Wrong value printed by info locals for dynamic object.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233 static struct value *ada_coerce_to_simple_array (struct value *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static void check_size (const struct type *);
241
242 static struct value *ada_index_struct_field (int, struct value *, int,
243 struct type *);
244
245 static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Utilities */
310
311 /* Given DECODED_NAME a string holding a symbol name in its
312 decoded form (ie using the Ada dotted notation), returns
313 its unqualified name. */
314
315 static const char *
316 ada_unqualified_name (const char *decoded_name)
317 {
318 const char *result = strrchr (decoded_name, '.');
319
320 if (result != NULL)
321 result++; /* Skip the dot... */
322 else
323 result = decoded_name;
324
325 return result;
326 }
327
328 /* Return a string starting with '<', followed by STR, and '>'.
329 The result is good until the next call. */
330
331 static char *
332 add_angle_brackets (const char *str)
333 {
334 static char *result = NULL;
335
336 xfree (result);
337 result = xstrprintf ("<%s>", str);
338 return result;
339 }
340
341 static char *
342 ada_get_gdb_completer_word_break_characters (void)
343 {
344 return ada_completer_word_break_characters;
345 }
346
347 /* Print an array element index using the Ada syntax. */
348
349 static void
350 ada_print_array_index (struct value *index_value, struct ui_file *stream,
351 const struct value_print_options *options)
352 {
353 LA_VALUE_PRINT (index_value, stream, options);
354 fprintf_filtered (stream, " => ");
355 }
356
357 /* Assuming VECT points to an array of *SIZE objects of size
358 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
359 updating *SIZE as necessary and returning the (new) array. */
360
361 void *
362 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
363 {
364 if (*size < min_size)
365 {
366 *size *= 2;
367 if (*size < min_size)
368 *size = min_size;
369 vect = xrealloc (vect, *size * element_size);
370 }
371 return vect;
372 }
373
374 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
375 suffix of FIELD_NAME beginning "___". */
376
377 static int
378 field_name_match (const char *field_name, const char *target)
379 {
380 int len = strlen (target);
381 return
382 (strncmp (field_name, target, len) == 0
383 && (field_name[len] == '\0'
384 || (strncmp (field_name + len, "___", 3) == 0
385 && strcmp (field_name + strlen (field_name) - 6,
386 "___XVN") != 0)));
387 }
388
389
390 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
391 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
392 and return its index. This function also handles fields whose name
393 have ___ suffixes because the compiler sometimes alters their name
394 by adding such a suffix to represent fields with certain constraints.
395 If the field could not be found, return a negative number if
396 MAYBE_MISSING is set. Otherwise raise an error. */
397
398 int
399 ada_get_field_index (const struct type *type, const char *field_name,
400 int maybe_missing)
401 {
402 int fieldno;
403 struct type *struct_type = check_typedef ((struct type *) type);
404
405 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
406 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
407 return fieldno;
408
409 if (!maybe_missing)
410 error (_("Unable to find field %s in struct %s. Aborting"),
411 field_name, TYPE_NAME (struct_type));
412
413 return -1;
414 }
415
416 /* The length of the prefix of NAME prior to any "___" suffix. */
417
418 int
419 ada_name_prefix_len (const char *name)
420 {
421 if (name == NULL)
422 return 0;
423 else
424 {
425 const char *p = strstr (name, "___");
426 if (p == NULL)
427 return strlen (name);
428 else
429 return p - name;
430 }
431 }
432
433 /* Return non-zero if SUFFIX is a suffix of STR.
434 Return zero if STR is null. */
435
436 static int
437 is_suffix (const char *str, const char *suffix)
438 {
439 int len1, len2;
440 if (str == NULL)
441 return 0;
442 len1 = strlen (str);
443 len2 = strlen (suffix);
444 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
445 }
446
447 /* The contents of value VAL, treated as a value of type TYPE. The
448 result is an lval in memory if VAL is. */
449
450 static struct value *
451 coerce_unspec_val_to_type (struct value *val, struct type *type)
452 {
453 type = ada_check_typedef (type);
454 if (value_type (val) == type)
455 return val;
456 else
457 {
458 struct value *result;
459
460 /* Make sure that the object size is not unreasonable before
461 trying to allocate some memory for it. */
462 check_size (type);
463
464 result = allocate_value (type);
465 set_value_component_location (result, val);
466 set_value_bitsize (result, value_bitsize (val));
467 set_value_bitpos (result, value_bitpos (val));
468 set_value_address (result, value_address (val));
469 if (value_lazy (val)
470 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
471 set_value_lazy (result, 1);
472 else
473 memcpy (value_contents_raw (result), value_contents (val),
474 TYPE_LENGTH (type));
475 return result;
476 }
477 }
478
479 static const gdb_byte *
480 cond_offset_host (const gdb_byte *valaddr, long offset)
481 {
482 if (valaddr == NULL)
483 return NULL;
484 else
485 return valaddr + offset;
486 }
487
488 static CORE_ADDR
489 cond_offset_target (CORE_ADDR address, long offset)
490 {
491 if (address == 0)
492 return 0;
493 else
494 return address + offset;
495 }
496
497 /* Issue a warning (as for the definition of warning in utils.c, but
498 with exactly one argument rather than ...), unless the limit on the
499 number of warnings has passed during the evaluation of the current
500 expression. */
501
502 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
503 provided by "complaint". */
504 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
505
506 static void
507 lim_warning (const char *format, ...)
508 {
509 va_list args;
510 va_start (args, format);
511
512 warnings_issued += 1;
513 if (warnings_issued <= warning_limit)
514 vwarning (format, args);
515
516 va_end (args);
517 }
518
519 /* Issue an error if the size of an object of type T is unreasonable,
520 i.e. if it would be a bad idea to allocate a value of this type in
521 GDB. */
522
523 static void
524 check_size (const struct type *type)
525 {
526 if (TYPE_LENGTH (type) > varsize_limit)
527 error (_("object size is larger than varsize-limit"));
528 }
529
530
531 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
532 gdbtypes.h, but some of the necessary definitions in that file
533 seem to have gone missing. */
534
535 /* Maximum value of a SIZE-byte signed integer type. */
536 static LONGEST
537 max_of_size (int size)
538 {
539 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
540 return top_bit | (top_bit - 1);
541 }
542
543 /* Minimum value of a SIZE-byte signed integer type. */
544 static LONGEST
545 min_of_size (int size)
546 {
547 return -max_of_size (size) - 1;
548 }
549
550 /* Maximum value of a SIZE-byte unsigned integer type. */
551 static ULONGEST
552 umax_of_size (int size)
553 {
554 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Maximum value of integral type T, as a signed quantity. */
559 static LONGEST
560 max_of_type (struct type *t)
561 {
562 if (TYPE_UNSIGNED (t))
563 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
564 else
565 return max_of_size (TYPE_LENGTH (t));
566 }
567
568 /* Minimum value of integral type T, as a signed quantity. */
569 static LONGEST
570 min_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return 0;
574 else
575 return min_of_size (TYPE_LENGTH (t));
576 }
577
578 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
579 LONGEST
580 ada_discrete_type_high_bound (struct type *type)
581 {
582 switch (TYPE_CODE (type))
583 {
584 case TYPE_CODE_RANGE:
585 return TYPE_HIGH_BOUND (type);
586 case TYPE_CODE_ENUM:
587 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
588 case TYPE_CODE_BOOL:
589 return 1;
590 case TYPE_CODE_CHAR:
591 case TYPE_CODE_INT:
592 return max_of_type (type);
593 default:
594 error (_("Unexpected type in ada_discrete_type_high_bound."));
595 }
596 }
597
598 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
599 LONGEST
600 ada_discrete_type_low_bound (struct type *type)
601 {
602 switch (TYPE_CODE (type))
603 {
604 case TYPE_CODE_RANGE:
605 return TYPE_LOW_BOUND (type);
606 case TYPE_CODE_ENUM:
607 return TYPE_FIELD_BITPOS (type, 0);
608 case TYPE_CODE_BOOL:
609 return 0;
610 case TYPE_CODE_CHAR:
611 case TYPE_CODE_INT:
612 return min_of_type (type);
613 default:
614 error (_("Unexpected type in ada_discrete_type_low_bound."));
615 }
616 }
617
618 /* The identity on non-range types. For range types, the underlying
619 non-range scalar type. */
620
621 static struct type *
622 base_type (struct type *type)
623 {
624 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
625 {
626 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
627 return type;
628 type = TYPE_TARGET_TYPE (type);
629 }
630 return type;
631 }
632 \f
633
634 /* Language Selection */
635
636 /* If the main program is in Ada, return language_ada, otherwise return LANG
637 (the main program is in Ada iif the adainit symbol is found). */
638
639 enum language
640 ada_update_initial_language (enum language lang)
641 {
642 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
643 (struct objfile *) NULL) != NULL)
644 return language_ada;
645
646 return lang;
647 }
648
649 /* If the main procedure is written in Ada, then return its name.
650 The result is good until the next call. Return NULL if the main
651 procedure doesn't appear to be in Ada. */
652
653 char *
654 ada_main_name (void)
655 {
656 struct minimal_symbol *msym;
657 static char *main_program_name = NULL;
658
659 /* For Ada, the name of the main procedure is stored in a specific
660 string constant, generated by the binder. Look for that symbol,
661 extract its address, and then read that string. If we didn't find
662 that string, then most probably the main procedure is not written
663 in Ada. */
664 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
665
666 if (msym != NULL)
667 {
668 CORE_ADDR main_program_name_addr;
669 int err_code;
670
671 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
672 if (main_program_name_addr == 0)
673 error (_("Invalid address for Ada main program name."));
674
675 xfree (main_program_name);
676 target_read_string (main_program_name_addr, &main_program_name,
677 1024, &err_code);
678
679 if (err_code != 0)
680 return NULL;
681 return main_program_name;
682 }
683
684 /* The main procedure doesn't seem to be in Ada. */
685 return NULL;
686 }
687 \f
688 /* Symbols */
689
690 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
691 of NULLs. */
692
693 const struct ada_opname_map ada_opname_table[] = {
694 {"Oadd", "\"+\"", BINOP_ADD},
695 {"Osubtract", "\"-\"", BINOP_SUB},
696 {"Omultiply", "\"*\"", BINOP_MUL},
697 {"Odivide", "\"/\"", BINOP_DIV},
698 {"Omod", "\"mod\"", BINOP_MOD},
699 {"Orem", "\"rem\"", BINOP_REM},
700 {"Oexpon", "\"**\"", BINOP_EXP},
701 {"Olt", "\"<\"", BINOP_LESS},
702 {"Ole", "\"<=\"", BINOP_LEQ},
703 {"Ogt", "\">\"", BINOP_GTR},
704 {"Oge", "\">=\"", BINOP_GEQ},
705 {"Oeq", "\"=\"", BINOP_EQUAL},
706 {"One", "\"/=\"", BINOP_NOTEQUAL},
707 {"Oand", "\"and\"", BINOP_BITWISE_AND},
708 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
709 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
710 {"Oconcat", "\"&\"", BINOP_CONCAT},
711 {"Oabs", "\"abs\"", UNOP_ABS},
712 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
713 {"Oadd", "\"+\"", UNOP_PLUS},
714 {"Osubtract", "\"-\"", UNOP_NEG},
715 {NULL, NULL}
716 };
717
718 /* The "encoded" form of DECODED, according to GNAT conventions.
719 The result is valid until the next call to ada_encode. */
720
721 char *
722 ada_encode (const char *decoded)
723 {
724 static char *encoding_buffer = NULL;
725 static size_t encoding_buffer_size = 0;
726 const char *p;
727 int k;
728
729 if (decoded == NULL)
730 return NULL;
731
732 GROW_VECT (encoding_buffer, encoding_buffer_size,
733 2 * strlen (decoded) + 10);
734
735 k = 0;
736 for (p = decoded; *p != '\0'; p += 1)
737 {
738 if (*p == '.')
739 {
740 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
741 k += 2;
742 }
743 else if (*p == '"')
744 {
745 const struct ada_opname_map *mapping;
746
747 for (mapping = ada_opname_table;
748 mapping->encoded != NULL
749 && strncmp (mapping->decoded, p,
750 strlen (mapping->decoded)) != 0; mapping += 1)
751 ;
752 if (mapping->encoded == NULL)
753 error (_("invalid Ada operator name: %s"), p);
754 strcpy (encoding_buffer + k, mapping->encoded);
755 k += strlen (mapping->encoded);
756 break;
757 }
758 else
759 {
760 encoding_buffer[k] = *p;
761 k += 1;
762 }
763 }
764
765 encoding_buffer[k] = '\0';
766 return encoding_buffer;
767 }
768
769 /* Return NAME folded to lower case, or, if surrounded by single
770 quotes, unfolded, but with the quotes stripped away. Result good
771 to next call. */
772
773 char *
774 ada_fold_name (const char *name)
775 {
776 static char *fold_buffer = NULL;
777 static size_t fold_buffer_size = 0;
778
779 int len = strlen (name);
780 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
781
782 if (name[0] == '\'')
783 {
784 strncpy (fold_buffer, name + 1, len - 2);
785 fold_buffer[len - 2] = '\000';
786 }
787 else
788 {
789 int i;
790 for (i = 0; i <= len; i += 1)
791 fold_buffer[i] = tolower (name[i]);
792 }
793
794 return fold_buffer;
795 }
796
797 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
798
799 static int
800 is_lower_alphanum (const char c)
801 {
802 return (isdigit (c) || (isalpha (c) && islower (c)));
803 }
804
805 /* Remove either of these suffixes:
806 . .{DIGIT}+
807 . ${DIGIT}+
808 . ___{DIGIT}+
809 . __{DIGIT}+.
810 These are suffixes introduced by the compiler for entities such as
811 nested subprogram for instance, in order to avoid name clashes.
812 They do not serve any purpose for the debugger. */
813
814 static void
815 ada_remove_trailing_digits (const char *encoded, int *len)
816 {
817 if (*len > 1 && isdigit (encoded[*len - 1]))
818 {
819 int i = *len - 2;
820 while (i > 0 && isdigit (encoded[i]))
821 i--;
822 if (i >= 0 && encoded[i] == '.')
823 *len = i;
824 else if (i >= 0 && encoded[i] == '$')
825 *len = i;
826 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
827 *len = i - 2;
828 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
829 *len = i - 1;
830 }
831 }
832
833 /* Remove the suffix introduced by the compiler for protected object
834 subprograms. */
835
836 static void
837 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
838 {
839 /* Remove trailing N. */
840
841 /* Protected entry subprograms are broken into two
842 separate subprograms: The first one is unprotected, and has
843 a 'N' suffix; the second is the protected version, and has
844 the 'P' suffix. The second calls the first one after handling
845 the protection. Since the P subprograms are internally generated,
846 we leave these names undecoded, giving the user a clue that this
847 entity is internal. */
848
849 if (*len > 1
850 && encoded[*len - 1] == 'N'
851 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
852 *len = *len - 1;
853 }
854
855 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
856
857 static void
858 ada_remove_Xbn_suffix (const char *encoded, int *len)
859 {
860 int i = *len - 1;
861
862 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
863 i--;
864
865 if (encoded[i] != 'X')
866 return;
867
868 if (i == 0)
869 return;
870
871 if (isalnum (encoded[i-1]))
872 *len = i;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove any trailing TB suffix. The TB suffix is slightly different
932 from the TKB suffix because it is used for non-anonymous task
933 bodies. */
934
935 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
936 len0 -= 2;
937
938 /* Remove trailing "B" suffixes. */
939 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
940
941 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
942 len0 -= 1;
943
944 /* Make decoded big enough for possible expansion by operator name. */
945
946 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
947 decoded = decoding_buffer;
948
949 /* Remove trailing __{digit}+ or trailing ${digit}+. */
950
951 if (len0 > 1 && isdigit (encoded[len0 - 1]))
952 {
953 i = len0 - 2;
954 while ((i >= 0 && isdigit (encoded[i]))
955 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
956 i -= 1;
957 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
958 len0 = i - 1;
959 else if (encoded[i] == '$')
960 len0 = i;
961 }
962
963 /* The first few characters that are not alphabetic are not part
964 of any encoding we use, so we can copy them over verbatim. */
965
966 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
967 decoded[j] = encoded[i];
968
969 at_start_name = 1;
970 while (i < len0)
971 {
972 /* Is this a symbol function? */
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1002 be translated into "." (just below). These are internal names
1003 generated for anonymous blocks inside which our symbol is nested. */
1004
1005 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1006 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1007 && isdigit (encoded [i+4]))
1008 {
1009 int k = i + 5;
1010
1011 while (k < len0 && isdigit (encoded[k]))
1012 k++; /* Skip any extra digit. */
1013
1014 /* Double-check that the "__B_{DIGITS}+" sequence we found
1015 is indeed followed by "__". */
1016 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1017 i = k;
1018 }
1019
1020 /* Remove _E{DIGITS}+[sb] */
1021
1022 /* Just as for protected object subprograms, there are 2 categories
1023 of subprograms created by the compiler for each entry. The first
1024 one implements the actual entry code, and has a suffix following
1025 the convention above; the second one implements the barrier and
1026 uses the same convention as above, except that the 'E' is replaced
1027 by a 'B'.
1028
1029 Just as above, we do not decode the name of barrier functions
1030 to give the user a clue that the code he is debugging has been
1031 internally generated. */
1032
1033 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1034 && isdigit (encoded[i+2]))
1035 {
1036 int k = i + 3;
1037
1038 while (k < len0 && isdigit (encoded[k]))
1039 k++;
1040
1041 if (k < len0
1042 && (encoded[k] == 'b' || encoded[k] == 's'))
1043 {
1044 k++;
1045 /* Just as an extra precaution, make sure that if this
1046 suffix is followed by anything else, it is a '_'.
1047 Otherwise, we matched this sequence by accident. */
1048 if (k == len0
1049 || (k < len0 && encoded[k] == '_'))
1050 i = k;
1051 }
1052 }
1053
1054 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1055 the GNAT front-end in protected object subprograms. */
1056
1057 if (i < len0 + 3
1058 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1059 {
1060 /* Backtrack a bit up until we reach either the begining of
1061 the encoded name, or "__". Make sure that we only find
1062 digits or lowercase characters. */
1063 const char *ptr = encoded + i - 1;
1064
1065 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1066 ptr--;
1067 if (ptr < encoded
1068 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1069 i++;
1070 }
1071
1072 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1073 {
1074 /* This is a X[bn]* sequence not separated from the previous
1075 part of the name with a non-alpha-numeric character (in other
1076 words, immediately following an alpha-numeric character), then
1077 verify that it is placed at the end of the encoded name. If
1078 not, then the encoding is not valid and we should abort the
1079 decoding. Otherwise, just skip it, it is used in body-nested
1080 package names. */
1081 do
1082 i += 1;
1083 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1084 if (i < len0)
1085 goto Suppress;
1086 }
1087 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1088 {
1089 /* Replace '__' by '.'. */
1090 decoded[j] = '.';
1091 at_start_name = 1;
1092 i += 2;
1093 j += 1;
1094 }
1095 else
1096 {
1097 /* It's a character part of the decoded name, so just copy it
1098 over. */
1099 decoded[j] = encoded[i];
1100 i += 1;
1101 j += 1;
1102 }
1103 }
1104 decoded[j] = '\000';
1105
1106 /* Decoded names should never contain any uppercase character.
1107 Double-check this, and abort the decoding if we find one. */
1108
1109 for (i = 0; decoded[i] != '\0'; i += 1)
1110 if (isupper (decoded[i]) || decoded[i] == ' ')
1111 goto Suppress;
1112
1113 if (strcmp (decoded, encoded) == 0)
1114 return encoded;
1115 else
1116 return decoded;
1117
1118 Suppress:
1119 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1120 decoded = decoding_buffer;
1121 if (encoded[0] == '<')
1122 strcpy (decoded, encoded);
1123 else
1124 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1125 return decoded;
1126
1127 }
1128
1129 /* Table for keeping permanent unique copies of decoded names. Once
1130 allocated, names in this table are never released. While this is a
1131 storage leak, it should not be significant unless there are massive
1132 changes in the set of decoded names in successive versions of a
1133 symbol table loaded during a single session. */
1134 static struct htab *decoded_names_store;
1135
1136 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1137 in the language-specific part of GSYMBOL, if it has not been
1138 previously computed. Tries to save the decoded name in the same
1139 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1140 in any case, the decoded symbol has a lifetime at least that of
1141 GSYMBOL).
1142 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1143 const, but nevertheless modified to a semantically equivalent form
1144 when a decoded name is cached in it.
