Introduce gdb::function_view
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 std::unique_ptr<gdb_byte[]> staging;
2572 int staging_len = 0;
2573
2574 type = ada_check_typedef (type);
2575
2576 if (obj == NULL)
2577 src = valaddr + offset;
2578 else
2579 src = value_contents (obj) + offset;
2580
2581 if (is_dynamic_type (type))
2582 {
2583 /* The length of TYPE might by dynamic, so we need to resolve
2584 TYPE in order to know its actual size, which we then use
2585 to create the contents buffer of the value we return.
2586 The difficulty is that the data containing our object is
2587 packed, and therefore maybe not at a byte boundary. So, what
2588 we do, is unpack the data into a byte-aligned buffer, and then
2589 use that buffer as our object's value for resolving the type. */
2590 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2591 staging.reset (new gdb_byte[staging_len]);
2592
2593 ada_unpack_from_contents (src, bit_offset, bit_size,
2594 staging.get (), staging_len,
2595 is_big_endian, has_negatives (type),
2596 is_scalar);
2597 type = resolve_dynamic_type (type, staging.get (), 0);
2598 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2599 {
2600 /* This happens when the length of the object is dynamic,
2601 and is actually smaller than the space reserved for it.
2602 For instance, in an array of variant records, the bit_size
2603 we're given is the array stride, which is constant and
2604 normally equal to the maximum size of its element.
2605 But, in reality, each element only actually spans a portion
2606 of that stride. */
2607 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 }
2609 }
2610
2611 if (obj == NULL)
2612 {
2613 v = allocate_value (type);
2614 src = valaddr + offset;
2615 }
2616 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2617 {
2618 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2619 gdb_byte *buf;
2620
2621 v = value_at (type, value_address (obj) + offset);
2622 buf = (gdb_byte *) alloca (src_len);
2623 read_memory (value_address (v), buf, src_len);
2624 src = buf;
2625 }
2626 else
2627 {
2628 v = allocate_value (type);
2629 src = value_contents (obj) + offset;
2630 }
2631
2632 if (obj != NULL)
2633 {
2634 long new_offset = offset;
2635
2636 set_value_component_location (v, obj);
2637 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2638 set_value_bitsize (v, bit_size);
2639 if (value_bitpos (v) >= HOST_CHAR_BIT)
2640 {
2641 ++new_offset;
2642 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2643 }
2644 set_value_offset (v, new_offset);
2645
2646 /* Also set the parent value. This is needed when trying to
2647 assign a new value (in inferior memory). */
2648 set_value_parent (v, obj);
2649 }
2650 else
2651 set_value_bitsize (v, bit_size);
2652 unpacked = value_contents_writeable (v);
2653
2654 if (bit_size == 0)
2655 {
2656 memset (unpacked, 0, TYPE_LENGTH (type));
2657 return v;
2658 }
2659
2660 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2661 {
2662 /* Small short-cut: If we've unpacked the data into a buffer
2663 of the same size as TYPE's length, then we can reuse that,
2664 instead of doing the unpacking again. */
2665 memcpy (unpacked, staging.get (), staging_len);
2666 }
2667 else
2668 ada_unpack_from_contents (src, bit_offset, bit_size,
2669 unpacked, TYPE_LENGTH (type),
2670 is_big_endian, has_negatives (type), is_scalar);
2671
2672 return v;
2673 }
2674
2675 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2676 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2677 not overlap. */
2678 static void
2679 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2680 int src_offset, int n, int bits_big_endian_p)
2681 {
2682 unsigned int accum, mask;
2683 int accum_bits, chunk_size;
2684
2685 target += targ_offset / HOST_CHAR_BIT;
2686 targ_offset %= HOST_CHAR_BIT;
2687 source += src_offset / HOST_CHAR_BIT;
2688 src_offset %= HOST_CHAR_BIT;
2689 if (bits_big_endian_p)
2690 {
2691 accum = (unsigned char) *source;
2692 source += 1;
2693 accum_bits = HOST_CHAR_BIT - src_offset;
2694
2695 while (n > 0)
2696 {
2697 int unused_right;
2698
2699 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2700 accum_bits += HOST_CHAR_BIT;
2701 source += 1;
2702 chunk_size = HOST_CHAR_BIT - targ_offset;
2703 if (chunk_size > n)
2704 chunk_size = n;
2705 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2706 mask = ((1 << chunk_size) - 1) << unused_right;
2707 *target =
2708 (*target & ~mask)
2709 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2710 n -= chunk_size;
2711 accum_bits -= chunk_size;
2712 target += 1;
2713 targ_offset = 0;
2714 }
2715 }
2716 else
2717 {
2718 accum = (unsigned char) *source >> src_offset;
2719 source += 1;
2720 accum_bits = HOST_CHAR_BIT - src_offset;
2721
2722 while (n > 0)
2723 {
2724 accum = accum + ((unsigned char) *source << accum_bits);
2725 accum_bits += HOST_CHAR_BIT;
2726 source += 1;
2727 chunk_size = HOST_CHAR_BIT - targ_offset;
2728 if (chunk_size > n)
2729 chunk_size = n;
2730 mask = ((1 << chunk_size) - 1) << targ_offset;
2731 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2732 n -= chunk_size;
2733 accum_bits -= chunk_size;
2734 accum >>= chunk_size;
2735 target += 1;
2736 targ_offset = 0;
2737 }
2738 }
2739 }
2740
2741 /* Store the contents of FROMVAL into the location of TOVAL.
2742 Return a new value with the location of TOVAL and contents of
2743 FROMVAL. Handles assignment into packed fields that have
2744 floating-point or non-scalar types. */
2745
2746 static struct value *
2747 ada_value_assign (struct value *toval, struct value *fromval)
2748 {
2749 struct type *type = value_type (toval);
2750 int bits = value_bitsize (toval);
2751
2752 toval = ada_coerce_ref (toval);
2753 fromval = ada_coerce_ref (fromval);
2754
2755 if (ada_is_direct_array_type (value_type (toval)))
2756 toval = ada_coerce_to_simple_array (toval);
2757 if (ada_is_direct_array_type (value_type (fromval)))
2758 fromval = ada_coerce_to_simple_array (fromval);
2759
2760 if (!deprecated_value_modifiable (toval))
2761 error (_("Left operand of assignment is not a modifiable lvalue."));
2762
2763 if (VALUE_LVAL (toval) == lval_memory
2764 && bits > 0
2765 && (TYPE_CODE (type) == TYPE_CODE_FLT
2766 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2767 {
2768 int len = (value_bitpos (toval)
2769 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2770 int from_size;
2771 gdb_byte *buffer = (gdb_byte *) alloca (len);
2772 struct value *val;
2773 CORE_ADDR to_addr = value_address (toval);
2774
2775 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2776 fromval = value_cast (type, fromval);
2777
2778 read_memory (to_addr, buffer, len);
2779 from_size = value_bitsize (fromval);
2780 if (from_size == 0)
2781 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2782 if (gdbarch_bits_big_endian (get_type_arch (type)))
2783 move_bits (buffer, value_bitpos (toval),
2784 value_contents (fromval), from_size - bits, bits, 1);
2785 else
2786 move_bits (buffer, value_bitpos (toval),
2787 value_contents (fromval), 0, bits, 0);
2788 write_memory_with_notification (to_addr, buffer, len);
2789
2790 val = value_copy (toval);
2791 memcpy (value_contents_raw (val), value_contents (fromval),
2792 TYPE_LENGTH (type));
2793 deprecated_set_value_type (val, type);
2794
2795 return val;
2796 }
2797
2798 return value_assign (toval, fromval);
2799 }
2800
2801
2802 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2803 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2804 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2805 COMPONENT, and not the inferior's memory. The current contents
2806 of COMPONENT are ignored.
2807
2808 Although not part of the initial design, this function also works
2809 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2810 had a null address, and COMPONENT had an address which is equal to
2811 its offset inside CONTAINER. */
2812
2813 static void
2814 value_assign_to_component (struct value *container, struct value *component,
2815 struct value *val)
2816 {
2817 LONGEST offset_in_container =
2818 (LONGEST) (value_address (component) - value_address (container));
2819 int bit_offset_in_container =
2820 value_bitpos (component) - value_bitpos (container);
2821 int bits;
2822
2823 val = value_cast (value_type (component), val);
2824
2825 if (value_bitsize (component) == 0)
2826 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2827 else
2828 bits = value_bitsize (component);
2829
2830 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2831 move_bits (value_contents_writeable (container) + offset_in_container,
2832 value_bitpos (container) + bit_offset_in_container,
2833 value_contents (val),
2834 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2835 bits, 1);
2836 else
2837 move_bits (value_contents_writeable (container) + offset_in_container,
2838 value_bitpos (container) + bit_offset_in_container,
2839 value_contents (val), 0, bits, 0);
2840 }
2841
2842 /* The value of the element of array ARR at the ARITY indices given in IND.
2843 ARR may be either a simple array, GNAT array descriptor, or pointer
2844 thereto. */
2845
2846 struct value *
2847 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2848 {
2849 int k;
2850 struct value *elt;
2851 struct type *elt_type;
2852
2853 elt = ada_coerce_to_simple_array (arr);
2854
2855 elt_type = ada_check_typedef (value_type (elt));
2856 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2857 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2858 return value_subscript_packed (elt, arity, ind);
2859
2860 for (k = 0; k < arity; k += 1)
2861 {
2862 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2863 error (_("too many subscripts (%d expected)"), k);
2864 elt = value_subscript (elt, pos_atr (ind[k]));
2865 }
2866 return elt;
2867 }
2868
2869 /* Assuming ARR is a pointer to a GDB array, the value of the element
2870 of *ARR at the ARITY indices given in IND.
2871 Does not read the entire array into memory.
2872
2873 Note: Unlike what one would expect, this function is used instead of
2874 ada_value_subscript for basically all non-packed array types. The reason
2875 for this is that a side effect of doing our own pointer arithmetics instead
2876 of relying on value_subscript is that there is no implicit typedef peeling.
2877 This is important for arrays of array accesses, where it allows us to
2878 preserve the fact that the array's element is an array access, where the
2879 access part os encoded in a typedef layer. */
2880
2881 static struct value *
2882 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2883 {
2884 int k;
2885 struct value *array_ind = ada_value_ind (arr);
2886 struct type *type
2887 = check_typedef (value_enclosing_type (array_ind));
2888
2889 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2890 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2891 return value_subscript_packed (array_ind, arity, ind);
2892
2893 for (k = 0; k < arity; k += 1)
2894 {
2895 LONGEST lwb, upb;
2896 struct value *lwb_value;
2897
2898 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2899 error (_("too many subscripts (%d expected)"), k);
2900 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2901 value_copy (arr));
2902 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2903 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2904 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2905 type = TYPE_TARGET_TYPE (type);
2906 }
2907
2908 return value_ind (arr);
2909 }
2910
2911 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2912 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2913 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2914 this array is LOW, as per Ada rules. */
2915 static struct value *
2916 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2917 int low, int high)
2918 {
2919 struct type *type0 = ada_check_typedef (type);
2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2921 struct type *index_type
2922 = create_static_range_type (NULL, base_index_type, low, high);
2923 struct type *slice_type =
2924 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2925 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2926 LONGEST base_low_pos, low_pos;
2927 CORE_ADDR base;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, base_low, &base_low_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 base_low_pos = base_low;
2935 }
2936
2937 base = value_as_address (array_ptr)
2938 + ((low_pos - base_low_pos)
2939 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2940 return value_at_lazy (slice_type, base);
2941 }
2942
2943
2944 static struct value *
2945 ada_value_slice (struct value *array, int low, int high)
2946 {
2947 struct type *type = ada_check_typedef (value_type (array));
2948 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2949 struct type *index_type
2950 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2951 struct type *slice_type =
2952 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2953 LONGEST low_pos, high_pos;
2954
2955 if (!discrete_position (base_index_type, low, &low_pos)
2956 || !discrete_position (base_index_type, high, &high_pos))
2957 {
2958 warning (_("unable to get positions in slice, use bounds instead"));
2959 low_pos = low;
2960 high_pos = high;
2961 }
2962
2963 return value_cast (slice_type,
2964 value_slice (array, low, high_pos - low_pos + 1));
2965 }
2966
2967 /* If type is a record type in the form of a standard GNAT array
2968 descriptor, returns the number of dimensions for type. If arr is a
2969 simple array, returns the number of "array of"s that prefix its
2970 type designation. Otherwise, returns 0. */
2971
2972 int
2973 ada_array_arity (struct type *type)
2974 {
2975 int arity;
2976
2977 if (type == NULL)
2978 return 0;
2979
2980 type = desc_base_type (type);
2981
2982 arity = 0;
2983 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2984 return desc_arity (desc_bounds_type (type));
2985 else
2986 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2987 {
2988 arity += 1;
2989 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2990 }
2991
2992 return arity;
2993 }
2994
2995 /* If TYPE is a record type in the form of a standard GNAT array
2996 descriptor or a simple array type, returns the element type for
2997 TYPE after indexing by NINDICES indices, or by all indices if
2998 NINDICES is -1. Otherwise, returns NULL. */
2999
3000 struct type *
3001 ada_array_element_type (struct type *type, int nindices)
3002 {
3003 type = desc_base_type (type);
3004
3005 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3006 {
3007 int k;
3008 struct type *p_array_type;
3009
3010 p_array_type = desc_data_target_type (type);
3011
3012 k = ada_array_arity (type);
3013 if (k == 0)
3014 return NULL;
3015
3016 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3017 if (nindices >= 0 && k > nindices)
3018 k = nindices;
3019 while (k > 0 && p_array_type != NULL)
3020 {
3021 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3022 k -= 1;
3023 }
3024 return p_array_type;
3025 }
3026 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 {
3028 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3029 {
3030 type = TYPE_TARGET_TYPE (type);
3031 nindices -= 1;
3032 }
3033 return type;
3034 }
3035
3036 return NULL;
3037 }
3038
3039 /* The type of nth index in arrays of given type (n numbering from 1).
3040 Does not examine memory. Throws an error if N is invalid or TYPE
3041 is not an array type. NAME is the name of the Ada attribute being
3042 evaluated ('range, 'first, 'last, or 'length); it is used in building
3043 the error message. */
3044
3045 static struct type *
3046 ada_index_type (struct type *type, int n, const char *name)
3047 {
3048 struct type *result_type;
3049
3050 type = desc_base_type (type);
3051
3052 if (n < 0 || n > ada_array_arity (type))
3053 error (_("invalid dimension number to '%s"), name);
3054
3055 if (ada_is_simple_array_type (type))
3056 {
3057 int i;
3058
3059 for (i = 1; i < n; i += 1)
3060 type = TYPE_TARGET_TYPE (type);
3061 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3062 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3063 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3064 perhaps stabsread.c would make more sense. */
3065 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3066 result_type = NULL;
3067 }
3068 else
3069 {
3070 result_type = desc_index_type (desc_bounds_type (type), n);
3071 if (result_type == NULL)
3072 error (_("attempt to take bound of something that is not an array"));
3073 }
3074
3075 return result_type;
3076 }
3077
3078 /* Given that arr is an array type, returns the lower bound of the
3079 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3080 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3081 array-descriptor type. It works for other arrays with bounds supplied
3082 by run-time quantities other than discriminants. */
3083
3084 static LONGEST
3085 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3086 {
3087 struct type *type, *index_type_desc, *index_type;
3088 int i;
3089
3090 gdb_assert (which == 0 || which == 1);
3091
3092 if (ada_is_constrained_packed_array_type (arr_type))
3093 arr_type = decode_constrained_packed_array_type (arr_type);
3094
3095 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3096 return (LONGEST) - which;
3097
3098 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3099 type = TYPE_TARGET_TYPE (arr_type);
3100 else
3101 type = arr_type;
3102
3103 if (TYPE_FIXED_INSTANCE (type))
3104 {
3105 /* The array has already been fixed, so we do not need to
3106 check the parallel ___XA type again. That encoding has
3107 already been applied, so ignore it now. */
3108 index_type_desc = NULL;
3109 }
3110 else
3111 {
3112 index_type_desc = ada_find_parallel_type (type, "___XA");
3113 ada_fixup_array_indexes_type (index_type_desc);
3114 }
3115
3116 if (index_type_desc != NULL)
3117 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3118 NULL);
3119 else
3120 {
3121 struct type *elt_type = check_typedef (type);
3122
3123 for (i = 1; i < n; i++)
3124 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3125
3126 index_type = TYPE_INDEX_TYPE (elt_type);
3127 }
3128
3129 return
3130 (LONGEST) (which == 0
3131 ? ada_discrete_type_low_bound (index_type)
3132 : ada_discrete_type_high_bound (index_type));
3133 }
3134
3135 /* Given that arr is an array value, returns the lower bound of the
3136 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3137 WHICH is 1. This routine will also work for arrays with bounds
3138 supplied by run-time quantities other than discriminants. */
3139
3140 static LONGEST
3141 ada_array_bound (struct value *arr, int n, int which)
3142 {
3143 struct type *arr_type;
3144
3145 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3146 arr = value_ind (arr);
3147 arr_type = value_enclosing_type (arr);
3148
3149 if (ada_is_constrained_packed_array_type (arr_type))
3150 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3151 else if (ada_is_simple_array_type (arr_type))
3152 return ada_array_bound_from_type (arr_type, n, which);
3153 else
3154 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3155 }
3156
3157 /* Given that arr is an array value, returns the length of the
3158 nth index. This routine will also work for arrays with bounds
3159 supplied by run-time quantities other than discriminants.
3160 Does not work for arrays indexed by enumeration types with representation
3161 clauses at the moment. */
3162
3163 static LONGEST
3164 ada_array_length (struct value *arr, int n)
3165 {
3166 struct type *arr_type, *index_type;
3167 int low, high;
3168
3169 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3170 arr = value_ind (arr);
3171 arr_type = value_enclosing_type (arr);
3172
3173 if (ada_is_constrained_packed_array_type (arr_type))
3174 return ada_array_length (decode_constrained_packed_array (arr), n);
3175
3176 if (ada_is_simple_array_type (arr_type))
3177 {
3178 low = ada_array_bound_from_type (arr_type, n, 0);
3179 high = ada_array_bound_from_type (arr_type, n, 1);
3180 }
3181 else
3182 {
3183 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3184 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3185 }
3186
3187 arr_type = check_typedef (arr_type);
3188 index_type = TYPE_INDEX_TYPE (arr_type);
3189 if (index_type != NULL)
3190 {
3191 struct type *base_type;
3192 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3193 base_type = TYPE_TARGET_TYPE (index_type);
3194 else
3195 base_type = index_type;
3196
3197 low = pos_atr (value_from_longest (base_type, low));
3198 high = pos_atr (value_from_longest (base_type, high));
3199 }
3200 return high - low + 1;
3201 }
3202
3203 /* An empty array whose type is that of ARR_TYPE (an array type),
3204 with bounds LOW to LOW-1. */
3205
3206 static struct value *
3207 empty_array (struct type *arr_type, int low)
3208 {
3209 struct type *arr_type0 = ada_check_typedef (arr_type);
3210 struct type *index_type
3211 = create_static_range_type
3212 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3213 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3214
3215 return allocate_value (create_array_type (NULL, elt_type, index_type));
3216 }
3217 \f
3218
3219 /* Name resolution */
3220
3221 /* The "decoded" name for the user-definable Ada operator corresponding
3222 to OP. */
3223
3224 static const char *
3225 ada_decoded_op_name (enum exp_opcode op)
3226 {
3227 int i;
3228
3229 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3230 {
3231 if (ada_opname_table[i].op == op)
3232 return ada_opname_table[i].decoded;
3233 }
3234 error (_("Could not find operator name for opcode"));
3235 }
3236
3237
3238 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3239 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3240 undefined namespace) and converts operators that are
3241 user-defined into appropriate function calls. If CONTEXT_TYPE is
3242 non-null, it provides a preferred result type [at the moment, only
3243 type void has any effect---causing procedures to be preferred over
3244 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3245 return type is preferred. May change (expand) *EXP. */
3246
3247 static void
3248 resolve (struct expression **expp, int void_context_p)
3249 {
3250 struct type *context_type = NULL;
3251 int pc = 0;
3252
3253 if (void_context_p)
3254 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3255
3256 resolve_subexp (expp, &pc, 1, context_type);
3257 }
3258
3259 /* Resolve the operator of the subexpression beginning at
3260 position *POS of *EXPP. "Resolving" consists of replacing
3261 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3262 with their resolutions, replacing built-in operators with
3263 function calls to user-defined operators, where appropriate, and,
3264 when DEPROCEDURE_P is non-zero, converting function-valued variables
3265 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3266 are as in ada_resolve, above. */
3267
3268 static struct value *
3269 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3270 struct type *context_type)
3271 {
3272 int pc = *pos;
3273 int i;
3274 struct expression *exp; /* Convenience: == *expp. */
3275 enum exp_opcode op = (*expp)->elts[pc].opcode;
3276 struct value **argvec; /* Vector of operand types (alloca'ed). */
3277 int nargs; /* Number of operands. */
3278 int oplen;
3279
3280 argvec = NULL;
3281 nargs = 0;
3282 exp = *expp;
3283
3284 /* Pass one: resolve operands, saving their types and updating *pos,
3285 if needed. */
3286 switch (op)
3287 {
3288 case OP_FUNCALL:
3289 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3290 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3291 *pos += 7;
3292 else
3293 {
3294 *pos += 3;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 }
3297 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3298 break;
3299
3300 case UNOP_ADDR:
3301 *pos += 1;
3302 resolve_subexp (expp, pos, 0, NULL);
3303 break;
3304
3305 case UNOP_QUAL:
3306 *pos += 3;
3307 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3308 break;
3309
3310 case OP_ATR_MODULUS:
3311 case OP_ATR_SIZE:
3312 case OP_ATR_TAG:
3313 case OP_ATR_FIRST:
3314 case OP_ATR_LAST:
3315 case OP_ATR_LENGTH:
3316 case OP_ATR_POS:
3317 case OP_ATR_VAL:
3318 case OP_ATR_MIN:
3319 case OP_ATR_MAX:
3320 case TERNOP_IN_RANGE:
3321 case BINOP_IN_BOUNDS:
3322 case UNOP_IN_RANGE:
3323 case OP_AGGREGATE:
3324 case OP_OTHERS:
3325 case OP_CHOICES:
3326 case OP_POSITIONAL:
3327 case OP_DISCRETE_RANGE:
3328 case OP_NAME:
3329 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3330 *pos += oplen;
3331 break;
3332
3333 case BINOP_ASSIGN:
3334 {
3335 struct value *arg1;
3336
3337 *pos += 1;
3338 arg1 = resolve_subexp (expp, pos, 0, NULL);
3339 if (arg1 == NULL)
3340 resolve_subexp (expp, pos, 1, NULL);
3341 else
3342 resolve_subexp (expp, pos, 1, value_type (arg1));
3343 break;
3344 }
3345
3346 case UNOP_CAST:
3347 *pos += 3;
3348 nargs = 1;
3349 break;
3350
3351 case BINOP_ADD:
3352 case BINOP_SUB:
3353 case BINOP_MUL:
3354 case BINOP_DIV:
3355 case BINOP_REM:
3356 case BINOP_MOD:
3357 case BINOP_EXP:
3358 case BINOP_CONCAT:
3359 case BINOP_LOGICAL_AND:
3360 case BINOP_LOGICAL_OR:
3361 case BINOP_BITWISE_AND:
3362 case BINOP_BITWISE_IOR:
3363 case BINOP_BITWISE_XOR:
3364
3365 case BINOP_EQUAL:
3366 case BINOP_NOTEQUAL:
3367 case BINOP_LESS:
3368 case BINOP_GTR:
3369 case BINOP_LEQ:
3370 case BINOP_GEQ:
3371
3372 case BINOP_REPEAT:
3373 case BINOP_SUBSCRIPT:
3374 case BINOP_COMMA:
3375 *pos += 1;
3376 nargs = 2;
3377 break;
3378
3379 case UNOP_NEG:
3380 case UNOP_PLUS:
3381 case UNOP_LOGICAL_NOT:
3382 case UNOP_ABS:
3383 case UNOP_IND:
3384 *pos += 1;
3385 nargs = 1;
3386 break;
3387
3388 case OP_LONG:
3389 case OP_DOUBLE:
3390 case OP_VAR_VALUE:
3391 *pos += 4;
3392 break;
3393
3394 case OP_TYPE:
3395 case OP_BOOL:
3396 case OP_LAST:
3397 case OP_INTERNALVAR:
3398 *pos += 3;
3399 break;
3400
3401 case UNOP_MEMVAL:
3402 *pos += 3;
3403 nargs = 1;
3404 break;
3405
3406 case OP_REGISTER:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 break;
3409
3410 case STRUCTOP_STRUCT:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 nargs = 1;
3413 break;
3414
3415 case TERNOP_SLICE:
3416 *pos += 1;
3417 nargs = 3;
3418 break;
3419
3420 case OP_STRING:
3421 break;
3422
3423 default:
3424 error (_("Unexpected operator during name resolution"));
3425 }
3426
3427 argvec = XALLOCAVEC (struct value *, nargs + 1);
3428 for (i = 0; i < nargs; i += 1)
3429 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3430 argvec[i] = NULL;
3431 exp = *expp;
3432
3433 /* Pass two: perform any resolution on principal operator. */
3434 switch (op)
3435 {
3436 default:
3437 break;
3438
3439 case OP_VAR_VALUE:
3440 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3441 {
3442 struct block_symbol *candidates;
3443 int n_candidates;
3444
3445 n_candidates =
3446 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3447 (exp->elts[pc + 2].symbol),
3448 exp->elts[pc + 1].block, VAR_DOMAIN,
3449 &candidates);
3450
3451 if (n_candidates > 1)
3452 {
3453 /* Types tend to get re-introduced locally, so if there
3454 are any local symbols that are not types, first filter
3455 out all types. */
3456 int j;
3457 for (j = 0; j < n_candidates; j += 1)
3458 switch (SYMBOL_CLASS (candidates[j].symbol))
3459 {
3460 case LOC_REGISTER:
3461 case LOC_ARG:
3462 case LOC_REF_ARG:
3463 case LOC_REGPARM_ADDR:
3464 case LOC_LOCAL:
3465 case LOC_COMPUTED:
3466 goto FoundNonType;
3467 default:
3468 break;
3469 }
3470 FoundNonType:
3471 if (j < n_candidates)
3472 {
3473 j = 0;
3474 while (j < n_candidates)
3475 {
3476 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3477 {
3478 candidates[j] = candidates[n_candidates - 1];
3479 n_candidates -= 1;
3480 }
3481 else
3482 j += 1;
3483 }
3484 }
3485 }
3486
3487 if (n_candidates == 0)
3488 error (_("No definition found for %s"),
3489 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3490 else if (n_candidates == 1)
3491 i = 0;
3492 else if (deprocedure_p
3493 && !is_nonfunction (candidates, n_candidates))
3494 {
3495 i = ada_resolve_function
3496 (candidates, n_candidates, NULL, 0,
3497 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3498 context_type);
3499 if (i < 0)
3500 error (_("Could not find a match for %s"),
3501 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3502 }
3503 else
3504 {
3505 printf_filtered (_("Multiple matches for %s\n"),
3506 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3507 user_select_syms (candidates, n_candidates, 1);
3508 i = 0;
3509 }
3510
3511 exp->elts[pc + 1].block = candidates[i].block;
3512 exp->elts[pc + 2].symbol = candidates[i].symbol;
3513 if (innermost_block == NULL
3514 || contained_in (candidates[i].block, innermost_block))
3515 innermost_block = candidates[i].block;
3516 }
3517
3518 if (deprocedure_p
3519 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3520 == TYPE_CODE_FUNC))
3521 {
3522 replace_operator_with_call (expp, pc, 0, 0,
3523 exp->elts[pc + 2].symbol,
3524 exp->elts[pc + 1].block);
3525 exp = *expp;
3526 }
3527 break;
3528
3529 case OP_FUNCALL:
3530 {
3531 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3532 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3533 {
3534 struct block_symbol *candidates;
3535 int n_candidates;
3536
3537 n_candidates =
3538 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3539 (exp->elts[pc + 5].symbol),
3540 exp->elts[pc + 4].block, VAR_DOMAIN,
3541 &candidates);
3542 if (n_candidates == 1)
3543 i = 0;
3544 else
3545 {
3546 i = ada_resolve_function
3547 (candidates, n_candidates,
3548 argvec, nargs,
3549 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3550 context_type);
3551 if (i < 0)
3552 error (_("Could not find a match for %s"),
3553 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3554 }
3555
3556 exp->elts[pc + 4].block = candidates[i].block;
3557 exp->elts[pc + 5].symbol = candidates[i].symbol;
3558 if (innermost_block == NULL
3559 || contained_in (candidates[i].block, innermost_block))
3560 innermost_block = candidates[i].block;
3561 }
3562 }
3563 break;
3564 case BINOP_ADD:
3565 case BINOP_SUB:
3566 case BINOP_MUL:
3567 case BINOP_DIV:
3568 case BINOP_REM:
3569 case BINOP_MOD:
3570 case BINOP_CONCAT:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574 case BINOP_EQUAL:
3575 case BINOP_NOTEQUAL:
3576 case BINOP_LESS:
3577 case BINOP_GTR:
3578 case BINOP_LEQ:
3579 case BINOP_GEQ:
3580 case BINOP_EXP:
3581 case UNOP_NEG:
3582 case UNOP_PLUS:
3583 case UNOP_LOGICAL_NOT:
3584 case UNOP_ABS:
3585 if (possible_user_operator_p (op, argvec))
3586 {
3587 struct block_symbol *candidates;
3588 int n_candidates;
3589
3590 n_candidates =
3591 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3592 (struct block *) NULL, VAR_DOMAIN,
3593 &candidates);
3594 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3595 ada_decoded_op_name (op), NULL);
3596 if (i < 0)
3597 break;
3598
3599 replace_operator_with_call (expp, pc, nargs, 1,
3600 candidates[i].symbol,
3601 candidates[i].block);
3602 exp = *expp;
3603 }
3604 break;
3605
3606 case OP_TYPE:
3607 case OP_REGISTER:
3608 return NULL;
3609 }
3610
3611 *pos = pc;
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, char *annotation_suffix)
4040 {
4041 char *args;
4042 char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = *expp;
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 *expp = newexp;
4140 xfree (exp);
4141 }
4142
4143 /* Type-class predicates */
4144
4145 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
4147
4148 static int
4149 numeric_type_p (struct type *type)
4150 {
4151 if (type == NULL)
4152 return 0;
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
4166 }
4167 }
4168
4169 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4170
4171 static int
4172 integer_type_p (struct type *type)
4173 {
4174 if (type == NULL)
4175 return 0;
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
4188 }
4189 }
4190
4191 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4192
4193 static int
4194 scalar_type_p (struct type *type)
4195 {
4196 if (type == NULL)
4197 return 0;
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
4210 }
4211 }
4212
4213 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4214
4215 static int
4216 discrete_type_p (struct type *type)
4217 {
4218 if (type == NULL)
4219 return 0;
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
4227 case TYPE_CODE_BOOL:
4228 return 1;
4229 default:
4230 return 0;
4231 }
4232 }
4233 }
4234
4235 /* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
4238
4239 static int
4240 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 {
4242 struct type *type0 =
4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4244 struct type *type1 =
4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4246
4247 if (type0 == NULL)
4248 return 0;
4249
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4275
4276 case BINOP_CONCAT:
4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4278
4279 case BINOP_EXP:
4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
4287
4288 }
4289 }
4290 \f
4291 /* Renaming */
4292
4293 /* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305 /* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324 enum ada_renaming_category
4325 ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328 {
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
4336 {
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
4370 }
4371
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383 }
4384
4385 /* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389 static enum ada_renaming_category
4390 parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393 {
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
4398
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
4402
4403 name = type_name_no_tag (type);
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
4428
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
4442 }
4443
4444 /* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
4447
4448 static struct value *
4449 ada_read_renaming_var_value (struct symbol *renaming_sym,
4450 const struct block *block)
4451 {
4452 const char *sym_name;
4453
4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
4457 }
4458 \f
4459
4460 /* Evaluation: Function Calls */
4461
4462 /* Return an lvalue containing the value VAL. This is the identity on
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
4465
4466 static struct value *
4467 ensure_lval (struct value *val)
4468 {
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
4471 {
4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
4475
4476 VALUE_LVAL (val) = lval_memory;
4477 set_value_address (val, addr);
4478 write_memory (addr, value_contents (val), len);
4479 }
4480
4481 return val;
4482 }
4483
4484 /* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4487 values not residing in memory, updating it as needed. */
4488
4489 struct value *
4490 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 {
4492 struct type *actual_type = ada_check_typedef (value_type (actual));
4493 struct type *formal_type = ada_check_typedef (formal_type0);
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500
4501 if (ada_is_array_descriptor_type (formal_target)
4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4503 return make_array_descriptor (formal_type, actual);
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 {
4507 struct value *result;
4508
4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4510 && ada_is_array_descriptor_type (actual_target))
4511 result = desc_data (actual);
4512 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
4517
4518 actual_type = ada_check_typedef (value_type (actual));
4519 val = allocate_value (actual_type);
4520 memcpy ((char *) value_contents_raw (val),
4521 (char *) value_contents (actual),
4522 TYPE_LENGTH (actual_type));
4523 actual = ensure_lval (val);
4524 }
4525 result = value_addr (actual);
4526 }
4527 else
4528 return actual;
4529 return value_cast_pointers (formal_type, result, 0);
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
4543
4544 return actual;
4545 }
4546
4547 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552 static CORE_ADDR
4553 value_pointer (struct value *value, struct type *type)
4554 {
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
4557 gdb_byte *buf = (gdb_byte *) alloca (len);
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564 }
4565
4566
4567 /* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
4572
4573 static struct value *
4574 make_array_descriptor (struct type *type, struct value *arr)
4575 {
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
4580 int i;
4581
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
4584 {
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
4593 }
4594
4595 bounds = ensure_lval (bounds);
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
4610
4611 descriptor = ensure_lval (descriptor);
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617 }
4618 \f
4619 /* Symbol Cache Module */
4620
4621 /* Performance measurements made as of 2010-01-15 indicate that
4622 this cache does bring some noticeable improvements. Depending
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
4631 /* Initialize the contents of SYM_CACHE. */
4632
4633 static void
4634 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 {
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638 }
4639
4640 /* Free the memory used by SYM_CACHE. */
4641
4642 static void
4643 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 {
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647 }
4648
4649 /* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
4651
4652 static struct ada_symbol_cache *
4653 ada_get_symbol_cache (struct program_space *pspace)
4654 {
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656
4657 if (pspace_data->sym_cache == NULL)
4658 {
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
4661 }
4662
4663 return pspace_data->sym_cache;
4664 }
4665
4666 /* Clear all entries from the symbol cache. */
4667
4668 static void
4669 ada_clear_symbol_cache (void)
4670 {
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
4676 }
4677
4678 /* Search our cache for an entry matching NAME and DOMAIN.
4679 Return it if found, or NULL otherwise. */
4680
4681 static struct cache_entry **
4682 find_entry (const char *name, domain_enum domain)
4683 {
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 {
4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4692 return e;
4693 }
4694 return NULL;
4695 }
4696
4697 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
4702
4703 static int
4704 lookup_cached_symbol (const char *name, domain_enum domain,
4705 struct symbol **sym, const struct block **block)
4706 {
4707 struct cache_entry **e = find_entry (name, domain);
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
4716 }
4717
4718 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4719 in domain DOMAIN, save this result in our symbol cache. */
4720
4721 static void
4722 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4723 const struct block *block)
4724 {
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4742 GLOBAL_BLOCK) != block
4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4744 STATIC_BLOCK) != block)
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
4748 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 sizeof (*e));
4750 e->next = sym_cache->root[h];
4751 sym_cache->root[h] = e;
4752 e->name = copy
4753 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4754 strcpy (copy, name);
4755 e->sym = sym;
4756 e->domain = domain;
4757 e->block = block;
4758 }
4759 \f
4760 /* Symbol Lookup */
4761
4762 /* Return nonzero if wild matching should be used when searching for
4763 all symbols matching LOOKUP_NAME.
