Fix crash printing packed record with packed array.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct symtab *symtab_for_sym (struct symbol *);
130
131 static struct value *resolve_subexp (struct expression **, int *, int,
132 struct type *);
133
134 static void replace_operator_with_call (struct expression **, int, int, int,
135 struct symbol *, struct block *);
136
137 static int possible_user_operator_p (enum exp_opcode, struct value **);
138
139 static char *ada_op_name (enum exp_opcode);
140
141 static const char *ada_decoded_op_name (enum exp_opcode);
142
143 static int numeric_type_p (struct type *);
144
145 static int integer_type_p (struct type *);
146
147 static int scalar_type_p (struct type *);
148
149 static int discrete_type_p (struct type *);
150
151 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156 static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179 static struct type *static_unwrap_type (struct type *type);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344 }
345
346 static char *
347 ada_get_gdb_completer_word_break_characters (void)
348 {
349 return ada_completer_word_break_characters;
350 }
351
352 /* Print an array element index using the Ada syntax. */
353
354 static void
355 ada_print_array_index (struct value *index_value, struct ui_file *stream,
356 const struct value_print_options *options)
357 {
358 LA_VALUE_PRINT (index_value, stream, options);
359 fprintf_filtered (stream, " => ");
360 }
361
362 /* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365 static void
366 extract_string (CORE_ADDR addr, char *buf)
367 {
368 int char_index = 0;
369
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
375 buf + char_index * sizeof (char), sizeof (char));
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
379 }
380
381 /* Assuming VECT points to an array of *SIZE objects of size
382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
383 updating *SIZE as necessary and returning the (new) array. */
384
385 void *
386 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
387 {
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
392 *size = min_size;
393 vect = xrealloc (vect, *size * element_size);
394 }
395 return vect;
396 }
397
398 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
399 suffix of FIELD_NAME beginning "___". */
400
401 static int
402 field_name_match (const char *field_name, const char *target)
403 {
404 int len = strlen (target);
405 return
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
411 }
412
413
414 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421 int
422 ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424 {
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (type));
433
434 return -1;
435 }
436
437 /* The length of the prefix of NAME prior to any "___" suffix. */
438
439 int
440 ada_name_prefix_len (const char *name)
441 {
442 if (name == NULL)
443 return 0;
444 else
445 {
446 const char *p = strstr (name, "___");
447 if (p == NULL)
448 return strlen (name);
449 else
450 return p - name;
451 }
452 }
453
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
457 static int
458 is_suffix (const char *str, const char *suffix)
459 {
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
466 }
467
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
470
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
473 {
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
476 return val;
477 else
478 {
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
483 check_size (type);
484
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 VALUE_ADDRESS (result) += value_offset (val);
490 if (value_lazy (val)
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
493 else
494 memcpy (value_contents_raw (result), value_contents (val),
495 TYPE_LENGTH (type));
496 return result;
497 }
498 }
499
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
502 {
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507 }
508
509 static CORE_ADDR
510 cond_offset_target (CORE_ADDR address, long offset)
511 {
512 if (address == 0)
513 return 0;
514 else
515 return address + offset;
516 }
517
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
522
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
527 static void
528 lim_warning (const char *format, ...)
529 {
530 va_list args;
531 va_start (args, format);
532
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
536
537 va_end (args);
538 }
539
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544 static void
545 check_size (const struct type *type)
546 {
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
549 }
550
551
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556 /* Maximum value of a SIZE-byte signed integer type. */
557 static LONGEST
558 max_of_size (int size)
559 {
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Minimum value of a SIZE-byte signed integer type. */
565 static LONGEST
566 min_of_size (int size)
567 {
568 return -max_of_size (size) - 1;
569 }
570
571 /* Maximum value of a SIZE-byte unsigned integer type. */
572 static ULONGEST
573 umax_of_size (int size)
574 {
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
577 }
578
579 /* Maximum value of integral type T, as a signed quantity. */
580 static LONGEST
581 max_of_type (struct type *t)
582 {
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587 }
588
589 /* Minimum value of integral type T, as a signed quantity. */
590 static LONGEST
591 min_of_type (struct type *t)
592 {
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
597 }
598
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
600 static LONGEST
601 discrete_type_high_bound (struct type *type)
602 {
603 switch (TYPE_CODE (type))
604 {
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
607 case TYPE_CODE_ENUM:
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
612 case TYPE_CODE_INT:
613 return max_of_type (type);
614 default:
615 error (_("Unexpected type in discrete_type_high_bound."));
616 }
617 }
618
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
620 static LONGEST
621 discrete_type_low_bound (struct type *type)
622 {
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
627 case TYPE_CODE_ENUM:
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
632 case TYPE_CODE_INT:
633 return min_of_type (type);
634 default:
635 error (_("Unexpected type in discrete_type_low_bound."));
636 }
637 }
638
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
641
642 static struct type *
643 base_type (struct type *type)
644 {
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
652 }
653 \f
654
655 /* Language Selection */
656
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
660 MAIN_PST is not used. */
661
662 enum language
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
665 {
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
669
670 return lang;
671 }
672
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677 char *
678 ada_main_name (void)
679 {
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
683
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
695 error (_("Invalid address for Ada main program name."));
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703 }
704 \f
705 /* Symbols */
706
707 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
709
710 const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
733 };
734
735 /* The "encoded" form of DECODED, according to GNAT conventions.
736 The result is valid until the next call to ada_encode. */
737
738 char *
739 ada_encode (const char *decoded)
740 {
741 static char *encoding_buffer = NULL;
742 static size_t encoding_buffer_size = 0;
743 const char *p;
744 int k;
745
746 if (decoded == NULL)
747 return NULL;
748
749 GROW_VECT (encoding_buffer, encoding_buffer_size,
750 2 * strlen (decoded) + 10);
751
752 k = 0;
753 for (p = decoded; *p != '\0'; p += 1)
754 {
755 if (*p == '.')
756 {
757 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
758 k += 2;
759 }
760 else if (*p == '"')
761 {
762 const struct ada_opname_map *mapping;
763
764 for (mapping = ada_opname_table;
765 mapping->encoded != NULL
766 && strncmp (mapping->decoded, p,
767 strlen (mapping->decoded)) != 0; mapping += 1)
768 ;
769 if (mapping->encoded == NULL)
770 error (_("invalid Ada operator name: %s"), p);
771 strcpy (encoding_buffer + k, mapping->encoded);
772 k += strlen (mapping->encoded);
773 break;
774 }
775 else
776 {
777 encoding_buffer[k] = *p;
778 k += 1;
779 }
780 }
781
782 encoding_buffer[k] = '\0';
783 return encoding_buffer;
784 }
785
786 /* Return NAME folded to lower case, or, if surrounded by single
787 quotes, unfolded, but with the quotes stripped away. Result good
788 to next call. */
789
790 char *
791 ada_fold_name (const char *name)
792 {
793 static char *fold_buffer = NULL;
794 static size_t fold_buffer_size = 0;
795
796 int len = strlen (name);
797 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
798
799 if (name[0] == '\'')
800 {
801 strncpy (fold_buffer, name + 1, len - 2);
802 fold_buffer[len - 2] = '\000';
803 }
804 else
805 {
806 int i;
807 for (i = 0; i <= len; i += 1)
808 fold_buffer[i] = tolower (name[i]);
809 }
810
811 return fold_buffer;
812 }
813
814 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
815
816 static int
817 is_lower_alphanum (const char c)
818 {
819 return (isdigit (c) || (isalpha (c) && islower (c)));
820 }
821
822 /* Remove either of these suffixes:
823 . .{DIGIT}+
824 . ${DIGIT}+
825 . ___{DIGIT}+
826 . __{DIGIT}+.
827 These are suffixes introduced by the compiler for entities such as
828 nested subprogram for instance, in order to avoid name clashes.
829 They do not serve any purpose for the debugger. */
830
831 static void
832 ada_remove_trailing_digits (const char *encoded, int *len)
833 {
834 if (*len > 1 && isdigit (encoded[*len - 1]))
835 {
836 int i = *len - 2;
837 while (i > 0 && isdigit (encoded[i]))
838 i--;
839 if (i >= 0 && encoded[i] == '.')
840 *len = i;
841 else if (i >= 0 && encoded[i] == '$')
842 *len = i;
843 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
844 *len = i - 2;
845 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
846 *len = i - 1;
847 }
848 }
849
850 /* Remove the suffix introduced by the compiler for protected object
851 subprograms. */
852
853 static void
854 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
855 {
856 /* Remove trailing N. */
857
858 /* Protected entry subprograms are broken into two
859 separate subprograms: The first one is unprotected, and has
860 a 'N' suffix; the second is the protected version, and has
861 the 'P' suffix. The second calls the first one after handling
862 the protection. Since the P subprograms are internally generated,
863 we leave these names undecoded, giving the user a clue that this
864 entity is internal. */
865
866 if (*len > 1
867 && encoded[*len - 1] == 'N'
868 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
869 *len = *len - 1;
870 }
871
872 /* If ENCODED follows the GNAT entity encoding conventions, then return
873 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
874 replaced by ENCODED.
875
876 The resulting string is valid until the next call of ada_decode.
877 If the string is unchanged by decoding, the original string pointer
878 is returned. */
879
880 const char *
881 ada_decode (const char *encoded)
882 {
883 int i, j;
884 int len0;
885 const char *p;
886 char *decoded;
887 int at_start_name;
888 static char *decoding_buffer = NULL;
889 static size_t decoding_buffer_size = 0;
890
891 /* The name of the Ada main procedure starts with "_ada_".
892 This prefix is not part of the decoded name, so skip this part
893 if we see this prefix. */
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 /* If the name starts with '_', then it is not a properly encoded
898 name, so do not attempt to decode it. Similarly, if the name
899 starts with '<', the name should not be decoded. */
900 if (encoded[0] == '_' || encoded[0] == '<')
901 goto Suppress;
902
903 len0 = strlen (encoded);
904
905 ada_remove_trailing_digits (encoded, &len0);
906 ada_remove_po_subprogram_suffix (encoded, &len0);
907
908 /* Remove the ___X.* suffix if present. Do not forget to verify that
909 the suffix is located before the current "end" of ENCODED. We want
910 to avoid re-matching parts of ENCODED that have previously been
911 marked as discarded (by decrementing LEN0). */
912 p = strstr (encoded, "___");
913 if (p != NULL && p - encoded < len0 - 3)
914 {
915 if (p[3] == 'X')
916 len0 = p - encoded;
917 else
918 goto Suppress;
919 }
920
921 /* Remove any trailing TKB suffix. It tells us that this symbol
922 is for the body of a task, but that information does not actually
923 appear in the decoded name. */
924
925 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
926 len0 -= 3;
927
928 /* Remove trailing "B" suffixes. */
929 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
930
931 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
932 len0 -= 1;
933
934 /* Make decoded big enough for possible expansion by operator name. */
935
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 /* Remove trailing __{digit}+ or trailing ${digit}+. */
940
941 if (len0 > 1 && isdigit (encoded[len0 - 1]))
942 {
943 i = len0 - 2;
944 while ((i >= 0 && isdigit (encoded[i]))
945 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
946 i -= 1;
947 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
948 len0 = i - 1;
949 else if (encoded[i] == '$')
950 len0 = i;
951 }
952
953 /* The first few characters that are not alphabetic are not part
954 of any encoding we use, so we can copy them over verbatim. */
955
956 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
957 decoded[j] = encoded[i];
958
959 at_start_name = 1;
960 while (i < len0)
961 {
962 /* Is this a symbol function? */
963 if (at_start_name && encoded[i] == 'O')
964 {
965 int k;
966 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
967 {
968 int op_len = strlen (ada_opname_table[k].encoded);
969 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
970 op_len - 1) == 0)
971 && !isalnum (encoded[i + op_len]))
972 {
973 strcpy (decoded + j, ada_opname_table[k].decoded);
974 at_start_name = 0;
975 i += op_len;
976 j += strlen (ada_opname_table[k].decoded);
977 break;
978 }
979 }
980 if (ada_opname_table[k].encoded != NULL)
981 continue;
982 }
983 at_start_name = 0;
984
985 /* Replace "TK__" with "__", which will eventually be translated
986 into "." (just below). */
987
988 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
989 i += 2;
990
991 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
992 be translated into "." (just below). These are internal names
993 generated for anonymous blocks inside which our symbol is nested. */
994
995 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
996 && encoded [i+2] == 'B' && encoded [i+3] == '_'
997 && isdigit (encoded [i+4]))
998 {
999 int k = i + 5;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++; /* Skip any extra digit. */
1003
1004 /* Double-check that the "__B_{DIGITS}+" sequence we found
1005 is indeed followed by "__". */
1006 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1007 i = k;
1008 }
1009
1010 /* Remove _E{DIGITS}+[sb] */
1011
1012 /* Just as for protected object subprograms, there are 2 categories
1013 of subprograms created by the compiler for each entry. The first
1014 one implements the actual entry code, and has a suffix following
1015 the convention above; the second one implements the barrier and
1016 uses the same convention as above, except that the 'E' is replaced
1017 by a 'B'.
1018
1019 Just as above, we do not decode the name of barrier functions
1020 to give the user a clue that the code he is debugging has been
1021 internally generated. */
1022
1023 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1024 && isdigit (encoded[i+2]))
1025 {
1026 int k = i + 3;
1027
1028 while (k < len0 && isdigit (encoded[k]))
1029 k++;
1030
1031 if (k < len0
1032 && (encoded[k] == 'b' || encoded[k] == 's'))
1033 {
1034 k++;
1035 /* Just as an extra precaution, make sure that if this
1036 suffix is followed by anything else, it is a '_'.
1037 Otherwise, we matched this sequence by accident. */
1038 if (k == len0
1039 || (k < len0 && encoded[k] == '_'))
1040 i = k;
1041 }
1042 }
1043
1044 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1045 the GNAT front-end in protected object subprograms. */
1046
1047 if (i < len0 + 3
1048 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1049 {
1050 /* Backtrack a bit up until we reach either the begining of
1051 the encoded name, or "__". Make sure that we only find
1052 digits or lowercase characters. */
1053 const char *ptr = encoded + i - 1;
1054
1055 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1056 ptr--;
1057 if (ptr < encoded
1058 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1059 i++;
1060 }
1061
1062 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1063 {
1064 /* This is a X[bn]* sequence not separated from the previous
1065 part of the name with a non-alpha-numeric character (in other
1066 words, immediately following an alpha-numeric character), then
1067 verify that it is placed at the end of the encoded name. If
1068 not, then the encoding is not valid and we should abort the
1069 decoding. Otherwise, just skip it, it is used in body-nested
1070 package names. */
1071 do
1072 i += 1;
1073 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1074 if (i < len0)
1075 goto Suppress;
1076 }
1077 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1078 {
1079 /* Replace '__' by '.'. */
1080 decoded[j] = '.';
1081 at_start_name = 1;
1082 i += 2;
1083 j += 1;
1084 }
1085 else
1086 {
1087 /* It's a character part of the decoded name, so just copy it
1088 over. */
1089 decoded[j] = encoded[i];
1090 i += 1;
1091 j += 1;
1092 }
1093 }
1094 decoded[j] = '\000';
1095
1096 /* Decoded names should never contain any uppercase character.
1097 Double-check this, and abort the decoding if we find one. */
1098
1099 for (i = 0; decoded[i] != '\0'; i += 1)
1100 if (isupper (decoded[i]) || decoded[i] == ' ')
1101 goto Suppress;
1102
1103 if (strcmp (decoded, encoded) == 0)
1104 return encoded;
1105 else
1106 return decoded;
1107
1108 Suppress:
1109 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1110 decoded = decoding_buffer;
1111 if (encoded[0] == '<')
1112 strcpy (decoded, encoded);
1113 else
1114 sprintf (decoded, "<%s>", encoded);
1115 return decoded;
1116
1117 }
1118
1119 /* Table for keeping permanent unique copies of decoded names. Once
1120 allocated, names in this table are never released. While this is a
1121 storage leak, it should not be significant unless there are massive
1122 changes in the set of decoded names in successive versions of a
1123 symbol table loaded during a single session. */
1124 static struct htab *decoded_names_store;
1125
1126 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1127 in the language-specific part of GSYMBOL, if it has not been
1128 previously computed. Tries to save the decoded name in the same
1129 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1130 in any case, the decoded symbol has a lifetime at least that of
1131 GSYMBOL).
1132 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1133 const, but nevertheless modified to a semantically equivalent form
1134 when a decoded name is cached in it.
1135 */
1136
1137 char *
1138 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1139 {
1140 char **resultp =
1141 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1142 if (*resultp == NULL)
1143 {
1144 const char *decoded = ada_decode (gsymbol->name);
1145 if (gsymbol->obj_section != NULL)
1146 {
1147 struct objfile *objf = gsymbol->obj_section->objfile;
1148 *resultp = obsavestring (decoded, strlen (decoded),
1149 &objf->objfile_obstack);
1150 }
1151 /* Sometimes, we can't find a corresponding objfile, in which
1152 case, we put the result on the heap. Since we only decode
1153 when needed, we hope this usually does not cause a
1154 significant memory leak (FIXME). */
1155 if (*resultp == NULL)
1156 {
1157 char **slot = (char **) htab_find_slot (decoded_names_store,
1158 decoded, INSERT);
1159 if (*slot == NULL)
1160 *slot = xstrdup (decoded);
1161 *resultp = *slot;
1162 }
1163 }
1164
1165 return *resultp;
1166 }
1167
1168 static char *
1169 ada_la_decode (const char *encoded, int options)
1170 {
1171 return xstrdup (ada_decode (encoded));
1172 }
1173
1174 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1175 suffixes that encode debugging information or leading _ada_ on
1176 SYM_NAME (see is_name_suffix commentary for the debugging
1177 information that is ignored). If WILD, then NAME need only match a
1178 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1179 either argument is NULL. */
1180
1181 static int
1182 ada_match_name (const char *sym_name, const char *name, int wild)
1183 {
1184 if (sym_name == NULL || name == NULL)
1185 return 0;
1186 else if (wild)
1187 return wild_match (name, strlen (name), sym_name);
1188 else
1189 {
1190 int len_name = strlen (name);
1191 return (strncmp (sym_name, name, len_name) == 0
1192 && is_name_suffix (sym_name + len_name))
1193 || (strncmp (sym_name, "_ada_", 5) == 0
1194 && strncmp (sym_name + 5, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name + 5));
1196 }
1197 }
1198 \f
1199
1200 /* Arrays */
1201
1202 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1203
1204 static char *bound_name[] = {
1205 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1206 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1207 };
1208
1209 /* Maximum number of array dimensions we are prepared to handle. */
1210
1211 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1212
1213 /* Like modify_field, but allows bitpos > wordlength. */
1214
1215 static void
1216 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1217 {
1218 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1219 }
1220
1221
1222 /* The desc_* routines return primitive portions of array descriptors
1223 (fat pointers). */
1224
1225 /* The descriptor or array type, if any, indicated by TYPE; removes
1226 level of indirection, if needed. */
1227
1228 static struct type *
1229 desc_base_type (struct type *type)
1230 {
1231 if (type == NULL)
1232 return NULL;
1233 type = ada_check_typedef (type);
1234 if (type != NULL
1235 && (TYPE_CODE (type) == TYPE_CODE_PTR
1236 || TYPE_CODE (type) == TYPE_CODE_REF))
1237 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1238 else
1239 return type;
1240 }
1241
1242 /* True iff TYPE indicates a "thin" array pointer type. */
1243
1244 static int
1245 is_thin_pntr (struct type *type)
1246 {
1247 return
1248 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1249 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1250 }
1251
1252 /* The descriptor type for thin pointer type TYPE. */
1253
1254 static struct type *
1255 thin_descriptor_type (struct type *type)
1256 {
1257 struct type *base_type = desc_base_type (type);
1258 if (base_type == NULL)
1259 return NULL;
1260 if (is_suffix (ada_type_name (base_type), "___XVE"))
1261 return base_type;
1262 else
1263 {
1264 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1265 if (alt_type == NULL)
1266 return base_type;
1267 else
1268 return alt_type;
1269 }
1270 }
1271
1272 /* A pointer to the array data for thin-pointer value VAL. */
1273
1274 static struct value *
1275 thin_data_pntr (struct value *val)
1276 {
1277 struct type *type = value_type (val);
1278 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1279 return value_cast (desc_data_type (thin_descriptor_type (type)),
1280 value_copy (val));
1281 else
1282 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1283 VALUE_ADDRESS (val) + value_offset (val));
1284 }
1285
1286 /* True iff TYPE indicates a "thick" array pointer type. */
1287
1288 static int
1289 is_thick_pntr (struct type *type)
1290 {
1291 type = desc_base_type (type);
1292 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1293 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1294 }
1295
1296 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1297 pointer to one, the type of its bounds data; otherwise, NULL. */
1298
1299 static struct type *
1300 desc_bounds_type (struct type *type)
1301 {
1302 struct type *r;
1303
1304 type = desc_base_type (type);
1305
1306 if (type == NULL)
1307 return NULL;
1308 else if (is_thin_pntr (type))
1309 {
1310 type = thin_descriptor_type (type);
1311 if (type == NULL)
1312 return NULL;
1313 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1314 if (r != NULL)
1315 return ada_check_typedef (r);
1316 }
1317 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1318 {
1319 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1320 if (r != NULL)
1321 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1322 }
1323 return NULL;
1324 }
1325
1326 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1327 one, a pointer to its bounds data. Otherwise NULL. */
1328
1329 static struct value *
1330 desc_bounds (struct value *arr)
1331 {
1332 struct type *type = ada_check_typedef (value_type (arr));
1333 if (is_thin_pntr (type))
1334 {
1335 struct type *bounds_type =
1336 desc_bounds_type (thin_descriptor_type (type));
1337 LONGEST addr;
1338
1339 if (bounds_type == NULL)
1340 error (_("Bad GNAT array descriptor"));
1341
1342 /* NOTE: The following calculation is not really kosher, but
1343 since desc_type is an XVE-encoded type (and shouldn't be),
1344 the correct calculation is a real pain. FIXME (and fix GCC). */
1345 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1346 addr = value_as_long (arr);
1347 else
1348 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1349
1350 return
1351 value_from_longest (lookup_pointer_type (bounds_type),
1352 addr - TYPE_LENGTH (bounds_type));
1353 }
1354
1355 else if (is_thick_pntr (type))
1356 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1357 _("Bad GNAT array descriptor"));
1358 else
1359 return NULL;
1360 }
1361
1362 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1363 position of the field containing the address of the bounds data. */
1364
1365 static int
1366 fat_pntr_bounds_bitpos (struct type *type)
1367 {
1368 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1369 }
1370
1371 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1372 size of the field containing the address of the bounds data. */
1373
1374 static int
1375 fat_pntr_bounds_bitsize (struct type *type)
1376 {
1377 type = desc_base_type (type);
1378
1379 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1380 return TYPE_FIELD_BITSIZE (type, 1);
1381 else
1382 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1383 }
1384
1385 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1386 pointer to one, the type of its array data (a
1387 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1388 ada_type_of_array to get an array type with bounds data. */
1389
1390 static struct type *
1391 desc_data_type (struct type *type)
1392 {
1393 type = desc_base_type (type);
1394
1395 /* NOTE: The following is bogus; see comment in desc_bounds. */
1396 if (is_thin_pntr (type))
1397 return lookup_pointer_type
1398 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1399 else if (is_thick_pntr (type))
1400 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1401 else
1402 return NULL;
1403 }
1404
1405 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1406 its array data. */
1407
1408 static struct value *
1409 desc_data (struct value *arr)
1410 {
1411 struct type *type = value_type (arr);
1412 if (is_thin_pntr (type))
1413 return thin_data_pntr (arr);
1414 else if (is_thick_pntr (type))
1415 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1416 _("Bad GNAT array descriptor"));
1417 else
1418 return NULL;
1419 }
1420
1421
1422 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1423 position of the field containing the address of the data. */
1424
1425 static int
1426 fat_pntr_data_bitpos (struct type *type)
1427 {
1428 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1429 }
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 size of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitsize (struct type *type)
1436 {
1437 type = desc_base_type (type);
1438
1439 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1440 return TYPE_FIELD_BITSIZE (type, 0);
1441 else
1442 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1443 }
1444
1445 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1446 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1447 bound, if WHICH is 1. The first bound is I=1. */
1448
1449 static struct value *
1450 desc_one_bound (struct value *bounds, int i, int which)
1451 {
1452 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1453 _("Bad GNAT array descriptor bounds"));
1454 }
1455
1456 /* If BOUNDS is an array-bounds structure type, return the bit position
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1458 bound, if WHICH is 1. The first bound is I=1. */
1459
1460 static int
1461 desc_bound_bitpos (struct type *type, int i, int which)
1462 {
1463 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1464 }
1465
1466 /* If BOUNDS is an array-bounds structure type, return the bit field size
1467 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1468 bound, if WHICH is 1. The first bound is I=1. */
1469
1470 static int
1471 desc_bound_bitsize (struct type *type, int i, int which)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1476 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1477 else
1478 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1479 }
1480
1481 /* If TYPE is the type of an array-bounds structure, the type of its
1482 Ith bound (numbering from 1). Otherwise, NULL. */
1483
1484 static struct type *
1485 desc_index_type (struct type *type, int i)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1490 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1491 else
1492 return NULL;
1493 }
1494
1495 /* The number of index positions in the array-bounds type TYPE.
1496 Return 0 if TYPE is NULL. */
1497
1498 static int
1499 desc_arity (struct type *type)
1500 {
1501 type = desc_base_type (type);
1502
1503 if (type != NULL)
1504 return TYPE_NFIELDS (type) / 2;
1505 return 0;
1506 }
1507
1508 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1509 an array descriptor type (representing an unconstrained array
1510 type). */
1511
1512 static int
1513 ada_is_direct_array_type (struct type *type)
1514 {
1515 if (type == NULL)
1516 return 0;
1517 type = ada_check_typedef (type);
1518 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1519 || ada_is_array_descriptor_type (type));
1520 }
1521
1522 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1523 * to one. */
1524
1525 static int
1526 ada_is_array_type (struct type *type)
1527 {
1528 while (type != NULL
1529 && (TYPE_CODE (type) == TYPE_CODE_PTR
1530 || TYPE_CODE (type) == TYPE_CODE_REF))
1531 type = TYPE_TARGET_TYPE (type);
1532 return ada_is_direct_array_type (type);
1533 }
1534
1535 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1536
1537 int
1538 ada_is_simple_array_type (struct type *type)
1539 {
1540 if (type == NULL)
1541 return 0;
1542 type = ada_check_typedef (type);
1543 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1544 || (TYPE_CODE (type) == TYPE_CODE_PTR
1545 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1546 }
1547
1548 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1549
1550 int
1551 ada_is_array_descriptor_type (struct type *type)
1552 {
1553 struct type *data_type = desc_data_type (type);
1554
1555 if (type == NULL)
1556 return 0;
1557 type = ada_check_typedef (type);
1558 return
1559 data_type != NULL
1560 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1561 && TYPE_TARGET_TYPE (data_type) != NULL
1562 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1563 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1564 && desc_arity (desc_bounds_type (type)) > 0;
1565 }
1566
1567 /* Non-zero iff type is a partially mal-formed GNAT array
1568 descriptor. FIXME: This is to compensate for some problems with
1569 debugging output from GNAT. Re-examine periodically to see if it
1570 is still needed. */
1571
1572 int
1573 ada_is_bogus_array_descriptor (struct type *type)
1574 {
1575 return
1576 type != NULL
1577 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1578 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1579 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1580 && !ada_is_array_descriptor_type (type);
1581 }
1582
1583
1584 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1585 (fat pointer) returns the type of the array data described---specifically,
1586 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1587 in from the descriptor; otherwise, they are left unspecified. If
1588 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1589 returns NULL. The result is simply the type of ARR if ARR is not
1590 a descriptor. */
1591 struct type *
1592 ada_type_of_array (struct value *arr, int bounds)
1593 {
1594 if (ada_is_packed_array_type (value_type (arr)))
1595 return decode_packed_array_type (value_type (arr));
1596
1597 if (!ada_is_array_descriptor_type (value_type (arr)))
1598 return value_type (arr);
1599
1600 if (!bounds)
1601 return
1602 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1603 else
1604 {
1605 struct type *elt_type;
1606 int arity;
1607 struct value *descriptor;
1608 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1609
1610 elt_type = ada_array_element_type (value_type (arr), -1);
1611 arity = ada_array_arity (value_type (arr));
1612
1613 if (elt_type == NULL || arity == 0)
1614 return ada_check_typedef (value_type (arr));
1615
1616 descriptor = desc_bounds (arr);
1617 if (value_as_long (descriptor) == 0)
1618 return NULL;
1619 while (arity > 0)
1620 {
1621 struct type *range_type = alloc_type (objf);
1622 struct type *array_type = alloc_type (objf);
1623 struct value *low = desc_one_bound (descriptor, arity, 0);
1624 struct value *high = desc_one_bound (descriptor, arity, 1);
1625 arity -= 1;
1626
1627 create_range_type (range_type, value_type (low),
1628 longest_to_int (value_as_long (low)),
1629 longest_to_int (value_as_long (high)));
1630 elt_type = create_array_type (array_type, elt_type, range_type);
1631 }
1632
1633 return lookup_pointer_type (elt_type);
1634 }
1635 }
1636
1637 /* If ARR does not represent an array, returns ARR unchanged.
1638 Otherwise, returns either a standard GDB array with bounds set
1639 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1640 GDB array. Returns NULL if ARR is a null fat pointer. */
1641
1642 struct value *
1643 ada_coerce_to_simple_array_ptr (struct value *arr)
1644 {
1645 if (ada_is_array_descriptor_type (value_type (arr)))
1646 {
1647 struct type *arrType = ada_type_of_array (arr, 1);
1648 if (arrType == NULL)
1649 return NULL;
1650 return value_cast (arrType, value_copy (desc_data (arr)));
1651 }
1652 else if (ada_is_packed_array_type (value_type (arr)))
1653 return decode_packed_array (arr);
1654 else
1655 return arr;
1656 }
1657
1658 /* If ARR does not represent an array, returns ARR unchanged.
1659 Otherwise, returns a standard GDB array describing ARR (which may
1660 be ARR itself if it already is in the proper form). */
1661
1662 static struct value *
1663 ada_coerce_to_simple_array (struct value *arr)
1664 {
1665 if (ada_is_array_descriptor_type (value_type (arr)))
1666 {
1667 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1668 if (arrVal == NULL)
1669 error (_("Bounds unavailable for null array pointer."));
1670 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1671 return value_ind (arrVal);
1672 }
1673 else if (ada_is_packed_array_type (value_type (arr)))
1674 return decode_packed_array (arr);
1675 else
1676 return arr;
1677 }
1678
1679 /* If TYPE represents a GNAT array type, return it translated to an
1680 ordinary GDB array type (possibly with BITSIZE fields indicating
1681 packing). For other types, is the identity. */
1682
1683 struct type *
1684 ada_coerce_to_simple_array_type (struct type *type)
1685 {
1686 struct value *mark = value_mark ();
1687 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1688 struct type *result;
1689 deprecated_set_value_type (dummy, type);
1690 result = ada_type_of_array (dummy, 0);
1691 value_free_to_mark (mark);
1692 return result;
1693 }
1694
1695 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1696
1697 int
1698 ada_is_packed_array_type (struct type *type)
1699 {
1700 if (type == NULL)
1701 return 0;
1702 type = desc_base_type (type);
1703 type = ada_check_typedef (type);
1704 return
1705 ada_type_name (type) != NULL
1706 && strstr (ada_type_name (type), "___XP") != NULL;
1707 }
1708
1709 /* Given that TYPE is a standard GDB array type with all bounds filled
1710 in, and that the element size of its ultimate scalar constituents
1711 (that is, either its elements, or, if it is an array of arrays, its
1712 elements' elements, etc.) is *ELT_BITS, return an identical type,
1713 but with the bit sizes of its elements (and those of any
1714 constituent arrays) recorded in the BITSIZE components of its
1715 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1716 in bits. */
1717
1718 static struct type *
1719 packed_array_type (struct type *type, long *elt_bits)
1720 {
1721 struct type *new_elt_type;
1722 struct type *new_type;
1723 LONGEST low_bound, high_bound;
1724
1725 type = ada_check_typedef (type);
1726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1727 return type;
1728
1729 new_type = alloc_type (TYPE_OBJFILE (type));
1730 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1731 elt_bits);
1732 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1733 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1734 TYPE_NAME (new_type) = ada_type_name (type);
1735
1736 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1737 &low_bound, &high_bound) < 0)
1738 low_bound = high_bound = 0;
1739 if (high_bound < low_bound)
1740 *elt_bits = TYPE_LENGTH (new_type) = 0;
1741 else
1742 {
1743 *elt_bits *= (high_bound - low_bound + 1);
1744 TYPE_LENGTH (new_type) =
1745 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1746 }
1747
1748 TYPE_FIXED_INSTANCE (new_type) = 1;
1749 return new_type;
1750 }
1751
1752 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1753
1754 static struct type *
1755 decode_packed_array_type (struct type *type)
1756 {
1757 struct symbol *sym;
1758 struct block **blocks;
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *name;
1761 char *tail;
1762 struct type *shadow_type;
1763 long bits;
1764 int i, n;
1765
1766 if (!raw_name)
1767 raw_name = ada_type_name (desc_base_type (type));
1768
1769 if (!raw_name)
1770 return NULL;
1771
1772 name = (char *) alloca (strlen (raw_name) + 1);
1773 tail = strstr (raw_name, "___XP");
1774 type = desc_base_type (type);
1775
1776 memcpy (name, raw_name, tail - raw_name);
1777 name[tail - raw_name] = '\000';
1778
1779 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1780 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1781 {
1782 lim_warning (_("could not find bounds information on packed array"));
1783 return NULL;
1784 }
1785 shadow_type = SYMBOL_TYPE (sym);
1786
1787 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1788 {
1789 lim_warning (_("could not understand bounds information on packed array"));
1790 return NULL;
1791 }
1792
1793 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1794 {
1795 lim_warning
1796 (_("could not understand bit size information on packed array"));
1797 return NULL;
1798 }
1799
1800 return packed_array_type (shadow_type, &bits);
1801 }
1802
1803 /* Given that ARR is a struct value *indicating a GNAT packed array,
1804 returns a simple array that denotes that array. Its type is a
1805 standard GDB array type except that the BITSIZEs of the array
1806 target types are set to the number of bits in each element, and the
1807 type length is set appropriately. */
1808
1809 static struct value *
1810 decode_packed_array (struct value *arr)
1811 {
1812 struct type *type;
1813
1814 arr = ada_coerce_ref (arr);
1815 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1816 arr = ada_value_ind (arr);
1817
1818 type = decode_packed_array_type (value_type (arr));
1819 if (type == NULL)
1820 {
1821 error (_("can't unpack array"));
1822 return NULL;
1823 }
1824
1825 if (gdbarch_bits_big_endian (current_gdbarch)
1826 && ada_is_modular_type (value_type (arr)))
1827 {
1828 /* This is a (right-justified) modular type representing a packed
1829 array with no wrapper. In order to interpret the value through
1830 the (left-justified) packed array type we just built, we must
1831 first left-justify it. */
1832 int bit_size, bit_pos;
1833 ULONGEST mod;
1834
1835 mod = ada_modulus (value_type (arr)) - 1;
1836 bit_size = 0;
1837 while (mod > 0)
1838 {
1839 bit_size += 1;
1840 mod >>= 1;
1841 }
1842 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1843 arr = ada_value_primitive_packed_val (arr, NULL,
1844 bit_pos / HOST_CHAR_BIT,
1845 bit_pos % HOST_CHAR_BIT,
1846 bit_size,
1847 type);
1848 }
1849
1850 return coerce_unspec_val_to_type (arr, type);
1851 }
1852
1853
1854 /* The value of the element of packed array ARR at the ARITY indices
1855 given in IND. ARR must be a simple array. */
1856
1857 static struct value *
1858 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1859 {
1860 int i;
1861 int bits, elt_off, bit_off;
1862 long elt_total_bit_offset;
1863 struct type *elt_type;
1864 struct value *v;
1865
1866 bits = 0;
1867 elt_total_bit_offset = 0;
1868 elt_type = ada_check_typedef (value_type (arr));
1869 for (i = 0; i < arity; i += 1)
1870 {
1871 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1872 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1873 error
1874 (_("attempt to do packed indexing of something other than a packed array"));
1875 else
1876 {
1877 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1878 LONGEST lowerbound, upperbound;
1879 LONGEST idx;
1880
1881 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1882 {
1883 lim_warning (_("don't know bounds of array"));
1884 lowerbound = upperbound = 0;
1885 }
1886
1887 idx = pos_atr (ind[i]);
1888 if (idx < lowerbound || idx > upperbound)
1889 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1890 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1891 elt_total_bit_offset += (idx - lowerbound) * bits;
1892 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1893 }
1894 }
1895 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1896 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1897
1898 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1899 bits, elt_type);
1900 return v;
1901 }
1902
1903 /* Non-zero iff TYPE includes negative integer values. */
1904
1905 static int
1906 has_negatives (struct type *type)
1907 {
1908 switch (TYPE_CODE (type))
1909 {
1910 default:
1911 return 0;
1912 case TYPE_CODE_INT:
1913 return !TYPE_UNSIGNED (type);
1914 case TYPE_CODE_RANGE:
1915 return TYPE_LOW_BOUND (type) < 0;
1916 }
1917 }
1918
1919
1920 /* Create a new value of type TYPE from the contents of OBJ starting
1921 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1922 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1923 assigning through the result will set the field fetched from.