1145 */
1146
1147 char *
1148 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1149 {
1150 char **resultp =
1151 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1152 if (*resultp == NULL)
1153 {
1154 const char *decoded = ada_decode (gsymbol->name);
1155 if (gsymbol->obj_section != NULL)
1156 {
1157 struct objfile *objf = gsymbol->obj_section->objfile;
1158 *resultp = obsavestring (decoded, strlen (decoded),
1159 &objf->objfile_obstack);
1160 }
1161 /* Sometimes, we can't find a corresponding objfile, in which
1162 case, we put the result on the heap. Since we only decode
1163 when needed, we hope this usually does not cause a
1164 significant memory leak (FIXME). */
1165 if (*resultp == NULL)
1166 {
1167 char **slot = (char **) htab_find_slot (decoded_names_store,
1168 decoded, INSERT);
1169 if (*slot == NULL)
1170 *slot = xstrdup (decoded);
1171 *resultp = *slot;
1172 }
1173 }
1174
1175 return *resultp;
1176 }
1177
1178 static char *
1179 ada_la_decode (const char *encoded, int options)
1180 {
1181 return xstrdup (ada_decode (encoded));
1182 }
1183
1184 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1185 suffixes that encode debugging information or leading _ada_ on
1186 SYM_NAME (see is_name_suffix commentary for the debugging
1187 information that is ignored). If WILD, then NAME need only match a
1188 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1189 either argument is NULL. */
1190
1191 static int
1192 ada_match_name (const char *sym_name, const char *name, int wild)
1193 {
1194 if (sym_name == NULL || name == NULL)
1195 return 0;
1196 else if (wild)
1197 return wild_match (name, strlen (name), sym_name);
1198 else
1199 {
1200 int len_name = strlen (name);
1201 return (strncmp (sym_name, name, len_name) == 0
1202 && is_name_suffix (sym_name + len_name))
1203 || (strncmp (sym_name, "_ada_", 5) == 0
1204 && strncmp (sym_name + 5, name, len_name) == 0
1205 && is_name_suffix (sym_name + len_name + 5));
1206 }
1207 }
1208 \f
1209
1210 /* Arrays */
1211
1212 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1213
1214 static char *bound_name[] = {
1215 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1216 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1217 };
1218
1219 /* Maximum number of array dimensions we are prepared to handle. */
1220
1221 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1222
1223 /* Like modify_field, but allows bitpos > wordlength. */
1224
1225 static void
1226 modify_general_field (struct type *type, char *addr,
1227 LONGEST fieldval, int bitpos, int bitsize)
1228 {
1229 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1230 }
1231
1232
1233 /* The desc_* routines return primitive portions of array descriptors
1234 (fat pointers). */
1235
1236 /* The descriptor or array type, if any, indicated by TYPE; removes
1237 level of indirection, if needed. */
1238
1239 static struct type *
1240 desc_base_type (struct type *type)
1241 {
1242 if (type == NULL)
1243 return NULL;
1244 type = ada_check_typedef (type);
1245 if (type != NULL
1246 && (TYPE_CODE (type) == TYPE_CODE_PTR
1247 || TYPE_CODE (type) == TYPE_CODE_REF))
1248 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1249 else
1250 return type;
1251 }
1252
1253 /* True iff TYPE indicates a "thin" array pointer type. */
1254
1255 static int
1256 is_thin_pntr (struct type *type)
1257 {
1258 return
1259 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1260 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1261 }
1262
1263 /* The descriptor type for thin pointer type TYPE. */
1264
1265 static struct type *
1266 thin_descriptor_type (struct type *type)
1267 {
1268 struct type *base_type = desc_base_type (type);
1269 if (base_type == NULL)
1270 return NULL;
1271 if (is_suffix (ada_type_name (base_type), "___XVE"))
1272 return base_type;
1273 else
1274 {
1275 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1276 if (alt_type == NULL)
1277 return base_type;
1278 else
1279 return alt_type;
1280 }
1281 }
1282
1283 /* A pointer to the array data for thin-pointer value VAL. */
1284
1285 static struct value *
1286 thin_data_pntr (struct value *val)
1287 {
1288 struct type *type = value_type (val);
1289 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1290 data_type = lookup_pointer_type (data_type);
1291
1292 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1293 return value_cast (data_type, value_copy (val));
1294 else
1295 return value_from_longest (data_type, value_address (val));
1296 }
1297
1298 /* True iff TYPE indicates a "thick" array pointer type. */
1299
1300 static int
1301 is_thick_pntr (struct type *type)
1302 {
1303 type = desc_base_type (type);
1304 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1305 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1306 }
1307
1308 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1309 pointer to one, the type of its bounds data; otherwise, NULL. */
1310
1311 static struct type *
1312 desc_bounds_type (struct type *type)
1313 {
1314 struct type *r;
1315
1316 type = desc_base_type (type);
1317
1318 if (type == NULL)
1319 return NULL;
1320 else if (is_thin_pntr (type))
1321 {
1322 type = thin_descriptor_type (type);
1323 if (type == NULL)
1324 return NULL;
1325 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1326 if (r != NULL)
1327 return ada_check_typedef (r);
1328 }
1329 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1330 {
1331 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1332 if (r != NULL)
1333 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1334 }
1335 return NULL;
1336 }
1337
1338 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1339 one, a pointer to its bounds data. Otherwise NULL. */
1340
1341 static struct value *
1342 desc_bounds (struct value *arr)
1343 {
1344 struct type *type = ada_check_typedef (value_type (arr));
1345 if (is_thin_pntr (type))
1346 {
1347 struct type *bounds_type =
1348 desc_bounds_type (thin_descriptor_type (type));
1349 LONGEST addr;
1350
1351 if (bounds_type == NULL)
1352 error (_("Bad GNAT array descriptor"));
1353
1354 /* NOTE: The following calculation is not really kosher, but
1355 since desc_type is an XVE-encoded type (and shouldn't be),
1356 the correct calculation is a real pain. FIXME (and fix GCC). */
1357 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1358 addr = value_as_long (arr);
1359 else
1360 addr = value_address (arr);
1361
1362 return
1363 value_from_longest (lookup_pointer_type (bounds_type),
1364 addr - TYPE_LENGTH (bounds_type));
1365 }
1366
1367 else if (is_thick_pntr (type))
1368 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1369 _("Bad GNAT array descriptor"));
1370 else
1371 return NULL;
1372 }
1373
1374 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1375 position of the field containing the address of the bounds data. */
1376
1377 static int
1378 fat_pntr_bounds_bitpos (struct type *type)
1379 {
1380 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1381 }
1382
1383 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1384 size of the field containing the address of the bounds data. */
1385
1386 static int
1387 fat_pntr_bounds_bitsize (struct type *type)
1388 {
1389 type = desc_base_type (type);
1390
1391 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1392 return TYPE_FIELD_BITSIZE (type, 1);
1393 else
1394 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1395 }
1396
1397 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1398 pointer to one, the type of its array data (a array-with-no-bounds type);
1399 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1400 data. */
1401
1402 static struct type *
1403 desc_data_target_type (struct type *type)
1404 {
1405 type = desc_base_type (type);
1406
1407 /* NOTE: The following is bogus; see comment in desc_bounds. */
1408 if (is_thin_pntr (type))
1409 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1410 else if (is_thick_pntr (type))
1411 {
1412 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1413
1414 if (data_type
1415 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1416 return TYPE_TARGET_TYPE (data_type);
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1423 its array data. */
1424
1425 static struct value *
1426 desc_data (struct value *arr)
1427 {
1428 struct type *type = value_type (arr);
1429 if (is_thin_pntr (type))
1430 return thin_data_pntr (arr);
1431 else if (is_thick_pntr (type))
1432 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1433 _("Bad GNAT array descriptor"));
1434 else
1435 return NULL;
1436 }
1437
1438
1439 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1440 position of the field containing the address of the data. */
1441
1442 static int
1443 fat_pntr_data_bitpos (struct type *type)
1444 {
1445 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1446 }
1447
1448 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1449 size of the field containing the address of the data. */
1450
1451 static int
1452 fat_pntr_data_bitsize (struct type *type)
1453 {
1454 type = desc_base_type (type);
1455
1456 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1457 return TYPE_FIELD_BITSIZE (type, 0);
1458 else
1459 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1460 }
1461
1462 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1463 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1464 bound, if WHICH is 1. The first bound is I=1. */
1465
1466 static struct value *
1467 desc_one_bound (struct value *bounds, int i, int which)
1468 {
1469 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1470 _("Bad GNAT array descriptor bounds"));
1471 }
1472
1473 /* If BOUNDS is an array-bounds structure type, return the bit position
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
1477 static int
1478 desc_bound_bitpos (struct type *type, int i, int which)
1479 {
1480 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1481 }
1482
1483 /* If BOUNDS is an array-bounds structure type, return the bit field size
1484 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1485 bound, if WHICH is 1. The first bound is I=1. */
1486
1487 static int
1488 desc_bound_bitsize (struct type *type, int i, int which)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1494 else
1495 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1496 }
1497
1498 /* If TYPE is the type of an array-bounds structure, the type of its
1499 Ith bound (numbering from 1). Otherwise, NULL. */
1500
1501 static struct type *
1502 desc_index_type (struct type *type, int i)
1503 {
1504 type = desc_base_type (type);
1505
1506 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1507 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1508 else
1509 return NULL;
1510 }
1511
1512 /* The number of index positions in the array-bounds type TYPE.
1513 Return 0 if TYPE is NULL. */
1514
1515 static int
1516 desc_arity (struct type *type)
1517 {
1518 type = desc_base_type (type);
1519
1520 if (type != NULL)
1521 return TYPE_NFIELDS (type) / 2;
1522 return 0;
1523 }
1524
1525 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1526 an array descriptor type (representing an unconstrained array
1527 type). */
1528
1529 static int
1530 ada_is_direct_array_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return 0;
1534 type = ada_check_typedef (type);
1535 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1536 || ada_is_array_descriptor_type (type));
1537 }
1538
1539 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1540 * to one. */
1541
1542 static int
1543 ada_is_array_type (struct type *type)
1544 {
1545 while (type != NULL
1546 && (TYPE_CODE (type) == TYPE_CODE_PTR
1547 || TYPE_CODE (type) == TYPE_CODE_REF))
1548 type = TYPE_TARGET_TYPE (type);
1549 return ada_is_direct_array_type (type);
1550 }
1551
1552 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1553
1554 int
1555 ada_is_simple_array_type (struct type *type)
1556 {
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1561 || (TYPE_CODE (type) == TYPE_CODE_PTR
1562 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1563 }
1564
1565 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1566
1567 int
1568 ada_is_array_descriptor_type (struct type *type)
1569 {
1570 struct type *data_type = desc_data_target_type (type);
1571
1572 if (type == NULL)
1573 return 0;
1574 type = ada_check_typedef (type);
1575 return (data_type != NULL
1576 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1577 && desc_arity (desc_bounds_type (type)) > 0);
1578 }
1579
1580 /* Non-zero iff type is a partially mal-formed GNAT array
1581 descriptor. FIXME: This is to compensate for some problems with
1582 debugging output from GNAT. Re-examine periodically to see if it
1583 is still needed. */
1584
1585 int
1586 ada_is_bogus_array_descriptor (struct type *type)
1587 {
1588 return
1589 type != NULL
1590 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1591 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1592 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1593 && !ada_is_array_descriptor_type (type);
1594 }
1595
1596
1597 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1598 (fat pointer) returns the type of the array data described---specifically,
1599 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1600 in from the descriptor; otherwise, they are left unspecified. If
1601 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1602 returns NULL. The result is simply the type of ARR if ARR is not
1603 a descriptor. */
1604 struct type *
1605 ada_type_of_array (struct value *arr, int bounds)
1606 {
1607 if (ada_is_constrained_packed_array_type (value_type (arr)))
1608 return decode_constrained_packed_array_type (value_type (arr));
1609
1610 if (!ada_is_array_descriptor_type (value_type (arr)))
1611 return value_type (arr);
1612
1613 if (!bounds)
1614 {
1615 struct type *array_type =
1616 ada_check_typedef (desc_data_target_type (value_type (arr)));
1617
1618 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1619 TYPE_FIELD_BITSIZE (array_type, 0) =
1620 decode_packed_array_bitsize (value_type (arr));
1621
1622 return array_type;
1623 }
1624 else
1625 {
1626 struct type *elt_type;
1627 int arity;
1628 struct value *descriptor;
1629
1630 elt_type = ada_array_element_type (value_type (arr), -1);
1631 arity = ada_array_arity (value_type (arr));
1632
1633 if (elt_type == NULL || arity == 0)
1634 return ada_check_typedef (value_type (arr));
1635
1636 descriptor = desc_bounds (arr);
1637 if (value_as_long (descriptor) == 0)
1638 return NULL;
1639 while (arity > 0)
1640 {
1641 struct type *range_type = alloc_type_copy (value_type (arr));
1642 struct type *array_type = alloc_type_copy (value_type (arr));
1643 struct value *low = desc_one_bound (descriptor, arity, 0);
1644 struct value *high = desc_one_bound (descriptor, arity, 1);
1645 arity -= 1;
1646
1647 create_range_type (range_type, value_type (low),
1648 longest_to_int (value_as_long (low)),
1649 longest_to_int (value_as_long (high)));
1650 elt_type = create_array_type (array_type, elt_type, range_type);
1651
1652 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1653 TYPE_FIELD_BITSIZE (elt_type, 0) =
1654 decode_packed_array_bitsize (value_type (arr));
1655 }
1656
1657 return lookup_pointer_type (elt_type);
1658 }
1659 }
1660
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns either a standard GDB array with bounds set
1663 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1664 GDB array. Returns NULL if ARR is a null fat pointer. */
1665
1666 struct value *
1667 ada_coerce_to_simple_array_ptr (struct value *arr)
1668 {
1669 if (ada_is_array_descriptor_type (value_type (arr)))
1670 {
1671 struct type *arrType = ada_type_of_array (arr, 1);
1672 if (arrType == NULL)
1673 return NULL;
1674 return value_cast (arrType, value_copy (desc_data (arr)));
1675 }
1676 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1677 return decode_constrained_packed_array (arr);
1678 else
1679 return arr;
1680 }
1681
1682 /* If ARR does not represent an array, returns ARR unchanged.
1683 Otherwise, returns a standard GDB array describing ARR (which may
1684 be ARR itself if it already is in the proper form). */
1685
1686 static struct value *
1687 ada_coerce_to_simple_array (struct value *arr)
1688 {
1689 if (ada_is_array_descriptor_type (value_type (arr)))
1690 {
1691 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1692 if (arrVal == NULL)
1693 error (_("Bounds unavailable for null array pointer."));
1694 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1695 return value_ind (arrVal);
1696 }
1697 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1698 return decode_constrained_packed_array (arr);
1699 else
1700 return arr;
1701 }
1702
1703 /* If TYPE represents a GNAT array type, return it translated to an
1704 ordinary GDB array type (possibly with BITSIZE fields indicating
1705 packing). For other types, is the identity. */
1706
1707 struct type *
1708 ada_coerce_to_simple_array_type (struct type *type)
1709 {
1710 if (ada_is_constrained_packed_array_type (type))
1711 return decode_constrained_packed_array_type (type);
1712
1713 if (ada_is_array_descriptor_type (type))
1714 return ada_check_typedef (desc_data_target_type (type));
1715
1716 return type;
1717 }
1718
1719 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1720
1721 static int
1722 ada_is_packed_array_type (struct type *type)
1723 {
1724 if (type == NULL)
1725 return 0;
1726 type = desc_base_type (type);
1727 type = ada_check_typedef (type);
1728 return
1729 ada_type_name (type) != NULL
1730 && strstr (ada_type_name (type), "___XP") != NULL;
1731 }
1732
1733 /* Non-zero iff TYPE represents a standard GNAT constrained
1734 packed-array type. */
1735
1736 int
1737 ada_is_constrained_packed_array_type (struct type *type)
1738 {
1739 return ada_is_packed_array_type (type)
1740 && !ada_is_array_descriptor_type (type);
1741 }
1742
1743 /* Non-zero iff TYPE represents an array descriptor for a
1744 unconstrained packed-array type. */
1745
1746 static int
1747 ada_is_unconstrained_packed_array_type (struct type *type)
1748 {
1749 return ada_is_packed_array_type (type)
1750 && ada_is_array_descriptor_type (type);
1751 }
1752
1753 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1754 return the size of its elements in bits. */
1755
1756 static long
1757 decode_packed_array_bitsize (struct type *type)
1758 {
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *tail;
1761 long bits;
1762
1763 if (!raw_name)
1764 raw_name = ada_type_name (desc_base_type (type));
1765
1766 if (!raw_name)
1767 return 0;
1768
1769 tail = strstr (raw_name, "___XP");
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return 0;
1776 }
1777
1778 return bits;
1779 }
1780
1781 /* Given that TYPE is a standard GDB array type with all bounds filled
1782 in, and that the element size of its ultimate scalar constituents
1783 (that is, either its elements, or, if it is an array of arrays, its
1784 elements' elements, etc.) is *ELT_BITS, return an identical type,
1785 but with the bit sizes of its elements (and those of any
1786 constituent arrays) recorded in the BITSIZE components of its
1787 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1788 in bits. */
1789
1790 static struct type *
1791 constrained_packed_array_type (struct type *type, long *elt_bits)
1792 {
1793 struct type *new_elt_type;
1794 struct type *new_type;
1795 LONGEST low_bound, high_bound;
1796
1797 type = ada_check_typedef (type);
1798 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1799 return type;
1800
1801 new_type = alloc_type_copy (type);
1802 new_elt_type =
1803 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1804 elt_bits);
1805 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1806 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1807 TYPE_NAME (new_type) = ada_type_name (type);
1808
1809 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1810 &low_bound, &high_bound) < 0)
1811 low_bound = high_bound = 0;
1812 if (high_bound < low_bound)
1813 *elt_bits = TYPE_LENGTH (new_type) = 0;
1814 else
1815 {
1816 *elt_bits *= (high_bound - low_bound + 1);
1817 TYPE_LENGTH (new_type) =
1818 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1819 }
1820
1821 TYPE_FIXED_INSTANCE (new_type) = 1;
1822 return new_type;
1823 }
1824
1825 /* The array type encoded by TYPE, where
1826 ada_is_constrained_packed_array_type (TYPE). */
1827
1828 static struct type *
1829 decode_constrained_packed_array_type (struct type *type)
1830 {
1831 struct symbol *sym;
1832 struct block **blocks;
1833 char *raw_name = ada_type_name (ada_check_typedef (type));
1834 char *name;
1835 char *tail;
1836 struct type *shadow_type;
1837 long bits;
1838 int i, n;
1839
1840 if (!raw_name)
1841 raw_name = ada_type_name (desc_base_type (type));
1842
1843 if (!raw_name)
1844 return NULL;
1845
1846 name = (char *) alloca (strlen (raw_name) + 1);
1847 tail = strstr (raw_name, "___XP");
1848 type = desc_base_type (type);
1849
1850 memcpy (name, raw_name, tail - raw_name);
1851 name[tail - raw_name] = '\000';
1852
1853 shadow_type = ada_find_parallel_type_with_name (type, name);
1854
1855 if (shadow_type == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 CHECK_TYPEDEF (shadow_type);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 bits = decode_packed_array_bitsize (type);
1869 return constrained_packed_array_type (shadow_type, &bits);
1870 }
1871
1872 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1873 array, returns a simple array that denotes that array. Its type is a
1874 standard GDB array type except that the BITSIZEs of the array
1875 target types are set to the number of bits in each element, and the
1876 type length is set appropriately. */
1877
1878 static struct value *
1879 decode_constrained_packed_array (struct value *arr)
1880 {
1881 struct type *type;
1882
1883 arr = ada_coerce_ref (arr);
1884
1885 /* If our value is a pointer, then dererence it. Make sure that
1886 this operation does not cause the target type to be fixed, as
1887 this would indirectly cause this array to be decoded. The rest
1888 of the routine assumes that the array hasn't been decoded yet,
1889 so we use the basic "value_ind" routine to perform the dereferencing,
1890 as opposed to using "ada_value_ind". */
1891 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1892 arr = value_ind (arr);
1893
1894 type = decode_constrained_packed_array_type (value_type (arr));
1895 if (type == NULL)
1896 {
1897 error (_("can't unpack array"));
1898 return NULL;
1899 }
1900
1901 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1902 && ada_is_modular_type (value_type (arr)))
1903 {
1904 /* This is a (right-justified) modular type representing a packed
1905 array with no wrapper. In order to interpret the value through
1906 the (left-justified) packed array type we just built, we must
1907 first left-justify it. */
1908 int bit_size, bit_pos;
1909 ULONGEST mod;
1910
1911 mod = ada_modulus (value_type (arr)) - 1;
1912 bit_size = 0;
1913 while (mod > 0)
1914 {
1915 bit_size += 1;
1916 mod >>= 1;
1917 }
1918 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1919 arr = ada_value_primitive_packed_val (arr, NULL,
1920 bit_pos / HOST_CHAR_BIT,
1921 bit_pos % HOST_CHAR_BIT,
1922 bit_size,
1923 type);
1924 }
1925
1926 return coerce_unspec_val_to_type (arr, type);
1927 }
1928
1929
1930 /* The value of the element of packed array ARR at the ARITY indices
1931 given in IND. ARR must be a simple array. */
1932
1933 static struct value *
1934 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1935 {
1936 int i;
1937 int bits, elt_off, bit_off;
1938 long elt_total_bit_offset;
1939 struct type *elt_type;
1940 struct value *v;
1941
1942 bits = 0;
1943 elt_total_bit_offset = 0;
1944 elt_type = ada_check_typedef (value_type (arr));
1945 for (i = 0; i < arity; i += 1)
1946 {
1947 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1948 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1949 error
1950 (_("attempt to do packed indexing of something other than a packed array"));
1951 else
1952 {
1953 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1954 LONGEST lowerbound, upperbound;
1955 LONGEST idx;
1956
1957 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1958 {
1959 lim_warning (_("don't know bounds of array"));
1960 lowerbound = upperbound = 0;
1961 }
1962
1963 idx = pos_atr (ind[i]);
1964 if (idx < lowerbound || idx > upperbound)
1965 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1966 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1967 elt_total_bit_offset += (idx - lowerbound) * bits;
1968 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1969 }
1970 }
1971 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1972 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1973
1974 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1975 bits, elt_type);
1976 return v;
1977 }
1978
1979 /* Non-zero iff TYPE includes negative integer values. */
1980
1981 static int
1982 has_negatives (struct type *type)
1983 {
1984 switch (TYPE_CODE (type))
1985 {
1986 default:
1987 return 0;
1988 case TYPE_CODE_INT:
1989 return !TYPE_UNSIGNED (type);
1990 case TYPE_CODE_RANGE:
1991 return TYPE_LOW_BOUND (type) < 0;
1992 }
1993 }
1994
1995
1996 /* Create a new value of type TYPE from the contents of OBJ starting
1997 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1998 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1999 assigning through the result will set the field fetched from.
2000 VALADDR is ignored unless OBJ is NULL, in which case,
2001 VALADDR+OFFSET must address the start of storage containing the
2002 packed value. The value returned in this case is never an lval.