4764
4765 LOOKUP_NAME is expected to be a symbol name after transformation
4766 for Ada lookups (see ada_name_for_lookup). */
4767
4768 static int
4769 should_use_wild_match (const char *lookup_name)
4770 {
4771 return (strstr (lookup_name, "__") == NULL);
4772 }
4773
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780 {
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4783
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4789 }
4790
4791
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795 static int
4796 is_nonfunction (struct block_symbol syms[], int n)
4797 {
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4811
4812 static int
4813 equiv_types (struct type *type0, struct type *type1)
4814 {
4815 if (type0 == type1)
4816 return 1;
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4831
4832 static int
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4834 {
4835 if (sym0 == sym1)
4836 return 1;
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
4841 switch (SYMBOL_CLASS (sym0))
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4852
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4862 default:
4863 return 0;
4864 }
4865 }
4866
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869
4870 static void
4871 add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
4873 const struct block *block)
4874 {
4875 int i;
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 return;
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 {
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4895 return;
4896 }
4897 }
4898
4899 {
4900 struct block_symbol info;
4901
4902 info.symbol = sym;
4903 info.block = block;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4905 }
4906 }
4907
4908 /* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4910
4911 static int
4912 num_defns_collected (struct obstack *obstackp)
4913 {
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 }
4916
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4922 {
4923 if (finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4925 else
4926 return (struct block_symbol *) obstack_base (obstackp);
4927 }
4928
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4934
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4937 {
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4941 const int wild_match_p = should_use_wild_match (name);
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 /* Special case: If the user specifies a symbol name inside package
4946 Standard, do a non-wild matching of the symbol name without
4947 the "standard__" prefix. This was primarily introduced in order
4948 to allow the user to specifically access the standard exceptions
4949 using, for instance, Standard.Constraint_Error when Constraint_Error
4950 is ambiguous (due to the user defining its own Constraint_Error
4951 entity inside its program). */
4952 if (startswith (name, "standard__"))
4953 name += sizeof ("standard__") - 1;
4954
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
4964 }
4965
4966 return result;
4967 }
4968
4969 /* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4974
4975 static void
4976 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4977 const char *name, domain_enum domain,
4978 int wild_match_p)
4979 {
4980 }
4981
4982 /* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
4984
4985 static int
4986 is_nondebugging_type (struct type *type)
4987 {
4988 const char *name = ada_type_name (type);
4989
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991 }
4992
4993 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000 static int
5001 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002 {
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034 }
5035
5036 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056 static int
5057 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5058 {
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
5090 return 0;
5091
5092 return 1;
5093 }
5094
5095 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
5101
5102 static int
5103 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5104 {
5105 int i, j;
5106
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
5116 int remove_p = 0;
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5131 remove_p = 1;
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5152 remove_p = 1;
5153 }
5154 }
5155
5156 if (remove_p)
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
5163 i += 1;
5164 }
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
5181 return nsyms;
5182 }
5183
5184 /* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
5188
5189 static char *
5190 xget_renaming_scope (struct type *renaming_type)
5191 {
5192 /* The renaming types adhere to the following convention:
5193 <scope>__<rename>___<XR extension>.
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
5196
5197 const char *name = type_name_no_tag (renaming_type);
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
5200 int scope_len;
5201 char *scope;
5202
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
5205
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
5209
5210 /* Make a copy of scope and return it. */
5211
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
5217
5218 return scope;
5219 }
5220
5221 /* Return nonzero if NAME corresponds to a package name. */
5222
5223 static int
5224 is_package_name (const char *name)
5225 {
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
5231
5232 char *fun_name;
5233
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
5238
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
5241
5242 /* Do a quick check that NAME does not contain "__", since library-level
5243 functions names cannot contain "__" in them. */
5244 if (strstr (name, "__") != NULL)
5245 return 0;
5246
5247 fun_name = xstrprintf ("_ada_%s", name);
5248
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250 }
5251
5252 /* Return nonzero if SYM corresponds to a renaming entity that is
5253 not visible from FUNCTION_NAME. */
5254
5255 static int
5256 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5257 {
5258 char *scope;
5259 struct cleanup *old_chain;
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5265 old_chain = make_cleanup (xfree, scope);
5266
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
5273
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
5276
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
5281 if (startswith (function_name, "_ada_"))
5282 function_name += 5;
5283
5284 {
5285 int is_invisible = !startswith (function_name, scope);
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
5290 }
5291
5292 /* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
5297
5298 Rationale:
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
5311
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
5328
5329 static int
5330 remove_irrelevant_renamings (struct block_symbol *syms,
5331 int nsyms, const struct block *current_block)
5332 {
5333 struct symbol *current_function;
5334 const char *current_function_name;
5335 int i;
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
5340 First, zero out such symbols, then compress. */
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
5344 struct symbol *sym = syms[i].symbol;
5345 const struct block *block = syms[i].block;
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5358
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 name_len) == 0
5364 && block == syms[j].block)
5365 syms[j].symbol = NULL;
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
5373 if (syms[j].symbol != NULL)
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
5383
5384 if (current_block == NULL)
5385 return nsyms;
5386
5387 current_function = block_linkage_function (current_block);
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5403 == ADA_OBJECT_RENAMING
5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5405 {
5406 int j;
5407
5408 for (j = i + 1; j < nsyms; j += 1)
5409 syms[j - 1] = syms[j];
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417 }
5418
5419 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429 static void
5430 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5431 const struct block *block, domain_enum domain,
5432 int wild_match_p)
5433 {
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
5439 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5440 wild_match_p);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5508 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5509 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5510 function "wild_match" for more information). Return whether we found such
5511 symbols. */
5512
5513 static int
5514 ada_add_block_renamings (struct obstack *obstackp,
5515 const struct block *block,
5516 const char *name,
5517 domain_enum domain,
5518 int wild_match_p)
5519 {
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528 int name_match;
5529
5530 /* Avoid infinite recursions: skip this renaming if we are actually
5531 already traversing it.
5532
5533 Currently, symbol lookup in Ada don't use the namespace machinery from
5534 C++/Fortran support: skip namespace imports that use them. */
5535 if (renaming->searched
5536 || (renaming->import_src != NULL
5537 && renaming->import_src[0] != '\0')
5538 || (renaming->import_dest != NULL
5539 && renaming->import_dest[0] != '\0'))
5540 continue;
5541 renaming->searched = 1;
5542
5543 /* TODO: here, we perform another name-based symbol lookup, which can
5544 pull its own multiple overloads. In theory, we should be able to do
5545 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5546 not a simple name. But in order to do this, we would need to enhance
5547 the DWARF reader to associate a symbol to this renaming, instead of a
5548 name. So, for now, we do something simpler: re-use the C++/Fortran
5549 namespace machinery. */
5550 r_name = (renaming->alias != NULL
5551 ? renaming->alias
5552 : renaming->declaration);
5553 name_match
5554 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5555 if (name_match == 0)
5556 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 1, NULL);
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561 }
5562
5563 /* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5565
5566 static int
5567 compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
5569 {
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
5572 char c1, c2;
5573
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
5588 break;
5589
5590 string1 += 1;
5591 string2 += 1;
5592 }
5593
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
5601 if (is_name_suffix (string1))
5602 return 0;
5603 else
5604 return 1;
5605 }
5606 /* FALLTHROUGH */
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
5617 }
5618 }
5619
5620 /* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631 static int
5632 compare_names (const char *string1, const char *string2)
5633 {
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646 }
5647
5648 /* Add to OBSTACKP all non-local symbols whose name and domain match
5649 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5650 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5651
5652 static void
5653 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5654 domain_enum domain, int global,
5655 int is_wild_match)
5656 {
5657 struct objfile *objfile;
5658 struct compunit_symtab *cu;
5659 struct match_data data;
5660
5661 memset (&data, 0, sizeof data);
5662 data.obstackp = obstackp;
5663
5664 ALL_OBJFILES (objfile)
5665 {
5666 data.objfile = objfile;
5667
5668 if (is_wild_match)
5669 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5670 aux_add_nonlocal_symbols, &data,
5671 wild_match, NULL);
5672 else
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 full_match, compare_names);
5676
5677 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 {
5679 const struct block *global_block
5680 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681
5682 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5683 is_wild_match))
5684 data.found_sym = 1;
5685 }
5686 }
5687
5688 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 {
5690 ALL_OBJFILES (objfile)
5691 {
5692 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5693 strcpy (name1, "_ada_");
5694 strcpy (name1 + sizeof ("_ada_") - 1, name);
5695 data.objfile = objfile;
5696 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 global,
5698 aux_add_nonlocal_symbols,
5699 &data,
5700 full_match, compare_names);
5701 }
5702 }
5703 }
5704
5705 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5706 non-zero, enclosing scope and in global scopes, returning the number of
5707 matches. Add these to OBSTACKP.
5708
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
5711 is the one match returned (no other matches in that or
5712 enclosing blocks is returned). If there are any matches in or
5713 surrounding BLOCK, then these alone are returned.
5714
5715 Names prefixed with "standard__" are handled specially: "standard__"
5716 is first stripped off, and only static and global symbols are searched.
5717
5718 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5719 to lookup global symbols. */
5720
5721 static void
5722 ada_add_all_symbols (struct obstack *obstackp,
5723 const struct block *block,
5724 const char *name,
5725 domain_enum domain,
5726 int full_search,
5727 int *made_global_lookup_p)
5728 {
5729 struct symbol *sym;
5730 const int wild_match_p = should_use_wild_match (name);
5731
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
5742 if (startswith (name, "standard__"))
5743 {
5744 block = NULL;
5745 name = name + sizeof ("standard__") - 1;
5746 }
5747
5748 /* Check the non-global symbols. If we have ANY match, then we're done. */
5749
5750 if (block != NULL)
5751 {
5752 if (full_search)
5753 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5754 else
5755 {
5756 /* In the !full_search case we're are being called by
5757 ada_iterate_over_symbols, and we don't want to search
5758 superblocks. */
5759 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5760 wild_match_p);
5761 }
5762 if (num_defns_collected (obstackp) > 0 || !full_search)
5763 return;
5764 }
5765
5766 /* No non-global symbols found. Check our cache to see if we have
5767 already performed this search before. If we have, then return
5768 the same result. */
5769
5770 if (lookup_cached_symbol (name, domain, &sym, &block))
5771 {
5772 if (sym != NULL)
5773 add_defn_to_vec (obstackp, sym, block);
5774 return;
5775 }
5776
5777 if (made_global_lookup_p)
5778 *made_global_lookup_p = 1;
5779
5780 /* Search symbols from all global blocks. */
5781
5782 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5783
5784 /* Now add symbols from all per-file blocks if we've gotten no hits
5785 (not strictly correct, but perhaps better than an error). */
5786
5787 if (num_defns_collected (obstackp) == 0)
5788 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5789 }
5790
5791 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5792 non-zero, enclosing scope and in global scopes, returning the number of
5793 matches.
5794 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5795 indicating the symbols found and the blocks and symbol tables (if
5796 any) in which they were found. This vector is transient---good only to
5797 the next call of ada_lookup_symbol_list.
5798
5799 When full_search is non-zero, any non-function/non-enumeral
5800 symbol match within the nest of blocks whose innermost member is BLOCK,
5801 is the one match returned (no other matches in that or
5802 enclosing blocks is returned). If there are any matches in or
5803 surrounding BLOCK, then these alone are returned.
5804
5805 Names prefixed with "standard__" are handled specially: "standard__"
5806 is first stripped off, and only static and global symbols are searched. */
5807
5808 static int
5809 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 domain_enum domain,
5811 struct block_symbol **results,
5812 int full_search)
5813 {
5814 const int wild_match_p = should_use_wild_match (name);
5815 int syms_from_global_search;
5816 int ndefns;
5817
5818 obstack_free (&symbol_list_obstack, NULL);
5819 obstack_init (&symbol_list_obstack);
5820 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5821 full_search, &syms_from_global_search);
5822
5823 ndefns = num_defns_collected (&symbol_list_obstack);
5824 *results = defns_collected (&symbol_list_obstack, 1);
5825
5826 ndefns = remove_extra_symbols (*results, ndefns);
5827
5828 if (ndefns == 0 && full_search && syms_from_global_search)
5829 cache_symbol (name, domain, NULL, NULL);
5830
5831 if (ndefns == 1 && full_search && syms_from_global_search)
5832 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5833
5834 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5835 return ndefns;
5836 }
5837
5838 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5839 in global scopes, returning the number of matches, and setting *RESULTS
5840 to a vector of (SYM,BLOCK) tuples.
5841 See ada_lookup_symbol_list_worker for further details. */
5842
5843 int
5844 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5845 domain_enum domain, struct block_symbol **results)
5846 {
5847 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5848 }
5849
5850 /* Implementation of the la_iterate_over_symbols method. */
5851
5852 static void
5853 ada_iterate_over_symbols (const struct block *block,
5854 const char *name, domain_enum domain,
5855 symbol_found_callback_ftype *callback,
5856 void *data)
5857 {
5858 int ndefs, i;
5859 struct block_symbol *results;
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 for (i = 0; i < ndefs; ++i)
5863 {
5864 if (! (*callback) (results[i].symbol, data))
5865 break;
5866 }
5867 }
5868
5869 /* If NAME is the name of an entity, return a string that should
5870 be used to look that entity up in Ada units.
5871
5872 NAME can have any form that the "break" or "print" commands might
5873 recognize. In other words, it does not have to be the "natural"
5874 name, or the "encoded" name. */
5875
5876 std::string
5877 ada_name_for_lookup (const char *name)
5878 {
5879 int nlen = strlen (name);
5880
5881 if (name[0] == '<' && name[nlen - 1] == '>')
5882 return std::string (name + 1, nlen - 2);
5883 else
5884 return ada_encode (ada_fold_name (name));
5885 }
5886
5887 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5888 to 1, but choosing the first symbol found if there are multiple
5889 choices.
5890
5891 The result is stored in *INFO, which must be non-NULL.
5892 If no match is found, INFO->SYM is set to NULL. */
5893
5894 void
5895 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5896 domain_enum domain,
5897 struct block_symbol *info)
5898 {
5899 struct block_symbol *candidates;
5900 int n_candidates;
5901
5902 gdb_assert (info != NULL);
5903 memset (info, 0, sizeof (struct block_symbol));
5904
5905 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6187 informational suffixes of NAME (i.e., for which is_name_suffix is
6188 true). Assumes that PATN is a lower-cased Ada simple name. */
6189
6190 static int
6191 wild_match (const char *name, const char *patn)
6192 {
6193 const char *p;
6194 const char *name0 = name;
6195
6196 while (1)
6197 {
6198 const char *match = name;
6199
6200 if (*name == *patn)
6201 {
6202 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p != *name)
6204 break;
6205 if (*p == '\0' && is_name_suffix (name))
6206 return match != name0 && !is_valid_name_for_wild_match (name0);
6207
6208 if (name[-1] == '_')
6209 name -= 1;
6210 }
6211 if (!advance_wild_match (&name, name0, *patn))
6212 return 1;
6213 }
6214 }
6215
6216 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6217 informational suffix. */
6218
6219 static int
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 return !match_name (sym_name, search_name, 0);
6223 }
6224
6225
6226 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6227 vector *defn_symbols, updating the list of symbols in OBSTACKP
6228 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6229 OBJFILE is the section containing BLOCK. */
6230
6231 static void
6232 ada_add_block_symbols (struct obstack *obstackp,
6233 const struct block *block, const char *name,
6234 domain_enum domain, struct objfile *objfile,
6235 int wild)
6236 {
6237 struct block_iterator iter;
6238 int name_len = strlen (name);
6239 /* A matching argument symbol, if any. */
6240 struct symbol *arg_sym;
6241 /* Set true when we find a matching non-argument symbol. */
6242 int found_sym;
6243 struct symbol *sym;
6244
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 if (wild)
6248 {
6249 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6250 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6251 {
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain)
6254 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6255 {
6256 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6257 continue;
6258 else if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
6268 }
6269 }
6270 else
6271 {
6272 for (sym = block_iter_match_first (block, name, full_match, &iter);
6273 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6274 {
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* Handle renamings. */
6295
6296 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 found_sym = 1;
6298
6299 if (!found_sym && arg_sym != NULL)
6300 {
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (arg_sym, objfile),
6303 block);
6304 }
6305
6306 if (!wild)
6307 {
6308 arg_sym = NULL;
6309 found_sym = 0;
6310
6311 ALL_BLOCK_SYMBOLS (block, iter, sym)
6312 {
6313 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6314 SYMBOL_DOMAIN (sym), domain))
6315 {
6316 int cmp;
6317
6318 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 if (cmp == 0)
6320 {
6321 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6322 if (cmp == 0)
6323 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6324 name_len);
6325 }
6326
6327 if (cmp == 0
6328 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6329 {
6330 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6331 {
6332 if (SYMBOL_IS_ARGUMENT (sym))
6333 arg_sym = sym;
6334 else
6335 {
6336 found_sym = 1;
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (sym, objfile),
6339 block);
6340 }
6341 }
6342 }
6343 }
6344 }
6345
6346 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6347 They aren't parameters, right? */
6348 if (!found_sym && arg_sym != NULL)
6349 {
6350 add_defn_to_vec (obstackp,
6351 fixup_symbol_section (arg_sym, objfile),
6352 block);
6353 }
6354 }
6355 }
6356 \f
6357
6358 /* Symbol Completion */
6359
6360 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6361 name in a form that's appropriate for the completion. The result
6362 does not need to be deallocated, but is only good until the next call.
6363
6364 TEXT_LEN is equal to the length of TEXT.
6365 Perform a wild match if WILD_MATCH_P is set.
6366 ENCODED_P should be set if TEXT represents the start of a symbol name
6367 in its encoded form. */
6368
6369 static const char *
6370 symbol_completion_match (const char *sym_name,
6371 const char *text, int text_len,
6372 int wild_match_p, int encoded_p)
6373 {
6374 const int verbatim_match = (text[0] == '<');
6375 int match = 0;
6376
6377 if (verbatim_match)
6378 {
6379 /* Strip the leading angle bracket. */
6380 text = text + 1;
6381 text_len--;
6382 }
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = 1;
6388
6389 if (match && !encoded_p)
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 int has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == verbatim_match);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !verbatim_match)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = 0;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
6420 if (!match && wild_match_p)
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = 1;
6429 }
6430
6431 /* Finally: If we found a mach, prepare the result to return. */
6432
6433 if (!match)
6434 return NULL;
6435
6436 if (verbatim_match)
6437 sym_name = add_angle_brackets (sym_name);
6438
6439 if (!encoded_p)
6440 sym_name = ada_decode (sym_name);
6441
6442 return sym_name;
6443 }
6444
6445 /* A companion function to ada_make_symbol_completion_list().
6446 Check if SYM_NAME represents a symbol which name would be suitable
6447 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6448 it is appended at the end of the given string vector SV.
6449
6450 ORIG_TEXT is the string original string from the user command
6451 that needs to be completed. WORD is the entire command on which
6452 completion should be performed. These two parameters are used to
6453 determine which part of the symbol name should be added to the
6454 completion vector.
6455 if WILD_MATCH_P is set, then wild matching is performed.
6456 ENCODED_P should be set if TEXT represents a symbol name in its
6457 encoded formed (in which case the completion should also be
6458 encoded). */
6459
6460 static void
6461 symbol_completion_add (VEC(char_ptr) **sv,
6462 const char *sym_name,
6463 const char *text, int text_len,
6464 const char *orig_text, const char *word,
6465 int wild_match_p, int encoded_p)
6466 {
6467 const char *match = symbol_completion_match (sym_name, text, text_len,
6468 wild_match_p, encoded_p);
6469 char *completion;
6470
6471 if (match == NULL)
6472 return;
6473
6474 /* We found a match, so add the appropriate completion to the given
6475 string vector. */
6476
6477 if (word == orig_text)
6478 {
6479 completion = (char *) xmalloc (strlen (match) + 5);
6480 strcpy (completion, match);
6481 }
6482 else if (word > orig_text)
6483 {
6484 /* Return some portion of sym_name. */
6485 completion = (char *) xmalloc (strlen (match) + 5);
6486 strcpy (completion, match + (word - orig_text));
6487 }
6488 else
6489 {
6490 /* Return some of ORIG_TEXT plus sym_name. */
6491 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6492 strncpy (completion, word, orig_text - word);
6493 completion[orig_text - word] = '\0';
6494 strcat (completion, match);
6495 }
6496
6497 VEC_safe_push (char_ptr, *sv, completion);
6498 }
6499
6500 /* An object of this type is passed as the user_data argument to the
6501 expand_symtabs_matching method. */
6502 struct add_partial_datum
6503 {
6504 VEC(char_ptr) **completions;
6505 const char *text;
6506 int text_len;
6507 const char *text0;
6508 const char *word;
6509 int wild_match;
6510 int encoded;
6511 };
6512
6513 /* A callback for expand_symtabs_matching. */
6514
6515 static int
6516 ada_complete_symbol_matcher (const char *name, void *user_data)
6517 {
6518 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6519
6520 return symbol_completion_match (name, data->text, data->text_len,
6521 data->wild_match, data->encoded) != NULL;
6522 }
6523
6524 /* Return a list of possible symbol names completing TEXT0. WORD is
6525 the entire command on which completion is made. */
6526
6527 static VEC (char_ptr) *
6528 ada_make_symbol_completion_list (const char *text0, const char *word,
6529 enum type_code code)
6530 {
6531 char *text;
6532 int text_len;
6533 int wild_match_p;
6534 int encoded_p;
6535 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6536 struct symbol *sym;
6537 struct compunit_symtab *s;
6538 struct minimal_symbol *msymbol;
6539 struct objfile *objfile;
6540 const struct block *b, *surrounding_static_block = 0;
6541 int i;
6542 struct block_iterator iter;
6543 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6544
6545 gdb_assert (code == TYPE_CODE_UNDEF);
6546
6547 if (text0[0] == '<')
6548 {
6549 text = xstrdup (text0);
6550 make_cleanup (xfree, text);
6551 text_len = strlen (text);
6552 wild_match_p = 0;
6553 encoded_p = 1;
6554 }
6555 else
6556 {
6557 text = xstrdup (ada_encode (text0));
6558 make_cleanup (xfree, text);
6559 text_len = strlen (text);
6560 for (i = 0; i < text_len; i++)
6561 text[i] = tolower (text[i]);
6562
6563 encoded_p = (strstr (text0, "__") != NULL);
6564 /* If the name contains a ".", then the user is entering a fully
6565 qualified entity name, and the match must not be done in wild
6566 mode. Similarly, if the user wants to complete what looks like
6567 an encoded name, the match must not be done in wild mode. */
6568 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6569 }
6570
6571 /* First, look at the partial symtab symbols. */
6572 {
6573 struct add_partial_datum data;
6574
6575 data.completions = &completions;
6576 data.text = text;
6577 data.text_len = text_len;
6578 data.text0 = text0;
6579 data.word = word;
6580 data.wild_match = wild_match_p;
6581 data.encoded = encoded_p;
6582 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6583 ALL_DOMAIN, &data);
6584 }
6585
6586 /* At this point scan through the misc symbol vectors and add each
6587 symbol you find to the list. Eventually we want to ignore
6588 anything that isn't a text symbol (everything else will be
6589 handled by the psymtab code above). */
6590
6591 ALL_MSYMBOLS (objfile, msymbol)
6592 {
6593 QUIT;
6594 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6595 text, text_len, text0, word, wild_match_p,
6596 encoded_p);
6597 }
6598
6599 /* Search upwards from currently selected frame (so that we can
6600 complete on local vars. */
6601
6602 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6603 {
6604 if (!BLOCK_SUPERBLOCK (b))
6605 surrounding_static_block = b; /* For elmin of dups */
6606
6607 ALL_BLOCK_SYMBOLS (b, iter, sym)
6608 {
6609 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6610 text, text_len, text0, word,
6611 wild_match_p, encoded_p);
6612 }
6613 }
6614
6615 /* Go through the symtabs and check the externs and statics for
6616 symbols which match. */
6617
6618 ALL_COMPUNITS (objfile, s)
6619 {
6620 QUIT;
6621 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6622 ALL_BLOCK_SYMBOLS (b, iter, sym)
6623 {
6624 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6625 text, text_len, text0, word,
6626 wild_match_p, encoded_p);
6627 }
6628 }
6629
6630 ALL_COMPUNITS (objfile, s)
6631 {
6632 QUIT;
6633 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6634 /* Don't do this block twice. */
6635 if (b == surrounding_static_block)
6636 continue;
6637 ALL_BLOCK_SYMBOLS (b, iter, sym)
6638 {
6639 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6640 text, text_len, text0, word,
6641 wild_match_p, encoded_p);
6642 }
6643 }
6644
6645 do_cleanups (old_chain);
6646 return completions;
6647 }
6648
6649 /* Field Access */
6650
6651 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6652 for tagged types. */
6653
6654 static int
6655 ada_is_dispatch_table_ptr_type (struct type *type)
6656 {
6657 const char *name;
6658
6659 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6660 return 0;
6661
6662 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6663 if (name == NULL)
6664 return 0;
6665
6666 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6667 }
6668
6669 /* Return non-zero if TYPE is an interface tag. */
6670
6671 static int
6672 ada_is_interface_tag (struct type *type)
6673 {
6674 const char *name = TYPE_NAME (type);
6675
6676 if (name == NULL)
6677 return 0;
6678
6679 return (strcmp (name, "ada__tags__interface_tag") == 0);
6680 }
6681
6682 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6683 to be invisible to users. */
6684
6685 int
6686 ada_is_ignored_field (struct type *type, int field_num)
6687 {
6688 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6689 return 1;
6690
6691 /* Check the name of that field. */
6692 {
6693 const char *name = TYPE_FIELD_NAME (type, field_num);
6694
6695 /* Anonymous field names should not be printed.
6696 brobecker/2007-02-20: I don't think this can actually happen
6697 but we don't want to print the value of annonymous fields anyway. */
6698 if (name == NULL)
6699 return 1;
6700
6701 /* Normally, fields whose name start with an underscore ("_")
6702 are fields that have been internally generated by the compiler,
6703 and thus should not be printed. The "_parent" field is special,
6704 however: This is a field internally generated by the compiler
6705 for tagged types, and it contains the components inherited from
6706 the parent type. This field should not be printed as is, but
6707 should not be ignored either. */
6708 if (name[0] == '_' && !startswith (name, "_parent"))
6709 return 1;
6710 }
6711
6712 /* If this is the dispatch table of a tagged type or an interface tag,
6713 then ignore. */
6714 if (ada_is_tagged_type (type, 1)
6715 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6716 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6717 return 1;
6718
6719 /* Not a special field, so it should not be ignored. */
6720 return 0;
6721 }
6722
6723 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6724 pointer or reference type whose ultimate target has a tag field. */
6725
6726 int
6727 ada_is_tagged_type (struct type *type, int refok)
6728 {
6729 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6730 }
6731
6732 /* True iff TYPE represents the type of X'Tag */
6733
6734 int
6735 ada_is_tag_type (struct type *type)
6736 {
6737 type = ada_check_typedef (type);
6738
6739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6740 return 0;
6741 else
6742 {
6743 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6744
6745 return (name != NULL
6746 && strcmp (name, "ada__tags__dispatch_table") == 0);
6747 }
6748 }
6749
6750 /* The type of the tag on VAL. */
6751
6752 struct type *
6753 ada_tag_type (struct value *val)
6754 {
6755 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6756 }
6757
6758 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6759 retired at Ada 05). */
6760
6761 static int
6762 is_ada95_tag (struct value *tag)
6763 {
6764 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6765 }
6766
6767 /* The value of the tag on VAL. */
6768
6769 struct value *
6770 ada_value_tag (struct value *val)
6771 {
6772 return ada_value_struct_elt (val, "_tag", 0);
6773 }
6774
6775 /* The value of the tag on the object of type TYPE whose contents are
6776 saved at VALADDR, if it is non-null, or is at memory address
6777 ADDRESS. */
6778
6779 static struct value *
6780 value_tag_from_contents_and_address (struct type *type,
6781 const gdb_byte *valaddr,
6782 CORE_ADDR address)
6783 {
6784 int tag_byte_offset;
6785 struct type *tag_type;
6786
6787 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6788 NULL, NULL, NULL))
6789 {
6790 const gdb_byte *valaddr1 = ((valaddr == NULL)
6791 ? NULL
6792 : valaddr + tag_byte_offset);
6793 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6794
6795 return value_from_contents_and_address (tag_type, valaddr1, address1);
6796 }
6797 return NULL;
6798 }
6799
6800 static struct type *
6801 type_from_tag (struct value *tag)
6802 {
6803 const char *type_name = ada_tag_name (tag);
6804
6805 if (type_name != NULL)
6806 return ada_find_any_type (ada_encode (type_name));
6807 return NULL;
6808 }
6809
6810 /* Given a value OBJ of a tagged type, return a value of this
6811 type at the base address of the object. The base address, as
6812 defined in Ada.Tags, it is the address of the primary tag of
6813 the object, and therefore where the field values of its full
6814 view can be fetched. */
6815
6816 struct value *
6817 ada_tag_value_at_base_address (struct value *obj)
6818 {
6819 struct value *val;
6820 LONGEST offset_to_top = 0;
6821 struct type *ptr_type, *obj_type;
6822 struct value *tag;
6823 CORE_ADDR base_address;
6824
6825 obj_type = value_type (obj);
6826
6827 /* It is the responsability of the caller to deref pointers. */
6828
6829 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6830 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6831 return obj;
6832
6833 tag = ada_value_tag (obj);
6834 if (!tag)
6835 return obj;
6836
6837 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6838
6839 if (is_ada95_tag (tag))
6840 return obj;
6841
6842 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6843 ptr_type = lookup_pointer_type (ptr_type);
6844 val = value_cast (ptr_type, tag);
6845 if (!val)
6846 return obj;
6847
6848 /* It is perfectly possible that an exception be raised while
6849 trying to determine the base address, just like for the tag;
6850 see ada_tag_name for more details. We do not print the error
6851 message for the same reason. */
6852
6853 TRY
6854 {
6855 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6856 }
6857
6858 CATCH (e, RETURN_MASK_ERROR)
6859 {
6860 return obj;
6861 }
6862 END_CATCH
6863
6864 /* If offset is null, nothing to do. */
6865
6866 if (offset_to_top == 0)
6867 return obj;
6868
6869 /* -1 is a special case in Ada.Tags; however, what should be done
6870 is not quite clear from the documentation. So do nothing for
6871 now. */
6872
6873 if (offset_to_top == -1)
6874 return obj;
6875
6876 base_address = value_address (obj) - offset_to_top;
6877 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6878
6879 /* Make sure that we have a proper tag at the new address.
6880 Otherwise, offset_to_top is bogus (which can happen when
6881 the object is not initialized yet). */
6882
6883 if (!tag)
6884 return obj;
6885
6886 obj_type = type_from_tag (tag);
6887
6888 if (!obj_type)
6889 return obj;
6890
6891 return value_from_contents_and_address (obj_type, NULL, base_address);
6892 }
6893
6894 /* Return the "ada__tags__type_specific_data" type. */
6895
6896 static struct type *
6897 ada_get_tsd_type (struct inferior *inf)
6898 {
6899 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6900
6901 if (data->tsd_type == 0)
6902 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6903 return data->tsd_type;
6904 }
6905
6906 /* Return the TSD (type-specific data) associated to the given TAG.
6907 TAG is assumed to be the tag of a tagged-type entity.
6908
6909 May return NULL if we are unable to get the TSD. */
6910
6911 static struct value *
6912 ada_get_tsd_from_tag (struct value *tag)
6913 {
6914 struct value *val;
6915 struct type *type;
6916
6917 /* First option: The TSD is simply stored as a field of our TAG.
6918 Only older versions of GNAT would use this format, but we have
6919 to test it first, because there are no visible markers for
6920 the current approach except the absence of that field. */
6921
6922 val = ada_value_struct_elt (tag, "tsd", 1);
6923 if (val)
6924 return val;
6925
6926 /* Try the second representation for the dispatch table (in which
6927 there is no explicit 'tsd' field in the referent of the tag pointer,
6928 and instead the tsd pointer is stored just before the dispatch
6929 table. */
6930
6931 type = ada_get_tsd_type (current_inferior());
6932 if (type == NULL)
6933 return NULL;
6934 type = lookup_pointer_type (lookup_pointer_type (type));
6935 val = value_cast (type, tag);
6936 if (val == NULL)
6937 return NULL;
6938 return value_ind (value_ptradd (val, -1));
6939 }
6940
6941 /* Given the TSD of a tag (type-specific data), return a string
6942 containing the name of the associated type.
6943
6944 The returned value is good until the next call. May return NULL
6945 if we are unable to determine the tag name. */
6946
6947 static char *
6948 ada_tag_name_from_tsd (struct value *tsd)
6949 {
6950 static char name[1024];
6951 char *p;
6952 struct value *val;
6953
6954 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6955 if (val == NULL)
6956 return NULL;
6957 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6958 for (p = name; *p != '\0'; p += 1)
6959 if (isalpha (*p))
6960 *p = tolower (*p);
6961 return name;
6962 }
6963
6964 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6965 a C string.
6966
6967 Return NULL if the TAG is not an Ada tag, or if we were unable to
6968 determine the name of that tag. The result is good until the next
6969 call. */
6970
6971 const char *
6972 ada_tag_name (struct value *tag)
6973 {
6974 char *name = NULL;
6975
6976 if (!ada_is_tag_type (value_type (tag)))
6977 return NULL;
6978
6979 /* It is perfectly possible that an exception be raised while trying
6980 to determine the TAG's name, even under normal circumstances:
6981 The associated variable may be uninitialized or corrupted, for
6982 instance. We do not let any exception propagate past this point.
6983 instead we return NULL.