1924 VALADDR is ignored unless OBJ is NULL, in which case,
1925 VALADDR+OFFSET must address the start of storage containing the
1926 packed value. The value returned in this case is never an lval.
1927 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1928
1929 struct value *
1930 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1931 long offset, int bit_offset, int bit_size,
1932 struct type *type)
1933 {
1934 struct value *v;
1935 int src, /* Index into the source area */
1936 targ, /* Index into the target area */
1937 srcBitsLeft, /* Number of source bits left to move */
1938 nsrc, ntarg, /* Number of source and target bytes */
1939 unusedLS, /* Number of bits in next significant
1940 byte of source that are unused */
1941 accumSize; /* Number of meaningful bits in accum */
1942 unsigned char *bytes; /* First byte containing data to unpack */
1943 unsigned char *unpacked;
1944 unsigned long accum; /* Staging area for bits being transferred */
1945 unsigned char sign;
1946 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1947 /* Transmit bytes from least to most significant; delta is the direction
1948 the indices move. */
1949 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1950
1951 type = ada_check_typedef (type);
1952
1953 if (obj == NULL)
1954 {
1955 v = allocate_value (type);
1956 bytes = (unsigned char *) (valaddr + offset);
1957 }
1958 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1959 {
1960 v = value_at (type,
1961 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1962 bytes = (unsigned char *) alloca (len);
1963 read_memory (VALUE_ADDRESS (v), bytes, len);
1964 }
1965 else
1966 {
1967 v = allocate_value (type);
1968 bytes = (unsigned char *) value_contents (obj) + offset;
1969 }
1970
1971 if (obj != NULL)
1972 {
1973 set_value_component_location (v, obj);
1974 VALUE_ADDRESS (v) += value_offset (obj) + offset;
1975 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1976 set_value_bitsize (v, bit_size);
1977 if (value_bitpos (v) >= HOST_CHAR_BIT)
1978 {
1979 VALUE_ADDRESS (v) += 1;
1980 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1981 }
1982 }
1983 else
1984 set_value_bitsize (v, bit_size);
1985 unpacked = (unsigned char *) value_contents (v);
1986
1987 srcBitsLeft = bit_size;
1988 nsrc = len;
1989 ntarg = TYPE_LENGTH (type);
1990 sign = 0;
1991 if (bit_size == 0)
1992 {
1993 memset (unpacked, 0, TYPE_LENGTH (type));
1994 return v;
1995 }
1996 else if (gdbarch_bits_big_endian (current_gdbarch))
1997 {
1998 src = len - 1;
1999 if (has_negatives (type)
2000 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2001 sign = ~0;
2002
2003 unusedLS =
2004 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2005 % HOST_CHAR_BIT;
2006
2007 switch (TYPE_CODE (type))
2008 {
2009 case TYPE_CODE_ARRAY:
2010 case TYPE_CODE_UNION:
2011 case TYPE_CODE_STRUCT:
2012 /* Non-scalar values must be aligned at a byte boundary... */
2013 accumSize =
2014 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2015 /* ... And are placed at the beginning (most-significant) bytes
2016 of the target. */
2017 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2018 ntarg = targ + 1;
2019 break;
2020 default:
2021 accumSize = 0;
2022 targ = TYPE_LENGTH (type) - 1;
2023 break;
2024 }
2025 }
2026 else
2027 {
2028 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2029
2030 src = targ = 0;
2031 unusedLS = bit_offset;
2032 accumSize = 0;
2033
2034 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2035 sign = ~0;
2036 }
2037
2038 accum = 0;
2039 while (nsrc > 0)
2040 {
2041 /* Mask for removing bits of the next source byte that are not
2042 part of the value. */
2043 unsigned int unusedMSMask =
2044 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2045 1;
2046 /* Sign-extend bits for this byte. */
2047 unsigned int signMask = sign & ~unusedMSMask;
2048 accum |=
2049 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2050 accumSize += HOST_CHAR_BIT - unusedLS;
2051 if (accumSize >= HOST_CHAR_BIT)
2052 {
2053 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2054 accumSize -= HOST_CHAR_BIT;
2055 accum >>= HOST_CHAR_BIT;
2056 ntarg -= 1;
2057 targ += delta;
2058 }
2059 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2060 unusedLS = 0;
2061 nsrc -= 1;
2062 src += delta;
2063 }
2064 while (ntarg > 0)
2065 {
2066 accum |= sign << accumSize;
2067 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2068 accumSize -= HOST_CHAR_BIT;
2069 accum >>= HOST_CHAR_BIT;
2070 ntarg -= 1;
2071 targ += delta;
2072 }
2073
2074 return v;
2075 }
2076
2077 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2078 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2079 not overlap. */
2080 static void
2081 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2082 int src_offset, int n)
2083 {
2084 unsigned int accum, mask;
2085 int accum_bits, chunk_size;
2086
2087 target += targ_offset / HOST_CHAR_BIT;
2088 targ_offset %= HOST_CHAR_BIT;
2089 source += src_offset / HOST_CHAR_BIT;
2090 src_offset %= HOST_CHAR_BIT;
2091 if (gdbarch_bits_big_endian (current_gdbarch))
2092 {
2093 accum = (unsigned char) *source;
2094 source += 1;
2095 accum_bits = HOST_CHAR_BIT - src_offset;
2096
2097 while (n > 0)
2098 {
2099 int unused_right;
2100 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2101 accum_bits += HOST_CHAR_BIT;
2102 source += 1;
2103 chunk_size = HOST_CHAR_BIT - targ_offset;
2104 if (chunk_size > n)
2105 chunk_size = n;
2106 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2107 mask = ((1 << chunk_size) - 1) << unused_right;
2108 *target =
2109 (*target & ~mask)
2110 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 target += 1;
2114 targ_offset = 0;
2115 }
2116 }
2117 else
2118 {
2119 accum = (unsigned char) *source >> src_offset;
2120 source += 1;
2121 accum_bits = HOST_CHAR_BIT - src_offset;
2122
2123 while (n > 0)
2124 {
2125 accum = accum + ((unsigned char) *source << accum_bits);
2126 accum_bits += HOST_CHAR_BIT;
2127 source += 1;
2128 chunk_size = HOST_CHAR_BIT - targ_offset;
2129 if (chunk_size > n)
2130 chunk_size = n;
2131 mask = ((1 << chunk_size) - 1) << targ_offset;
2132 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2133 n -= chunk_size;
2134 accum_bits -= chunk_size;
2135 accum >>= chunk_size;
2136 target += 1;
2137 targ_offset = 0;
2138 }
2139 }
2140 }
2141
2142 /* Store the contents of FROMVAL into the location of TOVAL.
2143 Return a new value with the location of TOVAL and contents of
2144 FROMVAL. Handles assignment into packed fields that have
2145 floating-point or non-scalar types. */
2146
2147 static struct value *
2148 ada_value_assign (struct value *toval, struct value *fromval)
2149 {
2150 struct type *type = value_type (toval);
2151 int bits = value_bitsize (toval);
2152
2153 toval = ada_coerce_ref (toval);
2154 fromval = ada_coerce_ref (fromval);
2155
2156 if (ada_is_direct_array_type (value_type (toval)))
2157 toval = ada_coerce_to_simple_array (toval);
2158 if (ada_is_direct_array_type (value_type (fromval)))
2159 fromval = ada_coerce_to_simple_array (fromval);
2160
2161 if (!deprecated_value_modifiable (toval))
2162 error (_("Left operand of assignment is not a modifiable lvalue."));
2163
2164 if (VALUE_LVAL (toval) == lval_memory
2165 && bits > 0
2166 && (TYPE_CODE (type) == TYPE_CODE_FLT
2167 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2168 {
2169 int len = (value_bitpos (toval)
2170 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2171 int from_size;
2172 char *buffer = (char *) alloca (len);
2173 struct value *val;
2174 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2175
2176 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2177 fromval = value_cast (type, fromval);
2178
2179 read_memory (to_addr, buffer, len);
2180 from_size = value_bitsize (fromval);
2181 if (from_size == 0)
2182 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2183 if (gdbarch_bits_big_endian (current_gdbarch))
2184 move_bits (buffer, value_bitpos (toval),
2185 value_contents (fromval), from_size - bits, bits);
2186 else
2187 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2188 0, bits);
2189 write_memory (to_addr, buffer, len);
2190 if (deprecated_memory_changed_hook)
2191 deprecated_memory_changed_hook (to_addr, len);
2192
2193 val = value_copy (toval);
2194 memcpy (value_contents_raw (val), value_contents (fromval),
2195 TYPE_LENGTH (type));
2196 deprecated_set_value_type (val, type);
2197
2198 return val;
2199 }
2200
2201 return value_assign (toval, fromval);
2202 }
2203
2204
2205 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2206 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2207 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2208 * COMPONENT, and not the inferior's memory. The current contents
2209 * of COMPONENT are ignored. */
2210 static void
2211 value_assign_to_component (struct value *container, struct value *component,
2212 struct value *val)
2213 {
2214 LONGEST offset_in_container =
2215 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2216 - VALUE_ADDRESS (container) - value_offset (container));
2217 int bit_offset_in_container =
2218 value_bitpos (component) - value_bitpos (container);
2219 int bits;
2220
2221 val = value_cast (value_type (component), val);
2222
2223 if (value_bitsize (component) == 0)
2224 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2225 else
2226 bits = value_bitsize (component);
2227
2228 if (gdbarch_bits_big_endian (current_gdbarch))
2229 move_bits (value_contents_writeable (container) + offset_in_container,
2230 value_bitpos (container) + bit_offset_in_container,
2231 value_contents (val),
2232 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2233 bits);
2234 else
2235 move_bits (value_contents_writeable (container) + offset_in_container,
2236 value_bitpos (container) + bit_offset_in_container,
2237 value_contents (val), 0, bits);
2238 }
2239
2240 /* The value of the element of array ARR at the ARITY indices given in IND.
2241 ARR may be either a simple array, GNAT array descriptor, or pointer
2242 thereto. */
2243
2244 struct value *
2245 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2246 {
2247 int k;
2248 struct value *elt;
2249 struct type *elt_type;
2250
2251 elt = ada_coerce_to_simple_array (arr);
2252
2253 elt_type = ada_check_typedef (value_type (elt));
2254 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2255 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2256 return value_subscript_packed (elt, arity, ind);
2257
2258 for (k = 0; k < arity; k += 1)
2259 {
2260 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2261 error (_("too many subscripts (%d expected)"), k);
2262 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2263 }
2264 return elt;
2265 }
2266
2267 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2268 value of the element of *ARR at the ARITY indices given in
2269 IND. Does not read the entire array into memory. */
2270
2271 static struct value *
2272 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2273 struct value **ind)
2274 {
2275 int k;
2276
2277 for (k = 0; k < arity; k += 1)
2278 {
2279 LONGEST lwb, upb;
2280 struct value *idx;
2281
2282 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2283 error (_("too many subscripts (%d expected)"), k);
2284 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2285 value_copy (arr));
2286 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2287 idx = value_pos_atr (builtin_type_int32, ind[k]);
2288 if (lwb != 0)
2289 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2290 BINOP_SUB);
2291
2292 arr = value_ptradd (arr, idx);
2293 type = TYPE_TARGET_TYPE (type);
2294 }
2295
2296 return value_ind (arr);
2297 }
2298
2299 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2300 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2301 elements starting at index LOW. The lower bound of this array is LOW, as
2302 per Ada rules. */
2303 static struct value *
2304 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2305 int low, int high)
2306 {
2307 CORE_ADDR base = value_as_address (array_ptr)
2308 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2309 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2310 struct type *index_type =
2311 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2312 low, high);
2313 struct type *slice_type =
2314 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2315 return value_at_lazy (slice_type, base);
2316 }
2317
2318
2319 static struct value *
2320 ada_value_slice (struct value *array, int low, int high)
2321 {
2322 struct type *type = value_type (array);
2323 struct type *index_type =
2324 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2325 struct type *slice_type =
2326 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2327 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2328 }
2329
2330 /* If type is a record type in the form of a standard GNAT array
2331 descriptor, returns the number of dimensions for type. If arr is a
2332 simple array, returns the number of "array of"s that prefix its
2333 type designation. Otherwise, returns 0. */
2334
2335 int
2336 ada_array_arity (struct type *type)
2337 {
2338 int arity;
2339
2340 if (type == NULL)
2341 return 0;
2342
2343 type = desc_base_type (type);
2344
2345 arity = 0;
2346 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2347 return desc_arity (desc_bounds_type (type));
2348 else
2349 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2350 {
2351 arity += 1;
2352 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2353 }
2354
2355 return arity;
2356 }
2357
2358 /* If TYPE is a record type in the form of a standard GNAT array
2359 descriptor or a simple array type, returns the element type for
2360 TYPE after indexing by NINDICES indices, or by all indices if
2361 NINDICES is -1. Otherwise, returns NULL. */
2362
2363 struct type *
2364 ada_array_element_type (struct type *type, int nindices)
2365 {
2366 type = desc_base_type (type);
2367
2368 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2369 {
2370 int k;
2371 struct type *p_array_type;
2372
2373 p_array_type = desc_data_type (type);
2374
2375 k = ada_array_arity (type);
2376 if (k == 0)
2377 return NULL;
2378
2379 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2380 if (nindices >= 0 && k > nindices)
2381 k = nindices;
2382 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2383 while (k > 0 && p_array_type != NULL)
2384 {
2385 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2386 k -= 1;
2387 }
2388 return p_array_type;
2389 }
2390 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2391 {
2392 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2393 {
2394 type = TYPE_TARGET_TYPE (type);
2395 nindices -= 1;
2396 }
2397 return type;
2398 }
2399
2400 return NULL;
2401 }
2402
2403 /* The type of nth index in arrays of given type (n numbering from 1).
2404 Does not examine memory. */
2405
2406 struct type *
2407 ada_index_type (struct type *type, int n)
2408 {
2409 struct type *result_type;
2410
2411 type = desc_base_type (type);
2412
2413 if (n > ada_array_arity (type))
2414 return NULL;
2415
2416 if (ada_is_simple_array_type (type))
2417 {
2418 int i;
2419
2420 for (i = 1; i < n; i += 1)
2421 type = TYPE_TARGET_TYPE (type);
2422 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2423 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2424 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2425 perhaps stabsread.c would make more sense. */
2426 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2427 result_type = builtin_type_int32;
2428
2429 return result_type;
2430 }
2431 else
2432 return desc_index_type (desc_bounds_type (type), n);
2433 }
2434
2435 /* Given that arr is an array type, returns the lower bound of the
2436 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2437 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2438 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2439 bounds type. It works for other arrays with bounds supplied by
2440 run-time quantities other than discriminants. */
2441
2442 static LONGEST
2443 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2444 struct type ** typep)
2445 {
2446 struct type *type, *index_type_desc, *index_type;
2447 LONGEST retval;
2448
2449 gdb_assert (which == 0 || which == 1);
2450
2451 if (ada_is_packed_array_type (arr_type))
2452 arr_type = decode_packed_array_type (arr_type);
2453
2454 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2455 {
2456 if (typep != NULL)
2457 *typep = builtin_type_int32;
2458 return (LONGEST) - which;
2459 }
2460
2461 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2462 type = TYPE_TARGET_TYPE (arr_type);
2463 else
2464 type = arr_type;
2465
2466 index_type_desc = ada_find_parallel_type (type, "___XA");
2467 if (index_type_desc != NULL)
2468 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2469 NULL, TYPE_OBJFILE (arr_type));
2470 else
2471 {
2472 while (n > 1)
2473 {
2474 type = TYPE_TARGET_TYPE (type);
2475 n -= 1;
2476 }
2477
2478 index_type = TYPE_INDEX_TYPE (type);
2479 }
2480
2481 switch (TYPE_CODE (index_type))
2482 {
2483 case TYPE_CODE_RANGE:
2484 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2485 : TYPE_HIGH_BOUND (index_type);
2486 break;
2487 case TYPE_CODE_ENUM:
2488 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2489 : TYPE_FIELD_BITPOS (index_type,
2490 TYPE_NFIELDS (index_type) - 1);
2491 break;
2492 default:
2493 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2494 }
2495
2496 if (typep != NULL)
2497 *typep = index_type;
2498
2499 return retval;
2500 }
2501
2502 /* Given that arr is an array value, returns the lower bound of the
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
2505 supplied by run-time quantities other than discriminants. */
2506
2507 struct value *
2508 ada_array_bound (struct value *arr, int n, int which)
2509 {
2510 struct type *arr_type = value_type (arr);
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
2514 else if (ada_is_simple_array_type (arr_type))
2515 {
2516 struct type *type;
2517 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2518 return value_from_longest (type, v);
2519 }
2520 else
2521 return desc_one_bound (desc_bounds (arr), n, which);
2522 }
2523
2524 /* Given that arr is an array value, returns the length of the
2525 nth index. This routine will also work for arrays with bounds
2526 supplied by run-time quantities other than discriminants.
2527 Does not work for arrays indexed by enumeration types with representation
2528 clauses at the moment. */
2529
2530 static struct value *
2531 ada_array_length (struct value *arr, int n)
2532 {
2533 struct type *arr_type = ada_check_typedef (value_type (arr));
2534
2535 if (ada_is_packed_array_type (arr_type))
2536 return ada_array_length (decode_packed_array (arr), n);
2537
2538 if (ada_is_simple_array_type (arr_type))
2539 {
2540 struct type *type;
2541 LONGEST v =
2542 ada_array_bound_from_type (arr_type, n, 1, &type) -
2543 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2544 return value_from_longest (type, v);
2545 }
2546 else
2547 return
2548 value_from_longest (builtin_type_int32,
2549 value_as_long (desc_one_bound (desc_bounds (arr),
2550 n, 1))
2551 - value_as_long (desc_one_bound (desc_bounds (arr),
2552 n, 0)) + 1);
2553 }
2554
2555 /* An empty array whose type is that of ARR_TYPE (an array type),
2556 with bounds LOW to LOW-1. */
2557
2558 static struct value *
2559 empty_array (struct type *arr_type, int low)
2560 {
2561 struct type *index_type =
2562 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2563 low, low - 1);
2564 struct type *elt_type = ada_array_element_type (arr_type, 1);
2565 return allocate_value (create_array_type (NULL, elt_type, index_type));
2566 }
2567 \f
2568
2569 /* Name resolution */
2570
2571 /* The "decoded" name for the user-definable Ada operator corresponding
2572 to OP. */
2573
2574 static const char *
2575 ada_decoded_op_name (enum exp_opcode op)
2576 {
2577 int i;
2578
2579 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2580 {
2581 if (ada_opname_table[i].op == op)
2582 return ada_opname_table[i].decoded;
2583 }
2584 error (_("Could not find operator name for opcode"));
2585 }
2586
2587
2588 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2589 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2590 undefined namespace) and converts operators that are
2591 user-defined into appropriate function calls. If CONTEXT_TYPE is
2592 non-null, it provides a preferred result type [at the moment, only
2593 type void has any effect---causing procedures to be preferred over
2594 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2595 return type is preferred. May change (expand) *EXP. */
2596
2597 static void
2598 resolve (struct expression **expp, int void_context_p)
2599 {
2600 int pc;
2601 pc = 0;
2602 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2603 }
2604
2605 /* Resolve the operator of the subexpression beginning at
2606 position *POS of *EXPP. "Resolving" consists of replacing
2607 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2608 with their resolutions, replacing built-in operators with
2609 function calls to user-defined operators, where appropriate, and,
2610 when DEPROCEDURE_P is non-zero, converting function-valued variables
2611 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2612 are as in ada_resolve, above. */
2613
2614 static struct value *
2615 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2616 struct type *context_type)
2617 {
2618 int pc = *pos;
2619 int i;
2620 struct expression *exp; /* Convenience: == *expp. */
2621 enum exp_opcode op = (*expp)->elts[pc].opcode;
2622 struct value **argvec; /* Vector of operand types (alloca'ed). */
2623 int nargs; /* Number of operands. */
2624 int oplen;
2625
2626 argvec = NULL;
2627 nargs = 0;
2628 exp = *expp;
2629
2630 /* Pass one: resolve operands, saving their types and updating *pos,
2631 if needed. */
2632 switch (op)
2633 {
2634 case OP_FUNCALL:
2635 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2636 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2637 *pos += 7;
2638 else
2639 {
2640 *pos += 3;
2641 resolve_subexp (expp, pos, 0, NULL);
2642 }
2643 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2644 break;
2645
2646 case UNOP_ADDR:
2647 *pos += 1;
2648 resolve_subexp (expp, pos, 0, NULL);
2649 break;
2650
2651 case UNOP_QUAL:
2652 *pos += 3;
2653 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2654 break;
2655
2656 case OP_ATR_MODULUS:
2657 case OP_ATR_SIZE:
2658 case OP_ATR_TAG:
2659 case OP_ATR_FIRST:
2660 case OP_ATR_LAST:
2661 case OP_ATR_LENGTH:
2662 case OP_ATR_POS:
2663 case OP_ATR_VAL:
2664 case OP_ATR_MIN:
2665 case OP_ATR_MAX:
2666 case TERNOP_IN_RANGE:
2667 case BINOP_IN_BOUNDS:
2668 case UNOP_IN_RANGE:
2669 case OP_AGGREGATE:
2670 case OP_OTHERS:
2671 case OP_CHOICES:
2672 case OP_POSITIONAL:
2673 case OP_DISCRETE_RANGE:
2674 case OP_NAME:
2675 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2676 *pos += oplen;
2677 break;
2678
2679 case BINOP_ASSIGN:
2680 {
2681 struct value *arg1;
2682
2683 *pos += 1;
2684 arg1 = resolve_subexp (expp, pos, 0, NULL);
2685 if (arg1 == NULL)
2686 resolve_subexp (expp, pos, 1, NULL);
2687 else
2688 resolve_subexp (expp, pos, 1, value_type (arg1));
2689 break;
2690 }
2691
2692 case UNOP_CAST:
2693 *pos += 3;
2694 nargs = 1;
2695 break;
2696
2697 case BINOP_ADD:
2698 case BINOP_SUB:
2699 case BINOP_MUL:
2700 case BINOP_DIV:
2701 case BINOP_REM:
2702 case BINOP_MOD:
2703 case BINOP_EXP:
2704 case BINOP_CONCAT:
2705 case BINOP_LOGICAL_AND:
2706 case BINOP_LOGICAL_OR:
2707 case BINOP_BITWISE_AND:
2708 case BINOP_BITWISE_IOR:
2709 case BINOP_BITWISE_XOR:
2710
2711 case BINOP_EQUAL:
2712 case BINOP_NOTEQUAL:
2713 case BINOP_LESS:
2714 case BINOP_GTR:
2715 case BINOP_LEQ:
2716 case BINOP_GEQ:
2717
2718 case BINOP_REPEAT:
2719 case BINOP_SUBSCRIPT:
2720 case BINOP_COMMA:
2721 *pos += 1;
2722 nargs = 2;
2723 break;
2724
2725 case UNOP_NEG:
2726 case UNOP_PLUS:
2727 case UNOP_LOGICAL_NOT:
2728 case UNOP_ABS:
2729 case UNOP_IND:
2730 *pos += 1;
2731 nargs = 1;
2732 break;
2733
2734 case OP_LONG:
2735 case OP_DOUBLE:
2736 case OP_VAR_VALUE:
2737 *pos += 4;
2738 break;
2739
2740 case OP_TYPE:
2741 case OP_BOOL:
2742 case OP_LAST:
2743 case OP_INTERNALVAR:
2744 *pos += 3;
2745 break;
2746
2747 case UNOP_MEMVAL:
2748 *pos += 3;
2749 nargs = 1;
2750 break;
2751
2752 case OP_REGISTER:
2753 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2754 break;
2755
2756 case STRUCTOP_STRUCT:
2757 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2758 nargs = 1;
2759 break;
2760
2761 case TERNOP_SLICE:
2762 *pos += 1;
2763 nargs = 3;
2764 break;
2765
2766 case OP_STRING:
2767 break;
2768
2769 default:
2770 error (_("Unexpected operator during name resolution"));
2771 }
2772
2773 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2774 for (i = 0; i < nargs; i += 1)
2775 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2776 argvec[i] = NULL;
2777 exp = *expp;
2778
2779 /* Pass two: perform any resolution on principal operator. */
2780 switch (op)
2781 {
2782 default:
2783 break;
2784
2785 case OP_VAR_VALUE:
2786 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2787 {
2788 struct ada_symbol_info *candidates;
2789 int n_candidates;
2790
2791 n_candidates =
2792 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2793 (exp->elts[pc + 2].symbol),
2794 exp->elts[pc + 1].block, VAR_DOMAIN,
2795 &candidates);
2796
2797 if (n_candidates > 1)
2798 {
2799 /* Types tend to get re-introduced locally, so if there
2800 are any local symbols that are not types, first filter
2801 out all types. */
2802 int j;
2803 for (j = 0; j < n_candidates; j += 1)
2804 switch (SYMBOL_CLASS (candidates[j].sym))
2805 {
2806 case LOC_REGISTER:
2807 case LOC_ARG:
2808 case LOC_REF_ARG:
2809 case LOC_REGPARM_ADDR:
2810 case LOC_LOCAL:
2811 case LOC_COMPUTED:
2812 goto FoundNonType;
2813 default:
2814 break;
2815 }
2816 FoundNonType:
2817 if (j < n_candidates)
2818 {
2819 j = 0;
2820 while (j < n_candidates)
2821 {
2822 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2823 {
2824 candidates[j] = candidates[n_candidates - 1];
2825 n_candidates -= 1;
2826 }
2827 else
2828 j += 1;
2829 }
2830 }
2831 }
2832
2833 if (n_candidates == 0)
2834 error (_("No definition found for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 else if (n_candidates == 1)
2837 i = 0;
2838 else if (deprocedure_p
2839 && !is_nonfunction (candidates, n_candidates))
2840 {
2841 i = ada_resolve_function
2842 (candidates, n_candidates, NULL, 0,
2843 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2844 context_type);
2845 if (i < 0)
2846 error (_("Could not find a match for %s"),
2847 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2848 }
2849 else
2850 {
2851 printf_filtered (_("Multiple matches for %s\n"),
2852 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2853 user_select_syms (candidates, n_candidates, 1);
2854 i = 0;
2855 }
2856
2857 exp->elts[pc + 1].block = candidates[i].block;
2858 exp->elts[pc + 2].symbol = candidates[i].sym;
2859 if (innermost_block == NULL
2860 || contained_in (candidates[i].block, innermost_block))
2861 innermost_block = candidates[i].block;
2862 }
2863
2864 if (deprocedure_p
2865 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2866 == TYPE_CODE_FUNC))
2867 {
2868 replace_operator_with_call (expp, pc, 0, 0,
2869 exp->elts[pc + 2].symbol,
2870 exp->elts[pc + 1].block);
2871 exp = *expp;
2872 }
2873 break;
2874
2875 case OP_FUNCALL:
2876 {
2877 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2878 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2879 {
2880 struct ada_symbol_info *candidates;
2881 int n_candidates;
2882
2883 n_candidates =
2884 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2885 (exp->elts[pc + 5].symbol),
2886 exp->elts[pc + 4].block, VAR_DOMAIN,
2887 &candidates);
2888 if (n_candidates == 1)
2889 i = 0;
2890 else
2891 {
2892 i = ada_resolve_function
2893 (candidates, n_candidates,
2894 argvec, nargs,
2895 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2896 context_type);
2897 if (i < 0)
2898 error (_("Could not find a match for %s"),
2899 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2900 }
2901
2902 exp->elts[pc + 4].block = candidates[i].block;
2903 exp->elts[pc + 5].symbol = candidates[i].sym;
2904 if (innermost_block == NULL
2905 || contained_in (candidates[i].block, innermost_block))
2906 innermost_block = candidates[i].block;
2907 }
2908 }
2909 break;
2910 case BINOP_ADD:
2911 case BINOP_SUB:
2912 case BINOP_MUL:
2913 case BINOP_DIV:
2914 case BINOP_REM:
2915 case BINOP_MOD:
2916 case BINOP_CONCAT:
2917 case BINOP_BITWISE_AND:
2918 case BINOP_BITWISE_IOR:
2919 case BINOP_BITWISE_XOR:
2920 case BINOP_EQUAL:
2921 case BINOP_NOTEQUAL:
2922 case BINOP_LESS:
2923 case BINOP_GTR:
2924 case BINOP_LEQ:
2925 case BINOP_GEQ:
2926 case BINOP_EXP:
2927 case UNOP_NEG:
2928 case UNOP_PLUS:
2929 case UNOP_LOGICAL_NOT:
2930 case UNOP_ABS:
2931 if (possible_user_operator_p (op, argvec))
2932 {
2933 struct ada_symbol_info *candidates;
2934 int n_candidates;
2935
2936 n_candidates =
2937 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2938 (struct block *) NULL, VAR_DOMAIN,
2939 &candidates);
2940 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2941 ada_decoded_op_name (op), NULL);
2942 if (i < 0)
2943 break;
2944
2945 replace_operator_with_call (expp, pc, nargs, 1,
2946 candidates[i].sym, candidates[i].block);
2947 exp = *expp;
2948 }
2949 break;
2950
2951 case OP_TYPE:
2952 case OP_REGISTER:
2953 return NULL;
2954 }
2955
2956 *pos = pc;
2957 return evaluate_subexp_type (exp, pos);
2958 }
2959
2960 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2961 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2962 a non-pointer. A type of 'void' (which is never a valid expression type)
2963 by convention matches anything. */
2964 /* The term "match" here is rather loose. The match is heuristic and
2965 liberal. FIXME: TOO liberal, in fact. */
2966
2967 static int
2968 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2969 {
2970 ftype = ada_check_typedef (ftype);
2971 atype = ada_check_typedef (atype);
2972
2973 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2974 ftype = TYPE_TARGET_TYPE (ftype);
2975 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2976 atype = TYPE_TARGET_TYPE (atype);
2977
2978 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2979 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2980 return 1;
2981
2982 switch (TYPE_CODE (ftype))
2983 {
2984 default:
2985 return 1;
2986 case TYPE_CODE_PTR:
2987 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2988 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2989 TYPE_TARGET_TYPE (atype), 0);
2990 else
2991 return (may_deref
2992 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2993 case TYPE_CODE_INT:
2994 case TYPE_CODE_ENUM:
2995 case TYPE_CODE_RANGE:
2996 switch (TYPE_CODE (atype))
2997 {
2998 case TYPE_CODE_INT:
2999 case TYPE_CODE_ENUM:
3000 case TYPE_CODE_RANGE:
3001 return 1;
3002 default:
3003 return 0;
3004 }
3005
3006 case TYPE_CODE_ARRAY:
3007 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3008 || ada_is_array_descriptor_type (atype));
3009
3010 case TYPE_CODE_STRUCT:
3011 if (ada_is_array_descriptor_type (ftype))
3012 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3013 || ada_is_array_descriptor_type (atype));
3014 else
3015 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3016 && !ada_is_array_descriptor_type (atype));
3017
3018 case TYPE_CODE_UNION:
3019 case TYPE_CODE_FLT:
3020 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3021 }
3022 }
3023
3024 /* Return non-zero if the formals of FUNC "sufficiently match" the
3025 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3026 may also be an enumeral, in which case it is treated as a 0-
3027 argument function. */
3028
3029 static int
3030 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3031 {
3032 int i;
3033 struct type *func_type = SYMBOL_TYPE (func);
3034
3035 if (SYMBOL_CLASS (func) == LOC_CONST
3036 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3037 return (n_actuals == 0);
3038 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3039 return 0;
3040
3041 if (TYPE_NFIELDS (func_type) != n_actuals)
3042 return 0;
3043
3044 for (i = 0; i < n_actuals; i += 1)
3045 {
3046 if (actuals[i] == NULL)
3047 return 0;
3048 else
3049 {
3050 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3051 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3052
3053 if (!ada_type_match (ftype, atype, 1))
3054 return 0;
3055 }
3056 }
3057 return 1;
3058 }
3059
3060 /* False iff function type FUNC_TYPE definitely does not produce a value
3061 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3062 FUNC_TYPE is not a valid function type with a non-null return type
3063 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3064
3065 static int
3066 return_match (struct type *func_type, struct type *context_type)
3067 {
3068 struct type *return_type;
3069
3070 if (func_type == NULL)
3071 return 1;
3072
3073 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3074 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3075 else
3076 return_type = base_type (func_type);
3077 if (return_type == NULL)
3078 return 1;
3079
3080 context_type = base_type (context_type);
3081
3082 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3083 return context_type == NULL || return_type == context_type;
3084 else if (context_type == NULL)
3085 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3086 else
3087 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3088 }
3089
3090
3091 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3092 function (if any) that matches the types of the NARGS arguments in
3093 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3094 that returns that type, then eliminate matches that don't. If
3095 CONTEXT_TYPE is void and there is at least one match that does not
3096 return void, eliminate all matches that do.
3097
3098 Asks the user if there is more than one match remaining. Returns -1
3099 if there is no such symbol or none is selected. NAME is used
3100 solely for messages. May re-arrange and modify SYMS in
3101 the process; the index returned is for the modified vector. */
3102
3103 static int
3104 ada_resolve_function (struct ada_symbol_info syms[],
3105 int nsyms, struct value **args, int nargs,
3106 const char *name, struct type *context_type)
3107 {
3108 int k;
3109 int m; /* Number of hits */
3110 struct type *fallback;
3111 struct type *return_type;
3112
3113 return_type = context_type;
3114 if (context_type == NULL)
3115 fallback = builtin_type_void;
3116 else
3117 fallback = NULL;
3118
3119 m = 0;
3120 while (1)
3121 {
3122 for (k = 0; k < nsyms; k += 1)
3123 {
3124 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3125
3126 if (ada_args_match (syms[k].sym, args, nargs)
3127 && return_match (type, return_type))
3128 {
3129 syms[m] = syms[k];
3130 m += 1;
3131 }
3132 }
3133 if (m > 0 || return_type == fallback)
3134 break;
3135 else
3136 return_type = fallback;
3137 }
3138
3139 if (m == 0)
3140 return -1;
3141 else if (m > 1)
3142 {
3143 printf_filtered (_("Multiple matches for %s\n"), name);
3144 user_select_syms (syms, m, 1);
3145 return 0;
3146 }
3147 return 0;
3148 }
3149
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
3156 static int
3157 encoded_ordered_before (char *N0, char *N1)
3158 {
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
3166 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3167 ;
3168 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3169 ;
3170 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3171 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3172 {
3173 int n0, n1;
3174 n0 = k0;
3175 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3176 n0 -= 1;
3177 n1 = k1;
3178 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3179 n1 -= 1;
3180 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3181 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3182 }
3183 return (strcmp (N0, N1) < 0);
3184 }
3185 }
3186
3187 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3188 encoded names. */
3189
3190 static void
3191 sort_choices (struct ada_symbol_info syms[], int nsyms)
3192 {
3193 int i;
3194 for (i = 1; i < nsyms; i += 1)
3195 {
3196 struct ada_symbol_info sym = syms[i];
3197 int j;
3198
3199 for (j = i - 1; j >= 0; j -= 1)
3200 {
3201 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3202 SYMBOL_LINKAGE_NAME (sym.sym)))
3203 break;
3204 syms[j + 1] = syms[j];
3205 }
3206 syms[j + 1] = sym;
3207 }
3208 }
3209
3210 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3211 by asking the user (if necessary), returning the number selected,
3212 and setting the first elements of SYMS items. Error if no symbols
3213 selected. */
3214
3215 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3216 to be re-integrated one of these days. */
3217
3218 int
3219 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3220 {
3221 int i;
3222 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3223 int n_chosen;
3224 int first_choice = (max_results == 1) ? 1 : 2;
3225 const char *select_mode = multiple_symbols_select_mode ();
3226
3227 if (max_results < 1)
3228 error (_("Request to select 0 symbols!"));
3229 if (nsyms <= 1)
3230 return nsyms;
3231
3232 if (select_mode == multiple_symbols_cancel)
3233 error (_("\
3234 canceled because the command is ambiguous\n\
3235 See set/show multiple-symbol."));
3236
3237 /* If select_mode is "all", then return all possible symbols.
3238 Only do that if more than one symbol can be selected, of course.
3239 Otherwise, display the menu as usual. */
3240 if (select_mode == multiple_symbols_all && max_results > 1)
3241 return nsyms;
3242
3243 printf_unfiltered (_("[0] cancel\n"));
3244 if (max_results > 1)
3245 printf_unfiltered (_("[1] all\n"));
3246
3247 sort_choices (syms, nsyms);
3248
3249 for (i = 0; i < nsyms; i += 1)
3250 {
3251 if (syms[i].sym == NULL)
3252 continue;
3253
3254 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3255 {
3256 struct symtab_and_line sal =
3257 find_function_start_sal (syms[i].sym, 1);
3258 if (sal.symtab == NULL)
3259 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3260 i + first_choice,
3261 SYMBOL_PRINT_NAME (syms[i].sym),
3262 sal.line);
3263 else
3264 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym),
3266 sal.symtab->filename, sal.line);
3267 continue;
3268 }
3269 else
3270 {
3271 int is_enumeral =
3272 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3273 && SYMBOL_TYPE (syms[i].sym) != NULL
3274 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3275 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3276
3277 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3278 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3279 i + first_choice,
3280 SYMBOL_PRINT_NAME (syms[i].sym),
3281 symtab->filename, SYMBOL_LINE (syms[i].sym));
3282 else if (is_enumeral
3283 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3284 {
3285 printf_unfiltered (("[%d] "), i + first_choice);
3286 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3287 gdb_stdout, -1, 0);
3288 printf_unfiltered (_("'(%s) (enumeral)\n"),
3289 SYMBOL_PRINT_NAME (syms[i].sym));
3290 }
3291 else if (symtab != NULL)
3292 printf_unfiltered (is_enumeral
3293 ? _("[%d] %s in %s (enumeral)\n")
3294 : _("[%d] %s at %s:?\n"),
3295 i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 symtab->filename);
3298 else
3299 printf_unfiltered (is_enumeral
3300 ? _("[%d] %s (enumeral)\n")
3301 : _("[%d] %s at ?\n"),
3302 i + first_choice,
3303 SYMBOL_PRINT_NAME (syms[i].sym));
3304 }
3305 }
3306
3307 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3308 "overload-choice");
3309
3310 for (i = 0; i < n_chosen; i += 1)
3311 syms[i] = syms[chosen[i]];
3312
3313 return n_chosen;
3314 }
3315
3316 /* Read and validate a set of numeric choices from the user in the
3317 range 0 .. N_CHOICES-1. Place the results in increasing
3318 order in CHOICES[0 .. N-1], and return N.