2003 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2004
2005 struct value *
2006 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2007 long offset, int bit_offset, int bit_size,
2008 struct type *type)
2009 {
2010 struct value *v;
2011 int src, /* Index into the source area */
2012 targ, /* Index into the target area */
2013 srcBitsLeft, /* Number of source bits left to move */
2014 nsrc, ntarg, /* Number of source and target bytes */
2015 unusedLS, /* Number of bits in next significant
2016 byte of source that are unused */
2017 accumSize; /* Number of meaningful bits in accum */
2018 unsigned char *bytes; /* First byte containing data to unpack */
2019 unsigned char *unpacked;
2020 unsigned long accum; /* Staging area for bits being transferred */
2021 unsigned char sign;
2022 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2023 /* Transmit bytes from least to most significant; delta is the direction
2024 the indices move. */
2025 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2026
2027 type = ada_check_typedef (type);
2028
2029 if (obj == NULL)
2030 {
2031 v = allocate_value (type);
2032 bytes = (unsigned char *) (valaddr + offset);
2033 }
2034 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2035 {
2036 v = value_at (type,
2037 value_address (obj) + offset);
2038 bytes = (unsigned char *) alloca (len);
2039 read_memory (value_address (v), bytes, len);
2040 }
2041 else
2042 {
2043 v = allocate_value (type);
2044 bytes = (unsigned char *) value_contents (obj) + offset;
2045 }
2046
2047 if (obj != NULL)
2048 {
2049 CORE_ADDR new_addr;
2050 set_value_component_location (v, obj);
2051 new_addr = value_address (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 ++new_addr;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 set_value_address (v, new_addr);
2060 }
2061 else
2062 set_value_bitsize (v, bit_size);
2063 unpacked = (unsigned char *) value_contents (v);
2064
2065 srcBitsLeft = bit_size;
2066 nsrc = len;
2067 ntarg = TYPE_LENGTH (type);
2068 sign = 0;
2069 if (bit_size == 0)
2070 {
2071 memset (unpacked, 0, TYPE_LENGTH (type));
2072 return v;
2073 }
2074 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2075 {
2076 src = len - 1;
2077 if (has_negatives (type)
2078 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2079 sign = ~0;
2080
2081 unusedLS =
2082 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2083 % HOST_CHAR_BIT;
2084
2085 switch (TYPE_CODE (type))
2086 {
2087 case TYPE_CODE_ARRAY:
2088 case TYPE_CODE_UNION:
2089 case TYPE_CODE_STRUCT:
2090 /* Non-scalar values must be aligned at a byte boundary... */
2091 accumSize =
2092 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2093 /* ... And are placed at the beginning (most-significant) bytes
2094 of the target. */
2095 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2096 ntarg = targ + 1;
2097 break;
2098 default:
2099 accumSize = 0;
2100 targ = TYPE_LENGTH (type) - 1;
2101 break;
2102 }
2103 }
2104 else
2105 {
2106 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2107
2108 src = targ = 0;
2109 unusedLS = bit_offset;
2110 accumSize = 0;
2111
2112 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2113 sign = ~0;
2114 }
2115
2116 accum = 0;
2117 while (nsrc > 0)
2118 {
2119 /* Mask for removing bits of the next source byte that are not
2120 part of the value. */
2121 unsigned int unusedMSMask =
2122 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2123 1;
2124 /* Sign-extend bits for this byte. */
2125 unsigned int signMask = sign & ~unusedMSMask;
2126 accum |=
2127 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2128 accumSize += HOST_CHAR_BIT - unusedLS;
2129 if (accumSize >= HOST_CHAR_BIT)
2130 {
2131 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2132 accumSize -= HOST_CHAR_BIT;
2133 accum >>= HOST_CHAR_BIT;
2134 ntarg -= 1;
2135 targ += delta;
2136 }
2137 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2138 unusedLS = 0;
2139 nsrc -= 1;
2140 src += delta;
2141 }
2142 while (ntarg > 0)
2143 {
2144 accum |= sign << accumSize;
2145 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2146 accumSize -= HOST_CHAR_BIT;
2147 accum >>= HOST_CHAR_BIT;
2148 ntarg -= 1;
2149 targ += delta;
2150 }
2151
2152 return v;
2153 }
2154
2155 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2156 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2157 not overlap. */
2158 static void
2159 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2160 int src_offset, int n, int bits_big_endian_p)
2161 {
2162 unsigned int accum, mask;
2163 int accum_bits, chunk_size;
2164
2165 target += targ_offset / HOST_CHAR_BIT;
2166 targ_offset %= HOST_CHAR_BIT;
2167 source += src_offset / HOST_CHAR_BIT;
2168 src_offset %= HOST_CHAR_BIT;
2169 if (bits_big_endian_p)
2170 {
2171 accum = (unsigned char) *source;
2172 source += 1;
2173 accum_bits = HOST_CHAR_BIT - src_offset;
2174
2175 while (n > 0)
2176 {
2177 int unused_right;
2178 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2179 accum_bits += HOST_CHAR_BIT;
2180 source += 1;
2181 chunk_size = HOST_CHAR_BIT - targ_offset;
2182 if (chunk_size > n)
2183 chunk_size = n;
2184 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2185 mask = ((1 << chunk_size) - 1) << unused_right;
2186 *target =
2187 (*target & ~mask)
2188 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2189 n -= chunk_size;
2190 accum_bits -= chunk_size;
2191 target += 1;
2192 targ_offset = 0;
2193 }
2194 }
2195 else
2196 {
2197 accum = (unsigned char) *source >> src_offset;
2198 source += 1;
2199 accum_bits = HOST_CHAR_BIT - src_offset;
2200
2201 while (n > 0)
2202 {
2203 accum = accum + ((unsigned char) *source << accum_bits);
2204 accum_bits += HOST_CHAR_BIT;
2205 source += 1;
2206 chunk_size = HOST_CHAR_BIT - targ_offset;
2207 if (chunk_size > n)
2208 chunk_size = n;
2209 mask = ((1 << chunk_size) - 1) << targ_offset;
2210 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2211 n -= chunk_size;
2212 accum_bits -= chunk_size;
2213 accum >>= chunk_size;
2214 target += 1;
2215 targ_offset = 0;
2216 }
2217 }
2218 }
2219
2220 /* Store the contents of FROMVAL into the location of TOVAL.
2221 Return a new value with the location of TOVAL and contents of
2222 FROMVAL. Handles assignment into packed fields that have
2223 floating-point or non-scalar types. */
2224
2225 static struct value *
2226 ada_value_assign (struct value *toval, struct value *fromval)
2227 {
2228 struct type *type = value_type (toval);
2229 int bits = value_bitsize (toval);
2230
2231 toval = ada_coerce_ref (toval);
2232 fromval = ada_coerce_ref (fromval);
2233
2234 if (ada_is_direct_array_type (value_type (toval)))
2235 toval = ada_coerce_to_simple_array (toval);
2236 if (ada_is_direct_array_type (value_type (fromval)))
2237 fromval = ada_coerce_to_simple_array (fromval);
2238
2239 if (!deprecated_value_modifiable (toval))
2240 error (_("Left operand of assignment is not a modifiable lvalue."));
2241
2242 if (VALUE_LVAL (toval) == lval_memory
2243 && bits > 0
2244 && (TYPE_CODE (type) == TYPE_CODE_FLT
2245 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2246 {
2247 int len = (value_bitpos (toval)
2248 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2249 int from_size;
2250 char *buffer = (char *) alloca (len);
2251 struct value *val;
2252 CORE_ADDR to_addr = value_address (toval);
2253
2254 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2255 fromval = value_cast (type, fromval);
2256
2257 read_memory (to_addr, buffer, len);
2258 from_size = value_bitsize (fromval);
2259 if (from_size == 0)
2260 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2261 if (gdbarch_bits_big_endian (get_type_arch (type)))
2262 move_bits (buffer, value_bitpos (toval),
2263 value_contents (fromval), from_size - bits, bits, 1);
2264 else
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval), 0, bits, 0);
2267 write_memory (to_addr, buffer, len);
2268 observer_notify_memory_changed (to_addr, len, buffer);
2269
2270 val = value_copy (toval);
2271 memcpy (value_contents_raw (val), value_contents (fromval),
2272 TYPE_LENGTH (type));
2273 deprecated_set_value_type (val, type);
2274
2275 return val;
2276 }
2277
2278 return value_assign (toval, fromval);
2279 }
2280
2281
2282 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2283 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2284 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2285 * COMPONENT, and not the inferior's memory. The current contents
2286 * of COMPONENT are ignored. */
2287 static void
2288 value_assign_to_component (struct value *container, struct value *component,
2289 struct value *val)
2290 {
2291 LONGEST offset_in_container =
2292 (LONGEST) (value_address (component) - value_address (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits, 1);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits, 0);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, pos_atr (ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 static struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356
2357 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2358 error (_("too many subscripts (%d expected)"), k);
2359 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2360 value_copy (arr));
2361 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2362 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2363 type = TYPE_TARGET_TYPE (type);
2364 }
2365
2366 return value_ind (arr);
2367 }
2368
2369 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2370 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2371 elements starting at index LOW. The lower bound of this array is LOW, as
2372 per Ada rules. */
2373 static struct value *
2374 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2375 int low, int high)
2376 {
2377 CORE_ADDR base = value_as_address (array_ptr)
2378 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2379 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2380 struct type *index_type =
2381 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2382 low, high);
2383 struct type *slice_type =
2384 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2385 return value_at_lazy (slice_type, base);
2386 }
2387
2388
2389 static struct value *
2390 ada_value_slice (struct value *array, int low, int high)
2391 {
2392 struct type *type = value_type (array);
2393 struct type *index_type =
2394 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2395 struct type *slice_type =
2396 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2397 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2398 }
2399
2400 /* If type is a record type in the form of a standard GNAT array
2401 descriptor, returns the number of dimensions for type. If arr is a
2402 simple array, returns the number of "array of"s that prefix its
2403 type designation. Otherwise, returns 0. */
2404
2405 int
2406 ada_array_arity (struct type *type)
2407 {
2408 int arity;
2409
2410 if (type == NULL)
2411 return 0;
2412
2413 type = desc_base_type (type);
2414
2415 arity = 0;
2416 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2417 return desc_arity (desc_bounds_type (type));
2418 else
2419 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2420 {
2421 arity += 1;
2422 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2423 }
2424
2425 return arity;
2426 }
2427
2428 /* If TYPE is a record type in the form of a standard GNAT array
2429 descriptor or a simple array type, returns the element type for
2430 TYPE after indexing by NINDICES indices, or by all indices if
2431 NINDICES is -1. Otherwise, returns NULL. */
2432
2433 struct type *
2434 ada_array_element_type (struct type *type, int nindices)
2435 {
2436 type = desc_base_type (type);
2437
2438 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2439 {
2440 int k;
2441 struct type *p_array_type;
2442
2443 p_array_type = desc_data_target_type (type);
2444
2445 k = ada_array_arity (type);
2446 if (k == 0)
2447 return NULL;
2448
2449 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2450 if (nindices >= 0 && k > nindices)
2451 k = nindices;
2452 while (k > 0 && p_array_type != NULL)
2453 {
2454 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2455 k -= 1;
2456 }
2457 return p_array_type;
2458 }
2459 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2460 {
2461 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 type = TYPE_TARGET_TYPE (type);
2464 nindices -= 1;
2465 }
2466 return type;
2467 }
2468
2469 return NULL;
2470 }
2471
2472 /* The type of nth index in arrays of given type (n numbering from 1).
2473 Does not examine memory. Throws an error if N is invalid or TYPE
2474 is not an array type. NAME is the name of the Ada attribute being
2475 evaluated ('range, 'first, 'last, or 'length); it is used in building
2476 the error message. */
2477
2478 static struct type *
2479 ada_index_type (struct type *type, int n, const char *name)
2480 {
2481 struct type *result_type;
2482
2483 type = desc_base_type (type);
2484
2485 if (n < 0 || n > ada_array_arity (type))
2486 error (_("invalid dimension number to '%s"), name);
2487
2488 if (ada_is_simple_array_type (type))
2489 {
2490 int i;
2491
2492 for (i = 1; i < n; i += 1)
2493 type = TYPE_TARGET_TYPE (type);
2494 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2495 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2496 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2497 perhaps stabsread.c would make more sense. */
2498 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2499 result_type = NULL;
2500 }
2501 else
2502 {
2503 result_type = desc_index_type (desc_bounds_type (type), n);
2504 if (result_type == NULL)
2505 error (_("attempt to take bound of something that is not an array"));
2506 }
2507
2508 return result_type;
2509 }
2510
2511 /* Given that arr is an array type, returns the lower bound of the
2512 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2514 array-descriptor type. It works for other arrays with bounds supplied
2515 by run-time quantities other than discriminants. */
2516
2517 static LONGEST
2518 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2519 {
2520 struct type *type, *elt_type, *index_type_desc, *index_type;
2521 int i;
2522
2523 gdb_assert (which == 0 || which == 1);
2524
2525 if (ada_is_constrained_packed_array_type (arr_type))
2526 arr_type = decode_constrained_packed_array_type (arr_type);
2527
2528 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2529 return (LONGEST) - which;
2530
2531 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2532 type = TYPE_TARGET_TYPE (arr_type);
2533 else
2534 type = arr_type;
2535
2536 elt_type = type;
2537 for (i = n; i > 1; i--)
2538 elt_type = TYPE_TARGET_TYPE (type);
2539
2540 index_type_desc = ada_find_parallel_type (type, "___XA");
2541 if (index_type_desc != NULL)
2542 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_INDEX_TYPE (elt_type));
2544 else
2545 index_type = TYPE_INDEX_TYPE (elt_type);
2546
2547 return
2548 (LONGEST) (which == 0
2549 ? ada_discrete_type_low_bound (index_type)
2550 : ada_discrete_type_high_bound (index_type));
2551 }
2552
2553 /* Given that arr is an array value, returns the lower bound of the
2554 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2555 WHICH is 1. This routine will also work for arrays with bounds
2556 supplied by run-time quantities other than discriminants. */
2557
2558 static LONGEST
2559 ada_array_bound (struct value *arr, int n, int which)
2560 {
2561 struct type *arr_type = value_type (arr);
2562
2563 if (ada_is_constrained_packed_array_type (arr_type))
2564 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2565 else if (ada_is_simple_array_type (arr_type))
2566 return ada_array_bound_from_type (arr_type, n, which);
2567 else
2568 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2569 }
2570
2571 /* Given that arr is an array value, returns the length of the
2572 nth index. This routine will also work for arrays with bounds
2573 supplied by run-time quantities other than discriminants.
2574 Does not work for arrays indexed by enumeration types with representation
2575 clauses at the moment. */
2576
2577 static LONGEST
2578 ada_array_length (struct value *arr, int n)
2579 {
2580 struct type *arr_type = ada_check_typedef (value_type (arr));
2581
2582 if (ada_is_constrained_packed_array_type (arr_type))
2583 return ada_array_length (decode_constrained_packed_array (arr), n);
2584
2585 if (ada_is_simple_array_type (arr_type))
2586 return (ada_array_bound_from_type (arr_type, n, 1)
2587 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2588 else
2589 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2590 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2591 }
2592
2593 /* An empty array whose type is that of ARR_TYPE (an array type),
2594 with bounds LOW to LOW-1. */
2595
2596 static struct value *
2597 empty_array (struct type *arr_type, int low)
2598 {
2599 struct type *index_type =
2600 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2601 low, low - 1);
2602 struct type *elt_type = ada_array_element_type (arr_type, 1);
2603 return allocate_value (create_array_type (NULL, elt_type, index_type));
2604 }
2605 \f
2606
2607 /* Name resolution */
2608
2609 /* The "decoded" name for the user-definable Ada operator corresponding
2610 to OP. */
2611
2612 static const char *
2613 ada_decoded_op_name (enum exp_opcode op)
2614 {
2615 int i;
2616
2617 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2618 {
2619 if (ada_opname_table[i].op == op)
2620 return ada_opname_table[i].decoded;
2621 }
2622 error (_("Could not find operator name for opcode"));
2623 }
2624
2625
2626 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2627 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2628 undefined namespace) and converts operators that are
2629 user-defined into appropriate function calls. If CONTEXT_TYPE is
2630 non-null, it provides a preferred result type [at the moment, only
2631 type void has any effect---causing procedures to be preferred over
2632 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2633 return type is preferred. May change (expand) *EXP. */
2634
2635 static void
2636 resolve (struct expression **expp, int void_context_p)
2637 {
2638 struct type *context_type = NULL;
2639 int pc = 0;
2640
2641 if (void_context_p)
2642 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2643
2644 resolve_subexp (expp, &pc, 1, context_type);
2645 }
2646
2647 /* Resolve the operator of the subexpression beginning at
2648 position *POS of *EXPP. "Resolving" consists of replacing
2649 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2650 with their resolutions, replacing built-in operators with
2651 function calls to user-defined operators, where appropriate, and,
2652 when DEPROCEDURE_P is non-zero, converting function-valued variables
2653 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2654 are as in ada_resolve, above. */
2655
2656 static struct value *
2657 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2658 struct type *context_type)
2659 {
2660 int pc = *pos;
2661 int i;
2662 struct expression *exp; /* Convenience: == *expp. */
2663 enum exp_opcode op = (*expp)->elts[pc].opcode;
2664 struct value **argvec; /* Vector of operand types (alloca'ed). */
2665 int nargs; /* Number of operands. */
2666 int oplen;
2667
2668 argvec = NULL;
2669 nargs = 0;
2670 exp = *expp;
2671
2672 /* Pass one: resolve operands, saving their types and updating *pos,
2673 if needed. */
2674 switch (op)
2675 {
2676 case OP_FUNCALL:
2677 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2678 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2679 *pos += 7;
2680 else
2681 {
2682 *pos += 3;
2683 resolve_subexp (expp, pos, 0, NULL);
2684 }
2685 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2686 break;
2687
2688 case UNOP_ADDR:
2689 *pos += 1;
2690 resolve_subexp (expp, pos, 0, NULL);
2691 break;
2692
2693 case UNOP_QUAL:
2694 *pos += 3;
2695 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2696 break;
2697
2698 case OP_ATR_MODULUS:
2699 case OP_ATR_SIZE:
2700 case OP_ATR_TAG:
2701 case OP_ATR_FIRST:
2702 case OP_ATR_LAST:
2703 case OP_ATR_LENGTH:
2704 case OP_ATR_POS:
2705 case OP_ATR_VAL:
2706 case OP_ATR_MIN:
2707 case OP_ATR_MAX:
2708 case TERNOP_IN_RANGE:
2709 case BINOP_IN_BOUNDS:
2710 case UNOP_IN_RANGE:
2711 case OP_AGGREGATE:
2712 case OP_OTHERS:
2713 case OP_CHOICES:
2714 case OP_POSITIONAL:
2715 case OP_DISCRETE_RANGE:
2716 case OP_NAME:
2717 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2718 *pos += oplen;
2719 break;
2720
2721 case BINOP_ASSIGN:
2722 {
2723 struct value *arg1;
2724
2725 *pos += 1;
2726 arg1 = resolve_subexp (expp, pos, 0, NULL);
2727 if (arg1 == NULL)
2728 resolve_subexp (expp, pos, 1, NULL);
2729 else
2730 resolve_subexp (expp, pos, 1, value_type (arg1));
2731 break;
2732 }
2733
2734 case UNOP_CAST:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case BINOP_ADD:
2740 case BINOP_SUB:
2741 case BINOP_MUL:
2742 case BINOP_DIV:
2743 case BINOP_REM:
2744 case BINOP_MOD:
2745 case BINOP_EXP:
2746 case BINOP_CONCAT:
2747 case BINOP_LOGICAL_AND:
2748 case BINOP_LOGICAL_OR:
2749 case BINOP_BITWISE_AND:
2750 case BINOP_BITWISE_IOR:
2751 case BINOP_BITWISE_XOR:
2752
2753 case BINOP_EQUAL:
2754 case BINOP_NOTEQUAL:
2755 case BINOP_LESS:
2756 case BINOP_GTR:
2757 case BINOP_LEQ:
2758 case BINOP_GEQ:
2759
2760 case BINOP_REPEAT:
2761 case BINOP_SUBSCRIPT:
2762 case BINOP_COMMA:
2763 *pos += 1;
2764 nargs = 2;
2765 break;
2766
2767 case UNOP_NEG:
2768 case UNOP_PLUS:
2769 case UNOP_LOGICAL_NOT:
2770 case UNOP_ABS:
2771 case UNOP_IND:
2772 *pos += 1;
2773 nargs = 1;
2774 break;
2775
2776 case OP_LONG:
2777 case OP_DOUBLE:
2778 case OP_VAR_VALUE:
2779 *pos += 4;
2780 break;
2781
2782 case OP_TYPE:
2783 case OP_BOOL:
2784 case OP_LAST:
2785 case OP_INTERNALVAR:
2786 *pos += 3;
2787 break;
2788
2789 case UNOP_MEMVAL:
2790 *pos += 3;
2791 nargs = 1;
2792 break;
2793
2794 case OP_REGISTER:
2795 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2796 break;
2797
2798 case STRUCTOP_STRUCT:
2799 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2800 nargs = 1;
2801 break;
2802
2803 case TERNOP_SLICE:
2804 *pos += 1;
2805 nargs = 3;
2806 break;
2807
2808 case OP_STRING:
2809 break;
2810
2811 default:
2812 error (_("Unexpected operator during name resolution"));
2813 }
2814
2815 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2816 for (i = 0; i < nargs; i += 1)
2817 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2818 argvec[i] = NULL;
2819 exp = *expp;
2820
2821 /* Pass two: perform any resolution on principal operator. */
2822 switch (op)
2823 {
2824 default:
2825 break;
2826
2827 case OP_VAR_VALUE:
2828 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2829 {
2830 struct ada_symbol_info *candidates;
2831 int n_candidates;
2832
2833 n_candidates =
2834 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2835 (exp->elts[pc + 2].symbol),
2836 exp->elts[pc + 1].block, VAR_DOMAIN,
2837 &candidates);
2838
2839 if (n_candidates > 1)
2840 {
2841 /* Types tend to get re-introduced locally, so if there
2842 are any local symbols that are not types, first filter
2843 out all types. */
2844 int j;
2845 for (j = 0; j < n_candidates; j += 1)
2846 switch (SYMBOL_CLASS (candidates[j].sym))
2847 {
2848 case LOC_REGISTER:
2849 case LOC_ARG:
2850 case LOC_REF_ARG:
2851 case LOC_REGPARM_ADDR:
2852 case LOC_LOCAL:
2853 case LOC_COMPUTED:
2854 goto FoundNonType;
2855 default:
2856 break;
2857 }
2858 FoundNonType:
2859 if (j < n_candidates)
2860 {
2861 j = 0;
2862 while (j < n_candidates)
2863 {
2864 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2865 {
2866 candidates[j] = candidates[n_candidates - 1];
2867 n_candidates -= 1;
2868 }
2869 else
2870 j += 1;
2871 }
2872 }
2873 }
2874
2875 if (n_candidates == 0)
2876 error (_("No definition found for %s"),
2877 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2878 else if (n_candidates == 1)
2879 i = 0;
2880 else if (deprocedure_p
2881 && !is_nonfunction (candidates, n_candidates))
2882 {
2883 i = ada_resolve_function
2884 (candidates, n_candidates, NULL, 0,
2885 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2886 context_type);
2887 if (i < 0)
2888 error (_("Could not find a match for %s"),
2889 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2890 }
2891 else
2892 {
2893 printf_filtered (_("Multiple matches for %s\n"),
2894 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 user_select_syms (candidates, n_candidates, 1);
2896 i = 0;
2897 }
2898
2899 exp->elts[pc + 1].block = candidates[i].block;
2900 exp->elts[pc + 2].symbol = candidates[i].sym;
2901 if (innermost_block == NULL
2902 || contained_in (candidates[i].block, innermost_block))
2903 innermost_block = candidates[i].block;
2904 }
2905
2906 if (deprocedure_p
2907 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2908 == TYPE_CODE_FUNC))
2909 {
2910 replace_operator_with_call (expp, pc, 0, 0,
2911 exp->elts[pc + 2].symbol,
2912 exp->elts[pc + 1].block);
2913 exp = *expp;
2914 }
2915 break;
2916
2917 case OP_FUNCALL:
2918 {
2919 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2920 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2927 (exp->elts[pc + 5].symbol),
2928 exp->elts[pc + 4].block, VAR_DOMAIN,
2929 &candidates);
2930 if (n_candidates == 1)
2931 i = 0;
2932 else
2933 {
2934 i = ada_resolve_function
2935 (candidates, n_candidates,
2936 argvec, nargs,
2937 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2938 context_type);
2939 if (i < 0)
2940 error (_("Could not find a match for %s"),
2941 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2942 }
2943
2944 exp->elts[pc + 4].block = candidates[i].block;
2945 exp->elts[pc + 5].symbol = candidates[i].sym;
2946 if (innermost_block == NULL
2947 || contained_in (candidates[i].block, innermost_block))
2948 innermost_block = candidates[i].block;
2949 }
2950 }
2951 break;
2952 case BINOP_ADD:
2953 case BINOP_SUB:
2954 case BINOP_MUL:
2955 case BINOP_DIV:
2956 case BINOP_REM:
2957 case BINOP_MOD:
2958 case BINOP_CONCAT:
2959 case BINOP_BITWISE_AND:
2960 case BINOP_BITWISE_IOR:
2961 case BINOP_BITWISE_XOR:
2962 case BINOP_EQUAL:
2963 case BINOP_NOTEQUAL:
2964 case BINOP_LESS:
2965 case BINOP_GTR:
2966 case BINOP_LEQ:
2967 case BINOP_GEQ:
2968 case BINOP_EXP:
2969 case UNOP_NEG:
2970 case UNOP_PLUS:
2971 case UNOP_LOGICAL_NOT:
2972 case UNOP_ABS:
2973 if (possible_user_operator_p (op, argvec))
2974 {
2975 struct ada_symbol_info *candidates;
2976 int n_candidates;
2977
2978 n_candidates =
2979 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2980 (struct block *) NULL, VAR_DOMAIN,
2981 &candidates);
2982 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2983 ada_decoded_op_name (op), NULL);
2984 if (i < 0)
2985 break;
2986
2987 replace_operator_with_call (expp, pc, nargs, 1,
2988 candidates[i].sym, candidates[i].block);
2989 exp = *expp;
2990 }
2991 break;
2992
2993 case OP_TYPE:
2994 case OP_REGISTER:
2995 return NULL;
2996 }
2997
2998 *pos = pc;
2999 return evaluate_subexp_type (exp, pos);
3000 }
3001
3002 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3003 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3004 a non-pointer. */
3005 /* The term "match" here is rather loose. The match is heuristic and
3006 liberal. */
3007
3008 static int
3009 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3010 {
3011 ftype = ada_check_typedef (ftype);
3012 atype = ada_check_typedef (atype);
3013
3014 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3015 ftype = TYPE_TARGET_TYPE (ftype);
3016 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3017 atype = TYPE_TARGET_TYPE (atype);
3018
3019 switch (TYPE_CODE (ftype))
3020 {
3021 default:
3022 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3023 case TYPE_CODE_PTR:
3024 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3025 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3026 TYPE_TARGET_TYPE (atype), 0);
3027 else
3028 return (may_deref
3029 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3030 case TYPE_CODE_INT:
3031 case TYPE_CODE_ENUM:
3032 case TYPE_CODE_RANGE:
3033 switch (TYPE_CODE (atype))
3034 {
3035 case TYPE_CODE_INT:
3036 case TYPE_CODE_ENUM:
3037 case TYPE_CODE_RANGE:
3038 return 1;
3039 default:
3040 return 0;
3041 }
3042
3043 case TYPE_CODE_ARRAY:
3044 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3045 || ada_is_array_descriptor_type (atype));
3046
3047 case TYPE_CODE_STRUCT:
3048 if (ada_is_array_descriptor_type (ftype))
3049 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3050 || ada_is_array_descriptor_type (atype));
3051 else
3052 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3053 && !ada_is_array_descriptor_type (atype));
3054
3055 case TYPE_CODE_UNION:
3056 case TYPE_CODE_FLT:
3057 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3058 }
3059 }
3060
3061 /* Return non-zero if the formals of FUNC "sufficiently match" the
3062 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3063 may also be an enumeral, in which case it is treated as a 0-
3064 argument function. */
3065
3066 static int
3067 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3068 {
3069 int i;
3070 struct type *func_type = SYMBOL_TYPE (func);
3071
3072 if (SYMBOL_CLASS (func) == LOC_CONST
3073 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3074 return (n_actuals == 0);
3075 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3076 return 0;
3077
3078 if (TYPE_NFIELDS (func_type) != n_actuals)
3079 return 0;
3080
3081 for (i = 0; i < n_actuals; i += 1)
3082 {
3083 if (actuals[i] == NULL)
3084 return 0;
3085 else
3086 {
3087 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3088 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3089
3090 if (!ada_type_match (ftype, atype, 1))
3091 return 0;
3092 }
3093 }
3094 return 1;
3095 }
3096
3097 /* False iff function type FUNC_TYPE definitely does not produce a value
3098 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3099 FUNC_TYPE is not a valid function type with a non-null return type
3100 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3101
3102 static int
3103 return_match (struct type *func_type, struct type *context_type)
3104 {
3105 struct type *return_type;
3106
3107 if (func_type == NULL)
3108 return 1;
3109
3110 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3111 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3112 else
3113 return_type = base_type (func_type);
3114 if (return_type == NULL)
3115 return 1;
3116
3117 context_type = base_type (context_type);
3118
3119 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3120 return context_type == NULL || return_type == context_type;
3121 else if (context_type == NULL)
3122 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3123 else
3124 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3125 }
3126
3127
3128 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3129 function (if any) that matches the types of the NARGS arguments in
3130 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3131 that returns that type, then eliminate matches that don't. If
3132 CONTEXT_TYPE is void and there is at least one match that does not
3133 return void, eliminate all matches that do.