6984
6985 We also do not print the error message either (which often is very
6986 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6987 the caller print a more meaningful message if necessary. */
6988 TRY
6989 {
6990 struct value *tsd = ada_get_tsd_from_tag (tag);
6991
6992 if (tsd != NULL)
6993 name = ada_tag_name_from_tsd (tsd);
6994 }
6995 CATCH (e, RETURN_MASK_ERROR)
6996 {
6997 }
6998 END_CATCH
6999
7000 return name;
7001 }
7002
7003 /* The parent type of TYPE, or NULL if none. */
7004
7005 struct type *
7006 ada_parent_type (struct type *type)
7007 {
7008 int i;
7009
7010 type = ada_check_typedef (type);
7011
7012 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7013 return NULL;
7014
7015 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7016 if (ada_is_parent_field (type, i))
7017 {
7018 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7019
7020 /* If the _parent field is a pointer, then dereference it. */
7021 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7022 parent_type = TYPE_TARGET_TYPE (parent_type);
7023 /* If there is a parallel XVS type, get the actual base type. */
7024 parent_type = ada_get_base_type (parent_type);
7025
7026 return ada_check_typedef (parent_type);
7027 }
7028
7029 return NULL;
7030 }
7031
7032 /* True iff field number FIELD_NUM of structure type TYPE contains the
7033 parent-type (inherited) fields of a derived type. Assumes TYPE is
7034 a structure type with at least FIELD_NUM+1 fields. */
7035
7036 int
7037 ada_is_parent_field (struct type *type, int field_num)
7038 {
7039 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7040
7041 return (name != NULL
7042 && (startswith (name, "PARENT")
7043 || startswith (name, "_parent")));
7044 }
7045
7046 /* True iff field number FIELD_NUM of structure type TYPE is a
7047 transparent wrapper field (which should be silently traversed when doing
7048 field selection and flattened when printing). Assumes TYPE is a
7049 structure type with at least FIELD_NUM+1 fields. Such fields are always
7050 structures. */
7051
7052 int
7053 ada_is_wrapper_field (struct type *type, int field_num)
7054 {
7055 const char *name = TYPE_FIELD_NAME (type, field_num);
7056
7057 if (name != NULL && strcmp (name, "RETVAL") == 0)
7058 {
7059 /* This happens in functions with "out" or "in out" parameters
7060 which are passed by copy. For such functions, GNAT describes
7061 the function's return type as being a struct where the return
7062 value is in a field called RETVAL, and where the other "out"
7063 or "in out" parameters are fields of that struct. This is not
7064 a wrapper. */
7065 return 0;
7066 }
7067
7068 return (name != NULL
7069 && (startswith (name, "PARENT")
7070 || strcmp (name, "REP") == 0
7071 || startswith (name, "_parent")
7072 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7073 }
7074
7075 /* True iff field number FIELD_NUM of structure or union type TYPE
7076 is a variant wrapper. Assumes TYPE is a structure type with at least
7077 FIELD_NUM+1 fields. */
7078
7079 int
7080 ada_is_variant_part (struct type *type, int field_num)
7081 {
7082 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7083
7084 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7085 || (is_dynamic_field (type, field_num)
7086 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7087 == TYPE_CODE_UNION)));
7088 }
7089
7090 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7091 whose discriminants are contained in the record type OUTER_TYPE,
7092 returns the type of the controlling discriminant for the variant.
7093 May return NULL if the type could not be found. */
7094
7095 struct type *
7096 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7097 {
7098 char *name = ada_variant_discrim_name (var_type);
7099
7100 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7101 }
7102
7103 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7104 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7105 represents a 'when others' clause; otherwise 0. */
7106
7107 int
7108 ada_is_others_clause (struct type *type, int field_num)
7109 {
7110 const char *name = TYPE_FIELD_NAME (type, field_num);
7111
7112 return (name != NULL && name[0] == 'O');
7113 }
7114
7115 /* Assuming that TYPE0 is the type of the variant part of a record,
7116 returns the name of the discriminant controlling the variant.
7117 The value is valid until the next call to ada_variant_discrim_name. */
7118
7119 char *
7120 ada_variant_discrim_name (struct type *type0)
7121 {
7122 static char *result = NULL;
7123 static size_t result_len = 0;
7124 struct type *type;
7125 const char *name;
7126 const char *discrim_end;
7127 const char *discrim_start;
7128
7129 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7130 type = TYPE_TARGET_TYPE (type0);
7131 else
7132 type = type0;
7133
7134 name = ada_type_name (type);
7135
7136 if (name == NULL || name[0] == '\000')
7137 return "";
7138
7139 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7140 discrim_end -= 1)
7141 {
7142 if (startswith (discrim_end, "___XVN"))
7143 break;
7144 }
7145 if (discrim_end == name)
7146 return "";
7147
7148 for (discrim_start = discrim_end; discrim_start != name + 3;
7149 discrim_start -= 1)
7150 {
7151 if (discrim_start == name + 1)
7152 return "";
7153 if ((discrim_start > name + 3
7154 && startswith (discrim_start - 3, "___"))
7155 || discrim_start[-1] == '.')
7156 break;
7157 }
7158
7159 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7160 strncpy (result, discrim_start, discrim_end - discrim_start);
7161 result[discrim_end - discrim_start] = '\0';
7162 return result;
7163 }
7164
7165 /* Scan STR for a subtype-encoded number, beginning at position K.
7166 Put the position of the character just past the number scanned in
7167 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7168 Return 1 if there was a valid number at the given position, and 0
7169 otherwise. A "subtype-encoded" number consists of the absolute value
7170 in decimal, followed by the letter 'm' to indicate a negative number.
7171 Assumes 0m does not occur. */
7172
7173 int
7174 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7175 {
7176 ULONGEST RU;
7177
7178 if (!isdigit (str[k]))
7179 return 0;
7180
7181 /* Do it the hard way so as not to make any assumption about
7182 the relationship of unsigned long (%lu scan format code) and
7183 LONGEST. */
7184 RU = 0;
7185 while (isdigit (str[k]))
7186 {
7187 RU = RU * 10 + (str[k] - '0');
7188 k += 1;
7189 }
7190
7191 if (str[k] == 'm')
7192 {
7193 if (R != NULL)
7194 *R = (-(LONGEST) (RU - 1)) - 1;
7195 k += 1;
7196 }
7197 else if (R != NULL)
7198 *R = (LONGEST) RU;
7199
7200 /* NOTE on the above: Technically, C does not say what the results of
7201 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7202 number representable as a LONGEST (although either would probably work
7203 in most implementations). When RU>0, the locution in the then branch
7204 above is always equivalent to the negative of RU. */
7205
7206 if (new_k != NULL)
7207 *new_k = k;
7208 return 1;
7209 }
7210
7211 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7212 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7213 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7214
7215 int
7216 ada_in_variant (LONGEST val, struct type *type, int field_num)
7217 {
7218 const char *name = TYPE_FIELD_NAME (type, field_num);
7219 int p;
7220
7221 p = 0;
7222 while (1)
7223 {
7224 switch (name[p])
7225 {
7226 case '\0':
7227 return 0;
7228 case 'S':
7229 {
7230 LONGEST W;
7231
7232 if (!ada_scan_number (name, p + 1, &W, &p))
7233 return 0;
7234 if (val == W)
7235 return 1;
7236 break;
7237 }
7238 case 'R':
7239 {
7240 LONGEST L, U;
7241
7242 if (!ada_scan_number (name, p + 1, &L, &p)
7243 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7244 return 0;
7245 if (val >= L && val <= U)
7246 return 1;
7247 break;
7248 }
7249 case 'O':
7250 return 1;
7251 default:
7252 return 0;
7253 }
7254 }
7255 }
7256
7257 /* FIXME: Lots of redundancy below. Try to consolidate. */
7258
7259 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7260 ARG_TYPE, extract and return the value of one of its (non-static)
7261 fields. FIELDNO says which field. Differs from value_primitive_field
7262 only in that it can handle packed values of arbitrary type. */
7263
7264 static struct value *
7265 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7266 struct type *arg_type)
7267 {
7268 struct type *type;
7269
7270 arg_type = ada_check_typedef (arg_type);
7271 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7272
7273 /* Handle packed fields. */
7274
7275 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7276 {
7277 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7278 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7279
7280 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7281 offset + bit_pos / 8,
7282 bit_pos % 8, bit_size, type);
7283 }
7284 else
7285 return value_primitive_field (arg1, offset, fieldno, arg_type);
7286 }
7287
7288 /* Find field with name NAME in object of type TYPE. If found,
7289 set the following for each argument that is non-null:
7290 - *FIELD_TYPE_P to the field's type;
7291 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7292 an object of that type;
7293 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7294 - *BIT_SIZE_P to its size in bits if the field is packed, and
7295 0 otherwise;
7296 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7297 fields up to but not including the desired field, or by the total
7298 number of fields if not found. A NULL value of NAME never
7299 matches; the function just counts visible fields in this case.
7300
7301 Returns 1 if found, 0 otherwise. */
7302
7303 static int
7304 find_struct_field (const char *name, struct type *type, int offset,
7305 struct type **field_type_p,
7306 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7307 int *index_p)
7308 {
7309 int i;
7310
7311 type = ada_check_typedef (type);
7312
7313 if (field_type_p != NULL)
7314 *field_type_p = NULL;
7315 if (byte_offset_p != NULL)
7316 *byte_offset_p = 0;
7317 if (bit_offset_p != NULL)
7318 *bit_offset_p = 0;
7319 if (bit_size_p != NULL)
7320 *bit_size_p = 0;
7321
7322 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7323 {
7324 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7325 int fld_offset = offset + bit_pos / 8;
7326 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7327
7328 if (t_field_name == NULL)
7329 continue;
7330
7331 else if (name != NULL && field_name_match (t_field_name, name))
7332 {
7333 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7334
7335 if (field_type_p != NULL)
7336 *field_type_p = TYPE_FIELD_TYPE (type, i);
7337 if (byte_offset_p != NULL)
7338 *byte_offset_p = fld_offset;
7339 if (bit_offset_p != NULL)
7340 *bit_offset_p = bit_pos % 8;
7341 if (bit_size_p != NULL)
7342 *bit_size_p = bit_size;
7343 return 1;
7344 }
7345 else if (ada_is_wrapper_field (type, i))
7346 {
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7348 field_type_p, byte_offset_p, bit_offset_p,
7349 bit_size_p, index_p))
7350 return 1;
7351 }
7352 else if (ada_is_variant_part (type, i))
7353 {
7354 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7355 fixed type?? */
7356 int j;
7357 struct type *field_type
7358 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7359
7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7361 {
7362 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7363 fld_offset
7364 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7365 field_type_p, byte_offset_p,
7366 bit_offset_p, bit_size_p, index_p))
7367 return 1;
7368 }
7369 }
7370 else if (index_p != NULL)
7371 *index_p += 1;
7372 }
7373 return 0;
7374 }
7375
7376 /* Number of user-visible fields in record type TYPE. */
7377
7378 static int
7379 num_visible_fields (struct type *type)
7380 {
7381 int n;
7382
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386 }
7387
7388 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
7392 Searches recursively through wrapper fields (e.g., '_parent'). */
7393
7394 static struct value *
7395 ada_search_struct_field (const char *name, struct value *arg, int offset,
7396 struct type *type)
7397 {
7398 int i;
7399
7400 type = ada_check_typedef (type);
7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7402 {
7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7404
7405 if (t_field_name == NULL)
7406 continue;
7407
7408 else if (field_name_match (t_field_name, name))
7409 return ada_value_primitive_field (arg, offset, i, type);
7410
7411 else if (ada_is_wrapper_field (type, i))
7412 {
7413 struct value *v = /* Do not let indent join lines here. */
7414 ada_search_struct_field (name, arg,
7415 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7416 TYPE_FIELD_TYPE (type, i));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421
7422 else if (ada_is_variant_part (type, i))
7423 {
7424 /* PNH: Do we ever get here? See find_struct_field. */
7425 int j;
7426 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7427 i));
7428 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7429
7430 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7431 {
7432 struct value *v = ada_search_struct_field /* Force line
7433 break. */
7434 (name, arg,
7435 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7436 TYPE_FIELD_TYPE (field_type, j));
7437
7438 if (v != NULL)
7439 return v;
7440 }
7441 }
7442 }
7443 return NULL;
7444 }
7445
7446 static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450 /* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7453 * If found, return value, else return NULL. */
7454
7455 static struct value *
7456 ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458 {
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460 }
7461
7462
7463 /* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7465 * *INDEX_P. */
7466
7467 static struct value *
7468 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470 {
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
7480 struct value *v = /* Do not let indent join lines here. */
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
7492 find_struct_field. */
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501 }
7502
7503 /* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
7506 appropriate type.
7507
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
7510 (e.g., '_parent').
7511
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
7514
7515 struct value *
7516 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7517 {
7518 struct type *t, *t1;
7519 struct value *v;
7520
7521 v = NULL;
7522 t1 = t = ada_check_typedef (value_type (arg));
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
7527 goto BadValue;
7528 t1 = ada_check_typedef (t1);
7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7530 {
7531 arg = coerce_ref (arg);
7532 t = t1;
7533 }
7534 }
7535
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
7540 goto BadValue;
7541 t1 = ada_check_typedef (t1);
7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
7547 else
7548 break;
7549 }
7550
7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7552 goto BadValue;
7553
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7563 address = value_address (ada_value_ind (arg));
7564 else
7565 address = value_address (ada_coerce_ref (arg));
7566
7567 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7568 if (find_struct_field (name, t1, 0,
7569 &field_type, &byte_offset, &bit_offset,
7570 &bit_size, NULL))
7571 {
7572 if (bit_size != 0)
7573 {
7574 if (TYPE_CODE (t) == TYPE_CODE_REF)
7575 arg = ada_coerce_ref (arg);
7576 else
7577 arg = ada_value_ind (arg);
7578 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7579 bit_offset, bit_size,
7580 field_type);
7581 }
7582 else
7583 v = value_at_lazy (field_type, address + byte_offset);
7584 }
7585 }
7586
7587 if (v != NULL || no_err)
7588 return v;
7589 else
7590 error (_("There is no member named %s."), name);
7591
7592 BadValue:
7593 if (no_err)
7594 return NULL;
7595 else
7596 error (_("Attempt to extract a component of "
7597 "a value that is not a record."));
7598 }
7599
7600 /* Return a string representation of type TYPE. */
7601
7602 static std::string
7603 type_as_string (struct type *type)
7604 {
7605 string_file tmp_stream;
7606
7607 type_print (type, "", &tmp_stream, -1);
7608
7609 return std::move (tmp_stream.string ());
7610 }
7611
7612 /* Given a type TYPE, look up the type of the component of type named NAME.
7613 If DISPP is non-null, add its byte displacement from the beginning of a
7614 structure (pointed to by a value) of type TYPE to *DISPP (does not
7615 work for packed fields).
7616
7617 Matches any field whose name has NAME as a prefix, possibly
7618 followed by "___".
7619
7620 TYPE can be either a struct or union. If REFOK, TYPE may also
7621 be a (pointer or reference)+ to a struct or union, and the
7622 ultimate target type will be searched.
7623
7624 Looks recursively into variant clauses and parent types.
7625
7626 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7627 TYPE is not a type of the right kind. */
7628
7629 static struct type *
7630 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7631 int noerr, int *dispp)
7632 {
7633 int i;
7634
7635 if (name == NULL)
7636 goto BadName;
7637
7638 if (refok && type != NULL)
7639 while (1)
7640 {
7641 type = ada_check_typedef (type);
7642 if (TYPE_CODE (type) != TYPE_CODE_PTR
7643 && TYPE_CODE (type) != TYPE_CODE_REF)
7644 break;
7645 type = TYPE_TARGET_TYPE (type);
7646 }
7647
7648 if (type == NULL
7649 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7650 && TYPE_CODE (type) != TYPE_CODE_UNION))
7651 {
7652 if (noerr)
7653 return NULL;
7654
7655 error (_("Type %s is not a structure or union type"),
7656 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7657 }
7658
7659 type = to_static_fixed_type (type);
7660
7661 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7662 {
7663 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7664 struct type *t;
7665 int disp;
7666
7667 if (t_field_name == NULL)
7668 continue;
7669
7670 else if (field_name_match (t_field_name, name))
7671 {
7672 if (dispp != NULL)
7673 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7674 return TYPE_FIELD_TYPE (type, i);
7675 }
7676
7677 else if (ada_is_wrapper_field (type, i))
7678 {
7679 disp = 0;
7680 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7681 0, 1, &disp);
7682 if (t != NULL)
7683 {
7684 if (dispp != NULL)
7685 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7686 return t;
7687 }
7688 }
7689
7690 else if (ada_is_variant_part (type, i))
7691 {
7692 int j;
7693 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7694 i));
7695
7696 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7697 {
7698 /* FIXME pnh 2008/01/26: We check for a field that is
7699 NOT wrapped in a struct, since the compiler sometimes
7700 generates these for unchecked variant types. Revisit
7701 if the compiler changes this practice. */
7702 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7703 disp = 0;
7704 if (v_field_name != NULL
7705 && field_name_match (v_field_name, name))
7706 t = TYPE_FIELD_TYPE (field_type, j);
7707 else
7708 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7709 j),
7710 name, 0, 1, &disp);
7711
7712 if (t != NULL)
7713 {
7714 if (dispp != NULL)
7715 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7716 return t;
7717 }
7718 }
7719 }
7720
7721 }
7722
7723 BadName:
7724 if (!noerr)
7725 {
7726 const char *name_str = name != NULL ? name : _("<null>");
7727
7728 error (_("Type %s has no component named %s"),
7729 type_as_string (type).c_str (), name_str);
7730 }
7731
7732 return NULL;
7733 }
7734
7735 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7736 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7737 represents an unchecked union (that is, the variant part of a
7738 record that is named in an Unchecked_Union pragma). */
7739
7740 static int
7741 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7742 {
7743 char *discrim_name = ada_variant_discrim_name (var_type);
7744
7745 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7746 == NULL);
7747 }
7748
7749
7750 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7751 within a value of type OUTER_TYPE that is stored in GDB at
7752 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7753 numbering from 0) is applicable. Returns -1 if none are. */
7754
7755 int
7756 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7757 const gdb_byte *outer_valaddr)
7758 {
7759 int others_clause;
7760 int i;
7761 char *discrim_name = ada_variant_discrim_name (var_type);
7762 struct value *outer;
7763 struct value *discrim;
7764 LONGEST discrim_val;
7765
7766 /* Using plain value_from_contents_and_address here causes problems
7767 because we will end up trying to resolve a type that is currently
7768 being constructed. */
7769 outer = value_from_contents_and_address_unresolved (outer_type,
7770 outer_valaddr, 0);
7771 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7772 if (discrim == NULL)
7773 return -1;
7774 discrim_val = value_as_long (discrim);
7775
7776 others_clause = -1;
7777 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7778 {
7779 if (ada_is_others_clause (var_type, i))
7780 others_clause = i;
7781 else if (ada_in_variant (discrim_val, var_type, i))
7782 return i;
7783 }
7784
7785 return others_clause;
7786 }
7787 \f
7788
7789
7790 /* Dynamic-Sized Records */
7791
7792 /* Strategy: The type ostensibly attached to a value with dynamic size
7793 (i.e., a size that is not statically recorded in the debugging
7794 data) does not accurately reflect the size or layout of the value.
7795 Our strategy is to convert these values to values with accurate,
7796 conventional types that are constructed on the fly. */
7797
7798 /* There is a subtle and tricky problem here. In general, we cannot
7799 determine the size of dynamic records without its data. However,
7800 the 'struct value' data structure, which GDB uses to represent
7801 quantities in the inferior process (the target), requires the size
7802 of the type at the time of its allocation in order to reserve space
7803 for GDB's internal copy of the data. That's why the
7804 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7805 rather than struct value*s.
7806
7807 However, GDB's internal history variables ($1, $2, etc.) are
7808 struct value*s containing internal copies of the data that are not, in
7809 general, the same as the data at their corresponding addresses in
7810 the target. Fortunately, the types we give to these values are all
7811 conventional, fixed-size types (as per the strategy described
7812 above), so that we don't usually have to perform the
7813 'to_fixed_xxx_type' conversions to look at their values.
7814 Unfortunately, there is one exception: if one of the internal
7815 history variables is an array whose elements are unconstrained
7816 records, then we will need to create distinct fixed types for each
7817 element selected. */
7818
7819 /* The upshot of all of this is that many routines take a (type, host
7820 address, target address) triple as arguments to represent a value.
7821 The host address, if non-null, is supposed to contain an internal
7822 copy of the relevant data; otherwise, the program is to consult the
7823 target at the target address. */
7824
7825 /* Assuming that VAL0 represents a pointer value, the result of
7826 dereferencing it. Differs from value_ind in its treatment of
7827 dynamic-sized types. */
7828
7829 struct value *
7830 ada_value_ind (struct value *val0)
7831 {
7832 struct value *val = value_ind (val0);
7833
7834 if (ada_is_tagged_type (value_type (val), 0))
7835 val = ada_tag_value_at_base_address (val);
7836
7837 return ada_to_fixed_value (val);
7838 }
7839
7840 /* The value resulting from dereferencing any "reference to"
7841 qualifiers on VAL0. */
7842
7843 static struct value *
7844 ada_coerce_ref (struct value *val0)
7845 {
7846 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7847 {
7848 struct value *val = val0;
7849
7850 val = coerce_ref (val);
7851
7852 if (ada_is_tagged_type (value_type (val), 0))
7853 val = ada_tag_value_at_base_address (val);
7854
7855 return ada_to_fixed_value (val);
7856 }
7857 else
7858 return val0;
7859 }
7860
7861 /* Return OFF rounded upward if necessary to a multiple of
7862 ALIGNMENT (a power of 2). */
7863
7864 static unsigned int
7865 align_value (unsigned int off, unsigned int alignment)
7866 {
7867 return (off + alignment - 1) & ~(alignment - 1);
7868 }
7869
7870 /* Return the bit alignment required for field #F of template type TYPE. */
7871
7872 static unsigned int
7873 field_alignment (struct type *type, int f)
7874 {
7875 const char *name = TYPE_FIELD_NAME (type, f);
7876 int len;
7877 int align_offset;
7878
7879 /* The field name should never be null, unless the debugging information
7880 is somehow malformed. In this case, we assume the field does not
7881 require any alignment. */
7882 if (name == NULL)
7883 return 1;
7884
7885 len = strlen (name);
7886
7887 if (!isdigit (name[len - 1]))
7888 return 1;
7889
7890 if (isdigit (name[len - 2]))
7891 align_offset = len - 2;
7892 else
7893 align_offset = len - 1;
7894
7895 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7896 return TARGET_CHAR_BIT;
7897
7898 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7899 }
7900
7901 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7902
7903 static struct symbol *
7904 ada_find_any_type_symbol (const char *name)
7905 {
7906 struct symbol *sym;
7907
7908 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7909 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7910 return sym;
7911
7912 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7913 return sym;
7914 }
7915
7916 /* Find a type named NAME. Ignores ambiguity. This routine will look
7917 solely for types defined by debug info, it will not search the GDB
7918 primitive types. */
7919
7920 static struct type *
7921 ada_find_any_type (const char *name)
7922 {
7923 struct symbol *sym = ada_find_any_type_symbol (name);
7924
7925 if (sym != NULL)
7926 return SYMBOL_TYPE (sym);
7927
7928 return NULL;
7929 }
7930
7931 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7932 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7933 symbol, in which case it is returned. Otherwise, this looks for
7934 symbols whose name is that of NAME_SYM suffixed with "___XR".
7935 Return symbol if found, and NULL otherwise. */
7936
7937 struct symbol *
7938 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7939 {
7940 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7941 struct symbol *sym;
7942
7943 if (strstr (name, "___XR") != NULL)
7944 return name_sym;
7945
7946 sym = find_old_style_renaming_symbol (name, block);
7947
7948 if (sym != NULL)
7949 return sym;
7950
7951 /* Not right yet. FIXME pnh 7/20/2007. */
7952 sym = ada_find_any_type_symbol (name);
7953 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7954 return sym;
7955 else
7956 return NULL;
7957 }
7958
7959 static struct symbol *
7960 find_old_style_renaming_symbol (const char *name, const struct block *block)
7961 {
7962 const struct symbol *function_sym = block_linkage_function (block);
7963 char *rename;
7964
7965 if (function_sym != NULL)
7966 {
7967 /* If the symbol is defined inside a function, NAME is not fully
7968 qualified. This means we need to prepend the function name
7969 as well as adding the ``___XR'' suffix to build the name of
7970 the associated renaming symbol. */
7971 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7972 /* Function names sometimes contain suffixes used
7973 for instance to qualify nested subprograms. When building
7974 the XR type name, we need to make sure that this suffix is
7975 not included. So do not include any suffix in the function
7976 name length below. */
7977 int function_name_len = ada_name_prefix_len (function_name);
7978 const int rename_len = function_name_len + 2 /* "__" */
7979 + strlen (name) + 6 /* "___XR\0" */ ;
7980
7981 /* Strip the suffix if necessary. */
7982 ada_remove_trailing_digits (function_name, &function_name_len);
7983 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7984 ada_remove_Xbn_suffix (function_name, &function_name_len);
7985
7986 /* Library-level functions are a special case, as GNAT adds
7987 a ``_ada_'' prefix to the function name to avoid namespace
7988 pollution. However, the renaming symbols themselves do not
7989 have this prefix, so we need to skip this prefix if present. */
7990 if (function_name_len > 5 /* "_ada_" */
7991 && strstr (function_name, "_ada_") == function_name)
7992 {
7993 function_name += 5;
7994 function_name_len -= 5;
7995 }
7996
7997 rename = (char *) alloca (rename_len * sizeof (char));
7998 strncpy (rename, function_name, function_name_len);
7999 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8000 "__%s___XR", name);
8001 }
8002 else
8003 {
8004 const int rename_len = strlen (name) + 6;
8005
8006 rename = (char *) alloca (rename_len * sizeof (char));
8007 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8008 }
8009
8010 return ada_find_any_type_symbol (rename);
8011 }
8012
8013 /* Because of GNAT encoding conventions, several GDB symbols may match a
8014 given type name. If the type denoted by TYPE0 is to be preferred to
8015 that of TYPE1 for purposes of type printing, return non-zero;
8016 otherwise return 0. */
8017
8018 int
8019 ada_prefer_type (struct type *type0, struct type *type1)
8020 {
8021 if (type1 == NULL)
8022 return 1;
8023 else if (type0 == NULL)
8024 return 0;
8025 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8026 return 1;
8027 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8028 return 0;
8029 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8030 return 1;
8031 else if (ada_is_constrained_packed_array_type (type0))
8032 return 1;
8033 else if (ada_is_array_descriptor_type (type0)
8034 && !ada_is_array_descriptor_type (type1))
8035 return 1;
8036 else
8037 {
8038 const char *type0_name = type_name_no_tag (type0);
8039 const char *type1_name = type_name_no_tag (type1);
8040
8041 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8042 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8043 return 1;
8044 }
8045 return 0;
8046 }
8047
8048 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8049 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8050
8051 const char *
8052 ada_type_name (struct type *type)
8053 {
8054 if (type == NULL)
8055 return NULL;
8056 else if (TYPE_NAME (type) != NULL)
8057 return TYPE_NAME (type);
8058 else
8059 return TYPE_TAG_NAME (type);
8060 }
8061
8062 /* Search the list of "descriptive" types associated to TYPE for a type
8063 whose name is NAME. */
8064
8065 static struct type *
8066 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8067 {
8068 struct type *result, *tmp;
8069
8070 if (ada_ignore_descriptive_types_p)
8071 return NULL;
8072
8073 /* If there no descriptive-type info, then there is no parallel type
8074 to be found. */
8075 if (!HAVE_GNAT_AUX_INFO (type))
8076 return NULL;
8077
8078 result = TYPE_DESCRIPTIVE_TYPE (type);
8079 while (result != NULL)
8080 {
8081 const char *result_name = ada_type_name (result);
8082
8083 if (result_name == NULL)
8084 {
8085 warning (_("unexpected null name on descriptive type"));
8086 return NULL;
8087 }
8088
8089 /* If the names match, stop. */
8090 if (strcmp (result_name, name) == 0)
8091 break;
8092
8093 /* Otherwise, look at the next item on the list, if any. */
8094 if (HAVE_GNAT_AUX_INFO (result))
8095 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8096 else
8097 tmp = NULL;
8098
8099 /* If not found either, try after having resolved the typedef. */
8100 if (tmp != NULL)
8101 result = tmp;
8102 else
8103 {
8104 result = check_typedef (result);
8105 if (HAVE_GNAT_AUX_INFO (result))
8106 result = TYPE_DESCRIPTIVE_TYPE (result);
8107 else
8108 result = NULL;
8109 }
8110 }
8111
8112 /* If we didn't find a match, see whether this is a packed array. With
8113 older compilers, the descriptive type information is either absent or
8114 irrelevant when it comes to packed arrays so the above lookup fails.
8115 Fall back to using a parallel lookup by name in this case. */
8116 if (result == NULL && ada_is_constrained_packed_array_type (type))
8117 return ada_find_any_type (name);
8118
8119 return result;
8120 }
8121
8122 /* Find a parallel type to TYPE with the specified NAME, using the
8123 descriptive type taken from the debugging information, if available,
8124 and otherwise using the (slower) name-based method. */
8125
8126 static struct type *
8127 ada_find_parallel_type_with_name (struct type *type, const char *name)
8128 {
8129 struct type *result = NULL;
8130
8131 if (HAVE_GNAT_AUX_INFO (type))
8132 result = find_parallel_type_by_descriptive_type (type, name);
8133 else
8134 result = ada_find_any_type (name);
8135
8136 return result;
8137 }
8138
8139 /* Same as above, but specify the name of the parallel type by appending
8140 SUFFIX to the name of TYPE. */
8141
8142 struct type *
8143 ada_find_parallel_type (struct type *type, const char *suffix)
8144 {
8145 char *name;
8146 const char *type_name = ada_type_name (type);
8147 int len;
8148
8149 if (type_name == NULL)
8150 return NULL;
8151
8152 len = strlen (type_name);
8153
8154 name = (char *) alloca (len + strlen (suffix) + 1);
8155
8156 strcpy (name, type_name);
8157 strcpy (name + len, suffix);
8158
8159 return ada_find_parallel_type_with_name (type, name);
8160 }
8161
8162 /* If TYPE is a variable-size record type, return the corresponding template
8163 type describing its fields. Otherwise, return NULL. */
8164
8165 static struct type *
8166 dynamic_template_type (struct type *type)
8167 {
8168 type = ada_check_typedef (type);
8169
8170 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8171 || ada_type_name (type) == NULL)
8172 return NULL;
8173 else
8174 {
8175 int len = strlen (ada_type_name (type));
8176
8177 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8178 return type;
8179 else
8180 return ada_find_parallel_type (type, "___XVE");
8181 }
8182 }
8183
8184 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8185 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8186
8187 static int
8188 is_dynamic_field (struct type *templ_type, int field_num)
8189 {
8190 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8191
8192 return name != NULL
8193 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8194 && strstr (name, "___XVL") != NULL;
8195 }
8196
8197 /* The index of the variant field of TYPE, or -1 if TYPE does not
8198 represent a variant record type. */
8199
8200 static int
8201 variant_field_index (struct type *type)
8202 {
8203 int f;
8204
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8206 return -1;
8207
8208 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8209 {
8210 if (ada_is_variant_part (type, f))
8211 return f;
8212 }
8213 return -1;
8214 }
8215
8216 /* A record type with no fields. */
8217
8218 static struct type *
8219 empty_record (struct type *templ)
8220 {
8221 struct type *type = alloc_type_copy (templ);
8222
8223 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8224 TYPE_NFIELDS (type) = 0;
8225 TYPE_FIELDS (type) = NULL;
8226 INIT_CPLUS_SPECIFIC (type);
8227 TYPE_NAME (type) = "<empty>";
8228 TYPE_TAG_NAME (type) = NULL;
8229 TYPE_LENGTH (type) = 0;
8230 return type;
8231 }
8232
8233 /* An ordinary record type (with fixed-length fields) that describes
8234 the value of type TYPE at VALADDR or ADDRESS (see comments at
8235 the beginning of this section) VAL according to GNAT conventions.
8236 DVAL0 should describe the (portion of a) record that contains any
8237 necessary discriminants. It should be NULL if value_type (VAL) is
8238 an outer-level type (i.e., as opposed to a branch of a variant.) A
8239 variant field (unless unchecked) is replaced by a particular branch
8240 of the variant.
8241
8242 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8243 length are not statically known are discarded. As a consequence,
8244 VALADDR, ADDRESS and DVAL0 are ignored.
8245
8246 NOTE: Limitations: For now, we assume that dynamic fields and
8247 variants occupy whole numbers of bytes. However, they need not be
8248 byte-aligned. */
8249
8250 struct type *
8251 ada_template_to_fixed_record_type_1 (struct type *type,
8252 const gdb_byte *valaddr,
8253 CORE_ADDR address, struct value *dval0,
8254 int keep_dynamic_fields)
8255 {
8256 struct value *mark = value_mark ();
8257 struct value *dval;
8258 struct type *rtype;
8259 int nfields, bit_len;
8260 int variant_field;
8261 long off;
8262 int fld_bit_len;
8263 int f;
8264
8265 /* Compute the number of fields in this record type that are going
8266 to be processed: unless keep_dynamic_fields, this includes only
8267 fields whose position and length are static will be processed. */
8268 if (keep_dynamic_fields)
8269 nfields = TYPE_NFIELDS (type);
8270 else
8271 {
8272 nfields = 0;
8273 while (nfields < TYPE_NFIELDS (type)
8274 && !ada_is_variant_part (type, nfields)
8275 && !is_dynamic_field (type, nfields))
8276 nfields++;
8277 }
8278
8279 rtype = alloc_type_copy (type);
8280 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8281 INIT_CPLUS_SPECIFIC (rtype);
8282 TYPE_NFIELDS (rtype) = nfields;
8283 TYPE_FIELDS (rtype) = (struct field *)
8284 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8285 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8286 TYPE_NAME (rtype) = ada_type_name (type);
8287 TYPE_TAG_NAME (rtype) = NULL;
8288 TYPE_FIXED_INSTANCE (rtype) = 1;
8289
8290 off = 0;
8291 bit_len = 0;
8292 variant_field = -1;
8293
8294 for (f = 0; f < nfields; f += 1)
8295 {
8296 off = align_value (off, field_alignment (type, f))
8297 + TYPE_FIELD_BITPOS (type, f);
8298 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8299 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8300
8301 if (ada_is_variant_part (type, f))
8302 {
8303 variant_field = f;
8304 fld_bit_len = 0;
8305 }
8306 else if (is_dynamic_field (type, f))
8307 {
8308 const gdb_byte *field_valaddr = valaddr;
8309 CORE_ADDR field_address = address;
8310 struct type *field_type =
8311 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8312
8313 if (dval0 == NULL)
8314 {
8315 /* rtype's length is computed based on the run-time
8316 value of discriminants. If the discriminants are not
8317 initialized, the type size may be completely bogus and
8318 GDB may fail to allocate a value for it. So check the
8319 size first before creating the value. */
8320 ada_ensure_varsize_limit (rtype);
8321 /* Using plain value_from_contents_and_address here
8322 causes problems because we will end up trying to
8323 resolve a type that is currently being
8324 constructed. */
8325 dval = value_from_contents_and_address_unresolved (rtype,
8326 valaddr,
8327 address);
8328 rtype = value_type (dval);
8329 }
8330 else
8331 dval = dval0;
8332
8333 /* If the type referenced by this field is an aligner type, we need
8334 to unwrap that aligner type, because its size might not be set.
8335 Keeping the aligner type would cause us to compute the wrong
8336 size for this field, impacting the offset of the all the fields
8337 that follow this one. */
8338 if (ada_is_aligner_type (field_type))
8339 {
8340 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8341
8342 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8343 field_address = cond_offset_target (field_address, field_offset);
8344 field_type = ada_aligned_type (field_type);
8345 }
8346
8347 field_valaddr = cond_offset_host (field_valaddr,
8348 off / TARGET_CHAR_BIT);
8349 field_address = cond_offset_target (field_address,
8350 off / TARGET_CHAR_BIT);
8351
8352 /* Get the fixed type of the field. Note that, in this case,
8353 we do not want to get the real type out of the tag: if
8354 the current field is the parent part of a tagged record,
8355 we will get the tag of the object. Clearly wrong: the real
8356 type of the parent is not the real type of the child. We
8357 would end up in an infinite loop. */
8358 field_type = ada_get_base_type (field_type);
8359 field_type = ada_to_fixed_type (field_type, field_valaddr,
8360 field_address, dval, 0);
8361 /* If the field size is already larger than the maximum
8362 object size, then the record itself will necessarily
8363 be larger than the maximum object size. We need to make
8364 this check now, because the size might be so ridiculously
8365 large (due to an uninitialized variable in the inferior)
8366 that it would cause an overflow when adding it to the
8367 record size. */
8368 ada_ensure_varsize_limit (field_type);
8369
8370 TYPE_FIELD_TYPE (rtype, f) = field_type;
8371 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8372 /* The multiplication can potentially overflow. But because
8373 the field length has been size-checked just above, and
8374 assuming that the maximum size is a reasonable value,
8375 an overflow should not happen in practice. So rather than
8376 adding overflow recovery code to this already complex code,
8377 we just assume that it's not going to happen. */
8378 fld_bit_len =
8379 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8380 }
8381 else
8382 {
8383 /* Note: If this field's type is a typedef, it is important
8384 to preserve the typedef layer.
