specs (struct expression *exp, int pc)
7474 {
7475 int n, m, i;
7476 m = exp->elts[pc + 1].longconst;
7477 pc += 3;
7478 n = 0;
7479 for (i = 0; i < m; i += 1)
7480 {
7481 switch (exp->elts[pc].opcode)
7482 {
7483 default:
7484 n += 1;
7485 break;
7486 case OP_CHOICES:
7487 n += exp->elts[pc + 1].longconst;
7488 break;
7489 }
7490 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7491 }
7492 return n;
7493 }
7494
7495 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7496 component of LHS (a simple array or a record), updating *POS past
7497 the expression, assuming that LHS is contained in CONTAINER. Does
7498 not modify the inferior's memory, nor does it modify LHS (unless
7499 LHS == CONTAINER). */
7500
7501 static void
7502 assign_component (struct value *container, struct value *lhs, LONGEST index,
7503 struct expression *exp, int *pos)
7504 {
7505 struct value *mark = value_mark ();
7506 struct value *elt;
7507 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7508 {
7509 struct value *index_val = value_from_longest (builtin_type_int, index);
7510 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7511 }
7512 else
7513 {
7514 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7515 elt = ada_to_fixed_value (unwrap_value (elt));
7516 }
7517
7518 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7519 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7520 else
7521 value_assign_to_component (container, elt,
7522 ada_evaluate_subexp (NULL, exp, pos,
7523 EVAL_NORMAL));
7524
7525 value_free_to_mark (mark);
7526 }
7527
7528 /* Assuming that LHS represents an lvalue having a record or array
7529 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7530 of that aggregate's value to LHS, advancing *POS past the
7531 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7532 lvalue containing LHS (possibly LHS itself). Does not modify
7533 the inferior's memory, nor does it modify the contents of
7534 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7535
7536 static struct value *
7537 assign_aggregate (struct value *container,
7538 struct value *lhs, struct expression *exp,
7539 int *pos, enum noside noside)
7540 {
7541 struct type *lhs_type;
7542 int n = exp->elts[*pos+1].longconst;
7543 LONGEST low_index, high_index;
7544 int num_specs;
7545 LONGEST *indices;
7546 int max_indices, num_indices;
7547 int is_array_aggregate;
7548 int i;
7549 struct value *mark = value_mark ();
7550
7551 *pos += 3;
7552 if (noside != EVAL_NORMAL)
7553 {
7554 int i;
7555 for (i = 0; i < n; i += 1)
7556 ada_evaluate_subexp (NULL, exp, pos, noside);
7557 return container;
7558 }
7559
7560 container = ada_coerce_ref (container);
7561 if (ada_is_direct_array_type (value_type (container)))
7562 container = ada_coerce_to_simple_array (container);
7563 lhs = ada_coerce_ref (lhs);
7564 if (!deprecated_value_modifiable (lhs))
7565 error (_("Left operand of assignment is not a modifiable lvalue."));
7566
7567 lhs_type = value_type (lhs);
7568 if (ada_is_direct_array_type (lhs_type))
7569 {
7570 lhs = ada_coerce_to_simple_array (lhs);
7571 lhs_type = value_type (lhs);
7572 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7573 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7574 is_array_aggregate = 1;
7575 }
7576 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7577 {
7578 low_index = 0;
7579 high_index = num_visible_fields (lhs_type) - 1;
7580 is_array_aggregate = 0;
7581 }
7582 else
7583 error (_("Left-hand side must be array or record."));
7584
7585 num_specs = num_component_specs (exp, *pos - 3);
7586 max_indices = 4 * num_specs + 4;
7587 indices = alloca (max_indices * sizeof (indices[0]));
7588 indices[0] = indices[1] = low_index - 1;
7589 indices[2] = indices[3] = high_index + 1;
7590 num_indices = 4;
7591
7592 for (i = 0; i < n; i += 1)
7593 {
7594 switch (exp->elts[*pos].opcode)
7595 {
7596 case OP_CHOICES:
7597 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7598 &num_indices, max_indices,
7599 low_index, high_index);
7600 break;
7601 case OP_POSITIONAL:
7602 aggregate_assign_positional (container, lhs, exp, pos, indices,
7603 &num_indices, max_indices,
7604 low_index, high_index);
7605 break;
7606 case OP_OTHERS:
7607 if (i != n-1)
7608 error (_("Misplaced 'others' clause"));
7609 aggregate_assign_others (container, lhs, exp, pos, indices,
7610 num_indices, low_index, high_index);
7611 break;
7612 default:
7613 error (_("Internal error: bad aggregate clause"));
7614 }
7615 }
7616
7617 return container;
7618 }
7619
7620 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7621 construct at *POS, updating *POS past the construct, given that
7622 the positions are relative to lower bound LOW, where HIGH is the
7623 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7624 updating *NUM_INDICES as needed. CONTAINER is as for
7625 assign_aggregate. */
7626 static void
7627 aggregate_assign_positional (struct value *container,
7628 struct value *lhs, struct expression *exp,
7629 int *pos, LONGEST *indices, int *num_indices,
7630 int max_indices, LONGEST low, LONGEST high)
7631 {
7632 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7633
7634 if (ind - 1 == high)
7635 warning (_("Extra components in aggregate ignored."));
7636 if (ind <= high)
7637 {
7638 add_component_interval (ind, ind, indices, num_indices, max_indices);
7639 *pos += 3;
7640 assign_component (container, lhs, ind, exp, pos);
7641 }
7642 else
7643 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7644 }
7645
7646 /* Assign into the components of LHS indexed by the OP_CHOICES
7647 construct at *POS, updating *POS past the construct, given that
7648 the allowable indices are LOW..HIGH. Record the indices assigned
7649 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7650 needed. CONTAINER is as for assign_aggregate. */
7651 static void
7652 aggregate_assign_from_choices (struct value *container,
7653 struct value *lhs, struct expression *exp,
7654 int *pos, LONGEST *indices, int *num_indices,
7655 int max_indices, LONGEST low, LONGEST high)
7656 {
7657 int j;
7658 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7659 int choice_pos, expr_pc;
7660 int is_array = ada_is_direct_array_type (value_type (lhs));
7661
7662 choice_pos = *pos += 3;
7663
7664 for (j = 0; j < n_choices; j += 1)
7665 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7666 expr_pc = *pos;
7667 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7668
7669 for (j = 0; j < n_choices; j += 1)
7670 {
7671 LONGEST lower, upper;
7672 enum exp_opcode op = exp->elts[choice_pos].opcode;
7673 if (op == OP_DISCRETE_RANGE)
7674 {
7675 choice_pos += 1;
7676 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7677 EVAL_NORMAL));
7678 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7679 EVAL_NORMAL));
7680 }
7681 else if (is_array)
7682 {
7683 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7684 EVAL_NORMAL));
7685 upper = lower;
7686 }
7687 else
7688 {
7689 int ind;
7690 char *name;
7691 switch (op)
7692 {
7693 case OP_NAME:
7694 name = &exp->elts[choice_pos + 2].string;
7695 break;
7696 case OP_VAR_VALUE:
7697 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7698 break;
7699 default:
7700 error (_("Invalid record component association."));
7701 }
7702 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7703 ind = 0;
7704 if (! find_struct_field (name, value_type (lhs), 0,
7705 NULL, NULL, NULL, NULL, &ind))
7706 error (_("Unknown component name: %s."), name);
7707 lower = upper = ind;
7708 }
7709
7710 if (lower <= upper && (lower < low || upper > high))
7711 error (_("Index in component association out of bounds."));
7712
7713 add_component_interval (lower, upper, indices, num_indices,
7714 max_indices);
7715 while (lower <= upper)
7716 {
7717 int pos1;
7718 pos1 = expr_pc;
7719 assign_component (container, lhs, lower, exp, &pos1);
7720 lower += 1;
7721 }
7722 }
7723 }
7724
7725 /* Assign the value of the expression in the OP_OTHERS construct in
7726 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7727 have not been previously assigned. The index intervals already assigned
7728 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7729 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7730 static void
7731 aggregate_assign_others (struct value *container,
7732 struct value *lhs, struct expression *exp,
7733 int *pos, LONGEST *indices, int num_indices,
7734 LONGEST low, LONGEST high)
7735 {
7736 int i;
7737 int expr_pc = *pos+1;
7738
7739 for (i = 0; i < num_indices - 2; i += 2)
7740 {
7741 LONGEST ind;
7742 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7743 {
7744 int pos;
7745 pos = expr_pc;
7746 assign_component (container, lhs, ind, exp, &pos);
7747 }
7748 }
7749 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7750 }
7751
7752 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7753 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7754 modifying *SIZE as needed. It is an error if *SIZE exceeds
7755 MAX_SIZE. The resulting intervals do not overlap. */
7756 static void
7757 add_component_interval (LONGEST low, LONGEST high,
7758 LONGEST* indices, int *size, int max_size)
7759 {
7760 int i, j;
7761 for (i = 0; i < *size; i += 2) {
7762 if (high >= indices[i] && low <= indices[i + 1])
7763 {
7764 int kh;
7765 for (kh = i + 2; kh < *size; kh += 2)
7766 if (high < indices[kh])
7767 break;
7768 if (low < indices[i])
7769 indices[i] = low;
7770 indices[i + 1] = indices[kh - 1];
7771 if (high > indices[i + 1])
7772 indices[i + 1] = high;
7773 memcpy (indices + i + 2, indices + kh, *size - kh);
7774 *size -= kh - i - 2;
7775 return;
7776 }
7777 else if (high < indices[i])
7778 break;
7779 }
7780
7781 if (*size == max_size)
7782 error (_("Internal error: miscounted aggregate components."));
7783 *size += 2;
7784 for (j = *size-1; j >= i+2; j -= 1)
7785 indices[j] = indices[j - 2];
7786 indices[i] = low;
7787 indices[i + 1] = high;
7788 }
7789
7790 static struct value *
7791 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7792 int *pos, enum noside noside)
7793 {
7794 enum exp_opcode op;
7795 int tem, tem2, tem3;
7796 int pc;
7797 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7798 struct type *type;
7799 int nargs, oplen;
7800 struct value **argvec;
7801
7802 pc = *pos;
7803 *pos += 1;
7804 op = exp->elts[pc].opcode;
7805
7806 switch (op)
7807 {
7808 default:
7809 *pos -= 1;
7810 return
7811 unwrap_value (evaluate_subexp_standard
7812 (expect_type, exp, pos, noside));
7813
7814 case OP_STRING:
7815 {
7816 struct value *result;
7817 *pos -= 1;
7818 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7819 /* The result type will have code OP_STRING, bashed there from
7820 OP_ARRAY. Bash it back. */
7821 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7822 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7823 return result;
7824 }
7825
7826 case UNOP_CAST:
7827 (*pos) += 2;
7828 type = exp->elts[pc + 1].type;
7829 arg1 = evaluate_subexp (type, exp, pos, noside);
7830 if (noside == EVAL_SKIP)
7831 goto nosideret;
7832 if (type != ada_check_typedef (value_type (arg1)))
7833 {
7834 if (ada_is_fixed_point_type (type))
7835 arg1 = cast_to_fixed (type, arg1);
7836 else if (ada_is_fixed_point_type (value_type (arg1)))
7837 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7838 else if (VALUE_LVAL (arg1) == lval_memory)
7839 {
7840 /* This is in case of the really obscure (and undocumented,
7841 but apparently expected) case of (Foo) Bar.all, where Bar
7842 is an integer constant and Foo is a dynamic-sized type.