3134
3135 Asks the user if there is more than one match remaining. Returns -1
3136 if there is no such symbol or none is selected. NAME is used
3137 solely for messages. May re-arrange and modify SYMS in
3138 the process; the index returned is for the modified vector. */
3139
3140 static int
3141 ada_resolve_function (struct ada_symbol_info syms[],
3142 int nsyms, struct value **args, int nargs,
3143 const char *name, struct type *context_type)
3144 {
3145 int fallback;
3146 int k;
3147 int m; /* Number of hits */
3148
3149 m = 0;
3150 /* In the first pass of the loop, we only accept functions matching
3151 context_type. If none are found, we add a second pass of the loop
3152 where every function is accepted. */
3153 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3154 {
3155 for (k = 0; k < nsyms; k += 1)
3156 {
3157 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3158
3159 if (ada_args_match (syms[k].sym, args, nargs)
3160 && (fallback || return_match (type, context_type)))
3161 {
3162 syms[m] = syms[k];
3163 m += 1;
3164 }
3165 }
3166 }
3167
3168 if (m == 0)
3169 return -1;
3170 else if (m > 1)
3171 {
3172 printf_filtered (_("Multiple matches for %s\n"), name);
3173 user_select_syms (syms, m, 1);
3174 return 0;
3175 }
3176 return 0;
3177 }
3178
3179 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3180 in a listing of choices during disambiguation (see sort_choices, below).
3181 The idea is that overloadings of a subprogram name from the
3182 same package should sort in their source order. We settle for ordering
3183 such symbols by their trailing number (__N or $N). */
3184
3185 static int
3186 encoded_ordered_before (char *N0, char *N1)
3187 {
3188 if (N1 == NULL)
3189 return 0;
3190 else if (N0 == NULL)
3191 return 1;
3192 else
3193 {
3194 int k0, k1;
3195 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3196 ;
3197 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3198 ;
3199 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3200 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3201 {
3202 int n0, n1;
3203 n0 = k0;
3204 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3205 n0 -= 1;
3206 n1 = k1;
3207 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3208 n1 -= 1;
3209 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3210 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3211 }
3212 return (strcmp (N0, N1) < 0);
3213 }
3214 }
3215
3216 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3217 encoded names. */
3218
3219 static void
3220 sort_choices (struct ada_symbol_info syms[], int nsyms)
3221 {
3222 int i;
3223 for (i = 1; i < nsyms; i += 1)
3224 {
3225 struct ada_symbol_info sym = syms[i];
3226 int j;
3227
3228 for (j = i - 1; j >= 0; j -= 1)
3229 {
3230 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3231 SYMBOL_LINKAGE_NAME (sym.sym)))
3232 break;
3233 syms[j + 1] = syms[j];
3234 }
3235 syms[j + 1] = sym;
3236 }
3237 }
3238
3239 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3240 by asking the user (if necessary), returning the number selected,
3241 and setting the first elements of SYMS items. Error if no symbols
3242 selected. */
3243
3244 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3245 to be re-integrated one of these days. */
3246
3247 int
3248 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3249 {
3250 int i;
3251 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3252 int n_chosen;
3253 int first_choice = (max_results == 1) ? 1 : 2;
3254 const char *select_mode = multiple_symbols_select_mode ();
3255
3256 if (max_results < 1)
3257 error (_("Request to select 0 symbols!"));
3258 if (nsyms <= 1)
3259 return nsyms;
3260
3261 if (select_mode == multiple_symbols_cancel)
3262 error (_("\
3263 canceled because the command is ambiguous\n\
3264 See set/show multiple-symbol."));
3265
3266 /* If select_mode is "all", then return all possible symbols.
3267 Only do that if more than one symbol can be selected, of course.
3268 Otherwise, display the menu as usual. */
3269 if (select_mode == multiple_symbols_all && max_results > 1)
3270 return nsyms;
3271
3272 printf_unfiltered (_("[0] cancel\n"));
3273 if (max_results > 1)
3274 printf_unfiltered (_("[1] all\n"));
3275
3276 sort_choices (syms, nsyms);
3277
3278 for (i = 0; i < nsyms; i += 1)
3279 {
3280 if (syms[i].sym == NULL)
3281 continue;
3282
3283 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3284 {
3285 struct symtab_and_line sal =
3286 find_function_start_sal (syms[i].sym, 1);
3287 if (sal.symtab == NULL)
3288 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3289 i + first_choice,
3290 SYMBOL_PRINT_NAME (syms[i].sym),
3291 sal.line);
3292 else
3293 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3294 SYMBOL_PRINT_NAME (syms[i].sym),
3295 sal.symtab->filename, sal.line);
3296 continue;
3297 }
3298 else
3299 {
3300 int is_enumeral =
3301 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3302 && SYMBOL_TYPE (syms[i].sym) != NULL
3303 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3304 struct symtab *symtab = syms[i].sym->symtab;
3305
3306 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3307 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3308 i + first_choice,
3309 SYMBOL_PRINT_NAME (syms[i].sym),
3310 symtab->filename, SYMBOL_LINE (syms[i].sym));
3311 else if (is_enumeral
3312 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3313 {
3314 printf_unfiltered (("[%d] "), i + first_choice);
3315 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3316 gdb_stdout, -1, 0);
3317 printf_unfiltered (_("'(%s) (enumeral)\n"),
3318 SYMBOL_PRINT_NAME (syms[i].sym));
3319 }
3320 else if (symtab != NULL)
3321 printf_unfiltered (is_enumeral
3322 ? _("[%d] %s in %s (enumeral)\n")
3323 : _("[%d] %s at %s:?\n"),
3324 i + first_choice,
3325 SYMBOL_PRINT_NAME (syms[i].sym),
3326 symtab->filename);
3327 else
3328 printf_unfiltered (is_enumeral
3329 ? _("[%d] %s (enumeral)\n")
3330 : _("[%d] %s at ?\n"),
3331 i + first_choice,
3332 SYMBOL_PRINT_NAME (syms[i].sym));
3333 }
3334 }
3335
3336 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3337 "overload-choice");
3338
3339 for (i = 0; i < n_chosen; i += 1)
3340 syms[i] = syms[chosen[i]];
3341
3342 return n_chosen;
3343 }
3344
3345 /* Read and validate a set of numeric choices from the user in the
3346 range 0 .. N_CHOICES-1. Place the results in increasing
3347 order in CHOICES[0 .. N-1], and return N.
3348
3349 The user types choices as a sequence of numbers on one line
3350 separated by blanks, encoding them as follows:
3351
3352 + A choice of 0 means to cancel the selection, throwing an error.
3353 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3354 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3355
3356 The user is not allowed to choose more than MAX_RESULTS values.
3357
3358 ANNOTATION_SUFFIX, if present, is used to annotate the input
3359 prompts (for use with the -f switch). */
3360
3361 int
3362 get_selections (int *choices, int n_choices, int max_results,
3363 int is_all_choice, char *annotation_suffix)
3364 {
3365 char *args;
3366 char *prompt;
3367 int n_chosen;
3368 int first_choice = is_all_choice ? 2 : 1;
3369
3370 prompt = getenv ("PS2");
3371 if (prompt == NULL)
3372 prompt = "> ";
3373
3374 args = command_line_input (prompt, 0, annotation_suffix);
3375
3376 if (args == NULL)
3377 error_no_arg (_("one or more choice numbers"));
3378
3379 n_chosen = 0;
3380
3381 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3382 order, as given in args. Choices are validated. */
3383 while (1)
3384 {
3385 char *args2;
3386 int choice, j;
3387
3388 while (isspace (*args))
3389 args += 1;
3390 if (*args == '\0' && n_chosen == 0)
3391 error_no_arg (_("one or more choice numbers"));
3392 else if (*args == '\0')
3393 break;
3394
3395 choice = strtol (args, &args2, 10);
3396 if (args == args2 || choice < 0
3397 || choice > n_choices + first_choice - 1)
3398 error (_("Argument must be choice number"));
3399 args = args2;
3400
3401 if (choice == 0)
3402 error (_("cancelled"));
3403
3404 if (choice < first_choice)
3405 {
3406 n_chosen = n_choices;
3407 for (j = 0; j < n_choices; j += 1)
3408 choices[j] = j;
3409 break;
3410 }
3411 choice -= first_choice;
3412
3413 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3414 {
3415 }
3416
3417 if (j < 0 || choice != choices[j])
3418 {
3419 int k;
3420 for (k = n_chosen - 1; k > j; k -= 1)
3421 choices[k + 1] = choices[k];
3422 choices[j + 1] = choice;
3423 n_chosen += 1;
3424 }
3425 }
3426
3427 if (n_chosen > max_results)
3428 error (_("Select no more than %d of the above"), max_results);
3429
3430 return n_chosen;
3431 }
3432
3433 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3434 on the function identified by SYM and BLOCK, and taking NARGS
3435 arguments. Update *EXPP as needed to hold more space. */
3436
3437 static void
3438 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3439 int oplen, struct symbol *sym,
3440 struct block *block)
3441 {
3442 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3443 symbol, -oplen for operator being replaced). */
3444 struct expression *newexp = (struct expression *)
3445 xmalloc (sizeof (struct expression)
3446 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3447 struct expression *exp = *expp;
3448
3449 newexp->nelts = exp->nelts + 7 - oplen;
3450 newexp->language_defn = exp->language_defn;
3451 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3452 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3453 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3454
3455 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3456 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3457
3458 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3459 newexp->elts[pc + 4].block = block;
3460 newexp->elts[pc + 5].symbol = sym;
3461
3462 *expp = newexp;
3463 xfree (exp);
3464 }
3465
3466 /* Type-class predicates */
3467
3468 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3469 or FLOAT). */
3470
3471 static int
3472 numeric_type_p (struct type *type)
3473 {
3474 if (type == NULL)
3475 return 0;
3476 else
3477 {
3478 switch (TYPE_CODE (type))
3479 {
3480 case TYPE_CODE_INT:
3481 case TYPE_CODE_FLT:
3482 return 1;
3483 case TYPE_CODE_RANGE:
3484 return (type == TYPE_TARGET_TYPE (type)
3485 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3486 default:
3487 return 0;
3488 }
3489 }
3490 }
3491
3492 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3493
3494 static int
3495 integer_type_p (struct type *type)
3496 {
3497 if (type == NULL)
3498 return 0;
3499 else
3500 {
3501 switch (TYPE_CODE (type))
3502 {
3503 case TYPE_CODE_INT:
3504 return 1;
3505 case TYPE_CODE_RANGE:
3506 return (type == TYPE_TARGET_TYPE (type)
3507 || integer_type_p (TYPE_TARGET_TYPE (type)));
3508 default:
3509 return 0;
3510 }
3511 }
3512 }
3513
3514 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3515
3516 static int
3517 scalar_type_p (struct type *type)
3518 {
3519 if (type == NULL)
3520 return 0;
3521 else
3522 {
3523 switch (TYPE_CODE (type))
3524 {
3525 case TYPE_CODE_INT:
3526 case TYPE_CODE_RANGE:
3527 case TYPE_CODE_ENUM:
3528 case TYPE_CODE_FLT:
3529 return 1;
3530 default:
3531 return 0;
3532 }
3533 }
3534 }
3535
3536 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3537
3538 static int
3539 discrete_type_p (struct type *type)
3540 {
3541 if (type == NULL)
3542 return 0;
3543 else
3544 {
3545 switch (TYPE_CODE (type))
3546 {
3547 case TYPE_CODE_INT:
3548 case TYPE_CODE_RANGE:
3549 case TYPE_CODE_ENUM:
3550 case TYPE_CODE_BOOL:
3551 return 1;
3552 default:
3553 return 0;
3554 }
3555 }
3556 }
3557
3558 /* Returns non-zero if OP with operands in the vector ARGS could be
3559 a user-defined function. Errs on the side of pre-defined operators
3560 (i.e., result 0). */
3561
3562 static int
3563 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3564 {
3565 struct type *type0 =
3566 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3567 struct type *type1 =
3568 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3569
3570 if (type0 == NULL)
3571 return 0;
3572
3573 switch (op)
3574 {
3575 default:
3576 return 0;
3577
3578 case BINOP_ADD:
3579 case BINOP_SUB:
3580 case BINOP_MUL:
3581 case BINOP_DIV:
3582 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3583
3584 case BINOP_REM:
3585 case BINOP_MOD:
3586 case BINOP_BITWISE_AND:
3587 case BINOP_BITWISE_IOR:
3588 case BINOP_BITWISE_XOR:
3589 return (!(integer_type_p (type0) && integer_type_p (type1)));
3590
3591 case BINOP_EQUAL:
3592 case BINOP_NOTEQUAL:
3593 case BINOP_LESS:
3594 case BINOP_GTR:
3595 case BINOP_LEQ:
3596 case BINOP_GEQ:
3597 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3598
3599 case BINOP_CONCAT:
3600 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3601
3602 case BINOP_EXP:
3603 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3604
3605 case UNOP_NEG:
3606 case UNOP_PLUS:
3607 case UNOP_LOGICAL_NOT:
3608 case UNOP_ABS:
3609 return (!numeric_type_p (type0));
3610
3611 }
3612 }
3613 \f
3614 /* Renaming */
3615
3616 /* NOTES:
3617
3618 1. In the following, we assume that a renaming type's name may
3619 have an ___XD suffix. It would be nice if this went away at some
3620 point.
3621 2. We handle both the (old) purely type-based representation of
3622 renamings and the (new) variable-based encoding. At some point,
3623 it is devoutly to be hoped that the former goes away
3624 (FIXME: hilfinger-2007-07-09).
3625 3. Subprogram renamings are not implemented, although the XRS
3626 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3627
3628 /* If SYM encodes a renaming,
3629
3630 <renaming> renames <renamed entity>,
3631
3632 sets *LEN to the length of the renamed entity's name,
3633 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3634 the string describing the subcomponent selected from the renamed
3635 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3636 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3637 are undefined). Otherwise, returns a value indicating the category
3638 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3639 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3640 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3641 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3642 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3643 may be NULL, in which case they are not assigned.