8385
8386 Otherwise, we might be transforming a typedef to a fat
8387 pointer (encoding a pointer to an unconstrained array),
8388 into a basic fat pointer (encoding an unconstrained
8389 array). As both types are implemented using the same
8390 structure, the typedef is the only clue which allows us
8391 to distinguish between the two options. Stripping it
8392 would prevent us from printing this field appropriately. */
8393 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8394 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8395 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8396 fld_bit_len =
8397 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8398 else
8399 {
8400 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8401
8402 /* We need to be careful of typedefs when computing
8403 the length of our field. If this is a typedef,
8404 get the length of the target type, not the length
8405 of the typedef. */
8406 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8407 field_type = ada_typedef_target_type (field_type);
8408
8409 fld_bit_len =
8410 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8411 }
8412 }
8413 if (off + fld_bit_len > bit_len)
8414 bit_len = off + fld_bit_len;
8415 off += fld_bit_len;
8416 TYPE_LENGTH (rtype) =
8417 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8418 }
8419
8420 /* We handle the variant part, if any, at the end because of certain
8421 odd cases in which it is re-ordered so as NOT to be the last field of
8422 the record. This can happen in the presence of representation
8423 clauses. */
8424 if (variant_field >= 0)
8425 {
8426 struct type *branch_type;
8427
8428 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8429
8430 if (dval0 == NULL)
8431 {
8432 /* Using plain value_from_contents_and_address here causes
8433 problems because we will end up trying to resolve a type
8434 that is currently being constructed. */
8435 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8436 address);
8437 rtype = value_type (dval);
8438 }
8439 else
8440 dval = dval0;
8441
8442 branch_type =
8443 to_fixed_variant_branch_type
8444 (TYPE_FIELD_TYPE (type, variant_field),
8445 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8446 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8447 if (branch_type == NULL)
8448 {
8449 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8450 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8451 TYPE_NFIELDS (rtype) -= 1;
8452 }
8453 else
8454 {
8455 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8456 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8457 fld_bit_len =
8458 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8459 TARGET_CHAR_BIT;
8460 if (off + fld_bit_len > bit_len)
8461 bit_len = off + fld_bit_len;
8462 TYPE_LENGTH (rtype) =
8463 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8464 }
8465 }
8466
8467 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8468 should contain the alignment of that record, which should be a strictly
8469 positive value. If null or negative, then something is wrong, most
8470 probably in the debug info. In that case, we don't round up the size
8471 of the resulting type. If this record is not part of another structure,
8472 the current RTYPE length might be good enough for our purposes. */
8473 if (TYPE_LENGTH (type) <= 0)
8474 {
8475 if (TYPE_NAME (rtype))
8476 warning (_("Invalid type size for `%s' detected: %d."),
8477 TYPE_NAME (rtype), TYPE_LENGTH (type));
8478 else
8479 warning (_("Invalid type size for <unnamed> detected: %d."),
8480 TYPE_LENGTH (type));
8481 }
8482 else
8483 {
8484 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8485 TYPE_LENGTH (type));
8486 }
8487
8488 value_free_to_mark (mark);
8489 if (TYPE_LENGTH (rtype) > varsize_limit)
8490 error (_("record type with dynamic size is larger than varsize-limit"));
8491 return rtype;
8492 }
8493
8494 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8495 of 1. */
8496
8497 static struct type *
8498 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8499 CORE_ADDR address, struct value *dval0)
8500 {
8501 return ada_template_to_fixed_record_type_1 (type, valaddr,
8502 address, dval0, 1);
8503 }
8504
8505 /* An ordinary record type in which ___XVL-convention fields and
8506 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8507 static approximations, containing all possible fields. Uses
8508 no runtime values. Useless for use in values, but that's OK,
8509 since the results are used only for type determinations. Works on both
8510 structs and unions. Representation note: to save space, we memorize
8511 the result of this function in the TYPE_TARGET_TYPE of the
8512 template type. */
8513
8514 static struct type *
8515 template_to_static_fixed_type (struct type *type0)
8516 {
8517 struct type *type;
8518 int nfields;
8519 int f;
8520
8521 /* No need no do anything if the input type is already fixed. */
8522 if (TYPE_FIXED_INSTANCE (type0))
8523 return type0;
8524
8525 /* Likewise if we already have computed the static approximation. */
8526 if (TYPE_TARGET_TYPE (type0) != NULL)
8527 return TYPE_TARGET_TYPE (type0);
8528
8529 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8530 type = type0;
8531 nfields = TYPE_NFIELDS (type0);
8532
8533 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8534 recompute all over next time. */
8535 TYPE_TARGET_TYPE (type0) = type;
8536
8537 for (f = 0; f < nfields; f += 1)
8538 {
8539 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8540 struct type *new_type;
8541
8542 if (is_dynamic_field (type0, f))
8543 {
8544 field_type = ada_check_typedef (field_type);
8545 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8546 }
8547 else
8548 new_type = static_unwrap_type (field_type);
8549
8550 if (new_type != field_type)
8551 {
8552 /* Clone TYPE0 only the first time we get a new field type. */
8553 if (type == type0)
8554 {
8555 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8556 TYPE_CODE (type) = TYPE_CODE (type0);
8557 INIT_CPLUS_SPECIFIC (type);
8558 TYPE_NFIELDS (type) = nfields;
8559 TYPE_FIELDS (type) = (struct field *)
8560 TYPE_ALLOC (type, nfields * sizeof (struct field));
8561 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8562 sizeof (struct field) * nfields);
8563 TYPE_NAME (type) = ada_type_name (type0);
8564 TYPE_TAG_NAME (type) = NULL;
8565 TYPE_FIXED_INSTANCE (type) = 1;
8566 TYPE_LENGTH (type) = 0;
8567 }
8568 TYPE_FIELD_TYPE (type, f) = new_type;
8569 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8570 }
8571 }
8572
8573 return type;
8574 }
8575
8576 /* Given an object of type TYPE whose contents are at VALADDR and
8577 whose address in memory is ADDRESS, returns a revision of TYPE,
8578 which should be a non-dynamic-sized record, in which the variant
8579 part, if any, is replaced with the appropriate branch. Looks
8580 for discriminant values in DVAL0, which can be NULL if the record
8581 contains the necessary discriminant values. */
8582
8583 static struct type *
8584 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8585 CORE_ADDR address, struct value *dval0)
8586 {
8587 struct value *mark = value_mark ();
8588 struct value *dval;
8589 struct type *rtype;
8590 struct type *branch_type;
8591 int nfields = TYPE_NFIELDS (type);
8592 int variant_field = variant_field_index (type);
8593
8594 if (variant_field == -1)
8595 return type;
8596
8597 if (dval0 == NULL)
8598 {
8599 dval = value_from_contents_and_address (type, valaddr, address);
8600 type = value_type (dval);
8601 }
8602 else
8603 dval = dval0;
8604
8605 rtype = alloc_type_copy (type);
8606 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8607 INIT_CPLUS_SPECIFIC (rtype);
8608 TYPE_NFIELDS (rtype) = nfields;
8609 TYPE_FIELDS (rtype) =
8610 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8611 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8612 sizeof (struct field) * nfields);
8613 TYPE_NAME (rtype) = ada_type_name (type);
8614 TYPE_TAG_NAME (rtype) = NULL;
8615 TYPE_FIXED_INSTANCE (rtype) = 1;
8616 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8617
8618 branch_type = to_fixed_variant_branch_type
8619 (TYPE_FIELD_TYPE (type, variant_field),
8620 cond_offset_host (valaddr,
8621 TYPE_FIELD_BITPOS (type, variant_field)
8622 / TARGET_CHAR_BIT),
8623 cond_offset_target (address,
8624 TYPE_FIELD_BITPOS (type, variant_field)
8625 / TARGET_CHAR_BIT), dval);
8626 if (branch_type == NULL)
8627 {
8628 int f;
8629
8630 for (f = variant_field + 1; f < nfields; f += 1)
8631 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8632 TYPE_NFIELDS (rtype) -= 1;
8633 }
8634 else
8635 {
8636 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8637 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8638 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8639 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8640 }
8641 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8642
8643 value_free_to_mark (mark);
8644 return rtype;
8645 }
8646
8647 /* An ordinary record type (with fixed-length fields) that describes
8648 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8649 beginning of this section]. Any necessary discriminants' values
8650 should be in DVAL, a record value; it may be NULL if the object
8651 at ADDR itself contains any necessary discriminant values.
8652 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8653 values from the record are needed. Except in the case that DVAL,
8654 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8655 unchecked) is replaced by a particular branch of the variant.
8656
8657 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8658 is questionable and may be removed. It can arise during the
8659 processing of an unconstrained-array-of-record type where all the
8660 variant branches have exactly the same size. This is because in
8661 such cases, the compiler does not bother to use the XVS convention
8662 when encoding the record. I am currently dubious of this
8663 shortcut and suspect the compiler should be altered. FIXME. */
8664
8665 static struct type *
8666 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8667 CORE_ADDR address, struct value *dval)
8668 {
8669 struct type *templ_type;
8670
8671 if (TYPE_FIXED_INSTANCE (type0))
8672 return type0;
8673
8674 templ_type = dynamic_template_type (type0);
8675
8676 if (templ_type != NULL)
8677 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8678 else if (variant_field_index (type0) >= 0)
8679 {
8680 if (dval == NULL && valaddr == NULL && address == 0)
8681 return type0;
8682 return to_record_with_fixed_variant_part (type0, valaddr, address,
8683 dval);
8684 }
8685 else
8686 {
8687 TYPE_FIXED_INSTANCE (type0) = 1;
8688 return type0;
8689 }
8690
8691 }
8692
8693 /* An ordinary record type (with fixed-length fields) that describes
8694 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8695 union type. Any necessary discriminants' values should be in DVAL,
8696 a record value. That is, this routine selects the appropriate
8697 branch of the union at ADDR according to the discriminant value
8698 indicated in the union's type name. Returns VAR_TYPE0 itself if
8699 it represents a variant subject to a pragma Unchecked_Union. */
8700
8701 static struct type *
8702 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8703 CORE_ADDR address, struct value *dval)
8704 {
8705 int which;
8706 struct type *templ_type;
8707 struct type *var_type;
8708
8709 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8710 var_type = TYPE_TARGET_TYPE (var_type0);
8711 else
8712 var_type = var_type0;
8713
8714 templ_type = ada_find_parallel_type (var_type, "___XVU");
8715
8716 if (templ_type != NULL)
8717 var_type = templ_type;
8718
8719 if (is_unchecked_variant (var_type, value_type (dval)))
8720 return var_type0;
8721 which =
8722 ada_which_variant_applies (var_type,
8723 value_type (dval), value_contents (dval));
8724
8725 if (which < 0)
8726 return empty_record (var_type);
8727 else if (is_dynamic_field (var_type, which))
8728 return to_fixed_record_type
8729 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8730 valaddr, address, dval);
8731 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8732 return
8733 to_fixed_record_type
8734 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8735 else
8736 return TYPE_FIELD_TYPE (var_type, which);
8737 }
8738
8739 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8740 ENCODING_TYPE, a type following the GNAT conventions for discrete
8741 type encodings, only carries redundant information. */
8742
8743 static int
8744 ada_is_redundant_range_encoding (struct type *range_type,
8745 struct type *encoding_type)
8746 {
8747 struct type *fixed_range_type;
8748 const char *bounds_str;
8749 int n;
8750 LONGEST lo, hi;
8751
8752 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8753
8754 if (TYPE_CODE (get_base_type (range_type))
8755 != TYPE_CODE (get_base_type (encoding_type)))
8756 {
8757 /* The compiler probably used a simple base type to describe
8758 the range type instead of the range's actual base type,
8759 expecting us to get the real base type from the encoding
8760 anyway. In this situation, the encoding cannot be ignored
8761 as redundant. */
8762 return 0;
8763 }
8764
8765 if (is_dynamic_type (range_type))
8766 return 0;
8767
8768 if (TYPE_NAME (encoding_type) == NULL)
8769 return 0;
8770
8771 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8772 if (bounds_str == NULL)
8773 return 0;
8774
8775 n = 8; /* Skip "___XDLU_". */
8776 if (!ada_scan_number (bounds_str, n, &lo, &n))
8777 return 0;
8778 if (TYPE_LOW_BOUND (range_type) != lo)
8779 return 0;
8780
8781 n += 2; /* Skip the "__" separator between the two bounds. */
8782 if (!ada_scan_number (bounds_str, n, &hi, &n))
8783 return 0;
8784 if (TYPE_HIGH_BOUND (range_type) != hi)
8785 return 0;
8786
8787 return 1;
8788 }
8789
8790 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8791 a type following the GNAT encoding for describing array type
8792 indices, only carries redundant information. */
8793
8794 static int
8795 ada_is_redundant_index_type_desc (struct type *array_type,
8796 struct type *desc_type)
8797 {
8798 struct type *this_layer = check_typedef (array_type);
8799 int i;
8800
8801 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8802 {
8803 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8804 TYPE_FIELD_TYPE (desc_type, i)))
8805 return 0;
8806 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8807 }
8808
8809 return 1;
8810 }
8811
8812 /* Assuming that TYPE0 is an array type describing the type of a value
8813 at ADDR, and that DVAL describes a record containing any
8814 discriminants used in TYPE0, returns a type for the value that
8815 contains no dynamic components (that is, no components whose sizes
8816 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8817 true, gives an error message if the resulting type's size is over
8818 varsize_limit. */
8819
8820 static struct type *
8821 to_fixed_array_type (struct type *type0, struct value *dval,
8822 int ignore_too_big)
8823 {
8824 struct type *index_type_desc;
8825 struct type *result;
8826 int constrained_packed_array_p;
8827 static const char *xa_suffix = "___XA";
8828
8829 type0 = ada_check_typedef (type0);
8830 if (TYPE_FIXED_INSTANCE (type0))
8831 return type0;
8832
8833 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8834 if (constrained_packed_array_p)
8835 type0 = decode_constrained_packed_array_type (type0);
8836
8837 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8838
8839 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8840 encoding suffixed with 'P' may still be generated. If so,
8841 it should be used to find the XA type. */
8842
8843 if (index_type_desc == NULL)
8844 {
8845 const char *type_name = ada_type_name (type0);
8846
8847 if (type_name != NULL)
8848 {
8849 const int len = strlen (type_name);
8850 char *name = (char *) alloca (len + strlen (xa_suffix));
8851
8852 if (type_name[len - 1] == 'P')
8853 {
8854 strcpy (name, type_name);
8855 strcpy (name + len - 1, xa_suffix);
8856 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8857 }
8858 }
8859 }
8860
8861 ada_fixup_array_indexes_type (index_type_desc);
8862 if (index_type_desc != NULL
8863 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8864 {
8865 /* Ignore this ___XA parallel type, as it does not bring any
8866 useful information. This allows us to avoid creating fixed
8867 versions of the array's index types, which would be identical
8868 to the original ones. This, in turn, can also help avoid
8869 the creation of fixed versions of the array itself. */
8870 index_type_desc = NULL;
8871 }
8872
8873 if (index_type_desc == NULL)
8874 {
8875 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8876
8877 /* NOTE: elt_type---the fixed version of elt_type0---should never
8878 depend on the contents of the array in properly constructed
8879 debugging data. */
8880 /* Create a fixed version of the array element type.
8881 We're not providing the address of an element here,
8882 and thus the actual object value cannot be inspected to do
8883 the conversion. This should not be a problem, since arrays of
8884 unconstrained objects are not allowed. In particular, all
8885 the elements of an array of a tagged type should all be of
8886 the same type specified in the debugging info. No need to
8887 consult the object tag. */
8888 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8889
8890 /* Make sure we always create a new array type when dealing with
8891 packed array types, since we're going to fix-up the array
8892 type length and element bitsize a little further down. */
8893 if (elt_type0 == elt_type && !constrained_packed_array_p)
8894 result = type0;
8895 else
8896 result = create_array_type (alloc_type_copy (type0),
8897 elt_type, TYPE_INDEX_TYPE (type0));
8898 }
8899 else
8900 {
8901 int i;
8902 struct type *elt_type0;
8903
8904 elt_type0 = type0;
8905 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8906 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8907
8908 /* NOTE: result---the fixed version of elt_type0---should never
8909 depend on the contents of the array in properly constructed
8910 debugging data. */
8911 /* Create a fixed version of the array element type.
8912 We're not providing the address of an element here,
8913 and thus the actual object value cannot be inspected to do
8914 the conversion. This should not be a problem, since arrays of
8915 unconstrained objects are not allowed. In particular, all
8916 the elements of an array of a tagged type should all be of
8917 the same type specified in the debugging info. No need to
8918 consult the object tag. */
8919 result =
8920 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8921
8922 elt_type0 = type0;
8923 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8924 {
8925 struct type *range_type =
8926 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8927
8928 result = create_array_type (alloc_type_copy (elt_type0),
8929 result, range_type);
8930 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8931 }
8932 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8933 error (_("array type with dynamic size is larger than varsize-limit"));
8934 }
8935
8936 /* We want to preserve the type name. This can be useful when
8937 trying to get the type name of a value that has already been
8938 printed (for instance, if the user did "print VAR; whatis $". */
8939 TYPE_NAME (result) = TYPE_NAME (type0);
8940
8941 if (constrained_packed_array_p)
8942 {
8943 /* So far, the resulting type has been created as if the original
8944 type was a regular (non-packed) array type. As a result, the
8945 bitsize of the array elements needs to be set again, and the array
8946 length needs to be recomputed based on that bitsize. */
8947 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8948 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8949
8950 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8951 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8952 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8953 TYPE_LENGTH (result)++;
8954 }
8955
8956 TYPE_FIXED_INSTANCE (result) = 1;
8957 return result;
8958 }
8959
8960
8961 /* A standard type (containing no dynamically sized components)
8962 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8963 DVAL describes a record containing any discriminants used in TYPE0,
8964 and may be NULL if there are none, or if the object of type TYPE at
8965 ADDRESS or in VALADDR contains these discriminants.
8966
8967 If CHECK_TAG is not null, in the case of tagged types, this function
8968 attempts to locate the object's tag and use it to compute the actual
8969 type. However, when ADDRESS is null, we cannot use it to determine the
8970 location of the tag, and therefore compute the tagged type's actual type.
8971 So we return the tagged type without consulting the tag. */
8972
8973 static struct type *
8974 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8975 CORE_ADDR address, struct value *dval, int check_tag)
8976 {
8977 type = ada_check_typedef (type);
8978 switch (TYPE_CODE (type))
8979 {
8980 default:
8981 return type;
8982 case TYPE_CODE_STRUCT:
8983 {
8984 struct type *static_type = to_static_fixed_type (type);
8985 struct type *fixed_record_type =
8986 to_fixed_record_type (type, valaddr, address, NULL);
8987
8988 /* If STATIC_TYPE is a tagged type and we know the object's address,
8989 then we can determine its tag, and compute the object's actual
8990 type from there. Note that we have to use the fixed record
8991 type (the parent part of the record may have dynamic fields
8992 and the way the location of _tag is expressed may depend on
8993 them). */
8994
8995 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8996 {
8997 struct value *tag =
8998 value_tag_from_contents_and_address
8999 (fixed_record_type,
9000 valaddr,
9001 address);
9002 struct type *real_type = type_from_tag (tag);
9003 struct value *obj =
9004 value_from_contents_and_address (fixed_record_type,
9005 valaddr,
9006 address);
9007 fixed_record_type = value_type (obj);
9008 if (real_type != NULL)
9009 return to_fixed_record_type
9010 (real_type, NULL,
9011 value_address (ada_tag_value_at_base_address (obj)), NULL);
9012 }
9013
9014 /* Check to see if there is a parallel ___XVZ variable.
9015 If there is, then it provides the actual size of our type. */
9016 else if (ada_type_name (fixed_record_type) != NULL)
9017 {
9018 const char *name = ada_type_name (fixed_record_type);
9019 char *xvz_name
9020 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9021 int xvz_found = 0;
9022 LONGEST size;
9023
9024 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9025 size = get_int_var_value (xvz_name, &xvz_found);
9026 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9027 {
9028 fixed_record_type = copy_type (fixed_record_type);
9029 TYPE_LENGTH (fixed_record_type) = size;
9030
9031 /* The FIXED_RECORD_TYPE may have be a stub. We have
9032 observed this when the debugging info is STABS, and
9033 apparently it is something that is hard to fix.
9034
9035 In practice, we don't need the actual type definition
9036 at all, because the presence of the XVZ variable allows us
9037 to assume that there must be a XVS type as well, which we
9038 should be able to use later, when we need the actual type
9039 definition.
9040
9041 In the meantime, pretend that the "fixed" type we are
9042 returning is NOT a stub, because this can cause trouble
9043 when using this type to create new types targeting it.
9044 Indeed, the associated creation routines often check
9045 whether the target type is a stub and will try to replace
9046 it, thus using a type with the wrong size. This, in turn,
9047 might cause the new type to have the wrong size too.
9048 Consider the case of an array, for instance, where the size
9049 of the array is computed from the number of elements in
9050 our array multiplied by the size of its element. */
9051 TYPE_STUB (fixed_record_type) = 0;
9052 }
9053 }
9054 return fixed_record_type;
9055 }
9056 case TYPE_CODE_ARRAY:
9057 return to_fixed_array_type (type, dval, 1);
9058 case TYPE_CODE_UNION:
9059 if (dval == NULL)
9060 return type;
9061 else
9062 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9063 }
9064 }
9065
9066 /* The same as ada_to_fixed_type_1, except that it preserves the type
9067 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9068
9069 The typedef layer needs be preserved in order to differentiate between
9070 arrays and array pointers when both types are implemented using the same
9071 fat pointer. In the array pointer case, the pointer is encoded as
9072 a typedef of the pointer type. For instance, considering:
9073
9074 type String_Access is access String;
9075 S1 : String_Access := null;
9076
9077 To the debugger, S1 is defined as a typedef of type String. But
9078 to the user, it is a pointer. So if the user tries to print S1,
9079 we should not dereference the array, but print the array address
9080 instead.
9081
9082 If we didn't preserve the typedef layer, we would lose the fact that
9083 the type is to be presented as a pointer (needs de-reference before
9084 being printed). And we would also use the source-level type name. */
9085
9086 struct type *
9087 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9088 CORE_ADDR address, struct value *dval, int check_tag)
9089
9090 {
9091 struct type *fixed_type =
9092 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9093
9094 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9095 then preserve the typedef layer.
9096
9097 Implementation note: We can only check the main-type portion of
9098 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9099 from TYPE now returns a type that has the same instance flags
9100 as TYPE. For instance, if TYPE is a "typedef const", and its
9101 target type is a "struct", then the typedef elimination will return
9102 a "const" version of the target type. See check_typedef for more
9103 details about how the typedef layer elimination is done.
9104
9105 brobecker/2010-11-19: It seems to me that the only case where it is
9106 useful to preserve the typedef layer is when dealing with fat pointers.
9107 Perhaps, we could add a check for that and preserve the typedef layer
9108 only in that situation. But this seems unecessary so far, probably
9109 because we call check_typedef/ada_check_typedef pretty much everywhere.
9110 */
9111 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9112 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9113 == TYPE_MAIN_TYPE (fixed_type)))
9114 return type;
9115
9116 return fixed_type;
9117 }
9118
9119 /* A standard (static-sized) type corresponding as well as possible to
9120 TYPE0, but based on no runtime data. */
9121
9122 static struct type *
9123 to_static_fixed_type (struct type *type0)
9124 {
9125 struct type *type;
9126
9127 if (type0 == NULL)
9128 return NULL;
9129
9130 if (TYPE_FIXED_INSTANCE (type0))
9131 return type0;
9132
9133 type0 = ada_check_typedef (type0);
9134
9135 switch (TYPE_CODE (type0))
9136 {
9137 default:
9138 return type0;
9139 case TYPE_CODE_STRUCT:
9140 type = dynamic_template_type (type0);
9141 if (type != NULL)
9142 return template_to_static_fixed_type (type);
9143 else
9144 return template_to_static_fixed_type (type0);
9145 case TYPE_CODE_UNION:
9146 type = ada_find_parallel_type (type0, "___XVU");
9147 if (type != NULL)
9148 return template_to_static_fixed_type (type);
9149 else
9150 return template_to_static_fixed_type (type0);
9151 }
9152 }
9153
9154 /* A static approximation of TYPE with all type wrappers removed. */
9155
9156 static struct type *
9157 static_unwrap_type (struct type *type)
9158 {
9159 if (ada_is_aligner_type (type))
9160 {
9161 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9162 if (ada_type_name (type1) == NULL)
9163 TYPE_NAME (type1) = ada_type_name (type);
9164
9165 return static_unwrap_type (type1);
9166 }
9167 else
9168 {
9169 struct type *raw_real_type = ada_get_base_type (type);
9170
9171 if (raw_real_type == type)
9172 return type;
9173 else
9174 return to_static_fixed_type (raw_real_type);
9175 }
9176 }
9177
9178 /* In some cases, incomplete and private types require
9179 cross-references that are not resolved as records (for example,
9180 type Foo;
9181 type FooP is access Foo;
9182 V: FooP;
9183 type Foo is array ...;
9184 ). In these cases, since there is no mechanism for producing
9185 cross-references to such types, we instead substitute for FooP a
9186 stub enumeration type that is nowhere resolved, and whose tag is
9187 the name of the actual type. Call these types "non-record stubs". */
9188
9189 /* A type equivalent to TYPE that is not a non-record stub, if one
9190 exists, otherwise TYPE. */
9191
9192 struct type *
9193 ada_check_typedef (struct type *type)
9194 {
9195 if (type == NULL)
9196 return NULL;
9197
9198 /* If our type is a typedef type of a fat pointer, then we're done.
9199 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9200 what allows us to distinguish between fat pointers that represent
9201 array types, and fat pointers that represent array access types
9202 (in both cases, the compiler implements them as fat pointers). */
9203 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9204 && is_thick_pntr (ada_typedef_target_type (type)))
9205 return type;
9206
9207 type = check_typedef (type);
9208 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9209 || !TYPE_STUB (type)
9210 || TYPE_TAG_NAME (type) == NULL)
9211 return type;
9212 else
9213 {
9214 const char *name = TYPE_TAG_NAME (type);
9215 struct type *type1 = ada_find_any_type (name);
9216
9217 if (type1 == NULL)
9218 return type;
9219
9220 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9221 stubs pointing to arrays, as we don't create symbols for array
9222 types, only for the typedef-to-array types). If that's the case,
9223 strip the typedef layer. */
9224 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9225 type1 = ada_check_typedef (type1);
9226
9227 return type1;
9228 }
9229 }
9230
9231 /* A value representing the data at VALADDR/ADDRESS as described by
9232 type TYPE0, but with a standard (static-sized) type that correctly
9233 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9234 type, then return VAL0 [this feature is simply to avoid redundant
9235 creation of struct values]. */
9236
9237 static struct value *
9238 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9239 struct value *val0)
9240 {
9241 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9242
9243 if (type == type0 && val0 != NULL)
9244 return val0;
9245 else
9246 return value_from_contents_and_address (type, 0, address);
9247 }
9248
9249 /* A value representing VAL, but with a standard (static-sized) type
9250 that correctly describes it. Does not necessarily create a new
9251 value. */
9252
9253 struct value *
9254 ada_to_fixed_value (struct value *val)
9255 {
9256 val = unwrap_value (val);
9257 val = ada_to_fixed_value_create (value_type (val),
9258 value_address (val),
9259 val);
9260 return val;
9261 }
9262 \f
9263
9264 /* Attributes */
9265
9266 /* Table mapping attribute numbers to names.
9267 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9268
9269 static const char *attribute_names[] = {
9270 "<?>",
9271
9272 "first",
9273 "last",
9274 "length",
9275 "image",
9276 "max",
9277 "min",
9278 "modulus",
9279 "pos",
9280 "size",
9281 "tag",
9282 "val",
9283 0
9284 };
9285
9286 const char *
9287 ada_attribute_name (enum exp_opcode n)
9288 {
9289 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9290 return attribute_names[n - OP_ATR_FIRST + 1];
9291 else
9292 return attribute_names[0];
9293 }
9294
9295 /* Evaluate the 'POS attribute applied to ARG. */
9296
9297 static LONGEST
9298 pos_atr (struct value *arg)
9299 {
9300 struct value *val = coerce_ref (arg);
9301 struct type *type = value_type (val);
9302 LONGEST result;
9303
9304 if (!discrete_type_p (type))
9305 error (_("'POS only defined on discrete types"));
9306
9307 if (!discrete_position (type, value_as_long (val), &result))
9308 error (_("enumeration value is invalid: can't find 'POS"));
9309
9310 return result;
9311 }
9312
9313 static struct value *
9314 value_pos_atr (struct type *type, struct value *arg)
9315 {
9316 return value_from_longest (type, pos_atr (arg));
9317 }
9318
9319 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9320
9321 static struct value *
9322 value_val_atr (struct type *type, struct value *arg)
9323 {
9324 if (!discrete_type_p (type))
9325 error (_("'VAL only defined on discrete types"));
9326 if (!integer_type_p (value_type (arg)))
9327 error (_("'VAL requires integral argument"));
9328
9329 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9330 {
9331 long pos = value_as_long (arg);
9332
9333 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9334 error (_("argument to 'VAL out of range"));
9335 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9336 }
9337 else
9338 return value_from_longest (type, value_as_long (arg));
9339 }
9340 \f
9341
9342 /* Evaluation */
9343
9344 /* True if TYPE appears to be an Ada character type.
9345 [At the moment, this is true only for Character and Wide_Character;
9346 It is a heuristic test that could stand improvement]. */
9347
9348 int
9349 ada_is_character_type (struct type *type)
9350 {
9351 const char *name;
9352
9353 /* If the type code says it's a character, then assume it really is,
9354 and don't check any further. */
9355 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9356 return 1;
9357
9358 /* Otherwise, assume it's a character type iff it is a discrete type
9359 with a known character type name. */
9360 name = ada_type_name (type);
9361 return (name != NULL
9362 && (TYPE_CODE (type) == TYPE_CODE_INT
9363 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9364 && (strcmp (name, "character") == 0
9365 || strcmp (name, "wide_character") == 0
9366 || strcmp (name, "wide_wide_character") == 0
9367 || strcmp (name, "unsigned char") == 0));
9368 }
9369
9370 /* True if TYPE appears to be an Ada string type. */
9371
9372 int
9373 ada_is_string_type (struct type *type)
9374 {
9375 type = ada_check_typedef (type);
9376 if (type != NULL
9377 && TYPE_CODE (type) != TYPE_CODE_PTR
9378 && (ada_is_simple_array_type (type)
9379 || ada_is_array_descriptor_type (type))
9380 && ada_array_arity (type) == 1)
9381 {
9382 struct type *elttype = ada_array_element_type (type, 1);
9383
9384 return ada_is_character_type (elttype);
9385 }
9386 else
9387 return 0;
9388 }
9389
9390 /* The compiler sometimes provides a parallel XVS type for a given
9391 PAD type. Normally, it is safe to follow the PAD type directly,
9392 but older versions of the compiler have a bug that causes the offset
9393 of its "F" field to be wrong. Following that field in that case
9394 would lead to incorrect results, but this can be worked around
9395 by ignoring the PAD type and using the associated XVS type instead.
9396
9397 Set to True if the debugger should trust the contents of PAD types.
9398 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9399 static int trust_pad_over_xvs = 1;
9400
9401 /* True if TYPE is a struct type introduced by the compiler to force the
9402 alignment of a value. Such types have a single field with a
9403 distinctive name. */
9404
9405 int
9406 ada_is_aligner_type (struct type *type)
9407 {
9408 type = ada_check_typedef (type);
9409
9410 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9411 return 0;
9412
9413 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9414 && TYPE_NFIELDS (type) == 1
9415 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9416 }
9417
9418 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9419 the parallel type. */
9420
9421 struct type *
9422 ada_get_base_type (struct type *raw_type)
9423 {
9424 struct type *real_type_namer;
9425 struct type *raw_real_type;
9426
9427 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9428 return raw_type;
9429
9430 if (ada_is_aligner_type (raw_type))
9431 /* The encoding specifies that we should always use the aligner type.
9432 So, even if this aligner type has an associated XVS type, we should
9433 simply ignore it.
9434
9435 According to the compiler gurus, an XVS type parallel to an aligner
9436 type may exist because of a stabs limitation. In stabs, aligner
9437 types are empty because the field has a variable-sized type, and
9438 thus cannot actually be used as an aligner type. As a result,
9439 we need the associated parallel XVS type to decode the type.
9440 Since the policy in the compiler is to not change the internal
9441 representation based on the debugging info format, we sometimes
9442 end up having a redundant XVS type parallel to the aligner type. */
9443 return raw_type;
9444
9445 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9446 if (real_type_namer == NULL
9447 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9448 || TYPE_NFIELDS (real_type_namer) != 1)
9449 return raw_type;
9450
9451 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9452 {
9453 /* This is an older encoding form where the base type needs to be
9454 looked up by name. We prefer the newer enconding because it is
9455 more efficient. */
9456 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9457 if (raw_real_type == NULL)
9458 return raw_type;
9459 else
9460 return raw_real_type;
9461 }
9462
9463 /* The field in our XVS type is a reference to the base type. */
9464 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9465 }
9466
9467 /* The type of value designated by TYPE, with all aligners removed. */
9468
9469 struct type *
9470 ada_aligned_type (struct type *type)
9471 {
9472 if (ada_is_aligner_type (type))
9473 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9474 else
9475 return ada_get_base_type (type);
9476 }
9477
9478
9479 /* The address of the aligned value in an object at address VALADDR
9480 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9481
9482 const gdb_byte *
9483 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9484 {
9485 if (ada_is_aligner_type (type))
9486 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9487 valaddr +
9488 TYPE_FIELD_BITPOS (type,
9489 0) / TARGET_CHAR_BIT);
9490 else
9491 return valaddr;
9492 }
9493
9494
9495
9496 /* The printed representation of an enumeration literal with encoded
9497 name NAME. The value is good to the next call of ada_enum_name. */
9498 const char *
9499 ada_enum_name (const char *name)
9500 {
9501 static char *result;
9502 static size_t result_len = 0;
9503 const char *tmp;
9504
9505 /* First, unqualify the enumeration name:
9506 1. Search for the last '.' character. If we find one, then skip
9507 all the preceding characters, the unqualified name starts
9508 right after that dot.