3319
3320 The user types choices as a sequence of numbers on one line
3321 separated by blanks, encoding them as follows:
3322
3323 + A choice of 0 means to cancel the selection, throwing an error.
3324 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3325 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3326
3327 The user is not allowed to choose more than MAX_RESULTS values.
3328
3329 ANNOTATION_SUFFIX, if present, is used to annotate the input
3330 prompts (for use with the -f switch). */
3331
3332 int
3333 get_selections (int *choices, int n_choices, int max_results,
3334 int is_all_choice, char *annotation_suffix)
3335 {
3336 char *args;
3337 char *prompt;
3338 int n_chosen;
3339 int first_choice = is_all_choice ? 2 : 1;
3340
3341 prompt = getenv ("PS2");
3342 if (prompt == NULL)
3343 prompt = "> ";
3344
3345 args = command_line_input (prompt, 0, annotation_suffix);
3346
3347 if (args == NULL)
3348 error_no_arg (_("one or more choice numbers"));
3349
3350 n_chosen = 0;
3351
3352 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3353 order, as given in args. Choices are validated. */
3354 while (1)
3355 {
3356 char *args2;
3357 int choice, j;
3358
3359 while (isspace (*args))
3360 args += 1;
3361 if (*args == '\0' && n_chosen == 0)
3362 error_no_arg (_("one or more choice numbers"));
3363 else if (*args == '\0')
3364 break;
3365
3366 choice = strtol (args, &args2, 10);
3367 if (args == args2 || choice < 0
3368 || choice > n_choices + first_choice - 1)
3369 error (_("Argument must be choice number"));
3370 args = args2;
3371
3372 if (choice == 0)
3373 error (_("cancelled"));
3374
3375 if (choice < first_choice)
3376 {
3377 n_chosen = n_choices;
3378 for (j = 0; j < n_choices; j += 1)
3379 choices[j] = j;
3380 break;
3381 }
3382 choice -= first_choice;
3383
3384 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3385 {
3386 }
3387
3388 if (j < 0 || choice != choices[j])
3389 {
3390 int k;
3391 for (k = n_chosen - 1; k > j; k -= 1)
3392 choices[k + 1] = choices[k];
3393 choices[j + 1] = choice;
3394 n_chosen += 1;
3395 }
3396 }
3397
3398 if (n_chosen > max_results)
3399 error (_("Select no more than %d of the above"), max_results);
3400
3401 return n_chosen;
3402 }
3403
3404 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3405 on the function identified by SYM and BLOCK, and taking NARGS
3406 arguments. Update *EXPP as needed to hold more space. */
3407
3408 static void
3409 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3410 int oplen, struct symbol *sym,
3411 struct block *block)
3412 {
3413 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3414 symbol, -oplen for operator being replaced). */
3415 struct expression *newexp = (struct expression *)
3416 xmalloc (sizeof (struct expression)
3417 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3418 struct expression *exp = *expp;
3419
3420 newexp->nelts = exp->nelts + 7 - oplen;
3421 newexp->language_defn = exp->language_defn;
3422 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3423 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3424 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3425
3426 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3427 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3428
3429 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3430 newexp->elts[pc + 4].block = block;
3431 newexp->elts[pc + 5].symbol = sym;
3432
3433 *expp = newexp;
3434 xfree (exp);
3435 }
3436
3437 /* Type-class predicates */
3438
3439 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3440 or FLOAT). */
3441
3442 static int
3443 numeric_type_p (struct type *type)
3444 {
3445 if (type == NULL)
3446 return 0;
3447 else
3448 {
3449 switch (TYPE_CODE (type))
3450 {
3451 case TYPE_CODE_INT:
3452 case TYPE_CODE_FLT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
3460 }
3461 }
3462
3463 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3464
3465 static int
3466 integer_type_p (struct type *type)
3467 {
3468 if (type == NULL)
3469 return 0;
3470 else
3471 {
3472 switch (TYPE_CODE (type))
3473 {
3474 case TYPE_CODE_INT:
3475 return 1;
3476 case TYPE_CODE_RANGE:
3477 return (type == TYPE_TARGET_TYPE (type)
3478 || integer_type_p (TYPE_TARGET_TYPE (type)));
3479 default:
3480 return 0;
3481 }
3482 }
3483 }
3484
3485 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3486
3487 static int
3488 scalar_type_p (struct type *type)
3489 {
3490 if (type == NULL)
3491 return 0;
3492 else
3493 {
3494 switch (TYPE_CODE (type))
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 case TYPE_CODE_FLT:
3500 return 1;
3501 default:
3502 return 0;
3503 }
3504 }
3505 }
3506
3507 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3508
3509 static int
3510 discrete_type_p (struct type *type)
3511 {
3512 if (type == NULL)
3513 return 0;
3514 else
3515 {
3516 switch (TYPE_CODE (type))
3517 {
3518 case TYPE_CODE_INT:
3519 case TYPE_CODE_RANGE:
3520 case TYPE_CODE_ENUM:
3521 return 1;
3522 default:
3523 return 0;
3524 }
3525 }
3526 }
3527
3528 /* Returns non-zero if OP with operands in the vector ARGS could be
3529 a user-defined function. Errs on the side of pre-defined operators
3530 (i.e., result 0). */
3531
3532 static int
3533 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3534 {
3535 struct type *type0 =
3536 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3537 struct type *type1 =
3538 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3539
3540 if (type0 == NULL)
3541 return 0;
3542
3543 switch (op)
3544 {
3545 default:
3546 return 0;
3547
3548 case BINOP_ADD:
3549 case BINOP_SUB:
3550 case BINOP_MUL:
3551 case BINOP_DIV:
3552 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3553
3554 case BINOP_REM:
3555 case BINOP_MOD:
3556 case BINOP_BITWISE_AND:
3557 case BINOP_BITWISE_IOR:
3558 case BINOP_BITWISE_XOR:
3559 return (!(integer_type_p (type0) && integer_type_p (type1)));
3560
3561 case BINOP_EQUAL:
3562 case BINOP_NOTEQUAL:
3563 case BINOP_LESS:
3564 case BINOP_GTR:
3565 case BINOP_LEQ:
3566 case BINOP_GEQ:
3567 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3568
3569 case BINOP_CONCAT:
3570 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3571
3572 case BINOP_EXP:
3573 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3574
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 return (!numeric_type_p (type0));
3580
3581 }
3582 }
3583 \f
3584 /* Renaming */
3585
3586 /* NOTES:
3587
3588 1. In the following, we assume that a renaming type's name may
3589 have an ___XD suffix. It would be nice if this went away at some
3590 point.
3591 2. We handle both the (old) purely type-based representation of
3592 renamings and the (new) variable-based encoding. At some point,
3593 it is devoutly to be hoped that the former goes away
3594 (FIXME: hilfinger-2007-07-09).
3595 3. Subprogram renamings are not implemented, although the XRS
3596 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3597
3598 /* If SYM encodes a renaming,
3599
3600 <renaming> renames <renamed entity>,
3601
3602 sets *LEN to the length of the renamed entity's name,
3603 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3604 the string describing the subcomponent selected from the renamed
3605 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3606 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3607 are undefined). Otherwise, returns a value indicating the category
3608 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3609 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3610 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3611 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3612 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3613 may be NULL, in which case they are not assigned.
3614
3615 [Currently, however, GCC does not generate subprogram renamings.] */
3616
3617 enum ada_renaming_category
3618 ada_parse_renaming (struct symbol *sym,
3619 const char **renamed_entity, int *len,
3620 const char **renaming_expr)
3621 {
3622 enum ada_renaming_category kind;
3623 const char *info;
3624 const char *suffix;
3625
3626 if (sym == NULL)
3627 return ADA_NOT_RENAMING;
3628 switch (SYMBOL_CLASS (sym))
3629 {
3630 default:
3631 return ADA_NOT_RENAMING;
3632 case LOC_TYPEDEF:
3633 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3634 renamed_entity, len, renaming_expr);
3635 case LOC_LOCAL:
3636 case LOC_STATIC:
3637 case LOC_COMPUTED:
3638 case LOC_OPTIMIZED_OUT:
3639 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3640 if (info == NULL)
3641 return ADA_NOT_RENAMING;
3642 switch (info[5])
3643 {
3644 case '_':
3645 kind = ADA_OBJECT_RENAMING;
3646 info += 6;
3647 break;
3648 case 'E':
3649 kind = ADA_EXCEPTION_RENAMING;
3650 info += 7;
3651 break;
3652 case 'P':
3653 kind = ADA_PACKAGE_RENAMING;
3654 info += 7;
3655 break;
3656 case 'S':
3657 kind = ADA_SUBPROGRAM_RENAMING;
3658 info += 7;
3659 break;
3660 default:
3661 return ADA_NOT_RENAMING;
3662 }
3663 }
3664
3665 if (renamed_entity != NULL)
3666 *renamed_entity = info;
3667 suffix = strstr (info, "___XE");
3668 if (suffix == NULL || suffix == info)
3669 return ADA_NOT_RENAMING;
3670 if (len != NULL)
3671 *len = strlen (info) - strlen (suffix);
3672 suffix += 5;
3673 if (renaming_expr != NULL)
3674 *renaming_expr = suffix;
3675 return kind;
3676 }
3677
3678 /* Assuming TYPE encodes a renaming according to the old encoding in
3679 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3680 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3681 ADA_NOT_RENAMING otherwise. */
3682 static enum ada_renaming_category
3683 parse_old_style_renaming (struct type *type,
3684 const char **renamed_entity, int *len,
3685 const char **renaming_expr)
3686 {
3687 enum ada_renaming_category kind;
3688 const char *name;
3689 const char *info;
3690 const char *suffix;
3691
3692 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3693 || TYPE_NFIELDS (type) != 1)
3694 return ADA_NOT_RENAMING;
3695
3696 name = type_name_no_tag (type);
3697 if (name == NULL)
3698 return ADA_NOT_RENAMING;
3699
3700 name = strstr (name, "___XR");
3701 if (name == NULL)
3702 return ADA_NOT_RENAMING;
3703 switch (name[5])
3704 {
3705 case '\0':
3706 case '_':
3707 kind = ADA_OBJECT_RENAMING;
3708 break;
3709 case 'E':
3710 kind = ADA_EXCEPTION_RENAMING;
3711 break;
3712 case 'P':
3713 kind = ADA_PACKAGE_RENAMING;
3714 break;
3715 case 'S':
3716 kind = ADA_SUBPROGRAM_RENAMING;
3717 break;
3718 default:
3719 return ADA_NOT_RENAMING;
3720 }
3721
3722 info = TYPE_FIELD_NAME (type, 0);
3723 if (info == NULL)
3724 return ADA_NOT_RENAMING;
3725 if (renamed_entity != NULL)
3726 *renamed_entity = info;
3727 suffix = strstr (info, "___XE");
3728 if (renaming_expr != NULL)
3729 *renaming_expr = suffix + 5;
3730 if (suffix == NULL || suffix == info)
3731 return ADA_NOT_RENAMING;
3732 if (len != NULL)
3733 *len = suffix - info;
3734 return kind;
3735 }
3736
3737 \f
3738
3739 /* Evaluation: Function Calls */
3740
3741 /* Return an lvalue containing the value VAL. This is the identity on
3742 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3743 on the stack, using and updating *SP as the stack pointer, and
3744 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3745
3746 static struct value *
3747 ensure_lval (struct value *val, CORE_ADDR *sp)
3748 {
3749 if (! VALUE_LVAL (val))
3750 {
3751 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3752
3753 /* The following is taken from the structure-return code in
3754 call_function_by_hand. FIXME: Therefore, some refactoring seems
3755 indicated. */
3756 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3757 {
3758 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3759 reserving sufficient space. */
3760 *sp -= len;
3761 if (gdbarch_frame_align_p (current_gdbarch))
3762 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3763 VALUE_ADDRESS (val) = *sp;
3764 }
3765 else
3766 {
3767 /* Stack grows upward. Align the frame, allocate space, and
3768 then again, re-align the frame. */
3769 if (gdbarch_frame_align_p (current_gdbarch))
3770 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3771 VALUE_ADDRESS (val) = *sp;
3772 *sp += len;
3773 if (gdbarch_frame_align_p (current_gdbarch))
3774 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3775 }
3776 VALUE_LVAL (val) = lval_memory;
3777
3778 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3779 }
3780
3781 return val;
3782 }
3783
3784 /* Return the value ACTUAL, converted to be an appropriate value for a
3785 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3786 allocating any necessary descriptors (fat pointers), or copies of
3787 values not residing in memory, updating it as needed. */
3788
3789 struct value *
3790 ada_convert_actual (struct value *actual, struct type *formal_type0,
3791 CORE_ADDR *sp)
3792 {
3793 struct type *actual_type = ada_check_typedef (value_type (actual));
3794 struct type *formal_type = ada_check_typedef (formal_type0);
3795 struct type *formal_target =
3796 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3797 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3798 struct type *actual_target =
3799 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3800 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3801
3802 if (ada_is_array_descriptor_type (formal_target)
3803 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3804 return make_array_descriptor (formal_type, actual, sp);
3805 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3806 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3807 {
3808 struct value *result;
3809 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3810 && ada_is_array_descriptor_type (actual_target))
3811 result = desc_data (actual);
3812 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3813 {
3814 if (VALUE_LVAL (actual) != lval_memory)
3815 {
3816 struct value *val;
3817 actual_type = ada_check_typedef (value_type (actual));
3818 val = allocate_value (actual_type);
3819 memcpy ((char *) value_contents_raw (val),
3820 (char *) value_contents (actual),
3821 TYPE_LENGTH (actual_type));
3822 actual = ensure_lval (val, sp);
3823 }
3824 result = value_addr (actual);
3825 }
3826 else
3827 return actual;
3828 return value_cast_pointers (formal_type, result);
3829 }
3830 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3831 return ada_value_ind (actual);
3832
3833 return actual;
3834 }
3835
3836
3837 /* Push a descriptor of type TYPE for array value ARR on the stack at
3838 *SP, updating *SP to reflect the new descriptor. Return either
3839 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3840 to-descriptor type rather than a descriptor type), a struct value *
3841 representing a pointer to this descriptor. */
3842
3843 static struct value *
3844 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3845 {
3846 struct type *bounds_type = desc_bounds_type (type);
3847 struct type *desc_type = desc_base_type (type);
3848 struct value *descriptor = allocate_value (desc_type);
3849 struct value *bounds = allocate_value (bounds_type);
3850 int i;
3851
3852 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3853 {
3854 modify_general_field (value_contents_writeable (bounds),
3855 value_as_long (ada_array_bound (arr, i, 0)),
3856 desc_bound_bitpos (bounds_type, i, 0),
3857 desc_bound_bitsize (bounds_type, i, 0));
3858 modify_general_field (value_contents_writeable (bounds),
3859 value_as_long (ada_array_bound (arr, i, 1)),
3860 desc_bound_bitpos (bounds_type, i, 1),
3861 desc_bound_bitsize (bounds_type, i, 1));
3862 }
3863
3864 bounds = ensure_lval (bounds, sp);
3865
3866 modify_general_field (value_contents_writeable (descriptor),
3867 VALUE_ADDRESS (ensure_lval (arr, sp)),
3868 fat_pntr_data_bitpos (desc_type),
3869 fat_pntr_data_bitsize (desc_type));
3870
3871 modify_general_field (value_contents_writeable (descriptor),
3872 VALUE_ADDRESS (bounds),
3873 fat_pntr_bounds_bitpos (desc_type),
3874 fat_pntr_bounds_bitsize (desc_type));
3875
3876 descriptor = ensure_lval (descriptor, sp);
3877
3878 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3879 return value_addr (descriptor);
3880 else
3881 return descriptor;
3882 }
3883 \f
3884 /* Dummy definitions for an experimental caching module that is not
3885 * used in the public sources. */
3886
3887 static int
3888 lookup_cached_symbol (const char *name, domain_enum namespace,
3889 struct symbol **sym, struct block **block)
3890 {
3891 return 0;
3892 }
3893
3894 static void
3895 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3896 struct block *block)
3897 {
3898 }
3899 \f
3900 /* Symbol Lookup */
3901
3902 /* Return the result of a standard (literal, C-like) lookup of NAME in
3903 given DOMAIN, visible from lexical block BLOCK. */
3904
3905 static struct symbol *
3906 standard_lookup (const char *name, const struct block *block,
3907 domain_enum domain)
3908 {
3909 struct symbol *sym;
3910
3911 if (lookup_cached_symbol (name, domain, &sym, NULL))
3912 return sym;
3913 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3914 cache_symbol (name, domain, sym, block_found);
3915 return sym;
3916 }
3917
3918
3919 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3920 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3921 since they contend in overloading in the same way. */
3922 static int
3923 is_nonfunction (struct ada_symbol_info syms[], int n)
3924 {
3925 int i;
3926
3927 for (i = 0; i < n; i += 1)
3928 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3929 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3930 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3931 return 1;
3932
3933 return 0;
3934 }
3935
3936 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3937 struct types. Otherwise, they may not. */
3938
3939 static int
3940 equiv_types (struct type *type0, struct type *type1)
3941 {
3942 if (type0 == type1)
3943 return 1;
3944 if (type0 == NULL || type1 == NULL
3945 || TYPE_CODE (type0) != TYPE_CODE (type1))
3946 return 0;
3947 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3948 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3949 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3950 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3951 return 1;
3952
3953 return 0;
3954 }
3955
3956 /* True iff SYM0 represents the same entity as SYM1, or one that is
3957 no more defined than that of SYM1. */
3958
3959 static int
3960 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3961 {
3962 if (sym0 == sym1)
3963 return 1;
3964 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3965 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3966 return 0;
3967
3968 switch (SYMBOL_CLASS (sym0))
3969 {
3970 case LOC_UNDEF:
3971 return 1;
3972 case LOC_TYPEDEF:
3973 {
3974 struct type *type0 = SYMBOL_TYPE (sym0);
3975 struct type *type1 = SYMBOL_TYPE (sym1);
3976 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3977 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3978 int len0 = strlen (name0);
3979 return
3980 TYPE_CODE (type0) == TYPE_CODE (type1)
3981 && (equiv_types (type0, type1)
3982 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3983 && strncmp (name1 + len0, "___XV", 5) == 0));
3984 }
3985 case LOC_CONST:
3986 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3987 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3988 default:
3989 return 0;
3990 }
3991 }
3992
3993 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3994 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3995
3996 static void
3997 add_defn_to_vec (struct obstack *obstackp,
3998 struct symbol *sym,
3999 struct block *block)
4000 {
4001 int i;
4002 size_t tmp;
4003 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4004
4005 /* Do not try to complete stub types, as the debugger is probably
4006 already scanning all symbols matching a certain name at the
4007 time when this function is called. Trying to replace the stub
4008 type by its associated full type will cause us to restart a scan
4009 which may lead to an infinite recursion. Instead, the client
4010 collecting the matching symbols will end up collecting several
4011 matches, with at least one of them complete. It can then filter
4012 out the stub ones if needed. */
4013
4014 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4015 {
4016 if (lesseq_defined_than (sym, prevDefns[i].sym))
4017 return;
4018 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4019 {
4020 prevDefns[i].sym = sym;
4021 prevDefns[i].block = block;
4022 return;
4023 }
4024 }
4025
4026 {
4027 struct ada_symbol_info info;
4028
4029 info.sym = sym;
4030 info.block = block;
4031 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4032 }
4033 }
4034
4035 /* Number of ada_symbol_info structures currently collected in
4036 current vector in *OBSTACKP. */
4037
4038 static int
4039 num_defns_collected (struct obstack *obstackp)
4040 {
4041 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4042 }
4043
4044 /* Vector of ada_symbol_info structures currently collected in current
4045 vector in *OBSTACKP. If FINISH, close off the vector and return
4046 its final address. */
4047
4048 static struct ada_symbol_info *
4049 defns_collected (struct obstack *obstackp, int finish)
4050 {
4051 if (finish)
4052 return obstack_finish (obstackp);
4053 else
4054 return (struct ada_symbol_info *) obstack_base (obstackp);
4055 }
4056
4057 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4058 Check the global symbols if GLOBAL, the static symbols if not.
4059 Do wild-card match if WILD. */
4060
4061 static struct partial_symbol *
4062 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4063 int global, domain_enum namespace, int wild)
4064 {
4065 struct partial_symbol **start;
4066 int name_len = strlen (name);
4067 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4068 int i;
4069
4070 if (length == 0)
4071 {
4072 return (NULL);
4073 }
4074
4075 start = (global ?
4076 pst->objfile->global_psymbols.list + pst->globals_offset :
4077 pst->objfile->static_psymbols.list + pst->statics_offset);
4078
4079 if (wild)
4080 {
4081 for (i = 0; i < length; i += 1)
4082 {
4083 struct partial_symbol *psym = start[i];
4084
4085 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4086 SYMBOL_DOMAIN (psym), namespace)
4087 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4088 return psym;
4089 }
4090 return NULL;
4091 }
4092 else
4093 {
4094 if (global)
4095 {
4096 int U;
4097 i = 0;
4098 U = length - 1;
4099 while (U - i > 4)
4100 {
4101 int M = (U + i) >> 1;
4102 struct partial_symbol *psym = start[M];
4103 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4104 i = M + 1;
4105 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4106 U = M - 1;
4107 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4108 i = M + 1;
4109 else
4110 U = M;
4111 }
4112 }
4113 else
4114 i = 0;
4115
4116 while (i < length)
4117 {
4118 struct partial_symbol *psym = start[i];
4119
4120 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4121 SYMBOL_DOMAIN (psym), namespace))
4122 {
4123 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4124
4125 if (cmp < 0)
4126 {
4127 if (global)
4128 break;
4129 }
4130 else if (cmp == 0
4131 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4132 + name_len))
4133 return psym;
4134 }
4135 i += 1;
4136 }
4137
4138 if (global)
4139 {
4140 int U;
4141 i = 0;
4142 U = length - 1;
4143 while (U - i > 4)
4144 {
4145 int M = (U + i) >> 1;
4146 struct partial_symbol *psym = start[M];
4147 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4148 i = M + 1;
4149 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4150 U = M - 1;
4151 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4152 i = M + 1;
4153 else
4154 U = M;
4155 }
4156 }
4157 else
4158 i = 0;
4159
4160 while (i < length)
4161 {
4162 struct partial_symbol *psym = start[i];
4163
4164 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4165 SYMBOL_DOMAIN (psym), namespace))
4166 {
4167 int cmp;
4168
4169 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4170 if (cmp == 0)
4171 {
4172 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4173 if (cmp == 0)
4174 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4175 name_len);
4176 }
4177
4178 if (cmp < 0)
4179 {
4180 if (global)
4181 break;
4182 }
4183 else if (cmp == 0
4184 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4185 + name_len + 5))
4186 return psym;
4187 }
4188 i += 1;
4189 }
4190 }
4191 return NULL;
4192 }
4193
4194 /* Find a symbol table containing symbol SYM or NULL if none. */
4195
4196 static struct symtab *
4197 symtab_for_sym (struct symbol *sym)
4198 {
4199 struct symtab *s;
4200 struct objfile *objfile;
4201 struct block *b;
4202 struct symbol *tmp_sym;
4203 struct dict_iterator iter;
4204 int j;
4205
4206 ALL_PRIMARY_SYMTABS (objfile, s)
4207 {
4208 switch (SYMBOL_CLASS (sym))
4209 {
4210 case LOC_CONST:
4211 case LOC_STATIC:
4212 case LOC_TYPEDEF:
4213 case LOC_REGISTER:
4214 case LOC_LABEL:
4215 case LOC_BLOCK:
4216 case LOC_CONST_BYTES:
4217 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4218 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4219 return s;
4220 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4221 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4222 return s;
4223 break;
4224 default:
4225 break;
4226 }
4227 switch (SYMBOL_CLASS (sym))
4228 {
4229 case LOC_REGISTER:
4230 case LOC_ARG:
4231 case LOC_REF_ARG:
4232 case LOC_REGPARM_ADDR:
4233 case LOC_LOCAL:
4234 case LOC_TYPEDEF:
4235 case LOC_COMPUTED:
4236 for (j = FIRST_LOCAL_BLOCK;
4237 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4238 {
4239 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4240 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4241 return s;
4242 }
4243 break;
4244 default:
4245 break;
4246 }
4247 }
4248 return NULL;
4249 }
4250
4251 /* Return a minimal symbol matching NAME according to Ada decoding
4252 rules. Returns NULL if there is no such minimal symbol. Names
4253 prefixed with "standard__" are handled specially: "standard__" is
4254 first stripped off, and only static and global symbols are searched. */
4255
4256 struct minimal_symbol *
4257 ada_lookup_simple_minsym (const char *name)
4258 {
4259 struct objfile *objfile;
4260 struct minimal_symbol *msymbol;
4261 int wild_match;
4262
4263 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4264 {
4265 name += sizeof ("standard__") - 1;
4266 wild_match = 0;
4267 }
4268 else
4269 wild_match = (strstr (name, "__") == NULL);
4270
4271 ALL_MSYMBOLS (objfile, msymbol)
4272 {
4273 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4274 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4275 return msymbol;
4276 }
4277
4278 return NULL;
4279 }
4280
4281 /* For all subprograms that statically enclose the subprogram of the
4282 selected frame, add symbols matching identifier NAME in DOMAIN
4283 and their blocks to the list of data in OBSTACKP, as for
4284 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4285 wildcard prefix. */
4286
4287 static void
4288 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4289 const char *name, domain_enum namespace,
4290 int wild_match)
4291 {
4292 }
4293
4294 /* True if TYPE is definitely an artificial type supplied to a symbol
4295 for which no debugging information was given in the symbol file. */
4296
4297 static int
4298 is_nondebugging_type (struct type *type)
4299 {
4300 char *name = ada_type_name (type);
4301 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4302 }
4303
4304 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4305 duplicate other symbols in the list (The only case I know of where
4306 this happens is when object files containing stabs-in-ecoff are
4307 linked with files containing ordinary ecoff debugging symbols (or no
4308 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4309 Returns the number of items in the modified list. */
4310
4311 static int
4312 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4313 {
4314 int i, j;
4315
4316 i = 0;
4317 while (i < nsyms)
4318 {
4319 int remove = 0;
4320
4321 /* If two symbols have the same name and one of them is a stub type,
4322 the get rid of the stub. */
4323
4324 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4325 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4326 {
4327 for (j = 0; j < nsyms; j++)
4328 {
4329 if (j != i
4330 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4331 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4332 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4333 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4334 remove = 1;
4335 }
4336 }
4337
4338 /* Two symbols with the same name, same class and same address
4339 should be identical. */
4340
4341 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4342 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4343 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4344 {
4345 for (j = 0; j < nsyms; j += 1)
4346 {
4347 if (i != j
4348 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4349 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4350 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4351 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4352 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4353 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4354 remove = 1;
4355 }
4356 }
4357
4358 if (remove)
4359 {
4360 for (j = i + 1; j < nsyms; j += 1)
4361 syms[j - 1] = syms[j];
4362 nsyms -= 1;
4363 }
4364
4365 i += 1;
4366 }
4367 return nsyms;
4368 }
4369
4370 /* Given a type that corresponds to a renaming entity, use the type name
4371 to extract the scope (package name or function name, fully qualified,
4372 and following the GNAT encoding convention) where this renaming has been
4373 defined. The string returned needs to be deallocated after use. */
4374
4375 static char *
4376 xget_renaming_scope (struct type *renaming_type)
4377 {
4378 /* The renaming types adhere to the following convention:
4379 <scope>__<rename>___<XR extension>.
4380 So, to extract the scope, we search for the "___XR" extension,
4381 and then backtrack until we find the first "__". */
4382
4383 const char *name = type_name_no_tag (renaming_type);
4384 char *suffix = strstr (name, "___XR");
4385 char *last;
4386 int scope_len;
4387 char *scope;
4388
4389 /* Now, backtrack a bit until we find the first "__". Start looking
4390 at suffix - 3, as the <rename> part is at least one character long. */
4391
4392 for (last = suffix - 3; last > name; last--)
4393 if (last[0] == '_' && last[1] == '_')
4394 break;
4395
4396 /* Make a copy of scope and return it. */
4397
4398 scope_len = last - name;
4399 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4400
4401 strncpy (scope, name, scope_len);
4402 scope[scope_len] = '\0';
4403
4404 return scope;
4405 }
4406
4407 /* Return nonzero if NAME corresponds to a package name. */
4408
4409 static int
4410 is_package_name (const char *name)
4411 {
4412 /* Here, We take advantage of the fact that no symbols are generated
4413 for packages, while symbols are generated for each function.
4414 So the condition for NAME represent a package becomes equivalent
4415 to NAME not existing in our list of symbols. There is only one
4416 small complication with library-level functions (see below). */
4417
4418 char *fun_name;
4419
4420 /* If it is a function that has not been defined at library level,
4421 then we should be able to look it up in the symbols. */
4422 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4423 return 0;
4424
4425 /* Library-level function names start with "_ada_". See if function
4426 "_ada_" followed by NAME can be found. */
4427
4428 /* Do a quick check that NAME does not contain "__", since library-level
4429 functions names cannot contain "__" in them. */
4430 if (strstr (name, "__") != NULL)
4431 return 0;
4432
4433 fun_name = xstrprintf ("_ada_%s", name);
4434
4435 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4436 }
4437
4438 /* Return nonzero if SYM corresponds to a renaming entity that is
4439 not visible from FUNCTION_NAME. */
4440
4441 static int
4442 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4443 {
4444 char *scope;
4445
4446 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4447 return 0;
4448
4449 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4450
4451 make_cleanup (xfree, scope);
4452
4453 /* If the rename has been defined in a package, then it is visible. */
4454 if (is_package_name (scope))
4455 return 0;
4456
4457 /* Check that the rename is in the current function scope by checking
4458 that its name starts with SCOPE. */
4459
4460 /* If the function name starts with "_ada_", it means that it is
4461 a library-level function. Strip this prefix before doing the
4462 comparison, as the encoding for the renaming does not contain
4463 this prefix. */
4464 if (strncmp (function_name, "_ada_", 5) == 0)
4465 function_name += 5;
4466
4467 return (strncmp (function_name, scope, strlen (scope)) != 0);
4468 }
4469
4470 /* Remove entries from SYMS that corresponds to a renaming entity that
4471 is not visible from the function associated with CURRENT_BLOCK or
4472 that is superfluous due to the presence of more specific renaming
4473 information. Places surviving symbols in the initial entries of
4474 SYMS and returns the number of surviving symbols.
4475
4476 Rationale:
4477 First, in cases where an object renaming is implemented as a
4478 reference variable, GNAT may produce both the actual reference
4479 variable and the renaming encoding. In this case, we discard the
4480 latter.
4481
4482 Second, GNAT emits a type following a specified encoding for each renaming
4483 entity. Unfortunately, STABS currently does not support the definition
4484 of types that are local to a given lexical block, so all renamings types
4485 are emitted at library level. As a consequence, if an application
4486 contains two renaming entities using the same name, and a user tries to
4487 print the value of one of these entities, the result of the ada symbol
4488 lookup will also contain the wrong renaming type.
4489
4490 This function partially covers for this limitation by attempting to
4491 remove from the SYMS list renaming symbols that should be visible
4492 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4493 method with the current information available. The implementation
4494 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4495
4496 - When the user tries to print a rename in a function while there
4497 is another rename entity defined in a package: Normally, the
4498 rename in the function has precedence over the rename in the
4499 package, so the latter should be removed from the list. This is
4500 currently not the case.
4501
4502 - This function will incorrectly remove valid renames if
4503 the CURRENT_BLOCK corresponds to a function which symbol name
4504 has been changed by an "Export" pragma. As a consequence,
4505 the user will be unable to print such rename entities. */
4506
4507 static int
4508 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4509 int nsyms, const struct block *current_block)
4510 {
4511 struct symbol *current_function;
4512 char *current_function_name;
4513 int i;
4514 int is_new_style_renaming;
4515
4516 /* If there is both a renaming foo___XR... encoded as a variable and
4517 a simple variable foo in the same block, discard the latter.
4518 First, zero out such symbols, then compress. */
4519 is_new_style_renaming = 0;
4520 for (i = 0; i < nsyms; i += 1)
4521 {
4522 struct symbol *sym = syms[i].sym;
4523 struct block *block = syms[i].block;
4524 const char *name;
4525 const char *suffix;
4526
4527 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4528 continue;
4529 name = SYMBOL_LINKAGE_NAME (sym);
4530 suffix = strstr (name, "___XR");
4531
4532 if (suffix != NULL)
4533 {
4534 int name_len = suffix - name;
4535 int j;
4536 is_new_style_renaming = 1;
4537 for (j = 0; j < nsyms; j += 1)
4538 if (i != j && syms[j].sym != NULL
4539 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4540 name_len) == 0
4541 && block == syms[j].block)
4542 syms[j].sym = NULL;
4543 }
4544 }
4545 if (is_new_style_renaming)
4546 {
4547 int j, k;
4548
4549 for (j = k = 0; j < nsyms; j += 1)
4550 if (syms[j].sym != NULL)
4551 {
4552 syms[k] = syms[j];
4553 k += 1;
4554 }
4555 return k;
4556 }
4557
4558 /* Extract the function name associated to CURRENT_BLOCK.
4559 Abort if unable to do so. */
4560
4561 if (current_block == NULL)
4562 return nsyms;
4563
4564 current_function = block_linkage_function (current_block);
4565 if (current_function == NULL)
4566 return nsyms;
4567
4568 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4569 if (current_function_name == NULL)
4570 return nsyms;
4571
4572 /* Check each of the symbols, and remove it from the list if it is
4573 a type corresponding to a renaming that is out of the scope of
4574 the current block. */
4575
4576 i = 0;
4577 while (i < nsyms)
4578 {
4579 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4580 == ADA_OBJECT_RENAMING
4581 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4582 {
4583 int j;
4584 for (j = i + 1; j < nsyms; j += 1)
4585 syms[j - 1] = syms[j];
4586 nsyms -= 1;
4587 }
4588 else
4589 i += 1;
4590 }
4591
4592 return nsyms;
4593 }
4594
4595 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4596 whose name and domain match NAME and DOMAIN respectively.
4597 If no match was found, then extend the search to "enclosing"
4598 routines (in other words, if we're inside a nested function,
4599 search the symbols defined inside the enclosing functions).
4600
4601 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4602
4603 static void
4604 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4605 struct block *block, domain_enum domain,
4606 int wild_match)
4607 {
4608 int block_depth = 0;
4609
4610 while (block != NULL)
4611 {
4612 block_depth += 1;
4613 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4614
4615 /* If we found a non-function match, assume that's the one. */
4616 if (is_nonfunction (defns_collected (obstackp, 0),
4617 num_defns_collected (obstackp)))
4618 return;
4619
4620 block = BLOCK_SUPERBLOCK (block);
4621 }
4622
4623 /* If no luck so far, try to find NAME as a local symbol in some lexically
4624 enclosing subprogram. */
4625 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4626 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4627 }
4628
4629 /* Add to OBSTACKP all non-local symbols whose name and domain match
4630 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4631 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4632
4633 static void
4634 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4635 domain_enum domain, int global,
4636 int wild_match)
4637 {
4638 struct objfile *objfile;
4639 struct partial_symtab *ps;
4640
4641 ALL_PSYMTABS (objfile, ps)
4642 {
4643 QUIT;
4644 if (ps->readin
4645 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4646 {
4647 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4648 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4649
4650 if (s == NULL || !s->primary)
4651 continue;
4652 ada_add_block_symbols (obstackp,
4653 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4654 name, domain, objfile, wild_match);
4655 }
4656 }
4657 }
4658
4659 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4660 scope and in global scopes, returning the number of matches. Sets
4661 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4662 indicating the symbols found and the blocks and symbol tables (if
4663 any) in which they were found. This vector are transient---good only to
4664 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4665 symbol match within the nest of blocks whose innermost member is BLOCK0,
4666 is the one match returned (no other matches in that or
4667 enclosing blocks is returned). If there are any matches in or
4668 surrounding BLOCK0, then these alone are returned. Otherwise, the
4669 search extends to global and file-scope (static) symbol tables.