3644
3645 [Currently, however, GCC does not generate subprogram renamings.] */
3646
3647 enum ada_renaming_category
3648 ada_parse_renaming (struct symbol *sym,
3649 const char **renamed_entity, int *len,
3650 const char **renaming_expr)
3651 {
3652 enum ada_renaming_category kind;
3653 const char *info;
3654 const char *suffix;
3655
3656 if (sym == NULL)
3657 return ADA_NOT_RENAMING;
3658 switch (SYMBOL_CLASS (sym))
3659 {
3660 default:
3661 return ADA_NOT_RENAMING;
3662 case LOC_TYPEDEF:
3663 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3664 renamed_entity, len, renaming_expr);
3665 case LOC_LOCAL:
3666 case LOC_STATIC:
3667 case LOC_COMPUTED:
3668 case LOC_OPTIMIZED_OUT:
3669 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3670 if (info == NULL)
3671 return ADA_NOT_RENAMING;
3672 switch (info[5])
3673 {
3674 case '_':
3675 kind = ADA_OBJECT_RENAMING;
3676 info += 6;
3677 break;
3678 case 'E':
3679 kind = ADA_EXCEPTION_RENAMING;
3680 info += 7;
3681 break;
3682 case 'P':
3683 kind = ADA_PACKAGE_RENAMING;
3684 info += 7;
3685 break;
3686 case 'S':
3687 kind = ADA_SUBPROGRAM_RENAMING;
3688 info += 7;
3689 break;
3690 default:
3691 return ADA_NOT_RENAMING;
3692 }
3693 }
3694
3695 if (renamed_entity != NULL)
3696 *renamed_entity = info;
3697 suffix = strstr (info, "___XE");
3698 if (suffix == NULL || suffix == info)
3699 return ADA_NOT_RENAMING;
3700 if (len != NULL)
3701 *len = strlen (info) - strlen (suffix);
3702 suffix += 5;
3703 if (renaming_expr != NULL)
3704 *renaming_expr = suffix;
3705 return kind;
3706 }
3707
3708 /* Assuming TYPE encodes a renaming according to the old encoding in
3709 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3710 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3711 ADA_NOT_RENAMING otherwise. */
3712 static enum ada_renaming_category
3713 parse_old_style_renaming (struct type *type,
3714 const char **renamed_entity, int *len,
3715 const char **renaming_expr)
3716 {
3717 enum ada_renaming_category kind;
3718 const char *name;
3719 const char *info;
3720 const char *suffix;
3721
3722 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3723 || TYPE_NFIELDS (type) != 1)
3724 return ADA_NOT_RENAMING;
3725
3726 name = type_name_no_tag (type);
3727 if (name == NULL)
3728 return ADA_NOT_RENAMING;
3729
3730 name = strstr (name, "___XR");
3731 if (name == NULL)
3732 return ADA_NOT_RENAMING;
3733 switch (name[5])
3734 {
3735 case '\0':
3736 case '_':
3737 kind = ADA_OBJECT_RENAMING;
3738 break;
3739 case 'E':
3740 kind = ADA_EXCEPTION_RENAMING;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 break;
3745 case 'S':
3746 kind = ADA_SUBPROGRAM_RENAMING;
3747 break;
3748 default:
3749 return ADA_NOT_RENAMING;
3750 }
3751
3752 info = TYPE_FIELD_NAME (type, 0);
3753 if (info == NULL)
3754 return ADA_NOT_RENAMING;
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (renaming_expr != NULL)
3759 *renaming_expr = suffix + 5;
3760 if (suffix == NULL || suffix == info)
3761 return ADA_NOT_RENAMING;
3762 if (len != NULL)
3763 *len = suffix - info;
3764 return kind;
3765 }
3766
3767 \f
3768
3769 /* Evaluation: Function Calls */
3770
3771 /* Return an lvalue containing the value VAL. This is the identity on
3772 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3773 on the stack, using and updating *SP as the stack pointer, and
3774 returning an lvalue whose value_address points to the copy. */
3775
3776 static struct value *
3777 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3778 {
3779 if (! VALUE_LVAL (val))
3780 {
3781 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3782
3783 /* The following is taken from the structure-return code in
3784 call_function_by_hand. FIXME: Therefore, some refactoring seems
3785 indicated. */
3786 if (gdbarch_inner_than (gdbarch, 1, 2))
3787 {
3788 /* Stack grows downward. Align SP and value_address (val) after
3789 reserving sufficient space. */
3790 *sp -= len;
3791 if (gdbarch_frame_align_p (gdbarch))
3792 *sp = gdbarch_frame_align (gdbarch, *sp);
3793 set_value_address (val, *sp);
3794 }
3795 else
3796 {
3797 /* Stack grows upward. Align the frame, allocate space, and
3798 then again, re-align the frame. */
3799 if (gdbarch_frame_align_p (gdbarch))
3800 *sp = gdbarch_frame_align (gdbarch, *sp);
3801 set_value_address (val, *sp);
3802 *sp += len;
3803 if (gdbarch_frame_align_p (gdbarch))
3804 *sp = gdbarch_frame_align (gdbarch, *sp);
3805 }
3806 VALUE_LVAL (val) = lval_memory;
3807
3808 write_memory (value_address (val), value_contents_raw (val), len);
3809 }
3810
3811 return val;
3812 }
3813
3814 /* Return the value ACTUAL, converted to be an appropriate value for a
3815 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3816 allocating any necessary descriptors (fat pointers), or copies of
3817 values not residing in memory, updating it as needed. */
3818
3819 struct value *
3820 ada_convert_actual (struct value *actual, struct type *formal_type0,
3821 struct gdbarch *gdbarch, CORE_ADDR *sp)
3822 {
3823 struct type *actual_type = ada_check_typedef (value_type (actual));
3824 struct type *formal_type = ada_check_typedef (formal_type0);
3825 struct type *formal_target =
3826 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3827 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3828 struct type *actual_target =
3829 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3830 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3831
3832 if (ada_is_array_descriptor_type (formal_target)
3833 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3834 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3835 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3836 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3837 {
3838 struct value *result;
3839 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3840 && ada_is_array_descriptor_type (actual_target))
3841 result = desc_data (actual);
3842 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3843 {
3844 if (VALUE_LVAL (actual) != lval_memory)
3845 {
3846 struct value *val;
3847 actual_type = ada_check_typedef (value_type (actual));
3848 val = allocate_value (actual_type);
3849 memcpy ((char *) value_contents_raw (val),
3850 (char *) value_contents (actual),
3851 TYPE_LENGTH (actual_type));
3852 actual = ensure_lval (val, gdbarch, sp);
3853 }
3854 result = value_addr (actual);
3855 }
3856 else
3857 return actual;
3858 return value_cast_pointers (formal_type, result);
3859 }
3860 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3861 return ada_value_ind (actual);
3862
3863 return actual;
3864 }
3865
3866
3867 /* Push a descriptor of type TYPE for array value ARR on the stack at
3868 *SP, updating *SP to reflect the new descriptor. Return either
3869 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3870 to-descriptor type rather than a descriptor type), a struct value *
3871 representing a pointer to this descriptor. */
3872
3873 static struct value *
3874 make_array_descriptor (struct type *type, struct value *arr,
3875 struct gdbarch *gdbarch, CORE_ADDR *sp)
3876 {
3877 struct type *bounds_type = desc_bounds_type (type);
3878 struct type *desc_type = desc_base_type (type);
3879 struct value *descriptor = allocate_value (desc_type);
3880 struct value *bounds = allocate_value (bounds_type);
3881 int i;
3882
3883 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3884 {
3885 modify_general_field (value_type (bounds),
3886 value_contents_writeable (bounds),
3887 ada_array_bound (arr, i, 0),
3888 desc_bound_bitpos (bounds_type, i, 0),
3889 desc_bound_bitsize (bounds_type, i, 0));
3890 modify_general_field (value_type (bounds),
3891 value_contents_writeable (bounds),
3892 ada_array_bound (arr, i, 1),
3893 desc_bound_bitpos (bounds_type, i, 1),
3894 desc_bound_bitsize (bounds_type, i, 1));
3895 }
3896
3897 bounds = ensure_lval (bounds, gdbarch, sp);
3898
3899 modify_general_field (value_type (descriptor),
3900 value_contents_writeable (descriptor),
3901 value_address (ensure_lval (arr, gdbarch, sp)),
3902 fat_pntr_data_bitpos (desc_type),
3903 fat_pntr_data_bitsize (desc_type));
3904
3905 modify_general_field (value_type (descriptor),
3906 value_contents_writeable (descriptor),
3907 value_address (bounds),
3908 fat_pntr_bounds_bitpos (desc_type),
3909 fat_pntr_bounds_bitsize (desc_type));
3910
3911 descriptor = ensure_lval (descriptor, gdbarch, sp);
3912
3913 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3914 return value_addr (descriptor);
3915 else
3916 return descriptor;
3917 }
3918 \f
3919 /* Dummy definitions for an experimental caching module that is not
3920 * used in the public sources. */
3921
3922 static int
3923 lookup_cached_symbol (const char *name, domain_enum namespace,
3924 struct symbol **sym, struct block **block)
3925 {
3926 return 0;
3927 }
3928
3929 static void
3930 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3931 struct block *block)
3932 {
3933 }
3934 \f
3935 /* Symbol Lookup */
3936
3937 /* Return the result of a standard (literal, C-like) lookup of NAME in
3938 given DOMAIN, visible from lexical block BLOCK. */
3939
3940 static struct symbol *
3941 standard_lookup (const char *name, const struct block *block,
3942 domain_enum domain)
3943 {
3944 struct symbol *sym;
3945
3946 if (lookup_cached_symbol (name, domain, &sym, NULL))
3947 return sym;
3948 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3949 cache_symbol (name, domain, sym, block_found);
3950 return sym;
3951 }
3952
3953
3954 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3955 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3956 since they contend in overloading in the same way. */
3957 static int
3958 is_nonfunction (struct ada_symbol_info syms[], int n)
3959 {
3960 int i;
3961
3962 for (i = 0; i < n; i += 1)
3963 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3964 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3965 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3966 return 1;
3967
3968 return 0;
3969 }
3970
3971 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3972 struct types. Otherwise, they may not. */
3973
3974 static int
3975 equiv_types (struct type *type0, struct type *type1)
3976 {
3977 if (type0 == type1)
3978 return 1;
3979 if (type0 == NULL || type1 == NULL
3980 || TYPE_CODE (type0) != TYPE_CODE (type1))
3981 return 0;
3982 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3983 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3984 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3985 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3986 return 1;
3987
3988 return 0;
3989 }
3990
3991 /* True iff SYM0 represents the same entity as SYM1, or one that is
3992 no more defined than that of SYM1. */
3993
3994 static int
3995 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3996 {
3997 if (sym0 == sym1)
3998 return 1;
3999 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4000 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4001 return 0;
4002
4003 switch (SYMBOL_CLASS (sym0))
4004 {
4005 case LOC_UNDEF:
4006 return 1;
4007 case LOC_TYPEDEF:
4008 {
4009 struct type *type0 = SYMBOL_TYPE (sym0);
4010 struct type *type1 = SYMBOL_TYPE (sym1);
4011 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4012 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4013 int len0 = strlen (name0);
4014 return
4015 TYPE_CODE (type0) == TYPE_CODE (type1)
4016 && (equiv_types (type0, type1)
4017 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4018 && strncmp (name1 + len0, "___XV", 5) == 0));
4019 }
4020 case LOC_CONST:
4021 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4022 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4023 default:
4024 return 0;
4025 }
4026 }
4027
4028 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4029 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4030
4031 static void
4032 add_defn_to_vec (struct obstack *obstackp,
4033 struct symbol *sym,
4034 struct block *block)
4035 {
4036 int i;
4037 size_t tmp;
4038 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4039
4040 /* Do not try to complete stub types, as the debugger is probably
4041 already scanning all symbols matching a certain name at the
4042 time when this function is called. Trying to replace the stub
4043 type by its associated full type will cause us to restart a scan
4044 which may lead to an infinite recursion. Instead, the client
4045 collecting the matching symbols will end up collecting several
4046 matches, with at least one of them complete. It can then filter
4047 out the stub ones if needed. */
4048
4049 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4050 {
4051 if (lesseq_defined_than (sym, prevDefns[i].sym))
4052 return;
4053 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4054 {
4055 prevDefns[i].sym = sym;
4056 prevDefns[i].block = block;
4057 return;
4058 }
4059 }
4060
4061 {
4062 struct ada_symbol_info info;
4063
4064 info.sym = sym;
4065 info.block = block;
4066 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4067 }
4068 }
4069
4070 /* Number of ada_symbol_info structures currently collected in
4071 current vector in *OBSTACKP. */
4072
4073 static int
4074 num_defns_collected (struct obstack *obstackp)
4075 {
4076 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4077 }
4078
4079 /* Vector of ada_symbol_info structures currently collected in current
4080 vector in *OBSTACKP. If FINISH, close off the vector and return
4081 its final address. */
4082
4083 static struct ada_symbol_info *
4084 defns_collected (struct obstack *obstackp, int finish)
4085 {
4086 if (finish)
4087 return obstack_finish (obstackp);
4088 else
4089 return (struct ada_symbol_info *) obstack_base (obstackp);
4090 }
4091
4092 /* Return a minimal symbol matching NAME according to Ada decoding
4093 rules. Returns NULL if there is no such minimal symbol. Names
4094 prefixed with "standard__" are handled specially: "standard__" is
4095 first stripped off, and only static and global symbols are searched. */
4096
4097 struct minimal_symbol *
4098 ada_lookup_simple_minsym (const char *name)
4099 {
4100 struct objfile *objfile;
4101 struct minimal_symbol *msymbol;
4102 int wild_match;
4103
4104 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4105 {
4106 name += sizeof ("standard__") - 1;
4107 wild_match = 0;
4108 }
4109 else
4110 wild_match = (strstr (name, "__") == NULL);
4111
4112 ALL_MSYMBOLS (objfile, msymbol)
4113 {
4114 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4115 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4116 return msymbol;
4117 }
4118
4119 return NULL;
4120 }
4121
4122 /* For all subprograms that statically enclose the subprogram of the
4123 selected frame, add symbols matching identifier NAME in DOMAIN
4124 and their blocks to the list of data in OBSTACKP, as for
4125 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4126 wildcard prefix. */
4127
4128 static void
4129 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4130 const char *name, domain_enum namespace,
4131 int wild_match)
4132 {
4133 }
4134
4135 /* True if TYPE is definitely an artificial type supplied to a symbol
4136 for which no debugging information was given in the symbol file. */
4137
4138 static int
4139 is_nondebugging_type (struct type *type)
4140 {
4141 char *name = ada_type_name (type);
4142 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4143 }
4144
4145 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4146 duplicate other symbols in the list (The only case I know of where
4147 this happens is when object files containing stabs-in-ecoff are
4148 linked with files containing ordinary ecoff debugging symbols (or no
4149 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4150 Returns the number of items in the modified list. */
4151
4152 static int
4153 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4154 {
4155 int i, j;
4156
4157 i = 0;
4158 while (i < nsyms)
4159 {
4160 int remove = 0;
4161
4162 /* If two symbols have the same name and one of them is a stub type,
4163 the get rid of the stub. */
4164
4165 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4166 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4167 {
4168 for (j = 0; j < nsyms; j++)
4169 {
4170 if (j != i
4171 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4172 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4173 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4174 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4175 remove = 1;
4176 }
4177 }
4178
4179 /* Two symbols with the same name, same class and same address
4180 should be identical. */
4181
4182 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4183 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4184 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4185 {
4186 for (j = 0; j < nsyms; j += 1)
4187 {
4188 if (i != j
4189 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4190 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4191 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4192 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4193 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4194 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4195 remove = 1;
4196 }
4197 }
4198
4199 if (remove)
4200 {
4201 for (j = i + 1; j < nsyms; j += 1)
4202 syms[j - 1] = syms[j];
4203 nsyms -= 1;
4204 }
4205
4206 i += 1;
4207 }
4208 return nsyms;
4209 }
4210
4211 /* Given a type that corresponds to a renaming entity, use the type name
4212 to extract the scope (package name or function name, fully qualified,
4213 and following the GNAT encoding convention) where this renaming has been
4214 defined. The string returned needs to be deallocated after use. */
4215
4216 static char *
4217 xget_renaming_scope (struct type *renaming_type)
4218 {
4219 /* The renaming types adhere to the following convention:
4220 <scope>__<rename>___<XR extension>.
4221 So, to extract the scope, we search for the "___XR" extension,
4222 and then backtrack until we find the first "__". */
4223
4224 const char *name = type_name_no_tag (renaming_type);
4225 char *suffix = strstr (name, "___XR");
4226 char *last;
4227 int scope_len;
4228 char *scope;
4229
4230 /* Now, backtrack a bit until we find the first "__". Start looking
4231 at suffix - 3, as the <rename> part is at least one character long. */
4232
4233 for (last = suffix - 3; last > name; last--)
4234 if (last[0] == '_' && last[1] == '_')
4235 break;
4236
4237 /* Make a copy of scope and return it. */
4238
4239 scope_len = last - name;
4240 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4241
4242 strncpy (scope, name, scope_len);
4243 scope[scope_len] = '\0';
4244
4245 return scope;
4246 }
4247
4248 /* Return nonzero if NAME corresponds to a package name. */
4249
4250 static int
4251 is_package_name (const char *name)
4252 {
4253 /* Here, We take advantage of the fact that no symbols are generated
4254 for packages, while symbols are generated for each function.
4255 So the condition for NAME represent a package becomes equivalent
4256 to NAME not existing in our list of symbols. There is only one
4257 small complication with library-level functions (see below). */
4258
4259 char *fun_name;
4260
4261 /* If it is a function that has not been defined at library level,
4262 then we should be able to look it up in the symbols. */
4263 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4264 return 0;
4265
4266 /* Library-level function names start with "_ada_". See if function
4267 "_ada_" followed by NAME can be found. */
4268
4269 /* Do a quick check that NAME does not contain "__", since library-level
4270 functions names cannot contain "__" in them. */
4271 if (strstr (name, "__") != NULL)
4272 return 0;
4273
4274 fun_name = xstrprintf ("_ada_%s", name);
4275
4276 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4277 }
4278
4279 /* Return nonzero if SYM corresponds to a renaming entity that is
4280 not visible from FUNCTION_NAME. */
4281
4282 static int
4283 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4284 {
4285 char *scope;
4286
4287 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4288 return 0;
4289
4290 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4291
4292 make_cleanup (xfree, scope);
4293
4294 /* If the rename has been defined in a package, then it is visible. */
4295 if (is_package_name (scope))
4296 return 0;
4297
4298 /* Check that the rename is in the current function scope by checking
4299 that its name starts with SCOPE. */
4300
4301 /* If the function name starts with "_ada_", it means that it is
4302 a library-level function. Strip this prefix before doing the
4303 comparison, as the encoding for the renaming does not contain
4304 this prefix. */
4305 if (strncmp (function_name, "_ada_", 5) == 0)
4306 function_name += 5;
4307
4308 return (strncmp (function_name, scope, strlen (scope)) != 0);
4309 }
4310
4311 /* Remove entries from SYMS that corresponds to a renaming entity that
4312 is not visible from the function associated with CURRENT_BLOCK or
4313 that is superfluous due to the presence of more specific renaming
4314 information. Places surviving symbols in the initial entries of
4315 SYMS and returns the number of surviving symbols.
4316
4317 Rationale:
4318 First, in cases where an object renaming is implemented as a
4319 reference variable, GNAT may produce both the actual reference
4320 variable and the renaming encoding. In this case, we discard the
4321 latter.
4322
4323 Second, GNAT emits a type following a specified encoding for each renaming
4324 entity. Unfortunately, STABS currently does not support the definition
4325 of types that are local to a given lexical block, so all renamings types
4326 are emitted at library level. As a consequence, if an application
4327 contains two renaming entities using the same name, and a user tries to
4328 print the value of one of these entities, the result of the ada symbol
4329 lookup will also contain the wrong renaming type.
4330
4331 This function partially covers for this limitation by attempting to
4332 remove from the SYMS list renaming symbols that should be visible
4333 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4334 method with the current information available. The implementation
4335 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4336
4337 - When the user tries to print a rename in a function while there
4338 is another rename entity defined in a package: Normally, the
4339 rename in the function has precedence over the rename in the
4340 package, so the latter should be removed from the list. This is
4341 currently not the case.
4342
4343 - This function will incorrectly remove valid renames if
4344 the CURRENT_BLOCK corresponds to a function which symbol name
4345 has been changed by an "Export" pragma. As a consequence,
4346 the user will be unable to print such rename entities. */
4347
4348 static int
4349 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4350 int nsyms, const struct block *current_block)
4351 {
4352 struct symbol *current_function;
4353 char *current_function_name;
4354 int i;
4355 int is_new_style_renaming;
4356
4357 /* If there is both a renaming foo___XR... encoded as a variable and
4358 a simple variable foo in the same block, discard the latter.
4359 First, zero out such symbols, then compress. */
4360 is_new_style_renaming = 0;
4361 for (i = 0; i < nsyms; i += 1)
4362 {
4363 struct symbol *sym = syms[i].sym;
4364 struct block *block = syms[i].block;
4365 const char *name;
4366 const char *suffix;
4367
4368 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4369 continue;
4370 name = SYMBOL_LINKAGE_NAME (sym);
4371 suffix = strstr (name, "___XR");
4372
4373 if (suffix != NULL)
4374 {
4375 int name_len = suffix - name;
4376 int j;
4377 is_new_style_renaming = 1;
4378 for (j = 0; j < nsyms; j += 1)
4379 if (i != j && syms[j].sym != NULL
4380 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4381 name_len) == 0
4382 && block == syms[j].block)
4383 syms[j].sym = NULL;
4384 }
4385 }
4386 if (is_new_style_renaming)
4387 {
4388 int j, k;
4389
4390 for (j = k = 0; j < nsyms; j += 1)
4391 if (syms[j].sym != NULL)
4392 {
4393 syms[k] = syms[j];
4394 k += 1;
4395 }
4396 return k;
4397 }
4398
4399 /* Extract the function name associated to CURRENT_BLOCK.
4400 Abort if unable to do so. */
4401
4402 if (current_block == NULL)
4403 return nsyms;
4404
4405 current_function = block_linkage_function (current_block);
4406 if (current_function == NULL)
4407 return nsyms;
4408
4409 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4410 if (current_function_name == NULL)
4411 return nsyms;
4412
4413 /* Check each of the symbols, and remove it from the list if it is
4414 a type corresponding to a renaming that is out of the scope of
4415 the current block. */
4416
4417 i = 0;
4418 while (i < nsyms)
4419 {
4420 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4421 == ADA_OBJECT_RENAMING
4422 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4423 {
4424 int j;
4425 for (j = i + 1; j < nsyms; j += 1)
4426 syms[j - 1] = syms[j];
4427 nsyms -= 1;
4428 }
4429 else
4430 i += 1;
4431 }
4432
4433 return nsyms;
4434 }
4435
4436 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4437 whose name and domain match NAME and DOMAIN respectively.
4438 If no match was found, then extend the search to "enclosing"
4439 routines (in other words, if we're inside a nested function,
4440 search the symbols defined inside the enclosing functions).
4441
4442 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4443
4444 static void
4445 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4446 struct block *block, domain_enum domain,
4447 int wild_match)
4448 {
4449 int block_depth = 0;
4450
4451 while (block != NULL)
4452 {
4453 block_depth += 1;
4454 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4455
4456 /* If we found a non-function match, assume that's the one. */
4457 if (is_nonfunction (defns_collected (obstackp, 0),
4458 num_defns_collected (obstackp)))
4459 return;
4460
4461 block = BLOCK_SUPERBLOCK (block);
4462 }
4463
4464 /* If no luck so far, try to find NAME as a local symbol in some lexically
4465 enclosing subprogram. */
4466 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4467 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4468 }
4469
4470 /* An object of this type is used as the user_data argument when
4471 calling the map_ada_symtabs method. */
4472
4473 struct ada_psym_data
4474 {
4475 struct obstack *obstackp;
4476 const char *name;
4477 domain_enum domain;
4478 int global;
4479 int wild_match;
4480 };
4481
4482 /* Callback function for map_ada_symtabs. */
4483
4484 static void
4485 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4486 {
4487 struct ada_psym_data *data = user_data;
4488 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4489 ada_add_block_symbols (data->obstackp,
4490 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4491 data->name, data->domain, objfile, data->wild_match);
4492 }
4493
4494 /* Add to OBSTACKP all non-local symbols whose name and domain match
4495 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4496 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4497
4498 static void
4499 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4500 domain_enum domain, int global,
4501 int is_wild_match)
4502 {
4503 struct objfile *objfile;
4504 struct ada_psym_data data;
4505
4506 data.obstackp = obstackp;
4507 data.name = name;
4508 data.domain = domain;
4509 data.global = global;
4510 data.wild_match = is_wild_match;
4511
4512 ALL_OBJFILES (objfile)
4513 {
4514 if (objfile->sf)
4515 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4516 ada_add_psyms, name,
4517 global, domain,
4518 is_wild_match, &data);
4519 }
4520 }
4521
4522 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4523 scope and in global scopes, returning the number of matches. Sets
4524 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4525 indicating the symbols found and the blocks and symbol tables (if
4526 any) in which they were found. This vector are transient---good only to
4527 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4528 symbol match within the nest of blocks whose innermost member is BLOCK0,
4529 is the one match returned (no other matches in that or
4530 enclosing blocks is returned). If there are any matches in or
4531 surrounding BLOCK0, then these alone are returned. Otherwise, the
4532 search extends to global and file-scope (static) symbol tables.
4533 Names prefixed with "standard__" are handled specially: "standard__"
4534 is first stripped off, and only static and global symbols are searched. */
4535
4536 int
4537 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4538 domain_enum namespace,
4539 struct ada_symbol_info **results)
4540 {
4541 struct symbol *sym;
4542 struct block *block;
4543 const char *name;
4544 int wild_match;
4545 int cacheIfUnique;
4546 int ndefns;
4547
4548 obstack_free (&symbol_list_obstack, NULL);
4549 obstack_init (&symbol_list_obstack);
4550
4551 cacheIfUnique = 0;
4552
4553 /* Search specified block and its superiors. */
4554
4555 wild_match = (strstr (name0, "__") == NULL);
4556 name = name0;
4557 block = (struct block *) block0; /* FIXME: No cast ought to be
4558 needed, but adding const will
4559 have a cascade effect. */
4560
4561 /* Special case: If the user specifies a symbol name inside package
4562 Standard, do a non-wild matching of the symbol name without
4563 the "standard__" prefix. This was primarily introduced in order
4564 to allow the user to specifically access the standard exceptions
4565 using, for instance, Standard.Constraint_Error when Constraint_Error
4566 is ambiguous (due to the user defining its own Constraint_Error
4567 entity inside its program). */
4568 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4569 {
4570 wild_match = 0;
4571 block = NULL;
4572 name = name0 + sizeof ("standard__") - 1;
4573 }
4574
4575 /* Check the non-global symbols. If we have ANY match, then we're done. */
4576
4577 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4578 wild_match);
4579 if (num_defns_collected (&symbol_list_obstack) > 0)
4580 goto done;
4581
4582 /* No non-global symbols found. Check our cache to see if we have
4583 already performed this search before. If we have, then return
4584 the same result. */
4585
4586 cacheIfUnique = 1;
4587 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4588 {
4589 if (sym != NULL)
4590 add_defn_to_vec (&symbol_list_obstack, sym, block);
4591 goto done;
4592 }
4593
4594 /* Search symbols from all global blocks. */
4595
4596 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4597 wild_match);
4598
4599 /* Now add symbols from all per-file blocks if we've gotten no hits
4600 (not strictly correct, but perhaps better than an error). */
4601
4602 if (num_defns_collected (&symbol_list_obstack) == 0)
4603 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4604 wild_match);
4605
4606 done:
4607 ndefns = num_defns_collected (&symbol_list_obstack);
4608 *results = defns_collected (&symbol_list_obstack, 1);
4609
4610 ndefns = remove_extra_symbols (*results, ndefns);
4611
4612 if (ndefns == 0)
4613 cache_symbol (name0, namespace, NULL, NULL);
4614
4615 if (ndefns == 1 && cacheIfUnique)
4616 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4617
4618 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4619
4620 return ndefns;
4621 }
4622
4623 struct symbol *
4624 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4625 domain_enum namespace, struct block **block_found)
4626 {
4627 struct ada_symbol_info *candidates;
4628 int n_candidates;
4629
4630 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4631
4632 if (n_candidates == 0)
4633 return NULL;
4634
4635 if (block_found != NULL)
4636 *block_found = candidates[0].block;
4637
4638 return fixup_symbol_section (candidates[0].sym, NULL);
4639 }
4640
4641 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4642 scope and in global scopes, or NULL if none. NAME is folded and
4643 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4644 choosing the first symbol if there are multiple choices.