9509 2. Otherwise, we may be debugging on a target where the compiler
9510 translates dots into "__". Search forward for double underscores,
9511 but stop searching when we hit an overloading suffix, which is
9512 of the form "__" followed by digits. */
9513
9514 tmp = strrchr (name, '.');
9515 if (tmp != NULL)
9516 name = tmp + 1;
9517 else
9518 {
9519 while ((tmp = strstr (name, "__")) != NULL)
9520 {
9521 if (isdigit (tmp[2]))
9522 break;
9523 else
9524 name = tmp + 2;
9525 }
9526 }
9527
9528 if (name[0] == 'Q')
9529 {
9530 int v;
9531
9532 if (name[1] == 'U' || name[1] == 'W')
9533 {
9534 if (sscanf (name + 2, "%x", &v) != 1)
9535 return name;
9536 }
9537 else
9538 return name;
9539
9540 GROW_VECT (result, result_len, 16);
9541 if (isascii (v) && isprint (v))
9542 xsnprintf (result, result_len, "'%c'", v);
9543 else if (name[1] == 'U')
9544 xsnprintf (result, result_len, "[\"%02x\"]", v);
9545 else
9546 xsnprintf (result, result_len, "[\"%04x\"]", v);
9547
9548 return result;
9549 }
9550 else
9551 {
9552 tmp = strstr (name, "__");
9553 if (tmp == NULL)
9554 tmp = strstr (name, "$");
9555 if (tmp != NULL)
9556 {
9557 GROW_VECT (result, result_len, tmp - name + 1);
9558 strncpy (result, name, tmp - name);
9559 result[tmp - name] = '\0';
9560 return result;
9561 }
9562
9563 return name;
9564 }
9565 }
9566
9567 /* Evaluate the subexpression of EXP starting at *POS as for
9568 evaluate_type, updating *POS to point just past the evaluated
9569 expression. */
9570
9571 static struct value *
9572 evaluate_subexp_type (struct expression *exp, int *pos)
9573 {
9574 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9575 }
9576
9577 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9578 value it wraps. */
9579
9580 static struct value *
9581 unwrap_value (struct value *val)
9582 {
9583 struct type *type = ada_check_typedef (value_type (val));
9584
9585 if (ada_is_aligner_type (type))
9586 {
9587 struct value *v = ada_value_struct_elt (val, "F", 0);
9588 struct type *val_type = ada_check_typedef (value_type (v));
9589
9590 if (ada_type_name (val_type) == NULL)
9591 TYPE_NAME (val_type) = ada_type_name (type);
9592
9593 return unwrap_value (v);
9594 }
9595 else
9596 {
9597 struct type *raw_real_type =
9598 ada_check_typedef (ada_get_base_type (type));
9599
9600 /* If there is no parallel XVS or XVE type, then the value is
9601 already unwrapped. Return it without further modification. */
9602 if ((type == raw_real_type)
9603 && ada_find_parallel_type (type, "___XVE") == NULL)
9604 return val;
9605
9606 return
9607 coerce_unspec_val_to_type
9608 (val, ada_to_fixed_type (raw_real_type, 0,
9609 value_address (val),
9610 NULL, 1));
9611 }
9612 }
9613
9614 static struct value *
9615 cast_to_fixed (struct type *type, struct value *arg)
9616 {
9617 LONGEST val;
9618
9619 if (type == value_type (arg))
9620 return arg;
9621 else if (ada_is_fixed_point_type (value_type (arg)))
9622 val = ada_float_to_fixed (type,
9623 ada_fixed_to_float (value_type (arg),
9624 value_as_long (arg)));
9625 else
9626 {
9627 DOUBLEST argd = value_as_double (arg);
9628
9629 val = ada_float_to_fixed (type, argd);
9630 }
9631
9632 return value_from_longest (type, val);
9633 }
9634
9635 static struct value *
9636 cast_from_fixed (struct type *type, struct value *arg)
9637 {
9638 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9639 value_as_long (arg));
9640
9641 return value_from_double (type, val);
9642 }
9643
9644 /* Given two array types T1 and T2, return nonzero iff both arrays
9645 contain the same number of elements. */
9646
9647 static int
9648 ada_same_array_size_p (struct type *t1, struct type *t2)
9649 {
9650 LONGEST lo1, hi1, lo2, hi2;
9651
9652 /* Get the array bounds in order to verify that the size of
9653 the two arrays match. */
9654 if (!get_array_bounds (t1, &lo1, &hi1)
9655 || !get_array_bounds (t2, &lo2, &hi2))
9656 error (_("unable to determine array bounds"));
9657
9658 /* To make things easier for size comparison, normalize a bit
9659 the case of empty arrays by making sure that the difference
9660 between upper bound and lower bound is always -1. */
9661 if (lo1 > hi1)
9662 hi1 = lo1 - 1;
9663 if (lo2 > hi2)
9664 hi2 = lo2 - 1;
9665
9666 return (hi1 - lo1 == hi2 - lo2);
9667 }
9668
9669 /* Assuming that VAL is an array of integrals, and TYPE represents
9670 an array with the same number of elements, but with wider integral
9671 elements, return an array "casted" to TYPE. In practice, this
9672 means that the returned array is built by casting each element
9673 of the original array into TYPE's (wider) element type. */
9674
9675 static struct value *
9676 ada_promote_array_of_integrals (struct type *type, struct value *val)
9677 {
9678 struct type *elt_type = TYPE_TARGET_TYPE (type);
9679 LONGEST lo, hi;
9680 struct value *res;
9681 LONGEST i;
9682
9683 /* Verify that both val and type are arrays of scalars, and
9684 that the size of val's elements is smaller than the size
9685 of type's element. */
9686 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9687 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9688 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9689 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9690 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9691 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9692
9693 if (!get_array_bounds (type, &lo, &hi))
9694 error (_("unable to determine array bounds"));
9695
9696 res = allocate_value (type);
9697
9698 /* Promote each array element. */
9699 for (i = 0; i < hi - lo + 1; i++)
9700 {
9701 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9702
9703 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9704 value_contents_all (elt), TYPE_LENGTH (elt_type));
9705 }
9706
9707 return res;
9708 }
9709
9710 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9711 return the converted value. */
9712
9713 static struct value *
9714 coerce_for_assign (struct type *type, struct value *val)
9715 {
9716 struct type *type2 = value_type (val);
9717
9718 if (type == type2)
9719 return val;
9720
9721 type2 = ada_check_typedef (type2);
9722 type = ada_check_typedef (type);
9723
9724 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9725 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9726 {
9727 val = ada_value_ind (val);
9728 type2 = value_type (val);
9729 }
9730
9731 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9732 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9733 {
9734 if (!ada_same_array_size_p (type, type2))
9735 error (_("cannot assign arrays of different length"));
9736
9737 if (is_integral_type (TYPE_TARGET_TYPE (type))
9738 && is_integral_type (TYPE_TARGET_TYPE (type2))
9739 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9740 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9741 {
9742 /* Allow implicit promotion of the array elements to
9743 a wider type. */
9744 return ada_promote_array_of_integrals (type, val);
9745 }
9746
9747 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9748 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9749 error (_("Incompatible types in assignment"));
9750 deprecated_set_value_type (val, type);
9751 }
9752 return val;
9753 }
9754
9755 static struct value *
9756 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9757 {
9758 struct value *val;
9759 struct type *type1, *type2;
9760 LONGEST v, v1, v2;
9761
9762 arg1 = coerce_ref (arg1);
9763 arg2 = coerce_ref (arg2);
9764 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9765 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9766
9767 if (TYPE_CODE (type1) != TYPE_CODE_INT
9768 || TYPE_CODE (type2) != TYPE_CODE_INT)
9769 return value_binop (arg1, arg2, op);
9770
9771 switch (op)
9772 {
9773 case BINOP_MOD:
9774 case BINOP_DIV:
9775 case BINOP_REM:
9776 break;
9777 default:
9778 return value_binop (arg1, arg2, op);
9779 }
9780
9781 v2 = value_as_long (arg2);
9782 if (v2 == 0)
9783 error (_("second operand of %s must not be zero."), op_string (op));
9784
9785 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9786 return value_binop (arg1, arg2, op);
9787
9788 v1 = value_as_long (arg1);
9789 switch (op)
9790 {
9791 case BINOP_DIV:
9792 v = v1 / v2;
9793 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9794 v += v > 0 ? -1 : 1;
9795 break;
9796 case BINOP_REM:
9797 v = v1 % v2;
9798 if (v * v1 < 0)
9799 v -= v2;
9800 break;
9801 default:
9802 /* Should not reach this point. */
9803 v = 0;
9804 }
9805
9806 val = allocate_value (type1);
9807 store_unsigned_integer (value_contents_raw (val),
9808 TYPE_LENGTH (value_type (val)),
9809 gdbarch_byte_order (get_type_arch (type1)), v);
9810 return val;
9811 }
9812
9813 static int
9814 ada_value_equal (struct value *arg1, struct value *arg2)
9815 {
9816 if (ada_is_direct_array_type (value_type (arg1))
9817 || ada_is_direct_array_type (value_type (arg2)))
9818 {
9819 /* Automatically dereference any array reference before
9820 we attempt to perform the comparison. */
9821 arg1 = ada_coerce_ref (arg1);
9822 arg2 = ada_coerce_ref (arg2);
9823
9824 arg1 = ada_coerce_to_simple_array (arg1);
9825 arg2 = ada_coerce_to_simple_array (arg2);
9826 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9827 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9828 error (_("Attempt to compare array with non-array"));
9829 /* FIXME: The following works only for types whose
9830 representations use all bits (no padding or undefined bits)
9831 and do not have user-defined equality. */
9832 return
9833 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9834 && memcmp (value_contents (arg1), value_contents (arg2),
9835 TYPE_LENGTH (value_type (arg1))) == 0;
9836 }
9837 return value_equal (arg1, arg2);
9838 }
9839
9840 /* Total number of component associations in the aggregate starting at
9841 index PC in EXP. Assumes that index PC is the start of an
9842 OP_AGGREGATE. */
9843
9844 static int
9845 num_component_specs (struct expression *exp, int pc)
9846 {
9847 int n, m, i;
9848
9849 m = exp->elts[pc + 1].longconst;
9850 pc += 3;
9851 n = 0;
9852 for (i = 0; i < m; i += 1)
9853 {
9854 switch (exp->elts[pc].opcode)
9855 {
9856 default:
9857 n += 1;
9858 break;
9859 case OP_CHOICES:
9860 n += exp->elts[pc + 1].longconst;
9861 break;
9862 }
9863 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9864 }
9865 return n;
9866 }
9867
9868 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9869 component of LHS (a simple array or a record), updating *POS past
9870 the expression, assuming that LHS is contained in CONTAINER. Does
9871 not modify the inferior's memory, nor does it modify LHS (unless
9872 LHS == CONTAINER). */
9873
9874 static void
9875 assign_component (struct value *container, struct value *lhs, LONGEST index,
9876 struct expression *exp, int *pos)
9877 {
9878 struct value *mark = value_mark ();
9879 struct value *elt;
9880
9881 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9882 {
9883 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9884 struct value *index_val = value_from_longest (index_type, index);
9885
9886 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9887 }
9888 else
9889 {
9890 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9891 elt = ada_to_fixed_value (elt);
9892 }
9893
9894 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9895 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9896 else
9897 value_assign_to_component (container, elt,
9898 ada_evaluate_subexp (NULL, exp, pos,
9899 EVAL_NORMAL));
9900
9901 value_free_to_mark (mark);
9902 }
9903
9904 /* Assuming that LHS represents an lvalue having a record or array
9905 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9906 of that aggregate's value to LHS, advancing *POS past the
9907 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9908 lvalue containing LHS (possibly LHS itself). Does not modify
9909 the inferior's memory, nor does it modify the contents of
9910 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9911
9912 static struct value *
9913 assign_aggregate (struct value *container,
9914 struct value *lhs, struct expression *exp,
9915 int *pos, enum noside noside)
9916 {
9917 struct type *lhs_type;
9918 int n = exp->elts[*pos+1].longconst;
9919 LONGEST low_index, high_index;
9920 int num_specs;
9921 LONGEST *indices;
9922 int max_indices, num_indices;
9923 int i;
9924
9925 *pos += 3;
9926 if (noside != EVAL_NORMAL)
9927 {
9928 for (i = 0; i < n; i += 1)
9929 ada_evaluate_subexp (NULL, exp, pos, noside);
9930 return container;
9931 }
9932
9933 container = ada_coerce_ref (container);
9934 if (ada_is_direct_array_type (value_type (container)))
9935 container = ada_coerce_to_simple_array (container);
9936 lhs = ada_coerce_ref (lhs);
9937 if (!deprecated_value_modifiable (lhs))
9938 error (_("Left operand of assignment is not a modifiable lvalue."));
9939
9940 lhs_type = value_type (lhs);
9941 if (ada_is_direct_array_type (lhs_type))
9942 {
9943 lhs = ada_coerce_to_simple_array (lhs);
9944 lhs_type = value_type (lhs);
9945 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9946 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9947 }
9948 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9949 {
9950 low_index = 0;
9951 high_index = num_visible_fields (lhs_type) - 1;
9952 }
9953 else
9954 error (_("Left-hand side must be array or record."));
9955
9956 num_specs = num_component_specs (exp, *pos - 3);
9957 max_indices = 4 * num_specs + 4;
9958 indices = XALLOCAVEC (LONGEST, max_indices);
9959 indices[0] = indices[1] = low_index - 1;
9960 indices[2] = indices[3] = high_index + 1;
9961 num_indices = 4;
9962
9963 for (i = 0; i < n; i += 1)
9964 {
9965 switch (exp->elts[*pos].opcode)
9966 {
9967 case OP_CHOICES:
9968 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9969 &num_indices, max_indices,
9970 low_index, high_index);
9971 break;
9972 case OP_POSITIONAL:
9973 aggregate_assign_positional (container, lhs, exp, pos, indices,
9974 &num_indices, max_indices,
9975 low_index, high_index);
9976 break;
9977 case OP_OTHERS:
9978 if (i != n-1)
9979 error (_("Misplaced 'others' clause"));
9980 aggregate_assign_others (container, lhs, exp, pos, indices,
9981 num_indices, low_index, high_index);
9982 break;
9983 default:
9984 error (_("Internal error: bad aggregate clause"));
9985 }
9986 }
9987
9988 return container;
9989 }
9990
9991 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9992 construct at *POS, updating *POS past the construct, given that
9993 the positions are relative to lower bound LOW, where HIGH is the
9994 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9995 updating *NUM_INDICES as needed. CONTAINER is as for
9996 assign_aggregate. */
9997 static void
9998 aggregate_assign_positional (struct value *container,
9999 struct value *lhs, struct expression *exp,
10000 int *pos, LONGEST *indices, int *num_indices,
10001 int max_indices, LONGEST low, LONGEST high)
10002 {
10003 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10004
10005 if (ind - 1 == high)
10006 warning (_("Extra components in aggregate ignored."));
10007 if (ind <= high)
10008 {
10009 add_component_interval (ind, ind, indices, num_indices, max_indices);
10010 *pos += 3;
10011 assign_component (container, lhs, ind, exp, pos);
10012 }
10013 else
10014 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10015 }
10016
10017 /* Assign into the components of LHS indexed by the OP_CHOICES
10018 construct at *POS, updating *POS past the construct, given that
10019 the allowable indices are LOW..HIGH. Record the indices assigned
10020 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10021 needed. CONTAINER is as for assign_aggregate. */
10022 static void
10023 aggregate_assign_from_choices (struct value *container,
10024 struct value *lhs, struct expression *exp,
10025 int *pos, LONGEST *indices, int *num_indices,
10026 int max_indices, LONGEST low, LONGEST high)
10027 {
10028 int j;
10029 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10030 int choice_pos, expr_pc;
10031 int is_array = ada_is_direct_array_type (value_type (lhs));
10032
10033 choice_pos = *pos += 3;
10034
10035 for (j = 0; j < n_choices; j += 1)
10036 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10037 expr_pc = *pos;
10038 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10039
10040 for (j = 0; j < n_choices; j += 1)
10041 {
10042 LONGEST lower, upper;
10043 enum exp_opcode op = exp->elts[choice_pos].opcode;
10044
10045 if (op == OP_DISCRETE_RANGE)
10046 {
10047 choice_pos += 1;
10048 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10049 EVAL_NORMAL));
10050 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10051 EVAL_NORMAL));
10052 }
10053 else if (is_array)
10054 {
10055 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10056 EVAL_NORMAL));
10057 upper = lower;
10058 }
10059 else
10060 {
10061 int ind;
10062 const char *name;
10063
10064 switch (op)
10065 {
10066 case OP_NAME:
10067 name = &exp->elts[choice_pos + 2].string;
10068 break;
10069 case OP_VAR_VALUE:
10070 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10071 break;
10072 default:
10073 error (_("Invalid record component association."));
10074 }
10075 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10076 ind = 0;
10077 if (! find_struct_field (name, value_type (lhs), 0,
10078 NULL, NULL, NULL, NULL, &ind))
10079 error (_("Unknown component name: %s."), name);
10080 lower = upper = ind;
10081 }
10082
10083 if (lower <= upper && (lower < low || upper > high))
10084 error (_("Index in component association out of bounds."));
10085
10086 add_component_interval (lower, upper, indices, num_indices,
10087 max_indices);
10088 while (lower <= upper)
10089 {
10090 int pos1;
10091
10092 pos1 = expr_pc;
10093 assign_component (container, lhs, lower, exp, &pos1);
10094 lower += 1;
10095 }
10096 }
10097 }
10098
10099 /* Assign the value of the expression in the OP_OTHERS construct in
10100 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10101 have not been previously assigned. The index intervals already assigned
10102 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10103 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10104 static void
10105 aggregate_assign_others (struct value *container,
10106 struct value *lhs, struct expression *exp,
10107 int *pos, LONGEST *indices, int num_indices,
10108 LONGEST low, LONGEST high)
10109 {
10110 int i;
10111 int expr_pc = *pos + 1;
10112
10113 for (i = 0; i < num_indices - 2; i += 2)
10114 {
10115 LONGEST ind;
10116
10117 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10118 {
10119 int localpos;
10120
10121 localpos = expr_pc;
10122 assign_component (container, lhs, ind, exp, &localpos);
10123 }
10124 }
10125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10126 }
10127
10128 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10129 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10130 modifying *SIZE as needed. It is an error if *SIZE exceeds
10131 MAX_SIZE. The resulting intervals do not overlap. */
10132 static void
10133 add_component_interval (LONGEST low, LONGEST high,
10134 LONGEST* indices, int *size, int max_size)
10135 {
10136 int i, j;
10137
10138 for (i = 0; i < *size; i += 2) {
10139 if (high >= indices[i] && low <= indices[i + 1])
10140 {
10141 int kh;
10142
10143 for (kh = i + 2; kh < *size; kh += 2)
10144 if (high < indices[kh])
10145 break;
10146 if (low < indices[i])
10147 indices[i] = low;
10148 indices[i + 1] = indices[kh - 1];
10149 if (high > indices[i + 1])
10150 indices[i + 1] = high;
10151 memcpy (indices + i + 2, indices + kh, *size - kh);
10152 *size -= kh - i - 2;
10153 return;
10154 }
10155 else if (high < indices[i])
10156 break;
10157 }
10158
10159 if (*size == max_size)
10160 error (_("Internal error: miscounted aggregate components."));
10161 *size += 2;
10162 for (j = *size-1; j >= i+2; j -= 1)
10163 indices[j] = indices[j - 2];
10164 indices[i] = low;
10165 indices[i + 1] = high;
10166 }
10167
10168 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10169 is different. */
10170
10171 static struct value *
10172 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10173 {
10174 if (type == ada_check_typedef (value_type (arg2)))
10175 return arg2;
10176
10177 if (ada_is_fixed_point_type (type))
10178 return (cast_to_fixed (type, arg2));
10179
10180 if (ada_is_fixed_point_type (value_type (arg2)))
10181 return cast_from_fixed (type, arg2);
10182
10183 return value_cast (type, arg2);
10184 }
10185
10186 /* Evaluating Ada expressions, and printing their result.
10187 ------------------------------------------------------
10188
10189 1. Introduction:
10190 ----------------
10191
10192 We usually evaluate an Ada expression in order to print its value.
10193 We also evaluate an expression in order to print its type, which
10194 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10195 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10196 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10197 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10198 similar.
10199
10200 Evaluating expressions is a little more complicated for Ada entities
10201 than it is for entities in languages such as C. The main reason for
10202 this is that Ada provides types whose definition might be dynamic.
10203 One example of such types is variant records. Or another example
10204 would be an array whose bounds can only be known at run time.
10205
10206 The following description is a general guide as to what should be
10207 done (and what should NOT be done) in order to evaluate an expression
10208 involving such types, and when. This does not cover how the semantic
10209 information is encoded by GNAT as this is covered separatly. For the
10210 document used as the reference for the GNAT encoding, see exp_dbug.ads
10211 in the GNAT sources.
10212
10213 Ideally, we should embed each part of this description next to its
10214 associated code. Unfortunately, the amount of code is so vast right
10215 now that it's hard to see whether the code handling a particular
10216 situation might be duplicated or not. One day, when the code is
10217 cleaned up, this guide might become redundant with the comments
10218 inserted in the code, and we might want to remove it.
10219
10220 2. ``Fixing'' an Entity, the Simple Case:
10221 -----------------------------------------
10222
10223 When evaluating Ada expressions, the tricky issue is that they may
10224 reference entities whose type contents and size are not statically
10225 known. Consider for instance a variant record:
10226
10227 type Rec (Empty : Boolean := True) is record
10228 case Empty is
10229 when True => null;
10230 when False => Value : Integer;
10231 end case;
10232 end record;
10233 Yes : Rec := (Empty => False, Value => 1);
10234 No : Rec := (empty => True);
10235
10236 The size and contents of that record depends on the value of the
10237 descriminant (Rec.Empty). At this point, neither the debugging
10238 information nor the associated type structure in GDB are able to
10239 express such dynamic types. So what the debugger does is to create
10240 "fixed" versions of the type that applies to the specific object.
10241 We also informally refer to this opperation as "fixing" an object,
10242 which means creating its associated fixed type.
10243
10244 Example: when printing the value of variable "Yes" above, its fixed
10245 type would look like this:
10246
10247 type Rec is record
10248 Empty : Boolean;
10249 Value : Integer;
10250 end record;
10251
10252 On the other hand, if we printed the value of "No", its fixed type
10253 would become:
10254
10255 type Rec is record
10256 Empty : Boolean;
10257 end record;
10258
10259 Things become a little more complicated when trying to fix an entity
10260 with a dynamic type that directly contains another dynamic type,
10261 such as an array of variant records, for instance. There are
10262 two possible cases: Arrays, and records.
10263
10264 3. ``Fixing'' Arrays:
10265 ---------------------
10266
10267 The type structure in GDB describes an array in terms of its bounds,
10268 and the type of its elements. By design, all elements in the array
10269 have the same type and we cannot represent an array of variant elements
10270 using the current type structure in GDB. When fixing an array,
10271 we cannot fix the array element, as we would potentially need one
10272 fixed type per element of the array. As a result, the best we can do
10273 when fixing an array is to produce an array whose bounds and size
10274 are correct (allowing us to read it from memory), but without having
10275 touched its element type. Fixing each element will be done later,
10276 when (if) necessary.
10277
10278 Arrays are a little simpler to handle than records, because the same
10279 amount of memory is allocated for each element of the array, even if
10280 the amount of space actually used by each element differs from element
10281 to element. Consider for instance the following array of type Rec:
10282
10283 type Rec_Array is array (1 .. 2) of Rec;
10284
10285 The actual amount of memory occupied by each element might be different
10286 from element to element, depending on the value of their discriminant.
10287 But the amount of space reserved for each element in the array remains
10288 fixed regardless. So we simply need to compute that size using
10289 the debugging information available, from which we can then determine
10290 the array size (we multiply the number of elements of the array by
10291 the size of each element).
10292
10293 The simplest case is when we have an array of a constrained element
10294 type. For instance, consider the following type declarations:
10295
10296 type Bounded_String (Max_Size : Integer) is
10297 Length : Integer;
10298 Buffer : String (1 .. Max_Size);
10299 end record;
10300 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10301
10302 In this case, the compiler describes the array as an array of
10303 variable-size elements (identified by its XVS suffix) for which
10304 the size can be read in the parallel XVZ variable.
10305
10306 In the case of an array of an unconstrained element type, the compiler
10307 wraps the array element inside a private PAD type. This type should not
10308 be shown to the user, and must be "unwrap"'ed before printing. Note
10309 that we also use the adjective "aligner" in our code to designate
10310 these wrapper types.
10311
10312 In some cases, the size allocated for each element is statically
10313 known. In that case, the PAD type already has the correct size,
10314 and the array element should remain unfixed.
10315
10316 But there are cases when this size is not statically known.
10317 For instance, assuming that "Five" is an integer variable:
10318
10319 type Dynamic is array (1 .. Five) of Integer;
10320 type Wrapper (Has_Length : Boolean := False) is record
10321 Data : Dynamic;
10322 case Has_Length is
10323 when True => Length : Integer;
10324 when False => null;
10325 end case;
10326 end record;
10327 type Wrapper_Array is array (1 .. 2) of Wrapper;
10328
10329 Hello : Wrapper_Array := (others => (Has_Length => True,
10330 Data => (others => 17),
10331 Length => 1));
10332
10333
10334 The debugging info would describe variable Hello as being an
10335 array of a PAD type. The size of that PAD type is not statically
10336 known, but can be determined using a parallel XVZ variable.
10337 In that case, a copy of the PAD type with the correct size should
10338 be used for the fixed array.
10339
10340 3. ``Fixing'' record type objects:
10341 ----------------------------------
10342
10343 Things are slightly different from arrays in the case of dynamic
10344 record types. In this case, in order to compute the associated
10345 fixed type, we need to determine the size and offset of each of
10346 its components. This, in turn, requires us to compute the fixed
10347 type of each of these components.
10348
10349 Consider for instance the example:
10350
10351 type Bounded_String (Max_Size : Natural) is record
10352 Str : String (1 .. Max_Size);
10353 Length : Natural;
10354 end record;
10355 My_String : Bounded_String (Max_Size => 10);
10356
10357 In that case, the position of field "Length" depends on the size
10358 of field Str, which itself depends on the value of the Max_Size
10359 discriminant. In order to fix the type of variable My_String,
10360 we need to fix the type of field Str. Therefore, fixing a variant
10361 record requires us to fix each of its components.
10362
10363 However, if a component does not have a dynamic size, the component
10364 should not be fixed. In particular, fields that use a PAD type
10365 should not fixed. Here is an example where this might happen
10366 (assuming type Rec above):
10367
10368 type Container (Big : Boolean) is record
10369 First : Rec;
10370 After : Integer;
10371 case Big is
10372 when True => Another : Integer;
10373 when False => null;
10374 end case;
10375 end record;
10376 My_Container : Container := (Big => False,
10377 First => (Empty => True),
10378 After => 42);
10379
10380 In that example, the compiler creates a PAD type for component First,
10381 whose size is constant, and then positions the component After just
10382 right after it. The offset of component After is therefore constant
10383 in this case.
10384
10385 The debugger computes the position of each field based on an algorithm
10386 that uses, among other things, the actual position and size of the field
10387 preceding it. Let's now imagine that the user is trying to print
10388 the value of My_Container. If the type fixing was recursive, we would
10389 end up computing the offset of field After based on the size of the
10390 fixed version of field First. And since in our example First has
10391 only one actual field, the size of the fixed type is actually smaller
10392 than the amount of space allocated to that field, and thus we would
10393 compute the wrong offset of field After.
10394
10395 To make things more complicated, we need to watch out for dynamic
10396 components of variant records (identified by the ___XVL suffix in
10397 the component name). Even if the target type is a PAD type, the size
10398 of that type might not be statically known. So the PAD type needs
10399 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10400 we might end up with the wrong size for our component. This can be
10401 observed with the following type declarations:
10402
10403 type Octal is new Integer range 0 .. 7;
10404 type Octal_Array is array (Positive range <>) of Octal;
10405 pragma Pack (Octal_Array);
10406
10407 type Octal_Buffer (Size : Positive) is record
10408 Buffer : Octal_Array (1 .. Size);
10409 Length : Integer;
10410 end record;
10411
10412 In that case, Buffer is a PAD type whose size is unset and needs
10413 to be computed by fixing the unwrapped type.
10414
10415 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10416 ----------------------------------------------------------
10417
10418 Lastly, when should the sub-elements of an entity that remained unfixed
10419 thus far, be actually fixed?
10420
10421 The answer is: Only when referencing that element. For instance
10422 when selecting one component of a record, this specific component
10423 should be fixed at that point in time. Or when printing the value
10424 of a record, each component should be fixed before its value gets
10425 printed. Similarly for arrays, the element of the array should be
10426 fixed when printing each element of the array, or when extracting
10427 one element out of that array. On the other hand, fixing should
10428 not be performed on the elements when taking a slice of an array!
10429
10430 Note that one of the side-effects of miscomputing the offset and
10431 size of each field is that we end up also miscomputing the size
10432 of the containing type. This can have adverse results when computing
10433 the value of an entity. GDB fetches the value of an entity based
10434 on the size of its type, and thus a wrong size causes GDB to fetch
10435 the wrong amount of memory. In the case where the computed size is
10436 too small, GDB fetches too little data to print the value of our
10437 entiry. Results in this case as unpredicatble, as we usually read
10438 past the buffer containing the data =:-o. */
10439
10440 /* Implement the evaluate_exp routine in the exp_descriptor structure
10441 for the Ada language. */
10442
10443 static struct value *
10444 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10445 int *pos, enum noside noside)
10446 {
10447 enum exp_opcode op;
10448 int tem;
10449 int pc;
10450 int preeval_pos;
10451 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10452 struct type *type;
10453 int nargs, oplen;
10454 struct value **argvec;
10455
10456 pc = *pos;
10457 *pos += 1;
10458 op = exp->elts[pc].opcode;
10459
10460 switch (op)
10461 {
10462 default:
10463 *pos -= 1;
10464 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10465
10466 if (noside == EVAL_NORMAL)
10467 arg1 = unwrap_value (arg1);
10468
10469 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10470 then we need to perform the conversion manually, because
10471 evaluate_subexp_standard doesn't do it. This conversion is
10472 necessary in Ada because the different kinds of float/fixed
10473 types in Ada have different representations.
10474
10475 Similarly, we need to perform the conversion from OP_LONG
10476 ourselves. */
10477 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10478 arg1 = ada_value_cast (expect_type, arg1, noside);
10479
10480 return arg1;
10481
10482 case OP_STRING:
10483 {
10484 struct value *result;
10485
10486 *pos -= 1;
10487 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10488 /* The result type will have code OP_STRING, bashed there from
10489 OP_ARRAY. Bash it back. */
10490 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10491 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10492 return result;
10493 }
10494
10495 case UNOP_CAST:
10496 (*pos) += 2;
10497 type = exp->elts[pc + 1].type;
10498 arg1 = evaluate_subexp (type, exp, pos, noside);
10499 if (noside == EVAL_SKIP)
10500 goto nosideret;
10501 arg1 = ada_value_cast (type, arg1, noside);
10502 return arg1;
10503
10504 case UNOP_QUAL:
10505 (*pos) += 2;
10506 type = exp->elts[pc + 1].type;
10507 return ada_evaluate_subexp (type, exp, pos, noside);
10508
10509 case BINOP_ASSIGN:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10512 {
10513 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10514 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return arg1;
10516 return ada_value_assign (arg1, arg1);
10517 }
10518 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10519 except if the lhs of our assignment is a convenience variable.
10520 In the case of assigning to a convenience variable, the lhs
10521 should be exactly the result of the evaluation of the rhs. */
10522 type = value_type (arg1);
10523 if (VALUE_LVAL (arg1) == lval_internalvar)
10524 type = NULL;
10525 arg2 = evaluate_subexp (type, exp, pos, noside);
10526 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10527 return arg1;
10528 if (ada_is_fixed_point_type (value_type (arg1)))
10529 arg2 = cast_to_fixed (value_type (arg1), arg2);
10530 else if (ada_is_fixed_point_type (value_type (arg2)))
10531 error
10532 (_("Fixed-point values must be assigned to fixed-point variables"));
10533 else
10534 arg2 = coerce_for_assign (value_type (arg1), arg2);
10535 return ada_value_assign (arg1, arg2);
10536
10537 case BINOP_ADD:
10538 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10539 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10540 if (noside == EVAL_SKIP)
10541 goto nosideret;
10542 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10543 return (value_from_longest
10544 (value_type (arg1),
10545 value_as_long (arg1) + value_as_long (arg2)));
10546 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10547 return (value_from_longest
10548 (value_type (arg2),
10549 value_as_long (arg1) + value_as_long (arg2)));
10550 if ((ada_is_fixed_point_type (value_type (arg1))
10551 || ada_is_fixed_point_type (value_type (arg2)))
10552 && value_type (arg1) != value_type (arg2))
10553 error (_("Operands of fixed-point addition must have the same type"));
10554 /* Do the addition, and cast the result to the type of the first
10555 argument. We cannot cast the result to a reference type, so if
10556 ARG1 is a reference type, find its underlying type. */
10557 type = value_type (arg1);
10558 while (TYPE_CODE (type) == TYPE_CODE_REF)
10559 type = TYPE_TARGET_TYPE (type);
10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10561 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10562
10563 case BINOP_SUB:
10564 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10565 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10566 if (noside == EVAL_SKIP)
10567 goto nosideret;
10568 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10569 return (value_from_longest
10570 (value_type (arg1),
10571 value_as_long (arg1) - value_as_long (arg2)));
10572 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10573 return (value_from_longest
10574 (value_type (arg2),
10575 value_as_long (arg1) - value_as_long (arg2)));
10576 if ((ada_is_fixed_point_type (value_type (arg1))
10577 || ada_is_fixed_point_type (value_type (arg2)))
10578 && value_type (arg1) != value_type (arg2))
10579 error (_("Operands of fixed-point subtraction "
10580 "must have the same type"));
10581 /* Do the substraction, and cast the result to the type of the first
10582 argument. We cannot cast the result to a reference type, so if
10583 ARG1 is a reference type, find its underlying type. */
10584 type = value_type (arg1);
10585 while (TYPE_CODE (type) == TYPE_CODE_REF)
10586 type = TYPE_TARGET_TYPE (type);
10587 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10588 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10589
10590 case BINOP_MUL:
10591 case BINOP_DIV:
10592 case BINOP_REM:
10593 case BINOP_MOD:
10594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10595 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10596 if (noside == EVAL_SKIP)
10597 goto nosideret;
10598 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10599 {
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10601 return value_zero (value_type (arg1), not_lval);
10602 }
10603 else
10604 {
10605 type = builtin_type (exp->gdbarch)->builtin_double;
10606 if (ada_is_fixed_point_type (value_type (arg1)))
10607 arg1 = cast_from_fixed (type, arg1);
10608 if (ada_is_fixed_point_type (value_type (arg2)))
10609 arg2 = cast_from_fixed (type, arg2);
10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10611 return ada_value_binop (arg1, arg2, op);
10612 }
10613
10614 case BINOP_EQUAL:
10615 case BINOP_NOTEQUAL:
10616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10617 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10618 if (noside == EVAL_SKIP)
10619 goto nosideret;
10620 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10621 tem = 0;
10622 else
10623 {
10624 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10625 tem = ada_value_equal (arg1, arg2);
10626 }
10627 if (op == BINOP_NOTEQUAL)
10628 tem = !tem;
10629 type = language_bool_type (exp->language_defn, exp->gdbarch);
10630 return value_from_longest (type, (LONGEST) tem);
10631
10632 case UNOP_NEG:
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 if (noside == EVAL_SKIP)
10635 goto nosideret;
10636 else if (ada_is_fixed_point_type (value_type (arg1)))
10637 return value_cast (value_type (arg1), value_neg (arg1));
10638 else
10639 {
10640 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10641 return value_neg (arg1);
10642 }
10643
10644 case BINOP_LOGICAL_AND:
10645 case BINOP_LOGICAL_OR:
10646 case UNOP_LOGICAL_NOT:
10647 {
10648 struct value *val;
10649
10650 *pos -= 1;
10651 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10652 type = language_bool_type (exp->language_defn, exp->gdbarch);
10653 return value_cast (type, val);
10654 }
10655
10656 case BINOP_BITWISE_AND:
10657 case BINOP_BITWISE_IOR:
10658 case BINOP_BITWISE_XOR:
10659 {
10660 struct value *val;
10661
10662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10663 *pos = pc;
10664 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10665
10666 return value_cast (value_type (arg1), val);
10667 }
10668
10669 case OP_VAR_VALUE:
10670 *pos -= 1;
10671
10672 if (noside == EVAL_SKIP)
10673 {
10674 *pos += 4;
10675 goto nosideret;
10676 }
10677
10678 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10679 /* Only encountered when an unresolved symbol occurs in a
10680 context other than a function call, in which case, it is
10681 invalid. */
10682 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10683 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10684
10685 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10686 {
10687 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10688 /* Check to see if this is a tagged type. We also need to handle
10689 the case where the type is a reference to a tagged type, but
10690 we have to be careful to exclude pointers to tagged types.