7843 If we don't do this, ARG1 will simply be relabeled with
7844 TYPE. */
7845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7846 return value_zero (to_static_fixed_type (type), not_lval);
7847 arg1 =
7848 ada_to_fixed_value_create
7849 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7850 }
7851 else
7852 arg1 = value_cast (type, arg1);
7853 }
7854 return arg1;
7855
7856 case UNOP_QUAL:
7857 (*pos) += 2;
7858 type = exp->elts[pc + 1].type;
7859 return ada_evaluate_subexp (type, exp, pos, noside);
7860
7861 case BINOP_ASSIGN:
7862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7863 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7864 {
7865 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7866 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7867 return arg1;
7868 return ada_value_assign (arg1, arg1);
7869 }
7870 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7872 return arg1;
7873 if (ada_is_fixed_point_type (value_type (arg1)))
7874 arg2 = cast_to_fixed (value_type (arg1), arg2);
7875 else if (ada_is_fixed_point_type (value_type (arg2)))
7876 error
7877 (_("Fixed-point values must be assigned to fixed-point variables"));
7878 else
7879 arg2 = coerce_for_assign (value_type (arg1), arg2);
7880 return ada_value_assign (arg1, arg2);
7881
7882 case BINOP_ADD:
7883 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7884 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7885 if (noside == EVAL_SKIP)
7886 goto nosideret;
7887 if ((ada_is_fixed_point_type (value_type (arg1))
7888 || ada_is_fixed_point_type (value_type (arg2)))
7889 && value_type (arg1) != value_type (arg2))
7890 error (_("Operands of fixed-point addition must have the same type"));
7891 return value_cast (value_type (arg1), value_add (arg1, arg2));
7892
7893 case BINOP_SUB:
7894 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7895 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7896 if (noside == EVAL_SKIP)
7897 goto nosideret;
7898 if ((ada_is_fixed_point_type (value_type (arg1))
7899 || ada_is_fixed_point_type (value_type (arg2)))
7900 && value_type (arg1) != value_type (arg2))
7901 error (_("Operands of fixed-point subtraction must have the same type"));
7902 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7903
7904 case BINOP_MUL:
7905 case BINOP_DIV:
7906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7907 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7908 if (noside == EVAL_SKIP)
7909 goto nosideret;
7910 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7911 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7912 return value_zero (value_type (arg1), not_lval);
7913 else
7914 {
7915 if (ada_is_fixed_point_type (value_type (arg1)))
7916 arg1 = cast_from_fixed_to_double (arg1);
7917 if (ada_is_fixed_point_type (value_type (arg2)))
7918 arg2 = cast_from_fixed_to_double (arg2);
7919 return ada_value_binop (arg1, arg2, op);
7920 }
7921
7922 case BINOP_REM:
7923 case BINOP_MOD:
7924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7925 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7926 if (noside == EVAL_SKIP)
7927 goto nosideret;
7928 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7929 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7930 return value_zero (value_type (arg1), not_lval);
7931 else
7932 return ada_value_binop (arg1, arg2, op);
7933
7934 case BINOP_EQUAL:
7935 case BINOP_NOTEQUAL:
7936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7937 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7938 if (noside == EVAL_SKIP)
7939 goto nosideret;
7940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7941 tem = 0;
7942 else
7943 tem = ada_value_equal (arg1, arg2);
7944 if (op == BINOP_NOTEQUAL)
7945 tem = !tem;
7946 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7947
7948 case UNOP_NEG:
7949 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7950 if (noside == EVAL_SKIP)
7951 goto nosideret;
7952 else if (ada_is_fixed_point_type (value_type (arg1)))
7953 return value_cast (value_type (arg1), value_neg (arg1));
7954 else
7955 return value_neg (arg1);
7956
7957 case OP_VAR_VALUE:
7958 *pos -= 1;
7959 if (noside == EVAL_SKIP)
7960 {
7961 *pos += 4;
7962 goto nosideret;
7963 }
7964 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7965 /* Only encountered when an unresolved symbol occurs in a
7966 context other than a function call, in which case, it is
7967 invalid. */
7968 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7969 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7971 {
7972 *pos += 4;
7973 return value_zero
7974 (to_static_fixed_type
7975 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7976 not_lval);
7977 }
7978 else
7979 {
7980 arg1 =
7981 unwrap_value (evaluate_subexp_standard
7982 (expect_type, exp, pos, noside));
7983 return ada_to_fixed_value (arg1);
7984 }
7985
7986 case OP_FUNCALL:
7987 (*pos) += 2;
7988
7989 /* Allocate arg vector, including space for the function to be
7990 called in argvec[0] and a terminating NULL. */
7991 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7992 argvec =
7993 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7994
7995 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7996 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7997 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7998 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
7999 else
8000 {
8001 for (tem = 0; tem <= nargs; tem += 1)
8002 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8003 argvec[tem] = 0;
8004
8005 if (noside == EVAL_SKIP)
8006 goto nosideret;
8007 }
8008
8009 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8010 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8011 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8012 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8013 && VALUE_LVAL (argvec[0]) == lval_memory))
8014 argvec[0] = value_addr (argvec[0]);
8015
8016 type = ada_check_typedef (value_type (argvec[0]));
8017 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8018 {
8019 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8020 {
8021 case TYPE_CODE_FUNC:
8022 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8023 break;
8024 case TYPE_CODE_ARRAY:
8025 break;
8026 case TYPE_CODE_STRUCT:
8027 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8028 argvec[0] = ada_value_ind (argvec[0]);
8029 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8030 break;
8031 default:
8032 error (_("cannot subscript or call something of type `%s'"),
8033 ada_type_name (value_type (argvec[0])));
8034 break;
8035 }
8036 }
8037
8038 switch (TYPE_CODE (type))
8039 {
8040 case TYPE_CODE_FUNC:
8041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8042 return allocate_value (TYPE_TARGET_TYPE (type));
8043 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8044 case TYPE_CODE_STRUCT:
8045 {
8046 int arity;
8047
8048 arity = ada_array_arity (type);
8049 type = ada_array_element_type (type, nargs);
8050 if (type == NULL)
8051 error (_("cannot subscript or call a record"));
8052 if (arity != nargs)
8053 error (_("wrong number of subscripts; expecting %d"), arity);
8054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8055 return allocate_value (ada_aligned_type (type));
8056 return
8057 unwrap_value (ada_value_subscript
8058 (argvec[0], nargs, argvec + 1));
8059 }
8060 case TYPE_CODE_ARRAY:
8061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8062 {
8063 type = ada_array_element_type (type, nargs);
8064 if (type == NULL)
8065 error (_("element type of array unknown"));
8066 else
8067 return allocate_value (ada_aligned_type (type));
8068 }
8069 return
8070 unwrap_value (ada_value_subscript
8071 (ada_coerce_to_simple_array (argvec[0]),
8072 nargs, argvec + 1));
8073 case TYPE_CODE_PTR: /* Pointer to array */
8074 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8075 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8076 {
8077 type = ada_array_element_type (type, nargs);
8078 if (type == NULL)
8079 error (_("element type of array unknown"));
8080 else
8081 return allocate_value (ada_aligned_type (type));
8082 }
8083 return
8084 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8085 nargs, argvec + 1));
8086
8087 default:
8088 error (_("Attempt to index or call something other than an "
8089 "array or function"));
8090 }
8091
8092 case TERNOP_SLICE:
8093 {
8094 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8095 struct value *low_bound_val =
8096 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8097 struct value *high_bound_val =
8098 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8099 LONGEST low_bound;
8100 LONGEST high_bound;
8101 low_bound_val = coerce_ref (low_bound_val);
8102 high_bound_val = coerce_ref (high_bound_val);
8103 low_bound = pos_atr (low_bound_val);
8104 high_bound = pos_atr (high_bound_val);
8105
8106 if (noside == EVAL_SKIP)
8107 goto nosideret;
8108
8109 /* If this is a reference to an aligner type, then remove all
8110 the aligners. */
8111 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8112 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8113 TYPE_TARGET_TYPE (value_type (array)) =
8114 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8115
8116 if (ada_is_packed_array_type (value_type (array)))
8117 error (_("cannot slice a packed array"));
8118
8119 /* If this is a reference to an array or an array lvalue,
8120 convert to a pointer. */
8121 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8122 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8123 && VALUE_LVAL (array) == lval_memory))
8124 array = value_addr (array);
8125
8126 if (noside == EVAL_AVOID_SIDE_EFFECTS
8127 && ada_is_array_descriptor_type (ada_check_typedef
8128 (value_type (array))))
8129 return empty_array (ada_type_of_array (array, 0), low_bound);
8130
8131 array = ada_coerce_to_simple_array_ptr (array);
8132
8133 /* If we have more than one level of pointer indirection,
8134 dereference the value until we get only one level. */
8135 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8136 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8137 == TYPE_CODE_PTR))
8138 array = value_ind (array);
8139
8140 /* Make sure we really do have an array type before going further,
8141 to avoid a SEGV when trying to get the index type or the target
8142 type later down the road if the debug info generated by
8143 the compiler is incorrect or incomplete. */
8144 if (!ada_is_simple_array_type (value_type (array)))
8145 error (_("cannot take slice of non-array"));
8146
8147 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8148 {
8149 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8150 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8151 low_bound);
8152 else
8153 {
8154 struct type *arr_type0 =
8155 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8156 NULL, 1);
8157 return ada_value_slice_ptr (array, arr_type0,
8158 longest_to_int (low_bound),
8159 longest_to_int (high_bound));
8160 }
8161 }
8162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8163 return array;
8164 else if (high_bound < low_bound)
8165 return empty_array (value_type (array), low_bound);
8166 else
8167 return ada_value_slice (array, longest_to_int (low_bound),
8168 longest_to_int (high_bound));
8169 }
8170
8171 case UNOP_IN_RANGE:
8172 (*pos) += 2;
8173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8174 type = exp->elts[pc + 1].type;
8175
8176 if (noside == EVAL_SKIP)
8177 goto nosideret;
8178
8179 switch (TYPE_CODE (type))
8180 {
8181 default:
8182 lim_warning (_("Membership test incompletely implemented; "
8183 "always returns true"));
8184 return value_from_longest (builtin_type_int, (LONGEST) 1);
8185
8186 case TYPE_CODE_RANGE:
8187 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8188 arg3 = value_from_longest (builtin_type_int,