4645 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4646 table in which the symbol was found (in both cases, these
4647 assignments occur only if the pointers are non-null). */
4648 struct symbol *
4649 ada_lookup_symbol (const char *name, const struct block *block0,
4650 domain_enum namespace, int *is_a_field_of_this)
4651 {
4652 if (is_a_field_of_this != NULL)
4653 *is_a_field_of_this = 0;
4654
4655 return
4656 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4657 block0, namespace, NULL);
4658 }
4659
4660 static struct symbol *
4661 ada_lookup_symbol_nonlocal (const char *name,
4662 const struct block *block,
4663 const domain_enum domain)
4664 {
4665 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4666 }
4667
4668
4669 /* True iff STR is a possible encoded suffix of a normal Ada name
4670 that is to be ignored for matching purposes. Suffixes of parallel
4671 names (e.g., XVE) are not included here. Currently, the possible suffixes
4672 are given by any of the regular expressions:
4673
4674 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4675 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4676 _E[0-9]+[bs]$ [protected object entry suffixes]
4677 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4678
4679 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4680 match is performed. This sequence is used to differentiate homonyms,
4681 is an optional part of a valid name suffix. */
4682
4683 static int
4684 is_name_suffix (const char *str)
4685 {
4686 int k;
4687 const char *matching;
4688 const int len = strlen (str);
4689
4690 /* Skip optional leading __[0-9]+. */
4691
4692 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4693 {
4694 str += 3;
4695 while (isdigit (str[0]))
4696 str += 1;
4697 }
4698
4699 /* [.$][0-9]+ */
4700
4701 if (str[0] == '.' || str[0] == '$')
4702 {
4703 matching = str + 1;
4704 while (isdigit (matching[0]))
4705 matching += 1;
4706 if (matching[0] == '\0')
4707 return 1;
4708 }
4709
4710 /* ___[0-9]+ */
4711
4712 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4713 {
4714 matching = str + 3;
4715 while (isdigit (matching[0]))
4716 matching += 1;
4717 if (matching[0] == '\0')
4718 return 1;
4719 }
4720
4721 #if 0
4722 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4723 with a N at the end. Unfortunately, the compiler uses the same
4724 convention for other internal types it creates. So treating
4725 all entity names that end with an "N" as a name suffix causes
4726 some regressions. For instance, consider the case of an enumerated
4727 type. To support the 'Image attribute, it creates an array whose
4728 name ends with N.
4729 Having a single character like this as a suffix carrying some
4730 information is a bit risky. Perhaps we should change the encoding
4731 to be something like "_N" instead. In the meantime, do not do
4732 the following check. */
4733 /* Protected Object Subprograms */
4734 if (len == 1 && str [0] == 'N')
4735 return 1;
4736 #endif
4737
4738 /* _E[0-9]+[bs]$ */
4739 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4740 {
4741 matching = str + 3;
4742 while (isdigit (matching[0]))
4743 matching += 1;
4744 if ((matching[0] == 'b' || matching[0] == 's')
4745 && matching [1] == '\0')
4746 return 1;
4747 }
4748
4749 /* ??? We should not modify STR directly, as we are doing below. This
4750 is fine in this case, but may become problematic later if we find
4751 that this alternative did not work, and want to try matching
4752 another one from the begining of STR. Since we modified it, we
4753 won't be able to find the begining of the string anymore! */
4754 if (str[0] == 'X')
4755 {
4756 str += 1;
4757 while (str[0] != '_' && str[0] != '\0')
4758 {
4759 if (str[0] != 'n' && str[0] != 'b')
4760 return 0;
4761 str += 1;
4762 }
4763 }
4764
4765 if (str[0] == '\000')
4766 return 1;
4767
4768 if (str[0] == '_')
4769 {
4770 if (str[1] != '_' || str[2] == '\000')
4771 return 0;
4772 if (str[2] == '_')
4773 {
4774 if (strcmp (str + 3, "JM") == 0)
4775 return 1;
4776 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4777 the LJM suffix in favor of the JM one. But we will
4778 still accept LJM as a valid suffix for a reasonable
4779 amount of time, just to allow ourselves to debug programs
4780 compiled using an older version of GNAT. */
4781 if (strcmp (str + 3, "LJM") == 0)
4782 return 1;
4783 if (str[3] != 'X')
4784 return 0;
4785 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4786 || str[4] == 'U' || str[4] == 'P')
4787 return 1;
4788 if (str[4] == 'R' && str[5] != 'T')
4789 return 1;
4790 return 0;
4791 }
4792 if (!isdigit (str[2]))
4793 return 0;
4794 for (k = 3; str[k] != '\0'; k += 1)
4795 if (!isdigit (str[k]) && str[k] != '_')
4796 return 0;
4797 return 1;
4798 }
4799 if (str[0] == '$' && isdigit (str[1]))
4800 {
4801 for (k = 2; str[k] != '\0'; k += 1)
4802 if (!isdigit (str[k]) && str[k] != '_')
4803 return 0;
4804 return 1;
4805 }
4806 return 0;
4807 }
4808
4809 /* Return non-zero if the string starting at NAME and ending before
4810 NAME_END contains no capital letters. */
4811
4812 static int
4813 is_valid_name_for_wild_match (const char *name0)
4814 {
4815 const char *decoded_name = ada_decode (name0);
4816 int i;
4817
4818 /* If the decoded name starts with an angle bracket, it means that
4819 NAME0 does not follow the GNAT encoding format. It should then
4820 not be allowed as a possible wild match. */
4821 if (decoded_name[0] == '<')
4822 return 0;
4823
4824 for (i=0; decoded_name[i] != '\0'; i++)
4825 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4826 return 0;
4827
4828 return 1;
4829 }
4830
4831 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4832 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4833 informational suffixes of NAME (i.e., for which is_name_suffix is
4834 true). */
4835
4836 static int
4837 wild_match (const char *patn0, int patn_len, const char *name0)
4838 {
4839 char* match;
4840 const char* start;
4841 start = name0;
4842 while (1)
4843 {
4844 match = strstr (start, patn0);
4845 if (match == NULL)
4846 return 0;
4847 if ((match == name0
4848 || match[-1] == '.'
4849 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4850 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4851 && is_name_suffix (match + patn_len))
4852 return (match == name0 || is_valid_name_for_wild_match (name0));
4853 start = match + 1;
4854 }
4855 }
4856
4857 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4858 vector *defn_symbols, updating the list of symbols in OBSTACKP
4859 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4860 OBJFILE is the section containing BLOCK.
4861 SYMTAB is recorded with each symbol added. */
4862
4863 static void
4864 ada_add_block_symbols (struct obstack *obstackp,
4865 struct block *block, const char *name,
4866 domain_enum domain, struct objfile *objfile,
4867 int wild)
4868 {
4869 struct dict_iterator iter;
4870 int name_len = strlen (name);
4871 /* A matching argument symbol, if any. */
4872 struct symbol *arg_sym;
4873 /* Set true when we find a matching non-argument symbol. */
4874 int found_sym;
4875 struct symbol *sym;
4876
4877 arg_sym = NULL;
4878 found_sym = 0;
4879 if (wild)
4880 {
4881 struct symbol *sym;
4882 ALL_BLOCK_SYMBOLS (block, iter, sym)
4883 {
4884 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4885 SYMBOL_DOMAIN (sym), domain)
4886 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4887 {
4888 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4889 continue;
4890 else if (SYMBOL_IS_ARGUMENT (sym))
4891 arg_sym = sym;
4892 else
4893 {
4894 found_sym = 1;
4895 add_defn_to_vec (obstackp,
4896 fixup_symbol_section (sym, objfile),
4897 block);
4898 }
4899 }
4900 }
4901 }
4902 else
4903 {
4904 ALL_BLOCK_SYMBOLS (block, iter, sym)
4905 {
4906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4907 SYMBOL_DOMAIN (sym), domain))
4908 {
4909 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4910 if (cmp == 0
4911 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4912 {
4913 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4914 {
4915 if (SYMBOL_IS_ARGUMENT (sym))
4916 arg_sym = sym;
4917 else
4918 {
4919 found_sym = 1;
4920 add_defn_to_vec (obstackp,
4921 fixup_symbol_section (sym, objfile),
4922 block);
4923 }
4924 }
4925 }
4926 }
4927 }
4928 }
4929
4930 if (!found_sym && arg_sym != NULL)
4931 {
4932 add_defn_to_vec (obstackp,
4933 fixup_symbol_section (arg_sym, objfile),
4934 block);
4935 }
4936
4937 if (!wild)
4938 {
4939 arg_sym = NULL;
4940 found_sym = 0;
4941
4942 ALL_BLOCK_SYMBOLS (block, iter, sym)
4943 {
4944 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4945 SYMBOL_DOMAIN (sym), domain))
4946 {
4947 int cmp;
4948
4949 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4950 if (cmp == 0)
4951 {
4952 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4953 if (cmp == 0)
4954 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4955 name_len);
4956 }
4957
4958 if (cmp == 0
4959 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4960 {
4961 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4962 {
4963 if (SYMBOL_IS_ARGUMENT (sym))
4964 arg_sym = sym;
4965 else
4966 {
4967 found_sym = 1;
4968 add_defn_to_vec (obstackp,
4969 fixup_symbol_section (sym, objfile),
4970 block);
4971 }
4972 }
4973 }
4974 }
4975 }
4976
4977 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4978 They aren't parameters, right? */
4979 if (!found_sym && arg_sym != NULL)
4980 {
4981 add_defn_to_vec (obstackp,
4982 fixup_symbol_section (arg_sym, objfile),
4983 block);
4984 }
4985 }
4986 }
4987 \f
4988
4989 /* Symbol Completion */
4990
4991 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
4992 name in a form that's appropriate for the completion. The result
4993 does not need to be deallocated, but is only good until the next call.
4994
4995 TEXT_LEN is equal to the length of TEXT.
4996 Perform a wild match if WILD_MATCH is set.
4997 ENCODED should be set if TEXT represents the start of a symbol name
4998 in its encoded form. */
4999
5000 static const char *
5001 symbol_completion_match (const char *sym_name,
5002 const char *text, int text_len,
5003 int wild_match, int encoded)
5004 {
5005 char *result;
5006 const int verbatim_match = (text[0] == '<');
5007 int match = 0;
5008
5009 if (verbatim_match)
5010 {
5011 /* Strip the leading angle bracket. */
5012 text = text + 1;
5013 text_len--;
5014 }
5015
5016 /* First, test against the fully qualified name of the symbol. */
5017
5018 if (strncmp (sym_name, text, text_len) == 0)
5019 match = 1;
5020
5021 if (match && !encoded)
5022 {
5023 /* One needed check before declaring a positive match is to verify
5024 that iff we are doing a verbatim match, the decoded version
5025 of the symbol name starts with '<'. Otherwise, this symbol name
5026 is not a suitable completion. */
5027 const char *sym_name_copy = sym_name;
5028 int has_angle_bracket;
5029
5030 sym_name = ada_decode (sym_name);
5031 has_angle_bracket = (sym_name[0] == '<');
5032 match = (has_angle_bracket == verbatim_match);
5033 sym_name = sym_name_copy;
5034 }
5035
5036 if (match && !verbatim_match)
5037 {
5038 /* When doing non-verbatim match, another check that needs to
5039 be done is to verify that the potentially matching symbol name
5040 does not include capital letters, because the ada-mode would
5041 not be able to understand these symbol names without the
5042 angle bracket notation. */
5043 const char *tmp;
5044
5045 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5046 if (*tmp != '\0')
5047 match = 0;
5048 }
5049
5050 /* Second: Try wild matching... */
5051
5052 if (!match && wild_match)
5053 {
5054 /* Since we are doing wild matching, this means that TEXT
5055 may represent an unqualified symbol name. We therefore must
5056 also compare TEXT against the unqualified name of the symbol. */
5057 sym_name = ada_unqualified_name (ada_decode (sym_name));
5058
5059 if (strncmp (sym_name, text, text_len) == 0)
5060 match = 1;
5061 }
5062
5063 /* Finally: If we found a mach, prepare the result to return. */
5064
5065 if (!match)
5066 return NULL;
5067
5068 if (verbatim_match)
5069 sym_name = add_angle_brackets (sym_name);
5070
5071 if (!encoded)
5072 sym_name = ada_decode (sym_name);
5073
5074 return sym_name;
5075 }
5076
5077 DEF_VEC_P (char_ptr);
5078
5079 /* A companion function to ada_make_symbol_completion_list().
5080 Check if SYM_NAME represents a symbol which name would be suitable
5081 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5082 it is appended at the end of the given string vector SV.
5083
5084 ORIG_TEXT is the string original string from the user command
5085 that needs to be completed. WORD is the entire command on which
5086 completion should be performed. These two parameters are used to
5087 determine which part of the symbol name should be added to the
5088 completion vector.
5089 if WILD_MATCH is set, then wild matching is performed.
5090 ENCODED should be set if TEXT represents a symbol name in its
5091 encoded formed (in which case the completion should also be
5092 encoded). */
5093
5094 static void
5095 symbol_completion_add (VEC(char_ptr) **sv,
5096 const char *sym_name,
5097 const char *text, int text_len,
5098 const char *orig_text, const char *word,
5099 int wild_match, int encoded)
5100 {
5101 const char *match = symbol_completion_match (sym_name, text, text_len,
5102 wild_match, encoded);
5103 char *completion;
5104
5105 if (match == NULL)
5106 return;
5107
5108 /* We found a match, so add the appropriate completion to the given
5109 string vector. */
5110
5111 if (word == orig_text)
5112 {
5113 completion = xmalloc (strlen (match) + 5);
5114 strcpy (completion, match);
5115 }
5116 else if (word > orig_text)
5117 {
5118 /* Return some portion of sym_name. */
5119 completion = xmalloc (strlen (match) + 5);
5120 strcpy (completion, match + (word - orig_text));
5121 }
5122 else
5123 {
5124 /* Return some of ORIG_TEXT plus sym_name. */
5125 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5126 strncpy (completion, word, orig_text - word);
5127 completion[orig_text - word] = '\0';
5128 strcat (completion, match);
5129 }
5130
5131 VEC_safe_push (char_ptr, *sv, completion);
5132 }
5133
5134 /* An object of this type is passed as the user_data argument to the
5135 map_partial_symbol_names method. */
5136 struct add_partial_datum
5137 {
5138 VEC(char_ptr) **completions;
5139 char *text;
5140 int text_len;
5141 char *text0;
5142 char *word;
5143 int wild_match;
5144 int encoded;
5145 };
5146
5147 /* A callback for map_partial_symbol_names. */
5148 static void
5149 ada_add_partial_symbol_completions (const char *name, void *user_data)
5150 {
5151 struct add_partial_datum *data = user_data;
5152 symbol_completion_add (data->completions, name,
5153 data->text, data->text_len, data->text0, data->word,
5154 data->wild_match, data->encoded);
5155 }
5156
5157 /* Return a list of possible symbol names completing TEXT0. The list
5158 is NULL terminated. WORD is the entire command on which completion
5159 is made. */
5160
5161 static char **
5162 ada_make_symbol_completion_list (char *text0, char *word)
5163 {
5164 char *text;
5165 int text_len;
5166 int wild_match;
5167 int encoded;
5168 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5169 struct symbol *sym;
5170 struct symtab *s;
5171 struct minimal_symbol *msymbol;
5172 struct objfile *objfile;
5173 struct block *b, *surrounding_static_block = 0;
5174 int i;
5175 struct dict_iterator iter;
5176
5177 if (text0[0] == '<')
5178 {
5179 text = xstrdup (text0);
5180 make_cleanup (xfree, text);
5181 text_len = strlen (text);
5182 wild_match = 0;
5183 encoded = 1;
5184 }
5185 else
5186 {
5187 text = xstrdup (ada_encode (text0));
5188 make_cleanup (xfree, text);
5189 text_len = strlen (text);
5190 for (i = 0; i < text_len; i++)
5191 text[i] = tolower (text[i]);
5192
5193 encoded = (strstr (text0, "__") != NULL);
5194 /* If the name contains a ".", then the user is entering a fully
5195 qualified entity name, and the match must not be done in wild
5196 mode. Similarly, if the user wants to complete what looks like
5197 an encoded name, the match must not be done in wild mode. */
5198 wild_match = (strchr (text0, '.') == NULL && !encoded);
5199 }
5200
5201 /* First, look at the partial symtab symbols. */
5202 {
5203 struct add_partial_datum data;
5204
5205 data.completions = &completions;
5206 data.text = text;
5207 data.text_len = text_len;
5208 data.text0 = text0;
5209 data.word = word;
5210 data.wild_match = wild_match;
5211 data.encoded = encoded;
5212 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5213 }
5214
5215 /* At this point scan through the misc symbol vectors and add each
5216 symbol you find to the list. Eventually we want to ignore
5217 anything that isn't a text symbol (everything else will be
5218 handled by the psymtab code above). */
5219
5220 ALL_MSYMBOLS (objfile, msymbol)
5221 {
5222 QUIT;
5223 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5224 text, text_len, text0, word, wild_match, encoded);
5225 }
5226
5227 /* Search upwards from currently selected frame (so that we can
5228 complete on local vars. */
5229
5230 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5231 {
5232 if (!BLOCK_SUPERBLOCK (b))
5233 surrounding_static_block = b; /* For elmin of dups */
5234
5235 ALL_BLOCK_SYMBOLS (b, iter, sym)
5236 {
5237 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5238 text, text_len, text0, word,
5239 wild_match, encoded);
5240 }
5241 }
5242
5243 /* Go through the symtabs and check the externs and statics for
5244 symbols which match. */
5245
5246 ALL_SYMTABS (objfile, s)
5247 {
5248 QUIT;
5249 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5250 ALL_BLOCK_SYMBOLS (b, iter, sym)
5251 {
5252 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5253 text, text_len, text0, word,
5254 wild_match, encoded);
5255 }
5256 }
5257
5258 ALL_SYMTABS (objfile, s)
5259 {
5260 QUIT;
5261 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5262 /* Don't do this block twice. */
5263 if (b == surrounding_static_block)
5264 continue;
5265 ALL_BLOCK_SYMBOLS (b, iter, sym)
5266 {
5267 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5268 text, text_len, text0, word,
5269 wild_match, encoded);
5270 }
5271 }
5272
5273 /* Append the closing NULL entry. */
5274 VEC_safe_push (char_ptr, completions, NULL);
5275
5276 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5277 return the copy. It's unfortunate that we have to make a copy
5278 of an array that we're about to destroy, but there is nothing much
5279 we can do about it. Fortunately, it's typically not a very large
5280 array. */
5281 {
5282 const size_t completions_size =
5283 VEC_length (char_ptr, completions) * sizeof (char *);
5284 char **result = malloc (completions_size);
5285
5286 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5287
5288 VEC_free (char_ptr, completions);
5289 return result;
5290 }
5291 }
5292
5293 /* Field Access */
5294
5295 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5296 for tagged types. */
5297
5298 static int
5299 ada_is_dispatch_table_ptr_type (struct type *type)
5300 {
5301 char *name;
5302
5303 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5304 return 0;
5305
5306 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5307 if (name == NULL)
5308 return 0;
5309
5310 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5311 }
5312
5313 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5314 to be invisible to users. */
5315
5316 int
5317 ada_is_ignored_field (struct type *type, int field_num)
5318 {
5319 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5320 return 1;
5321
5322 /* Check the name of that field. */
5323 {
5324 const char *name = TYPE_FIELD_NAME (type, field_num);
5325
5326 /* Anonymous field names should not be printed.