4670 Names prefixed with "standard__" are handled specially: "standard__"
4671 is first stripped off, and only static and global symbols are searched. */
4672
4673 int
4674 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4675 domain_enum namespace,
4676 struct ada_symbol_info **results)
4677 {
4678 struct symbol *sym;
4679 struct block *block;
4680 const char *name;
4681 int wild_match;
4682 int cacheIfUnique;
4683 int ndefns;
4684
4685 obstack_free (&symbol_list_obstack, NULL);
4686 obstack_init (&symbol_list_obstack);
4687
4688 cacheIfUnique = 0;
4689
4690 /* Search specified block and its superiors. */
4691
4692 wild_match = (strstr (name0, "__") == NULL);
4693 name = name0;
4694 block = (struct block *) block0; /* FIXME: No cast ought to be
4695 needed, but adding const will
4696 have a cascade effect. */
4697
4698 /* Special case: If the user specifies a symbol name inside package
4699 Standard, do a non-wild matching of the symbol name without
4700 the "standard__" prefix. This was primarily introduced in order
4701 to allow the user to specifically access the standard exceptions
4702 using, for instance, Standard.Constraint_Error when Constraint_Error
4703 is ambiguous (due to the user defining its own Constraint_Error
4704 entity inside its program). */
4705 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4706 {
4707 wild_match = 0;
4708 block = NULL;
4709 name = name0 + sizeof ("standard__") - 1;
4710 }
4711
4712 /* Check the non-global symbols. If we have ANY match, then we're done. */
4713
4714 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4715 wild_match);
4716 if (num_defns_collected (&symbol_list_obstack) > 0)
4717 goto done;
4718
4719 /* No non-global symbols found. Check our cache to see if we have
4720 already performed this search before. If we have, then return
4721 the same result. */
4722
4723 cacheIfUnique = 1;
4724 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4725 {
4726 if (sym != NULL)
4727 add_defn_to_vec (&symbol_list_obstack, sym, block);
4728 goto done;
4729 }
4730
4731 /* Search symbols from all global blocks. */
4732
4733 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4734 wild_match);
4735
4736 /* Now add symbols from all per-file blocks if we've gotten no hits
4737 (not strictly correct, but perhaps better than an error). */
4738
4739 if (num_defns_collected (&symbol_list_obstack) == 0)
4740 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4741 wild_match);
4742
4743 done:
4744 ndefns = num_defns_collected (&symbol_list_obstack);
4745 *results = defns_collected (&symbol_list_obstack, 1);
4746
4747 ndefns = remove_extra_symbols (*results, ndefns);
4748
4749 if (ndefns == 0)
4750 cache_symbol (name0, namespace, NULL, NULL);
4751
4752 if (ndefns == 1 && cacheIfUnique)
4753 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4754
4755 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4756
4757 return ndefns;
4758 }
4759
4760 struct symbol *
4761 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4762 domain_enum namespace, struct block **block_found)
4763 {
4764 struct ada_symbol_info *candidates;
4765 int n_candidates;
4766
4767 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4768
4769 if (n_candidates == 0)
4770 return NULL;
4771
4772 if (block_found != NULL)
4773 *block_found = candidates[0].block;
4774
4775 return fixup_symbol_section (candidates[0].sym, NULL);
4776 }
4777
4778 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4779 scope and in global scopes, or NULL if none. NAME is folded and
4780 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4781 choosing the first symbol if there are multiple choices.
4782 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4783 table in which the symbol was found (in both cases, these
4784 assignments occur only if the pointers are non-null). */
4785 struct symbol *
4786 ada_lookup_symbol (const char *name, const struct block *block0,
4787 domain_enum namespace, int *is_a_field_of_this)
4788 {
4789 if (is_a_field_of_this != NULL)
4790 *is_a_field_of_this = 0;
4791
4792 return
4793 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4794 block0, namespace, NULL);
4795 }
4796
4797 static struct symbol *
4798 ada_lookup_symbol_nonlocal (const char *name,
4799 const char *linkage_name,
4800 const struct block *block,
4801 const domain_enum domain)
4802 {
4803 if (linkage_name == NULL)
4804 linkage_name = name;
4805 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4806 NULL);
4807 }
4808
4809
4810 /* True iff STR is a possible encoded suffix of a normal Ada name
4811 that is to be ignored for matching purposes. Suffixes of parallel
4812 names (e.g., XVE) are not included here. Currently, the possible suffixes
4813 are given by any of the regular expressions:
4814
4815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4817 _E[0-9]+[bs]$ [protected object entry suffixes]
4818 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4819
4820 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4821 match is performed. This sequence is used to differentiate homonyms,
4822 is an optional part of a valid name suffix. */
4823
4824 static int
4825 is_name_suffix (const char *str)
4826 {
4827 int k;
4828 const char *matching;
4829 const int len = strlen (str);
4830
4831 /* Skip optional leading __[0-9]+. */
4832
4833 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4834 {
4835 str += 3;
4836 while (isdigit (str[0]))
4837 str += 1;
4838 }
4839
4840 /* [.$][0-9]+ */
4841
4842 if (str[0] == '.' || str[0] == '$')
4843 {
4844 matching = str + 1;
4845 while (isdigit (matching[0]))
4846 matching += 1;
4847 if (matching[0] == '\0')
4848 return 1;
4849 }
4850
4851 /* ___[0-9]+ */
4852
4853 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4854 {
4855 matching = str + 3;
4856 while (isdigit (matching[0]))
4857 matching += 1;
4858 if (matching[0] == '\0')
4859 return 1;
4860 }
4861
4862 #if 0
4863 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4864 with a N at the end. Unfortunately, the compiler uses the same
4865 convention for other internal types it creates. So treating
4866 all entity names that end with an "N" as a name suffix causes
4867 some regressions. For instance, consider the case of an enumerated
4868 type. To support the 'Image attribute, it creates an array whose
4869 name ends with N.
4870 Having a single character like this as a suffix carrying some
4871 information is a bit risky. Perhaps we should change the encoding
4872 to be something like "_N" instead. In the meantime, do not do
4873 the following check. */
4874 /* Protected Object Subprograms */
4875 if (len == 1 && str [0] == 'N')
4876 return 1;
4877 #endif
4878
4879 /* _E[0-9]+[bs]$ */
4880 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4881 {
4882 matching = str + 3;
4883 while (isdigit (matching[0]))
4884 matching += 1;
4885 if ((matching[0] == 'b' || matching[0] == 's')
4886 && matching [1] == '\0')
4887 return 1;
4888 }
4889
4890 /* ??? We should not modify STR directly, as we are doing below. This
4891 is fine in this case, but may become problematic later if we find
4892 that this alternative did not work, and want to try matching
4893 another one from the begining of STR. Since we modified it, we
4894 won't be able to find the begining of the string anymore! */
4895 if (str[0] == 'X')
4896 {
4897 str += 1;
4898 while (str[0] != '_' && str[0] != '\0')
4899 {
4900 if (str[0] != 'n' && str[0] != 'b')
4901 return 0;
4902 str += 1;
4903 }
4904 }
4905
4906 if (str[0] == '\000')
4907 return 1;
4908
4909 if (str[0] == '_')
4910 {
4911 if (str[1] != '_' || str[2] == '\000')
4912 return 0;
4913 if (str[2] == '_')
4914 {
4915 if (strcmp (str + 3, "JM") == 0)
4916 return 1;
4917 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4918 the LJM suffix in favor of the JM one. But we will
4919 still accept LJM as a valid suffix for a reasonable
4920 amount of time, just to allow ourselves to debug programs
4921 compiled using an older version of GNAT. */
4922 if (strcmp (str + 3, "LJM") == 0)
4923 return 1;
4924 if (str[3] != 'X')
4925 return 0;
4926 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4927 || str[4] == 'U' || str[4] == 'P')
4928 return 1;
4929 if (str[4] == 'R' && str[5] != 'T')
4930 return 1;
4931 return 0;
4932 }
4933 if (!isdigit (str[2]))
4934 return 0;
4935 for (k = 3; str[k] != '\0'; k += 1)
4936 if (!isdigit (str[k]) && str[k] != '_')
4937 return 0;
4938 return 1;
4939 }
4940 if (str[0] == '$' && isdigit (str[1]))
4941 {
4942 for (k = 2; str[k] != '\0'; k += 1)
4943 if (!isdigit (str[k]) && str[k] != '_')
4944 return 0;
4945 return 1;
4946 }
4947 return 0;
4948 }
4949
4950 /* Return non-zero if the string starting at NAME and ending before
4951 NAME_END contains no capital letters. */
4952
4953 static int
4954 is_valid_name_for_wild_match (const char *name0)
4955 {
4956 const char *decoded_name = ada_decode (name0);
4957 int i;
4958
4959 /* If the decoded name starts with an angle bracket, it means that
4960 NAME0 does not follow the GNAT encoding format. It should then
4961 not be allowed as a possible wild match. */
4962 if (decoded_name[0] == '<')
4963 return 0;
4964
4965 for (i=0; decoded_name[i] != '\0'; i++)
4966 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4967 return 0;
4968
4969 return 1;
4970 }
4971
4972 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4973 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4974 informational suffixes of NAME (i.e., for which is_name_suffix is
4975 true). */
4976
4977 static int
4978 wild_match (const char *patn0, int patn_len, const char *name0)
4979 {
4980 char* match;
4981 const char* start;
4982 start = name0;
4983 while (1)
4984 {
4985 match = strstr (start, patn0);
4986 if (match == NULL)
4987 return 0;
4988 if ((match == name0
4989 || match[-1] == '.'
4990 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4991 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4992 && is_name_suffix (match + patn_len))
4993 return (match == name0 || is_valid_name_for_wild_match (name0));
4994 start = match + 1;
4995 }
4996 }
4997
4998
4999 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5000 vector *defn_symbols, updating the list of symbols in OBSTACKP
5001 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5002 OBJFILE is the section containing BLOCK.
5003 SYMTAB is recorded with each symbol added. */
5004
5005 static void
5006 ada_add_block_symbols (struct obstack *obstackp,
5007 struct block *block, const char *name,
5008 domain_enum domain, struct objfile *objfile,
5009 int wild)
5010 {
5011 struct dict_iterator iter;
5012 int name_len = strlen (name);
5013 /* A matching argument symbol, if any. */
5014 struct symbol *arg_sym;
5015 /* Set true when we find a matching non-argument symbol. */
5016 int found_sym;
5017 struct symbol *sym;
5018
5019 arg_sym = NULL;
5020 found_sym = 0;
5021 if (wild)
5022 {
5023 struct symbol *sym;
5024 ALL_BLOCK_SYMBOLS (block, iter, sym)
5025 {
5026 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5027 SYMBOL_DOMAIN (sym), domain)
5028 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5029 {
5030 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5031 continue;
5032 else if (SYMBOL_IS_ARGUMENT (sym))
5033 arg_sym = sym;
5034 else
5035 {
5036 found_sym = 1;
5037 add_defn_to_vec (obstackp,
5038 fixup_symbol_section (sym, objfile),
5039 block);
5040 }
5041 }
5042 }
5043 }
5044 else
5045 {
5046 ALL_BLOCK_SYMBOLS (block, iter, sym)
5047 {
5048 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5049 SYMBOL_DOMAIN (sym), domain))
5050 {
5051 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5052 if (cmp == 0
5053 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5054 {
5055 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5056 {
5057 if (SYMBOL_IS_ARGUMENT (sym))
5058 arg_sym = sym;
5059 else
5060 {
5061 found_sym = 1;
5062 add_defn_to_vec (obstackp,
5063 fixup_symbol_section (sym, objfile),
5064 block);
5065 }
5066 }
5067 }
5068 }
5069 }
5070 }
5071
5072 if (!found_sym && arg_sym != NULL)
5073 {
5074 add_defn_to_vec (obstackp,
5075 fixup_symbol_section (arg_sym, objfile),
5076 block);
5077 }
5078
5079 if (!wild)
5080 {
5081 arg_sym = NULL;
5082 found_sym = 0;
5083
5084 ALL_BLOCK_SYMBOLS (block, iter, sym)
5085 {
5086 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5087 SYMBOL_DOMAIN (sym), domain))
5088 {
5089 int cmp;
5090
5091 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5092 if (cmp == 0)
5093 {
5094 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5095 if (cmp == 0)
5096 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5097 name_len);
5098 }
5099
5100 if (cmp == 0
5101 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5102 {
5103 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5104 {
5105 if (SYMBOL_IS_ARGUMENT (sym))
5106 arg_sym = sym;
5107 else
5108 {
5109 found_sym = 1;
5110 add_defn_to_vec (obstackp,
5111 fixup_symbol_section (sym, objfile),
5112 block);
5113 }
5114 }
5115 }
5116 }
5117 }
5118
5119 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5120 They aren't parameters, right? */
5121 if (!found_sym && arg_sym != NULL)
5122 {
5123 add_defn_to_vec (obstackp,
5124 fixup_symbol_section (arg_sym, objfile),
5125 block);
5126 }
5127 }
5128 }
5129 \f
5130
5131 /* Symbol Completion */
5132
5133 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5134 name in a form that's appropriate for the completion. The result
5135 does not need to be deallocated, but is only good until the next call.
5136
5137 TEXT_LEN is equal to the length of TEXT.
5138 Perform a wild match if WILD_MATCH is set.
5139 ENCODED should be set if TEXT represents the start of a symbol name
5140 in its encoded form. */
5141
5142 static const char *
5143 symbol_completion_match (const char *sym_name,
5144 const char *text, int text_len,
5145 int wild_match, int encoded)
5146 {
5147 char *result;
5148 const int verbatim_match = (text[0] == '<');
5149 int match = 0;
5150
5151 if (verbatim_match)
5152 {
5153 /* Strip the leading angle bracket. */
5154 text = text + 1;
5155 text_len--;
5156 }
5157
5158 /* First, test against the fully qualified name of the symbol. */
5159
5160 if (strncmp (sym_name, text, text_len) == 0)
5161 match = 1;
5162
5163 if (match && !encoded)
5164 {
5165 /* One needed check before declaring a positive match is to verify
5166 that iff we are doing a verbatim match, the decoded version
5167 of the symbol name starts with '<'. Otherwise, this symbol name
5168 is not a suitable completion. */
5169 const char *sym_name_copy = sym_name;
5170 int has_angle_bracket;
5171
5172 sym_name = ada_decode (sym_name);
5173 has_angle_bracket = (sym_name[0] == '<');
5174 match = (has_angle_bracket == verbatim_match);
5175 sym_name = sym_name_copy;
5176 }
5177
5178 if (match && !verbatim_match)
5179 {
5180 /* When doing non-verbatim match, another check that needs to
5181 be done is to verify that the potentially matching symbol name
5182 does not include capital letters, because the ada-mode would
5183 not be able to understand these symbol names without the
5184 angle bracket notation. */
5185 const char *tmp;
5186
5187 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5188 if (*tmp != '\0')
5189 match = 0;
5190 }
5191
5192 /* Second: Try wild matching... */
5193
5194 if (!match && wild_match)
5195 {
5196 /* Since we are doing wild matching, this means that TEXT
5197 may represent an unqualified symbol name. We therefore must
5198 also compare TEXT against the unqualified name of the symbol. */
5199 sym_name = ada_unqualified_name (ada_decode (sym_name));
5200
5201 if (strncmp (sym_name, text, text_len) == 0)
5202 match = 1;
5203 }
5204
5205 /* Finally: If we found a mach, prepare the result to return. */
5206
5207 if (!match)
5208 return NULL;
5209
5210 if (verbatim_match)
5211 sym_name = add_angle_brackets (sym_name);
5212
5213 if (!encoded)
5214 sym_name = ada_decode (sym_name);
5215
5216 return sym_name;
5217 }
5218
5219 typedef char *char_ptr;
5220 DEF_VEC_P (char_ptr);
5221
5222 /* A companion function to ada_make_symbol_completion_list().
5223 Check if SYM_NAME represents a symbol which name would be suitable
5224 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5225 it is appended at the end of the given string vector SV.
5226
5227 ORIG_TEXT is the string original string from the user command
5228 that needs to be completed. WORD is the entire command on which
5229 completion should be performed. These two parameters are used to
5230 determine which part of the symbol name should be added to the
5231 completion vector.
5232 if WILD_MATCH is set, then wild matching is performed.
5233 ENCODED should be set if TEXT represents a symbol name in its
5234 encoded formed (in which case the completion should also be
5235 encoded). */
5236
5237 static void
5238 symbol_completion_add (VEC(char_ptr) **sv,
5239 const char *sym_name,
5240 const char *text, int text_len,
5241 const char *orig_text, const char *word,
5242 int wild_match, int encoded)
5243 {
5244 const char *match = symbol_completion_match (sym_name, text, text_len,
5245 wild_match, encoded);
5246 char *completion;
5247
5248 if (match == NULL)
5249 return;
5250
5251 /* We found a match, so add the appropriate completion to the given
5252 string vector. */
5253
5254 if (word == orig_text)
5255 {
5256 completion = xmalloc (strlen (match) + 5);
5257 strcpy (completion, match);
5258 }
5259 else if (word > orig_text)
5260 {
5261 /* Return some portion of sym_name. */
5262 completion = xmalloc (strlen (match) + 5);
5263 strcpy (completion, match + (word - orig_text));
5264 }
5265 else
5266 {
5267 /* Return some of ORIG_TEXT plus sym_name. */
5268 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5269 strncpy (completion, word, orig_text - word);
5270 completion[orig_text - word] = '\0';
5271 strcat (completion, match);
5272 }
5273
5274 VEC_safe_push (char_ptr, *sv, completion);
5275 }
5276
5277 /* Return a list of possible symbol names completing TEXT0. The list
5278 is NULL terminated. WORD is the entire command on which completion
5279 is made. */
5280
5281 static char **
5282 ada_make_symbol_completion_list (char *text0, char *word)
5283 {
5284 char *text;
5285 int text_len;
5286 int wild_match;
5287 int encoded;
5288 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5289 struct symbol *sym;
5290 struct symtab *s;
5291 struct partial_symtab *ps;
5292 struct minimal_symbol *msymbol;
5293 struct objfile *objfile;
5294 struct block *b, *surrounding_static_block = 0;
5295 int i;
5296 struct dict_iterator iter;
5297
5298 if (text0[0] == '<')
5299 {
5300 text = xstrdup (text0);
5301 make_cleanup (xfree, text);
5302 text_len = strlen (text);
5303 wild_match = 0;
5304 encoded = 1;
5305 }
5306 else
5307 {
5308 text = xstrdup (ada_encode (text0));
5309 make_cleanup (xfree, text);
5310 text_len = strlen (text);
5311 for (i = 0; i < text_len; i++)
5312 text[i] = tolower (text[i]);
5313
5314 encoded = (strstr (text0, "__") != NULL);
5315 /* If the name contains a ".", then the user is entering a fully
5316 qualified entity name, and the match must not be done in wild
5317 mode. Similarly, if the user wants to complete what looks like
5318 an encoded name, the match must not be done in wild mode. */
5319 wild_match = (strchr (text0, '.') == NULL && !encoded);
5320 }
5321
5322 /* First, look at the partial symtab symbols. */
5323 ALL_PSYMTABS (objfile, ps)
5324 {
5325 struct partial_symbol **psym;
5326
5327 /* If the psymtab's been read in we'll get it when we search
5328 through the blockvector. */
5329 if (ps->readin)
5330 continue;
5331
5332 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5333 psym < (objfile->global_psymbols.list + ps->globals_offset
5334 + ps->n_global_syms); psym++)
5335 {
5336 QUIT;
5337 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5338 text, text_len, text0, word,
5339 wild_match, encoded);
5340 }
5341
5342 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5343 psym < (objfile->static_psymbols.list + ps->statics_offset
5344 + ps->n_static_syms); psym++)
5345 {
5346 QUIT;
5347 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5348 text, text_len, text0, word,
5349 wild_match, encoded);
5350 }
5351 }
5352
5353 /* At this point scan through the misc symbol vectors and add each
5354 symbol you find to the list. Eventually we want to ignore
5355 anything that isn't a text symbol (everything else will be
5356 handled by the psymtab code above). */
5357
5358 ALL_MSYMBOLS (objfile, msymbol)
5359 {
5360 QUIT;
5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5362 text, text_len, text0, word, wild_match, encoded);
5363 }
5364
5365 /* Search upwards from currently selected frame (so that we can
5366 complete on local vars. */
5367
5368 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5369 {
5370 if (!BLOCK_SUPERBLOCK (b))
5371 surrounding_static_block = b; /* For elmin of dups */
5372
5373 ALL_BLOCK_SYMBOLS (b, iter, sym)
5374 {
5375 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5376 text, text_len, text0, word,
5377 wild_match, encoded);
5378 }
5379 }
5380
5381 /* Go through the symtabs and check the externs and statics for
5382 symbols which match. */
5383
5384 ALL_SYMTABS (objfile, s)
5385 {
5386 QUIT;
5387 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5388 ALL_BLOCK_SYMBOLS (b, iter, sym)
5389 {
5390 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5391 text, text_len, text0, word,
5392 wild_match, encoded);
5393 }
5394 }
5395
5396 ALL_SYMTABS (objfile, s)
5397 {
5398 QUIT;
5399 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5400 /* Don't do this block twice. */
5401 if (b == surrounding_static_block)
5402 continue;
5403 ALL_BLOCK_SYMBOLS (b, iter, sym)
5404 {
5405 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5406 text, text_len, text0, word,
5407 wild_match, encoded);
5408 }
5409 }
5410
5411 /* Append the closing NULL entry. */
5412 VEC_safe_push (char_ptr, completions, NULL);
5413
5414 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5415 return the copy. It's unfortunate that we have to make a copy
5416 of an array that we're about to destroy, but there is nothing much
5417 we can do about it. Fortunately, it's typically not a very large
5418 array. */
5419 {
5420 const size_t completions_size =
5421 VEC_length (char_ptr, completions) * sizeof (char *);
5422 char **result = malloc (completions_size);
5423
5424 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5425
5426 VEC_free (char_ptr, completions);
5427 return result;
5428 }
5429 }
5430
5431 /* Field Access */
5432
5433 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5434 for tagged types. */
5435
5436 static int
5437 ada_is_dispatch_table_ptr_type (struct type *type)
5438 {
5439 char *name;
5440
5441 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5442 return 0;
5443
5444 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5445 if (name == NULL)
5446 return 0;
5447
5448 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5449 }
5450
5451 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5452 to be invisible to users. */
5453
5454 int
5455 ada_is_ignored_field (struct type *type, int field_num)
5456 {
5457 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5458 return 1;
5459
5460 /* Check the name of that field. */
5461 {
5462 const char *name = TYPE_FIELD_NAME (type, field_num);
5463
5464 /* Anonymous field names should not be printed.
5465 brobecker/2007-02-20: I don't think this can actually happen
5466 but we don't want to print the value of annonymous fields anyway. */
5467 if (name == NULL)
5468 return 1;
5469
5470 /* A field named "_parent" is internally generated by GNAT for
5471 tagged types, and should not be printed either. */
5472 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5473 return 1;
5474 }
5475
5476 /* If this is the dispatch table of a tagged type, then ignore. */
5477 if (ada_is_tagged_type (type, 1)
5478 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5479 return 1;
5480
5481 /* Not a special field, so it should not be ignored. */
5482 return 0;
5483 }
5484
5485 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5486 pointer or reference type whose ultimate target has a tag field. */
5487
5488 int
5489 ada_is_tagged_type (struct type *type, int refok)
5490 {
5491 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5492 }
5493
5494 /* True iff TYPE represents the type of X'Tag */
5495
5496 int
5497 ada_is_tag_type (struct type *type)
5498 {
5499 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5500 return 0;
5501 else
5502 {
5503 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5504 return (name != NULL
5505 && strcmp (name, "ada__tags__dispatch_table") == 0);
5506 }
5507 }
5508
5509 /* The type of the tag on VAL. */
5510
5511 struct type *
5512 ada_tag_type (struct value *val)
5513 {
5514 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5515 }
5516
5517 /* The value of the tag on VAL. */
5518
5519 struct value *
5520 ada_value_tag (struct value *val)
5521 {
5522 return ada_value_struct_elt (val, "_tag", 0);
5523 }
5524
5525 /* The value of the tag on the object of type TYPE whose contents are
5526 saved at VALADDR, if it is non-null, or is at memory address
5527 ADDRESS. */
5528
5529 static struct value *
5530 value_tag_from_contents_and_address (struct type *type,
5531 const gdb_byte *valaddr,
5532 CORE_ADDR address)
5533 {
5534 int tag_byte_offset, dummy1, dummy2;
5535 struct type *tag_type;
5536 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5537 NULL, NULL, NULL))
5538 {
5539 const gdb_byte *valaddr1 = ((valaddr == NULL)
5540 ? NULL
5541 : valaddr + tag_byte_offset);
5542 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5543
5544 return value_from_contents_and_address (tag_type, valaddr1, address1);
5545 }
5546 return NULL;
5547 }
5548
5549 static struct type *
5550 type_from_tag (struct value *tag)
5551 {
5552 const char *type_name = ada_tag_name (tag);
5553 if (type_name != NULL)
5554 return ada_find_any_type (ada_encode (type_name));
5555 return NULL;
5556 }
5557
5558 struct tag_args
5559 {
5560 struct value *tag;
5561 char *name;
5562 };
5563
5564
5565 static int ada_tag_name_1 (void *);
5566 static int ada_tag_name_2 (struct tag_args *);
5567
5568 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5569 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5570 The value stored in ARGS->name is valid until the next call to
5571 ada_tag_name_1. */
5572
5573 static int
5574 ada_tag_name_1 (void *args0)
5575 {
5576 struct tag_args *args = (struct tag_args *) args0;
5577 static char name[1024];
5578 char *p;
5579 struct value *val;
5580 args->name = NULL;
5581 val = ada_value_struct_elt (args->tag, "tsd", 1);
5582 if (val == NULL)
5583 return ada_tag_name_2 (args);
5584 val = ada_value_struct_elt (val, "expanded_name", 1);
5585 if (val == NULL)
5586 return 0;
5587 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5588 for (p = name; *p != '\0'; p += 1)
5589 if (isalpha (*p))
5590 *p = tolower (*p);
5591 args->name = name;
5592 return 0;
5593 }
5594
5595 /* Utility function for ada_tag_name_1 that tries the second
5596 representation for the dispatch table (in which there is no
5597 explicit 'tsd' field in the referent of the tag pointer, and instead
5598 the tsd pointer is stored just before the dispatch table. */
5599
5600 static int
5601 ada_tag_name_2 (struct tag_args *args)
5602 {
5603 struct type *info_type;
5604 static char name[1024];
5605 char *p;
5606 struct value *val, *valp;
5607
5608 args->name = NULL;
5609 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5610 if (info_type == NULL)
5611 return 0;
5612 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5613 valp = value_cast (info_type, args->tag);
5614 if (valp == NULL)
5615 return 0;
5616 val = value_ind (value_ptradd (valp,
5617 value_from_longest (builtin_type_int8, -1)));
5618 if (val == NULL)
5619 return 0;
5620 val = ada_value_struct_elt (val, "expanded_name", 1);
5621 if (val == NULL)
5622 return 0;
5623 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5624 for (p = name; *p != '\0'; p += 1)
5625 if (isalpha (*p))
5626 *p = tolower (*p);
5627 args->name = name;
5628 return 0;
5629 }
5630
5631 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5632 * a C string. */
5633
5634 const char *
5635 ada_tag_name (struct value *tag)
5636 {
5637 struct tag_args args;
5638 if (!ada_is_tag_type (value_type (tag)))
5639 return NULL;
5640 args.tag = tag;
5641 args.name = NULL;
5642 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5643 return args.name;
5644 }
5645
5646 /* The parent type of TYPE, or NULL if none. */
5647
5648 struct type *
5649 ada_parent_type (struct type *type)
5650 {
5651 int i;
5652
5653 type = ada_check_typedef (type);
5654
5655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5656 return NULL;
5657
5658 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5659 if (ada_is_parent_field (type, i))
5660 {
5661 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5662
5663 /* If the _parent field is a pointer, then dereference it. */
5664 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5665 parent_type = TYPE_TARGET_TYPE (parent_type);
5666 /* If there is a parallel XVS type, get the actual base type. */
5667 parent_type = ada_get_base_type (parent_type);
5668
5669 return ada_check_typedef (parent_type);
5670 }
5671
5672 return NULL;
5673 }
5674
5675 /* True iff field number FIELD_NUM of structure type TYPE contains the
5676 parent-type (inherited) fields of a derived type. Assumes TYPE is
5677 a structure type with at least FIELD_NUM+1 fields. */
5678
5679 int
5680 ada_is_parent_field (struct type *type, int field_num)
5681 {
5682 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5683 return (name != NULL
5684 && (strncmp (name, "PARENT", 6) == 0
5685 || strncmp (name, "_parent", 7) == 0));
5686 }
5687
5688 /* True iff field number FIELD_NUM of structure type TYPE is a
5689 transparent wrapper field (which should be silently traversed when doing
5690 field selection and flattened when printing). Assumes TYPE is a
5691 structure type with at least FIELD_NUM+1 fields. Such fields are always
5692 structures. */
5693
5694 int
5695 ada_is_wrapper_field (struct type *type, int field_num)
5696 {
5697 const char *name = TYPE_FIELD_NAME (type, field_num);
5698 return (name != NULL
5699 && (strncmp (name, "PARENT", 6) == 0
5700 || strcmp (name, "REP") == 0
5701 || strncmp (name, "_parent", 7) == 0
5702 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5703 }
5704
5705 /* True iff field number FIELD_NUM of structure or union type TYPE
5706 is a variant wrapper. Assumes TYPE is a structure type with at least
5707 FIELD_NUM+1 fields. */
5708
5709 int
5710 ada_is_variant_part (struct type *type, int field_num)
5711 {
5712 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5713 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5714 || (is_dynamic_field (type, field_num)
5715 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5716 == TYPE_CODE_UNION)));
5717 }
5718
5719 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5720 whose discriminants are contained in the record type OUTER_TYPE,
5721 returns the type of the controlling discriminant for the variant. */
5722
5723 struct type *
5724 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5725 {
5726 char *name = ada_variant_discrim_name (var_type);
5727 struct type *type =
5728 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5729 if (type == NULL)
5730 return builtin_type_int32;
5731 else
5732 return type;
5733 }
5734
5735 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5736 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5737 represents a 'when others' clause; otherwise 0. */
5738
5739 int
5740 ada_is_others_clause (struct type *type, int field_num)
5741 {
5742 const char *name = TYPE_FIELD_NAME (type, field_num);
5743 return (name != NULL && name[0] == 'O');
5744 }
5745
5746 /* Assuming that TYPE0 is the type of the variant part of a record,
5747 returns the name of the discriminant controlling the variant.
5748 The value is valid until the next call to ada_variant_discrim_name. */
5749
5750 char *
5751 ada_variant_discrim_name (struct type *type0)
5752 {
5753 static char *result = NULL;
5754 static size_t result_len = 0;
5755 struct type *type;
5756 const char *name;
5757 const char *discrim_end;
5758 const char *discrim_start;
5759
5760 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5761 type = TYPE_TARGET_TYPE (type0);
5762 else
5763 type = type0;
5764
5765 name = ada_type_name (type);
5766
5767 if (name == NULL || name[0] == '\000')
5768 return "";
5769
5770 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5771 discrim_end -= 1)
5772 {
5773 if (strncmp (discrim_end, "___XVN", 6) == 0)
5774 break;
5775 }
5776 if (discrim_end == name)
5777 return "";
5778
5779 for (discrim_start = discrim_end; discrim_start != name + 3;
5780 discrim_start -= 1)
5781 {
5782 if (discrim_start == name + 1)
5783 return "";
5784 if ((discrim_start > name + 3
5785 && strncmp (discrim_start - 3, "___", 3) == 0)
5786 || discrim_start[-1] == '.')
5787 break;
5788 }
5789
5790 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5791 strncpy (result, discrim_start, discrim_end - discrim_start);
5792 result[discrim_end - discrim_start] = '\0';
5793 return result;
5794 }
5795
5796 /* Scan STR for a subtype-encoded number, beginning at position K.
5797 Put the position of the character just past the number scanned in
5798 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5799 Return 1 if there was a valid number at the given position, and 0
5800 otherwise. A "subtype-encoded" number consists of the absolute value
5801 in decimal, followed by the letter 'm' to indicate a negative number.
5802 Assumes 0m does not occur. */
5803
5804 int
5805 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5806 {
5807 ULONGEST RU;
5808
5809 if (!isdigit (str[k]))
5810 return 0;
5811
5812 /* Do it the hard way so as not to make any assumption about
5813 the relationship of unsigned long (%lu scan format code) and
5814 LONGEST. */
5815 RU = 0;
5816 while (isdigit (str[k]))
5817 {
5818 RU = RU * 10 + (str[k] - '0');
5819 k += 1;
5820 }
5821
5822 if (str[k] == 'm')
5823 {
5824 if (R != NULL)
5825 *R = (-(LONGEST) (RU - 1)) - 1;
5826 k += 1;
5827 }
5828 else if (R != NULL)
5829 *R = (LONGEST) RU;
5830
5831 /* NOTE on the above: Technically, C does not say what the results of
5832 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5833 number representable as a LONGEST (although either would probably work
5834 in most implementations). When RU>0, the locution in the then branch
5835 above is always equivalent to the negative of RU. */
5836
5837 if (new_k != NULL)
5838 *new_k = k;
5839 return 1;
5840 }
5841
5842 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5843 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5844 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5845
5846 int
5847 ada_in_variant (LONGEST val, struct type *type, int field_num)
5848 {
5849 const char *name = TYPE_FIELD_NAME (type, field_num);
5850 int p;
5851
5852 p = 0;
5853 while (1)
5854 {
5855 switch (name[p])
5856 {
5857 case '\0':
5858 return 0;
5859 case 'S':
5860 {
5861 LONGEST W;
5862 if (!ada_scan_number (name, p + 1, &W, &p))
5863 return 0;
5864 if (val == W)
5865 return 1;
5866 break;
5867 }
5868 case 'R':
5869 {
5870 LONGEST L, U;
5871 if (!ada_scan_number (name, p + 1, &L, &p)
5872 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5873 return 0;
5874 if (val >= L && val <= U)
5875 return 1;
5876 break;
5877 }
5878 case 'O':
5879 return 1;
5880 default:
5881 return 0;
5882 }
5883 }
5884 }
5885
5886 /* FIXME: Lots of redundancy below. Try to consolidate. */
5887
5888 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5889 ARG_TYPE, extract and return the value of one of its (non-static)
5890 fields. FIELDNO says which field. Differs from value_primitive_field
5891 only in that it can handle packed values of arbitrary type. */
5892
5893 static struct value *
5894 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5895 struct type *arg_type)
5896 {
5897 struct type *type;
5898
5899 arg_type = ada_check_typedef (arg_type);
5900 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5901
5902 /* Handle packed fields. */
5903
5904 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5905 {
5906 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5907 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5908
5909 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5910 offset + bit_pos / 8,
5911 bit_pos % 8, bit_size, type);
5912 }
5913 else
5914 return value_primitive_field (arg1, offset, fieldno, arg_type);
5915 }
5916
5917 /* Find field with name NAME in object of type TYPE. If found,
5918 set the following for each argument that is non-null:
5919 - *FIELD_TYPE_P to the field's type;
5920 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5921 an object of that type;
5922 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5923 - *BIT_SIZE_P to its size in bits if the field is packed, and
5924 0 otherwise;
5925 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5926 fields up to but not including the desired field, or by the total
5927 number of fields if not found. A NULL value of NAME never
5928 matches; the function just counts visible fields in this case.
5929
5930 Returns 1 if found, 0 otherwise. */
5931
5932 static int
5933 find_struct_field (char *name, struct type *type, int offset,
5934 struct type **field_type_p,
5935 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5936 int *index_p)
5937 {
5938 int i;
5939
5940 type = ada_check_typedef (type);
5941
5942 if (field_type_p != NULL)
5943 *field_type_p = NULL;
5944 if (byte_offset_p != NULL)
5945 *byte_offset_p = 0;
5946 if (bit_offset_p != NULL)
5947 *bit_offset_p = 0;
5948 if (bit_size_p != NULL)
5949 *bit_size_p = 0;
5950
5951 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5952 {
5953 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5954 int fld_offset = offset + bit_pos / 8;
5955 char *t_field_name = TYPE_FIELD_NAME (type, i);
5956
5957 if (t_field_name == NULL)
5958 continue;
5959
5960 else if (name != NULL && field_name_match (t_field_name, name))
5961 {
5962 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5963 if (field_type_p != NULL)
5964 *field_type_p = TYPE_FIELD_TYPE (type, i);
5965 if (byte_offset_p != NULL)
5966 *byte_offset_p = fld_offset;
5967 if (bit_offset_p != NULL)
5968 *bit_offset_p = bit_pos % 8;
5969 if (bit_size_p != NULL)
5970 *bit_size_p = bit_size;
5971 return 1;
5972 }
5973 else if (ada_is_wrapper_field (type, i))
5974 {
5975 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5976 field_type_p, byte_offset_p, bit_offset_p,
5977 bit_size_p, index_p))
5978 return 1;
5979 }
5980 else if (ada_is_variant_part (type, i))
5981 {
5982 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5983 fixed type?? */
5984 int j;
5985 struct type *field_type
5986 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5987
5988 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5989 {
5990 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5991 fld_offset
5992 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5993 field_type_p, byte_offset_p,
5994 bit_offset_p, bit_size_p, index_p))
5995 return 1;
5996 }
5997 }
5998 else if (index_p != NULL)
5999 *index_p += 1;
6000 }
6001 return 0;
6002 }
6003
6004 /* Number of user-visible fields in record type TYPE. */
6005
6006 static int
6007 num_visible_fields (struct type *type)
6008 {
6009 int n;
6010 n = 0;
6011 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6012 return n;
6013 }
6014
6015 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6016 and search in it assuming it has (class) type TYPE.