10691 The latter should be shown as usual (as a pointer), whereas
10692 a reference should mostly be transparent to the user. */
10693 if (ada_is_tagged_type (type, 0)
10694 || (TYPE_CODE (type) == TYPE_CODE_REF
10695 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10696 {
10697 /* Tagged types are a little special in the fact that the real
10698 type is dynamic and can only be determined by inspecting the
10699 object's tag. This means that we need to get the object's
10700 value first (EVAL_NORMAL) and then extract the actual object
10701 type from its tag.
10702
10703 Note that we cannot skip the final step where we extract
10704 the object type from its tag, because the EVAL_NORMAL phase
10705 results in dynamic components being resolved into fixed ones.
10706 This can cause problems when trying to print the type
10707 description of tagged types whose parent has a dynamic size:
10708 We use the type name of the "_parent" component in order
10709 to print the name of the ancestor type in the type description.
10710 If that component had a dynamic size, the resolution into
10711 a fixed type would result in the loss of that type name,
10712 thus preventing us from printing the name of the ancestor
10713 type in the type description. */
10714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10715
10716 if (TYPE_CODE (type) != TYPE_CODE_REF)
10717 {
10718 struct type *actual_type;
10719
10720 actual_type = type_from_tag (ada_value_tag (arg1));
10721 if (actual_type == NULL)
10722 /* If, for some reason, we were unable to determine
10723 the actual type from the tag, then use the static
10724 approximation that we just computed as a fallback.
10725 This can happen if the debugging information is
10726 incomplete, for instance. */
10727 actual_type = type;
10728 return value_zero (actual_type, not_lval);
10729 }
10730 else
10731 {
10732 /* In the case of a ref, ada_coerce_ref takes care
10733 of determining the actual type. But the evaluation
10734 should return a ref as it should be valid to ask
10735 for its address; so rebuild a ref after coerce. */
10736 arg1 = ada_coerce_ref (arg1);
10737 return value_ref (arg1);
10738 }
10739 }
10740
10741 /* Records and unions for which GNAT encodings have been
10742 generated need to be statically fixed as well.
10743 Otherwise, non-static fixing produces a type where
10744 all dynamic properties are removed, which prevents "ptype"
10745 from being able to completely describe the type.
10746 For instance, a case statement in a variant record would be
10747 replaced by the relevant components based on the actual
10748 value of the discriminants. */
10749 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10750 && dynamic_template_type (type) != NULL)
10751 || (TYPE_CODE (type) == TYPE_CODE_UNION
10752 && ada_find_parallel_type (type, "___XVU") != NULL))
10753 {
10754 *pos += 4;
10755 return value_zero (to_static_fixed_type (type), not_lval);
10756 }
10757 }
10758
10759 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10760 return ada_to_fixed_value (arg1);
10761
10762 case OP_FUNCALL:
10763 (*pos) += 2;
10764
10765 /* Allocate arg vector, including space for the function to be
10766 called in argvec[0] and a terminating NULL. */
10767 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10768 argvec = XALLOCAVEC (struct value *, nargs + 2);
10769
10770 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10771 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10772 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10773 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10774 else
10775 {
10776 for (tem = 0; tem <= nargs; tem += 1)
10777 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10778 argvec[tem] = 0;
10779
10780 if (noside == EVAL_SKIP)
10781 goto nosideret;
10782 }
10783
10784 if (ada_is_constrained_packed_array_type
10785 (desc_base_type (value_type (argvec[0]))))
10786 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10787 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10788 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10789 /* This is a packed array that has already been fixed, and
10790 therefore already coerced to a simple array. Nothing further
10791 to do. */
10792 ;
10793 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10794 {
10795 /* Make sure we dereference references so that all the code below
10796 feels like it's really handling the referenced value. Wrapping
10797 types (for alignment) may be there, so make sure we strip them as
10798 well. */
10799 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10800 }
10801 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10802 && VALUE_LVAL (argvec[0]) == lval_memory)
10803 argvec[0] = value_addr (argvec[0]);
10804
10805 type = ada_check_typedef (value_type (argvec[0]));
10806
10807 /* Ada allows us to implicitly dereference arrays when subscripting
10808 them. So, if this is an array typedef (encoding use for array
10809 access types encoded as fat pointers), strip it now. */
10810 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10811 type = ada_typedef_target_type (type);
10812
10813 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10814 {
10815 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10816 {
10817 case TYPE_CODE_FUNC:
10818 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10819 break;
10820 case TYPE_CODE_ARRAY:
10821 break;
10822 case TYPE_CODE_STRUCT:
10823 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10824 argvec[0] = ada_value_ind (argvec[0]);
10825 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10826 break;
10827 default:
10828 error (_("cannot subscript or call something of type `%s'"),
10829 ada_type_name (value_type (argvec[0])));
10830 break;
10831 }
10832 }
10833
10834 switch (TYPE_CODE (type))
10835 {
10836 case TYPE_CODE_FUNC:
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 {
10839 struct type *rtype = TYPE_TARGET_TYPE (type);
10840
10841 if (TYPE_GNU_IFUNC (type))
10842 return allocate_value (TYPE_TARGET_TYPE (rtype));
10843 return allocate_value (rtype);
10844 }
10845 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10846 case TYPE_CODE_INTERNAL_FUNCTION:
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 /* We don't know anything about what the internal
10849 function might return, but we have to return
10850 something. */
10851 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10852 not_lval);
10853 else
10854 return call_internal_function (exp->gdbarch, exp->language_defn,
10855 argvec[0], nargs, argvec + 1);
10856
10857 case TYPE_CODE_STRUCT:
10858 {
10859 int arity;
10860
10861 arity = ada_array_arity (type);
10862 type = ada_array_element_type (type, nargs);
10863 if (type == NULL)
10864 error (_("cannot subscript or call a record"));
10865 if (arity != nargs)
10866 error (_("wrong number of subscripts; expecting %d"), arity);
10867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10868 return value_zero (ada_aligned_type (type), lval_memory);
10869 return
10870 unwrap_value (ada_value_subscript
10871 (argvec[0], nargs, argvec + 1));
10872 }
10873 case TYPE_CODE_ARRAY:
10874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10875 {
10876 type = ada_array_element_type (type, nargs);
10877 if (type == NULL)
10878 error (_("element type of array unknown"));
10879 else
10880 return value_zero (ada_aligned_type (type), lval_memory);
10881 }
10882 return
10883 unwrap_value (ada_value_subscript
10884 (ada_coerce_to_simple_array (argvec[0]),
10885 nargs, argvec + 1));
10886 case TYPE_CODE_PTR: /* Pointer to array */
10887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10888 {
10889 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10890 type = ada_array_element_type (type, nargs);
10891 if (type == NULL)
10892 error (_("element type of array unknown"));
10893 else
10894 return value_zero (ada_aligned_type (type), lval_memory);
10895 }
10896 return
10897 unwrap_value (ada_value_ptr_subscript (argvec[0],
10898 nargs, argvec + 1));
10899
10900 default:
10901 error (_("Attempt to index or call something other than an "
10902 "array or function"));
10903 }
10904
10905 case TERNOP_SLICE:
10906 {
10907 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 struct value *low_bound_val =
10909 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 struct value *high_bound_val =
10911 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 LONGEST low_bound;
10913 LONGEST high_bound;
10914
10915 low_bound_val = coerce_ref (low_bound_val);
10916 high_bound_val = coerce_ref (high_bound_val);
10917 low_bound = value_as_long (low_bound_val);
10918 high_bound = value_as_long (high_bound_val);
10919
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
10923 /* If this is a reference to an aligner type, then remove all
10924 the aligners. */
10925 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10926 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10927 TYPE_TARGET_TYPE (value_type (array)) =
10928 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10929
10930 if (ada_is_constrained_packed_array_type (value_type (array)))
10931 error (_("cannot slice a packed array"));
10932
10933 /* If this is a reference to an array or an array lvalue,
10934 convert to a pointer. */
10935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10936 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10937 && VALUE_LVAL (array) == lval_memory))
10938 array = value_addr (array);
10939
10940 if (noside == EVAL_AVOID_SIDE_EFFECTS
10941 && ada_is_array_descriptor_type (ada_check_typedef
10942 (value_type (array))))
10943 return empty_array (ada_type_of_array (array, 0), low_bound);
10944
10945 array = ada_coerce_to_simple_array_ptr (array);
10946
10947 /* If we have more than one level of pointer indirection,
10948 dereference the value until we get only one level. */
10949 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10950 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10951 == TYPE_CODE_PTR))
10952 array = value_ind (array);
10953
10954 /* Make sure we really do have an array type before going further,
10955 to avoid a SEGV when trying to get the index type or the target
10956 type later down the road if the debug info generated by
10957 the compiler is incorrect or incomplete. */
10958 if (!ada_is_simple_array_type (value_type (array)))
10959 error (_("cannot take slice of non-array"));
10960
10961 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10962 == TYPE_CODE_PTR)
10963 {
10964 struct type *type0 = ada_check_typedef (value_type (array));
10965
10966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10967 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10968 else
10969 {
10970 struct type *arr_type0 =
10971 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10972
10973 return ada_value_slice_from_ptr (array, arr_type0,
10974 longest_to_int (low_bound),
10975 longest_to_int (high_bound));
10976 }
10977 }
10978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10979 return array;
10980 else if (high_bound < low_bound)
10981 return empty_array (value_type (array), low_bound);
10982 else
10983 return ada_value_slice (array, longest_to_int (low_bound),
10984 longest_to_int (high_bound));
10985 }
10986
10987 case UNOP_IN_RANGE:
10988 (*pos) += 2;
10989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10990 type = check_typedef (exp->elts[pc + 1].type);
10991
10992 if (noside == EVAL_SKIP)
10993 goto nosideret;
10994
10995 switch (TYPE_CODE (type))
10996 {
10997 default:
10998 lim_warning (_("Membership test incompletely implemented; "
10999 "always returns true"));
11000 type = language_bool_type (exp->language_defn, exp->gdbarch);
11001 return value_from_longest (type, (LONGEST) 1);
11002
11003 case TYPE_CODE_RANGE:
11004 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11005 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11008 type = language_bool_type (exp->language_defn, exp->gdbarch);
11009 return
11010 value_from_longest (type,
11011 (value_less (arg1, arg3)
11012 || value_equal (arg1, arg3))
11013 && (value_less (arg2, arg1)
11014 || value_equal (arg2, arg1)));
11015 }
11016
11017 case BINOP_IN_BOUNDS:
11018 (*pos) += 2;
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11021
11022 if (noside == EVAL_SKIP)
11023 goto nosideret;
11024
11025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11026 {
11027 type = language_bool_type (exp->language_defn, exp->gdbarch);
11028 return value_zero (type, not_lval);
11029 }
11030
11031 tem = longest_to_int (exp->elts[pc + 1].longconst);
11032
11033 type = ada_index_type (value_type (arg2), tem, "range");
11034 if (!type)
11035 type = value_type (arg1);
11036
11037 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11038 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11039
11040 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11042 type = language_bool_type (exp->language_defn, exp->gdbarch);
11043 return
11044 value_from_longest (type,
11045 (value_less (arg1, arg3)
11046 || value_equal (arg1, arg3))
11047 && (value_less (arg2, arg1)
11048 || value_equal (arg2, arg1)));
11049
11050 case TERNOP_IN_RANGE:
11051 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11052 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057
11058 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11060 type = language_bool_type (exp->language_defn, exp->gdbarch);
11061 return
11062 value_from_longest (type,
11063 (value_less (arg1, arg3)
11064 || value_equal (arg1, arg3))
11065 && (value_less (arg2, arg1)
11066 || value_equal (arg2, arg1)));
11067
11068 case OP_ATR_FIRST:
11069 case OP_ATR_LAST:
11070 case OP_ATR_LENGTH:
11071 {
11072 struct type *type_arg;
11073
11074 if (exp->elts[*pos].opcode == OP_TYPE)
11075 {
11076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11077 arg1 = NULL;
11078 type_arg = check_typedef (exp->elts[pc + 2].type);
11079 }
11080 else
11081 {
11082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11083 type_arg = NULL;
11084 }
11085
11086 if (exp->elts[*pos].opcode != OP_LONG)
11087 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11088 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11089 *pos += 4;
11090
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093
11094 if (type_arg == NULL)
11095 {
11096 arg1 = ada_coerce_ref (arg1);
11097
11098 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11099 arg1 = ada_coerce_to_simple_array (arg1);
11100
11101 if (op == OP_ATR_LENGTH)
11102 type = builtin_type (exp->gdbarch)->builtin_int;
11103 else
11104 {
11105 type = ada_index_type (value_type (arg1), tem,
11106 ada_attribute_name (op));
11107 if (type == NULL)
11108 type = builtin_type (exp->gdbarch)->builtin_int;
11109 }
11110
11111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11112 return allocate_value (type);
11113
11114 switch (op)
11115 {
11116 default: /* Should never happen. */
11117 error (_("unexpected attribute encountered"));
11118 case OP_ATR_FIRST:
11119 return value_from_longest
11120 (type, ada_array_bound (arg1, tem, 0));
11121 case OP_ATR_LAST:
11122 return value_from_longest
11123 (type, ada_array_bound (arg1, tem, 1));
11124 case OP_ATR_LENGTH:
11125 return value_from_longest
11126 (type, ada_array_length (arg1, tem));
11127 }
11128 }
11129 else if (discrete_type_p (type_arg))
11130 {
11131 struct type *range_type;
11132 const char *name = ada_type_name (type_arg);
11133
11134 range_type = NULL;
11135 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11136 range_type = to_fixed_range_type (type_arg, NULL);
11137 if (range_type == NULL)
11138 range_type = type_arg;
11139 switch (op)
11140 {
11141 default:
11142 error (_("unexpected attribute encountered"));
11143 case OP_ATR_FIRST:
11144 return value_from_longest
11145 (range_type, ada_discrete_type_low_bound (range_type));
11146 case OP_ATR_LAST:
11147 return value_from_longest
11148 (range_type, ada_discrete_type_high_bound (range_type));
11149 case OP_ATR_LENGTH:
11150 error (_("the 'length attribute applies only to array types"));
11151 }
11152 }
11153 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11154 error (_("unimplemented type attribute"));
11155 else
11156 {
11157 LONGEST low, high;
11158
11159 if (ada_is_constrained_packed_array_type (type_arg))
11160 type_arg = decode_constrained_packed_array_type (type_arg);
11161
11162 if (op == OP_ATR_LENGTH)
11163 type = builtin_type (exp->gdbarch)->builtin_int;
11164 else
11165 {
11166 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11167 if (type == NULL)
11168 type = builtin_type (exp->gdbarch)->builtin_int;
11169 }
11170
11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11172 return allocate_value (type);
11173
11174 switch (op)
11175 {
11176 default:
11177 error (_("unexpected attribute encountered"));
11178 case OP_ATR_FIRST:
11179 low = ada_array_bound_from_type (type_arg, tem, 0);
11180 return value_from_longest (type, low);
11181 case OP_ATR_LAST:
11182 high = ada_array_bound_from_type (type_arg, tem, 1);
11183 return value_from_longest (type, high);
11184 case OP_ATR_LENGTH:
11185 low = ada_array_bound_from_type (type_arg, tem, 0);
11186 high = ada_array_bound_from_type (type_arg, tem, 1);
11187 return value_from_longest (type, high - low + 1);
11188 }
11189 }
11190 }
11191
11192 case OP_ATR_TAG:
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 if (noside == EVAL_SKIP)
11195 goto nosideret;
11196
11197 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 return value_zero (ada_tag_type (arg1), not_lval);
11199
11200 return ada_value_tag (arg1);
11201
11202 case OP_ATR_MIN:
11203 case OP_ATR_MAX:
11204 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
11208 goto nosideret;
11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11210 return value_zero (value_type (arg1), not_lval);
11211 else
11212 {
11213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11214 return value_binop (arg1, arg2,
11215 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11216 }
11217
11218 case OP_ATR_MODULUS:
11219 {
11220 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11221
11222 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11223 if (noside == EVAL_SKIP)
11224 goto nosideret;
11225
11226 if (!ada_is_modular_type (type_arg))
11227 error (_("'modulus must be applied to modular type"));
11228
11229 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11230 ada_modulus (type_arg));
11231 }
11232
11233
11234 case OP_ATR_POS:
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 if (noside == EVAL_SKIP)
11238 goto nosideret;
11239 type = builtin_type (exp->gdbarch)->builtin_int;
11240 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (type, not_lval);
11242 else
11243 return value_pos_atr (type, arg1);
11244
11245 case OP_ATR_SIZE:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 type = value_type (arg1);
11248
11249 /* If the argument is a reference, then dereference its type, since
11250 the user is really asking for the size of the actual object,
11251 not the size of the pointer. */
11252 if (TYPE_CODE (type) == TYPE_CODE_REF)
11253 type = TYPE_TARGET_TYPE (type);
11254
11255 if (noside == EVAL_SKIP)
11256 goto nosideret;
11257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11259 else
11260 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11261 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11262
11263 case OP_ATR_VAL:
11264 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 type = exp->elts[pc + 2].type;
11267 if (noside == EVAL_SKIP)
11268 goto nosideret;
11269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 return value_zero (type, not_lval);
11271 else
11272 return value_val_atr (type, arg1);
11273
11274 case BINOP_EXP:
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11277 if (noside == EVAL_SKIP)
11278 goto nosideret;
11279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11280 return value_zero (value_type (arg1), not_lval);
11281 else
11282 {
11283 /* For integer exponentiation operations,
11284 only promote the first argument. */
11285 if (is_integral_type (value_type (arg2)))
11286 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11287 else
11288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11289
11290 return value_binop (arg1, arg2, op);
11291 }
11292
11293 case UNOP_PLUS:
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
11296 goto nosideret;
11297 else
11298 return arg1;
11299
11300 case UNOP_ABS:
11301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11302 if (noside == EVAL_SKIP)
11303 goto nosideret;
11304 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11305 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11306 return value_neg (arg1);
11307 else
11308 return arg1;
11309
11310 case UNOP_IND:
11311 preeval_pos = *pos;
11312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11313 if (noside == EVAL_SKIP)
11314 goto nosideret;
11315 type = ada_check_typedef (value_type (arg1));
11316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11317 {
11318 if (ada_is_array_descriptor_type (type))
11319 /* GDB allows dereferencing GNAT array descriptors. */
11320 {
11321 struct type *arrType = ada_type_of_array (arg1, 0);
11322
11323 if (arrType == NULL)
11324 error (_("Attempt to dereference null array pointer."));
11325 return value_at_lazy (arrType, 0);
11326 }
11327 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11328 || TYPE_CODE (type) == TYPE_CODE_REF
11329 /* In C you can dereference an array to get the 1st elt. */
11330 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11331 {
11332 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11333 only be determined by inspecting the object's tag.
11334 This means that we need to evaluate completely the
11335 expression in order to get its type. */
11336
11337 if ((TYPE_CODE (type) == TYPE_CODE_REF
11338 || TYPE_CODE (type) == TYPE_CODE_PTR)
11339 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11340 {
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11342 EVAL_NORMAL);
11343 type = value_type (ada_value_ind (arg1));
11344 }
11345 else
11346 {
11347 type = to_static_fixed_type
11348 (ada_aligned_type
11349 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11350 }
11351 ada_ensure_varsize_limit (type);
11352 return value_zero (type, lval_memory);
11353 }
11354 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11355 {
11356 /* GDB allows dereferencing an int. */
11357 if (expect_type == NULL)
11358 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11359 lval_memory);
11360 else
11361 {
11362 expect_type =
11363 to_static_fixed_type (ada_aligned_type (expect_type));
11364 return value_zero (expect_type, lval_memory);
11365 }
11366 }
11367 else
11368 error (_("Attempt to take contents of a non-pointer value."));
11369 }
11370 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11371 type = ada_check_typedef (value_type (arg1));
11372
11373 if (TYPE_CODE (type) == TYPE_CODE_INT)
11374 /* GDB allows dereferencing an int. If we were given
11375 the expect_type, then use that as the target type.
11376 Otherwise, assume that the target type is an int. */
11377 {
11378 if (expect_type != NULL)
11379 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11380 arg1));
11381 else
11382 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11383 (CORE_ADDR) value_as_address (arg1));
11384 }
11385
11386 if (ada_is_array_descriptor_type (type))
11387 /* GDB allows dereferencing GNAT array descriptors. */
11388 return ada_coerce_to_simple_array (arg1);
11389 else
11390 return ada_value_ind (arg1);
11391
11392 case STRUCTOP_STRUCT:
11393 tem = longest_to_int (exp->elts[pc + 1].longconst);
11394 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11395 preeval_pos = *pos;
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11400 {
11401 struct type *type1 = value_type (arg1);
11402
11403 if (ada_is_tagged_type (type1, 1))
11404 {
11405 type = ada_lookup_struct_elt_type (type1,
11406 &exp->elts[pc + 2].string,
11407 1, 1, NULL);
11408
11409 /* If the field is not found, check if it exists in the
11410 extension of this object's type. This means that we
11411 need to evaluate completely the expression. */
11412
11413 if (type == NULL)
11414 {
11415 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11416 EVAL_NORMAL);
11417 arg1 = ada_value_struct_elt (arg1,
11418 &exp->elts[pc + 2].string,
11419 0);
11420 arg1 = unwrap_value (arg1);
11421 type = value_type (ada_to_fixed_value (arg1));
11422 }
11423 }
11424 else
11425 type =
11426 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11427 0, NULL);
11428
11429 return value_zero (ada_aligned_type (type), lval_memory);
11430 }
11431 else
11432 {
11433 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11434 arg1 = unwrap_value (arg1);
11435 return ada_to_fixed_value (arg1);
11436 }
11437
11438 case OP_TYPE:
11439 /* The value is not supposed to be used. This is here to make it
11440 easier to accommodate expressions that contain types. */
11441 (*pos) += 2;
11442 if (noside == EVAL_SKIP)
11443 goto nosideret;
11444 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11445 return allocate_value (exp->elts[pc + 1].type);
11446 else
11447 error (_("Attempt to use a type name as an expression"));
11448
11449 case OP_AGGREGATE:
11450 case OP_CHOICES:
11451 case OP_OTHERS:
11452 case OP_DISCRETE_RANGE:
11453 case OP_POSITIONAL:
11454 case OP_NAME:
11455 if (noside == EVAL_NORMAL)
11456 switch (op)
11457 {
11458 case OP_NAME:
11459 error (_("Undefined name, ambiguous name, or renaming used in "
11460 "component association: %s."), &exp->elts[pc+2].string);
11461 case OP_AGGREGATE:
11462 error (_("Aggregates only allowed on the right of an assignment"));
11463 default:
11464 internal_error (__FILE__, __LINE__,
11465 _("aggregate apparently mangled"));
11466 }
11467
11468 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11469 *pos += oplen - 1;
11470 for (tem = 0; tem < nargs; tem += 1)
11471 ada_evaluate_subexp (NULL, exp, pos, noside);
11472 goto nosideret;
11473 }
11474
11475 nosideret:
11476 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11477 }
11478 \f
11479
11480 /* Fixed point */
11481
11482 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11483 type name that encodes the 'small and 'delta information.
11484 Otherwise, return NULL. */
11485
11486 static const char *
11487 fixed_type_info (struct type *type)
11488 {
11489 const char *name = ada_type_name (type);
11490 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11491
11492 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11493 {
11494 const char *tail = strstr (name, "___XF_");
11495
11496 if (tail == NULL)
11497 return NULL;
11498 else
11499 return tail + 5;
11500 }
11501 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11502 return fixed_type_info (TYPE_TARGET_TYPE (type));
11503 else
11504 return NULL;
11505 }
11506
11507 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11508
11509 int
11510 ada_is_fixed_point_type (struct type *type)
11511 {
11512 return fixed_type_info (type) != NULL;
11513 }
11514
11515 /* Return non-zero iff TYPE represents a System.Address type. */
11516
11517 int
11518 ada_is_system_address_type (struct type *type)
11519 {
11520 return (TYPE_NAME (type)
11521 && strcmp (TYPE_NAME (type), "system__address") == 0);
11522 }
11523
11524 /* Assuming that TYPE is the representation of an Ada fixed-point
11525 type, return its delta, or -1 if the type is malformed and the
11526 delta cannot be determined. */
11527
11528 DOUBLEST
11529 ada_delta (struct type *type)
11530 {
11531 const char *encoding = fixed_type_info (type);
11532 DOUBLEST num, den;
11533
11534 /* Strictly speaking, num and den are encoded as integer. However,
11535 they may not fit into a long, and they will have to be converted
11536 to DOUBLEST anyway. So scan them as DOUBLEST. */
11537 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11538 &num, &den) < 2)
11539 return -1.0;
11540 else
11541 return num / den;
11542 }
11543
11544 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11545 factor ('SMALL value) associated with the type. */
11546
11547 static DOUBLEST
11548 scaling_factor (struct type *type)
11549 {
11550 const char *encoding = fixed_type_info (type);
11551 DOUBLEST num0, den0, num1, den1;
11552 int n;
11553
11554 /* Strictly speaking, num's and den's are encoded as integer. However,
11555 they may not fit into a long, and they will have to be converted
11556 to DOUBLEST anyway. So scan them as DOUBLEST. */
11557 n = sscanf (encoding,
11558 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11559 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11560 &num0, &den0, &num1, &den1);
11561
11562 if (n < 2)
11563 return 1.0;
11564 else if (n == 4)
11565 return num1 / den1;
11566 else
11567 return num0 / den0;
11568 }
11569
11570
11571 /* Assuming that X is the representation of a value of fixed-point
11572 type TYPE, return its floating-point equivalent. */
11573
11574 DOUBLEST
11575 ada_fixed_to_float (struct type *type, LONGEST x)
11576 {
11577 return (DOUBLEST) x *scaling_factor (type);
11578 }
11579
11580 /* The representation of a fixed-point value of type TYPE
11581 corresponding to the value X. */
11582
11583 LONGEST
11584 ada_float_to_fixed (struct type *type, DOUBLEST x)
11585 {
11586 return (LONGEST) (x / scaling_factor (type) + 0.5);
11587 }
11588
11589 \f
11590
11591 /* Range types */
11592
11593 /* Scan STR beginning at position K for a discriminant name, and
11594 return the value of that discriminant field of DVAL in *PX. If
11595 PNEW_K is not null, put the position of the character beyond the
11596 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11597 not alter *PX and *PNEW_K if unsuccessful. */
11598
11599 static int
11600 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11601 int *pnew_k)
11602 {
11603 static char *bound_buffer = NULL;
11604 static size_t bound_buffer_len = 0;
11605 const char *pstart, *pend, *bound;
11606 struct value *bound_val;
11607
11608 if (dval == NULL || str == NULL || str[k] == '\0')
11609 return 0;
11610
11611 pstart = str + k;
11612 pend = strstr (pstart, "__");
11613 if (pend == NULL)
11614 {
11615 bound = pstart;
11616 k += strlen (bound);
11617 }
11618 else
11619 {
11620 int len = pend - pstart;
11621
11622 /* Strip __ and beyond. */
11623 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11624 strncpy (bound_buffer, pstart, len);
11625 bound_buffer[len] = '\0';
11626
11627 bound = bound_buffer;
11628 k = pend - str;
11629 }
11630
11631 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11632 if (bound_val == NULL)
11633 return 0;
11634
11635 *px = value_as_long (bound_val);
11636 if (pnew_k != NULL)
11637 *pnew_k = k;
11638 return 1;
11639 }
11640
11641 /* Value of variable named NAME in the current environment. If
11642 no such variable found, then if ERR_MSG is null, returns 0, and
11643 otherwise causes an error with message ERR_MSG. */
11644
11645 static struct value *
11646 get_var_value (char *name, char *err_msg)
11647 {
11648 struct block_symbol *syms;
11649 int nsyms;
11650
11651 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11652 &syms);
11653
11654 if (nsyms != 1)
11655 {
11656 if (err_msg == NULL)
11657 return 0;
11658 else
11659 error (("%s"), err_msg);
11660 }
11661
11662 return value_of_variable (syms[0].symbol, syms[0].block);
11663 }
11664
11665 /* Value of integer variable named NAME in the current environment. If
11666 no such variable found, returns 0, and sets *FLAG to 0. If
11667 successful, sets *FLAG to 1. */
11668
11669 LONGEST
11670 get_int_var_value (char *name, int *flag)
11671 {
11672 struct value *var_val = get_var_value (name, 0);
11673
11674 if (var_val == 0)
11675 {
11676 if (flag != NULL)
11677 *flag = 0;
11678 return 0;
11679 }
11680 else
11681 {
11682 if (flag != NULL)
11683 *flag = 1;
11684 return value_as_long (var_val);
11685 }
11686 }
11687
11688
11689 /* Return a range type whose base type is that of the range type named
11690 NAME in the current environment, and whose bounds are calculated
11691 from NAME according to the GNAT range encoding conventions.
11692 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11693 corresponding range type from debug information; fall back to using it
11694 if symbol lookup fails. If a new type must be created, allocate it
11695 like ORIG_TYPE was. The bounds information, in general, is encoded
11696 in NAME, the base type given in the named range type. */
11697
11698 static struct type *
11699 to_fixed_range_type (struct type *raw_type, struct value *dval)
11700 {
11701 const char *name;
11702 struct type *base_type;
11703 const char *subtype_info;
11704
11705 gdb_assert (raw_type != NULL);
11706 gdb_assert (TYPE_NAME (raw_type) != NULL);
11707
11708 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11709 base_type = TYPE_TARGET_TYPE (raw_type);
11710 else
11711 base_type = raw_type;
11712
11713 name = TYPE_NAME (raw_type);
11714 subtype_info = strstr (name, "___XD");
11715 if (subtype_info == NULL)
11716 {
11717 LONGEST L = ada_discrete_type_low_bound (raw_type);
11718 LONGEST U = ada_discrete_type_high_bound (raw_type);
11719
11720 if (L < INT_MIN || U > INT_MAX)
11721 return raw_type;
11722 else
11723 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11724 L, U);
11725 }
11726 else
11727 {
11728 static char *name_buf = NULL;
11729 static size_t name_len = 0;
11730 int prefix_len = subtype_info - name;
11731 LONGEST L, U;
11732 struct type *type;
11733 const char *bounds_str;
11734 int n;
11735
11736 GROW_VECT (name_buf, name_len, prefix_len + 5);
11737 strncpy (name_buf, name, prefix_len);
11738 name_buf[prefix_len] = '\0';
11739
11740 subtype_info += 5;
11741 bounds_str = strchr (subtype_info, '_');
11742 n = 1;
11743
11744 if (*subtype_info == 'L')
11745 {
11746 if (!ada_scan_number (bounds_str, n, &L, &n)
11747 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11748 return raw_type;
11749 if (bounds_str[n] == '_')
11750 n += 2;
11751 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11752 n += 1;
11753 subtype_info += 1;
11754 }
11755 else
11756 {
11757 int ok;
11758
11759 strcpy (name_buf + prefix_len, "___L");
11760 L = get_int_var_value (name_buf, &ok);
11761 if (!ok)
11762 {
11763 lim_warning (_("Unknown lower bound, using 1."));
11764 L = 1;
11765 }
11766 }
11767
11768 if (*subtype_info == 'U')
11769 {
11770 if (!ada_scan_number (bounds_str, n, &U, &n)
11771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11772 return raw_type;
11773 }
11774 else
11775 {
11776 int ok;
11777
11778 strcpy (name_buf + prefix_len, "___U");
11779 U = get_int_var_value (name_buf, &ok);
11780 if (!ok)
11781 {
11782 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11783 U = L;
11784 }
11785 }
11786
11787 type = create_static_range_type (alloc_type_copy (raw_type),
11788 base_type, L, U);
11789 TYPE_NAME (type) = name;
11790 return type;
11791 }
11792 }
11793
11794 /* True iff NAME is the name of a range type. */
11795
11796 int
11797 ada_is_range_type_name (const char *name)
11798 {
11799 return (name != NULL && strstr (name, "___XD"));
11800 }
11801 \f
11802
11803 /* Modular types */
11804
11805 /* True iff TYPE is an Ada modular type. */
11806
11807 int
11808 ada_is_modular_type (struct type *type)
11809 {
11810 struct type *subranged_type = get_base_type (type);
11811
11812 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11813 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11814 && TYPE_UNSIGNED (subranged_type));
11815 }
11816
11817 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11818
11819 ULONGEST
11820 ada_modulus (struct type *type)
11821 {
11822 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11823 }
11824 \f
11825
11826 /* Ada exception catchpoint support:
11827 ---------------------------------
11828
11829 We support 3 kinds of exception catchpoints:
11830 . catchpoints on Ada exceptions
11831 . catchpoints on unhandled Ada exceptions
11832 . catchpoints on failed assertions
11833
11834 Exceptions raised during failed assertions, or unhandled exceptions
11835 could perfectly be caught with the general catchpoint on Ada exceptions.
11836 However, we can easily differentiate these two special cases, and having
11837 the option to distinguish these two cases from the rest can be useful
11838 to zero-in on certain situations.
11839
11840 Exception catchpoints are a specialized form of breakpoint,
11841 since they rely on inserting breakpoints inside known routines
11842 of the GNAT runtime. The implementation therefore uses a standard
11843 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11844 of breakpoint_ops.
11845
11846 Support in the runtime for exception catchpoints have been changed
11847 a few times already, and these changes affect the implementation
11848 of these catchpoints. In order to be able to support several
11849 variants of the runtime, we use a sniffer that will determine
11850 the runtime variant used by the program being debugged. */
11851
11852 /* Ada's standard exceptions.
11853
11854 The Ada 83 standard also defined Numeric_Error. But there so many
11855 situations where it was unclear from the Ada 83 Reference Manual
11856 (RM) whether Constraint_Error or Numeric_Error should be raised,
11857 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11858 Interpretation saying that anytime the RM says that Numeric_Error
11859 should be raised, the implementation may raise Constraint_Error.
11860 Ada 95 went one step further and pretty much removed Numeric_Error
11861 from the list of standard exceptions (it made it a renaming of
11862 Constraint_Error, to help preserve compatibility when compiling
11863 an Ada83 compiler). As such, we do not include Numeric_Error from
11864 this list of standard exceptions. */
11865
11866 static char *standard_exc[] = {
11867 "constraint_error",
11868 "program_error",
11869 "storage_error",
11870 "tasking_error"
11871 };
11872
11873 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11874
11875 /* A structure that describes how to support exception catchpoints
11876 for a given executable. */
11877
11878 struct exception_support_info
11879 {
11880 /* The name of the symbol to break on in order to insert
11881 a catchpoint on exceptions. */
11882 const char *catch_exception_sym;
11883
11884 /* The name of the symbol to break on in order to insert
11885 a catchpoint on unhandled exceptions. */
11886 const char *catch_exception_unhandled_sym;
11887
11888 /* The name of the symbol to break on in order to insert
11889 a catchpoint on failed assertions. */
11890 const char *catch_assert_sym;
11891
11892 /* Assuming that the inferior just triggered an unhandled exception
11893 catchpoint, this function is responsible for returning the address
11894 in inferior memory where the name of that exception is stored.