8189 TYPE_HIGH_BOUND (type));
8190 return
8191 value_from_longest (builtin_type_int,
8192 (value_less (arg1, arg3)
8193 || value_equal (arg1, arg3))
8194 && (value_less (arg2, arg1)
8195 || value_equal (arg2, arg1)));
8196 }
8197
8198 case BINOP_IN_BOUNDS:
8199 (*pos) += 2;
8200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8201 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8202
8203 if (noside == EVAL_SKIP)
8204 goto nosideret;
8205
8206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8207 return value_zero (builtin_type_int, not_lval);
8208
8209 tem = longest_to_int (exp->elts[pc + 1].longconst);
8210
8211 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8212 error (_("invalid dimension number to 'range"));
8213
8214 arg3 = ada_array_bound (arg2, tem, 1);
8215 arg2 = ada_array_bound (arg2, tem, 0);
8216
8217 return
8218 value_from_longest (builtin_type_int,
8219 (value_less (arg1, arg3)
8220 || value_equal (arg1, arg3))
8221 && (value_less (arg2, arg1)
8222 || value_equal (arg2, arg1)));
8223
8224 case TERNOP_IN_RANGE:
8225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8226 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8227 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8228
8229 if (noside == EVAL_SKIP)
8230 goto nosideret;
8231
8232 return
8233 value_from_longest (builtin_type_int,
8234 (value_less (arg1, arg3)
8235 || value_equal (arg1, arg3))
8236 && (value_less (arg2, arg1)
8237 || value_equal (arg2, arg1)));
8238
8239 case OP_ATR_FIRST:
8240 case OP_ATR_LAST:
8241 case OP_ATR_LENGTH:
8242 {
8243 struct type *type_arg;
8244 if (exp->elts[*pos].opcode == OP_TYPE)
8245 {
8246 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8247 arg1 = NULL;
8248 type_arg = exp->elts[pc + 2].type;
8249 }
8250 else
8251 {
8252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8253 type_arg = NULL;
8254 }
8255
8256 if (exp->elts[*pos].opcode != OP_LONG)
8257 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8258 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8259 *pos += 4;
8260
8261 if (noside == EVAL_SKIP)
8262 goto nosideret;
8263
8264 if (type_arg == NULL)
8265 {
8266 arg1 = ada_coerce_ref (arg1);
8267
8268 if (ada_is_packed_array_type (value_type (arg1)))
8269 arg1 = ada_coerce_to_simple_array (arg1);
8270
8271 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8272 error (_("invalid dimension number to '%s"),
8273 ada_attribute_name (op));
8274
8275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8276 {
8277 type = ada_index_type (value_type (arg1), tem);
8278 if (type == NULL)
8279 error
8280 (_("attempt to take bound of something that is not an array"));
8281 return allocate_value (type);
8282 }
8283
8284 switch (op)
8285 {
8286 default: /* Should never happen. */
8287 error (_("unexpected attribute encountered"));
8288 case OP_ATR_FIRST:
8289 return ada_array_bound (arg1, tem, 0);
8290 case OP_ATR_LAST:
8291 return ada_array_bound (arg1, tem, 1);
8292 case OP_ATR_LENGTH:
8293 return ada_array_length (arg1, tem);
8294 }
8295 }
8296 else if (discrete_type_p (type_arg))
8297 {
8298 struct type *range_type;
8299 char *name = ada_type_name (type_arg);
8300 range_type = NULL;
8301 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8302 range_type =
8303 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8304 if (range_type == NULL)
8305 range_type = type_arg;
8306 switch (op)
8307 {
8308 default:
8309 error (_("unexpected attribute encountered"));
8310 case OP_ATR_FIRST:
8311 return discrete_type_low_bound (range_type);
8312 case OP_ATR_LAST:
8313 return discrete_type_high_bound (range_type);
8314 case OP_ATR_LENGTH:
8315 error (_("the 'length attribute applies only to array types"));
8316 }
8317 }
8318 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8319 error (_("unimplemented type attribute"));
8320 else
8321 {
8322 LONGEST low, high;
8323
8324 if (ada_is_packed_array_type (type_arg))
8325 type_arg = decode_packed_array_type (type_arg);
8326
8327 if (tem < 1 || tem > ada_array_arity (type_arg))
8328 error (_("invalid dimension number to '%s"),
8329 ada_attribute_name (op));
8330
8331 type = ada_index_type (type_arg, tem);
8332 if (type == NULL)
8333 error
8334 (_("attempt to take bound of something that is not an array"));
8335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8336 return allocate_value (type);
8337
8338 switch (op)
8339 {
8340 default:
8341 error (_("unexpected attribute encountered"));
8342 case OP_ATR_FIRST:
8343 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8344 return value_from_longest (type, low);
8345 case OP_ATR_LAST:
8346 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8347 return value_from_longest (type, high);
8348 case OP_ATR_LENGTH:
8349 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8350 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8351 return value_from_longest (type, high - low + 1);
8352 }
8353 }
8354 }
8355
8356 case OP_ATR_TAG:
8357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8358 if (noside == EVAL_SKIP)
8359 goto nosideret;
8360
8361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8362 return value_zero (ada_tag_type (arg1), not_lval);
8363
8364 return ada_value_tag (arg1);
8365
8366 case OP_ATR_MIN:
8367 case OP_ATR_MAX:
8368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8371 if (noside == EVAL_SKIP)
8372 goto nosideret;
8373 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8374 return value_zero (value_type (arg1), not_lval);
8375 else
8376 return value_binop (arg1, arg2,
8377 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8378
8379 case OP_ATR_MODULUS:
8380 {
8381 struct type *type_arg = exp->elts[pc + 2].type;
8382 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8383
8384 if (noside == EVAL_SKIP)
8385 goto nosideret;
8386
8387 if (!ada_is_modular_type (type_arg))
8388 error (_("'modulus must be applied to modular type"));
8389
8390 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8391 ada_modulus (type_arg));
8392 }
8393
8394
8395 case OP_ATR_POS:
8396 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8398 if (noside == EVAL_SKIP)
8399 goto nosideret;
8400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8401 return value_zero (builtin_type_int, not_lval);
8402 else
8403 return value_pos_atr (arg1);
8404
8405 case OP_ATR_SIZE:
8406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8407 if (noside == EVAL_SKIP)
8408 goto nosideret;
8409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8410 return value_zero (builtin_type_int, not_lval);
8411 else
8412 return value_from_longest (builtin_type_int,
8413 TARGET_CHAR_BIT
8414 * TYPE_LENGTH (value_type (arg1)));
8415
8416 case OP_ATR_VAL:
8417 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8419 type = exp->elts[pc + 2].type;
8420 if (noside == EVAL_SKIP)
8421 goto nosideret;
8422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8423 return value_zero (type, not_lval);
8424 else
8425 return value_val_atr (type, arg1);
8426
8427 case BINOP_EXP:
8428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8429 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8430 if (noside == EVAL_SKIP)
8431 goto nosideret;
8432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8433 return value_zero (value_type (arg1), not_lval);
8434 else
8435 return value_binop (arg1, arg2, op);
8436
8437 case UNOP_PLUS:
8438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8439 if (noside == EVAL_SKIP)
8440 goto nosideret;
8441 else
8442 return arg1;
8443
8444 case UNOP_ABS:
8445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
8448 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8449 return value_neg (arg1);
8450 else
8451 return arg1;
8452
8453 case UNOP_IND:
8454 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8455 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8456 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8457 if (noside == EVAL_SKIP)
8458 goto nosideret;
8459 type = ada_check_typedef (value_type (arg1));
8460 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8461 {
8462 if (ada_is_array_descriptor_type (type))
8463 /* GDB allows dereferencing GNAT array descriptors. */
8464 {
8465 struct type *arrType = ada_type_of_array (arg1, 0);
8466 if (arrType == NULL)
8467 error (_("Attempt to dereference null array pointer."));
8468 return value_at_lazy (arrType, 0);
8469 }
8470 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8471 || TYPE_CODE (type) == TYPE_CODE_REF
8472 /* In C you can dereference an array to get the 1st elt. */
8473 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8474 {
8475 type = to_static_fixed_type
8476 (ada_aligned_type
8477 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8478 check_size (type);
8479 return value_zero (type, lval_memory);
8480 }
8481 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8482 /* GDB allows dereferencing an int. */
8483 return value_zero (builtin_type_int, lval_memory);
8484 else
8485 error (_("Attempt to take contents of a non-pointer value."));
8486 }
8487 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8488 type = ada_check_typedef (value_type (arg1));
8489
8490 if (ada_is_array_descriptor_type (type))
8491 /* GDB allows dereferencing GNAT array descriptors. */
8492 return ada_coerce_to_simple_array (arg1);
8493 else
8494 return ada_value_ind (arg1);
8495
8496 case STRUCTOP_STRUCT:
8497 tem = longest_to_int (exp->elts[pc + 1].longconst);
8498 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8500 if (noside == EVAL_SKIP)
8501 goto nosideret;
8502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8503 {
8504 struct type *type1 = value_type (arg1);
8505 if (ada_is_tagged_type (type1, 1))
8506 {
8507 type = ada_lookup_struct_elt_type (type1,
8508 &exp->elts[pc + 2].string,
8509 1, 1, NULL);
8510 if (type == NULL)
8511 /* In this case, we assume that the field COULD exist
8512 in some extension of the type. Return an object of
8513 "type" void, which will match any formal
8514 (see ada_type_match). */
8515 return value_zero (builtin_type_void, lval_memory);
8516 }
8517 else
8518 type =
8519 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8520 0, NULL);
8521
8522 return value_zero (ada_aligned_type (type), lval_memory);
8523 }
8524 else
8525 return
8526 ada_to_fixed_value (unwrap_value
8527 (ada_value_struct_elt
8528 (arg1, &exp->elts[pc + 2].string, 0)));
8529 case OP_TYPE:
8530 /* The value is not supposed to be used. This is here to make it
8531 easier to accommodate expressions that contain types. */
8532 (*pos) += 2;
8533 if (noside == EVAL_SKIP)
8534 goto nosideret;
8535 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8536 return allocate_value (exp->elts[pc + 1].type);
8537 else
8538 error (_("Attempt to use a type name as an expression"));
8539
8540 case OP_AGGREGATE:
8541 case OP_CHOICES:
8542 case OP_OTHERS:
8543 case OP_DISCRETE_RANGE:
8544 case OP_POSITIONAL:
8545 case OP_NAME:
8546 if (noside == EVAL_NORMAL)
8547 switch (op)
8548 {
8549 case OP_NAME:
8550 error (_("Undefined name, ambiguous name, or renaming used in "
8551 "component association: %s."), &exp->elts[pc+2].string);
8552 case OP_AGGREGATE:
8553 error (_("Aggregates only allowed on the right of an assignment"));
8554 default:
8555 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8556 }
8557
8558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8559 *pos += oplen - 1;
8560 for (tem = 0; tem < nargs; tem += 1)
8561 ada_evaluate_subexp (NULL, exp, pos, noside);
8562 goto nosideret;
8563 }
8564
8565 nosideret:
8566 return value_from_longest (builtin_type_long, (LONGEST) 1);
8567 }
8568 \f
8569
8570 /* Fixed point */
8571
8572 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8573 type name that encodes the 'small and 'delta information.