6017 If found, return value, else return NULL.
6018
6019 Searches recursively through wrapper fields (e.g., '_parent'). */
6020
6021 static struct value *
6022 ada_search_struct_field (char *name, struct value *arg, int offset,
6023 struct type *type)
6024 {
6025 int i;
6026 type = ada_check_typedef (type);
6027
6028 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6029 {
6030 char *t_field_name = TYPE_FIELD_NAME (type, i);
6031
6032 if (t_field_name == NULL)
6033 continue;
6034
6035 else if (field_name_match (t_field_name, name))
6036 return ada_value_primitive_field (arg, offset, i, type);
6037
6038 else if (ada_is_wrapper_field (type, i))
6039 {
6040 struct value *v = /* Do not let indent join lines here. */
6041 ada_search_struct_field (name, arg,
6042 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6043 TYPE_FIELD_TYPE (type, i));
6044 if (v != NULL)
6045 return v;
6046 }
6047
6048 else if (ada_is_variant_part (type, i))
6049 {
6050 /* PNH: Do we ever get here? See find_struct_field. */
6051 int j;
6052 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6053 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6054
6055 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6056 {
6057 struct value *v = ada_search_struct_field /* Force line break. */
6058 (name, arg,
6059 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6060 TYPE_FIELD_TYPE (field_type, j));
6061 if (v != NULL)
6062 return v;
6063 }
6064 }
6065 }
6066 return NULL;
6067 }
6068
6069 static struct value *ada_index_struct_field_1 (int *, struct value *,
6070 int, struct type *);
6071
6072
6073 /* Return field #INDEX in ARG, where the index is that returned by
6074 * find_struct_field through its INDEX_P argument. Adjust the address
6075 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6076 * If found, return value, else return NULL. */
6077
6078 static struct value *
6079 ada_index_struct_field (int index, struct value *arg, int offset,
6080 struct type *type)
6081 {
6082 return ada_index_struct_field_1 (&index, arg, offset, type);
6083 }
6084
6085
6086 /* Auxiliary function for ada_index_struct_field. Like
6087 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6088 * *INDEX_P. */
6089
6090 static struct value *
6091 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6092 struct type *type)
6093 {
6094 int i;
6095 type = ada_check_typedef (type);
6096
6097 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6098 {
6099 if (TYPE_FIELD_NAME (type, i) == NULL)
6100 continue;
6101 else if (ada_is_wrapper_field (type, i))
6102 {
6103 struct value *v = /* Do not let indent join lines here. */
6104 ada_index_struct_field_1 (index_p, arg,
6105 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6106 TYPE_FIELD_TYPE (type, i));
6107 if (v != NULL)
6108 return v;
6109 }
6110
6111 else if (ada_is_variant_part (type, i))
6112 {
6113 /* PNH: Do we ever get here? See ada_search_struct_field,
6114 find_struct_field. */
6115 error (_("Cannot assign this kind of variant record"));
6116 }
6117 else if (*index_p == 0)
6118 return ada_value_primitive_field (arg, offset, i, type);
6119 else
6120 *index_p -= 1;
6121 }
6122 return NULL;
6123 }
6124
6125 /* Given ARG, a value of type (pointer or reference to a)*
6126 structure/union, extract the component named NAME from the ultimate
6127 target structure/union and return it as a value with its
6128 appropriate type.
6129
6130 The routine searches for NAME among all members of the structure itself
6131 and (recursively) among all members of any wrapper members
6132 (e.g., '_parent').
6133
6134 If NO_ERR, then simply return NULL in case of error, rather than
6135 calling error. */
6136
6137 struct value *
6138 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6139 {
6140 struct type *t, *t1;
6141 struct value *v;
6142
6143 v = NULL;
6144 t1 = t = ada_check_typedef (value_type (arg));
6145 if (TYPE_CODE (t) == TYPE_CODE_REF)
6146 {
6147 t1 = TYPE_TARGET_TYPE (t);
6148 if (t1 == NULL)
6149 goto BadValue;
6150 t1 = ada_check_typedef (t1);
6151 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6152 {
6153 arg = coerce_ref (arg);
6154 t = t1;
6155 }
6156 }
6157
6158 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6159 {
6160 t1 = TYPE_TARGET_TYPE (t);
6161 if (t1 == NULL)
6162 goto BadValue;
6163 t1 = ada_check_typedef (t1);
6164 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6165 {
6166 arg = value_ind (arg);
6167 t = t1;
6168 }
6169 else
6170 break;
6171 }
6172
6173 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6174 goto BadValue;
6175
6176 if (t1 == t)
6177 v = ada_search_struct_field (name, arg, 0, t);
6178 else
6179 {
6180 int bit_offset, bit_size, byte_offset;
6181 struct type *field_type;
6182 CORE_ADDR address;
6183
6184 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6185 address = value_as_address (arg);
6186 else
6187 address = unpack_pointer (t, value_contents (arg));
6188
6189 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6190 if (find_struct_field (name, t1, 0,
6191 &field_type, &byte_offset, &bit_offset,
6192 &bit_size, NULL))
6193 {
6194 if (bit_size != 0)
6195 {
6196 if (TYPE_CODE (t) == TYPE_CODE_REF)
6197 arg = ada_coerce_ref (arg);
6198 else
6199 arg = ada_value_ind (arg);
6200 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6201 bit_offset, bit_size,
6202 field_type);
6203 }
6204 else
6205 v = value_at_lazy (field_type, address + byte_offset);
6206 }
6207 }
6208
6209 if (v != NULL || no_err)
6210 return v;
6211 else
6212 error (_("There is no member named %s."), name);
6213
6214 BadValue:
6215 if (no_err)
6216 return NULL;
6217 else
6218 error (_("Attempt to extract a component of a value that is not a record."));
6219 }
6220
6221 /* Given a type TYPE, look up the type of the component of type named NAME.
6222 If DISPP is non-null, add its byte displacement from the beginning of a
6223 structure (pointed to by a value) of type TYPE to *DISPP (does not
6224 work for packed fields).
6225
6226 Matches any field whose name has NAME as a prefix, possibly
6227 followed by "___".
6228
6229 TYPE can be either a struct or union. If REFOK, TYPE may also
6230 be a (pointer or reference)+ to a struct or union, and the
6231 ultimate target type will be searched.
6232
6233 Looks recursively into variant clauses and parent types.
6234
6235 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6236 TYPE is not a type of the right kind. */
6237
6238 static struct type *
6239 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6240 int noerr, int *dispp)
6241 {
6242 int i;
6243
6244 if (name == NULL)
6245 goto BadName;
6246
6247 if (refok && type != NULL)
6248 while (1)
6249 {
6250 type = ada_check_typedef (type);
6251 if (TYPE_CODE (type) != TYPE_CODE_PTR
6252 && TYPE_CODE (type) != TYPE_CODE_REF)
6253 break;
6254 type = TYPE_TARGET_TYPE (type);
6255 }
6256
6257 if (type == NULL
6258 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6259 && TYPE_CODE (type) != TYPE_CODE_UNION))
6260 {
6261 if (noerr)
6262 return NULL;
6263 else
6264 {
6265 target_terminal_ours ();
6266 gdb_flush (gdb_stdout);
6267 if (type == NULL)
6268 error (_("Type (null) is not a structure or union type"));
6269 else
6270 {
6271 /* XXX: type_sprint */
6272 fprintf_unfiltered (gdb_stderr, _("Type "));
6273 type_print (type, "", gdb_stderr, -1);
6274 error (_(" is not a structure or union type"));
6275 }
6276 }
6277 }
6278
6279 type = to_static_fixed_type (type);
6280
6281 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6282 {
6283 char *t_field_name = TYPE_FIELD_NAME (type, i);
6284 struct type *t;
6285 int disp;
6286
6287 if (t_field_name == NULL)
6288 continue;
6289
6290 else if (field_name_match (t_field_name, name))
6291 {
6292 if (dispp != NULL)
6293 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6294 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6295 }
6296
6297 else if (ada_is_wrapper_field (type, i))
6298 {
6299 disp = 0;
6300 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6301 0, 1, &disp);
6302 if (t != NULL)
6303 {
6304 if (dispp != NULL)
6305 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6306 return t;
6307 }
6308 }
6309
6310 else if (ada_is_variant_part (type, i))
6311 {
6312 int j;
6313 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6314
6315 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6316 {
6317 /* FIXME pnh 2008/01/26: We check for a field that is
6318 NOT wrapped in a struct, since the compiler sometimes
6319 generates these for unchecked variant types. Revisit
6320 if the compiler changes this practice. */
6321 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6322 disp = 0;
6323 if (v_field_name != NULL
6324 && field_name_match (v_field_name, name))
6325 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6326 else
6327 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6328 name, 0, 1, &disp);
6329
6330 if (t != NULL)
6331 {
6332 if (dispp != NULL)
6333 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6334 return t;
6335 }
6336 }
6337 }
6338
6339 }
6340
6341 BadName:
6342 if (!noerr)
6343 {
6344 target_terminal_ours ();
6345 gdb_flush (gdb_stdout);
6346 if (name == NULL)
6347 {
6348 /* XXX: type_sprint */
6349 fprintf_unfiltered (gdb_stderr, _("Type "));
6350 type_print (type, "", gdb_stderr, -1);
6351 error (_(" has no component named <null>"));
6352 }
6353 else
6354 {
6355 /* XXX: type_sprint */
6356 fprintf_unfiltered (gdb_stderr, _("Type "));
6357 type_print (type, "", gdb_stderr, -1);
6358 error (_(" has no component named %s"), name);
6359 }
6360 }
6361
6362 return NULL;
6363 }
6364
6365 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6366 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6367 represents an unchecked union (that is, the variant part of a
6368 record that is named in an Unchecked_Union pragma). */
6369
6370 static int
6371 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6372 {
6373 char *discrim_name = ada_variant_discrim_name (var_type);
6374 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6375 == NULL);
6376 }
6377
6378
6379 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6380 within a value of type OUTER_TYPE that is stored in GDB at
6381 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6382 numbering from 0) is applicable. Returns -1 if none are. */
6383
6384 int
6385 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6386 const gdb_byte *outer_valaddr)
6387 {
6388 int others_clause;
6389 int i;
6390 char *discrim_name = ada_variant_discrim_name (var_type);
6391 struct value *outer;
6392 struct value *discrim;
6393 LONGEST discrim_val;
6394
6395 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6396 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6397 if (discrim == NULL)
6398 return -1;
6399 discrim_val = value_as_long (discrim);
6400
6401 others_clause = -1;
6402 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6403 {
6404 if (ada_is_others_clause (var_type, i))
6405 others_clause = i;
6406 else if (ada_in_variant (discrim_val, var_type, i))
6407 return i;
6408 }
6409
6410 return others_clause;
6411 }
6412 \f
6413
6414
6415 /* Dynamic-Sized Records */
6416
6417 /* Strategy: The type ostensibly attached to a value with dynamic size
6418 (i.e., a size that is not statically recorded in the debugging
6419 data) does not accurately reflect the size or layout of the value.
6420 Our strategy is to convert these values to values with accurate,
6421 conventional types that are constructed on the fly. */
6422
6423 /* There is a subtle and tricky problem here. In general, we cannot
6424 determine the size of dynamic records without its data. However,
6425 the 'struct value' data structure, which GDB uses to represent
6426 quantities in the inferior process (the target), requires the size
6427 of the type at the time of its allocation in order to reserve space
6428 for GDB's internal copy of the data. That's why the
6429 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6430 rather than struct value*s.
6431
6432 However, GDB's internal history variables ($1, $2, etc.) are
6433 struct value*s containing internal copies of the data that are not, in
6434 general, the same as the data at their corresponding addresses in
6435 the target. Fortunately, the types we give to these values are all
6436 conventional, fixed-size types (as per the strategy described
6437 above), so that we don't usually have to perform the
6438 'to_fixed_xxx_type' conversions to look at their values.
6439 Unfortunately, there is one exception: if one of the internal
6440 history variables is an array whose elements are unconstrained
6441 records, then we will need to create distinct fixed types for each
6442 element selected. */
6443
6444 /* The upshot of all of this is that many routines take a (type, host
6445 address, target address) triple as arguments to represent a value.
6446 The host address, if non-null, is supposed to contain an internal
6447 copy of the relevant data; otherwise, the program is to consult the
6448 target at the target address. */
6449
6450 /* Assuming that VAL0 represents a pointer value, the result of
6451 dereferencing it. Differs from value_ind in its treatment of
6452 dynamic-sized types. */
6453
6454 struct value *
6455 ada_value_ind (struct value *val0)
6456 {
6457 struct value *val = unwrap_value (value_ind (val0));
6458 return ada_to_fixed_value (val);
6459 }
6460
6461 /* The value resulting from dereferencing any "reference to"
6462 qualifiers on VAL0. */
6463
6464 static struct value *
6465 ada_coerce_ref (struct value *val0)
6466 {
6467 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6468 {
6469 struct value *val = val0;
6470 val = coerce_ref (val);
6471 val = unwrap_value (val);
6472 return ada_to_fixed_value (val);
6473 }
6474 else
6475 return val0;
6476 }
6477
6478 /* Return OFF rounded upward if necessary to a multiple of
6479 ALIGNMENT (a power of 2). */
6480
6481 static unsigned int
6482 align_value (unsigned int off, unsigned int alignment)
6483 {
6484 return (off + alignment - 1) & ~(alignment - 1);
6485 }
6486
6487 /* Return the bit alignment required for field #F of template type TYPE. */
6488
6489 static unsigned int
6490 field_alignment (struct type *type, int f)
6491 {
6492 const char *name = TYPE_FIELD_NAME (type, f);
6493 int len;
6494 int align_offset;
6495
6496 /* The field name should never be null, unless the debugging information
6497 is somehow malformed. In this case, we assume the field does not
6498 require any alignment. */
6499 if (name == NULL)
6500 return 1;
6501
6502 len = strlen (name);
6503
6504 if (!isdigit (name[len - 1]))
6505 return 1;
6506
6507 if (isdigit (name[len - 2]))
6508 align_offset = len - 2;
6509 else
6510 align_offset = len - 1;
6511
6512 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6513 return TARGET_CHAR_BIT;
6514
6515 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6516 }
6517
6518 /* Find a symbol named NAME. Ignores ambiguity. */
6519
6520 struct symbol *
6521 ada_find_any_symbol (const char *name)
6522 {
6523 struct symbol *sym;
6524
6525 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6526 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6527 return sym;
6528
6529 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6530 return sym;
6531 }
6532
6533 /* Find a type named NAME. Ignores ambiguity. */
6534
6535 struct type *
6536 ada_find_any_type (const char *name)
6537 {
6538 struct symbol *sym = ada_find_any_symbol (name);
6539 struct type *type = NULL;
6540
6541 if (sym != NULL)
6542 type = SYMBOL_TYPE (sym);
6543
6544 if (type == NULL)
6545 type = language_lookup_primitive_type_by_name
6546 (language_def (language_ada), current_gdbarch, name);
6547
6548 return type;
6549 }
6550
6551 /* Given NAME and an associated BLOCK, search all symbols for
6552 NAME suffixed with "___XR", which is the ``renaming'' symbol
6553 associated to NAME. Return this symbol if found, return
6554 NULL otherwise. */
6555
6556 struct symbol *
6557 ada_find_renaming_symbol (const char *name, struct block *block)
6558 {
6559 struct symbol *sym;
6560
6561 sym = find_old_style_renaming_symbol (name, block);
6562
6563 if (sym != NULL)
6564 return sym;
6565
6566 /* Not right yet. FIXME pnh 7/20/2007. */
6567 sym = ada_find_any_symbol (name);
6568 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6569 return sym;
6570 else
6571 return NULL;
6572 }
6573
6574 static struct symbol *
6575 find_old_style_renaming_symbol (const char *name, struct block *block)
6576 {
6577 const struct symbol *function_sym = block_linkage_function (block);
6578 char *rename;
6579
6580 if (function_sym != NULL)
6581 {
6582 /* If the symbol is defined inside a function, NAME is not fully
6583 qualified. This means we need to prepend the function name
6584 as well as adding the ``___XR'' suffix to build the name of
6585 the associated renaming symbol. */
6586 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6587 /* Function names sometimes contain suffixes used
6588 for instance to qualify nested subprograms. When building
6589 the XR type name, we need to make sure that this suffix is
6590 not included. So do not include any suffix in the function
6591 name length below. */
6592 const int function_name_len = ada_name_prefix_len (function_name);
6593 const int rename_len = function_name_len + 2 /* "__" */
6594 + strlen (name) + 6 /* "___XR\0" */ ;
6595
6596 /* Strip the suffix if necessary. */
6597 function_name[function_name_len] = '\0';
6598
6599 /* Library-level functions are a special case, as GNAT adds
6600 a ``_ada_'' prefix to the function name to avoid namespace
6601 pollution. However, the renaming symbols themselves do not
6602 have this prefix, so we need to skip this prefix if present. */
6603 if (function_name_len > 5 /* "_ada_" */
6604 && strstr (function_name, "_ada_") == function_name)
6605 function_name = function_name + 5;
6606
6607 rename = (char *) alloca (rename_len * sizeof (char));
6608 sprintf (rename, "%s__%s___XR", function_name, name);
6609 }
6610 else
6611 {
6612 const int rename_len = strlen (name) + 6;
6613 rename = (char *) alloca (rename_len * sizeof (char));
6614 sprintf (rename, "%s___XR", name);
6615 }
6616
6617 return ada_find_any_symbol (rename);
6618 }
6619
6620 /* Because of GNAT encoding conventions, several GDB symbols may match a
6621 given type name. If the type denoted by TYPE0 is to be preferred to
6622 that of TYPE1 for purposes of type printing, return non-zero;
6623 otherwise return 0. */
6624
6625 int
6626 ada_prefer_type (struct type *type0, struct type *type1)
6627 {
6628 if (type1 == NULL)
6629 return 1;
6630 else if (type0 == NULL)
6631 return 0;
6632 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6633 return 1;
6634 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6635 return 0;
6636 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6637 return 1;
6638 else if (ada_is_packed_array_type (type0))
6639 return 1;
6640 else if (ada_is_array_descriptor_type (type0)
6641 && !ada_is_array_descriptor_type (type1))
6642 return 1;
6643 else
6644 {
6645 const char *type0_name = type_name_no_tag (type0);
6646 const char *type1_name = type_name_no_tag (type1);
6647
6648 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6649 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6650 return 1;
6651 }
6652 return 0;
6653 }
6654
6655 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6656 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6657
6658 char *
6659 ada_type_name (struct type *type)
6660 {
6661 if (type == NULL)
6662 return NULL;
6663 else if (TYPE_NAME (type) != NULL)
6664 return TYPE_NAME (type);
6665 else
6666 return TYPE_TAG_NAME (type);
6667 }
6668
6669 /* Find a parallel type to TYPE whose name is formed by appending
6670 SUFFIX to the name of TYPE. */
6671
6672 struct type *
6673 ada_find_parallel_type (struct type *type, const char *suffix)
6674 {
6675 static char *name;
6676 static size_t name_len = 0;
6677 int len;
6678 char *typename = ada_type_name (type);
6679
6680 if (typename == NULL)
6681 return NULL;
6682
6683 len = strlen (typename);
6684
6685 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6686
6687 strcpy (name, typename);
6688 strcpy (name + len, suffix);
6689
6690 return ada_find_any_type (name);
6691 }
6692
6693
6694 /* If TYPE is a variable-size record type, return the corresponding template
6695 type describing its fields. Otherwise, return NULL. */
6696
6697 static struct type *
6698 dynamic_template_type (struct type *type)
6699 {
6700 type = ada_check_typedef (type);
6701
6702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6703 || ada_type_name (type) == NULL)
6704 return NULL;
6705 else
6706 {
6707 int len = strlen (ada_type_name (type));
6708 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6709 return type;
6710 else
6711 return ada_find_parallel_type (type, "___XVE");
6712 }
6713 }
6714
6715 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6716 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6717
6718 static int
6719 is_dynamic_field (struct type *templ_type, int field_num)
6720 {
6721 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6722 return name != NULL
6723 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6724 && strstr (name, "___XVL") != NULL;
6725 }
6726
6727 /* The index of the variant field of TYPE, or -1 if TYPE does not
6728 represent a variant record type. */
6729
6730 static int
6731 variant_field_index (struct type *type)
6732 {
6733 int f;
6734
6735 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6736 return -1;
6737
6738 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6739 {
6740 if (ada_is_variant_part (type, f))
6741 return f;
6742 }
6743 return -1;
6744 }
6745
6746 /* A record type with no fields. */
6747
6748 static struct type *
6749 empty_record (struct objfile *objfile)
6750 {
6751 struct type *type = alloc_type (objfile);
6752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6753 TYPE_NFIELDS (type) = 0;
6754 TYPE_FIELDS (type) = NULL;
6755 INIT_CPLUS_SPECIFIC (type);
6756 TYPE_NAME (type) = "<empty>";
6757 TYPE_TAG_NAME (type) = NULL;
6758 TYPE_LENGTH (type) = 0;
6759 return type;
6760 }
6761
6762 /* An ordinary record type (with fixed-length fields) that describes
6763 the value of type TYPE at VALADDR or ADDRESS (see comments at
6764 the beginning of this section) VAL according to GNAT conventions.
6765 DVAL0 should describe the (portion of a) record that contains any
6766 necessary discriminants. It should be NULL if value_type (VAL) is
6767 an outer-level type (i.e., as opposed to a branch of a variant.) A
6768 variant field (unless unchecked) is replaced by a particular branch
6769 of the variant.
6770
6771 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6772 length are not statically known are discarded. As a consequence,
6773 VALADDR, ADDRESS and DVAL0 are ignored.
6774
6775 NOTE: Limitations: For now, we assume that dynamic fields and
6776 variants occupy whole numbers of bytes. However, they need not be
6777 byte-aligned. */
6778
6779 struct type *
6780 ada_template_to_fixed_record_type_1 (struct type *type,
6781 const gdb_byte *valaddr,
6782 CORE_ADDR address, struct value *dval0,
6783 int keep_dynamic_fields)
6784 {
6785 struct value *mark = value_mark ();
6786 struct value *dval;
6787 struct type *rtype;
6788 int nfields, bit_len;
6789 int variant_field;
6790 long off;
6791 int fld_bit_len, bit_incr;
6792 int f;
6793
6794 /* Compute the number of fields in this record type that are going
6795 to be processed: unless keep_dynamic_fields, this includes only
6796 fields whose position and length are static will be processed. */
6797 if (keep_dynamic_fields)
6798 nfields = TYPE_NFIELDS (type);
6799 else
6800 {
6801 nfields = 0;
6802 while (nfields < TYPE_NFIELDS (type)
6803 && !ada_is_variant_part (type, nfields)
6804 && !is_dynamic_field (type, nfields))
6805 nfields++;
6806 }
6807
6808 rtype = alloc_type (TYPE_OBJFILE (type));
6809 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6810 INIT_CPLUS_SPECIFIC (rtype);
6811 TYPE_NFIELDS (rtype) = nfields;
6812 TYPE_FIELDS (rtype) = (struct field *)
6813 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6814 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6815 TYPE_NAME (rtype) = ada_type_name (type);
6816 TYPE_TAG_NAME (rtype) = NULL;
6817 TYPE_FIXED_INSTANCE (rtype) = 1;
6818
6819 off = 0;
6820 bit_len = 0;
6821 variant_field = -1;
6822
6823 for (f = 0; f < nfields; f += 1)
6824 {
6825 off = align_value (off, field_alignment (type, f))
6826 + TYPE_FIELD_BITPOS (type, f);
6827 TYPE_FIELD_BITPOS (rtype, f) = off;
6828 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6829
6830 if (ada_is_variant_part (type, f))
6831 {
6832 variant_field = f;
6833 fld_bit_len = bit_incr = 0;
6834 }
6835 else if (is_dynamic_field (type, f))
6836 {
6837 if (dval0 == NULL)
6838 {
6839 /* rtype's length is computed based on the run-time
6840 value of discriminants. If the discriminants are not
6841 initialized, the type size may be completely bogus and
6842 GDB may fail to allocate a value for it. So check the
6843 size first before creating the value. */
6844 check_size (rtype);
6845 dval = value_from_contents_and_address (rtype, valaddr, address);
6846 }
6847 else
6848 dval = dval0;
6849
6850 /* Get the fixed type of the field. Note that, in this case, we
6851 do not want to get the real type out of the tag: if the current
6852 field is the parent part of a tagged record, we will get the
6853 tag of the object. Clearly wrong: the real type of the parent
6854 is not the real type of the child. We would end up in an infinite
6855 loop. */
6856 TYPE_FIELD_TYPE (rtype, f) =
6857 ada_to_fixed_type
6858 (ada_get_base_type
6859 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6860 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6861 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6862 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6863 bit_incr = fld_bit_len =
6864 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6865 }
6866 else
6867 {
6868 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6869 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6870 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6871 bit_incr = fld_bit_len =
6872 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6873 else
6874 bit_incr = fld_bit_len =
6875 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6876 }
6877 if (off + fld_bit_len > bit_len)
6878 bit_len = off + fld_bit_len;
6879 off += bit_incr;
6880 TYPE_LENGTH (rtype) =
6881 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6882 }
6883
6884 /* We handle the variant part, if any, at the end because of certain
6885 odd cases in which it is re-ordered so as NOT to be the last field of
6886 the record. This can happen in the presence of representation
6887 clauses. */
6888 if (variant_field >= 0)
6889 {
6890 struct type *branch_type;
6891
6892 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6893
6894 if (dval0 == NULL)
6895 dval = value_from_contents_and_address (rtype, valaddr, address);
6896 else
6897 dval = dval0;
6898
6899 branch_type =
6900 to_fixed_variant_branch_type
6901 (TYPE_FIELD_TYPE (type, variant_field),
6902 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6903 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6904 if (branch_type == NULL)
6905 {
6906 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6907 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6908 TYPE_NFIELDS (rtype) -= 1;
6909 }
6910 else
6911 {
6912 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6913 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6914 fld_bit_len =
6915 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6916 TARGET_CHAR_BIT;
6917 if (off + fld_bit_len > bit_len)
6918 bit_len = off + fld_bit_len;
6919 TYPE_LENGTH (rtype) =
6920 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6921 }
6922 }
6923
6924 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6925 should contain the alignment of that record, which should be a strictly
6926 positive value. If null or negative, then something is wrong, most
6927 probably in the debug info. In that case, we don't round up the size
6928 of the resulting type. If this record is not part of another structure,
6929 the current RTYPE length might be good enough for our purposes. */
6930 if (TYPE_LENGTH (type) <= 0)
6931 {
6932 if (TYPE_NAME (rtype))
6933 warning (_("Invalid type size for `%s' detected: %d."),
6934 TYPE_NAME (rtype), TYPE_LENGTH (type));
6935 else
6936 warning (_("Invalid type size for <unnamed> detected: %d."),
6937 TYPE_LENGTH (type));
6938 }
6939 else
6940 {
6941 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6942 TYPE_LENGTH (type));
6943 }
6944
6945 value_free_to_mark (mark);
6946 if (TYPE_LENGTH (rtype) > varsize_limit)
6947 error (_("record type with dynamic size is larger than varsize-limit"));
6948 return rtype;
6949 }
6950
6951 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6952 of 1. */
6953
6954 static struct type *
6955 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6956 CORE_ADDR address, struct value *dval0)
6957 {
6958 return ada_template_to_fixed_record_type_1 (type, valaddr,
6959 address, dval0, 1);
6960 }
6961
6962 /* An ordinary record type in which ___XVL-convention fields and
6963 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6964 static approximations, containing all possible fields. Uses
6965 no runtime values. Useless for use in values, but that's OK,
6966 since the results are used only for type determinations. Works on both
6967 structs and unions. Representation note: to save space, we memorize
6968 the result of this function in the TYPE_TARGET_TYPE of the
6969 template type. */
6970
6971 static struct type *
6972 template_to_static_fixed_type (struct type *type0)
6973 {
6974 struct type *type;
6975 int nfields;
6976 int f;
6977
6978 if (TYPE_TARGET_TYPE (type0) != NULL)
6979 return TYPE_TARGET_TYPE (type0);
6980
6981 nfields = TYPE_NFIELDS (type0);
6982 type = type0;
6983
6984 for (f = 0; f < nfields; f += 1)
6985 {
6986 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6987 struct type *new_type;
6988
6989 if (is_dynamic_field (type0, f))
6990 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6991 else
6992 new_type = static_unwrap_type (field_type);
6993 if (type == type0 && new_type != field_type)
6994 {
6995 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6996 TYPE_CODE (type) = TYPE_CODE (type0);
6997 INIT_CPLUS_SPECIFIC (type);
6998 TYPE_NFIELDS (type) = nfields;
6999 TYPE_FIELDS (type) = (struct field *)
7000 TYPE_ALLOC (type, nfields * sizeof (struct field));
7001 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7002 sizeof (struct field) * nfields);
7003 TYPE_NAME (type) = ada_type_name (type0);
7004 TYPE_TAG_NAME (type) = NULL;
7005 TYPE_FIXED_INSTANCE (type) = 1;
7006 TYPE_LENGTH (type) = 0;
7007 }
7008 TYPE_FIELD_TYPE (type, f) = new_type;
7009 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7010 }
7011 return type;
7012 }
7013
7014 /* Given an object of type TYPE whose contents are at VALADDR and
7015 whose address in memory is ADDRESS, returns a revision of TYPE,
7016 which should be a non-dynamic-sized record, in which the variant
7017 part, if any, is replaced with the appropriate branch. Looks
7018 for discriminant values in DVAL0, which can be NULL if the record
7019 contains the necessary discriminant values. */
7020
7021 static struct type *
7022 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7023 CORE_ADDR address, struct value *dval0)
7024 {
7025 struct value *mark = value_mark ();
7026 struct value *dval;
7027 struct type *rtype;
7028 struct type *branch_type;
7029 int nfields = TYPE_NFIELDS (type);
7030 int variant_field = variant_field_index (type);
7031
7032 if (variant_field == -1)
7033 return type;
7034
7035 if (dval0 == NULL)
7036 dval = value_from_contents_and_address (type, valaddr, address);
7037 else
7038 dval = dval0;
7039
7040 rtype = alloc_type (TYPE_OBJFILE (type));
7041 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7042 INIT_CPLUS_SPECIFIC (rtype);
7043 TYPE_NFIELDS (rtype) = nfields;
7044 TYPE_FIELDS (rtype) =
7045 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7046 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7047 sizeof (struct field) * nfields);
7048 TYPE_NAME (rtype) = ada_type_name (type);
7049 TYPE_TAG_NAME (rtype) = NULL;
7050 TYPE_FIXED_INSTANCE (rtype) = 1;
7051 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7052
7053 branch_type = to_fixed_variant_branch_type
7054 (TYPE_FIELD_TYPE (type, variant_field),
7055 cond_offset_host (valaddr,
7056 TYPE_FIELD_BITPOS (type, variant_field)
7057 / TARGET_CHAR_BIT),
7058 cond_offset_target (address,
7059 TYPE_FIELD_BITPOS (type, variant_field)
7060 / TARGET_CHAR_BIT), dval);
7061 if (branch_type == NULL)
7062 {
7063 int f;
7064 for (f = variant_field + 1; f < nfields; f += 1)
7065 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7066 TYPE_NFIELDS (rtype) -= 1;
7067 }
7068 else
7069 {
7070 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7071 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7072 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7073 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7074 }
7075 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7076
7077 value_free_to_mark (mark);
7078 return rtype;
7079 }
7080
7081 /* An ordinary record type (with fixed-length fields) that describes
7082 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7083 beginning of this section]. Any necessary discriminants' values
7084 should be in DVAL, a record value; it may be NULL if the object
7085 at ADDR itself contains any necessary discriminant values.
7086 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7087 values from the record are needed. Except in the case that DVAL,
7088 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7089 unchecked) is replaced by a particular branch of the variant.
7090
7091 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7092 is questionable and may be removed. It can arise during the
7093 processing of an unconstrained-array-of-record type where all the
7094 variant branches have exactly the same size. This is because in
7095 such cases, the compiler does not bother to use the XVS convention
7096 when encoding the record. I am currently dubious of this
7097 shortcut and suspect the compiler should be altered. FIXME. */
7098
7099 static struct type *
7100 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7101 CORE_ADDR address, struct value *dval)
7102 {
7103 struct type *templ_type;
7104
7105 if (TYPE_FIXED_INSTANCE (type0))
7106 return type0;
7107
7108 templ_type = dynamic_template_type (type0);
7109
7110 if (templ_type != NULL)
7111 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7112 else if (variant_field_index (type0) >= 0)
7113 {
7114 if (dval == NULL && valaddr == NULL && address == 0)
7115 return type0;
7116 return to_record_with_fixed_variant_part (type0, valaddr, address,
7117 dval);
7118 }
7119 else
7120 {
7121 TYPE_FIXED_INSTANCE (type0) = 1;
7122 return type0;
7123 }
7124
7125 }
7126
7127 /* An ordinary record type (with fixed-length fields) that describes
7128 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7129 union type. Any necessary discriminants' values should be in DVAL,
7130 a record value. That is, this routine selects the appropriate
7131 branch of the union at ADDR according to the discriminant value
7132 indicated in the union's type name. Returns VAR_TYPE0 itself if
7133 it represents a variant subject to a pragma Unchecked_Union. */
7134
7135 static struct type *
7136 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7137 CORE_ADDR address, struct value *dval)
7138 {
7139 int which;
7140 struct type *templ_type;
7141 struct type *var_type;
7142
7143 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7144 var_type = TYPE_TARGET_TYPE (var_type0);
7145 else
7146 var_type = var_type0;
7147
7148 templ_type = ada_find_parallel_type (var_type, "___XVU");
7149
7150 if (templ_type != NULL)
7151 var_type = templ_type;
7152
7153 if (is_unchecked_variant (var_type, value_type (dval)))
7154 return var_type0;
7155 which =
7156 ada_which_variant_applies (var_type,
7157 value_type (dval), value_contents (dval));
7158
7159 if (which < 0)
7160 return empty_record (TYPE_OBJFILE (var_type));
7161 else if (is_dynamic_field (var_type, which))
7162 return to_fixed_record_type
7163 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7164 valaddr, address, dval);
7165 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7166 return
7167 to_fixed_record_type
7168 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7169 else
7170 return TYPE_FIELD_TYPE (var_type, which);
7171 }
7172
7173 /* Assuming that TYPE0 is an array type describing the type of a value
7174 at ADDR, and that DVAL describes a record containing any
7175 discriminants used in TYPE0, returns a type for the value that
7176 contains no dynamic components (that is, no components whose sizes
7177 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7178 true, gives an error message if the resulting type's size is over
7179 varsize_limit. */
7180
7181 static struct type *
7182 to_fixed_array_type (struct type *type0, struct value *dval,
7183 int ignore_too_big)
7184 {
7185 struct type *index_type_desc;
7186 struct type *result;
7187
7188 if (ada_is_packed_array_type (type0) /* revisit? */
7189 || TYPE_FIXED_INSTANCE (type0))
7190 return type0;
7191
7192 index_type_desc = ada_find_parallel_type (type0, "___XA");
7193 if (index_type_desc == NULL)
7194 {
7195 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7196 /* NOTE: elt_type---the fixed version of elt_type0---should never
7197 depend on the contents of the array in properly constructed
7198 debugging data. */
7199 /* Create a fixed version of the array element type.
7200 We're not providing the address of an element here,
7201 and thus the actual object value cannot be inspected to do
7202 the conversion. This should not be a problem, since arrays of
7203 unconstrained objects are not allowed. In particular, all
7204 the elements of an array of a tagged type should all be of
7205 the same type specified in the debugging info. No need to
7206 consult the object tag. */
7207 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7208
7209 if (elt_type0 == elt_type)
7210 result = type0;
7211 else
7212 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7213 elt_type, TYPE_INDEX_TYPE (type0));
7214 }
7215 else
7216 {
7217 int i;
7218 struct type *elt_type0;
7219
7220 elt_type0 = type0;
7221 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7222 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7223
7224 /* NOTE: result---the fixed version of elt_type0---should never
7225 depend on the contents of the array in properly constructed
7226 debugging data. */
7227 /* Create a fixed version of the array element type.
7228 We're not providing the address of an element here,
7229 and thus the actual object value cannot be inspected to do
7230 the conversion. This should not be a problem, since arrays of
7231 unconstrained objects are not allowed. In particular, all
7232 the elements of an array of a tagged type should all be of
7233 the same type specified in the debugging info. No need to
7234 consult the object tag. */
7235 result =
7236 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7237 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7238 {
7239 struct type *range_type =
7240 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7241 dval, TYPE_OBJFILE (type0));
7242 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7243 result, range_type);
7244 }
7245 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7246 error (_("array type with dynamic size is larger than varsize-limit"));
7247 }
7248
7249 TYPE_FIXED_INSTANCE (result) = 1;
7250 return result;
7251 }
7252
7253
7254 /* A standard type (containing no dynamically sized components)
7255 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7256 DVAL describes a record containing any discriminants used in TYPE0,
7257 and may be NULL if there are none, or if the object of type TYPE at
7258 ADDRESS or in VALADDR contains these discriminants.
7259
7260 If CHECK_TAG is not null, in the case of tagged types, this function
7261 attempts to locate the object's tag and use it to compute the actual
7262 type. However, when ADDRESS is null, we cannot use it to determine the
7263 location of the tag, and therefore compute the tagged type's actual type.