5327 brobecker/2007-02-20: I don't think this can actually happen
5328 but we don't want to print the value of annonymous fields anyway. */
5329 if (name == NULL)
5330 return 1;
5331
5332 /* A field named "_parent" is internally generated by GNAT for
5333 tagged types, and should not be printed either. */
5334 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5335 return 1;
5336 }
5337
5338 /* If this is the dispatch table of a tagged type, then ignore. */
5339 if (ada_is_tagged_type (type, 1)
5340 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5341 return 1;
5342
5343 /* Not a special field, so it should not be ignored. */
5344 return 0;
5345 }
5346
5347 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5348 pointer or reference type whose ultimate target has a tag field. */
5349
5350 int
5351 ada_is_tagged_type (struct type *type, int refok)
5352 {
5353 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5354 }
5355
5356 /* True iff TYPE represents the type of X'Tag */
5357
5358 int
5359 ada_is_tag_type (struct type *type)
5360 {
5361 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5362 return 0;
5363 else
5364 {
5365 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5366 return (name != NULL
5367 && strcmp (name, "ada__tags__dispatch_table") == 0);
5368 }
5369 }
5370
5371 /* The type of the tag on VAL. */
5372
5373 struct type *
5374 ada_tag_type (struct value *val)
5375 {
5376 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5377 }
5378
5379 /* The value of the tag on VAL. */
5380
5381 struct value *
5382 ada_value_tag (struct value *val)
5383 {
5384 return ada_value_struct_elt (val, "_tag", 0);
5385 }
5386
5387 /* The value of the tag on the object of type TYPE whose contents are
5388 saved at VALADDR, if it is non-null, or is at memory address
5389 ADDRESS. */
5390
5391 static struct value *
5392 value_tag_from_contents_and_address (struct type *type,
5393 const gdb_byte *valaddr,
5394 CORE_ADDR address)
5395 {
5396 int tag_byte_offset, dummy1, dummy2;
5397 struct type *tag_type;
5398 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5399 NULL, NULL, NULL))
5400 {
5401 const gdb_byte *valaddr1 = ((valaddr == NULL)
5402 ? NULL
5403 : valaddr + tag_byte_offset);
5404 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5405
5406 return value_from_contents_and_address (tag_type, valaddr1, address1);
5407 }
5408 return NULL;
5409 }
5410
5411 static struct type *
5412 type_from_tag (struct value *tag)
5413 {
5414 const char *type_name = ada_tag_name (tag);
5415 if (type_name != NULL)
5416 return ada_find_any_type (ada_encode (type_name));
5417 return NULL;
5418 }
5419
5420 struct tag_args
5421 {
5422 struct value *tag;
5423 char *name;
5424 };
5425
5426
5427 static int ada_tag_name_1 (void *);
5428 static int ada_tag_name_2 (struct tag_args *);
5429
5430 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5431 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5432 The value stored in ARGS->name is valid until the next call to
5433 ada_tag_name_1. */
5434
5435 static int
5436 ada_tag_name_1 (void *args0)
5437 {
5438 struct tag_args *args = (struct tag_args *) args0;
5439 static char name[1024];
5440 char *p;
5441 struct value *val;
5442 args->name = NULL;
5443 val = ada_value_struct_elt (args->tag, "tsd", 1);
5444 if (val == NULL)
5445 return ada_tag_name_2 (args);
5446 val = ada_value_struct_elt (val, "expanded_name", 1);
5447 if (val == NULL)
5448 return 0;
5449 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5450 for (p = name; *p != '\0'; p += 1)
5451 if (isalpha (*p))
5452 *p = tolower (*p);
5453 args->name = name;
5454 return 0;
5455 }
5456
5457 /* Utility function for ada_tag_name_1 that tries the second
5458 representation for the dispatch table (in which there is no
5459 explicit 'tsd' field in the referent of the tag pointer, and instead
5460 the tsd pointer is stored just before the dispatch table. */
5461
5462 static int
5463 ada_tag_name_2 (struct tag_args *args)
5464 {
5465 struct type *info_type;
5466 static char name[1024];
5467 char *p;
5468 struct value *val, *valp;
5469
5470 args->name = NULL;
5471 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5472 if (info_type == NULL)
5473 return 0;
5474 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5475 valp = value_cast (info_type, args->tag);
5476 if (valp == NULL)
5477 return 0;
5478 val = value_ind (value_ptradd (valp, -1));
5479 if (val == NULL)
5480 return 0;
5481 val = ada_value_struct_elt (val, "expanded_name", 1);
5482 if (val == NULL)
5483 return 0;
5484 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5485 for (p = name; *p != '\0'; p += 1)
5486 if (isalpha (*p))
5487 *p = tolower (*p);
5488 args->name = name;
5489 return 0;
5490 }
5491
5492 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5493 * a C string. */
5494
5495 const char *
5496 ada_tag_name (struct value *tag)
5497 {
5498 struct tag_args args;
5499 if (!ada_is_tag_type (value_type (tag)))
5500 return NULL;
5501 args.tag = tag;
5502 args.name = NULL;
5503 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5504 return args.name;
5505 }
5506
5507 /* The parent type of TYPE, or NULL if none. */
5508
5509 struct type *
5510 ada_parent_type (struct type *type)
5511 {
5512 int i;
5513
5514 type = ada_check_typedef (type);
5515
5516 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5517 return NULL;
5518
5519 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5520 if (ada_is_parent_field (type, i))
5521 {
5522 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5523
5524 /* If the _parent field is a pointer, then dereference it. */
5525 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5526 parent_type = TYPE_TARGET_TYPE (parent_type);
5527 /* If there is a parallel XVS type, get the actual base type. */
5528 parent_type = ada_get_base_type (parent_type);
5529
5530 return ada_check_typedef (parent_type);
5531 }
5532
5533 return NULL;
5534 }
5535
5536 /* True iff field number FIELD_NUM of structure type TYPE contains the
5537 parent-type (inherited) fields of a derived type. Assumes TYPE is
5538 a structure type with at least FIELD_NUM+1 fields. */
5539
5540 int
5541 ada_is_parent_field (struct type *type, int field_num)
5542 {
5543 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5544 return (name != NULL
5545 && (strncmp (name, "PARENT", 6) == 0
5546 || strncmp (name, "_parent", 7) == 0));
5547 }
5548
5549 /* True iff field number FIELD_NUM of structure type TYPE is a
5550 transparent wrapper field (which should be silently traversed when doing
5551 field selection and flattened when printing). Assumes TYPE is a
5552 structure type with at least FIELD_NUM+1 fields. Such fields are always
5553 structures. */
5554
5555 int
5556 ada_is_wrapper_field (struct type *type, int field_num)
5557 {
5558 const char *name = TYPE_FIELD_NAME (type, field_num);
5559 return (name != NULL
5560 && (strncmp (name, "PARENT", 6) == 0
5561 || strcmp (name, "REP") == 0
5562 || strncmp (name, "_parent", 7) == 0
5563 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5564 }
5565
5566 /* True iff field number FIELD_NUM of structure or union type TYPE
5567 is a variant wrapper. Assumes TYPE is a structure type with at least
5568 FIELD_NUM+1 fields. */
5569
5570 int
5571 ada_is_variant_part (struct type *type, int field_num)
5572 {
5573 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5574 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5575 || (is_dynamic_field (type, field_num)
5576 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5577 == TYPE_CODE_UNION)));
5578 }
5579
5580 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5581 whose discriminants are contained in the record type OUTER_TYPE,
5582 returns the type of the controlling discriminant for the variant.
5583 May return NULL if the type could not be found. */
5584
5585 struct type *
5586 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5587 {
5588 char *name = ada_variant_discrim_name (var_type);
5589 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5590 }
5591
5592 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5593 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5594 represents a 'when others' clause; otherwise 0. */
5595
5596 int
5597 ada_is_others_clause (struct type *type, int field_num)
5598 {
5599 const char *name = TYPE_FIELD_NAME (type, field_num);
5600 return (name != NULL && name[0] == 'O');
5601 }
5602
5603 /* Assuming that TYPE0 is the type of the variant part of a record,
5604 returns the name of the discriminant controlling the variant.
5605 The value is valid until the next call to ada_variant_discrim_name. */
5606
5607 char *
5608 ada_variant_discrim_name (struct type *type0)
5609 {
5610 static char *result = NULL;
5611 static size_t result_len = 0;
5612 struct type *type;
5613 const char *name;
5614 const char *discrim_end;
5615 const char *discrim_start;
5616
5617 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5618 type = TYPE_TARGET_TYPE (type0);
5619 else
5620 type = type0;
5621
5622 name = ada_type_name (type);
5623
5624 if (name == NULL || name[0] == '\000')
5625 return "";
5626
5627 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5628 discrim_end -= 1)
5629 {
5630 if (strncmp (discrim_end, "___XVN", 6) == 0)
5631 break;
5632 }
5633 if (discrim_end == name)
5634 return "";
5635
5636 for (discrim_start = discrim_end; discrim_start != name + 3;
5637 discrim_start -= 1)
5638 {
5639 if (discrim_start == name + 1)
5640 return "";
5641 if ((discrim_start > name + 3
5642 && strncmp (discrim_start - 3, "___", 3) == 0)
5643 || discrim_start[-1] == '.')
5644 break;
5645 }
5646
5647 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5648 strncpy (result, discrim_start, discrim_end - discrim_start);
5649 result[discrim_end - discrim_start] = '\0';
5650 return result;
5651 }
5652
5653 /* Scan STR for a subtype-encoded number, beginning at position K.
5654 Put the position of the character just past the number scanned in
5655 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5656 Return 1 if there was a valid number at the given position, and 0
5657 otherwise. A "subtype-encoded" number consists of the absolute value
5658 in decimal, followed by the letter 'm' to indicate a negative number.
5659 Assumes 0m does not occur. */
5660
5661 int
5662 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5663 {
5664 ULONGEST RU;
5665
5666 if (!isdigit (str[k]))
5667 return 0;
5668
5669 /* Do it the hard way so as not to make any assumption about
5670 the relationship of unsigned long (%lu scan format code) and
5671 LONGEST. */
5672 RU = 0;
5673 while (isdigit (str[k]))
5674 {
5675 RU = RU * 10 + (str[k] - '0');
5676 k += 1;
5677 }
5678
5679 if (str[k] == 'm')
5680 {
5681 if (R != NULL)
5682 *R = (-(LONGEST) (RU - 1)) - 1;
5683 k += 1;
5684 }
5685 else if (R != NULL)
5686 *R = (LONGEST) RU;
5687
5688 /* NOTE on the above: Technically, C does not say what the results of
5689 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5690 number representable as a LONGEST (although either would probably work
5691 in most implementations). When RU>0, the locution in the then branch
5692 above is always equivalent to the negative of RU. */
5693
5694 if (new_k != NULL)
5695 *new_k = k;
5696 return 1;
5697 }
5698
5699 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5700 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5701 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5702
5703 int
5704 ada_in_variant (LONGEST val, struct type *type, int field_num)
5705 {
5706 const char *name = TYPE_FIELD_NAME (type, field_num);
5707 int p;
5708
5709 p = 0;
5710 while (1)
5711 {
5712 switch (name[p])
5713 {
5714 case '\0':
5715 return 0;
5716 case 'S':
5717 {
5718 LONGEST W;
5719 if (!ada_scan_number (name, p + 1, &W, &p))
5720 return 0;
5721 if (val == W)
5722 return 1;
5723 break;
5724 }
5725 case 'R':
5726 {
5727 LONGEST L, U;
5728 if (!ada_scan_number (name, p + 1, &L, &p)
5729 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5730 return 0;
5731 if (val >= L && val <= U)
5732 return 1;
5733 break;
5734 }
5735 case 'O':
5736 return 1;
5737 default:
5738 return 0;
5739 }
5740 }
5741 }
5742
5743 /* FIXME: Lots of redundancy below. Try to consolidate. */
5744
5745 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5746 ARG_TYPE, extract and return the value of one of its (non-static)
5747 fields. FIELDNO says which field. Differs from value_primitive_field
5748 only in that it can handle packed values of arbitrary type. */
5749
5750 static struct value *
5751 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5752 struct type *arg_type)
5753 {
5754 struct type *type;
5755
5756 arg_type = ada_check_typedef (arg_type);
5757 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5758
5759 /* Handle packed fields. */
5760
5761 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5762 {
5763 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5764 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5765
5766 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5767 offset + bit_pos / 8,
5768 bit_pos % 8, bit_size, type);
5769 }
5770 else
5771 return value_primitive_field (arg1, offset, fieldno, arg_type);
5772 }
5773
5774 /* Find field with name NAME in object of type TYPE. If found,
5775 set the following for each argument that is non-null:
5776 - *FIELD_TYPE_P to the field's type;
5777 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5778 an object of that type;
5779 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5780 - *BIT_SIZE_P to its size in bits if the field is packed, and
5781 0 otherwise;
5782 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5783 fields up to but not including the desired field, or by the total
5784 number of fields if not found. A NULL value of NAME never
5785 matches; the function just counts visible fields in this case.
5786
5787 Returns 1 if found, 0 otherwise. */
5788
5789 static int
5790 find_struct_field (char *name, struct type *type, int offset,
5791 struct type **field_type_p,
5792 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5793 int *index_p)
5794 {
5795 int i;
5796
5797 type = ada_check_typedef (type);
5798
5799 if (field_type_p != NULL)
5800 *field_type_p = NULL;
5801 if (byte_offset_p != NULL)
5802 *byte_offset_p = 0;
5803 if (bit_offset_p != NULL)
5804 *bit_offset_p = 0;
5805 if (bit_size_p != NULL)
5806 *bit_size_p = 0;
5807
5808 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5809 {
5810 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5811 int fld_offset = offset + bit_pos / 8;
5812 char *t_field_name = TYPE_FIELD_NAME (type, i);
5813
5814 if (t_field_name == NULL)
5815 continue;
5816
5817 else if (name != NULL && field_name_match (t_field_name, name))
5818 {
5819 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5820 if (field_type_p != NULL)
5821 *field_type_p = TYPE_FIELD_TYPE (type, i);
5822 if (byte_offset_p != NULL)
5823 *byte_offset_p = fld_offset;
5824 if (bit_offset_p != NULL)
5825 *bit_offset_p = bit_pos % 8;
5826 if (bit_size_p != NULL)
5827 *bit_size_p = bit_size;
5828 return 1;
5829 }
5830 else if (ada_is_wrapper_field (type, i))
5831 {
5832 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5833 field_type_p, byte_offset_p, bit_offset_p,
5834 bit_size_p, index_p))
5835 return 1;
5836 }
5837 else if (ada_is_variant_part (type, i))
5838 {
5839 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5840 fixed type?? */
5841 int j;
5842 struct type *field_type
5843 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5844
5845 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5846 {
5847 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5848 fld_offset
5849 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5850 field_type_p, byte_offset_p,
5851 bit_offset_p, bit_size_p, index_p))
5852 return 1;
5853 }
5854 }
5855 else if (index_p != NULL)
5856 *index_p += 1;
5857 }
5858 return 0;
5859 }
5860
5861 /* Number of user-visible fields in record type TYPE. */
5862
5863 static int
5864 num_visible_fields (struct type *type)
5865 {
5866 int n;
5867 n = 0;
5868 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5869 return n;
5870 }
5871
5872 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5873 and search in it assuming it has (class) type TYPE.
5874 If found, return value, else return NULL.
5875
5876 Searches recursively through wrapper fields (e.g., '_parent'). */
5877
5878 static struct value *
5879 ada_search_struct_field (char *name, struct value *arg, int offset,
5880 struct type *type)
5881 {
5882 int i;
5883 type = ada_check_typedef (type);
5884
5885 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5886 {
5887 char *t_field_name = TYPE_FIELD_NAME (type, i);
5888
5889 if (t_field_name == NULL)
5890 continue;
5891
5892 else if (field_name_match (t_field_name, name))
5893 return ada_value_primitive_field (arg, offset, i, type);
5894
5895 else if (ada_is_wrapper_field (type, i))
5896 {
5897 struct value *v = /* Do not let indent join lines here. */
5898 ada_search_struct_field (name, arg,
5899 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5900 TYPE_FIELD_TYPE (type, i));
5901 if (v != NULL)
5902 return v;
5903 }
5904
5905 else if (ada_is_variant_part (type, i))
5906 {
5907 /* PNH: Do we ever get here? See find_struct_field. */
5908 int j;
5909 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5910 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5911
5912 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5913 {
5914 struct value *v = ada_search_struct_field /* Force line break. */
5915 (name, arg,
5916 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5917 TYPE_FIELD_TYPE (field_type, j));
5918 if (v != NULL)
5919 return v;
5920 }
5921 }
5922 }
5923 return NULL;
5924 }
5925
5926 static struct value *ada_index_struct_field_1 (int *, struct value *,
5927 int, struct type *);
5928
5929
5930 /* Return field #INDEX in ARG, where the index is that returned by
5931 * find_struct_field through its INDEX_P argument. Adjust the address
5932 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5933 * If found, return value, else return NULL. */
5934
5935 static struct value *
5936 ada_index_struct_field (int index, struct value *arg, int offset,
5937 struct type *type)
5938 {
5939 return ada_index_struct_field_1 (&index, arg, offset, type);
5940 }
5941
5942
5943 /* Auxiliary function for ada_index_struct_field. Like
5944 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5945 * *INDEX_P. */
5946
5947 static struct value *
5948 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5949 struct type *type)
5950 {
5951 int i;
5952 type = ada_check_typedef (type);
5953
5954 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5955 {
5956 if (TYPE_FIELD_NAME (type, i) == NULL)
5957 continue;
5958 else if (ada_is_wrapper_field (type, i))
5959 {
5960 struct value *v = /* Do not let indent join lines here. */
5961 ada_index_struct_field_1 (index_p, arg,
5962 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5963 TYPE_FIELD_TYPE (type, i));
5964 if (v != NULL)
5965 return v;
5966 }
5967
5968 else if (ada_is_variant_part (type, i))
5969 {
5970 /* PNH: Do we ever get here? See ada_search_struct_field,
5971 find_struct_field. */
5972 error (_("Cannot assign this kind of variant record"));
5973 }
5974 else if (*index_p == 0)
5975 return ada_value_primitive_field (arg, offset, i, type);
5976 else
5977 *index_p -= 1;
5978 }
5979 return NULL;
5980 }
5981
5982 /* Given ARG, a value of type (pointer or reference to a)*
5983 structure/union, extract the component named NAME from the ultimate
5984 target structure/union and return it as a value with its
5985 appropriate type.
5986
5987 The routine searches for NAME among all members of the structure itself
5988 and (recursively) among all members of any wrapper members
5989 (e.g., '_parent').
5990
5991 If NO_ERR, then simply return NULL in case of error, rather than
5992 calling error. */
5993
5994 struct value *
5995 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5996 {
5997 struct type *t, *t1;
5998 struct value *v;
5999
6000 v = NULL;
6001 t1 = t = ada_check_typedef (value_type (arg));
6002 if (TYPE_CODE (t) == TYPE_CODE_REF)
6003 {
6004 t1 = TYPE_TARGET_TYPE (t);
6005 if (t1 == NULL)
6006 goto BadValue;
6007 t1 = ada_check_typedef (t1);
6008 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6009 {
6010 arg = coerce_ref (arg);
6011 t = t1;
6012 }
6013 }
6014
6015 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6016 {
6017 t1 = TYPE_TARGET_TYPE (t);
6018 if (t1 == NULL)
6019 goto BadValue;
6020 t1 = ada_check_typedef (t1);
6021 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6022 {
6023 arg = value_ind (arg);
6024 t = t1;
6025 }
6026 else
6027 break;
6028 }
6029
6030 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6031 goto BadValue;
6032
6033 if (t1 == t)
6034 v = ada_search_struct_field (name, arg, 0, t);
6035 else
6036 {
6037 int bit_offset, bit_size, byte_offset;
6038 struct type *field_type;
6039 CORE_ADDR address;
6040
6041 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6042 address = value_as_address (arg);
6043 else
6044 address = unpack_pointer (t, value_contents (arg));
6045
6046 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6047 if (find_struct_field (name, t1, 0,
6048 &field_type, &byte_offset, &bit_offset,
6049 &bit_size, NULL))
6050 {
6051 if (bit_size != 0)
6052 {
6053 if (TYPE_CODE (t) == TYPE_CODE_REF)
6054 arg = ada_coerce_ref (arg);
6055 else
6056 arg = ada_value_ind (arg);
6057 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6058 bit_offset, bit_size,
6059 field_type);
6060 }
6061 else
6062 v = value_at_lazy (field_type, address + byte_offset);
6063 }
6064 }
6065
6066 if (v != NULL || no_err)
6067 return v;
6068 else
6069 error (_("There is no member named %s."), name);
6070
6071 BadValue:
6072 if (no_err)
6073 return NULL;
6074 else
6075 error (_("Attempt to extract a component of a value that is not a record."));
6076 }
6077
6078 /* Given a type TYPE, look up the type of the component of type named NAME.
6079 If DISPP is non-null, add its byte displacement from the beginning of a
6080 structure (pointed to by a value) of type TYPE to *DISPP (does not
6081 work for packed fields).
6082
6083 Matches any field whose name has NAME as a prefix, possibly
6084 followed by "___".
6085
6086 TYPE can be either a struct or union. If REFOK, TYPE may also
6087 be a (pointer or reference)+ to a struct or union, and the
6088 ultimate target type will be searched.
6089
6090 Looks recursively into variant clauses and parent types.
6091
6092 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6093 TYPE is not a type of the right kind. */
6094
6095 static struct type *
6096 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6097 int noerr, int *dispp)
6098 {
6099 int i;
6100
6101 if (name == NULL)
6102 goto BadName;
6103
6104 if (refok && type != NULL)
6105 while (1)
6106 {
6107 type = ada_check_typedef (type);
6108 if (TYPE_CODE (type) != TYPE_CODE_PTR
6109 && TYPE_CODE (type) != TYPE_CODE_REF)
6110 break;
6111 type = TYPE_TARGET_TYPE (type);
6112 }
6113
6114 if (type == NULL
6115 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6116 && TYPE_CODE (type) != TYPE_CODE_UNION))
6117 {
6118 if (noerr)
6119 return NULL;
6120 else
6121 {
6122 target_terminal_ours ();
6123 gdb_flush (gdb_stdout);
6124 if (type == NULL)
6125 error (_("Type (null) is not a structure or union type"));
6126 else
6127 {
6128 /* XXX: type_sprint */
6129 fprintf_unfiltered (gdb_stderr, _("Type "));
6130 type_print (type, "", gdb_stderr, -1);
6131 error (_(" is not a structure or union type"));
6132 }
6133 }
6134 }
6135
6136 type = to_static_fixed_type (type);
6137
6138 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6139 {
6140 char *t_field_name = TYPE_FIELD_NAME (type, i);
6141 struct type *t;
6142 int disp;
6143
6144 if (t_field_name == NULL)
6145 continue;
6146
6147 else if (field_name_match (t_field_name, name))
6148 {
6149 if (dispp != NULL)
6150 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6151 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6152 }
6153
6154 else if (ada_is_wrapper_field (type, i))
6155 {
6156 disp = 0;
6157 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6158 0, 1, &disp);
6159 if (t != NULL)
6160 {
6161 if (dispp != NULL)
6162 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6163 return t;
6164 }
6165 }
6166
6167 else if (ada_is_variant_part (type, i))
6168 {
6169 int j;
6170 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6171
6172 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6173 {
6174 /* FIXME pnh 2008/01/26: We check for a field that is
6175 NOT wrapped in a struct, since the compiler sometimes
6176 generates these for unchecked variant types. Revisit
6177 if the compiler changes this practice. */
6178 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6179 disp = 0;
6180 if (v_field_name != NULL
6181 && field_name_match (v_field_name, name))
6182 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6183 else
6184 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6185 name, 0, 1, &disp);
6186
6187 if (t != NULL)
6188 {
6189 if (dispp != NULL)
6190 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6191 return t;
6192 }
6193 }
6194 }
6195
6196 }
6197
6198 BadName:
6199 if (!noerr)
6200 {
6201 target_terminal_ours ();
6202 gdb_flush (gdb_stdout);
6203 if (name == NULL)
6204 {
6205 /* XXX: type_sprint */
6206 fprintf_unfiltered (gdb_stderr, _("Type "));
6207 type_print (type, "", gdb_stderr, -1);
6208 error (_(" has no component named <null>"));
6209 }
6210 else
6211 {
6212 /* XXX: type_sprint */
6213 fprintf_unfiltered (gdb_stderr, _("Type "));
6214 type_print (type, "", gdb_stderr, -1);
6215 error (_(" has no component named %s"), name);
6216 }
6217 }
6218
6219 return NULL;
6220 }
6221
6222 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6223 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6224 represents an unchecked union (that is, the variant part of a
6225 record that is named in an Unchecked_Union pragma). */
6226
6227 static int
6228 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6229 {
6230 char *discrim_name = ada_variant_discrim_name (var_type);
6231 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6232 == NULL);
6233 }
6234
6235
6236 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6237 within a value of type OUTER_TYPE that is stored in GDB at
6238 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6239 numbering from 0) is applicable. Returns -1 if none are. */
6240
6241 int
6242 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6243 const gdb_byte *outer_valaddr)
6244 {
6245 int others_clause;
6246 int i;
6247 char *discrim_name = ada_variant_discrim_name (var_type);
6248 struct value *outer;
6249 struct value *discrim;
6250 LONGEST discrim_val;
6251
6252 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6253 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6254 if (discrim == NULL)
6255 return -1;
6256 discrim_val = value_as_long (discrim);
6257
6258 others_clause = -1;
6259 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6260 {
6261 if (ada_is_others_clause (var_type, i))
6262 others_clause = i;
6263 else if (ada_in_variant (discrim_val, var_type, i))
6264 return i;
6265 }
6266
6267 return others_clause;
6268 }
6269 \f
6270
6271
6272 /* Dynamic-Sized Records */
6273
6274 /* Strategy: The type ostensibly attached to a value with dynamic size
6275 (i.e., a size that is not statically recorded in the debugging
6276 data) does not accurately reflect the size or layout of the value.
6277 Our strategy is to convert these values to values with accurate,
6278 conventional types that are constructed on the fly. */
6279
6280 /* There is a subtle and tricky problem here. In general, we cannot
6281 determine the size of dynamic records without its data. However,
6282 the 'struct value' data structure, which GDB uses to represent
6283 quantities in the inferior process (the target), requires the size
6284 of the type at the time of its allocation in order to reserve space
6285 for GDB's internal copy of the data. That's why the
6286 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6287 rather than struct value*s.
6288
6289 However, GDB's internal history variables ($1, $2, etc.) are
6290 struct value*s containing internal copies of the data that are not, in
6291 general, the same as the data at their corresponding addresses in
6292 the target. Fortunately, the types we give to these values are all
6293 conventional, fixed-size types (as per the strategy described
6294 above), so that we don't usually have to perform the
6295 'to_fixed_xxx_type' conversions to look at their values.