11895 Return zero if the address could not be computed. */
11896 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11897 };
11898
11899 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11900 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11901
11902 /* The following exception support info structure describes how to
11903 implement exception catchpoints with the latest version of the
11904 Ada runtime (as of 2007-03-06). */
11905
11906 static const struct exception_support_info default_exception_support_info =
11907 {
11908 "__gnat_debug_raise_exception", /* catch_exception_sym */
11909 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11910 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11911 ada_unhandled_exception_name_addr
11912 };
11913
11914 /* The following exception support info structure describes how to
11915 implement exception catchpoints with a slightly older version
11916 of the Ada runtime. */
11917
11918 static const struct exception_support_info exception_support_info_fallback =
11919 {
11920 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11921 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11922 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11923 ada_unhandled_exception_name_addr_from_raise
11924 };
11925
11926 /* Return nonzero if we can detect the exception support routines
11927 described in EINFO.
11928
11929 This function errors out if an abnormal situation is detected
11930 (for instance, if we find the exception support routines, but
11931 that support is found to be incomplete). */
11932
11933 static int
11934 ada_has_this_exception_support (const struct exception_support_info *einfo)
11935 {
11936 struct symbol *sym;
11937
11938 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11939 that should be compiled with debugging information. As a result, we
11940 expect to find that symbol in the symtabs. */
11941
11942 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11943 if (sym == NULL)
11944 {
11945 /* Perhaps we did not find our symbol because the Ada runtime was
11946 compiled without debugging info, or simply stripped of it.
11947 It happens on some GNU/Linux distributions for instance, where
11948 users have to install a separate debug package in order to get
11949 the runtime's debugging info. In that situation, let the user
11950 know why we cannot insert an Ada exception catchpoint.
11951
11952 Note: Just for the purpose of inserting our Ada exception
11953 catchpoint, we could rely purely on the associated minimal symbol.
11954 But we would be operating in degraded mode anyway, since we are
11955 still lacking the debugging info needed later on to extract
11956 the name of the exception being raised (this name is printed in
11957 the catchpoint message, and is also used when trying to catch
11958 a specific exception). We do not handle this case for now. */
11959 struct bound_minimal_symbol msym
11960 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11961
11962 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11963 error (_("Your Ada runtime appears to be missing some debugging "
11964 "information.\nCannot insert Ada exception catchpoint "
11965 "in this configuration."));
11966
11967 return 0;
11968 }
11969
11970 /* Make sure that the symbol we found corresponds to a function. */
11971
11972 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11973 error (_("Symbol \"%s\" is not a function (class = %d)"),
11974 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11975
11976 return 1;
11977 }
11978
11979 /* Inspect the Ada runtime and determine which exception info structure
11980 should be used to provide support for exception catchpoints.
11981
11982 This function will always set the per-inferior exception_info,
11983 or raise an error. */
11984
11985 static void
11986 ada_exception_support_info_sniffer (void)
11987 {
11988 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11989
11990 /* If the exception info is already known, then no need to recompute it. */
11991 if (data->exception_info != NULL)
11992 return;
11993
11994 /* Check the latest (default) exception support info. */
11995 if (ada_has_this_exception_support (&default_exception_support_info))
11996 {
11997 data->exception_info = &default_exception_support_info;
11998 return;
11999 }
12000
12001 /* Try our fallback exception suport info. */
12002 if (ada_has_this_exception_support (&exception_support_info_fallback))
12003 {
12004 data->exception_info = &exception_support_info_fallback;
12005 return;
12006 }
12007
12008 /* Sometimes, it is normal for us to not be able to find the routine
12009 we are looking for. This happens when the program is linked with
12010 the shared version of the GNAT runtime, and the program has not been
12011 started yet. Inform the user of these two possible causes if
12012 applicable. */
12013
12014 if (ada_update_initial_language (language_unknown) != language_ada)
12015 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12016
12017 /* If the symbol does not exist, then check that the program is
12018 already started, to make sure that shared libraries have been
12019 loaded. If it is not started, this may mean that the symbol is
12020 in a shared library. */
12021
12022 if (ptid_get_pid (inferior_ptid) == 0)
12023 error (_("Unable to insert catchpoint. Try to start the program first."));
12024
12025 /* At this point, we know that we are debugging an Ada program and
12026 that the inferior has been started, but we still are not able to
12027 find the run-time symbols. That can mean that we are in
12028 configurable run time mode, or that a-except as been optimized
12029 out by the linker... In any case, at this point it is not worth
12030 supporting this feature. */
12031
12032 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12033 }
12034
12035 /* True iff FRAME is very likely to be that of a function that is
12036 part of the runtime system. This is all very heuristic, but is
12037 intended to be used as advice as to what frames are uninteresting
12038 to most users. */
12039
12040 static int
12041 is_known_support_routine (struct frame_info *frame)
12042 {
12043 struct symtab_and_line sal;
12044 char *func_name;
12045 enum language func_lang;
12046 int i;
12047 const char *fullname;
12048
12049 /* If this code does not have any debugging information (no symtab),
12050 This cannot be any user code. */
12051
12052 find_frame_sal (frame, &sal);
12053 if (sal.symtab == NULL)
12054 return 1;
12055
12056 /* If there is a symtab, but the associated source file cannot be
12057 located, then assume this is not user code: Selecting a frame
12058 for which we cannot display the code would not be very helpful
12059 for the user. This should also take care of case such as VxWorks
12060 where the kernel has some debugging info provided for a few units. */
12061
12062 fullname = symtab_to_fullname (sal.symtab);
12063 if (access (fullname, R_OK) != 0)
12064 return 1;
12065
12066 /* Check the unit filename againt the Ada runtime file naming.
12067 We also check the name of the objfile against the name of some
12068 known system libraries that sometimes come with debugging info
12069 too. */
12070
12071 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12072 {
12073 re_comp (known_runtime_file_name_patterns[i]);
12074 if (re_exec (lbasename (sal.symtab->filename)))
12075 return 1;
12076 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12077 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12078 return 1;
12079 }
12080
12081 /* Check whether the function is a GNAT-generated entity. */
12082
12083 find_frame_funname (frame, &func_name, &func_lang, NULL);
12084 if (func_name == NULL)
12085 return 1;
12086
12087 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12088 {
12089 re_comp (known_auxiliary_function_name_patterns[i]);
12090 if (re_exec (func_name))
12091 {
12092 xfree (func_name);
12093 return 1;
12094 }
12095 }
12096
12097 xfree (func_name);
12098 return 0;
12099 }
12100
12101 /* Find the first frame that contains debugging information and that is not
12102 part of the Ada run-time, starting from FI and moving upward. */
12103
12104 void
12105 ada_find_printable_frame (struct frame_info *fi)
12106 {
12107 for (; fi != NULL; fi = get_prev_frame (fi))
12108 {
12109 if (!is_known_support_routine (fi))
12110 {
12111 select_frame (fi);
12112 break;
12113 }
12114 }
12115
12116 }
12117
12118 /* Assuming that the inferior just triggered an unhandled exception
12119 catchpoint, return the address in inferior memory where the name
12120 of the exception is stored.
12121
12122 Return zero if the address could not be computed. */
12123
12124 static CORE_ADDR
12125 ada_unhandled_exception_name_addr (void)
12126 {
12127 return parse_and_eval_address ("e.full_name");
12128 }
12129
12130 /* Same as ada_unhandled_exception_name_addr, except that this function
12131 should be used when the inferior uses an older version of the runtime,
12132 where the exception name needs to be extracted from a specific frame
12133 several frames up in the callstack. */
12134
12135 static CORE_ADDR
12136 ada_unhandled_exception_name_addr_from_raise (void)
12137 {
12138 int frame_level;
12139 struct frame_info *fi;
12140 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12141 struct cleanup *old_chain;
12142
12143 /* To determine the name of this exception, we need to select
12144 the frame corresponding to RAISE_SYM_NAME. This frame is
12145 at least 3 levels up, so we simply skip the first 3 frames
12146 without checking the name of their associated function. */
12147 fi = get_current_frame ();
12148 for (frame_level = 0; frame_level < 3; frame_level += 1)
12149 if (fi != NULL)
12150 fi = get_prev_frame (fi);
12151
12152 old_chain = make_cleanup (null_cleanup, NULL);
12153 while (fi != NULL)
12154 {
12155 char *func_name;
12156 enum language func_lang;
12157
12158 find_frame_funname (fi, &func_name, &func_lang, NULL);
12159 if (func_name != NULL)
12160 {
12161 make_cleanup (xfree, func_name);
12162
12163 if (strcmp (func_name,
12164 data->exception_info->catch_exception_sym) == 0)
12165 break; /* We found the frame we were looking for... */
12166 fi = get_prev_frame (fi);
12167 }
12168 }
12169 do_cleanups (old_chain);
12170
12171 if (fi == NULL)
12172 return 0;
12173
12174 select_frame (fi);
12175 return parse_and_eval_address ("id.full_name");
12176 }
12177
12178 /* Assuming the inferior just triggered an Ada exception catchpoint
12179 (of any type), return the address in inferior memory where the name
12180 of the exception is stored, if applicable.
12181
12182 Assumes the selected frame is the current frame.
12183
12184 Return zero if the address could not be computed, or if not relevant. */
12185
12186 static CORE_ADDR
12187 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12188 struct breakpoint *b)
12189 {
12190 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12191
12192 switch (ex)
12193 {
12194 case ada_catch_exception:
12195 return (parse_and_eval_address ("e.full_name"));
12196 break;
12197
12198 case ada_catch_exception_unhandled:
12199 return data->exception_info->unhandled_exception_name_addr ();
12200 break;
12201
12202 case ada_catch_assert:
12203 return 0; /* Exception name is not relevant in this case. */
12204 break;
12205
12206 default:
12207 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12208 break;
12209 }
12210
12211 return 0; /* Should never be reached. */
12212 }
12213
12214 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12215 any error that ada_exception_name_addr_1 might cause to be thrown.
12216 When an error is intercepted, a warning with the error message is printed,
12217 and zero is returned. */
12218
12219 static CORE_ADDR
12220 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12221 struct breakpoint *b)
12222 {
12223 CORE_ADDR result = 0;
12224
12225 TRY
12226 {
12227 result = ada_exception_name_addr_1 (ex, b);
12228 }
12229
12230 CATCH (e, RETURN_MASK_ERROR)
12231 {
12232 warning (_("failed to get exception name: %s"), e.message);
12233 return 0;
12234 }
12235 END_CATCH
12236
12237 return result;
12238 }
12239
12240 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12241
12242 /* Ada catchpoints.
12243
12244 In the case of catchpoints on Ada exceptions, the catchpoint will
12245 stop the target on every exception the program throws. When a user
12246 specifies the name of a specific exception, we translate this
12247 request into a condition expression (in text form), and then parse
12248 it into an expression stored in each of the catchpoint's locations.
12249 We then use this condition to check whether the exception that was
12250 raised is the one the user is interested in. If not, then the
12251 target is resumed again. We store the name of the requested
12252 exception, in order to be able to re-set the condition expression
12253 when symbols change. */
12254
12255 /* An instance of this type is used to represent an Ada catchpoint
12256 breakpoint location. It includes a "struct bp_location" as a kind
12257 of base class; users downcast to "struct bp_location *" when
12258 needed. */
12259
12260 struct ada_catchpoint_location
12261 {
12262 /* The base class. */
12263 struct bp_location base;
12264
12265 /* The condition that checks whether the exception that was raised
12266 is the specific exception the user specified on catchpoint
12267 creation. */
12268 expression_up excep_cond_expr;
12269 };
12270
12271 /* Implement the DTOR method in the bp_location_ops structure for all
12272 Ada exception catchpoint kinds. */
12273
12274 static void
12275 ada_catchpoint_location_dtor (struct bp_location *bl)
12276 {
12277 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12278
12279 al->excep_cond_expr.reset ();
12280 }
12281
12282 /* The vtable to be used in Ada catchpoint locations. */
12283
12284 static const struct bp_location_ops ada_catchpoint_location_ops =
12285 {
12286 ada_catchpoint_location_dtor
12287 };
12288
12289 /* An instance of this type is used to represent an Ada catchpoint.
12290 It includes a "struct breakpoint" as a kind of base class; users
12291 downcast to "struct breakpoint *" when needed. */
12292
12293 struct ada_catchpoint
12294 {
12295 /* The base class. */
12296 struct breakpoint base;
12297
12298 /* The name of the specific exception the user specified. */
12299 char *excep_string;
12300 };
12301
12302 /* Parse the exception condition string in the context of each of the
12303 catchpoint's locations, and store them for later evaluation. */
12304
12305 static void
12306 create_excep_cond_exprs (struct ada_catchpoint *c)
12307 {
12308 struct cleanup *old_chain;
12309 struct bp_location *bl;
12310 char *cond_string;
12311
12312 /* Nothing to do if there's no specific exception to catch. */
12313 if (c->excep_string == NULL)
12314 return;
12315
12316 /* Same if there are no locations... */
12317 if (c->base.loc == NULL)
12318 return;
12319
12320 /* Compute the condition expression in text form, from the specific
12321 expection we want to catch. */
12322 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12323 old_chain = make_cleanup (xfree, cond_string);
12324
12325 /* Iterate over all the catchpoint's locations, and parse an
12326 expression for each. */
12327 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12328 {
12329 struct ada_catchpoint_location *ada_loc
12330 = (struct ada_catchpoint_location *) bl;
12331 expression_up exp;
12332
12333 if (!bl->shlib_disabled)
12334 {
12335 const char *s;
12336
12337 s = cond_string;
12338 TRY
12339 {
12340 exp = parse_exp_1 (&s, bl->address,
12341 block_for_pc (bl->address),
12342 0);
12343 }
12344 CATCH (e, RETURN_MASK_ERROR)
12345 {
12346 warning (_("failed to reevaluate internal exception condition "
12347 "for catchpoint %d: %s"),
12348 c->base.number, e.message);
12349 }
12350 END_CATCH
12351 }
12352
12353 ada_loc->excep_cond_expr = std::move (exp);
12354 }
12355
12356 do_cleanups (old_chain);
12357 }
12358
12359 /* Implement the DTOR method in the breakpoint_ops structure for all
12360 exception catchpoint kinds. */
12361
12362 static void
12363 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12364 {
12365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12366
12367 xfree (c->excep_string);
12368
12369 bkpt_breakpoint_ops.dtor (b);
12370 }
12371
12372 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12373 structure for all exception catchpoint kinds. */
12374
12375 static struct bp_location *
12376 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12377 struct breakpoint *self)
12378 {
12379 struct ada_catchpoint_location *loc;
12380
12381 loc = new ada_catchpoint_location ();
12382 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12383 loc->excep_cond_expr = NULL;
12384 return &loc->base;
12385 }
12386
12387 /* Implement the RE_SET method in the breakpoint_ops structure for all
12388 exception catchpoint kinds. */
12389
12390 static void
12391 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12392 {
12393 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12394
12395 /* Call the base class's method. This updates the catchpoint's
12396 locations. */
12397 bkpt_breakpoint_ops.re_set (b);
12398
12399 /* Reparse the exception conditional expressions. One for each
12400 location. */
12401 create_excep_cond_exprs (c);
12402 }
12403
12404 /* Returns true if we should stop for this breakpoint hit. If the
12405 user specified a specific exception, we only want to cause a stop
12406 if the program thrown that exception. */
12407
12408 static int
12409 should_stop_exception (const struct bp_location *bl)
12410 {
12411 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12412 const struct ada_catchpoint_location *ada_loc
12413 = (const struct ada_catchpoint_location *) bl;
12414 int stop;
12415
12416 /* With no specific exception, should always stop. */
12417 if (c->excep_string == NULL)
12418 return 1;
12419
12420 if (ada_loc->excep_cond_expr == NULL)
12421 {
12422 /* We will have a NULL expression if back when we were creating
12423 the expressions, this location's had failed to parse. */
12424 return 1;
12425 }
12426
12427 stop = 1;
12428 TRY
12429 {
12430 struct value *mark;
12431
12432 mark = value_mark ();
12433 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12434 value_free_to_mark (mark);
12435 }
12436 CATCH (ex, RETURN_MASK_ALL)
12437 {
12438 exception_fprintf (gdb_stderr, ex,
12439 _("Error in testing exception condition:\n"));
12440 }
12441 END_CATCH
12442
12443 return stop;
12444 }
12445
12446 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12447 for all exception catchpoint kinds. */
12448
12449 static void
12450 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12451 {
12452 bs->stop = should_stop_exception (bs->bp_location_at);
12453 }
12454
12455 /* Implement the PRINT_IT method in the breakpoint_ops structure
12456 for all exception catchpoint kinds. */
12457
12458 static enum print_stop_action
12459 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12460 {
12461 struct ui_out *uiout = current_uiout;
12462 struct breakpoint *b = bs->breakpoint_at;
12463
12464 annotate_catchpoint (b->number);
12465
12466 if (uiout->is_mi_like_p ())
12467 {
12468 uiout->field_string ("reason",
12469 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12470 uiout->field_string ("disp", bpdisp_text (b->disposition));
12471 }
12472
12473 uiout->text (b->disposition == disp_del
12474 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12475 uiout->field_int ("bkptno", b->number);
12476 uiout->text (", ");
12477
12478 /* ada_exception_name_addr relies on the selected frame being the
12479 current frame. Need to do this here because this function may be
12480 called more than once when printing a stop, and below, we'll
12481 select the first frame past the Ada run-time (see
12482 ada_find_printable_frame). */
12483 select_frame (get_current_frame ());
12484
12485 switch (ex)
12486 {
12487 case ada_catch_exception:
12488 case ada_catch_exception_unhandled:
12489 {
12490 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12491 char exception_name[256];
12492
12493 if (addr != 0)
12494 {
12495 read_memory (addr, (gdb_byte *) exception_name,
12496 sizeof (exception_name) - 1);
12497 exception_name [sizeof (exception_name) - 1] = '\0';
12498 }
12499 else
12500 {
12501 /* For some reason, we were unable to read the exception
12502 name. This could happen if the Runtime was compiled
12503 without debugging info, for instance. In that case,
12504 just replace the exception name by the generic string
12505 "exception" - it will read as "an exception" in the
12506 notification we are about to print. */
12507 memcpy (exception_name, "exception", sizeof ("exception"));
12508 }
12509 /* In the case of unhandled exception breakpoints, we print
12510 the exception name as "unhandled EXCEPTION_NAME", to make
12511 it clearer to the user which kind of catchpoint just got
12512 hit. We used ui_out_text to make sure that this extra
12513 info does not pollute the exception name in the MI case. */
12514 if (ex == ada_catch_exception_unhandled)
12515 uiout->text ("unhandled ");
12516 uiout->field_string ("exception-name", exception_name);
12517 }
12518 break;
12519 case ada_catch_assert:
12520 /* In this case, the name of the exception is not really
12521 important. Just print "failed assertion" to make it clearer
12522 that his program just hit an assertion-failure catchpoint.
12523 We used ui_out_text because this info does not belong in
12524 the MI output. */
12525 uiout->text ("failed assertion");
12526 break;
12527 }
12528 uiout->text (" at ");
12529 ada_find_printable_frame (get_current_frame ());
12530
12531 return PRINT_SRC_AND_LOC;
12532 }
12533
12534 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12535 for all exception catchpoint kinds. */
12536
12537 static void
12538 print_one_exception (enum ada_exception_catchpoint_kind ex,
12539 struct breakpoint *b, struct bp_location **last_loc)
12540 {
12541 struct ui_out *uiout = current_uiout;
12542 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12543 struct value_print_options opts;
12544
12545 get_user_print_options (&opts);
12546 if (opts.addressprint)
12547 {
12548 annotate_field (4);
12549 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12550 }
12551
12552 annotate_field (5);
12553 *last_loc = b->loc;
12554 switch (ex)
12555 {
12556 case ada_catch_exception:
12557 if (c->excep_string != NULL)
12558 {
12559 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12560
12561 uiout->field_string ("what", msg);
12562 xfree (msg);
12563 }
12564 else
12565 uiout->field_string ("what", "all Ada exceptions");
12566
12567 break;
12568
12569 case ada_catch_exception_unhandled:
12570 uiout->field_string ("what", "unhandled Ada exceptions");
12571 break;
12572
12573 case ada_catch_assert:
12574 uiout->field_string ("what", "failed Ada assertions");
12575 break;
12576
12577 default:
12578 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12579 break;
12580 }
12581 }
12582
12583 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12584 for all exception catchpoint kinds. */
12585
12586 static void
12587 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12588 struct breakpoint *b)
12589 {
12590 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12591 struct ui_out *uiout = current_uiout;
12592
12593 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12594 : _("Catchpoint "));
12595 uiout->field_int ("bkptno", b->number);
12596 uiout->text (": ");
12597
12598 switch (ex)
12599 {
12600 case ada_catch_exception:
12601 if (c->excep_string != NULL)
12602 {
12603 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12604 struct cleanup *old_chain = make_cleanup (xfree, info);
12605
12606 uiout->text (info);
12607 do_cleanups (old_chain);
12608 }
12609 else
12610 uiout->text (_("all Ada exceptions"));
12611 break;
12612
12613 case ada_catch_exception_unhandled:
12614 uiout->text (_("unhandled Ada exceptions"));
12615 break;
12616
12617 case ada_catch_assert:
12618 uiout->text (_("failed Ada assertions"));
12619 break;
12620
12621 default:
12622 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12623 break;
12624 }
12625 }
12626
12627 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12628 for all exception catchpoint kinds. */
12629
12630 static void
12631 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12632 struct breakpoint *b, struct ui_file *fp)
12633 {
12634 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12635
12636 switch (ex)
12637 {
12638 case ada_catch_exception:
12639 fprintf_filtered (fp, "catch exception");
12640 if (c->excep_string != NULL)
12641 fprintf_filtered (fp, " %s", c->excep_string);
12642 break;
12643
12644 case ada_catch_exception_unhandled:
12645 fprintf_filtered (fp, "catch exception unhandled");
12646 break;
12647
12648 case ada_catch_assert:
12649 fprintf_filtered (fp, "catch assert");
12650 break;
12651
12652 default:
12653 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12654 }
12655 print_recreate_thread (b, fp);
12656 }
12657
12658 /* Virtual table for "catch exception" breakpoints. */
12659
12660 static void
12661 dtor_catch_exception (struct breakpoint *b)
12662 {
12663 dtor_exception (ada_catch_exception, b);
12664 }
12665
12666 static struct bp_location *
12667 allocate_location_catch_exception (struct breakpoint *self)
12668 {
12669 return allocate_location_exception (ada_catch_exception, self);
12670 }
12671
12672 static void
12673 re_set_catch_exception (struct breakpoint *b)
12674 {
12675 re_set_exception (ada_catch_exception, b);
12676 }
12677
12678 static void
12679 check_status_catch_exception (bpstat bs)
12680 {
12681 check_status_exception (ada_catch_exception, bs);
12682 }
12683
12684 static enum print_stop_action
12685 print_it_catch_exception (bpstat bs)
12686 {
12687 return print_it_exception (ada_catch_exception, bs);
12688 }
12689
12690 static void
12691 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12692 {
12693 print_one_exception (ada_catch_exception, b, last_loc);
12694 }
12695
12696 static void
12697 print_mention_catch_exception (struct breakpoint *b)
12698 {
12699 print_mention_exception (ada_catch_exception, b);
12700 }
12701
12702 static void
12703 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12704 {
12705 print_recreate_exception (ada_catch_exception, b, fp);
12706 }
12707
12708 static struct breakpoint_ops catch_exception_breakpoint_ops;
12709
12710 /* Virtual table for "catch exception unhandled" breakpoints. */
12711
12712 static void
12713 dtor_catch_exception_unhandled (struct breakpoint *b)
12714 {
12715 dtor_exception (ada_catch_exception_unhandled, b);
12716 }
12717
12718 static struct bp_location *
12719 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12720 {
12721 return allocate_location_exception (ada_catch_exception_unhandled, self);
12722 }
12723
12724 static void
12725 re_set_catch_exception_unhandled (struct breakpoint *b)
12726 {
12727 re_set_exception (ada_catch_exception_unhandled, b);
12728 }
12729
12730 static void
12731 check_status_catch_exception_unhandled (bpstat bs)
12732 {
12733 check_status_exception (ada_catch_exception_unhandled, bs);
12734 }
12735
12736 static enum print_stop_action
12737 print_it_catch_exception_unhandled (bpstat bs)
12738 {
12739 return print_it_exception (ada_catch_exception_unhandled, bs);
12740 }
12741
12742 static void
12743 print_one_catch_exception_unhandled (struct breakpoint *b,
12744 struct bp_location **last_loc)
12745 {
12746 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12747 }
12748
12749 static void
12750 print_mention_catch_exception_unhandled (struct breakpoint *b)
12751 {
12752 print_mention_exception (ada_catch_exception_unhandled, b);
12753 }
12754
12755 static void
12756 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12757 struct ui_file *fp)
12758 {
12759 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12760 }
12761
12762 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12763
12764 /* Virtual table for "catch assert" breakpoints. */
12765
12766 static void
12767 dtor_catch_assert (struct breakpoint *b)
12768 {
12769 dtor_exception (ada_catch_assert, b);
12770 }
12771
12772 static struct bp_location *
12773 allocate_location_catch_assert (struct breakpoint *self)
12774 {
12775 return allocate_location_exception (ada_catch_assert, self);
12776 }
12777
12778 static void
12779 re_set_catch_assert (struct breakpoint *b)
12780 {
12781 re_set_exception (ada_catch_assert, b);
12782 }
12783
12784 static void
12785 check_status_catch_assert (bpstat bs)
12786 {
12787 check_status_exception (ada_catch_assert, bs);
12788 }
12789
12790 static enum print_stop_action
12791 print_it_catch_assert (bpstat bs)
12792 {
12793 return print_it_exception (ada_catch_assert, bs);
12794 }
12795
12796 static void
12797 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12798 {
12799 print_one_exception (ada_catch_assert, b, last_loc);
12800 }
12801
12802 static void
12803 print_mention_catch_assert (struct breakpoint *b)
12804 {
12805 print_mention_exception (ada_catch_assert, b);
12806 }
12807
12808 static void
12809 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12810 {
12811 print_recreate_exception (ada_catch_assert, b, fp);
12812 }
12813
12814 static struct breakpoint_ops catch_assert_breakpoint_ops;
12815
12816 /* Return a newly allocated copy of the first space-separated token
12817 in ARGSP, and then adjust ARGSP to point immediately after that
12818 token.
12819
12820 Return NULL if ARGPS does not contain any more tokens. */
12821
12822 static char *
12823 ada_get_next_arg (char **argsp)
12824 {
12825 char *args = *argsp;
12826 char *end;
12827 char *result;
12828
12829 args = skip_spaces (args);
12830 if (args[0] == '\0')
12831 return NULL; /* No more arguments. */
12832
12833 /* Find the end of the current argument. */
12834
12835 end = skip_to_space (args);
12836
12837 /* Adjust ARGSP to point to the start of the next argument. */
12838
12839 *argsp = end;
12840
12841 /* Make a copy of the current argument and return it. */
12842
12843 result = (char *) xmalloc (end - args + 1);
12844 strncpy (result, args, end - args);
12845 result[end - args] = '\0';
12846
12847 return result;
12848 }
12849
12850 /* Split the arguments specified in a "catch exception" command.
12851 Set EX to the appropriate catchpoint type.
12852 Set EXCEP_STRING to the name of the specific exception if
12853 specified by the user.
12854 If a condition is found at the end of the arguments, the condition
12855 expression is stored in COND_STRING (memory must be deallocated
12856 after use). Otherwise COND_STRING is set to NULL. */
12857
12858 static void
12859 catch_ada_exception_command_split (char *args,
12860 enum ada_exception_catchpoint_kind *ex,
12861 char **excep_string,
12862 char **cond_string)
12863 {
12864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12865 char *exception_name;
12866 char *cond = NULL;
12867
12868 exception_name = ada_get_next_arg (&args);
12869 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12870 {
12871 /* This is not an exception name; this is the start of a condition
12872 expression for a catchpoint on all exceptions. So, "un-get"
12873 this token, and set exception_name to NULL. */
12874 xfree (exception_name);
12875 exception_name = NULL;
12876 args -= 2;
12877 }
12878 make_cleanup (xfree, exception_name);
12879
12880 /* Check to see if we have a condition. */
12881
12882 args = skip_spaces (args);
12883 if (startswith (args, "if")
12884 && (isspace (args[2]) || args[2] == '\0'))
12885 {
12886 args += 2;
12887 args = skip_spaces (args);
12888
12889 if (args[0] == '\0')
12890 error (_("Condition missing after `if' keyword"));
12891 cond = xstrdup (args);
12892 make_cleanup (xfree, cond);
12893
12894 args += strlen (args);
12895 }
12896
12897 /* Check that we do not have any more arguments. Anything else
12898 is unexpected. */
12899
12900 if (args[0] != '\0')
12901 error (_("Junk at end of expression"));
12902
12903 discard_cleanups (old_chain);
12904
12905 if (exception_name == NULL)
12906 {
12907 /* Catch all exceptions. */
12908 *ex = ada_catch_exception;
12909 *excep_string = NULL;
12910 }
12911 else if (strcmp (exception_name, "unhandled") == 0)
12912 {
12913 /* Catch unhandled exceptions. */
12914 *ex = ada_catch_exception_unhandled;
12915 *excep_string = NULL;
12916 }
12917 else
12918 {
12919 /* Catch a specific exception. */
12920 *ex = ada_catch_exception;
12921 *excep_string = exception_name;
12922 }
12923 *cond_string = cond;
12924 }
12925
12926 /* Return the name of the symbol on which we should break in order to
12927 implement a catchpoint of the EX kind. */
12928
12929 static const char *
12930 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12931 {
12932 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12933
12934 gdb_assert (data->exception_info != NULL);
12935
12936 switch (ex)
12937 {
12938 case ada_catch_exception:
12939 return (data->exception_info->catch_exception_sym);
12940 break;
12941 case ada_catch_exception_unhandled:
12942 return (data->exception_info->catch_exception_unhandled_sym);
12943 break;
12944 case ada_catch_assert:
12945 return (data->exception_info->catch_assert_sym);
12946 break;
12947 default:
12948 internal_error (__FILE__, __LINE__,
12949 _("unexpected catchpoint kind (%d)"), ex);
12950 }
12951 }
12952
12953 /* Return the breakpoint ops "virtual table" used for catchpoints
12954 of the EX kind. */
12955
12956 static const struct breakpoint_ops *
12957 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12958 {
12959 switch (ex)
12960 {
12961 case ada_catch_exception:
12962 return (&catch_exception_breakpoint_ops);
12963 break;
12964 case ada_catch_exception_unhandled:
12965 return (&catch_exception_unhandled_breakpoint_ops);
12966 break;
12967 case ada_catch_assert:
12968 return (&catch_assert_breakpoint_ops);
12969 break;
12970 default:
12971 internal_error (__FILE__, __LINE__,
12972 _("unexpected catchpoint kind (%d)"), ex);
12973 }
12974 }
12975
12976 /* Return the condition that will be used to match the current exception
12977 being raised with the exception that the user wants to catch. This
12978 assumes that this condition is used when the inferior just triggered
12979 an exception catchpoint.
12980
12981 The string returned is a newly allocated string that needs to be
12982 deallocated later. */
12983
12984 static char *
12985 ada_exception_catchpoint_cond_string (const char *excep_string)
12986 {
12987 int i;
12988
12989 /* The standard exceptions are a special case. They are defined in
12990 runtime units that have been compiled without debugging info; if
12991 EXCEP_STRING is the not-fully-qualified name of a standard
12992 exception (e.g. "constraint_error") then, during the evaluation
12993 of the condition expression, the symbol lookup on this name would
12994 *not* return this standard exception. The catchpoint condition
12995 may then be set only on user-defined exceptions which have the
12996 same not-fully-qualified name (e.g. my_package.constraint_error).
12997
12998 To avoid this unexcepted behavior, these standard exceptions are
12999 systematically prefixed by "standard". This means that "catch
13000 exception constraint_error" is rewritten into "catch exception
13001 standard.constraint_error".
13002
13003 If an exception named contraint_error is defined in another package of
13004 the inferior program, then the only way to specify this exception as a
13005 breakpoint condition is to use its fully-qualified named:
13006 e.g. my_package.constraint_error. */
13007
13008 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13009 {
13010 if (strcmp (standard_exc [i], excep_string) == 0)
13011 {
13012 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13013 excep_string);
13014 }
13015 }
13016 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13017 }
13018
13019 /* Return the symtab_and_line that should be used to insert an exception
13020 catchpoint of the TYPE kind.
13021
13022 EXCEP_STRING should contain the name of a specific exception that
13023 the catchpoint should catch, or NULL otherwise.
13024
13025 ADDR_STRING returns the name of the function where the real
13026 breakpoint that implements the catchpoints is set, depending on the
13027 type of catchpoint we need to create. */
13028
13029 static struct symtab_and_line
13030 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13031 char **addr_string, const struct breakpoint_ops **ops)
13032 {
13033 const char *sym_name;
13034 struct symbol *sym;
13035
13036 /* First, find out which exception support info to use. */
13037 ada_exception_support_info_sniffer ();
13038
13039 /* Then lookup the function on which we will break in order to catch
13040 the Ada exceptions requested by the user. */
13041 sym_name = ada_exception_sym_name (ex);
13042 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13043
13044 /* We can assume that SYM is not NULL at this stage. If the symbol
13045 did not exist, ada_exception_support_info_sniffer would have
13046 raised an exception.
13047
13048 Also, ada_exception_support_info_sniffer should have already
13049 verified that SYM is a function symbol. */
13050 gdb_assert (sym != NULL);
13051 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13052
13053 /* Set ADDR_STRING. */
13054 *addr_string = xstrdup (sym_name);
13055
13056 /* Set OPS. */
13057 *ops = ada_exception_breakpoint_ops (ex);
13058
13059 return find_function_start_sal (sym, 1);
13060 }
13061
13062 /* Create an Ada exception catchpoint.
13063
13064 EX_KIND is the kind of exception catchpoint to be created.
13065
13066 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13067 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13068 of the exception to which this catchpoint applies. When not NULL,
13069 the string must be allocated on the heap, and its deallocation
13070 is no longer the responsibility of the caller.
13071
13072 COND_STRING, if not NULL, is the catchpoint condition. This string
13073 must be allocated on the heap, and its deallocation is no longer
13074 the responsibility of the caller.
13075
13076 TEMPFLAG, if nonzero, means that the underlying breakpoint
13077 should be temporary.
13078
13079 FROM_TTY is the usual argument passed to all commands implementations. */
13080
13081 void
13082 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13083 enum ada_exception_catchpoint_kind ex_kind,
13084 char *excep_string,
13085 char *cond_string,
13086 int tempflag,
13087 int disabled,
13088 int from_tty)
13089 {
13090 struct ada_catchpoint *c;
13091 char *addr_string = NULL;
13092 const struct breakpoint_ops *ops = NULL;
13093 struct symtab_and_line sal
13094 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13095
13096 c = new ada_catchpoint ();
13097 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13098 ops, tempflag, disabled, from_tty);
13099 c->excep_string = excep_string;
13100 create_excep_cond_exprs (c);
13101 if (cond_string != NULL)
13102 set_breakpoint_condition (&c->base, cond_string, from_tty);
13103 install_breakpoint (0, &c->base, 1);
13104 }
13105
13106 /* Implement the "catch exception" command. */
13107
13108 static void
13109 catch_ada_exception_command (char *arg, int from_tty,
13110 struct cmd_list_element *command)
13111 {
13112 struct gdbarch *gdbarch = get_current_arch ();
13113 int tempflag;
13114 enum ada_exception_catchpoint_kind ex_kind;
13115 char *excep_string = NULL;
13116 char *cond_string = NULL;
13117
13118 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13119
13120 if (!arg)
13121 arg = "";
13122 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13123 &cond_string);
13124 create_ada_exception_catchpoint (gdbarch, ex_kind,
13125 excep_string, cond_string,
13126 tempflag, 1 /* enabled */,
13127 from_tty);
13128 }
13129
13130 /* Split the arguments specified in a "catch assert" command.