7264 So we return the tagged type without consulting the tag. */
7265
7266 static struct type *
7267 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7268 CORE_ADDR address, struct value *dval, int check_tag)
7269 {
7270 type = ada_check_typedef (type);
7271 switch (TYPE_CODE (type))
7272 {
7273 default:
7274 return type;
7275 case TYPE_CODE_STRUCT:
7276 {
7277 struct type *static_type = to_static_fixed_type (type);
7278 struct type *fixed_record_type =
7279 to_fixed_record_type (type, valaddr, address, NULL);
7280 /* If STATIC_TYPE is a tagged type and we know the object's address,
7281 then we can determine its tag, and compute the object's actual
7282 type from there. Note that we have to use the fixed record
7283 type (the parent part of the record may have dynamic fields
7284 and the way the location of _tag is expressed may depend on
7285 them). */
7286
7287 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7288 {
7289 struct type *real_type =
7290 type_from_tag (value_tag_from_contents_and_address
7291 (fixed_record_type,
7292 valaddr,
7293 address));
7294 if (real_type != NULL)
7295 return to_fixed_record_type (real_type, valaddr, address, NULL);
7296 }
7297
7298 /* Check to see if there is a parallel ___XVZ variable.
7299 If there is, then it provides the actual size of our type. */
7300 else if (ada_type_name (fixed_record_type) != NULL)
7301 {
7302 char *name = ada_type_name (fixed_record_type);
7303 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7304 int xvz_found = 0;
7305 LONGEST size;
7306
7307 sprintf (xvz_name, "%s___XVZ", name);
7308 size = get_int_var_value (xvz_name, &xvz_found);
7309 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7310 {
7311 fixed_record_type = copy_type (fixed_record_type);
7312 TYPE_LENGTH (fixed_record_type) = size;
7313
7314 /* The FIXED_RECORD_TYPE may have be a stub. We have
7315 observed this when the debugging info is STABS, and
7316 apparently it is something that is hard to fix.
7317
7318 In practice, we don't need the actual type definition
7319 at all, because the presence of the XVZ variable allows us
7320 to assume that there must be a XVS type as well, which we
7321 should be able to use later, when we need the actual type
7322 definition.
7323
7324 In the meantime, pretend that the "fixed" type we are
7325 returning is NOT a stub, because this can cause trouble
7326 when using this type to create new types targeting it.
7327 Indeed, the associated creation routines often check
7328 whether the target type is a stub and will try to replace
7329 it, thus using a type with the wrong size. This, in turn,
7330 might cause the new type to have the wrong size too.
7331 Consider the case of an array, for instance, where the size
7332 of the array is computed from the number of elements in
7333 our array multiplied by the size of its element. */
7334 TYPE_STUB (fixed_record_type) = 0;
7335 }
7336 }
7337 return fixed_record_type;
7338 }
7339 case TYPE_CODE_ARRAY:
7340 return to_fixed_array_type (type, dval, 1);
7341 case TYPE_CODE_UNION:
7342 if (dval == NULL)
7343 return type;
7344 else
7345 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7346 }
7347 }
7348
7349 /* The same as ada_to_fixed_type_1, except that it preserves the type
7350 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7351 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7352
7353 struct type *
7354 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7355 CORE_ADDR address, struct value *dval, int check_tag)
7356
7357 {
7358 struct type *fixed_type =
7359 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7360
7361 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7362 && TYPE_TARGET_TYPE (type) == fixed_type)
7363 return type;
7364
7365 return fixed_type;
7366 }
7367
7368 /* A standard (static-sized) type corresponding as well as possible to
7369 TYPE0, but based on no runtime data. */
7370
7371 static struct type *
7372 to_static_fixed_type (struct type *type0)
7373 {
7374 struct type *type;
7375
7376 if (type0 == NULL)
7377 return NULL;
7378
7379 if (TYPE_FIXED_INSTANCE (type0))
7380 return type0;
7381
7382 type0 = ada_check_typedef (type0);
7383
7384 switch (TYPE_CODE (type0))
7385 {
7386 default:
7387 return type0;
7388 case TYPE_CODE_STRUCT:
7389 type = dynamic_template_type (type0);
7390 if (type != NULL)
7391 return template_to_static_fixed_type (type);
7392 else
7393 return template_to_static_fixed_type (type0);
7394 case TYPE_CODE_UNION:
7395 type = ada_find_parallel_type (type0, "___XVU");
7396 if (type != NULL)
7397 return template_to_static_fixed_type (type);
7398 else
7399 return template_to_static_fixed_type (type0);
7400 }
7401 }
7402
7403 /* A static approximation of TYPE with all type wrappers removed. */
7404
7405 static struct type *
7406 static_unwrap_type (struct type *type)
7407 {
7408 if (ada_is_aligner_type (type))
7409 {
7410 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7411 if (ada_type_name (type1) == NULL)
7412 TYPE_NAME (type1) = ada_type_name (type);
7413
7414 return static_unwrap_type (type1);
7415 }
7416 else
7417 {
7418 struct type *raw_real_type = ada_get_base_type (type);
7419 if (raw_real_type == type)
7420 return type;
7421 else
7422 return to_static_fixed_type (raw_real_type);
7423 }
7424 }
7425
7426 /* In some cases, incomplete and private types require
7427 cross-references that are not resolved as records (for example,
7428 type Foo;
7429 type FooP is access Foo;
7430 V: FooP;
7431 type Foo is array ...;
7432 ). In these cases, since there is no mechanism for producing
7433 cross-references to such types, we instead substitute for FooP a
7434 stub enumeration type that is nowhere resolved, and whose tag is
7435 the name of the actual type. Call these types "non-record stubs". */
7436
7437 /* A type equivalent to TYPE that is not a non-record stub, if one
7438 exists, otherwise TYPE. */
7439
7440 struct type *
7441 ada_check_typedef (struct type *type)
7442 {
7443 if (type == NULL)
7444 return NULL;
7445
7446 CHECK_TYPEDEF (type);
7447 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7448 || !TYPE_STUB (type)
7449 || TYPE_TAG_NAME (type) == NULL)
7450 return type;
7451 else
7452 {
7453 char *name = TYPE_TAG_NAME (type);
7454 struct type *type1 = ada_find_any_type (name);
7455 return (type1 == NULL) ? type : type1;
7456 }
7457 }
7458
7459 /* A value representing the data at VALADDR/ADDRESS as described by
7460 type TYPE0, but with a standard (static-sized) type that correctly
7461 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7462 type, then return VAL0 [this feature is simply to avoid redundant
7463 creation of struct values]. */
7464
7465 static struct value *
7466 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7467 struct value *val0)
7468 {
7469 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7470 if (type == type0 && val0 != NULL)
7471 return val0;
7472 else
7473 return value_from_contents_and_address (type, 0, address);
7474 }
7475
7476 /* A value representing VAL, but with a standard (static-sized) type
7477 that correctly describes it. Does not necessarily create a new
7478 value. */
7479
7480 static struct value *
7481 ada_to_fixed_value (struct value *val)
7482 {
7483 return ada_to_fixed_value_create (value_type (val),
7484 VALUE_ADDRESS (val) + value_offset (val),
7485 val);
7486 }
7487
7488 /* A value representing VAL, but with a standard (static-sized) type
7489 chosen to approximate the real type of VAL as well as possible, but
7490 without consulting any runtime values. For Ada dynamic-sized
7491 types, therefore, the type of the result is likely to be inaccurate. */
7492
7493 static struct value *
7494 ada_to_static_fixed_value (struct value *val)
7495 {
7496 struct type *type =
7497 to_static_fixed_type (static_unwrap_type (value_type (val)));
7498 if (type == value_type (val))
7499 return val;
7500 else
7501 return coerce_unspec_val_to_type (val, type);
7502 }
7503 \f
7504
7505 /* Attributes */
7506
7507 /* Table mapping attribute numbers to names.
7508 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7509
7510 static const char *attribute_names[] = {
7511 "<?>",
7512
7513 "first",
7514 "last",
7515 "length",
7516 "image",
7517 "max",
7518 "min",
7519 "modulus",
7520 "pos",
7521 "size",
7522 "tag",
7523 "val",
7524 0
7525 };
7526
7527 const char *
7528 ada_attribute_name (enum exp_opcode n)
7529 {
7530 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7531 return attribute_names[n - OP_ATR_FIRST + 1];
7532 else
7533 return attribute_names[0];
7534 }
7535
7536 /* Evaluate the 'POS attribute applied to ARG. */
7537
7538 static LONGEST
7539 pos_atr (struct value *arg)
7540 {
7541 struct value *val = coerce_ref (arg);
7542 struct type *type = value_type (val);
7543
7544 if (!discrete_type_p (type))
7545 error (_("'POS only defined on discrete types"));
7546
7547 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7548 {
7549 int i;
7550 LONGEST v = value_as_long (val);
7551
7552 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7553 {
7554 if (v == TYPE_FIELD_BITPOS (type, i))
7555 return i;
7556 }
7557 error (_("enumeration value is invalid: can't find 'POS"));
7558 }
7559 else
7560 return value_as_long (val);
7561 }
7562
7563 static struct value *
7564 value_pos_atr (struct type *type, struct value *arg)
7565 {
7566 return value_from_longest (type, pos_atr (arg));
7567 }
7568
7569 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7570
7571 static struct value *
7572 value_val_atr (struct type *type, struct value *arg)
7573 {
7574 if (!discrete_type_p (type))
7575 error (_("'VAL only defined on discrete types"));
7576 if (!integer_type_p (value_type (arg)))
7577 error (_("'VAL requires integral argument"));
7578
7579 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7580 {
7581 long pos = value_as_long (arg);
7582 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7583 error (_("argument to 'VAL out of range"));
7584 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7585 }
7586 else
7587 return value_from_longest (type, value_as_long (arg));
7588 }
7589 \f
7590
7591 /* Evaluation */
7592
7593 /* True if TYPE appears to be an Ada character type.
7594 [At the moment, this is true only for Character and Wide_Character;
7595 It is a heuristic test that could stand improvement]. */
7596
7597 int
7598 ada_is_character_type (struct type *type)
7599 {
7600 const char *name;
7601
7602 /* If the type code says it's a character, then assume it really is,
7603 and don't check any further. */
7604 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7605 return 1;
7606
7607 /* Otherwise, assume it's a character type iff it is a discrete type
7608 with a known character type name. */
7609 name = ada_type_name (type);
7610 return (name != NULL
7611 && (TYPE_CODE (type) == TYPE_CODE_INT
7612 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7613 && (strcmp (name, "character") == 0
7614 || strcmp (name, "wide_character") == 0
7615 || strcmp (name, "wide_wide_character") == 0
7616 || strcmp (name, "unsigned char") == 0));
7617 }
7618
7619 /* True if TYPE appears to be an Ada string type. */
7620
7621 int
7622 ada_is_string_type (struct type *type)
7623 {
7624 type = ada_check_typedef (type);
7625 if (type != NULL
7626 && TYPE_CODE (type) != TYPE_CODE_PTR
7627 && (ada_is_simple_array_type (type)
7628 || ada_is_array_descriptor_type (type))
7629 && ada_array_arity (type) == 1)
7630 {
7631 struct type *elttype = ada_array_element_type (type, 1);
7632
7633 return ada_is_character_type (elttype);
7634 }
7635 else
7636 return 0;
7637 }
7638
7639
7640 /* True if TYPE is a struct type introduced by the compiler to force the
7641 alignment of a value. Such types have a single field with a
7642 distinctive name. */
7643
7644 int
7645 ada_is_aligner_type (struct type *type)
7646 {
7647 type = ada_check_typedef (type);
7648
7649 /* If we can find a parallel XVS type, then the XVS type should
7650 be used instead of this type. And hence, this is not an aligner
7651 type. */
7652 if (ada_find_parallel_type (type, "___XVS") != NULL)
7653 return 0;
7654
7655 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7656 && TYPE_NFIELDS (type) == 1
7657 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7658 }
7659
7660 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7661 the parallel type. */
7662
7663 struct type *
7664 ada_get_base_type (struct type *raw_type)
7665 {
7666 struct type *real_type_namer;
7667 struct type *raw_real_type;
7668
7669 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7670 return raw_type;
7671
7672 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7673 if (real_type_namer == NULL
7674 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7675 || TYPE_NFIELDS (real_type_namer) != 1)
7676 return raw_type;
7677
7678 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7679 if (raw_real_type == NULL)
7680 return raw_type;
7681 else
7682 return raw_real_type;
7683 }
7684
7685 /* The type of value designated by TYPE, with all aligners removed. */
7686
7687 struct type *
7688 ada_aligned_type (struct type *type)
7689 {
7690 if (ada_is_aligner_type (type))
7691 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7692 else
7693 return ada_get_base_type (type);
7694 }
7695
7696
7697 /* The address of the aligned value in an object at address VALADDR
7698 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7699
7700 const gdb_byte *
7701 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7702 {
7703 if (ada_is_aligner_type (type))
7704 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7705 valaddr +
7706 TYPE_FIELD_BITPOS (type,
7707 0) / TARGET_CHAR_BIT);
7708 else
7709 return valaddr;
7710 }
7711
7712
7713
7714 /* The printed representation of an enumeration literal with encoded
7715 name NAME. The value is good to the next call of ada_enum_name. */
7716 const char *
7717 ada_enum_name (const char *name)
7718 {
7719 static char *result;
7720 static size_t result_len = 0;
7721 char *tmp;
7722
7723 /* First, unqualify the enumeration name:
7724 1. Search for the last '.' character. If we find one, then skip
7725 all the preceeding characters, the unqualified name starts
7726 right after that dot.
7727 2. Otherwise, we may be debugging on a target where the compiler
7728 translates dots into "__". Search forward for double underscores,
7729 but stop searching when we hit an overloading suffix, which is
7730 of the form "__" followed by digits. */
7731
7732 tmp = strrchr (name, '.');
7733 if (tmp != NULL)
7734 name = tmp + 1;
7735 else
7736 {
7737 while ((tmp = strstr (name, "__")) != NULL)
7738 {
7739 if (isdigit (tmp[2]))
7740 break;
7741 else
7742 name = tmp + 2;
7743 }
7744 }
7745
7746 if (name[0] == 'Q')
7747 {
7748 int v;
7749 if (name[1] == 'U' || name[1] == 'W')
7750 {
7751 if (sscanf (name + 2, "%x", &v) != 1)
7752 return name;
7753 }
7754 else
7755 return name;
7756
7757 GROW_VECT (result, result_len, 16);
7758 if (isascii (v) && isprint (v))
7759 sprintf (result, "'%c'", v);
7760 else if (name[1] == 'U')
7761 sprintf (result, "[\"%02x\"]", v);
7762 else
7763 sprintf (result, "[\"%04x\"]", v);
7764
7765 return result;
7766 }
7767 else
7768 {
7769 tmp = strstr (name, "__");
7770 if (tmp == NULL)
7771 tmp = strstr (name, "$");
7772 if (tmp != NULL)
7773 {
7774 GROW_VECT (result, result_len, tmp - name + 1);
7775 strncpy (result, name, tmp - name);
7776 result[tmp - name] = '\0';
7777 return result;
7778 }
7779
7780 return name;
7781 }
7782 }
7783
7784 static struct value *
7785 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7786 enum noside noside)
7787 {
7788 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7789 (expect_type, exp, pos, noside);
7790 }
7791
7792 /* Evaluate the subexpression of EXP starting at *POS as for
7793 evaluate_type, updating *POS to point just past the evaluated
7794 expression. */
7795
7796 static struct value *
7797 evaluate_subexp_type (struct expression *exp, int *pos)
7798 {
7799 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7800 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7801 }
7802
7803 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7804 value it wraps. */
7805
7806 static struct value *
7807 unwrap_value (struct value *val)
7808 {
7809 struct type *type = ada_check_typedef (value_type (val));
7810 if (ada_is_aligner_type (type))
7811 {
7812 struct value *v = ada_value_struct_elt (val, "F", 0);
7813 struct type *val_type = ada_check_typedef (value_type (v));
7814 if (ada_type_name (val_type) == NULL)
7815 TYPE_NAME (val_type) = ada_type_name (type);
7816
7817 return unwrap_value (v);
7818 }
7819 else
7820 {
7821 struct type *raw_real_type =
7822 ada_check_typedef (ada_get_base_type (type));
7823
7824 if (type == raw_real_type)
7825 return val;
7826
7827 return
7828 coerce_unspec_val_to_type
7829 (val, ada_to_fixed_type (raw_real_type, 0,
7830 VALUE_ADDRESS (val) + value_offset (val),
7831 NULL, 1));
7832 }
7833 }
7834
7835 static struct value *
7836 cast_to_fixed (struct type *type, struct value *arg)
7837 {
7838 LONGEST val;
7839
7840 if (type == value_type (arg))
7841 return arg;
7842 else if (ada_is_fixed_point_type (value_type (arg)))
7843 val = ada_float_to_fixed (type,
7844 ada_fixed_to_float (value_type (arg),
7845 value_as_long (arg)));
7846 else
7847 {
7848 DOUBLEST argd = value_as_double (arg);
7849 val = ada_float_to_fixed (type, argd);
7850 }
7851
7852 return value_from_longest (type, val);
7853 }
7854
7855 static struct value *
7856 cast_from_fixed (struct type *type, struct value *arg)
7857 {
7858 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7859 value_as_long (arg));
7860 return value_from_double (type, val);
7861 }
7862
7863 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7864 return the converted value. */
7865
7866 static struct value *
7867 coerce_for_assign (struct type *type, struct value *val)
7868 {
7869 struct type *type2 = value_type (val);
7870 if (type == type2)
7871 return val;
7872
7873 type2 = ada_check_typedef (type2);
7874 type = ada_check_typedef (type);
7875
7876 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7877 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7878 {
7879 val = ada_value_ind (val);
7880 type2 = value_type (val);
7881 }
7882
7883 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7884 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7885 {
7886 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7887 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7888 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7889 error (_("Incompatible types in assignment"));
7890 deprecated_set_value_type (val, type);
7891 }
7892 return val;
7893 }
7894
7895 static struct value *
7896 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7897 {
7898 struct value *val;
7899 struct type *type1, *type2;
7900 LONGEST v, v1, v2;
7901
7902 arg1 = coerce_ref (arg1);
7903 arg2 = coerce_ref (arg2);
7904 type1 = base_type (ada_check_typedef (value_type (arg1)));
7905 type2 = base_type (ada_check_typedef (value_type (arg2)));
7906
7907 if (TYPE_CODE (type1) != TYPE_CODE_INT
7908 || TYPE_CODE (type2) != TYPE_CODE_INT)
7909 return value_binop (arg1, arg2, op);
7910
7911 switch (op)
7912 {
7913 case BINOP_MOD:
7914 case BINOP_DIV:
7915 case BINOP_REM:
7916 break;
7917 default:
7918 return value_binop (arg1, arg2, op);
7919 }
7920
7921 v2 = value_as_long (arg2);
7922 if (v2 == 0)
7923 error (_("second operand of %s must not be zero."), op_string (op));
7924
7925 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7926 return value_binop (arg1, arg2, op);
7927
7928 v1 = value_as_long (arg1);
7929 switch (op)
7930 {
7931 case BINOP_DIV:
7932 v = v1 / v2;
7933 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7934 v += v > 0 ? -1 : 1;
7935 break;
7936 case BINOP_REM:
7937 v = v1 % v2;
7938 if (v * v1 < 0)
7939 v -= v2;
7940 break;
7941 default:
7942 /* Should not reach this point. */
7943 v = 0;
7944 }
7945
7946 val = allocate_value (type1);
7947 store_unsigned_integer (value_contents_raw (val),
7948 TYPE_LENGTH (value_type (val)), v);
7949 return val;
7950 }
7951
7952 static int
7953 ada_value_equal (struct value *arg1, struct value *arg2)
7954 {
7955 if (ada_is_direct_array_type (value_type (arg1))
7956 || ada_is_direct_array_type (value_type (arg2)))
7957 {
7958 /* Automatically dereference any array reference before
7959 we attempt to perform the comparison. */
7960 arg1 = ada_coerce_ref (arg1);
7961 arg2 = ada_coerce_ref (arg2);
7962
7963 arg1 = ada_coerce_to_simple_array (arg1);
7964 arg2 = ada_coerce_to_simple_array (arg2);
7965 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7966 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7967 error (_("Attempt to compare array with non-array"));
7968 /* FIXME: The following works only for types whose
7969 representations use all bits (no padding or undefined bits)
7970 and do not have user-defined equality. */
7971 return
7972 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7973 && memcmp (value_contents (arg1), value_contents (arg2),
7974 TYPE_LENGTH (value_type (arg1))) == 0;
7975 }
7976 return value_equal (arg1, arg2);
7977 }
7978
7979 /* Total number of component associations in the aggregate starting at
7980 index PC in EXP. Assumes that index PC is the start of an
7981 OP_AGGREGATE. */
7982
7983 static int
7984 num_component_specs (struct expression *exp, int pc)
7985 {
7986 int n, m, i;
7987 m = exp->elts[pc + 1].longconst;
7988 pc += 3;
7989 n = 0;
7990 for (i = 0; i < m; i += 1)
7991 {
7992 switch (exp->elts[pc].opcode)
7993 {
7994 default:
7995 n += 1;
7996 break;
7997 case OP_CHOICES:
7998 n += exp->elts[pc + 1].longconst;
7999 break;
8000 }
8001 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8002 }
8003 return n;
8004 }
8005
8006 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8007 component of LHS (a simple array or a record), updating *POS past
8008 the expression, assuming that LHS is contained in CONTAINER. Does
8009 not modify the inferior's memory, nor does it modify LHS (unless
8010 LHS == CONTAINER). */
8011
8012 static void
8013 assign_component (struct value *container, struct value *lhs, LONGEST index,
8014 struct expression *exp, int *pos)
8015 {
8016 struct value *mark = value_mark ();
8017 struct value *elt;
8018 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8019 {
8020 struct value *index_val = value_from_longest (builtin_type_int32, index);
8021 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8022 }
8023 else
8024 {
8025 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8026 elt = ada_to_fixed_value (unwrap_value (elt));
8027 }
8028
8029 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8030 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8031 else
8032 value_assign_to_component (container, elt,
8033 ada_evaluate_subexp (NULL, exp, pos,
8034 EVAL_NORMAL));
8035
8036 value_free_to_mark (mark);
8037 }
8038
8039 /* Assuming that LHS represents an lvalue having a record or array
8040 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8041 of that aggregate's value to LHS, advancing *POS past the
8042 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8043 lvalue containing LHS (possibly LHS itself). Does not modify
8044 the inferior's memory, nor does it modify the contents of
8045 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8046
8047 static struct value *
8048 assign_aggregate (struct value *container,
8049 struct value *lhs, struct expression *exp,
8050 int *pos, enum noside noside)
8051 {
8052 struct type *lhs_type;
8053 int n = exp->elts[*pos+1].longconst;
8054 LONGEST low_index, high_index;
8055 int num_specs;
8056 LONGEST *indices;
8057 int max_indices, num_indices;
8058 int is_array_aggregate;
8059 int i;
8060 struct value *mark = value_mark ();
8061
8062 *pos += 3;
8063 if (noside != EVAL_NORMAL)
8064 {
8065 int i;
8066 for (i = 0; i < n; i += 1)
8067 ada_evaluate_subexp (NULL, exp, pos, noside);
8068 return container;
8069 }
8070
8071 container = ada_coerce_ref (container);
8072 if (ada_is_direct_array_type (value_type (container)))
8073 container = ada_coerce_to_simple_array (container);
8074 lhs = ada_coerce_ref (lhs);
8075 if (!deprecated_value_modifiable (lhs))
8076 error (_("Left operand of assignment is not a modifiable lvalue."));
8077
8078 lhs_type = value_type (lhs);
8079 if (ada_is_direct_array_type (lhs_type))
8080 {
8081 lhs = ada_coerce_to_simple_array (lhs);
8082 lhs_type = value_type (lhs);
8083 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8084 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8085 is_array_aggregate = 1;
8086 }
8087 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8088 {
8089 low_index = 0;
8090 high_index = num_visible_fields (lhs_type) - 1;
8091 is_array_aggregate = 0;
8092 }
8093 else
8094 error (_("Left-hand side must be array or record."));
8095
8096 num_specs = num_component_specs (exp, *pos - 3);
8097 max_indices = 4 * num_specs + 4;
8098 indices = alloca (max_indices * sizeof (indices[0]));
8099 indices[0] = indices[1] = low_index - 1;
8100 indices[2] = indices[3] = high_index + 1;
8101 num_indices = 4;
8102
8103 for (i = 0; i < n; i += 1)
8104 {
8105 switch (exp->elts[*pos].opcode)
8106 {
8107 case OP_CHOICES:
8108 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8109 &num_indices, max_indices,
8110 low_index, high_index);
8111 break;
8112 case OP_POSITIONAL:
8113 aggregate_assign_positional (container, lhs, exp, pos, indices,
8114 &num_indices, max_indices,
8115 low_index, high_index);
8116 break;
8117 case OP_OTHERS:
8118 if (i != n-1)
8119 error (_("Misplaced 'others' clause"));
8120 aggregate_assign_others (container, lhs, exp, pos, indices,
8121 num_indices, low_index, high_index);
8122 break;
8123 default:
8124 error (_("Internal error: bad aggregate clause"));
8125 }
8126 }
8127
8128 return container;
8129 }
8130
8131 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8132 construct at *POS, updating *POS past the construct, given that
8133 the positions are relative to lower bound LOW, where HIGH is the
8134 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8135 updating *NUM_INDICES as needed. CONTAINER is as for
8136 assign_aggregate. */
8137 static void
8138 aggregate_assign_positional (struct value *container,
8139 struct value *lhs, struct expression *exp,
8140 int *pos, LONGEST *indices, int *num_indices,
8141 int max_indices, LONGEST low, LONGEST high)
8142 {
8143 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8144
8145 if (ind - 1 == high)
8146 warning (_("Extra components in aggregate ignored."));
8147 if (ind <= high)
8148 {
8149 add_component_interval (ind, ind, indices, num_indices, max_indices);
8150 *pos += 3;
8151 assign_component (container, lhs, ind, exp, pos);
8152 }
8153 else
8154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8155 }
8156
8157 /* Assign into the components of LHS indexed by the OP_CHOICES
8158 construct at *POS, updating *POS past the construct, given that
8159 the allowable indices are LOW..HIGH. Record the indices assigned
8160 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8161 needed. CONTAINER is as for assign_aggregate. */
8162 static void
8163 aggregate_assign_from_choices (struct value *container,
8164 struct value *lhs, struct expression *exp,
8165 int *pos, LONGEST *indices, int *num_indices,
8166 int max_indices, LONGEST low, LONGEST high)
8167 {
8168 int j;
8169 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8170 int choice_pos, expr_pc;
8171 int is_array = ada_is_direct_array_type (value_type (lhs));
8172
8173 choice_pos = *pos += 3;
8174
8175 for (j = 0; j < n_choices; j += 1)
8176 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8177 expr_pc = *pos;
8178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8179
8180 for (j = 0; j < n_choices; j += 1)
8181 {
8182 LONGEST lower, upper;
8183 enum exp_opcode op = exp->elts[choice_pos].opcode;
8184 if (op == OP_DISCRETE_RANGE)
8185 {
8186 choice_pos += 1;
8187 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8188 EVAL_NORMAL));
8189 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8190 EVAL_NORMAL));
8191 }
8192 else if (is_array)
8193 {
8194 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8195 EVAL_NORMAL));
8196 upper = lower;
8197 }
8198 else
8199 {
8200 int ind;
8201 char *name;
8202 switch (op)
8203 {
8204 case OP_NAME:
8205 name = &exp->elts[choice_pos + 2].string;
8206 break;
8207 case OP_VAR_VALUE:
8208 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8209 break;
8210 default:
8211 error (_("Invalid record component association."));
8212 }
8213 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8214 ind = 0;
8215 if (! find_struct_field (name, value_type (lhs), 0,
8216 NULL, NULL, NULL, NULL, &ind))
8217 error (_("Unknown component name: %s."), name);
8218 lower = upper = ind;
8219 }
8220
8221 if (lower <= upper && (lower < low || upper > high))
8222 error (_("Index in component association out of bounds."));
8223
8224 add_component_interval (lower, upper, indices, num_indices,
8225 max_indices);
8226 while (lower <= upper)
8227 {
8228 int pos1;
8229 pos1 = expr_pc;
8230 assign_component (container, lhs, lower, exp, &pos1);
8231 lower += 1;
8232 }
8233 }
8234 }
8235
8236 /* Assign the value of the expression in the OP_OTHERS construct in
8237 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8238 have not been previously assigned. The index intervals already assigned
8239 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8240 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8241 static void
8242 aggregate_assign_others (struct value *container,
8243 struct value *lhs, struct expression *exp,
8244 int *pos, LONGEST *indices, int num_indices,
8245 LONGEST low, LONGEST high)
8246 {
8247 int i;
8248 int expr_pc = *pos+1;
8249
8250 for (i = 0; i < num_indices - 2; i += 2)
8251 {
8252 LONGEST ind;
8253 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8254 {
8255 int pos;
8256 pos = expr_pc;
8257 assign_component (container, lhs, ind, exp, &pos);
8258 }
8259 }
8260 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8261 }
8262
8263 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8264 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8265 modifying *SIZE as needed. It is an error if *SIZE exceeds
8266 MAX_SIZE. The resulting intervals do not overlap. */
8267 static void
8268 add_component_interval (LONGEST low, LONGEST high,
8269 LONGEST* indices, int *size, int max_size)
8270 {
8271 int i, j;
8272 for (i = 0; i < *size; i += 2) {
8273 if (high >= indices[i] && low <= indices[i + 1])
8274 {
8275 int kh;
8276 for (kh = i + 2; kh < *size; kh += 2)
8277 if (high < indices[kh])
8278 break;
8279 if (low < indices[i])
8280 indices[i] = low;
8281 indices[i + 1] = indices[kh - 1];
8282 if (high > indices[i + 1])
8283 indices[i + 1] = high;
8284 memcpy (indices + i + 2, indices + kh, *size - kh);
8285 *size -= kh - i - 2;
8286 return;
8287 }
8288 else if (high < indices[i])
8289 break;
8290 }
8291
8292 if (*size == max_size)
8293 error (_("Internal error: miscounted aggregate components."));
8294 *size += 2;
8295 for (j = *size-1; j >= i+2; j -= 1)
8296 indices[j] = indices[j - 2];
8297 indices[i] = low;
8298 indices[i + 1] = high;
8299 }
8300
8301 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8302 is different. */
8303
8304 static struct value *
8305 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8306 {
8307 if (type == ada_check_typedef (value_type (arg2)))
8308 return arg2;
8309
8310 if (ada_is_fixed_point_type (type))
8311 return (cast_to_fixed (type, arg2));
8312
8313 if (ada_is_fixed_point_type (value_type (arg2)))
8314 return cast_from_fixed (type, arg2);
8315
8316 return value_cast (type, arg2);
8317 }
8318
8319 static struct value *
8320 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8321 int *pos, enum noside noside)
8322 {
8323 enum exp_opcode op;
8324 int tem, tem2, tem3;
8325 int pc;
8326 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8327 struct type *type;
8328 int nargs, oplen;
8329 struct value **argvec;
8330
8331 pc = *pos;
8332 *pos += 1;
8333 op = exp->elts[pc].opcode;
8334
8335 switch (op)
8336 {
8337 default:
8338 *pos -= 1;
8339 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8340 arg1 = unwrap_value (arg1);
8341
8342 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8343 then we need to perform the conversion manually, because
8344 evaluate_subexp_standard doesn't do it. This conversion is
8345 necessary in Ada because the different kinds of float/fixed
8346 types in Ada have different representations.
8347
8348 Similarly, we need to perform the conversion from OP_LONG
8349 ourselves. */
8350 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8351 arg1 = ada_value_cast (expect_type, arg1, noside);
8352
8353 return arg1;
8354
8355 case OP_STRING:
8356 {
8357 struct value *result;
8358 *pos -= 1;
8359 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8360 /* The result type will have code OP_STRING, bashed there from
8361 OP_ARRAY. Bash it back. */
8362 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8363 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8364 return result;
8365 }
8366
8367 case UNOP_CAST:
8368 (*pos) += 2;
8369 type = exp->elts[pc + 1].type;
8370 arg1 = evaluate_subexp (type, exp, pos, noside);
8371 if (noside == EVAL_SKIP)
8372 goto nosideret;
8373 arg1 = ada_value_cast (type, arg1, noside);
8374 return arg1;
8375
8376 case UNOP_QUAL:
8377 (*pos) += 2;
8378 type = exp->elts[pc + 1].type;
8379 return ada_evaluate_subexp (type, exp, pos, noside);
8380
8381 case BINOP_ASSIGN:
8382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8383 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8384 {
8385 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8386 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8387 return arg1;
8388 return ada_value_assign (arg1, arg1);
8389 }
8390 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8391 except if the lhs of our assignment is a convenience variable.
8392 In the case of assigning to a convenience variable, the lhs
8393 should be exactly the result of the evaluation of the rhs. */
8394 type = value_type (arg1);
8395 if (VALUE_LVAL (arg1) == lval_internalvar)
8396 type = NULL;
8397 arg2 = evaluate_subexp (type, exp, pos, noside);
8398 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8399 return arg1;
8400 if (ada_is_fixed_point_type (value_type (arg1)))
8401 arg2 = cast_to_fixed (value_type (arg1), arg2);
8402 else if (ada_is_fixed_point_type (value_type (arg2)))
8403 error
8404 (_("Fixed-point values must be assigned to fixed-point variables"));
8405 else
8406 arg2 = coerce_for_assign (value_type (arg1), arg2);
8407 return ada_value_assign (arg1, arg2);
8408
8409 case BINOP_ADD:
8410 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8411 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8412 if (noside == EVAL_SKIP)
8413 goto nosideret;
8414 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8415 return (value_from_longest
8416 (value_type (arg1),
8417 value_as_long (arg1) + value_as_long (arg2)));
8418 if ((ada_is_fixed_point_type (value_type (arg1))
8419 || ada_is_fixed_point_type (value_type (arg2)))
8420 && value_type (arg1) != value_type (arg2))
8421 error (_("Operands of fixed-point addition must have the same type"));
8422 /* Do the addition, and cast the result to the type of the first
8423 argument. We cannot cast the result to a reference type, so if
8424 ARG1 is a reference type, find its underlying type. */
8425 type = value_type (arg1);
8426 while (TYPE_CODE (type) == TYPE_CODE_REF)
8427 type = TYPE_TARGET_TYPE (type);
8428 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8429 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8430
8431 case BINOP_SUB:
8432 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8433 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8434 if (noside == EVAL_SKIP)
8435 goto nosideret;
8436 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8437 return (value_from_longest
8438 (value_type (arg1),
8439 value_as_long (arg1) - value_as_long (arg2)));
8440 if ((ada_is_fixed_point_type (value_type (arg1))
8441 || ada_is_fixed_point_type (value_type (arg2)))
8442 && value_type (arg1) != value_type (arg2))
8443 error (_("Operands of fixed-point subtraction must have the same type"));
8444 /* Do the substraction, and cast the result to the type of the first
8445 argument. We cannot cast the result to a reference type, so if
8446 ARG1 is a reference type, find its underlying type. */
8447 type = value_type (arg1);
8448 while (TYPE_CODE (type) == TYPE_CODE_REF)
8449 type = TYPE_TARGET_TYPE (type);
8450 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8451 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8452
8453 case BINOP_MUL:
8454 case BINOP_DIV:
8455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8456 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8457 if (noside == EVAL_SKIP)
8458 goto nosideret;
8459 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8460 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8461 return value_zero (value_type (arg1), not_lval);
8462 else
8463 {
8464 type = builtin_type (exp->gdbarch)->builtin_double;
8465 if (ada_is_fixed_point_type (value_type (arg1)))
8466 arg1 = cast_from_fixed (type, arg1);
8467 if (ada_is_fixed_point_type (value_type (arg2)))
8468 arg2 = cast_from_fixed (type, arg2);
8469 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8470 return ada_value_binop (arg1, arg2, op);
8471 }
8472
8473 case BINOP_REM:
8474 case BINOP_MOD:
8475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8477 if (noside == EVAL_SKIP)
8478 goto nosideret;
8479 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8480 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8481 return value_zero (value_type (arg1), not_lval);
8482 else
8483 {
8484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8485 return ada_value_binop (arg1, arg2, op);
8486 }
8487
8488 case BINOP_EQUAL:
8489 case BINOP_NOTEQUAL:
8490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8491 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8492 if (noside == EVAL_SKIP)
8493 goto nosideret;
8494 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8495 tem = 0;
8496 else
8497 {
8498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8499 tem = ada_value_equal (arg1, arg2);
8500 }
8501 if (op == BINOP_NOTEQUAL)
8502 tem = !tem;
8503 type = language_bool_type (exp->language_defn, exp->gdbarch);
8504 return value_from_longest (type, (LONGEST) tem);
8505
8506 case UNOP_NEG:
8507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8508 if (noside == EVAL_SKIP)
8509 goto nosideret;
8510 else if (ada_is_fixed_point_type (value_type (arg1)))
8511 return value_cast (value_type (arg1), value_neg (arg1));
8512 else
8513 {
8514 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8515 return value_neg (arg1);
8516 }
8517
8518 case BINOP_LOGICAL_AND:
8519 case BINOP_LOGICAL_OR:
8520 case UNOP_LOGICAL_NOT:
8521 {
8522 struct value *val;
8523
8524 *pos -= 1;
8525 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8526 type = language_bool_type (exp->language_defn, exp->gdbarch);
8527 return value_cast (type, val);
8528 }
8529
8530 case BINOP_BITWISE_AND:
8531 case BINOP_BITWISE_IOR:
8532 case BINOP_BITWISE_XOR:
8533 {
8534 struct value *val;
8535
8536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8537 *pos = pc;
8538 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8539
8540 return value_cast (value_type (arg1), val);
8541 }
8542
8543 case OP_VAR_VALUE:
8544 *pos -= 1;
8545
8546 if (noside == EVAL_SKIP)
8547 {
8548 *pos += 4;
8549 goto nosideret;
8550 }
8551 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8552 /* Only encountered when an unresolved symbol occurs in a
8553 context other than a function call, in which case, it is
8554 invalid. */
8555 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8556 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8557 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8558 {
8559 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8560 if (ada_is_tagged_type (type, 0))
8561 {
8562 /* Tagged types are a little special in the fact that the real
8563 type is dynamic and can only be determined by inspecting the
8564 object's tag. This means that we need to get the object's
8565 value first (EVAL_NORMAL) and then extract the actual object
8566 type from its tag.