8574 Otherwise, return NULL. */
8575
8576 static const char *
8577 fixed_type_info (struct type *type)
8578 {
8579 const char *name = ada_type_name (type);
8580 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8581
8582 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8583 {
8584 const char *tail = strstr (name, "___XF_");
8585 if (tail == NULL)
8586 return NULL;
8587 else
8588 return tail + 5;
8589 }
8590 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8591 return fixed_type_info (TYPE_TARGET_TYPE (type));
8592 else
8593 return NULL;
8594 }
8595
8596 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8597
8598 int
8599 ada_is_fixed_point_type (struct type *type)
8600 {
8601 return fixed_type_info (type) != NULL;
8602 }
8603
8604 /* Return non-zero iff TYPE represents a System.Address type. */
8605
8606 int
8607 ada_is_system_address_type (struct type *type)
8608 {
8609 return (TYPE_NAME (type)
8610 && strcmp (TYPE_NAME (type), "system__address") == 0);
8611 }
8612
8613 /* Assuming that TYPE is the representation of an Ada fixed-point
8614 type, return its delta, or -1 if the type is malformed and the
8615 delta cannot be determined. */
8616
8617 DOUBLEST
8618 ada_delta (struct type *type)
8619 {
8620 const char *encoding = fixed_type_info (type);
8621 long num, den;
8622
8623 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8624 return -1.0;
8625 else
8626 return (DOUBLEST) num / (DOUBLEST) den;
8627 }
8628
8629 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8630 factor ('SMALL value) associated with the type. */
8631
8632 static DOUBLEST
8633 scaling_factor (struct type *type)
8634 {
8635 const char *encoding = fixed_type_info (type);
8636 unsigned long num0, den0, num1, den1;
8637 int n;
8638
8639 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8640
8641 if (n < 2)
8642 return 1.0;
8643 else if (n == 4)
8644 return (DOUBLEST) num1 / (DOUBLEST) den1;
8645 else
8646 return (DOUBLEST) num0 / (DOUBLEST) den0;
8647 }
8648
8649
8650 /* Assuming that X is the representation of a value of fixed-point
8651 type TYPE, return its floating-point equivalent. */
8652
8653 DOUBLEST
8654 ada_fixed_to_float (struct type *type, LONGEST x)
8655 {
8656 return (DOUBLEST) x *scaling_factor (type);
8657 }
8658
8659 /* The representation of a fixed-point value of type TYPE
8660 corresponding to the value X. */
8661
8662 LONGEST
8663 ada_float_to_fixed (struct type *type, DOUBLEST x)
8664 {
8665 return (LONGEST) (x / scaling_factor (type) + 0.5);
8666 }
8667
8668
8669 /* VAX floating formats */
8670
8671 /* Non-zero iff TYPE represents one of the special VAX floating-point
8672 types. */
8673
8674 int
8675 ada_is_vax_floating_type (struct type *type)
8676 {
8677 int name_len =
8678 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8679 return
8680 name_len > 6
8681 && (TYPE_CODE (type) == TYPE_CODE_INT
8682 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8683 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8684 }
8685
8686 /* The type of special VAX floating-point type this is, assuming
8687 ada_is_vax_floating_point. */
8688
8689 int
8690 ada_vax_float_type_suffix (struct type *type)
8691 {
8692 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8693 }
8694
8695 /* A value representing the special debugging function that outputs
8696 VAX floating-point values of the type represented by TYPE. Assumes
8697 ada_is_vax_floating_type (TYPE). */
8698
8699 struct value *
8700 ada_vax_float_print_function (struct type *type)
8701 {
8702 switch (ada_vax_float_type_suffix (type))
8703 {
8704 case 'F':
8705 return get_var_value ("DEBUG_STRING_F", 0);
8706 case 'D':
8707 return get_var_value ("DEBUG_STRING_D", 0);
8708 case 'G':
8709 return get_var_value ("DEBUG_STRING_G", 0);
8710 default:
8711 error (_("invalid VAX floating-point type"));
8712 }
8713 }
8714 \f
8715
8716 /* Range types */
8717
8718 /* Scan STR beginning at position K for a discriminant name, and
8719 return the value of that discriminant field of DVAL in *PX. If
8720 PNEW_K is not null, put the position of the character beyond the
8721 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8722 not alter *PX and *PNEW_K if unsuccessful. */
8723
8724 static int
8725 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8726 int *pnew_k)
8727 {
8728 static char *bound_buffer = NULL;
8729 static size_t bound_buffer_len = 0;
8730 char *bound;
8731 char *pend;
8732 struct value *bound_val;
8733
8734 if (dval == NULL || str == NULL || str[k] == '\0')
8735 return 0;
8736
8737 pend = strstr (str + k, "__");
8738 if (pend == NULL)
8739 {
8740 bound = str + k;
8741 k += strlen (bound);
8742 }
8743 else
8744 {
8745 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8746 bound = bound_buffer;
8747 strncpy (bound_buffer, str + k, pend - (str + k));
8748 bound[pend - (str + k)] = '\0';
8749 k = pend - str;
8750 }
8751
8752 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8753 if (bound_val == NULL)
8754 return 0;
8755
8756 *px = value_as_long (bound_val);
8757 if (pnew_k != NULL)
8758 *pnew_k = k;
8759 return 1;
8760 }
8761
8762 /* Value of variable named NAME in the current environment. If
8763 no such variable found, then if ERR_MSG is null, returns 0, and
8764 otherwise causes an error with message ERR_MSG. */
8765
8766 static struct value *
8767 get_var_value (char *name, char *err_msg)
8768 {
8769 struct ada_symbol_info *syms;
8770 int nsyms;
8771
8772 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8773 &syms);
8774
8775 if (nsyms != 1)
8776 {
8777 if (err_msg == NULL)
8778 return 0;
8779 else
8780 error (("%s"), err_msg);
8781 }
8782
8783 return value_of_variable (syms[0].sym, syms[0].block);
8784 }
8785
8786 /* Value of integer variable named NAME in the current environment. If
8787 no such variable found, returns 0, and sets *FLAG to 0. If
8788 successful, sets *FLAG to 1. */
8789
8790 LONGEST
8791 get_int_var_value (char *name, int *flag)
8792 {
8793 struct value *var_val = get_var_value (name, 0);
8794
8795 if (var_val == 0)
8796 {
8797 if (flag != NULL)
8798 *flag = 0;
8799 return 0;
8800 }
8801 else
8802 {
8803 if (flag != NULL)
8804 *flag = 1;
8805 return value_as_long (var_val);
8806 }
8807 }
8808
8809
8810 /* Return a range type whose base type is that of the range type named
8811 NAME in the current environment, and whose bounds are calculated
8812 from NAME according to the GNAT range encoding conventions.
8813 Extract discriminant values, if needed, from DVAL. If a new type
8814 must be created, allocate in OBJFILE's space. The bounds
8815 information, in general, is encoded in NAME, the base type given in
8816 the named range type. */
8817
8818 static struct type *
8819 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8820 {
8821 struct type *raw_type = ada_find_any_type (name);
8822 struct type *base_type;
8823 char *subtype_info;
8824
8825 if (raw_type == NULL)
8826 base_type = builtin_type_int;
8827 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8828 base_type = TYPE_TARGET_TYPE (raw_type);
8829 else
8830 base_type = raw_type;
8831
8832 subtype_info = strstr (name, "___XD");
8833 if (subtype_info == NULL)
8834 return raw_type;
8835 else
8836 {
8837 static char *name_buf = NULL;
8838 static size_t name_len = 0;
8839 int prefix_len = subtype_info - name;
8840 LONGEST L, U;
8841 struct type *type;
8842 char *bounds_str;
8843 int n;
8844
8845 GROW_VECT (name_buf, name_len, prefix_len + 5);
8846 strncpy (name_buf, name, prefix_len);
8847 name_buf[prefix_len] = '\0';
8848
8849 subtype_info += 5;
8850 bounds_str = strchr (subtype_info, '_');
8851 n = 1;
8852
8853 if (*subtype_info == 'L')
8854 {
8855 if (!ada_scan_number (bounds_str, n, &L, &n)
8856 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8857 return raw_type;
8858 if (bounds_str[n] == '_')
8859 n += 2;
8860 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8861 n += 1;
8862 subtype_info += 1;
8863 }
8864 else
8865 {
8866 int ok;
8867 strcpy (name_buf + prefix_len, "___L");
8868 L = get_int_var_value (name_buf, &ok);
8869 if (!ok)
8870 {
8871 lim_warning (_("Unknown lower bound, using 1."));
8872 L = 1;
8873 }
8874 }
8875
8876 if (*subtype_info == 'U')
8877 {
8878 if (!ada_scan_number (bounds_str, n, &U, &n)
8879 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8880 return raw_type;
8881 }
8882 else
8883 {
8884 int ok;
8885 strcpy (name_buf + prefix_len, "___U");
8886 U = get_int_var_value (name_buf, &ok);
8887 if (!ok)
8888 {
8889 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8890 U = L;
8891 }
8892 }
8893
8894 if (objfile == NULL)
8895 objfile = TYPE_OBJFILE (base_type);
8896 type = create_range_type (alloc_type (objfile), base_type, L, U);
8897 TYPE_NAME (type) = name;
8898 return type;
8899 }
8900 }
8901
8902 /* True iff NAME is the name of a range type. */
8903
8904 int
8905 ada_is_range_type_name (const char *name)
8906 {
8907 return (name != NULL && strstr (name, "___XD"));
8908 }
8909 \f
8910
8911 /* Modular types */
8912
8913 /* True iff TYPE is an Ada modular type. */
8914
8915 int
8916 ada_is_modular_type (struct type *type)
8917 {
8918 struct type *subranged_type = base_type (type);
8919
8920 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8921 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8922 && TYPE_UNSIGNED (subranged_type));
8923 }
8924
8925 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8926
8927 ULONGEST
8928 ada_modulus (struct type * type)
8929 {
8930 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8931 }
8932 \f
8933
8934 /* Ada exception catchpoint support:
8935 ---------------------------------
8936
8937 We support 3 kinds of exception catchpoints:
8938 . catchpoints on Ada exceptions
8939 . catchpoints on unhandled Ada exceptions
8940 . catchpoints on failed assertions
8941
8942 Exceptions raised during failed assertions, or unhandled exceptions
8943 could perfectly be caught with the general catchpoint on Ada exceptions.
8944 However, we can easily differentiate these two special cases, and having
8945 the option to distinguish these two cases from the rest can be useful
8946 to zero-in on certain situations.
8947
8948 Exception catchpoints are a specialized form of breakpoint,
8949 since they rely on inserting breakpoints inside known routines
8950 of the GNAT runtime. The implementation therefore uses a standard
8951 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8952 of breakpoint_ops.
8953
8954 Support in the runtime for exception catchpoints have been changed
8955 a few times already, and these changes affect the implementation
8956 of these catchpoints. In order to be able to support several
8957 variants of the runtime, we use a sniffer that will determine
8958 the runtime variant used by the program being debugged.
8959
8960 At this time, we do not support the use of conditions on Ada exception
8961 catchpoints. The COND and COND_STRING fields are therefore set
8962 to NULL (most of the time, see below).