13131
13132 ARGS contains the command's arguments (or the empty string if
13133 no arguments were passed).
13134
13135 If ARGS contains a condition, set COND_STRING to that condition
13136 (the memory needs to be deallocated after use). */
13137
13138 static void
13139 catch_ada_assert_command_split (char *args, char **cond_string)
13140 {
13141 args = skip_spaces (args);
13142
13143 /* Check whether a condition was provided. */
13144 if (startswith (args, "if")
13145 && (isspace (args[2]) || args[2] == '\0'))
13146 {
13147 args += 2;
13148 args = skip_spaces (args);
13149 if (args[0] == '\0')
13150 error (_("condition missing after `if' keyword"));
13151 *cond_string = xstrdup (args);
13152 }
13153
13154 /* Otherwise, there should be no other argument at the end of
13155 the command. */
13156 else if (args[0] != '\0')
13157 error (_("Junk at end of arguments."));
13158 }
13159
13160 /* Implement the "catch assert" command. */
13161
13162 static void
13163 catch_assert_command (char *arg, int from_tty,
13164 struct cmd_list_element *command)
13165 {
13166 struct gdbarch *gdbarch = get_current_arch ();
13167 int tempflag;
13168 char *cond_string = NULL;
13169
13170 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13171
13172 if (!arg)
13173 arg = "";
13174 catch_ada_assert_command_split (arg, &cond_string);
13175 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13176 NULL, cond_string,
13177 tempflag, 1 /* enabled */,
13178 from_tty);
13179 }
13180
13181 /* Return non-zero if the symbol SYM is an Ada exception object. */
13182
13183 static int
13184 ada_is_exception_sym (struct symbol *sym)
13185 {
13186 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13187
13188 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13189 && SYMBOL_CLASS (sym) != LOC_BLOCK
13190 && SYMBOL_CLASS (sym) != LOC_CONST
13191 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13192 && type_name != NULL && strcmp (type_name, "exception") == 0);
13193 }
13194
13195 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13196 Ada exception object. This matches all exceptions except the ones
13197 defined by the Ada language. */
13198
13199 static int
13200 ada_is_non_standard_exception_sym (struct symbol *sym)
13201 {
13202 int i;
13203
13204 if (!ada_is_exception_sym (sym))
13205 return 0;
13206
13207 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13208 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13209 return 0; /* A standard exception. */
13210
13211 /* Numeric_Error is also a standard exception, so exclude it.
13212 See the STANDARD_EXC description for more details as to why
13213 this exception is not listed in that array. */
13214 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13215 return 0;
13216
13217 return 1;
13218 }
13219
13220 /* A helper function for qsort, comparing two struct ada_exc_info
13221 objects.
13222
13223 The comparison is determined first by exception name, and then
13224 by exception address. */
13225
13226 static int
13227 compare_ada_exception_info (const void *a, const void *b)
13228 {
13229 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13230 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13231 int result;
13232
13233 result = strcmp (exc_a->name, exc_b->name);
13234 if (result != 0)
13235 return result;
13236
13237 if (exc_a->addr < exc_b->addr)
13238 return -1;
13239 if (exc_a->addr > exc_b->addr)
13240 return 1;
13241
13242 return 0;
13243 }
13244
13245 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13246 routine, but keeping the first SKIP elements untouched.
13247
13248 All duplicates are also removed. */
13249
13250 static void
13251 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13252 int skip)
13253 {
13254 struct ada_exc_info *to_sort
13255 = VEC_address (ada_exc_info, *exceptions) + skip;
13256 int to_sort_len
13257 = VEC_length (ada_exc_info, *exceptions) - skip;
13258 int i, j;
13259
13260 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13261 compare_ada_exception_info);
13262
13263 for (i = 1, j = 1; i < to_sort_len; i++)
13264 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13265 to_sort[j++] = to_sort[i];
13266 to_sort_len = j;
13267 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13268 }
13269
13270 /* A function intended as the "name_matcher" callback in the struct
13271 quick_symbol_functions' expand_symtabs_matching method.
13272
13273 SEARCH_NAME is the symbol's search name.
13274
13275 If USER_DATA is not NULL, it is a pointer to a regext_t object
13276 used to match the symbol (by natural name). Otherwise, when USER_DATA
13277 is null, no filtering is performed, and all symbols are a positive
13278 match. */
13279
13280 static int
13281 ada_exc_search_name_matches (const char *search_name, void *user_data)
13282 {
13283 regex_t *preg = (regex_t *) user_data;
13284
13285 if (preg == NULL)
13286 return 1;
13287
13288 /* In Ada, the symbol "search name" is a linkage name, whereas
13289 the regular expression used to do the matching refers to
13290 the natural name. So match against the decoded name. */
13291 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13292 }
13293
13294 /* Add all exceptions defined by the Ada standard whose name match
13295 a regular expression.
13296
13297 If PREG is not NULL, then this regexp_t object is used to
13298 perform the symbol name matching. Otherwise, no name-based
13299 filtering is performed.
13300
13301 EXCEPTIONS is a vector of exceptions to which matching exceptions
13302 gets pushed. */
13303
13304 static void
13305 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13306 {
13307 int i;
13308
13309 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13310 {
13311 if (preg == NULL
13312 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13313 {
13314 struct bound_minimal_symbol msymbol
13315 = ada_lookup_simple_minsym (standard_exc[i]);
13316
13317 if (msymbol.minsym != NULL)
13318 {
13319 struct ada_exc_info info
13320 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13321
13322 VEC_safe_push (ada_exc_info, *exceptions, &info);
13323 }
13324 }
13325 }
13326 }
13327
13328 /* Add all Ada exceptions defined locally and accessible from the given
13329 FRAME.
13330
13331 If PREG is not NULL, then this regexp_t object is used to
13332 perform the symbol name matching. Otherwise, no name-based
13333 filtering is performed.
13334
13335 EXCEPTIONS is a vector of exceptions to which matching exceptions
13336 gets pushed. */
13337
13338 static void
13339 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13340 VEC(ada_exc_info) **exceptions)
13341 {
13342 const struct block *block = get_frame_block (frame, 0);
13343
13344 while (block != 0)
13345 {
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (block, iter, sym)
13350 {
13351 switch (SYMBOL_CLASS (sym))
13352 {
13353 case LOC_TYPEDEF:
13354 case LOC_BLOCK:
13355 case LOC_CONST:
13356 break;
13357 default:
13358 if (ada_is_exception_sym (sym))
13359 {
13360 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13361 SYMBOL_VALUE_ADDRESS (sym)};
13362
13363 VEC_safe_push (ada_exc_info, *exceptions, &info);
13364 }
13365 }
13366 }
13367 if (BLOCK_FUNCTION (block) != NULL)
13368 break;
13369 block = BLOCK_SUPERBLOCK (block);
13370 }
13371 }
13372
13373 /* Add all exceptions defined globally whose name name match
13374 a regular expression, excluding standard exceptions.
13375
13376 The reason we exclude standard exceptions is that they need
13377 to be handled separately: Standard exceptions are defined inside
13378 a runtime unit which is normally not compiled with debugging info,
13379 and thus usually do not show up in our symbol search. However,
13380 if the unit was in fact built with debugging info, we need to
13381 exclude them because they would duplicate the entry we found
13382 during the special loop that specifically searches for those
13383 standard exceptions.
13384
13385 If PREG is not NULL, then this regexp_t object is used to
13386 perform the symbol name matching. Otherwise, no name-based
13387 filtering is performed.
13388
13389 EXCEPTIONS is a vector of exceptions to which matching exceptions
13390 gets pushed. */
13391
13392 static void
13393 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13394 {
13395 struct objfile *objfile;
13396 struct compunit_symtab *s;
13397
13398 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13399 VARIABLES_DOMAIN, preg);
13400
13401 ALL_COMPUNITS (objfile, s)
13402 {
13403 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13404 int i;
13405
13406 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13407 {
13408 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13409 struct block_iterator iter;
13410 struct symbol *sym;
13411
13412 ALL_BLOCK_SYMBOLS (b, iter, sym)
13413 if (ada_is_non_standard_exception_sym (sym)
13414 && (preg == NULL
13415 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13416 0, NULL, 0) == 0))
13417 {
13418 struct ada_exc_info info
13419 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13420
13421 VEC_safe_push (ada_exc_info, *exceptions, &info);
13422 }
13423 }
13424 }
13425 }
13426
13427 /* Implements ada_exceptions_list with the regular expression passed
13428 as a regex_t, rather than a string.
13429
13430 If not NULL, PREG is used to filter out exceptions whose names
13431 do not match. Otherwise, all exceptions are listed. */
13432
13433 static VEC(ada_exc_info) *
13434 ada_exceptions_list_1 (regex_t *preg)
13435 {
13436 VEC(ada_exc_info) *result = NULL;
13437 struct cleanup *old_chain
13438 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13439 int prev_len;
13440
13441 /* First, list the known standard exceptions. These exceptions
13442 need to be handled separately, as they are usually defined in
13443 runtime units that have been compiled without debugging info. */
13444
13445 ada_add_standard_exceptions (preg, &result);
13446
13447 /* Next, find all exceptions whose scope is local and accessible
13448 from the currently selected frame. */
13449
13450 if (has_stack_frames ())
13451 {
13452 prev_len = VEC_length (ada_exc_info, result);
13453 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13454 &result);
13455 if (VEC_length (ada_exc_info, result) > prev_len)
13456 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13457 }
13458
13459 /* Add all exceptions whose scope is global. */
13460
13461 prev_len = VEC_length (ada_exc_info, result);
13462 ada_add_global_exceptions (preg, &result);
13463 if (VEC_length (ada_exc_info, result) > prev_len)
13464 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13465
13466 discard_cleanups (old_chain);
13467 return result;
13468 }
13469
13470 /* Return a vector of ada_exc_info.
13471
13472 If REGEXP is NULL, all exceptions are included in the result.
13473 Otherwise, it should contain a valid regular expression,
13474 and only the exceptions whose names match that regular expression
13475 are included in the result.
13476
13477 The exceptions are sorted in the following order:
13478 - Standard exceptions (defined by the Ada language), in
13479 alphabetical order;
13480 - Exceptions only visible from the current frame, in
13481 alphabetical order;
13482 - Exceptions whose scope is global, in alphabetical order. */
13483
13484 VEC(ada_exc_info) *
13485 ada_exceptions_list (const char *regexp)
13486 {
13487 VEC(ada_exc_info) *result = NULL;
13488 struct cleanup *old_chain = NULL;
13489 regex_t reg;
13490
13491 if (regexp != NULL)
13492 old_chain = compile_rx_or_error (&reg, regexp,
13493 _("invalid regular expression"));
13494
13495 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13496
13497 if (old_chain != NULL)
13498 do_cleanups (old_chain);
13499 return result;
13500 }
13501
13502 /* Implement the "info exceptions" command. */
13503
13504 static void
13505 info_exceptions_command (char *regexp, int from_tty)
13506 {
13507 VEC(ada_exc_info) *exceptions;
13508 struct cleanup *cleanup;
13509 struct gdbarch *gdbarch = get_current_arch ();
13510 int ix;
13511 struct ada_exc_info *info;
13512
13513 exceptions = ada_exceptions_list (regexp);
13514 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13515
13516 if (regexp != NULL)
13517 printf_filtered
13518 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13519 else
13520 printf_filtered (_("All defined Ada exceptions:\n"));
13521
13522 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13523 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13524
13525 do_cleanups (cleanup);
13526 }
13527
13528 /* Operators */
13529 /* Information about operators given special treatment in functions
13530 below. */
13531 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13532
13533 #define ADA_OPERATORS \
13534 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13535 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13536 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13537 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13538 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13539 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13540 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13541 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13542 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13543 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13544 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13545 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13546 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13547 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13548 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13549 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13550 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13551 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13552 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13553
13554 static void
13555 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13556 int *argsp)
13557 {
13558 switch (exp->elts[pc - 1].opcode)
13559 {
13560 default:
13561 operator_length_standard (exp, pc, oplenp, argsp);
13562 break;
13563
13564 #define OP_DEFN(op, len, args, binop) \
13565 case op: *oplenp = len; *argsp = args; break;
13566 ADA_OPERATORS;
13567 #undef OP_DEFN
13568
13569 case OP_AGGREGATE:
13570 *oplenp = 3;
13571 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13572 break;
13573
13574 case OP_CHOICES:
13575 *oplenp = 3;
13576 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13577 break;
13578 }
13579 }
13580
13581 /* Implementation of the exp_descriptor method operator_check. */
13582
13583 static int
13584 ada_operator_check (struct expression *exp, int pos,
13585 int (*objfile_func) (struct objfile *objfile, void *data),
13586 void *data)
13587 {
13588 const union exp_element *const elts = exp->elts;
13589 struct type *type = NULL;
13590
13591 switch (elts[pos].opcode)
13592 {
13593 case UNOP_IN_RANGE:
13594 case UNOP_QUAL:
13595 type = elts[pos + 1].type;
13596 break;
13597
13598 default:
13599 return operator_check_standard (exp, pos, objfile_func, data);
13600 }
13601
13602 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13603
13604 if (type && TYPE_OBJFILE (type)
13605 && (*objfile_func) (TYPE_OBJFILE (type), data))
13606 return 1;
13607
13608 return 0;
13609 }
13610
13611 static char *
13612 ada_op_name (enum exp_opcode opcode)
13613 {
13614 switch (opcode)
13615 {
13616 default:
13617 return op_name_standard (opcode);
13618
13619 #define OP_DEFN(op, len, args, binop) case op: return #op;
13620 ADA_OPERATORS;
13621 #undef OP_DEFN
13622
13623 case OP_AGGREGATE:
13624 return "OP_AGGREGATE";
13625 case OP_CHOICES:
13626 return "OP_CHOICES";
13627 case OP_NAME:
13628 return "OP_NAME";
13629 }
13630 }
13631
13632 /* As for operator_length, but assumes PC is pointing at the first
13633 element of the operator, and gives meaningful results only for the
13634 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13635
13636 static void
13637 ada_forward_operator_length (struct expression *exp, int pc,
13638 int *oplenp, int *argsp)
13639 {
13640 switch (exp->elts[pc].opcode)
13641 {
13642 default:
13643 *oplenp = *argsp = 0;
13644 break;
13645
13646 #define OP_DEFN(op, len, args, binop) \
13647 case op: *oplenp = len; *argsp = args; break;
13648 ADA_OPERATORS;
13649 #undef OP_DEFN
13650
13651 case OP_AGGREGATE:
13652 *oplenp = 3;
13653 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13654 break;
13655
13656 case OP_CHOICES:
13657 *oplenp = 3;
13658 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13659 break;
13660
13661 case OP_STRING:
13662 case OP_NAME:
13663 {
13664 int len = longest_to_int (exp->elts[pc + 1].longconst);
13665
13666 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13667 *argsp = 0;
13668 break;
13669 }
13670 }
13671 }
13672
13673 static int
13674 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13675 {
13676 enum exp_opcode op = exp->elts[elt].opcode;
13677 int oplen, nargs;
13678 int pc = elt;
13679 int i;
13680
13681 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13682
13683 switch (op)
13684 {
13685 /* Ada attributes ('Foo). */
13686 case OP_ATR_FIRST:
13687 case OP_ATR_LAST:
13688 case OP_ATR_LENGTH:
13689 case OP_ATR_IMAGE:
13690 case OP_ATR_MAX:
13691 case OP_ATR_MIN:
13692 case OP_ATR_MODULUS:
13693 case OP_ATR_POS:
13694 case OP_ATR_SIZE:
13695 case OP_ATR_TAG:
13696 case OP_ATR_VAL:
13697 break;
13698
13699 case UNOP_IN_RANGE:
13700 case UNOP_QUAL:
13701 /* XXX: gdb_sprint_host_address, type_sprint */
13702 fprintf_filtered (stream, _("Type @"));
13703 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13704 fprintf_filtered (stream, " (");
13705 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13706 fprintf_filtered (stream, ")");
13707 break;
13708 case BINOP_IN_BOUNDS:
13709 fprintf_filtered (stream, " (%d)",
13710 longest_to_int (exp->elts[pc + 2].longconst));
13711 break;
13712 case TERNOP_IN_RANGE:
13713 break;
13714
13715 case OP_AGGREGATE:
13716 case OP_OTHERS:
13717 case OP_DISCRETE_RANGE:
13718 case OP_POSITIONAL:
13719 case OP_CHOICES:
13720 break;
13721
13722 case OP_NAME:
13723 case OP_STRING:
13724 {
13725 char *name = &exp->elts[elt + 2].string;
13726 int len = longest_to_int (exp->elts[elt + 1].longconst);
13727
13728 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13729 break;
13730 }
13731
13732 default:
13733 return dump_subexp_body_standard (exp, stream, elt);
13734 }
13735
13736 elt += oplen;
13737 for (i = 0; i < nargs; i += 1)
13738 elt = dump_subexp (exp, stream, elt);
13739
13740 return elt;
13741 }
13742
13743 /* The Ada extension of print_subexp (q.v.). */
13744
13745 static void
13746 ada_print_subexp (struct expression *exp, int *pos,
13747 struct ui_file *stream, enum precedence prec)
13748 {
13749 int oplen, nargs, i;
13750 int pc = *pos;
13751 enum exp_opcode op = exp->elts[pc].opcode;
13752
13753 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13754
13755 *pos += oplen;
13756 switch (op)
13757 {
13758 default:
13759 *pos -= oplen;
13760 print_subexp_standard (exp, pos, stream, prec);
13761 return;
13762
13763 case OP_VAR_VALUE:
13764 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13765 return;
13766
13767 case BINOP_IN_BOUNDS:
13768 /* XXX: sprint_subexp */
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 fputs_filtered (" in ", stream);
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 fputs_filtered ("'range", stream);
13773 if (exp->elts[pc + 1].longconst > 1)
13774 fprintf_filtered (stream, "(%ld)",
13775 (long) exp->elts[pc + 1].longconst);
13776 return;
13777
13778 case TERNOP_IN_RANGE:
13779 if (prec >= PREC_EQUAL)
13780 fputs_filtered ("(", stream);
13781 /* XXX: sprint_subexp */
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 fputs_filtered (" in ", stream);
13784 print_subexp (exp, pos, stream, PREC_EQUAL);
13785 fputs_filtered (" .. ", stream);
13786 print_subexp (exp, pos, stream, PREC_EQUAL);
13787 if (prec >= PREC_EQUAL)
13788 fputs_filtered (")", stream);
13789 return;
13790
13791 case OP_ATR_FIRST:
13792 case OP_ATR_LAST:
13793 case OP_ATR_LENGTH:
13794 case OP_ATR_IMAGE:
13795 case OP_ATR_MAX:
13796 case OP_ATR_MIN:
13797 case OP_ATR_MODULUS:
13798 case OP_ATR_POS:
13799 case OP_ATR_SIZE:
13800 case OP_ATR_TAG:
13801 case OP_ATR_VAL:
13802 if (exp->elts[*pos].opcode == OP_TYPE)
13803 {
13804 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13805 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13806 &type_print_raw_options);
13807 *pos += 3;
13808 }
13809 else
13810 print_subexp (exp, pos, stream, PREC_SUFFIX);
13811 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13812 if (nargs > 1)
13813 {
13814 int tem;
13815
13816 for (tem = 1; tem < nargs; tem += 1)
13817 {
13818 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13819 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13820 }
13821 fputs_filtered (")", stream);
13822 }
13823 return;
13824
13825 case UNOP_QUAL:
13826 type_print (exp->elts[pc + 1].type, "", stream, 0);
13827 fputs_filtered ("'(", stream);
13828 print_subexp (exp, pos, stream, PREC_PREFIX);
13829 fputs_filtered (")", stream);
13830 return;
13831
13832 case UNOP_IN_RANGE:
13833 /* XXX: sprint_subexp */
13834 print_subexp (exp, pos, stream, PREC_SUFFIX);
13835 fputs_filtered (" in ", stream);
13836 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13837 &type_print_raw_options);
13838 return;
13839
13840 case OP_DISCRETE_RANGE:
13841 print_subexp (exp, pos, stream, PREC_SUFFIX);
13842 fputs_filtered ("..", stream);
13843 print_subexp (exp, pos, stream, PREC_SUFFIX);
13844 return;
13845
13846 case OP_OTHERS:
13847 fputs_filtered ("others => ", stream);
13848 print_subexp (exp, pos, stream, PREC_SUFFIX);
13849 return;
13850
13851 case OP_CHOICES:
13852 for (i = 0; i < nargs-1; i += 1)
13853 {
13854 if (i > 0)
13855 fputs_filtered ("|", stream);
13856 print_subexp (exp, pos, stream, PREC_SUFFIX);
13857 }
13858 fputs_filtered (" => ", stream);
13859 print_subexp (exp, pos, stream, PREC_SUFFIX);
13860 return;
13861
13862 case OP_POSITIONAL:
13863 print_subexp (exp, pos, stream, PREC_SUFFIX);
13864 return;
13865
13866 case OP_AGGREGATE:
13867 fputs_filtered ("(", stream);
13868 for (i = 0; i < nargs; i += 1)
13869 {
13870 if (i > 0)
13871 fputs_filtered (", ", stream);
13872 print_subexp (exp, pos, stream, PREC_SUFFIX);
13873 }
13874 fputs_filtered (")", stream);
13875 return;
13876 }
13877 }
13878
13879 /* Table mapping opcodes into strings for printing operators
13880 and precedences of the operators. */
13881
13882 static const struct op_print ada_op_print_tab[] = {
13883 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13884 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13885 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13886 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13887 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13888 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13889 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13890 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13891 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13892 {">=", BINOP_GEQ, PREC_ORDER, 0},
13893 {">", BINOP_GTR, PREC_ORDER, 0},
13894 {"<", BINOP_LESS, PREC_ORDER, 0},
13895 {">>", BINOP_RSH, PREC_SHIFT, 0},
13896 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13897 {"+", BINOP_ADD, PREC_ADD, 0},
13898 {"-", BINOP_SUB, PREC_ADD, 0},
13899 {"&", BINOP_CONCAT, PREC_ADD, 0},
13900 {"*", BINOP_MUL, PREC_MUL, 0},
13901 {"/", BINOP_DIV, PREC_MUL, 0},
13902 {"rem", BINOP_REM, PREC_MUL, 0},
13903 {"mod", BINOP_MOD, PREC_MUL, 0},
13904 {"**", BINOP_EXP, PREC_REPEAT, 0},
13905 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13906 {"-", UNOP_NEG, PREC_PREFIX, 0},
13907 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13908 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13909 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13910 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13911 {".all", UNOP_IND, PREC_SUFFIX, 1},
13912 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13913 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13914 {NULL, OP_NULL, PREC_SUFFIX, 0}
13915 };
13916 \f
13917 enum ada_primitive_types {
13918 ada_primitive_type_int,
13919 ada_primitive_type_long,
13920 ada_primitive_type_short,
13921 ada_primitive_type_char,
13922 ada_primitive_type_float,
13923 ada_primitive_type_double,
13924 ada_primitive_type_void,
13925 ada_primitive_type_long_long,
13926 ada_primitive_type_long_double,
13927 ada_primitive_type_natural,
13928 ada_primitive_type_positive,
13929 ada_primitive_type_system_address,
13930 nr_ada_primitive_types
13931 };
13932
13933 static void
13934 ada_language_arch_info (struct gdbarch *gdbarch,
13935 struct language_arch_info *lai)
13936 {
13937 const struct builtin_type *builtin = builtin_type (gdbarch);
13938
13939 lai->primitive_type_vector
13940 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13941 struct type *);
13942
13943 lai->primitive_type_vector [ada_primitive_type_int]
13944 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13945 0, "integer");
13946 lai->primitive_type_vector [ada_primitive_type_long]
13947 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13948 0, "long_integer");
13949 lai->primitive_type_vector [ada_primitive_type_short]
13950 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13951 0, "short_integer");
13952 lai->string_char_type
13953 = lai->primitive_type_vector [ada_primitive_type_char]
13954 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13955 lai->primitive_type_vector [ada_primitive_type_float]
13956 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13957 "float", gdbarch_float_format (gdbarch));
13958 lai->primitive_type_vector [ada_primitive_type_double]
13959 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13960 "long_float", gdbarch_double_format (gdbarch));
13961 lai->primitive_type_vector [ada_primitive_type_long_long]
13962 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13963 0, "long_long_integer");
13964 lai->primitive_type_vector [ada_primitive_type_long_double]
13965 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13966 "long_long_float", gdbarch_long_double_format (gdbarch));
13967 lai->primitive_type_vector [ada_primitive_type_natural]
13968 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13969 0, "natural");
13970 lai->primitive_type_vector [ada_primitive_type_positive]
13971 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13972 0, "positive");
13973 lai->primitive_type_vector [ada_primitive_type_void]
13974 = builtin->builtin_void;
13975
13976 lai->primitive_type_vector [ada_primitive_type_system_address]
13977 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13978 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13979 = "system__address";
13980
13981 lai->bool_type_symbol = NULL;
13982 lai->bool_type_default = builtin->builtin_bool;
13983 }
13984 \f
13985 /* Language vector */
13986
13987 /* Not really used, but needed in the ada_language_defn. */
13988
13989 static void
13990 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13991 {
13992 ada_emit_char (c, type, stream, quoter, 1);
13993 }
13994
13995 static int
13996 parse (struct parser_state *ps)
13997 {
13998 warnings_issued = 0;
13999 return ada_parse (ps);
14000 }
14001
14002 static const struct exp_descriptor ada_exp_descriptor = {
14003 ada_print_subexp,
14004 ada_operator_length,
14005 ada_operator_check,
14006 ada_op_name,
14007 ada_dump_subexp_body,
14008 ada_evaluate_subexp
14009 };
14010
14011 /* Implement the "la_get_symbol_name_cmp" language_defn method
14012 for Ada. */
14013
14014 static symbol_name_cmp_ftype
14015 ada_get_symbol_name_cmp (const char *lookup_name)
14016 {
14017 if (should_use_wild_match (lookup_name))
14018 return wild_match;
14019 else
14020 return compare_names;
14021 }
14022
14023 /* Implement the "la_read_var_value" language_defn method for Ada. */
14024
14025 static struct value *
14026 ada_read_var_value (struct symbol *var, const struct block *var_block,
14027 struct frame_info *frame)
14028 {
14029 const struct block *frame_block = NULL;
14030 struct symbol *renaming_sym = NULL;
14031
14032 /* The only case where default_read_var_value is not sufficient
14033 is when VAR is a renaming... */
14034 if (frame)
14035 frame_block = get_frame_block (frame, NULL);
14036 if (frame_block)
14037 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14038 if (renaming_sym != NULL)
14039 return ada_read_renaming_var_value (renaming_sym, frame_block);
14040
14041 /* This is a typical case where we expect the default_read_var_value
14042 function to work. */
14043 return default_read_var_value (var, var_block, frame);
14044 }
14045
14046 static const char *ada_extensions[] =
14047 {
14048 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14049 };
14050
14051 const struct language_defn ada_language_defn = {
14052 "ada", /* Language name */
14053 "Ada",
14054 language_ada,
14055 range_check_off,
14056 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14057 that's not quite what this means. */
14058 array_row_major,
14059 macro_expansion_no,
14060 ada_extensions,
14061 &ada_exp_descriptor,
14062 parse,
14063 ada_yyerror,
14064 resolve,
14065 ada_printchar, /* Print a character constant */
14066 ada_printstr, /* Function to print string constant */
14067 emit_char, /* Function to print single char (not used) */
14068 ada_print_type, /* Print a type using appropriate syntax */
14069 ada_print_typedef, /* Print a typedef using appropriate syntax */
14070 ada_val_print, /* Print a value using appropriate syntax */
14071 ada_value_print, /* Print a top-level value */
14072 ada_read_var_value, /* la_read_var_value */
14073 NULL, /* Language specific skip_trampoline */
14074 NULL, /* name_of_this */
14075 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14076 basic_lookup_transparent_type, /* lookup_transparent_type */
14077 ada_la_decode, /* Language specific symbol demangler */
14078 ada_sniff_from_mangled_name,
14079 NULL, /* Language specific
14080 class_name_from_physname */
14081 ada_op_print_tab, /* expression operators for printing */
14082 0, /* c-style arrays */
14083 1, /* String lower bound */
14084 ada_get_gdb_completer_word_break_characters,
14085 ada_make_symbol_completion_list,
14086 ada_language_arch_info,
14087 ada_print_array_index,
14088 default_pass_by_reference,
14089 c_get_string,
14090 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14091 ada_iterate_over_symbols,
14092 &ada_varobj_ops,
14093 NULL,
14094 NULL,
14095 LANG_MAGIC
14096 };
14097
14098 /* Provide a prototype to silence -Wmissing-prototypes. */
14099 extern initialize_file_ftype _initialize_ada_language;
14100
14101 /* Command-list for the "set/show ada" prefix command. */
14102 static struct cmd_list_element *set_ada_list;
14103 static struct cmd_list_element *show_ada_list;
14104
14105 /* Implement the "set ada" prefix command. */
14106
14107 static void
14108 set_ada_command (char *arg, int from_tty)
14109 {
14110 printf_unfiltered (_(\
14111 "\"set ada\" must be followed by the name of a setting.\n"));
14112 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14113 }
14114
14115 /* Implement the "show ada" prefix command. */
14116
14117 static void
14118 show_ada_command (char *args, int from_tty)
14119 {
14120 cmd_show_list (show_ada_list, from_tty, "");
14121 }
14122
14123 static void
14124 initialize_ada_catchpoint_ops (void)
14125 {
14126 struct breakpoint_ops *ops;
14127
14128 initialize_breakpoint_ops ();
14129
14130 ops = &catch_exception_breakpoint_ops;
14131 *ops = bkpt_breakpoint_ops;
14132 ops->dtor = dtor_catch_exception;
14133 ops->allocate_location = allocate_location_catch_exception;
14134 ops->re_set = re_set_catch_exception;
14135 ops->check_status = check_status_catch_exception;
14136 ops->print_it = print_it_catch_exception;
14137 ops->print_one = print_one_catch_exception;
14138 ops->print_mention = print_mention_catch_exception;
14139 ops->print_recreate = print_recreate_catch_exception;
14140
14141 ops = &catch_exception_unhandled_breakpoint_ops;
14142 *ops = bkpt_breakpoint_ops;
14143 ops->dtor = dtor_catch_exception_unhandled;
14144 ops->allocate_location = allocate_location_catch_exception_unhandled;
14145 ops->re_set = re_set_catch_exception_unhandled;
14146 ops->check_status = check_status_catch_exception_unhandled;
14147 ops->print_it = print_it_catch_exception_unhandled;
14148 ops->print_one = print_one_catch_exception_unhandled;
14149 ops->print_mention = print_mention_catch_exception_unhandled;
14150 ops->print_recreate = print_recreate_catch_exception_unhandled;
14151
14152 ops = &catch_assert_breakpoint_ops;
14153 *ops = bkpt_breakpoint_ops;
14154 ops->dtor = dtor_catch_assert;
14155 ops->allocate_location = allocate_location_catch_assert;
14156 ops->re_set = re_set_catch_assert;
14157 ops->check_status = check_status_catch_assert;
14158 ops->print_it = print_it_catch_assert;
14159 ops->print_one = print_one_catch_assert;
14160 ops->print_mention = print_mention_catch_assert;
14161 ops->print_recreate = print_recreate_catch_assert;
14162 }
14163
14164 /* This module's 'new_objfile' observer. */
14165
14166 static void
14167 ada_new_objfile_observer (struct objfile *objfile)
14168 {
14169 ada_clear_symbol_cache ();
14170 }
14171
14172 /* This module's 'free_objfile' observer. */
14173
14174 static void
14175 ada_free_objfile_observer (struct objfile *objfile)
14176 {
14177 ada_clear_symbol_cache ();
14178 }
14179
14180 void
14181 _initialize_ada_language (void)
14182 {
14183 add_language (&ada_language_defn);
14184
14185 initialize_ada_catchpoint_ops ();
14186
14187 add_prefix_cmd ("ada", no_class, set_ada_command,
14188 _("Prefix command for changing Ada-specfic settings"),
14189 &set_ada_list, "set ada ", 0, &setlist);
14190
14191 add_prefix_cmd ("ada", no_class, show_ada_command,
14192 _("Generic command for showing Ada-specific settings."),
14193 &show_ada_list, "show ada ", 0, &showlist);
14194
14195 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14196 &trust_pad_over_xvs, _("\
14197 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14198 Show whether an optimization trusting PAD types over XVS types is activated"),
14199 _("\
14200 This is related to the encoding used by the GNAT compiler. The debugger\n\
14201 should normally trust the contents of PAD types, but certain older versions\n\
14202 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14203 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14204 work around this bug. It is always safe to turn this option \"off\", but\n\
14205 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14206 this option to \"off\" unless necessary."),
14207 NULL, NULL, &set_ada_list, &show_ada_list);
14208
14209 add_setshow_boolean_cmd ("print-signatures", class_vars,
14210 &print_signatures, _("\
14211 Enable or disable the output of formal and return types for functions in the \
14212 overloads selection menu"), _("\
14213 Show whether the output of formal and return types for functions in the \
14214 overloads selection menu is activated"),
14215 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14216
14217 add_catch_command ("exception", _("\
14218 Catch Ada exceptions, when raised.\n\
14219 With an argument, catch only exceptions with the given name."),
14220 catch_ada_exception_command,
14221 NULL,
14222 CATCH_PERMANENT,
14223 CATCH_TEMPORARY);
14224 add_catch_command ("assert", _("\
14225 Catch failed Ada assertions, when raised.\n\
14226 With an argument, catch only exceptions with the given name."),
14227 catch_assert_command,
14228 NULL,
14229 CATCH_PERMANENT,
14230 CATCH_TEMPORARY);
14231
14232 varsize_limit = 65536;
14233
14234 add_info ("exceptions", info_exceptions_command,
14235 _("\
14236 List all Ada exception names.\n\
14237 If a regular expression is passed as an argument, only those matching\n\
14238 the regular expression are listed."));
14239
14240 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14241 _("Set Ada maintenance-related variables."),
14242 &maint_set_ada_cmdlist, "maintenance set ada ",
14243 0/*allow-unknown*/, &maintenance_set_cmdlist);
14244
14245 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14246 _("Show Ada maintenance-related variables"),
14247 &maint_show_ada_cmdlist, "maintenance show ada ",
14248 0/*allow-unknown*/, &maintenance_show_cmdlist);
14249
14250 add_setshow_boolean_cmd
14251 ("ignore-descriptive-types", class_maintenance,
14252 &ada_ignore_descriptive_types_p,
14253 _("Set whether descriptive types generated by GNAT should be ignored."),
14254 _("Show whether descriptive types generated by GNAT should be ignored."),
14255 _("\
14256 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14257 DWARF attribute."),
14258 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14259
14260 obstack_init (&symbol_list_obstack);
14261
14262 decoded_names_store = htab_create_alloc
14263 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14264 NULL, xcalloc, xfree);
14265
14266 /* The ada-lang observers. */
14267 observer_attach_new_objfile (ada_new_objfile_observer);
14268 observer_attach_free_objfile (ada_free_objfile_observer);
14269 observer_attach_inferior_exit (ada_inferior_exit);
14270
14271 /* Setup various context-specific data. */
14272 ada_inferior_data
14273 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14274 ada_pspace_data_handle
14275 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14276 }
This page took 0.356798 seconds and 5 git commands to generate.