8567
8568 Note that we cannot skip the final step where we extract
8569 the object type from its tag, because the EVAL_NORMAL phase
8570 results in dynamic components being resolved into fixed ones.
8571 This can cause problems when trying to print the type
8572 description of tagged types whose parent has a dynamic size:
8573 We use the type name of the "_parent" component in order
8574 to print the name of the ancestor type in the type description.
8575 If that component had a dynamic size, the resolution into
8576 a fixed type would result in the loss of that type name,
8577 thus preventing us from printing the name of the ancestor
8578 type in the type description. */
8579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8580 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8581 }
8582
8583 *pos += 4;
8584 return value_zero
8585 (to_static_fixed_type
8586 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8587 not_lval);
8588 }
8589 else
8590 {
8591 arg1 =
8592 unwrap_value (evaluate_subexp_standard
8593 (expect_type, exp, pos, noside));
8594 return ada_to_fixed_value (arg1);
8595 }
8596
8597 case OP_FUNCALL:
8598 (*pos) += 2;
8599
8600 /* Allocate arg vector, including space for the function to be
8601 called in argvec[0] and a terminating NULL. */
8602 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8603 argvec =
8604 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8605
8606 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8608 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8609 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8610 else
8611 {
8612 for (tem = 0; tem <= nargs; tem += 1)
8613 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8614 argvec[tem] = 0;
8615
8616 if (noside == EVAL_SKIP)
8617 goto nosideret;
8618 }
8619
8620 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8621 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8622 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8623 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8624 && VALUE_LVAL (argvec[0]) == lval_memory))
8625 argvec[0] = value_addr (argvec[0]);
8626
8627 type = ada_check_typedef (value_type (argvec[0]));
8628 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8629 {
8630 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8631 {
8632 case TYPE_CODE_FUNC:
8633 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8634 break;
8635 case TYPE_CODE_ARRAY:
8636 break;
8637 case TYPE_CODE_STRUCT:
8638 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8639 argvec[0] = ada_value_ind (argvec[0]);
8640 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8641 break;
8642 default:
8643 error (_("cannot subscript or call something of type `%s'"),
8644 ada_type_name (value_type (argvec[0])));
8645 break;
8646 }
8647 }
8648
8649 switch (TYPE_CODE (type))
8650 {
8651 case TYPE_CODE_FUNC:
8652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8653 return allocate_value (TYPE_TARGET_TYPE (type));
8654 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8655 case TYPE_CODE_STRUCT:
8656 {
8657 int arity;
8658
8659 arity = ada_array_arity (type);
8660 type = ada_array_element_type (type, nargs);
8661 if (type == NULL)
8662 error (_("cannot subscript or call a record"));
8663 if (arity != nargs)
8664 error (_("wrong number of subscripts; expecting %d"), arity);
8665 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8666 return value_zero (ada_aligned_type (type), lval_memory);
8667 return
8668 unwrap_value (ada_value_subscript
8669 (argvec[0], nargs, argvec + 1));
8670 }
8671 case TYPE_CODE_ARRAY:
8672 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8673 {
8674 type = ada_array_element_type (type, nargs);
8675 if (type == NULL)
8676 error (_("element type of array unknown"));
8677 else
8678 return value_zero (ada_aligned_type (type), lval_memory);
8679 }
8680 return
8681 unwrap_value (ada_value_subscript
8682 (ada_coerce_to_simple_array (argvec[0]),
8683 nargs, argvec + 1));
8684 case TYPE_CODE_PTR: /* Pointer to array */
8685 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8687 {
8688 type = ada_array_element_type (type, nargs);
8689 if (type == NULL)
8690 error (_("element type of array unknown"));
8691 else
8692 return value_zero (ada_aligned_type (type), lval_memory);
8693 }
8694 return
8695 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8696 nargs, argvec + 1));
8697
8698 default:
8699 error (_("Attempt to index or call something other than an "
8700 "array or function"));
8701 }
8702
8703 case TERNOP_SLICE:
8704 {
8705 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8706 struct value *low_bound_val =
8707 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8708 struct value *high_bound_val =
8709 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8710 LONGEST low_bound;
8711 LONGEST high_bound;
8712 low_bound_val = coerce_ref (low_bound_val);
8713 high_bound_val = coerce_ref (high_bound_val);
8714 low_bound = pos_atr (low_bound_val);
8715 high_bound = pos_atr (high_bound_val);
8716
8717 if (noside == EVAL_SKIP)
8718 goto nosideret;
8719
8720 /* If this is a reference to an aligner type, then remove all
8721 the aligners. */
8722 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8723 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8724 TYPE_TARGET_TYPE (value_type (array)) =
8725 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8726
8727 if (ada_is_packed_array_type (value_type (array)))
8728 error (_("cannot slice a packed array"));
8729
8730 /* If this is a reference to an array or an array lvalue,
8731 convert to a pointer. */
8732 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8733 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8734 && VALUE_LVAL (array) == lval_memory))
8735 array = value_addr (array);
8736
8737 if (noside == EVAL_AVOID_SIDE_EFFECTS
8738 && ada_is_array_descriptor_type (ada_check_typedef
8739 (value_type (array))))
8740 return empty_array (ada_type_of_array (array, 0), low_bound);
8741
8742 array = ada_coerce_to_simple_array_ptr (array);
8743
8744 /* If we have more than one level of pointer indirection,
8745 dereference the value until we get only one level. */
8746 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8747 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8748 == TYPE_CODE_PTR))
8749 array = value_ind (array);
8750
8751 /* Make sure we really do have an array type before going further,
8752 to avoid a SEGV when trying to get the index type or the target
8753 type later down the road if the debug info generated by
8754 the compiler is incorrect or incomplete. */
8755 if (!ada_is_simple_array_type (value_type (array)))
8756 error (_("cannot take slice of non-array"));
8757
8758 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8759 {
8760 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8761 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8762 low_bound);
8763 else
8764 {
8765 struct type *arr_type0 =
8766 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8767 NULL, 1);
8768 return ada_value_slice_from_ptr (array, arr_type0,
8769 longest_to_int (low_bound),
8770 longest_to_int (high_bound));
8771 }
8772 }
8773 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8774 return array;
8775 else if (high_bound < low_bound)
8776 return empty_array (value_type (array), low_bound);
8777 else
8778 return ada_value_slice (array, longest_to_int (low_bound),
8779 longest_to_int (high_bound));
8780 }
8781
8782 case UNOP_IN_RANGE:
8783 (*pos) += 2;
8784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8785 type = exp->elts[pc + 1].type;
8786
8787 if (noside == EVAL_SKIP)
8788 goto nosideret;
8789
8790 switch (TYPE_CODE (type))
8791 {
8792 default:
8793 lim_warning (_("Membership test incompletely implemented; "
8794 "always returns true"));
8795 type = language_bool_type (exp->language_defn, exp->gdbarch);
8796 return value_from_longest (type, (LONGEST) 1);
8797
8798 case TYPE_CODE_RANGE:
8799 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8800 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8803 type = language_bool_type (exp->language_defn, exp->gdbarch);
8804 return
8805 value_from_longest (type,
8806 (value_less (arg1, arg3)
8807 || value_equal (arg1, arg3))
8808 && (value_less (arg2, arg1)
8809 || value_equal (arg2, arg1)));
8810 }
8811
8812 case BINOP_IN_BOUNDS:
8813 (*pos) += 2;
8814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8815 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8816
8817 if (noside == EVAL_SKIP)
8818 goto nosideret;
8819
8820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8821 {
8822 type = language_bool_type (exp->language_defn, exp->gdbarch);
8823 return value_zero (type, not_lval);
8824 }
8825
8826 tem = longest_to_int (exp->elts[pc + 1].longconst);
8827
8828 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8829 error (_("invalid dimension number to 'range"));
8830
8831 arg3 = ada_array_bound (arg2, tem, 1);
8832 arg2 = ada_array_bound (arg2, tem, 0);
8833
8834 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8836 type = language_bool_type (exp->language_defn, exp->gdbarch);
8837 return
8838 value_from_longest (type,
8839 (value_less (arg1, arg3)
8840 || value_equal (arg1, arg3))
8841 && (value_less (arg2, arg1)
8842 || value_equal (arg2, arg1)));
8843
8844 case TERNOP_IN_RANGE:
8845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8846 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8847 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8848
8849 if (noside == EVAL_SKIP)
8850 goto nosideret;
8851
8852 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8853 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8854 type = language_bool_type (exp->language_defn, exp->gdbarch);
8855 return
8856 value_from_longest (type,
8857 (value_less (arg1, arg3)
8858 || value_equal (arg1, arg3))
8859 && (value_less (arg2, arg1)
8860 || value_equal (arg2, arg1)));
8861
8862 case OP_ATR_FIRST:
8863 case OP_ATR_LAST:
8864 case OP_ATR_LENGTH:
8865 {
8866 struct type *type_arg;
8867 if (exp->elts[*pos].opcode == OP_TYPE)
8868 {
8869 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8870 arg1 = NULL;
8871 type_arg = exp->elts[pc + 2].type;
8872 }
8873 else
8874 {
8875 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8876 type_arg = NULL;
8877 }
8878
8879 if (exp->elts[*pos].opcode != OP_LONG)
8880 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8881 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8882 *pos += 4;
8883
8884 if (noside == EVAL_SKIP)
8885 goto nosideret;
8886
8887 if (type_arg == NULL)
8888 {
8889 arg1 = ada_coerce_ref (arg1);
8890
8891 if (ada_is_packed_array_type (value_type (arg1)))
8892 arg1 = ada_coerce_to_simple_array (arg1);
8893
8894 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8895 error (_("invalid dimension number to '%s"),
8896 ada_attribute_name (op));
8897
8898 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8899 {
8900 type = ada_index_type (value_type (arg1), tem);
8901 if (type == NULL)
8902 error
8903 (_("attempt to take bound of something that is not an array"));
8904 return allocate_value (type);
8905 }
8906
8907 switch (op)
8908 {
8909 default: /* Should never happen. */
8910 error (_("unexpected attribute encountered"));
8911 case OP_ATR_FIRST:
8912 return ada_array_bound (arg1, tem, 0);
8913 case OP_ATR_LAST:
8914 return ada_array_bound (arg1, tem, 1);
8915 case OP_ATR_LENGTH:
8916 return ada_array_length (arg1, tem);
8917 }
8918 }
8919 else if (discrete_type_p (type_arg))
8920 {
8921 struct type *range_type;
8922 char *name = ada_type_name (type_arg);
8923 range_type = NULL;
8924 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8925 range_type =
8926 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8927 if (range_type == NULL)
8928 range_type = type_arg;
8929 switch (op)
8930 {
8931 default:
8932 error (_("unexpected attribute encountered"));
8933 case OP_ATR_FIRST:
8934 return value_from_longest
8935 (range_type, discrete_type_low_bound (range_type));
8936 case OP_ATR_LAST:
8937 return value_from_longest
8938 (range_type, discrete_type_high_bound (range_type));
8939 case OP_ATR_LENGTH:
8940 error (_("the 'length attribute applies only to array types"));
8941 }
8942 }
8943 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8944 error (_("unimplemented type attribute"));
8945 else
8946 {
8947 LONGEST low, high;
8948
8949 if (ada_is_packed_array_type (type_arg))
8950 type_arg = decode_packed_array_type (type_arg);
8951
8952 if (tem < 1 || tem > ada_array_arity (type_arg))
8953 error (_("invalid dimension number to '%s"),
8954 ada_attribute_name (op));
8955
8956 type = ada_index_type (type_arg, tem);
8957 if (type == NULL)
8958 error
8959 (_("attempt to take bound of something that is not an array"));
8960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8961 return allocate_value (type);
8962
8963 switch (op)
8964 {
8965 default:
8966 error (_("unexpected attribute encountered"));
8967 case OP_ATR_FIRST:
8968 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8969 return value_from_longest (type, low);
8970 case OP_ATR_LAST:
8971 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8972 return value_from_longest (type, high);
8973 case OP_ATR_LENGTH:
8974 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8975 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8976 return value_from_longest (type, high - low + 1);
8977 }
8978 }
8979 }
8980
8981 case OP_ATR_TAG:
8982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8983 if (noside == EVAL_SKIP)
8984 goto nosideret;
8985
8986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8987 return value_zero (ada_tag_type (arg1), not_lval);
8988
8989 return ada_value_tag (arg1);
8990
8991 case OP_ATR_MIN:
8992 case OP_ATR_MAX:
8993 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8994 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8995 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8996 if (noside == EVAL_SKIP)
8997 goto nosideret;
8998 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8999 return value_zero (value_type (arg1), not_lval);
9000 else
9001 {
9002 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9003 return value_binop (arg1, arg2,
9004 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9005 }
9006
9007 case OP_ATR_MODULUS:
9008 {
9009 struct type *type_arg = exp->elts[pc + 2].type;
9010 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9011
9012 if (noside == EVAL_SKIP)
9013 goto nosideret;
9014
9015 if (!ada_is_modular_type (type_arg))
9016 error (_("'modulus must be applied to modular type"));
9017
9018 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9019 ada_modulus (type_arg));
9020 }
9021
9022
9023 case OP_ATR_POS:
9024 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9026 if (noside == EVAL_SKIP)
9027 goto nosideret;
9028 type = builtin_type (exp->gdbarch)->builtin_int;
9029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9030 return value_zero (type, not_lval);
9031 else
9032 return value_pos_atr (type, arg1);
9033
9034 case OP_ATR_SIZE:
9035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9036 type = value_type (arg1);
9037
9038 /* If the argument is a reference, then dereference its type, since
9039 the user is really asking for the size of the actual object,
9040 not the size of the pointer. */
9041 if (TYPE_CODE (type) == TYPE_CODE_REF)
9042 type = TYPE_TARGET_TYPE (type);
9043
9044 if (noside == EVAL_SKIP)
9045 goto nosideret;
9046 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9047 return value_zero (builtin_type_int32, not_lval);
9048 else
9049 return value_from_longest (builtin_type_int32,
9050 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9051
9052 case OP_ATR_VAL:
9053 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9054 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9055 type = exp->elts[pc + 2].type;
9056 if (noside == EVAL_SKIP)
9057 goto nosideret;
9058 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9059 return value_zero (type, not_lval);
9060 else
9061 return value_val_atr (type, arg1);
9062
9063 case BINOP_EXP:
9064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9066 if (noside == EVAL_SKIP)
9067 goto nosideret;
9068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9069 return value_zero (value_type (arg1), not_lval);
9070 else
9071 {
9072 /* For integer exponentiation operations,
9073 only promote the first argument. */
9074 if (is_integral_type (value_type (arg2)))
9075 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9076 else
9077 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9078
9079 return value_binop (arg1, arg2, op);
9080 }
9081
9082 case UNOP_PLUS:
9083 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9084 if (noside == EVAL_SKIP)
9085 goto nosideret;
9086 else
9087 return arg1;
9088
9089 case UNOP_ABS:
9090 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9091 if (noside == EVAL_SKIP)
9092 goto nosideret;
9093 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9094 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9095 return value_neg (arg1);
9096 else
9097 return arg1;
9098
9099 case UNOP_IND:
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 if (noside == EVAL_SKIP)
9102 goto nosideret;
9103 type = ada_check_typedef (value_type (arg1));
9104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9105 {
9106 if (ada_is_array_descriptor_type (type))
9107 /* GDB allows dereferencing GNAT array descriptors. */
9108 {
9109 struct type *arrType = ada_type_of_array (arg1, 0);
9110 if (arrType == NULL)
9111 error (_("Attempt to dereference null array pointer."));
9112 return value_at_lazy (arrType, 0);
9113 }
9114 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9115 || TYPE_CODE (type) == TYPE_CODE_REF
9116 /* In C you can dereference an array to get the 1st elt. */
9117 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9118 {
9119 type = to_static_fixed_type
9120 (ada_aligned_type
9121 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9122 check_size (type);
9123 return value_zero (type, lval_memory);
9124 }
9125 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9126 {
9127 /* GDB allows dereferencing an int. */
9128 if (expect_type == NULL)
9129 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9130 lval_memory);
9131 else
9132 {
9133 expect_type =
9134 to_static_fixed_type (ada_aligned_type (expect_type));
9135 return value_zero (expect_type, lval_memory);
9136 }
9137 }
9138 else
9139 error (_("Attempt to take contents of a non-pointer value."));
9140 }
9141 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9142 type = ada_check_typedef (value_type (arg1));
9143
9144 if (TYPE_CODE (type) == TYPE_CODE_INT)
9145 /* GDB allows dereferencing an int. If we were given
9146 the expect_type, then use that as the target type.
9147 Otherwise, assume that the target type is an int. */
9148 {
9149 if (expect_type != NULL)
9150 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9151 arg1));
9152 else
9153 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9154 (CORE_ADDR) value_as_address (arg1));
9155 }
9156
9157 if (ada_is_array_descriptor_type (type))
9158 /* GDB allows dereferencing GNAT array descriptors. */
9159 return ada_coerce_to_simple_array (arg1);
9160 else
9161 return ada_value_ind (arg1);
9162
9163 case STRUCTOP_STRUCT:
9164 tem = longest_to_int (exp->elts[pc + 1].longconst);
9165 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9167 if (noside == EVAL_SKIP)
9168 goto nosideret;
9169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9170 {
9171 struct type *type1 = value_type (arg1);
9172 if (ada_is_tagged_type (type1, 1))
9173 {
9174 type = ada_lookup_struct_elt_type (type1,
9175 &exp->elts[pc + 2].string,
9176 1, 1, NULL);
9177 if (type == NULL)
9178 /* In this case, we assume that the field COULD exist
9179 in some extension of the type. Return an object of
9180 "type" void, which will match any formal
9181 (see ada_type_match). */
9182 return value_zero (builtin_type_void, lval_memory);
9183 }
9184 else
9185 type =
9186 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9187 0, NULL);
9188
9189 return value_zero (ada_aligned_type (type), lval_memory);
9190 }
9191 else
9192 return
9193 ada_to_fixed_value (unwrap_value
9194 (ada_value_struct_elt
9195 (arg1, &exp->elts[pc + 2].string, 0)));
9196 case OP_TYPE:
9197 /* The value is not supposed to be used. This is here to make it
9198 easier to accommodate expressions that contain types. */
9199 (*pos) += 2;
9200 if (noside == EVAL_SKIP)
9201 goto nosideret;
9202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9203 return allocate_value (exp->elts[pc + 1].type);
9204 else
9205 error (_("Attempt to use a type name as an expression"));
9206
9207 case OP_AGGREGATE:
9208 case OP_CHOICES:
9209 case OP_OTHERS:
9210 case OP_DISCRETE_RANGE:
9211 case OP_POSITIONAL:
9212 case OP_NAME:
9213 if (noside == EVAL_NORMAL)
9214 switch (op)
9215 {
9216 case OP_NAME:
9217 error (_("Undefined name, ambiguous name, or renaming used in "
9218 "component association: %s."), &exp->elts[pc+2].string);
9219 case OP_AGGREGATE:
9220 error (_("Aggregates only allowed on the right of an assignment"));
9221 default:
9222 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9223 }
9224
9225 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9226 *pos += oplen - 1;
9227 for (tem = 0; tem < nargs; tem += 1)
9228 ada_evaluate_subexp (NULL, exp, pos, noside);
9229 goto nosideret;
9230 }
9231
9232 nosideret:
9233 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9234 }
9235 \f
9236
9237 /* Fixed point */
9238
9239 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9240 type name that encodes the 'small and 'delta information.
9241 Otherwise, return NULL. */
9242
9243 static const char *
9244 fixed_type_info (struct type *type)
9245 {
9246 const char *name = ada_type_name (type);
9247 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9248
9249 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9250 {
9251 const char *tail = strstr (name, "___XF_");
9252 if (tail == NULL)
9253 return NULL;
9254 else
9255 return tail + 5;
9256 }
9257 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9258 return fixed_type_info (TYPE_TARGET_TYPE (type));
9259 else
9260 return NULL;
9261 }
9262
9263 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9264
9265 int
9266 ada_is_fixed_point_type (struct type *type)
9267 {
9268 return fixed_type_info (type) != NULL;
9269 }
9270
9271 /* Return non-zero iff TYPE represents a System.Address type. */
9272
9273 int
9274 ada_is_system_address_type (struct type *type)
9275 {
9276 return (TYPE_NAME (type)
9277 && strcmp (TYPE_NAME (type), "system__address") == 0);
9278 }
9279
9280 /* Assuming that TYPE is the representation of an Ada fixed-point
9281 type, return its delta, or -1 if the type is malformed and the
9282 delta cannot be determined. */
9283
9284 DOUBLEST
9285 ada_delta (struct type *type)
9286 {
9287 const char *encoding = fixed_type_info (type);
9288 long num, den;
9289
9290 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9291 return -1.0;
9292 else
9293 return (DOUBLEST) num / (DOUBLEST) den;
9294 }
9295
9296 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9297 factor ('SMALL value) associated with the type. */
9298
9299 static DOUBLEST
9300 scaling_factor (struct type *type)
9301 {
9302 const char *encoding = fixed_type_info (type);
9303 unsigned long num0, den0, num1, den1;
9304 int n;
9305
9306 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9307
9308 if (n < 2)
9309 return 1.0;
9310 else if (n == 4)
9311 return (DOUBLEST) num1 / (DOUBLEST) den1;
9312 else
9313 return (DOUBLEST) num0 / (DOUBLEST) den0;
9314 }
9315
9316
9317 /* Assuming that X is the representation of a value of fixed-point
9318 type TYPE, return its floating-point equivalent. */
9319
9320 DOUBLEST
9321 ada_fixed_to_float (struct type *type, LONGEST x)
9322 {
9323 return (DOUBLEST) x *scaling_factor (type);
9324 }
9325
9326 /* The representation of a fixed-point value of type TYPE
9327 corresponding to the value X. */
9328
9329 LONGEST
9330 ada_float_to_fixed (struct type *type, DOUBLEST x)
9331 {
9332 return (LONGEST) (x / scaling_factor (type) + 0.5);
9333 }
9334
9335
9336 /* VAX floating formats */
9337
9338 /* Non-zero iff TYPE represents one of the special VAX floating-point
9339 types. */
9340
9341 int
9342 ada_is_vax_floating_type (struct type *type)
9343 {
9344 int name_len =
9345 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9346 return
9347 name_len > 6
9348 && (TYPE_CODE (type) == TYPE_CODE_INT
9349 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9350 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9351 }
9352
9353 /* The type of special VAX floating-point type this is, assuming
9354 ada_is_vax_floating_point. */
9355
9356 int
9357 ada_vax_float_type_suffix (struct type *type)
9358 {
9359 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9360 }
9361
9362 /* A value representing the special debugging function that outputs
9363 VAX floating-point values of the type represented by TYPE. Assumes
9364 ada_is_vax_floating_type (TYPE). */
9365
9366 struct value *
9367 ada_vax_float_print_function (struct type *type)
9368 {
9369 switch (ada_vax_float_type_suffix (type))
9370 {
9371 case 'F':
9372 return get_var_value ("DEBUG_STRING_F", 0);
9373 case 'D':
9374 return get_var_value ("DEBUG_STRING_D", 0);
9375 case 'G':
9376 return get_var_value ("DEBUG_STRING_G", 0);
9377 default:
9378 error (_("invalid VAX floating-point type"));
9379 }
9380 }
9381 \f
9382
9383 /* Range types */
9384
9385 /* Scan STR beginning at position K for a discriminant name, and
9386 return the value of that discriminant field of DVAL in *PX. If
9387 PNEW_K is not null, put the position of the character beyond the
9388 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9389 not alter *PX and *PNEW_K if unsuccessful. */
9390
9391 static int
9392 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9393 int *pnew_k)
9394 {
9395 static char *bound_buffer = NULL;
9396 static size_t bound_buffer_len = 0;
9397 char *bound;
9398 char *pend;
9399 struct value *bound_val;
9400
9401 if (dval == NULL || str == NULL || str[k] == '\0')
9402 return 0;
9403
9404 pend = strstr (str + k, "__");
9405 if (pend == NULL)
9406 {
9407 bound = str + k;
9408 k += strlen (bound);
9409 }
9410 else
9411 {
9412 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9413 bound = bound_buffer;
9414 strncpy (bound_buffer, str + k, pend - (str + k));
9415 bound[pend - (str + k)] = '\0';
9416 k = pend - str;
9417 }
9418
9419 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9420 if (bound_val == NULL)
9421 return 0;
9422
9423 *px = value_as_long (bound_val);
9424 if (pnew_k != NULL)
9425 *pnew_k = k;
9426 return 1;
9427 }
9428
9429 /* Value of variable named NAME in the current environment. If
9430 no such variable found, then if ERR_MSG is null, returns 0, and
9431 otherwise causes an error with message ERR_MSG. */
9432
9433 static struct value *
9434 get_var_value (char *name, char *err_msg)
9435 {
9436 struct ada_symbol_info *syms;
9437 int nsyms;
9438
9439 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9440 &syms);
9441
9442 if (nsyms != 1)
9443 {
9444 if (err_msg == NULL)
9445 return 0;
9446 else
9447 error (("%s"), err_msg);
9448 }
9449
9450 return value_of_variable (syms[0].sym, syms[0].block);
9451 }
9452
9453 /* Value of integer variable named NAME in the current environment. If
9454 no such variable found, returns 0, and sets *FLAG to 0. If
9455 successful, sets *FLAG to 1. */
9456
9457 LONGEST
9458 get_int_var_value (char *name, int *flag)
9459 {
9460 struct value *var_val = get_var_value (name, 0);
9461
9462 if (var_val == 0)
9463 {
9464 if (flag != NULL)
9465 *flag = 0;
9466 return 0;
9467 }
9468 else
9469 {
9470 if (flag != NULL)
9471 *flag = 1;
9472 return value_as_long (var_val);
9473 }
9474 }
9475
9476
9477 /* Return a range type whose base type is that of the range type named
9478 NAME in the current environment, and whose bounds are calculated
9479 from NAME according to the GNAT range encoding conventions.
9480 Extract discriminant values, if needed, from DVAL. If a new type
9481 must be created, allocate in OBJFILE's space. The bounds
9482 information, in general, is encoded in NAME, the base type given in
9483 the named range type. */
9484
9485 static struct type *
9486 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9487 {
9488 struct type *raw_type = ada_find_any_type (name);
9489 struct type *base_type;
9490 char *subtype_info;
9491
9492 if (raw_type == NULL)
9493 base_type = builtin_type_int32;
9494 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9495 base_type = TYPE_TARGET_TYPE (raw_type);
9496 else
9497 base_type = raw_type;
9498
9499 subtype_info = strstr (name, "___XD");
9500 if (subtype_info == NULL)
9501 {
9502 LONGEST L = discrete_type_low_bound (raw_type);
9503 LONGEST U = discrete_type_high_bound (raw_type);
9504 if (L < INT_MIN || U > INT_MAX)
9505 return raw_type;
9506 else
9507 return create_range_type (alloc_type (objfile), raw_type,
9508 discrete_type_low_bound (raw_type),
9509 discrete_type_high_bound (raw_type));
9510 }
9511 else
9512 {
9513 static char *name_buf = NULL;
9514 static size_t name_len = 0;
9515 int prefix_len = subtype_info - name;
9516 LONGEST L, U;
9517 struct type *type;
9518 char *bounds_str;
9519 int n;
9520
9521 GROW_VECT (name_buf, name_len, prefix_len + 5);
9522 strncpy (name_buf, name, prefix_len);
9523 name_buf[prefix_len] = '\0';
9524
9525 subtype_info += 5;
9526 bounds_str = strchr (subtype_info, '_');
9527 n = 1;
9528
9529 if (*subtype_info == 'L')
9530 {
9531 if (!ada_scan_number (bounds_str, n, &L, &n)
9532 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9533 return raw_type;
9534 if (bounds_str[n] == '_')
9535 n += 2;
9536 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9537 n += 1;
9538 subtype_info += 1;
9539 }
9540 else
9541 {
9542 int ok;
9543 strcpy (name_buf + prefix_len, "___L");
9544 L = get_int_var_value (name_buf, &ok);
9545 if (!ok)
9546 {
9547 lim_warning (_("Unknown lower bound, using 1."));
9548 L = 1;
9549 }
9550 }
9551
9552 if (*subtype_info == 'U')
9553 {
9554 if (!ada_scan_number (bounds_str, n, &U, &n)
9555 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9556 return raw_type;
9557 }
9558 else
9559 {
9560 int ok;
9561 strcpy (name_buf + prefix_len, "___U");
9562 U = get_int_var_value (name_buf, &ok);
9563 if (!ok)
9564 {
9565 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9566 U = L;
9567 }
9568 }
9569
9570 if (objfile == NULL)
9571 objfile = TYPE_OBJFILE (base_type);
9572 type = create_range_type (alloc_type (objfile), base_type, L, U);
9573 TYPE_NAME (type) = name;
9574 return type;
9575 }
9576 }
9577
9578 /* True iff NAME is the name of a range type. */
9579
9580 int
9581 ada_is_range_type_name (const char *name)
9582 {
9583 return (name != NULL && strstr (name, "___XD"));
9584 }
9585 \f
9586
9587 /* Modular types */
9588
9589 /* True iff TYPE is an Ada modular type. */
9590
9591 int
9592 ada_is_modular_type (struct type *type)
9593 {
9594 struct type *subranged_type = base_type (type);
9595
9596 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9597 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9598 && TYPE_UNSIGNED (subranged_type));
9599 }
9600
9601 /* Try to determine the lower and upper bounds of the given modular type
9602 using the type name only. Return non-zero and set L and U as the lower
9603 and upper bounds (respectively) if successful. */
9604
9605 int
9606 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9607 {
9608 char *name = ada_type_name (type);
9609 char *suffix;
9610 int k;
9611 LONGEST U;
9612
9613 if (name == NULL)
9614 return 0;
9615
9616 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9617 we are looking for static bounds, which means an __XDLU suffix.
9618 Moreover, we know that the lower bound of modular types is always
9619 zero, so the actual suffix should start with "__XDLU_0__", and
9620 then be followed by the upper bound value. */
9621 suffix = strstr (name, "__XDLU_0__");
9622 if (suffix == NULL)
9623 return 0;
9624 k = 10;
9625 if (!ada_scan_number (suffix, k, &U, NULL))
9626 return 0;
9627
9628 *modulus = (ULONGEST) U + 1;
9629 return 1;
9630 }
9631
9632 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9633
9634 ULONGEST
9635 ada_modulus (struct type *type)
9636 {
9637 ULONGEST modulus;
9638
9639 /* Normally, the modulus of a modular type is equal to the value of
9640 its upper bound + 1. However, the upper bound is currently stored
9641 as an int, which is not always big enough to hold the actual bound
9642 value. To workaround this, try to take advantage of the encoding
9643 that GNAT uses with with discrete types. To avoid some unnecessary
9644 parsing, we do this only when the size of TYPE is greater than
9645 the size of the field holding the bound. */
9646 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9647 && ada_modulus_from_name (type, &modulus))
9648 return modulus;
9649
9650 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9651 }
9652 \f
9653
9654 /* Ada exception catchpoint support:
9655 ---------------------------------
9656
9657 We support 3 kinds of exception catchpoints:
9658 . catchpoints on Ada exceptions
9659 . catchpoints on unhandled Ada exceptions
9660 . catchpoints on failed assertions
9661
9662 Exceptions raised during failed assertions, or unhandled exceptions
9663 could perfectly be caught with the general catchpoint on Ada exceptions.
9664 However, we can easily differentiate these two special cases, and having
9665 the option to distinguish these two cases from the rest can be useful
9666 to zero-in on certain situations.
9667
9668 Exception catchpoints are a specialized form of breakpoint,
9669 since they rely on inserting breakpoints inside known routines
9670 of the GNAT runtime. The implementation therefore uses a standard
9671 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9672 of breakpoint_ops.
9673
9674 Support in the runtime for exception catchpoints have been changed
9675 a few times already, and these changes affect the implementation
9676 of these catchpoints. In order to be able to support several
9677 variants of the runtime, we use a sniffer that will determine
9678 the runtime variant used by the program being debugged.
9679
9680 At this time, we do not support the use of conditions on Ada exception
9681 catchpoints. The COND and COND_STRING fields are therefore set
9682 to NULL (most of the time, see below).
9683
9684 Conditions where EXP_STRING, COND, and COND_STRING are used:
9685
9686 When a user specifies the name of a specific exception in the case
9687 of catchpoints on Ada exceptions, we store the name of that exception
9688 in the EXP_STRING. We then translate this request into an actual
9689 condition stored in COND_STRING, and then parse it into an expression
9690 stored in COND. */
9691
9692 /* The different types of catchpoints that we introduced for catching
9693 Ada exceptions. */
9694
9695 enum exception_catchpoint_kind
9696 {
9697 ex_catch_exception,
9698 ex_catch_exception_unhandled,
9699 ex_catch_assert
9700 };
9701
9702 /* Ada's standard exceptions. */
9703
9704 static char *standard_exc[] = {
9705 "constraint_error",
9706 "program_error",
9707 "storage_error",
9708 "tasking_error"
9709 };
9710
9711 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9712
9713 /* A structure that describes how to support exception catchpoints
9714 for a given executable. */
9715
9716 struct exception_support_info
9717 {
9718 /* The name of the symbol to break on in order to insert
9719 a catchpoint on exceptions. */
9720 const char *catch_exception_sym;
9721
9722 /* The name of the symbol to break on in order to insert
9723 a catchpoint on unhandled exceptions. */
9724 const char *catch_exception_unhandled_sym;
9725
9726 /* The name of the symbol to break on in order to insert
9727 a catchpoint on failed assertions. */
9728 const char *catch_assert_sym;
9729
9730 /* Assuming that the inferior just triggered an unhandled exception
9731 catchpoint, this function is responsible for returning the address
9732 in inferior memory where the name of that exception is stored.
9733 Return zero if the address could not be computed. */
9734 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9735 };
9736
9737 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9738 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9739
9740 /* The following exception support info structure describes how to
9741 implement exception catchpoints with the latest version of the
9742 Ada runtime (as of 2007-03-06). */
9743
9744 static const struct exception_support_info default_exception_support_info =
9745 {
9746 "__gnat_debug_raise_exception", /* catch_exception_sym */
9747 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9748 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9749 ada_unhandled_exception_name_addr
9750 };
9751
9752 /* The following exception support info structure describes how to
9753 implement exception catchpoints with a slightly older version
9754 of the Ada runtime. */
9755
9756 static const struct exception_support_info exception_support_info_fallback =
9757 {
9758 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9759 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9760 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9761 ada_unhandled_exception_name_addr_from_raise
9762 };
9763
9764 /* For each executable, we sniff which exception info structure to use
9765 and cache it in the following global variable. */
9766
9767 static const struct exception_support_info *exception_info = NULL;
9768
9769 /* Inspect the Ada runtime and determine which exception info structure
9770 should be used to provide support for exception catchpoints.
9771
9772 This function will always set exception_info, or raise an error. */
9773
9774 static void
9775 ada_exception_support_info_sniffer (void)
9776 {
9777 struct symbol *sym;
9778
9779 /* If the exception info is already known, then no need to recompute it. */
9780 if (exception_info != NULL)
9781 return;
9782
9783 /* Check the latest (default) exception support info. */
9784 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9785 NULL, VAR_DOMAIN);
9786 if (sym != NULL)
9787 {
9788 exception_info = &default_exception_support_info;
9789 return;
9790 }
9791
9792 /* Try our fallback exception suport info. */
9793 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9794 NULL, VAR_DOMAIN);
9795 if (sym != NULL)
9796 {
9797 exception_info = &exception_support_info_fallback;
9798 return;
9799 }
9800
9801 /* Sometimes, it is normal for us to not be able to find the routine
9802 we are looking for. This happens when the program is linked with
9803 the shared version of the GNAT runtime, and the program has not been
9804 started yet. Inform the user of these two possible causes if
9805 applicable. */
9806
9807 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9808 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9809
9810 /* If the symbol does not exist, then check that the program is
9811 already started, to make sure that shared libraries have been
9812 loaded. If it is not started, this may mean that the symbol is
9813 in a shared library. */
9814
9815 if (ptid_get_pid (inferior_ptid) == 0)
9816 error (_("Unable to insert catchpoint. Try to start the program first."));
9817
9818 /* At this point, we know that we are debugging an Ada program and
9819 that the inferior has been started, but we still are not able to
9820 find the run-time symbols. That can mean that we are in
9821 configurable run time mode, or that a-except as been optimized
9822 out by the linker... In any case, at this point it is not worth
9823 supporting this feature. */
9824
9825 error (_("Cannot insert catchpoints in this configuration."));
9826 }
9827
9828 /* An observer of "executable_changed" events.