8963
8964 Conditions where EXP_STRING, COND, and COND_STRING are used:
8965
8966 When a user specifies the name of a specific exception in the case
8967 of catchpoints on Ada exceptions, we store the name of that exception
8968 in the EXP_STRING. We then translate this request into an actual
8969 condition stored in COND_STRING, and then parse it into an expression
8970 stored in COND. */
8971
8972 /* The different types of catchpoints that we introduced for catching
8973 Ada exceptions. */
8974
8975 enum exception_catchpoint_kind
8976 {
8977 ex_catch_exception,
8978 ex_catch_exception_unhandled,
8979 ex_catch_assert
8980 };
8981
8982 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8983
8984 /* A structure that describes how to support exception catchpoints
8985 for a given executable. */
8986
8987 struct exception_support_info
8988 {
8989 /* The name of the symbol to break on in order to insert
8990 a catchpoint on exceptions. */
8991 const char *catch_exception_sym;
8992
8993 /* The name of the symbol to break on in order to insert
8994 a catchpoint on unhandled exceptions. */
8995 const char *catch_exception_unhandled_sym;
8996
8997 /* The name of the symbol to break on in order to insert
8998 a catchpoint on failed assertions. */
8999 const char *catch_assert_sym;
9000
9001 /* Assuming that the inferior just triggered an unhandled exception
9002 catchpoint, this function is responsible for returning the address
9003 in inferior memory where the name of that exception is stored.
9004 Return zero if the address could not be computed. */
9005 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9006 };
9007
9008 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9009 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9010
9011 /* The following exception support info structure describes how to
9012 implement exception catchpoints with the latest version of the
9013 Ada runtime (as of 2007-03-06). */
9014
9015 static const struct exception_support_info default_exception_support_info =
9016 {
9017 "__gnat_debug_raise_exception", /* catch_exception_sym */
9018 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9019 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9020 ada_unhandled_exception_name_addr
9021 };
9022
9023 /* The following exception support info structure describes how to
9024 implement exception catchpoints with a slightly older version
9025 of the Ada runtime. */
9026
9027 static const struct exception_support_info exception_support_info_fallback =
9028 {
9029 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9030 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9031 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9032 ada_unhandled_exception_name_addr_from_raise
9033 };
9034
9035 /* For each executable, we sniff which exception info structure to use
9036 and cache it in the following global variable. */
9037
9038 static const struct exception_support_info *exception_info = NULL;
9039
9040 /* Inspect the Ada runtime and determine which exception info structure
9041 should be used to provide support for exception catchpoints.
9042
9043 This function will always set exception_info, or raise an error. */
9044
9045 static void
9046 ada_exception_support_info_sniffer (void)
9047 {
9048 struct symbol *sym;
9049
9050 /* If the exception info is already known, then no need to recompute it. */
9051 if (exception_info != NULL)
9052 return;
9053
9054 /* Check the latest (default) exception support info. */
9055 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9056 NULL, VAR_DOMAIN);
9057 if (sym != NULL)
9058 {
9059 exception_info = &default_exception_support_info;
9060 return;
9061 }
9062
9063 /* Try our fallback exception suport info. */
9064 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9065 NULL, VAR_DOMAIN);
9066 if (sym != NULL)
9067 {
9068 exception_info = &exception_support_info_fallback;
9069 return;
9070 }
9071
9072 /* Sometimes, it is normal for us to not be able to find the routine
9073 we are looking for. This happens when the program is linked with
9074 the shared version of the GNAT runtime, and the program has not been
9075 started yet. Inform the user of these two possible causes if
9076 applicable. */
9077
9078 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9079 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9080
9081 /* If the symbol does not exist, then check that the program is
9082 already started, to make sure that shared libraries have been
9083 loaded. If it is not started, this may mean that the symbol is
9084 in a shared library. */
9085
9086 if (ptid_get_pid (inferior_ptid) == 0)
9087 error (_("Unable to insert catchpoint. Try to start the program first."));
9088
9089 /* At this point, we know that we are debugging an Ada program and
9090 that the inferior has been started, but we still are not able to
9091 find the run-time symbols. That can mean that we are in
9092 configurable run time mode, or that a-except as been optimized
9093 out by the linker... In any case, at this point it is not worth
9094 supporting this feature. */
9095
9096 error (_("Cannot insert catchpoints in this configuration."));
9097 }
9098
9099 /* An observer of "executable_changed" events.
9100 Its role is to clear certain cached values that need to be recomputed
9101 each time a new executable is loaded by GDB. */
9102
9103 static void
9104 ada_executable_changed_observer (void *unused)
9105 {
9106 /* If the executable changed, then it is possible that the Ada runtime
9107 is different. So we need to invalidate the exception support info
9108 cache. */
9109 exception_info = NULL;
9110 }
9111
9112 /* Return the name of the function at PC, NULL if could not find it.
9113 This function only checks the debugging information, not the symbol
9114 table. */
9115
9116 static char *
9117 function_name_from_pc (CORE_ADDR pc)
9118 {
9119 char *func_name;
9120
9121 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9122 return NULL;
9123
9124 return func_name;
9125 }
9126
9127 /* True iff FRAME is very likely to be that of a function that is
9128 part of the runtime system. This is all very heuristic, but is
9129 intended to be used as advice as to what frames are uninteresting
9130 to most users. */
9131
9132 static int
9133 is_known_support_routine (struct frame_info *frame)
9134 {
9135 struct symtab_and_line sal;
9136 char *func_name;
9137 int i;
9138
9139 /* If this code does not have any debugging information (no symtab),
9140 This cannot be any user code. */
9141
9142 find_frame_sal (frame, &sal);
9143 if (sal.symtab == NULL)
9144 return 1;
9145
9146 /* If there is a symtab, but the associated source file cannot be
9147 located, then assume this is not user code: Selecting a frame
9148 for which we cannot display the code would not be very helpful
9149 for the user. This should also take care of case such as VxWorks
9150 where the kernel has some debugging info provided for a few units. */
9151
9152 if (symtab_to_fullname (sal.symtab) == NULL)
9153 return 1;
9154
9155 /* Check the unit filename againt the Ada runtime file naming.
9156 We also check the name of the objfile against the name of some
9157 known system libraries that sometimes come with debugging info
9158 too. */
9159
9160 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9161 {
9162 re_comp (known_runtime_file_name_patterns[i]);
9163 if (re_exec (sal.symtab->filename))
9164 return 1;
9165 if (sal.symtab->objfile != NULL
9166 && re_exec (sal.symtab->objfile->name))
9167 return 1;
9168 }
9169
9170 /* Check whether the function is a GNAT-generated entity. */
9171
9172 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9173 if (func_name == NULL)
9174 return 1;
9175
9176 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9177 {
9178 re_comp (known_auxiliary_function_name_patterns[i]);
9179 if (re_exec (func_name))
9180 return 1;
9181 }
9182
9183 return 0;
9184 }
9185
9186 /* Find the first frame that contains debugging information and that is not
9187 part of the Ada run-time, starting from FI and moving upward. */
9188
9189 static void
9190 ada_find_printable_frame (struct frame_info *fi)
9191 {
9192 for (; fi != NULL; fi = get_prev_frame (fi))
9193 {
9194 if (!is_known_support_routine (fi))
9195 {
9196 select_frame (fi);
9197 break;
9198 }
9199 }
9200
9201 }
9202
9203 /* Assuming that the inferior just triggered an unhandled exception
9204 catchpoint, return the address in inferior memory where the name
9205 of the exception is stored.
9206
9207 Return zero if the address could not be computed. */
9208
9209 static CORE_ADDR
9210 ada_unhandled_exception_name_addr (void)
9211 {
9212 return parse_and_eval_address ("e.full_name");
9213 }
9214
9215 /* Same as ada_unhandled_exception_name_addr, except that this function
9216 should be used when the inferior uses an older version of the runtime,
9217 where the exception name needs to be extracted from a specific frame
9218 several frames up in the callstack. */
9219
9220 static CORE_ADDR
9221 ada_unhandled_exception_name_addr_from_raise (void)
9222 {
9223 int frame_level;
9224 struct frame_info *fi;
9225
9226 /* To determine the name of this exception, we need to select
9227 the frame corresponding to RAISE_SYM_NAME. This frame is
9228 at least 3 levels up, so we simply skip the first 3 frames
9229 without checking the name of their associated function. */
9230 fi = get_current_frame ();
9231 for (frame_level = 0; frame_level < 3; frame_level += 1)
9232 if (fi != NULL)
9233 fi = get_prev_frame (fi);
9234
9235 while (fi != NULL)
9236 {
9237 const char *func_name =
9238 function_name_from_pc (get_frame_address_in_block (fi));
9239 if (func_name != NULL
9240 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9241 break; /* We found the frame we were looking for... */
9242 fi = get_prev_frame (fi);
9243 }
9244
9245 if (fi == NULL)
9246 return 0;
9247
9248 select_frame (fi);
9249 return parse_and_eval_address ("id.full_name");
9250 }
9251
9252 /* Assuming the inferior just triggered an Ada exception catchpoint
9253 (of any type), return the address in inferior memory where the name
9254 of the exception is stored, if applicable.
9255
9256 Return zero if the address could not be computed, or if not relevant. */
9257
9258 static CORE_ADDR
9259 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9260 struct breakpoint *b)
9261 {
9262 switch (ex)
9263 {
9264 case ex_catch_exception:
9265 return (parse_and_eval_address ("e.full_name"));
9266 break;
9267
9268 case ex_catch_exception_unhandled:
9269 return exception_info->unhandled_exception_name_addr ();
9270 break;
9271
9272 case ex_catch_assert:
9273 return 0; /* Exception name is not relevant in this case. */
9274 break;
9275
9276 default:
9277 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9278 break;
9279 }
9280
9281 return 0; /* Should never be reached. */
9282 }
9283
9284 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9285 any error that ada_exception_name_addr_1 might cause to be thrown.
9286 When an error is intercepted, a warning with the error message is printed,
9287 and zero is returned. */
9288
9289 static CORE_ADDR
9290 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9291 struct breakpoint *b)
9292 {
9293 struct gdb_exception e;
9294 CORE_ADDR result = 0;
9295
9296 TRY_CATCH (e, RETURN_MASK_ERROR)
9297 {
9298 result = ada_exception_name_addr_1 (ex, b);
9299 }
9300
9301 if (e.reason < 0)
9302 {
9303 warning (_("failed to get exception name: %s"), e.message);
9304 return 0;
9305 }
9306
9307 return result;
9308 }
9309
9310 /* Implement the PRINT_IT method in the breakpoint_ops structure
9311 for all exception catchpoint kinds. */
9312
9313 static enum print_stop_action
9314 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9315 {
9316 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9317 char exception_name[256];
9318
9319 if (addr != 0)
9320 {
9321 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9322 exception_name [sizeof (exception_name) - 1] = '\0';
9323 }
9324
9325 ada_find_printable_frame (get_current_frame ());
9326
9327 annotate_catchpoint (b->number);
9328 switch (ex)
9329 {
9330 case ex_catch_exception:
9331 if (addr != 0)
9332 printf_filtered (_("\nCatchpoint %d, %s at "),
9333 b->number, exception_name);
9334 else
9335 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9336 break;
9337 case ex_catch_exception_unhandled:
9338 if (addr != 0)
9339 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9340 b->number, exception_name);
9341 else
9342 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9343 b->number);
9344 break;
9345 case ex_catch_assert:
9346 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9347 b->number);
9348 break;
9349 }
9350
9351 return PRINT_SRC_AND_LOC;
9352 }
9353
9354 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9355 for all exception catchpoint kinds. */
9356
9357 static void
9358 print_one_exception (enum exception_catchpoint_kind ex,
9359 struct breakpoint *b, CORE_ADDR *last_addr)
9360 {
9361 if (addressprint)
9362 {
9363 annotate_field (4);
9364 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9365 }
9366
9367 annotate_field (5);
9368 *last_addr = b->loc->address;
9369 switch (ex)
9370 {
9371 case ex_catch_exception:
9372 if (b->exp_string != NULL)
9373 {
9374 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9375
9376 ui_out_field_string (uiout, "what", msg);
9377 xfree (msg);
9378 }
9379 else
9380 ui_out_field_string (uiout, "what", "all Ada exceptions");
9381
9382 break;
9383
9384 case ex_catch_exception_unhandled:
9385 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9386 break;
9387
9388 case ex_catch_assert:
9389 ui_out_field_string (uiout, "what", "failed Ada assertions");
9390 break;
9391
9392 default:
9393 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9394 break;
9395 }
9396 }
9397
9398 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9399 for all exception catchpoint kinds. */
9400
9401 static void
9402 print_mention_exception (enum exception_catchpoint_kind ex,
9403 struct breakpoint *b)
9404 {
9405 switch (ex)
9406 {
9407 case ex_catch_exception:
9408 if (b->exp_string != NULL)
9409 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9410 b->number, b->exp_string);
9411 else
9412 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9413
9414 break;
9415
9416 case ex_catch_exception_unhandled:
9417 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9418 b->number);
9419 break;
9420
9421 case ex_catch_assert:
9422 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9423 break;
9424
9425 default:
9426 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9427 break;
9428 }
9429 }
9430
9431 /* Virtual table for "catch exception" breakpoints. */
9432
9433 static enum print_stop_action
9434 print_it_catch_exception (struct breakpoint *b)
9435 {
9436 return print_it_exception (ex_catch_exception, b);
9437 }
9438
9439 static void
9440 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9441 {
9442 print_one_exception (ex_catch_exception, b, last_addr);
9443 }
9444
9445 static void
9446 print_mention_catch_exception (struct breakpoint *b)
9447 {
9448 print_mention_exception (ex_catch_exception, b);
9449 }
9450
9451 static struct breakpoint_ops catch_exception_breakpoint_ops =
9452 {
9453 print_it_catch_exception,
9454 print_one_catch_exception,
9455 print_mention_catch_exception
9456 };
9457
9458 /* Virtual table for "catch exception unhandled" breakpoints. */
9459
9460 static enum print_stop_action
9461 print_it_catch_exception_unhandled (struct breakpoint *b)
9462 {
9463 return print_it_exception (ex_catch_exception_unhandled, b);
9464 }
9465
9466 static void
9467 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9468 {
9469 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9470 }
9471
9472 static void
9473 print_mention_catch_exception_unhandled (struct breakpoint *b)
9474 {
9475 print_mention_exception (ex_catch_exception_unhandled, b);
9476 }
9477
9478 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9479 print_it_catch_exception_unhandled,
9480 print_one_catch_exception_unhandled,
9481 print_mention_catch_exception_unhandled
9482 };
9483
9484 /* Virtual table for "catch assert" breakpoints. */
9485
9486 static enum print_stop_action
9487 print_it_catch_assert (struct breakpoint *b)
9488 {
9489 return print_it_exception (ex_catch_assert, b);
9490 }
9491
9492 static void
9493 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9494 {
9495 print_one_exception (ex_catch_assert, b, last_addr);
9496 }
9497
9498 static void
9499 print_mention_catch_assert (struct breakpoint *b)
9500 {
9501 print_mention_exception (ex_catch_assert, b);
9502 }
9503
9504 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9505 print_it_catch_assert,
9506 print_one_catch_assert,
9507 print_mention_catch_assert
9508 };
9509
9510 /* Return non-zero if B is an Ada exception catchpoint. */
9511
9512 int
9513 ada_exception_catchpoint_p (struct breakpoint *b)
9514 {
9515 return (b->ops == &catch_exception_breakpoint_ops
9516 || b->ops == &catch_exception_unhandled_breakpoint_ops
9517 || b->ops == &catch_assert_breakpoint_ops);
9518 }
9519
9520 /* Return a newly allocated copy of the first space-separated token
9521 in ARGSP, and then adjust ARGSP to point immediately after that
9522 token.
9523
9524 Return NULL if ARGPS does not contain any more tokens. */
9525
9526 static char *
9527 ada_get_next_arg (char **argsp)
9528 {
9529 char *args = *argsp;
9530 char *end;
9531 char *result;
9532
9533 /* Skip any leading white space. */
9534
9535 while (isspace (*args))
9536 args++;
9537
9538 if (args[0] == '\0')
9539 return NULL; /* No more arguments. */
9540
9541 /* Find the end of the current argument. */
9542
9543 end = args;
9544 while (*end != '\0' && !isspace (*end))
9545 end++;
9546
9547 /* Adjust ARGSP to point to the start of the next argument. */
9548
9549 *argsp = end;
9550
9551 /* Make a copy of the current argument and return it. */
9552
9553 result = xmalloc (end - args + 1);
9554 strncpy (result, args, end - args);
9555 result[end - args] = '\0';
9556
9557 return result;
9558 }
9559
9560 /* Split the arguments specified in a "catch exception" command.
9561 Set EX to the appropriate catchpoint type.
9562 Set EXP_STRING to the name of the specific exception if
9563 specified by the user. */
9564
9565 static void
9566 catch_ada_exception_command_split (char *args,
9567 enum exception_catchpoint_kind *ex,
9568 char **exp_string)
9569 {
9570 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9571 char *exception_name;
9572
9573 exception_name = ada_get_next_arg (&args);
9574 make_cleanup (xfree, exception_name);
9575
9576 /* Check that we do not have any more arguments. Anything else
9577 is unexpected. */
9578
9579 while (isspace (*args))
9580 args++;
9581
9582 if (args[0] != '\0')
9583 error (_("Junk at end of expression"));
9584
9585 discard_cleanups (old_chain);
9586
9587 if (exception_name == NULL)
9588 {
9589 /* Catch all exceptions. */
9590 *ex = ex_catch_exception;
9591 *exp_string = NULL;
9592 }
9593 else if (strcmp (exception_name, "unhandled") == 0)
9594 {
9595 /* Catch unhandled exceptions. */
9596 *ex = ex_catch_exception_unhandled;
9597 *exp_string = NULL;
9598 }
9599 else
9600 {
9601 /* Catch a specific exception. */
9602 *ex = ex_catch_exception;
9603 *exp_string = exception_name;
9604 }
9605 }
9606
9607 /* Return the name of the symbol on which we should break in order to
9608 implement a catchpoint of the EX kind. */
9609
9610 static const char *
9611 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9612 {
9613 gdb_assert (exception_info != NULL);
9614
9615 switch (ex)
9616 {
9617 case ex_catch_exception:
9618 return (exception_info->catch_exception_sym);
9619 break;
9620 case ex_catch_exception_unhandled:
9621 return (exception_info->catch_exception_unhandled_sym);
9622 break;
9623 case ex_catch_assert:
9624 return (exception_info->catch_assert_sym);
9625 break;
9626 default:
9627 internal_error (__FILE__, __LINE__,
9628 _("unexpected catchpoint kind (%d)"), ex);
9629 }
9630 }
9631
9632 /* Return the breakpoint ops "virtual table" used for catchpoints
9633 of the EX kind. */
9634
9635 static struct breakpoint_ops *
9636 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9637 {
9638 switch (ex)
9639 {
9640 case ex_catch_exception:
9641 return (&catch_exception_breakpoint_ops);
9642 break;
9643 case ex_catch_exception_unhandled:
9644 return (&catch_exception_unhandled_breakpoint_ops);
9645 break;
9646 case ex_catch_assert:
9647 return (&catch_assert_breakpoint_ops);
9648 break;
9649 default:
9650 internal_error (__FILE__, __LINE__,
9651 _("unexpected catchpoint kind (%d)"), ex);
9652 }
9653 }
9654
9655 /* Return the condition that will be used to match the current exception
9656 being raised with the exception that the user wants to catch. This
9657 assumes that this condition is used when the inferior just triggered
9658 an exception catchpoint.
9659
9660 The string returned is a newly allocated string that needs to be
9661 deallocated later. */
9662
9663 static char *
9664 ada_exception_catchpoint_cond_string (const char *exp_string)
9665 {
9666 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9667 }
9668
9669 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9670
9671 static struct expression *
9672 ada_parse_catchpoint_condition (char *cond_string,
9673 struct symtab_and_line sal)
9674 {
9675 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9676 }
9677
9678 /* Return the symtab_and_line that should be used to insert an exception
9679 catchpoint of the TYPE kind.
9680
9681 EX_STRING should contain the name of a specific exception
9682 that the catchpoint should catch, or NULL otherwise.
9683
9684 The idea behind all the remaining parameters is that their names match
9685 the name of certain fields in the breakpoint structure that are used to
9686 handle exception catchpoints. This function returns the value to which
9687 these fields should be set, depending on the type of catchpoint we need
9688 to create.
9689
9690 If COND and COND_STRING are both non-NULL, any value they might
9691 hold will be free'ed, and then replaced by newly allocated ones.
9692 These parameters are left untouched otherwise. */
9693
9694 static struct symtab_and_line
9695 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9696 char **addr_string, char **cond_string,
9697 struct expression **cond, struct breakpoint_ops **ops)
9698 {
9699 const char *sym_name;
9700 struct symbol *sym;
9701 struct symtab_and_line sal;
9702
9703 /* First, find out which exception support info to use. */
9704 ada_exception_support_info_sniffer ();
9705
9706 /* Then lookup the function on which we will break in order to catch
9707 the Ada exceptions requested by the user. */
9708
9709 sym_name = ada_exception_sym_name (ex);
9710 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9711
9712 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9713 that should be compiled with debugging information. As a result, we
9714 expect to find that symbol in the symtabs. If we don't find it, then
9715 the target most likely does not support Ada exceptions, or we cannot
9716 insert exception breakpoints yet, because the GNAT runtime hasn't been
9717 loaded yet. */
9718
9719 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9720 in such a way that no debugging information is produced for the symbol
9721 we are looking for. In this case, we could search the minimal symbols
9722 as a fall-back mechanism. This would still be operating in degraded
9723 mode, however, as we would still be missing the debugging information
9724 that is needed in order to extract the name of the exception being
9725 raised (this name is printed in the catchpoint message, and is also
9726 used when trying to catch a specific exception). We do not handle
9727 this case for now. */
9728
9729 if (sym == NULL)
9730 error (_("Unable to break on '%s' in this configuration."), sym_name);
9731
9732 /* Make sure that the symbol we found corresponds to a function. */
9733 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9734 error (_("Symbol \"%s\" is not a function (class = %d)"),
9735 sym_name, SYMBOL_CLASS (sym));
9736
9737 sal = find_function_start_sal (sym, 1);
9738
9739 /* Set ADDR_STRING. */
9740
9741 *addr_string = xstrdup (sym_name);
9742
9743 /* Set the COND and COND_STRING (if not NULL). */
9744
9745 if (cond_string != NULL && cond != NULL)
9746 {
9747 if (*cond_string != NULL)
9748 {
9749 xfree (*cond_string);
9750 *cond_string = NULL;
9751 }
9752 if (*cond != NULL)
9753 {
9754 xfree (*cond);
9755 *cond = NULL;
9756 }
9757 if (exp_string != NULL)
9758 {
9759 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9760 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9761 }
9762 }
9763
9764 /* Set OPS. */
9765 *ops = ada_exception_breakpoint_ops (ex);
9766
9767 return sal;
9768 }
9769
9770 /* Parse the arguments (ARGS) of the "catch exception" command.