9829 Its role is to clear certain cached values that need to be recomputed
9830 each time a new executable is loaded by GDB. */
9831
9832 static void
9833 ada_executable_changed_observer (void)
9834 {
9835 /* If the executable changed, then it is possible that the Ada runtime
9836 is different. So we need to invalidate the exception support info
9837 cache. */
9838 exception_info = NULL;
9839 }
9840
9841 /* Return the name of the function at PC, NULL if could not find it.
9842 This function only checks the debugging information, not the symbol
9843 table. */
9844
9845 static char *
9846 function_name_from_pc (CORE_ADDR pc)
9847 {
9848 char *func_name;
9849
9850 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9851 return NULL;
9852
9853 return func_name;
9854 }
9855
9856 /* True iff FRAME is very likely to be that of a function that is
9857 part of the runtime system. This is all very heuristic, but is
9858 intended to be used as advice as to what frames are uninteresting
9859 to most users. */
9860
9861 static int
9862 is_known_support_routine (struct frame_info *frame)
9863 {
9864 struct symtab_and_line sal;
9865 char *func_name;
9866 int i;
9867
9868 /* If this code does not have any debugging information (no symtab),
9869 This cannot be any user code. */
9870
9871 find_frame_sal (frame, &sal);
9872 if (sal.symtab == NULL)
9873 return 1;
9874
9875 /* If there is a symtab, but the associated source file cannot be
9876 located, then assume this is not user code: Selecting a frame
9877 for which we cannot display the code would not be very helpful
9878 for the user. This should also take care of case such as VxWorks
9879 where the kernel has some debugging info provided for a few units. */
9880
9881 if (symtab_to_fullname (sal.symtab) == NULL)
9882 return 1;
9883
9884 /* Check the unit filename againt the Ada runtime file naming.
9885 We also check the name of the objfile against the name of some
9886 known system libraries that sometimes come with debugging info
9887 too. */
9888
9889 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9890 {
9891 re_comp (known_runtime_file_name_patterns[i]);
9892 if (re_exec (sal.symtab->filename))
9893 return 1;
9894 if (sal.symtab->objfile != NULL
9895 && re_exec (sal.symtab->objfile->name))
9896 return 1;
9897 }
9898
9899 /* Check whether the function is a GNAT-generated entity. */
9900
9901 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9902 if (func_name == NULL)
9903 return 1;
9904
9905 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9906 {
9907 re_comp (known_auxiliary_function_name_patterns[i]);
9908 if (re_exec (func_name))
9909 return 1;
9910 }
9911
9912 return 0;
9913 }
9914
9915 /* Find the first frame that contains debugging information and that is not
9916 part of the Ada run-time, starting from FI and moving upward. */
9917
9918 void
9919 ada_find_printable_frame (struct frame_info *fi)
9920 {
9921 for (; fi != NULL; fi = get_prev_frame (fi))
9922 {
9923 if (!is_known_support_routine (fi))
9924 {
9925 select_frame (fi);
9926 break;
9927 }
9928 }
9929
9930 }
9931
9932 /* Assuming that the inferior just triggered an unhandled exception
9933 catchpoint, return the address in inferior memory where the name
9934 of the exception is stored.
9935
9936 Return zero if the address could not be computed. */
9937
9938 static CORE_ADDR
9939 ada_unhandled_exception_name_addr (void)
9940 {
9941 return parse_and_eval_address ("e.full_name");
9942 }
9943
9944 /* Same as ada_unhandled_exception_name_addr, except that this function
9945 should be used when the inferior uses an older version of the runtime,
9946 where the exception name needs to be extracted from a specific frame
9947 several frames up in the callstack. */
9948
9949 static CORE_ADDR
9950 ada_unhandled_exception_name_addr_from_raise (void)
9951 {
9952 int frame_level;
9953 struct frame_info *fi;
9954
9955 /* To determine the name of this exception, we need to select
9956 the frame corresponding to RAISE_SYM_NAME. This frame is
9957 at least 3 levels up, so we simply skip the first 3 frames
9958 without checking the name of their associated function. */
9959 fi = get_current_frame ();
9960 for (frame_level = 0; frame_level < 3; frame_level += 1)
9961 if (fi != NULL)
9962 fi = get_prev_frame (fi);
9963
9964 while (fi != NULL)
9965 {
9966 const char *func_name =
9967 function_name_from_pc (get_frame_address_in_block (fi));
9968 if (func_name != NULL
9969 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9970 break; /* We found the frame we were looking for... */
9971 fi = get_prev_frame (fi);
9972 }
9973
9974 if (fi == NULL)
9975 return 0;
9976
9977 select_frame (fi);
9978 return parse_and_eval_address ("id.full_name");
9979 }
9980
9981 /* Assuming the inferior just triggered an Ada exception catchpoint
9982 (of any type), return the address in inferior memory where the name
9983 of the exception is stored, if applicable.
9984
9985 Return zero if the address could not be computed, or if not relevant. */
9986
9987 static CORE_ADDR
9988 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9989 struct breakpoint *b)
9990 {
9991 switch (ex)
9992 {
9993 case ex_catch_exception:
9994 return (parse_and_eval_address ("e.full_name"));
9995 break;
9996
9997 case ex_catch_exception_unhandled:
9998 return exception_info->unhandled_exception_name_addr ();
9999 break;
10000
10001 case ex_catch_assert:
10002 return 0; /* Exception name is not relevant in this case. */
10003 break;
10004
10005 default:
10006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10007 break;
10008 }
10009
10010 return 0; /* Should never be reached. */
10011 }
10012
10013 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10014 any error that ada_exception_name_addr_1 might cause to be thrown.
10015 When an error is intercepted, a warning with the error message is printed,
10016 and zero is returned. */
10017
10018 static CORE_ADDR
10019 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10020 struct breakpoint *b)
10021 {
10022 struct gdb_exception e;
10023 CORE_ADDR result = 0;
10024
10025 TRY_CATCH (e, RETURN_MASK_ERROR)
10026 {
10027 result = ada_exception_name_addr_1 (ex, b);
10028 }
10029
10030 if (e.reason < 0)
10031 {
10032 warning (_("failed to get exception name: %s"), e.message);
10033 return 0;
10034 }
10035
10036 return result;
10037 }
10038
10039 /* Implement the PRINT_IT method in the breakpoint_ops structure
10040 for all exception catchpoint kinds. */
10041
10042 static enum print_stop_action
10043 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10044 {
10045 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10046 char exception_name[256];
10047
10048 if (addr != 0)
10049 {
10050 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10051 exception_name [sizeof (exception_name) - 1] = '\0';
10052 }
10053
10054 ada_find_printable_frame (get_current_frame ());
10055
10056 annotate_catchpoint (b->number);
10057 switch (ex)
10058 {
10059 case ex_catch_exception:
10060 if (addr != 0)
10061 printf_filtered (_("\nCatchpoint %d, %s at "),
10062 b->number, exception_name);
10063 else
10064 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10065 break;
10066 case ex_catch_exception_unhandled:
10067 if (addr != 0)
10068 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10069 b->number, exception_name);
10070 else
10071 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10072 b->number);
10073 break;
10074 case ex_catch_assert:
10075 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10076 b->number);
10077 break;
10078 }
10079
10080 return PRINT_SRC_AND_LOC;
10081 }
10082
10083 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10084 for all exception catchpoint kinds. */
10085
10086 static void
10087 print_one_exception (enum exception_catchpoint_kind ex,
10088 struct breakpoint *b, CORE_ADDR *last_addr)
10089 {
10090 struct value_print_options opts;
10091
10092 get_user_print_options (&opts);
10093 if (opts.addressprint)
10094 {
10095 annotate_field (4);
10096 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10097 }
10098
10099 annotate_field (5);
10100 *last_addr = b->loc->address;
10101 switch (ex)
10102 {
10103 case ex_catch_exception:
10104 if (b->exp_string != NULL)
10105 {
10106 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10107
10108 ui_out_field_string (uiout, "what", msg);
10109 xfree (msg);
10110 }
10111 else
10112 ui_out_field_string (uiout, "what", "all Ada exceptions");
10113
10114 break;
10115
10116 case ex_catch_exception_unhandled:
10117 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10118 break;
10119
10120 case ex_catch_assert:
10121 ui_out_field_string (uiout, "what", "failed Ada assertions");
10122 break;
10123
10124 default:
10125 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10126 break;
10127 }
10128 }
10129
10130 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10131 for all exception catchpoint kinds. */
10132
10133 static void
10134 print_mention_exception (enum exception_catchpoint_kind ex,
10135 struct breakpoint *b)
10136 {
10137 switch (ex)
10138 {
10139 case ex_catch_exception:
10140 if (b->exp_string != NULL)
10141 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10142 b->number, b->exp_string);
10143 else
10144 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10145
10146 break;
10147
10148 case ex_catch_exception_unhandled:
10149 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10150 b->number);
10151 break;
10152
10153 case ex_catch_assert:
10154 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10155 break;
10156
10157 default:
10158 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10159 break;
10160 }
10161 }
10162
10163 /* Virtual table for "catch exception" breakpoints. */
10164
10165 static enum print_stop_action
10166 print_it_catch_exception (struct breakpoint *b)
10167 {
10168 return print_it_exception (ex_catch_exception, b);
10169 }
10170
10171 static void
10172 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10173 {
10174 print_one_exception (ex_catch_exception, b, last_addr);
10175 }
10176
10177 static void
10178 print_mention_catch_exception (struct breakpoint *b)
10179 {
10180 print_mention_exception (ex_catch_exception, b);
10181 }
10182
10183 static struct breakpoint_ops catch_exception_breakpoint_ops =
10184 {
10185 NULL, /* insert */
10186 NULL, /* remove */
10187 NULL, /* breakpoint_hit */
10188 print_it_catch_exception,
10189 print_one_catch_exception,
10190 print_mention_catch_exception
10191 };
10192
10193 /* Virtual table for "catch exception unhandled" breakpoints. */
10194
10195 static enum print_stop_action
10196 print_it_catch_exception_unhandled (struct breakpoint *b)
10197 {
10198 return print_it_exception (ex_catch_exception_unhandled, b);
10199 }
10200
10201 static void
10202 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10203 {
10204 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10205 }
10206
10207 static void
10208 print_mention_catch_exception_unhandled (struct breakpoint *b)
10209 {
10210 print_mention_exception (ex_catch_exception_unhandled, b);
10211 }
10212
10213 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10214 NULL, /* insert */
10215 NULL, /* remove */
10216 NULL, /* breakpoint_hit */
10217 print_it_catch_exception_unhandled,
10218 print_one_catch_exception_unhandled,
10219 print_mention_catch_exception_unhandled
10220 };
10221
10222 /* Virtual table for "catch assert" breakpoints. */
10223
10224 static enum print_stop_action
10225 print_it_catch_assert (struct breakpoint *b)
10226 {
10227 return print_it_exception (ex_catch_assert, b);
10228 }
10229
10230 static void
10231 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10232 {
10233 print_one_exception (ex_catch_assert, b, last_addr);
10234 }
10235
10236 static void
10237 print_mention_catch_assert (struct breakpoint *b)
10238 {
10239 print_mention_exception (ex_catch_assert, b);
10240 }
10241
10242 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10243 NULL, /* insert */
10244 NULL, /* remove */
10245 NULL, /* breakpoint_hit */
10246 print_it_catch_assert,
10247 print_one_catch_assert,
10248 print_mention_catch_assert
10249 };
10250
10251 /* Return non-zero if B is an Ada exception catchpoint. */
10252
10253 int
10254 ada_exception_catchpoint_p (struct breakpoint *b)
10255 {
10256 return (b->ops == &catch_exception_breakpoint_ops
10257 || b->ops == &catch_exception_unhandled_breakpoint_ops
10258 || b->ops == &catch_assert_breakpoint_ops);
10259 }
10260
10261 /* Return a newly allocated copy of the first space-separated token
10262 in ARGSP, and then adjust ARGSP to point immediately after that
10263 token.
10264
10265 Return NULL if ARGPS does not contain any more tokens. */
10266
10267 static char *
10268 ada_get_next_arg (char **argsp)
10269 {
10270 char *args = *argsp;
10271 char *end;
10272 char *result;
10273
10274 /* Skip any leading white space. */
10275
10276 while (isspace (*args))
10277 args++;
10278
10279 if (args[0] == '\0')
10280 return NULL; /* No more arguments. */
10281
10282 /* Find the end of the current argument. */
10283
10284 end = args;
10285 while (*end != '\0' && !isspace (*end))
10286 end++;
10287
10288 /* Adjust ARGSP to point to the start of the next argument. */
10289
10290 *argsp = end;
10291
10292 /* Make a copy of the current argument and return it. */
10293
10294 result = xmalloc (end - args + 1);
10295 strncpy (result, args, end - args);
10296 result[end - args] = '\0';
10297
10298 return result;
10299 }
10300
10301 /* Split the arguments specified in a "catch exception" command.
10302 Set EX to the appropriate catchpoint type.
10303 Set EXP_STRING to the name of the specific exception if
10304 specified by the user. */
10305
10306 static void
10307 catch_ada_exception_command_split (char *args,
10308 enum exception_catchpoint_kind *ex,
10309 char **exp_string)
10310 {
10311 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10312 char *exception_name;
10313
10314 exception_name = ada_get_next_arg (&args);
10315 make_cleanup (xfree, exception_name);
10316
10317 /* Check that we do not have any more arguments. Anything else
10318 is unexpected. */
10319
10320 while (isspace (*args))
10321 args++;
10322
10323 if (args[0] != '\0')
10324 error (_("Junk at end of expression"));
10325
10326 discard_cleanups (old_chain);
10327
10328 if (exception_name == NULL)
10329 {
10330 /* Catch all exceptions. */
10331 *ex = ex_catch_exception;
10332 *exp_string = NULL;
10333 }
10334 else if (strcmp (exception_name, "unhandled") == 0)
10335 {
10336 /* Catch unhandled exceptions. */
10337 *ex = ex_catch_exception_unhandled;
10338 *exp_string = NULL;
10339 }
10340 else
10341 {
10342 /* Catch a specific exception. */
10343 *ex = ex_catch_exception;
10344 *exp_string = exception_name;
10345 }
10346 }
10347
10348 /* Return the name of the symbol on which we should break in order to
10349 implement a catchpoint of the EX kind. */
10350
10351 static const char *
10352 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10353 {
10354 gdb_assert (exception_info != NULL);
10355
10356 switch (ex)
10357 {
10358 case ex_catch_exception:
10359 return (exception_info->catch_exception_sym);
10360 break;
10361 case ex_catch_exception_unhandled:
10362 return (exception_info->catch_exception_unhandled_sym);
10363 break;
10364 case ex_catch_assert:
10365 return (exception_info->catch_assert_sym);
10366 break;
10367 default:
10368 internal_error (__FILE__, __LINE__,
10369 _("unexpected catchpoint kind (%d)"), ex);
10370 }
10371 }
10372
10373 /* Return the breakpoint ops "virtual table" used for catchpoints
10374 of the EX kind. */
10375
10376 static struct breakpoint_ops *
10377 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10378 {
10379 switch (ex)
10380 {
10381 case ex_catch_exception:
10382 return (&catch_exception_breakpoint_ops);
10383 break;
10384 case ex_catch_exception_unhandled:
10385 return (&catch_exception_unhandled_breakpoint_ops);
10386 break;
10387 case ex_catch_assert:
10388 return (&catch_assert_breakpoint_ops);
10389 break;
10390 default:
10391 internal_error (__FILE__, __LINE__,
10392 _("unexpected catchpoint kind (%d)"), ex);
10393 }
10394 }
10395
10396 /* Return the condition that will be used to match the current exception
10397 being raised with the exception that the user wants to catch. This
10398 assumes that this condition is used when the inferior just triggered
10399 an exception catchpoint.
10400
10401 The string returned is a newly allocated string that needs to be
10402 deallocated later. */
10403
10404 static char *
10405 ada_exception_catchpoint_cond_string (const char *exp_string)
10406 {
10407 int i;
10408
10409 /* The standard exceptions are a special case. They are defined in
10410 runtime units that have been compiled without debugging info; if
10411 EXP_STRING is the not-fully-qualified name of a standard
10412 exception (e.g. "constraint_error") then, during the evaluation
10413 of the condition expression, the symbol lookup on this name would
10414 *not* return this standard exception. The catchpoint condition
10415 may then be set only on user-defined exceptions which have the
10416 same not-fully-qualified name (e.g. my_package.constraint_error).
10417
10418 To avoid this unexcepted behavior, these standard exceptions are
10419 systematically prefixed by "standard". This means that "catch
10420 exception constraint_error" is rewritten into "catch exception
10421 standard.constraint_error".
10422
10423 If an exception named contraint_error is defined in another package of
10424 the inferior program, then the only way to specify this exception as a
10425 breakpoint condition is to use its fully-qualified named:
10426 e.g. my_package.constraint_error. */
10427
10428 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10429 {
10430 if (strcmp (standard_exc [i], exp_string) == 0)
10431 {
10432 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10433 exp_string);
10434 }
10435 }
10436 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10437 }
10438
10439 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10440
10441 static struct expression *
10442 ada_parse_catchpoint_condition (char *cond_string,
10443 struct symtab_and_line sal)
10444 {
10445 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10446 }
10447
10448 /* Return the symtab_and_line that should be used to insert an exception
10449 catchpoint of the TYPE kind.
10450
10451 EX_STRING should contain the name of a specific exception
10452 that the catchpoint should catch, or NULL otherwise.
10453
10454 The idea behind all the remaining parameters is that their names match
10455 the name of certain fields in the breakpoint structure that are used to
10456 handle exception catchpoints. This function returns the value to which
10457 these fields should be set, depending on the type of catchpoint we need
10458 to create.
10459
10460 If COND and COND_STRING are both non-NULL, any value they might
10461 hold will be free'ed, and then replaced by newly allocated ones.
10462 These parameters are left untouched otherwise. */
10463
10464 static struct symtab_and_line
10465 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10466 char **addr_string, char **cond_string,
10467 struct expression **cond, struct breakpoint_ops **ops)
10468 {
10469 const char *sym_name;
10470 struct symbol *sym;
10471 struct symtab_and_line sal;
10472
10473 /* First, find out which exception support info to use. */
10474 ada_exception_support_info_sniffer ();
10475
10476 /* Then lookup the function on which we will break in order to catch
10477 the Ada exceptions requested by the user. */
10478
10479 sym_name = ada_exception_sym_name (ex);
10480 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10481
10482 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10483 that should be compiled with debugging information. As a result, we
10484 expect to find that symbol in the symtabs. If we don't find it, then
10485 the target most likely does not support Ada exceptions, or we cannot
10486 insert exception breakpoints yet, because the GNAT runtime hasn't been
10487 loaded yet. */
10488
10489 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10490 in such a way that no debugging information is produced for the symbol
10491 we are looking for. In this case, we could search the minimal symbols
10492 as a fall-back mechanism. This would still be operating in degraded
10493 mode, however, as we would still be missing the debugging information
10494 that is needed in order to extract the name of the exception being
10495 raised (this name is printed in the catchpoint message, and is also
10496 used when trying to catch a specific exception). We do not handle
10497 this case for now. */
10498
10499 if (sym == NULL)
10500 error (_("Unable to break on '%s' in this configuration."), sym_name);
10501
10502 /* Make sure that the symbol we found corresponds to a function. */
10503 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10504 error (_("Symbol \"%s\" is not a function (class = %d)"),
10505 sym_name, SYMBOL_CLASS (sym));
10506
10507 sal = find_function_start_sal (sym, 1);
10508
10509 /* Set ADDR_STRING. */
10510
10511 *addr_string = xstrdup (sym_name);
10512
10513 /* Set the COND and COND_STRING (if not NULL). */
10514
10515 if (cond_string != NULL && cond != NULL)
10516 {
10517 if (*cond_string != NULL)
10518 {
10519 xfree (*cond_string);
10520 *cond_string = NULL;
10521 }
10522 if (*cond != NULL)
10523 {
10524 xfree (*cond);
10525 *cond = NULL;
10526 }
10527 if (exp_string != NULL)
10528 {
10529 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10530 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10531 }
10532 }
10533
10534 /* Set OPS. */
10535 *ops = ada_exception_breakpoint_ops (ex);
10536
10537 return sal;
10538 }
10539
10540 /* Parse the arguments (ARGS) of the "catch exception" command.
10541
10542 Set TYPE to the appropriate exception catchpoint type.
10543 If the user asked the catchpoint to catch only a specific
10544 exception, then save the exception name in ADDR_STRING.
10545
10546 See ada_exception_sal for a description of all the remaining
10547 function arguments of this function. */
10548
10549 struct symtab_and_line
10550 ada_decode_exception_location (char *args, char **addr_string,
10551 char **exp_string, char **cond_string,
10552 struct expression **cond,
10553 struct breakpoint_ops **ops)
10554 {
10555 enum exception_catchpoint_kind ex;
10556
10557 catch_ada_exception_command_split (args, &ex, exp_string);
10558 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10559 cond, ops);
10560 }
10561
10562 struct symtab_and_line
10563 ada_decode_assert_location (char *args, char **addr_string,
10564 struct breakpoint_ops **ops)
10565 {
10566 /* Check that no argument where provided at the end of the command. */
10567
10568 if (args != NULL)
10569 {
10570 while (isspace (*args))
10571 args++;
10572 if (*args != '\0')
10573 error (_("Junk at end of arguments."));
10574 }
10575
10576 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10577 ops);
10578 }
10579
10580 /* Operators */
10581 /* Information about operators given special treatment in functions
10582 below. */
10583 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10584
10585 #define ADA_OPERATORS \
10586 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10587 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10588 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10589 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10590 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10591 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10592 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10593 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10594 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10595 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10596 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10597 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10598 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10599 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10600 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10601 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10602 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10603 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10604 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10605
10606 static void
10607 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10608 {
10609 switch (exp->elts[pc - 1].opcode)
10610 {
10611 default:
10612 operator_length_standard (exp, pc, oplenp, argsp);
10613 break;
10614
10615 #define OP_DEFN(op, len, args, binop) \
10616 case op: *oplenp = len; *argsp = args; break;
10617 ADA_OPERATORS;
10618 #undef OP_DEFN
10619
10620 case OP_AGGREGATE:
10621 *oplenp = 3;
10622 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10623 break;
10624
10625 case OP_CHOICES:
10626 *oplenp = 3;
10627 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10628 break;
10629 }
10630 }
10631
10632 static char *
10633 ada_op_name (enum exp_opcode opcode)
10634 {
10635 switch (opcode)
10636 {
10637 default:
10638 return op_name_standard (opcode);
10639
10640 #define OP_DEFN(op, len, args, binop) case op: return #op;
10641 ADA_OPERATORS;
10642 #undef OP_DEFN
10643
10644 case OP_AGGREGATE:
10645 return "OP_AGGREGATE";
10646 case OP_CHOICES:
10647 return "OP_CHOICES";
10648 case OP_NAME:
10649 return "OP_NAME";
10650 }
10651 }
10652
10653 /* As for operator_length, but assumes PC is pointing at the first
10654 element of the operator, and gives meaningful results only for the
10655 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10656
10657 static void
10658 ada_forward_operator_length (struct expression *exp, int pc,
10659 int *oplenp, int *argsp)
10660 {
10661 switch (exp->elts[pc].opcode)
10662 {
10663 default:
10664 *oplenp = *argsp = 0;
10665 break;
10666
10667 #define OP_DEFN(op, len, args, binop) \
10668 case op: *oplenp = len; *argsp = args; break;
10669 ADA_OPERATORS;
10670 #undef OP_DEFN
10671
10672 case OP_AGGREGATE:
10673 *oplenp = 3;
10674 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10675 break;
10676
10677 case OP_CHOICES:
10678 *oplenp = 3;
10679 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10680 break;
10681
10682 case OP_STRING:
10683 case OP_NAME:
10684 {
10685 int len = longest_to_int (exp->elts[pc + 1].longconst);
10686 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10687 *argsp = 0;
10688 break;
10689 }
10690 }
10691 }
10692
10693 static int
10694 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10695 {
10696 enum exp_opcode op = exp->elts[elt].opcode;
10697 int oplen, nargs;
10698 int pc = elt;
10699 int i;
10700
10701 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10702
10703 switch (op)
10704 {
10705 /* Ada attributes ('Foo). */
10706 case OP_ATR_FIRST:
10707 case OP_ATR_LAST:
10708 case OP_ATR_LENGTH:
10709 case OP_ATR_IMAGE:
10710 case OP_ATR_MAX:
10711 case OP_ATR_MIN:
10712 case OP_ATR_MODULUS:
10713 case OP_ATR_POS:
10714 case OP_ATR_SIZE:
10715 case OP_ATR_TAG:
10716 case OP_ATR_VAL:
10717 break;
10718
10719 case UNOP_IN_RANGE:
10720 case UNOP_QUAL:
10721 /* XXX: gdb_sprint_host_address, type_sprint */
10722 fprintf_filtered (stream, _("Type @"));
10723 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10724 fprintf_filtered (stream, " (");
10725 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10726 fprintf_filtered (stream, ")");
10727 break;
10728 case BINOP_IN_BOUNDS:
10729 fprintf_filtered (stream, " (%d)",
10730 longest_to_int (exp->elts[pc + 2].longconst));
10731 break;
10732 case TERNOP_IN_RANGE:
10733 break;
10734
10735 case OP_AGGREGATE:
10736 case OP_OTHERS:
10737 case OP_DISCRETE_RANGE:
10738 case OP_POSITIONAL:
10739 case OP_CHOICES:
10740 break;
10741
10742 case OP_NAME:
10743 case OP_STRING:
10744 {
10745 char *name = &exp->elts[elt + 2].string;
10746 int len = longest_to_int (exp->elts[elt + 1].longconst);
10747 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10748 break;
10749 }
10750
10751 default:
10752 return dump_subexp_body_standard (exp, stream, elt);
10753 }
10754
10755 elt += oplen;
10756 for (i = 0; i < nargs; i += 1)
10757 elt = dump_subexp (exp, stream, elt);
10758
10759 return elt;
10760 }
10761
10762 /* The Ada extension of print_subexp (q.v.). */
10763
10764 static void
10765 ada_print_subexp (struct expression *exp, int *pos,
10766 struct ui_file *stream, enum precedence prec)
10767 {
10768 int oplen, nargs, i;
10769 int pc = *pos;
10770 enum exp_opcode op = exp->elts[pc].opcode;
10771
10772 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10773
10774 *pos += oplen;
10775 switch (op)
10776 {
10777 default:
10778 *pos -= oplen;
10779 print_subexp_standard (exp, pos, stream, prec);
10780 return;
10781
10782 case OP_VAR_VALUE:
10783 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10784 return;
10785
10786 case BINOP_IN_BOUNDS:
10787 /* XXX: sprint_subexp */
10788 print_subexp (exp, pos, stream, PREC_SUFFIX);
10789 fputs_filtered (" in ", stream);
10790 print_subexp (exp, pos, stream, PREC_SUFFIX);
10791 fputs_filtered ("'range", stream);
10792 if (exp->elts[pc + 1].longconst > 1)
10793 fprintf_filtered (stream, "(%ld)",
10794 (long) exp->elts[pc + 1].longconst);
10795 return;
10796
10797 case TERNOP_IN_RANGE:
10798 if (prec >= PREC_EQUAL)
10799 fputs_filtered ("(", stream);
10800 /* XXX: sprint_subexp */
10801 print_subexp (exp, pos, stream, PREC_SUFFIX);
10802 fputs_filtered (" in ", stream);
10803 print_subexp (exp, pos, stream, PREC_EQUAL);
10804 fputs_filtered (" .. ", stream);
10805 print_subexp (exp, pos, stream, PREC_EQUAL);
10806 if (prec >= PREC_EQUAL)
10807 fputs_filtered (")", stream);
10808 return;
10809
10810 case OP_ATR_FIRST:
10811 case OP_ATR_LAST:
10812 case OP_ATR_LENGTH:
10813 case OP_ATR_IMAGE:
10814 case OP_ATR_MAX:
10815 case OP_ATR_MIN:
10816 case OP_ATR_MODULUS:
10817 case OP_ATR_POS:
10818 case OP_ATR_SIZE:
10819 case OP_ATR_TAG:
10820 case OP_ATR_VAL:
10821 if (exp->elts[*pos].opcode == OP_TYPE)
10822 {
10823 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10824 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10825 *pos += 3;
10826 }
10827 else
10828 print_subexp (exp, pos, stream, PREC_SUFFIX);
10829 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10830 if (nargs > 1)
10831 {
10832 int tem;
10833 for (tem = 1; tem < nargs; tem += 1)
10834 {
10835 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10836 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10837 }
10838 fputs_filtered (")", stream);
10839 }
10840 return;
10841
10842 case UNOP_QUAL:
10843 type_print (exp->elts[pc + 1].type, "", stream, 0);
10844 fputs_filtered ("'(", stream);
10845 print_subexp (exp, pos, stream, PREC_PREFIX);
10846 fputs_filtered (")", stream);
10847 return;
10848
10849 case UNOP_IN_RANGE:
10850 /* XXX: sprint_subexp */
10851 print_subexp (exp, pos, stream, PREC_SUFFIX);
10852 fputs_filtered (" in ", stream);
10853 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10854 return;
10855
10856 case OP_DISCRETE_RANGE:
10857 print_subexp (exp, pos, stream, PREC_SUFFIX);
10858 fputs_filtered ("..", stream);
10859 print_subexp (exp, pos, stream, PREC_SUFFIX);
10860 return;
10861
10862 case OP_OTHERS:
10863 fputs_filtered ("others => ", stream);
10864 print_subexp (exp, pos, stream, PREC_SUFFIX);
10865 return;
10866
10867 case OP_CHOICES:
10868 for (i = 0; i < nargs-1; i += 1)
10869 {
10870 if (i > 0)
10871 fputs_filtered ("|", stream);
10872 print_subexp (exp, pos, stream, PREC_SUFFIX);
10873 }
10874 fputs_filtered (" => ", stream);
10875 print_subexp (exp, pos, stream, PREC_SUFFIX);
10876 return;
10877
10878 case OP_POSITIONAL:
10879 print_subexp (exp, pos, stream, PREC_SUFFIX);
10880 return;
10881
10882 case OP_AGGREGATE:
10883 fputs_filtered ("(", stream);
10884 for (i = 0; i < nargs; i += 1)
10885 {
10886 if (i > 0)
10887 fputs_filtered (", ", stream);
10888 print_subexp (exp, pos, stream, PREC_SUFFIX);
10889 }
10890 fputs_filtered (")", stream);
10891 return;
10892 }
10893 }
10894
10895 /* Table mapping opcodes into strings for printing operators
10896 and precedences of the operators. */
10897
10898 static const struct op_print ada_op_print_tab[] = {
10899 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10900 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10901 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10902 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10903 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10904 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10905 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10906 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10907 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10908 {">=", BINOP_GEQ, PREC_ORDER, 0},
10909 {">", BINOP_GTR, PREC_ORDER, 0},
10910 {"<", BINOP_LESS, PREC_ORDER, 0},
10911 {">>", BINOP_RSH, PREC_SHIFT, 0},
10912 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10913 {"+", BINOP_ADD, PREC_ADD, 0},
10914 {"-", BINOP_SUB, PREC_ADD, 0},
10915 {"&", BINOP_CONCAT, PREC_ADD, 0},
10916 {"*", BINOP_MUL, PREC_MUL, 0},
10917 {"/", BINOP_DIV, PREC_MUL, 0},
10918 {"rem", BINOP_REM, PREC_MUL, 0},
10919 {"mod", BINOP_MOD, PREC_MUL, 0},
10920 {"**", BINOP_EXP, PREC_REPEAT, 0},
10921 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10922 {"-", UNOP_NEG, PREC_PREFIX, 0},
10923 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10924 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10925 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10926 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10927 {".all", UNOP_IND, PREC_SUFFIX, 1},
10928 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10929 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10930 {NULL, 0, 0, 0}
10931 };
10932 \f
10933 enum ada_primitive_types {
10934 ada_primitive_type_int,
10935 ada_primitive_type_long,
10936 ada_primitive_type_short,
10937 ada_primitive_type_char,
10938 ada_primitive_type_float,
10939 ada_primitive_type_double,
10940 ada_primitive_type_void,
10941 ada_primitive_type_long_long,
10942 ada_primitive_type_long_double,
10943 ada_primitive_type_natural,
10944 ada_primitive_type_positive,
10945 ada_primitive_type_system_address,
10946 nr_ada_primitive_types
10947 };
10948
10949 static void
10950 ada_language_arch_info (struct gdbarch *gdbarch,
10951 struct language_arch_info *lai)
10952 {
10953 const struct builtin_type *builtin = builtin_type (gdbarch);
10954 lai->primitive_type_vector
10955 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10956 struct type *);
10957 lai->primitive_type_vector [ada_primitive_type_int] =
10958 init_type (TYPE_CODE_INT,
10959 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10960 0, "integer", (struct objfile *) NULL);
10961 lai->primitive_type_vector [ada_primitive_type_long] =
10962 init_type (TYPE_CODE_INT,
10963 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10964 0, "long_integer", (struct objfile *) NULL);
10965 lai->primitive_type_vector [ada_primitive_type_short] =
10966 init_type (TYPE_CODE_INT,
10967 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10968 0, "short_integer", (struct objfile *) NULL);
10969 lai->string_char_type =
10970 lai->primitive_type_vector [ada_primitive_type_char] =
10971 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10972 0, "character", (struct objfile *) NULL);
10973 lai->primitive_type_vector [ada_primitive_type_float] =
10974 init_type (TYPE_CODE_FLT,
10975 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10976 0, "float", (struct objfile *) NULL);
10977 lai->primitive_type_vector [ada_primitive_type_double] =
10978 init_type (TYPE_CODE_FLT,
10979 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10980 0, "long_float", (struct objfile *) NULL);
10981 lai->primitive_type_vector [ada_primitive_type_long_long] =
10982 init_type (TYPE_CODE_INT,
10983 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10984 0, "long_long_integer", (struct objfile *) NULL);
10985 lai->primitive_type_vector [ada_primitive_type_long_double] =
10986 init_type (TYPE_CODE_FLT,
10987 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10988 0, "long_long_float", (struct objfile *) NULL);
10989 lai->primitive_type_vector [ada_primitive_type_natural] =
10990 init_type (TYPE_CODE_INT,
10991 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10992 0, "natural", (struct objfile *) NULL);
10993 lai->primitive_type_vector [ada_primitive_type_positive] =
10994 init_type (TYPE_CODE_INT,
10995 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10996 0, "positive", (struct objfile *) NULL);
10997 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10998
10999 lai->primitive_type_vector [ada_primitive_type_system_address] =
11000 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11001 (struct objfile *) NULL));
11002 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11003 = "system__address";
11004
11005 lai->bool_type_symbol = "boolean";
11006 lai->bool_type_default = builtin->builtin_bool;
11007 }
11008 \f
11009 /* Language vector */
11010
11011 /* Not really used, but needed in the ada_language_defn. */
11012
11013 static void
11014 emit_char (int c, struct ui_file *stream, int quoter)
11015 {
11016 ada_emit_char (c, stream, quoter, 1);
11017 }
11018
11019 static int
11020 parse (void)
11021 {
11022 warnings_issued = 0;
11023 return ada_parse ();
11024 }
11025
11026 static const struct exp_descriptor ada_exp_descriptor = {
11027 ada_print_subexp,
11028 ada_operator_length,
11029 ada_op_name,
11030 ada_dump_subexp_body,
11031 ada_evaluate_subexp
11032 };
11033
11034 const struct language_defn ada_language_defn = {
11035 "ada", /* Language name */
11036 language_ada,
11037 range_check_off,
11038 type_check_off,
11039 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11040 that's not quite what this means. */
11041 array_row_major,
11042 macro_expansion_no,
11043 &ada_exp_descriptor,
11044 parse,
11045 ada_error,
11046 resolve,
11047 ada_printchar, /* Print a character constant */
11048 ada_printstr, /* Function to print string constant */
11049 emit_char, /* Function to print single char (not used) */
11050 ada_print_type, /* Print a type using appropriate syntax */
11051 default_print_typedef, /* Print a typedef using appropriate syntax */
11052 ada_val_print, /* Print a value using appropriate syntax */
11053 ada_value_print, /* Print a top-level value */
11054 NULL, /* Language specific skip_trampoline */
11055 NULL, /* name_of_this */
11056 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11057 basic_lookup_transparent_type, /* lookup_transparent_type */
11058 ada_la_decode, /* Language specific symbol demangler */
11059 NULL, /* Language specific class_name_from_physname */
11060 ada_op_print_tab, /* expression operators for printing */
11061 0, /* c-style arrays */
11062 1, /* String lower bound */
11063 ada_get_gdb_completer_word_break_characters,
11064 ada_make_symbol_completion_list,
11065 ada_language_arch_info,
11066 ada_print_array_index,
11067 default_pass_by_reference,
11068 c_get_string,
11069 LANG_MAGIC
11070 };
11071
11072 /* Provide a prototype to silence -Wmissing-prototypes. */
11073 extern initialize_file_ftype _initialize_ada_language;
11074
11075 void
11076 _initialize_ada_language (void)
11077 {
11078 add_language (&ada_language_defn);
11079
11080 varsize_limit = 65536;
11081
11082 obstack_init (&symbol_list_obstack);
11083
11084 decoded_names_store = htab_create_alloc
11085 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11086 NULL, xcalloc, xfree);
11087
11088 observer_attach_executable_changed (ada_executable_changed_observer);
11089 }
This page took 0.263237 seconds and 5 git commands to generate.