9771
9772 Set TYPE to the appropriate exception catchpoint type.
9773 If the user asked the catchpoint to catch only a specific
9774 exception, then save the exception name in ADDR_STRING.
9775
9776 See ada_exception_sal for a description of all the remaining
9777 function arguments of this function. */
9778
9779 struct symtab_and_line
9780 ada_decode_exception_location (char *args, char **addr_string,
9781 char **exp_string, char **cond_string,
9782 struct expression **cond,
9783 struct breakpoint_ops **ops)
9784 {
9785 enum exception_catchpoint_kind ex;
9786
9787 catch_ada_exception_command_split (args, &ex, exp_string);
9788 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9789 cond, ops);
9790 }
9791
9792 struct symtab_and_line
9793 ada_decode_assert_location (char *args, char **addr_string,
9794 struct breakpoint_ops **ops)
9795 {
9796 /* Check that no argument where provided at the end of the command. */
9797
9798 if (args != NULL)
9799 {
9800 while (isspace (*args))
9801 args++;
9802 if (*args != '\0')
9803 error (_("Junk at end of arguments."));
9804 }
9805
9806 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9807 ops);
9808 }
9809
9810 /* Operators */
9811 /* Information about operators given special treatment in functions
9812 below. */
9813 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9814
9815 #define ADA_OPERATORS \
9816 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9817 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9818 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9819 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9820 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9821 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9822 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9823 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9824 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9825 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9826 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9828 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9829 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9830 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9831 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9832 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9833 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9834 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9835
9836 static void
9837 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9838 {
9839 switch (exp->elts[pc - 1].opcode)
9840 {
9841 default:
9842 operator_length_standard (exp, pc, oplenp, argsp);
9843 break;
9844
9845 #define OP_DEFN(op, len, args, binop) \
9846 case op: *oplenp = len; *argsp = args; break;
9847 ADA_OPERATORS;
9848 #undef OP_DEFN
9849
9850 case OP_AGGREGATE:
9851 *oplenp = 3;
9852 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9853 break;
9854
9855 case OP_CHOICES:
9856 *oplenp = 3;
9857 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9858 break;
9859 }
9860 }
9861
9862 static char *
9863 ada_op_name (enum exp_opcode opcode)
9864 {
9865 switch (opcode)
9866 {
9867 default:
9868 return op_name_standard (opcode);
9869
9870 #define OP_DEFN(op, len, args, binop) case op: return #op;
9871 ADA_OPERATORS;
9872 #undef OP_DEFN
9873
9874 case OP_AGGREGATE:
9875 return "OP_AGGREGATE";
9876 case OP_CHOICES:
9877 return "OP_CHOICES";
9878 case OP_NAME:
9879 return "OP_NAME";
9880 }
9881 }
9882
9883 /* As for operator_length, but assumes PC is pointing at the first
9884 element of the operator, and gives meaningful results only for the
9885 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9886
9887 static void
9888 ada_forward_operator_length (struct expression *exp, int pc,
9889 int *oplenp, int *argsp)
9890 {
9891 switch (exp->elts[pc].opcode)
9892 {
9893 default:
9894 *oplenp = *argsp = 0;
9895 break;
9896
9897 #define OP_DEFN(op, len, args, binop) \
9898 case op: *oplenp = len; *argsp = args; break;
9899 ADA_OPERATORS;
9900 #undef OP_DEFN
9901
9902 case OP_AGGREGATE:
9903 *oplenp = 3;
9904 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9905 break;
9906
9907 case OP_CHOICES:
9908 *oplenp = 3;
9909 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9910 break;
9911
9912 case OP_STRING:
9913 case OP_NAME:
9914 {
9915 int len = longest_to_int (exp->elts[pc + 1].longconst);
9916 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9917 *argsp = 0;
9918 break;
9919 }
9920 }
9921 }
9922
9923 static int
9924 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9925 {
9926 enum exp_opcode op = exp->elts[elt].opcode;
9927 int oplen, nargs;
9928 int pc = elt;
9929 int i;
9930
9931 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9932
9933 switch (op)
9934 {
9935 /* Ada attributes ('Foo). */
9936 case OP_ATR_FIRST:
9937 case OP_ATR_LAST:
9938 case OP_ATR_LENGTH:
9939 case OP_ATR_IMAGE:
9940 case OP_ATR_MAX:
9941 case OP_ATR_MIN:
9942 case OP_ATR_MODULUS:
9943 case OP_ATR_POS:
9944 case OP_ATR_SIZE:
9945 case OP_ATR_TAG:
9946 case OP_ATR_VAL:
9947 break;
9948
9949 case UNOP_IN_RANGE:
9950 case UNOP_QUAL:
9951 /* XXX: gdb_sprint_host_address, type_sprint */
9952 fprintf_filtered (stream, _("Type @"));
9953 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9954 fprintf_filtered (stream, " (");
9955 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9956 fprintf_filtered (stream, ")");
9957 break;
9958 case BINOP_IN_BOUNDS:
9959 fprintf_filtered (stream, " (%d)",
9960 longest_to_int (exp->elts[pc + 2].longconst));
9961 break;
9962 case TERNOP_IN_RANGE:
9963 break;
9964
9965 case OP_AGGREGATE:
9966 case OP_OTHERS:
9967 case OP_DISCRETE_RANGE:
9968 case OP_POSITIONAL:
9969 case OP_CHOICES:
9970 break;
9971
9972 case OP_NAME:
9973 case OP_STRING:
9974 {
9975 char *name = &exp->elts[elt + 2].string;
9976 int len = longest_to_int (exp->elts[elt + 1].longconst);
9977 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9978 break;
9979 }
9980
9981 default:
9982 return dump_subexp_body_standard (exp, stream, elt);
9983 }
9984
9985 elt += oplen;
9986 for (i = 0; i < nargs; i += 1)
9987 elt = dump_subexp (exp, stream, elt);
9988
9989 return elt;
9990 }
9991
9992 /* The Ada extension of print_subexp (q.v.). */
9993
9994 static void
9995 ada_print_subexp (struct expression *exp, int *pos,
9996 struct ui_file *stream, enum precedence prec)
9997 {
9998 int oplen, nargs, i;
9999 int pc = *pos;
10000 enum exp_opcode op = exp->elts[pc].opcode;
10001
10002 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10003
10004 *pos += oplen;
10005 switch (op)
10006 {
10007 default:
10008 *pos -= oplen;
10009 print_subexp_standard (exp, pos, stream, prec);
10010 return;
10011
10012 case OP_VAR_VALUE:
10013 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10014 return;
10015
10016 case BINOP_IN_BOUNDS:
10017 /* XXX: sprint_subexp */
10018 print_subexp (exp, pos, stream, PREC_SUFFIX);
10019 fputs_filtered (" in ", stream);
10020 print_subexp (exp, pos, stream, PREC_SUFFIX);
10021 fputs_filtered ("'range", stream);
10022 if (exp->elts[pc + 1].longconst > 1)
10023 fprintf_filtered (stream, "(%ld)",
10024 (long) exp->elts[pc + 1].longconst);
10025 return;
10026
10027 case TERNOP_IN_RANGE:
10028 if (prec >= PREC_EQUAL)
10029 fputs_filtered ("(", stream);
10030 /* XXX: sprint_subexp */
10031 print_subexp (exp, pos, stream, PREC_SUFFIX);
10032 fputs_filtered (" in ", stream);
10033 print_subexp (exp, pos, stream, PREC_EQUAL);
10034 fputs_filtered (" .. ", stream);
10035 print_subexp (exp, pos, stream, PREC_EQUAL);
10036 if (prec >= PREC_EQUAL)
10037 fputs_filtered (")", stream);
10038 return;
10039
10040 case OP_ATR_FIRST:
10041 case OP_ATR_LAST:
10042 case OP_ATR_LENGTH:
10043 case OP_ATR_IMAGE:
10044 case OP_ATR_MAX:
10045 case OP_ATR_MIN:
10046 case OP_ATR_MODULUS:
10047 case OP_ATR_POS:
10048 case OP_ATR_SIZE:
10049 case OP_ATR_TAG:
10050 case OP_ATR_VAL:
10051 if (exp->elts[*pos].opcode == OP_TYPE)
10052 {
10053 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10054 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10055 *pos += 3;
10056 }
10057 else
10058 print_subexp (exp, pos, stream, PREC_SUFFIX);
10059 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10060 if (nargs > 1)
10061 {
10062 int tem;
10063 for (tem = 1; tem < nargs; tem += 1)
10064 {
10065 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10066 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10067 }
10068 fputs_filtered (")", stream);
10069 }
10070 return;
10071
10072 case UNOP_QUAL:
10073 type_print (exp->elts[pc + 1].type, "", stream, 0);
10074 fputs_filtered ("'(", stream);
10075 print_subexp (exp, pos, stream, PREC_PREFIX);
10076 fputs_filtered (")", stream);
10077 return;
10078
10079 case UNOP_IN_RANGE:
10080 /* XXX: sprint_subexp */
10081 print_subexp (exp, pos, stream, PREC_SUFFIX);
10082 fputs_filtered (" in ", stream);
10083 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10084 return;
10085
10086 case OP_DISCRETE_RANGE:
10087 print_subexp (exp, pos, stream, PREC_SUFFIX);
10088 fputs_filtered ("..", stream);
10089 print_subexp (exp, pos, stream, PREC_SUFFIX);
10090 return;
10091
10092 case OP_OTHERS:
10093 fputs_filtered ("others => ", stream);
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10095 return;
10096
10097 case OP_CHOICES:
10098 for (i = 0; i < nargs-1; i += 1)
10099 {
10100 if (i > 0)
10101 fputs_filtered ("|", stream);
10102 print_subexp (exp, pos, stream, PREC_SUFFIX);
10103 }
10104 fputs_filtered (" => ", stream);
10105 print_subexp (exp, pos, stream, PREC_SUFFIX);
10106 return;
10107
10108 case OP_POSITIONAL:
10109 print_subexp (exp, pos, stream, PREC_SUFFIX);
10110 return;
10111
10112 case OP_AGGREGATE:
10113 fputs_filtered ("(", stream);
10114 for (i = 0; i < nargs; i += 1)
10115 {
10116 if (i > 0)
10117 fputs_filtered (", ", stream);
10118 print_subexp (exp, pos, stream, PREC_SUFFIX);
10119 }
10120 fputs_filtered (")", stream);
10121 return;
10122 }
10123 }
10124
10125 /* Table mapping opcodes into strings for printing operators
10126 and precedences of the operators. */
10127
10128 static const struct op_print ada_op_print_tab[] = {
10129 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10130 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10131 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10132 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10133 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10134 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10135 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10136 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10137 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10138 {">=", BINOP_GEQ, PREC_ORDER, 0},
10139 {">", BINOP_GTR, PREC_ORDER, 0},
10140 {"<", BINOP_LESS, PREC_ORDER, 0},
10141 {">>", BINOP_RSH, PREC_SHIFT, 0},
10142 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10143 {"+", BINOP_ADD, PREC_ADD, 0},
10144 {"-", BINOP_SUB, PREC_ADD, 0},
10145 {"&", BINOP_CONCAT, PREC_ADD, 0},
10146 {"*", BINOP_MUL, PREC_MUL, 0},
10147 {"/", BINOP_DIV, PREC_MUL, 0},
10148 {"rem", BINOP_REM, PREC_MUL, 0},
10149 {"mod", BINOP_MOD, PREC_MUL, 0},
10150 {"**", BINOP_EXP, PREC_REPEAT, 0},
10151 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10152 {"-", UNOP_NEG, PREC_PREFIX, 0},
10153 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10154 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10155 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10156 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10157 {".all", UNOP_IND, PREC_SUFFIX, 1},
10158 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10159 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10160 {NULL, 0, 0, 0}
10161 };
10162 \f
10163 /* Fundamental Ada Types */
10164
10165 /* Create a fundamental Ada type using default reasonable for the current
10166 target machine.
10167
10168 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10169 define fundamental types such as "int" or "double". Others (stabs or
10170 DWARF version 2, etc) do define fundamental types. For the formats which
10171 don't provide fundamental types, gdb can create such types using this
10172 function.
10173
10174 FIXME: Some compilers distinguish explicitly signed integral types
10175 (signed short, signed int, signed long) from "regular" integral types
10176 (short, int, long) in the debugging information. There is some dis-
10177 agreement as to how useful this feature is. In particular, gcc does
10178 not support this. Also, only some debugging formats allow the
10179 distinction to be passed on to a debugger. For now, we always just
10180 use "short", "int", or "long" as the type name, for both the implicit
10181 and explicitly signed types. This also makes life easier for the
10182 gdb test suite since we don't have to account for the differences
10183 in output depending upon what the compiler and debugging format
10184 support. We will probably have to re-examine the issue when gdb
10185 starts taking it's fundamental type information directly from the
10186 debugging information supplied by the compiler. fnf@cygnus.com */
10187
10188 static struct type *
10189 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10190 {
10191 struct type *type = NULL;
10192
10193 switch (typeid)
10194 {
10195 default:
10196 /* FIXME: For now, if we are asked to produce a type not in this
10197 language, create the equivalent of a C integer type with the
10198 name "<?type?>". When all the dust settles from the type
10199 reconstruction work, this should probably become an error. */
10200 type = init_type (TYPE_CODE_INT,
10201 TARGET_INT_BIT / TARGET_CHAR_BIT,
10202 0, "<?type?>", objfile);
10203 warning (_("internal error: no Ada fundamental type %d"), typeid);
10204 break;
10205 case FT_VOID:
10206 type = init_type (TYPE_CODE_VOID,
10207 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10208 0, "void", objfile);
10209 break;
10210 case FT_CHAR:
10211 type = init_type (TYPE_CODE_INT,
10212 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10213 0, "character", objfile);
10214 break;
10215 case FT_SIGNED_CHAR:
10216 type = init_type (TYPE_CODE_INT,
10217 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10218 0, "signed char", objfile);
10219 break;
10220 case FT_UNSIGNED_CHAR:
10221 type = init_type (TYPE_CODE_INT,
10222 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10223 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10224 break;
10225 case FT_SHORT:
10226 type = init_type (TYPE_CODE_INT,
10227 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10228 0, "short_integer", objfile);
10229 break;
10230 case FT_SIGNED_SHORT:
10231 type = init_type (TYPE_CODE_INT,
10232 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10233 0, "short_integer", objfile);
10234 break;
10235 case FT_UNSIGNED_SHORT:
10236 type = init_type (TYPE_CODE_INT,
10237 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10238 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10239 break;
10240 case FT_INTEGER:
10241 type = init_type (TYPE_CODE_INT,
10242 TARGET_INT_BIT / TARGET_CHAR_BIT,
10243 0, "integer", objfile);
10244 break;
10245 case FT_SIGNED_INTEGER:
10246 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10247 TARGET_CHAR_BIT,
10248 0, "integer", objfile); /* FIXME -fnf */
10249 break;
10250 case FT_UNSIGNED_INTEGER:
10251 type = init_type (TYPE_CODE_INT,
10252 TARGET_INT_BIT / TARGET_CHAR_BIT,
10253 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10254 break;
10255 case FT_LONG:
10256 type = init_type (TYPE_CODE_INT,
10257 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10258 0, "long_integer", objfile);
10259 break;
10260 case FT_SIGNED_LONG:
10261 type = init_type (TYPE_CODE_INT,
10262 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10263 0, "long_integer", objfile);
10264 break;
10265 case FT_UNSIGNED_LONG:
10266 type = init_type (TYPE_CODE_INT,
10267 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10268 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10269 break;
10270 case FT_LONG_LONG:
10271 type = init_type (TYPE_CODE_INT,
10272 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10273 0, "long_long_integer", objfile);
10274 break;
10275 case FT_SIGNED_LONG_LONG:
10276 type = init_type (TYPE_CODE_INT,
10277 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10278 0, "long_long_integer", objfile);
10279 break;
10280 case FT_UNSIGNED_LONG_LONG:
10281 type = init_type (TYPE_CODE_INT,
10282 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10283 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10284 break;
10285 case FT_FLOAT:
10286 type = init_type (TYPE_CODE_FLT,
10287 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10288 0, "float", objfile);
10289 break;
10290 case FT_DBL_PREC_FLOAT:
10291 type = init_type (TYPE_CODE_FLT,
10292 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10293 0, "long_float", objfile);
10294 break;
10295 case FT_EXT_PREC_FLOAT:
10296 type = init_type (TYPE_CODE_FLT,
10297 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10298 0, "long_long_float", objfile);
10299 break;
10300 }
10301 return (type);
10302 }
10303
10304 enum ada_primitive_types {
10305 ada_primitive_type_int,
10306 ada_primitive_type_long,
10307 ada_primitive_type_short,
10308 ada_primitive_type_char,
10309 ada_primitive_type_float,
10310 ada_primitive_type_double,
10311 ada_primitive_type_void,
10312 ada_primitive_type_long_long,
10313 ada_primitive_type_long_double,
10314 ada_primitive_type_natural,
10315 ada_primitive_type_positive,
10316 ada_primitive_type_system_address,
10317 nr_ada_primitive_types
10318 };
10319
10320 static void
10321 ada_language_arch_info (struct gdbarch *current_gdbarch,
10322 struct language_arch_info *lai)
10323 {
10324 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10325 lai->primitive_type_vector
10326 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10327 struct type *);
10328 lai->primitive_type_vector [ada_primitive_type_int] =
10329 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10330 0, "integer", (struct objfile *) NULL);
10331 lai->primitive_type_vector [ada_primitive_type_long] =
10332 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10333 0, "long_integer", (struct objfile *) NULL);
10334 lai->primitive_type_vector [ada_primitive_type_short] =
10335 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10336 0, "short_integer", (struct objfile *) NULL);
10337 lai->string_char_type =
10338 lai->primitive_type_vector [ada_primitive_type_char] =
10339 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10340 0, "character", (struct objfile *) NULL);
10341 lai->primitive_type_vector [ada_primitive_type_float] =
10342 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10343 0, "float", (struct objfile *) NULL);
10344 lai->primitive_type_vector [ada_primitive_type_double] =
10345 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10346 0, "long_float", (struct objfile *) NULL);
10347 lai->primitive_type_vector [ada_primitive_type_long_long] =
10348 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10349 0, "long_long_integer", (struct objfile *) NULL);
10350 lai->primitive_type_vector [ada_primitive_type_long_double] =
10351 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10352 0, "long_long_float", (struct objfile *) NULL);
10353 lai->primitive_type_vector [ada_primitive_type_natural] =
10354 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10355 0, "natural", (struct objfile *) NULL);
10356 lai->primitive_type_vector [ada_primitive_type_positive] =
10357 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10358 0, "positive", (struct objfile *) NULL);
10359 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10360
10361 lai->primitive_type_vector [ada_primitive_type_system_address] =
10362 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10363 (struct objfile *) NULL));
10364 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10365 = "system__address";
10366 }
10367 \f
10368 /* Language vector */
10369
10370 /* Not really used, but needed in the ada_language_defn. */
10371
10372 static void
10373 emit_char (int c, struct ui_file *stream, int quoter)
10374 {
10375 ada_emit_char (c, stream, quoter, 1);
10376 }
10377
10378 static int
10379 parse (void)
10380 {
10381 warnings_issued = 0;
10382 return ada_parse ();
10383 }
10384
10385 static const struct exp_descriptor ada_exp_descriptor = {
10386 ada_print_subexp,
10387 ada_operator_length,
10388 ada_op_name,
10389 ada_dump_subexp_body,
10390 ada_evaluate_subexp
10391 };
10392
10393 const struct language_defn ada_language_defn = {
10394 "ada", /* Language name */
10395 language_ada,
10396 NULL,
10397 range_check_off,
10398 type_check_off,
10399 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10400 that's not quite what this means. */
10401 array_row_major,
10402 &ada_exp_descriptor,
10403 parse,
10404 ada_error,
10405 resolve,
10406 ada_printchar, /* Print a character constant */
10407 ada_printstr, /* Function to print string constant */
10408 emit_char, /* Function to print single char (not used) */
10409 ada_create_fundamental_type, /* Create fundamental type in this language */
10410 ada_print_type, /* Print a type using appropriate syntax */
10411 ada_val_print, /* Print a value using appropriate syntax */
10412 ada_value_print, /* Print a top-level value */
10413 NULL, /* Language specific skip_trampoline */
10414 NULL, /* value_of_this */
10415 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10416 basic_lookup_transparent_type, /* lookup_transparent_type */
10417 ada_la_decode, /* Language specific symbol demangler */
10418 NULL, /* Language specific class_name_from_physname */
10419 ada_op_print_tab, /* expression operators for printing */
10420 0, /* c-style arrays */
10421 1, /* String lower bound */
10422 NULL,
10423 ada_get_gdb_completer_word_break_characters,
10424 ada_language_arch_info,
10425 ada_print_array_index,
10426 LANG_MAGIC
10427 };
10428
10429 void
10430 _initialize_ada_language (void)
10431 {
10432 add_language (&ada_language_defn);
10433
10434 varsize_limit = 65536;
10435
10436 obstack_init (&symbol_list_obstack);
10437
10438 decoded_names_store = htab_create_alloc
10439 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10440 NULL, xcalloc, xfree);
10441 }
This page took 0.25494 seconds and 4 git commands to generate.