6296 Unfortunately, there is one exception: if one of the internal
6297 history variables is an array whose elements are unconstrained
6298 records, then we will need to create distinct fixed types for each
6299 element selected. */
6300
6301 /* The upshot of all of this is that many routines take a (type, host
6302 address, target address) triple as arguments to represent a value.
6303 The host address, if non-null, is supposed to contain an internal
6304 copy of the relevant data; otherwise, the program is to consult the
6305 target at the target address. */
6306
6307 /* Assuming that VAL0 represents a pointer value, the result of
6308 dereferencing it. Differs from value_ind in its treatment of
6309 dynamic-sized types. */
6310
6311 struct value *
6312 ada_value_ind (struct value *val0)
6313 {
6314 struct value *val = unwrap_value (value_ind (val0));
6315 return ada_to_fixed_value (val);
6316 }
6317
6318 /* The value resulting from dereferencing any "reference to"
6319 qualifiers on VAL0. */
6320
6321 static struct value *
6322 ada_coerce_ref (struct value *val0)
6323 {
6324 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6325 {
6326 struct value *val = val0;
6327 val = coerce_ref (val);
6328 val = unwrap_value (val);
6329 return ada_to_fixed_value (val);
6330 }
6331 else
6332 return val0;
6333 }
6334
6335 /* Return OFF rounded upward if necessary to a multiple of
6336 ALIGNMENT (a power of 2). */
6337
6338 static unsigned int
6339 align_value (unsigned int off, unsigned int alignment)
6340 {
6341 return (off + alignment - 1) & ~(alignment - 1);
6342 }
6343
6344 /* Return the bit alignment required for field #F of template type TYPE. */
6345
6346 static unsigned int
6347 field_alignment (struct type *type, int f)
6348 {
6349 const char *name = TYPE_FIELD_NAME (type, f);
6350 int len;
6351 int align_offset;
6352
6353 /* The field name should never be null, unless the debugging information
6354 is somehow malformed. In this case, we assume the field does not
6355 require any alignment. */
6356 if (name == NULL)
6357 return 1;
6358
6359 len = strlen (name);
6360
6361 if (!isdigit (name[len - 1]))
6362 return 1;
6363
6364 if (isdigit (name[len - 2]))
6365 align_offset = len - 2;
6366 else
6367 align_offset = len - 1;
6368
6369 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6370 return TARGET_CHAR_BIT;
6371
6372 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6373 }
6374
6375 /* Find a symbol named NAME. Ignores ambiguity. */
6376
6377 struct symbol *
6378 ada_find_any_symbol (const char *name)
6379 {
6380 struct symbol *sym;
6381
6382 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6383 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6384 return sym;
6385
6386 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6387 return sym;
6388 }
6389
6390 /* Find a type named NAME. Ignores ambiguity. This routine will look
6391 solely for types defined by debug info, it will not search the GDB
6392 primitive types. */
6393
6394 struct type *
6395 ada_find_any_type (const char *name)
6396 {
6397 struct symbol *sym = ada_find_any_symbol (name);
6398
6399 if (sym != NULL)
6400 return SYMBOL_TYPE (sym);
6401
6402 return NULL;
6403 }
6404
6405 /* Given NAME and an associated BLOCK, search all symbols for
6406 NAME suffixed with "___XR", which is the ``renaming'' symbol
6407 associated to NAME. Return this symbol if found, return
6408 NULL otherwise. */
6409
6410 struct symbol *
6411 ada_find_renaming_symbol (const char *name, struct block *block)
6412 {
6413 struct symbol *sym;
6414
6415 sym = find_old_style_renaming_symbol (name, block);
6416
6417 if (sym != NULL)
6418 return sym;
6419
6420 /* Not right yet. FIXME pnh 7/20/2007. */
6421 sym = ada_find_any_symbol (name);
6422 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6423 return sym;
6424 else
6425 return NULL;
6426 }
6427
6428 static struct symbol *
6429 find_old_style_renaming_symbol (const char *name, struct block *block)
6430 {
6431 const struct symbol *function_sym = block_linkage_function (block);
6432 char *rename;
6433
6434 if (function_sym != NULL)
6435 {
6436 /* If the symbol is defined inside a function, NAME is not fully
6437 qualified. This means we need to prepend the function name
6438 as well as adding the ``___XR'' suffix to build the name of
6439 the associated renaming symbol. */
6440 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6441 /* Function names sometimes contain suffixes used
6442 for instance to qualify nested subprograms. When building
6443 the XR type name, we need to make sure that this suffix is
6444 not included. So do not include any suffix in the function
6445 name length below. */
6446 int function_name_len = ada_name_prefix_len (function_name);
6447 const int rename_len = function_name_len + 2 /* "__" */
6448 + strlen (name) + 6 /* "___XR\0" */ ;
6449
6450 /* Strip the suffix if necessary. */
6451 ada_remove_trailing_digits (function_name, &function_name_len);
6452 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6453 ada_remove_Xbn_suffix (function_name, &function_name_len);
6454
6455 /* Library-level functions are a special case, as GNAT adds
6456 a ``_ada_'' prefix to the function name to avoid namespace
6457 pollution. However, the renaming symbols themselves do not
6458 have this prefix, so we need to skip this prefix if present. */
6459 if (function_name_len > 5 /* "_ada_" */
6460 && strstr (function_name, "_ada_") == function_name)
6461 {
6462 function_name += 5;
6463 function_name_len -= 5;
6464 }
6465
6466 rename = (char *) alloca (rename_len * sizeof (char));
6467 strncpy (rename, function_name, function_name_len);
6468 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6469 "__%s___XR", name);
6470 }
6471 else
6472 {
6473 const int rename_len = strlen (name) + 6;
6474 rename = (char *) alloca (rename_len * sizeof (char));
6475 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6476 }
6477
6478 return ada_find_any_symbol (rename);
6479 }
6480
6481 /* Because of GNAT encoding conventions, several GDB symbols may match a
6482 given type name. If the type denoted by TYPE0 is to be preferred to
6483 that of TYPE1 for purposes of type printing, return non-zero;
6484 otherwise return 0. */
6485
6486 int
6487 ada_prefer_type (struct type *type0, struct type *type1)
6488 {
6489 if (type1 == NULL)
6490 return 1;
6491 else if (type0 == NULL)
6492 return 0;
6493 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6494 return 1;
6495 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6496 return 0;
6497 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6498 return 1;
6499 else if (ada_is_constrained_packed_array_type (type0))
6500 return 1;
6501 else if (ada_is_array_descriptor_type (type0)
6502 && !ada_is_array_descriptor_type (type1))
6503 return 1;
6504 else
6505 {
6506 const char *type0_name = type_name_no_tag (type0);
6507 const char *type1_name = type_name_no_tag (type1);
6508
6509 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6510 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6511 return 1;
6512 }
6513 return 0;
6514 }
6515
6516 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6517 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6518
6519 char *
6520 ada_type_name (struct type *type)
6521 {
6522 if (type == NULL)
6523 return NULL;
6524 else if (TYPE_NAME (type) != NULL)
6525 return TYPE_NAME (type);
6526 else
6527 return TYPE_TAG_NAME (type);
6528 }
6529
6530 /* Search the list of "descriptive" types associated to TYPE for a type
6531 whose name is NAME. */
6532
6533 static struct type *
6534 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6535 {
6536 struct type *result;
6537
6538 /* If there no descriptive-type info, then there is no parallel type
6539 to be found. */
6540 if (!HAVE_GNAT_AUX_INFO (type))
6541 return NULL;
6542
6543 result = TYPE_DESCRIPTIVE_TYPE (type);
6544 while (result != NULL)
6545 {
6546 char *result_name = ada_type_name (result);
6547
6548 if (result_name == NULL)
6549 {
6550 warning (_("unexpected null name on descriptive type"));
6551 return NULL;
6552 }
6553
6554 /* If the names match, stop. */
6555 if (strcmp (result_name, name) == 0)
6556 break;
6557
6558 /* Otherwise, look at the next item on the list, if any. */
6559 if (HAVE_GNAT_AUX_INFO (result))
6560 result = TYPE_DESCRIPTIVE_TYPE (result);
6561 else
6562 result = NULL;
6563 }
6564
6565 /* If we didn't find a match, see whether this is a packed array. With
6566 older compilers, the descriptive type information is either absent or
6567 irrelevant when it comes to packed arrays so the above lookup fails.
6568 Fall back to using a parallel lookup by name in this case. */
6569 if (result == NULL && ada_is_constrained_packed_array_type (type))
6570 return ada_find_any_type (name);
6571
6572 return result;
6573 }
6574
6575 /* Find a parallel type to TYPE with the specified NAME, using the
6576 descriptive type taken from the debugging information, if available,
6577 and otherwise using the (slower) name-based method. */
6578
6579 static struct type *
6580 ada_find_parallel_type_with_name (struct type *type, const char *name)
6581 {
6582 struct type *result = NULL;
6583
6584 if (HAVE_GNAT_AUX_INFO (type))
6585 result = find_parallel_type_by_descriptive_type (type, name);
6586 else
6587 result = ada_find_any_type (name);
6588
6589 return result;
6590 }
6591
6592 /* Same as above, but specify the name of the parallel type by appending
6593 SUFFIX to the name of TYPE. */
6594
6595 struct type *
6596 ada_find_parallel_type (struct type *type, const char *suffix)
6597 {
6598 char *name, *typename = ada_type_name (type);
6599 int len;
6600
6601 if (typename == NULL)
6602 return NULL;
6603
6604 len = strlen (typename);
6605
6606 name = (char *) alloca (len + strlen (suffix) + 1);
6607
6608 strcpy (name, typename);
6609 strcpy (name + len, suffix);
6610
6611 return ada_find_parallel_type_with_name (type, name);
6612 }
6613
6614 /* If TYPE is a variable-size record type, return the corresponding template
6615 type describing its fields. Otherwise, return NULL. */
6616
6617 static struct type *
6618 dynamic_template_type (struct type *type)
6619 {
6620 type = ada_check_typedef (type);
6621
6622 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6623 || ada_type_name (type) == NULL)
6624 return NULL;
6625 else
6626 {
6627 int len = strlen (ada_type_name (type));
6628 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6629 return type;
6630 else
6631 return ada_find_parallel_type (type, "___XVE");
6632 }
6633 }
6634
6635 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6636 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6637
6638 static int
6639 is_dynamic_field (struct type *templ_type, int field_num)
6640 {
6641 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6642 return name != NULL
6643 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6644 && strstr (name, "___XVL") != NULL;
6645 }
6646
6647 /* The index of the variant field of TYPE, or -1 if TYPE does not
6648 represent a variant record type. */
6649
6650 static int
6651 variant_field_index (struct type *type)
6652 {
6653 int f;
6654
6655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6656 return -1;
6657
6658 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6659 {
6660 if (ada_is_variant_part (type, f))
6661 return f;
6662 }
6663 return -1;
6664 }
6665
6666 /* A record type with no fields. */
6667
6668 static struct type *
6669 empty_record (struct type *template)
6670 {
6671 struct type *type = alloc_type_copy (template);
6672 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6673 TYPE_NFIELDS (type) = 0;
6674 TYPE_FIELDS (type) = NULL;
6675 INIT_CPLUS_SPECIFIC (type);
6676 TYPE_NAME (type) = "<empty>";
6677 TYPE_TAG_NAME (type) = NULL;
6678 TYPE_LENGTH (type) = 0;
6679 return type;
6680 }
6681
6682 /* An ordinary record type (with fixed-length fields) that describes
6683 the value of type TYPE at VALADDR or ADDRESS (see comments at
6684 the beginning of this section) VAL according to GNAT conventions.
6685 DVAL0 should describe the (portion of a) record that contains any
6686 necessary discriminants. It should be NULL if value_type (VAL) is
6687 an outer-level type (i.e., as opposed to a branch of a variant.) A
6688 variant field (unless unchecked) is replaced by a particular branch
6689 of the variant.
6690
6691 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6692 length are not statically known are discarded. As a consequence,
6693 VALADDR, ADDRESS and DVAL0 are ignored.
6694
6695 NOTE: Limitations: For now, we assume that dynamic fields and
6696 variants occupy whole numbers of bytes. However, they need not be
6697 byte-aligned. */
6698
6699 struct type *
6700 ada_template_to_fixed_record_type_1 (struct type *type,
6701 const gdb_byte *valaddr,
6702 CORE_ADDR address, struct value *dval0,
6703 int keep_dynamic_fields)
6704 {
6705 struct value *mark = value_mark ();
6706 struct value *dval;
6707 struct type *rtype;
6708 int nfields, bit_len;
6709 int variant_field;
6710 long off;
6711 int fld_bit_len, bit_incr;
6712 int f;
6713
6714 /* Compute the number of fields in this record type that are going
6715 to be processed: unless keep_dynamic_fields, this includes only
6716 fields whose position and length are static will be processed. */
6717 if (keep_dynamic_fields)
6718 nfields = TYPE_NFIELDS (type);
6719 else
6720 {
6721 nfields = 0;
6722 while (nfields < TYPE_NFIELDS (type)
6723 && !ada_is_variant_part (type, nfields)
6724 && !is_dynamic_field (type, nfields))
6725 nfields++;
6726 }
6727
6728 rtype = alloc_type_copy (type);
6729 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6730 INIT_CPLUS_SPECIFIC (rtype);
6731 TYPE_NFIELDS (rtype) = nfields;
6732 TYPE_FIELDS (rtype) = (struct field *)
6733 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6734 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6735 TYPE_NAME (rtype) = ada_type_name (type);
6736 TYPE_TAG_NAME (rtype) = NULL;
6737 TYPE_FIXED_INSTANCE (rtype) = 1;
6738
6739 off = 0;
6740 bit_len = 0;
6741 variant_field = -1;
6742
6743 for (f = 0; f < nfields; f += 1)
6744 {
6745 off = align_value (off, field_alignment (type, f))
6746 + TYPE_FIELD_BITPOS (type, f);
6747 TYPE_FIELD_BITPOS (rtype, f) = off;
6748 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6749
6750 if (ada_is_variant_part (type, f))
6751 {
6752 variant_field = f;
6753 fld_bit_len = bit_incr = 0;
6754 }
6755 else if (is_dynamic_field (type, f))
6756 {
6757 const gdb_byte *field_valaddr = valaddr;
6758 CORE_ADDR field_address = address;
6759 struct type *field_type =
6760 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6761
6762 if (dval0 == NULL)
6763 {
6764 /* rtype's length is computed based on the run-time
6765 value of discriminants. If the discriminants are not
6766 initialized, the type size may be completely bogus and
6767 GDB may fail to allocate a value for it. So check the
6768 size first before creating the value. */
6769 check_size (rtype);
6770 dval = value_from_contents_and_address (rtype, valaddr, address);
6771 }
6772 else
6773 dval = dval0;
6774
6775 /* If the type referenced by this field is an aligner type, we need
6776 to unwrap that aligner type, because its size might not be set.
6777 Keeping the aligner type would cause us to compute the wrong
6778 size for this field, impacting the offset of the all the fields
6779 that follow this one. */
6780 if (ada_is_aligner_type (field_type))
6781 {
6782 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6783
6784 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6785 field_address = cond_offset_target (field_address, field_offset);
6786 field_type = ada_aligned_type (field_type);
6787 }
6788
6789 field_valaddr = cond_offset_host (field_valaddr,
6790 off / TARGET_CHAR_BIT);
6791 field_address = cond_offset_target (field_address,
6792 off / TARGET_CHAR_BIT);
6793
6794 /* Get the fixed type of the field. Note that, in this case,
6795 we do not want to get the real type out of the tag: if
6796 the current field is the parent part of a tagged record,
6797 we will get the tag of the object. Clearly wrong: the real
6798 type of the parent is not the real type of the child. We
6799 would end up in an infinite loop. */
6800 field_type = ada_get_base_type (field_type);
6801 field_type = ada_to_fixed_type (field_type, field_valaddr,
6802 field_address, dval, 0);
6803
6804 TYPE_FIELD_TYPE (rtype, f) = field_type;
6805 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6806 bit_incr = fld_bit_len =
6807 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6808 }
6809 else
6810 {
6811 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6812
6813 TYPE_FIELD_TYPE (rtype, f) = field_type;
6814 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6815 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6816 bit_incr = fld_bit_len =
6817 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6818 else
6819 bit_incr = fld_bit_len =
6820 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6821 }
6822 if (off + fld_bit_len > bit_len)
6823 bit_len = off + fld_bit_len;
6824 off += bit_incr;
6825 TYPE_LENGTH (rtype) =
6826 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6827 }
6828
6829 /* We handle the variant part, if any, at the end because of certain
6830 odd cases in which it is re-ordered so as NOT to be the last field of
6831 the record. This can happen in the presence of representation
6832 clauses. */
6833 if (variant_field >= 0)
6834 {
6835 struct type *branch_type;
6836
6837 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6838
6839 if (dval0 == NULL)
6840 dval = value_from_contents_and_address (rtype, valaddr, address);
6841 else
6842 dval = dval0;
6843
6844 branch_type =
6845 to_fixed_variant_branch_type
6846 (TYPE_FIELD_TYPE (type, variant_field),
6847 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6848 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6849 if (branch_type == NULL)
6850 {
6851 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6852 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6853 TYPE_NFIELDS (rtype) -= 1;
6854 }
6855 else
6856 {
6857 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6858 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6859 fld_bit_len =
6860 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6861 TARGET_CHAR_BIT;
6862 if (off + fld_bit_len > bit_len)
6863 bit_len = off + fld_bit_len;
6864 TYPE_LENGTH (rtype) =
6865 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6866 }
6867 }
6868
6869 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6870 should contain the alignment of that record, which should be a strictly
6871 positive value. If null or negative, then something is wrong, most
6872 probably in the debug info. In that case, we don't round up the size
6873 of the resulting type. If this record is not part of another structure,
6874 the current RTYPE length might be good enough for our purposes. */
6875 if (TYPE_LENGTH (type) <= 0)
6876 {
6877 if (TYPE_NAME (rtype))
6878 warning (_("Invalid type size for `%s' detected: %d."),
6879 TYPE_NAME (rtype), TYPE_LENGTH (type));
6880 else
6881 warning (_("Invalid type size for <unnamed> detected: %d."),
6882 TYPE_LENGTH (type));
6883 }
6884 else
6885 {
6886 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6887 TYPE_LENGTH (type));
6888 }
6889
6890 value_free_to_mark (mark);
6891 if (TYPE_LENGTH (rtype) > varsize_limit)
6892 error (_("record type with dynamic size is larger than varsize-limit"));
6893 return rtype;
6894 }
6895
6896 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6897 of 1. */
6898
6899 static struct type *
6900 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6901 CORE_ADDR address, struct value *dval0)
6902 {
6903 return ada_template_to_fixed_record_type_1 (type, valaddr,
6904 address, dval0, 1);
6905 }
6906
6907 /* An ordinary record type in which ___XVL-convention fields and
6908 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6909 static approximations, containing all possible fields. Uses
6910 no runtime values. Useless for use in values, but that's OK,
6911 since the results are used only for type determinations. Works on both
6912 structs and unions. Representation note: to save space, we memorize
6913 the result of this function in the TYPE_TARGET_TYPE of the
6914 template type. */
6915
6916 static struct type *
6917 template_to_static_fixed_type (struct type *type0)
6918 {
6919 struct type *type;
6920 int nfields;
6921 int f;
6922
6923 if (TYPE_TARGET_TYPE (type0) != NULL)
6924 return TYPE_TARGET_TYPE (type0);
6925
6926 nfields = TYPE_NFIELDS (type0);
6927 type = type0;
6928
6929 for (f = 0; f < nfields; f += 1)
6930 {
6931 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6932 struct type *new_type;
6933
6934 if (is_dynamic_field (type0, f))
6935 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6936 else
6937 new_type = static_unwrap_type (field_type);
6938 if (type == type0 && new_type != field_type)
6939 {
6940 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6941 TYPE_CODE (type) = TYPE_CODE (type0);
6942 INIT_CPLUS_SPECIFIC (type);
6943 TYPE_NFIELDS (type) = nfields;
6944 TYPE_FIELDS (type) = (struct field *)
6945 TYPE_ALLOC (type, nfields * sizeof (struct field));
6946 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6947 sizeof (struct field) * nfields);
6948 TYPE_NAME (type) = ada_type_name (type0);
6949 TYPE_TAG_NAME (type) = NULL;
6950 TYPE_FIXED_INSTANCE (type) = 1;
6951 TYPE_LENGTH (type) = 0;
6952 }
6953 TYPE_FIELD_TYPE (type, f) = new_type;
6954 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6955 }
6956 return type;
6957 }
6958
6959 /* Given an object of type TYPE whose contents are at VALADDR and
6960 whose address in memory is ADDRESS, returns a revision of TYPE,
6961 which should be a non-dynamic-sized record, in which the variant
6962 part, if any, is replaced with the appropriate branch. Looks
6963 for discriminant values in DVAL0, which can be NULL if the record
6964 contains the necessary discriminant values. */
6965
6966 static struct type *
6967 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6968 CORE_ADDR address, struct value *dval0)
6969 {
6970 struct value *mark = value_mark ();
6971 struct value *dval;
6972 struct type *rtype;
6973 struct type *branch_type;
6974 int nfields = TYPE_NFIELDS (type);
6975 int variant_field = variant_field_index (type);
6976
6977 if (variant_field == -1)
6978 return type;
6979
6980 if (dval0 == NULL)
6981 dval = value_from_contents_and_address (type, valaddr, address);
6982 else
6983 dval = dval0;
6984
6985 rtype = alloc_type_copy (type);
6986 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6987 INIT_CPLUS_SPECIFIC (rtype);
6988 TYPE_NFIELDS (rtype) = nfields;
6989 TYPE_FIELDS (rtype) =
6990 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6991 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6992 sizeof (struct field) * nfields);
6993 TYPE_NAME (rtype) = ada_type_name (type);
6994 TYPE_TAG_NAME (rtype) = NULL;
6995 TYPE_FIXED_INSTANCE (rtype) = 1;
6996 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6997
6998 branch_type = to_fixed_variant_branch_type
6999 (TYPE_FIELD_TYPE (type, variant_field),
7000 cond_offset_host (valaddr,
7001 TYPE_FIELD_BITPOS (type, variant_field)
7002 / TARGET_CHAR_BIT),
7003 cond_offset_target (address,
7004 TYPE_FIELD_BITPOS (type, variant_field)
7005 / TARGET_CHAR_BIT), dval);
7006 if (branch_type == NULL)
7007 {
7008 int f;
7009 for (f = variant_field + 1; f < nfields; f += 1)
7010 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7011 TYPE_NFIELDS (rtype) -= 1;
7012 }
7013 else
7014 {
7015 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7016 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7017 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7018 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7019 }
7020 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7021
7022 value_free_to_mark (mark);
7023 return rtype;
7024 }
7025
7026 /* An ordinary record type (with fixed-length fields) that describes
7027 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7028 beginning of this section]. Any necessary discriminants' values
7029 should be in DVAL, a record value; it may be NULL if the object
7030 at ADDR itself contains any necessary discriminant values.
7031 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7032 values from the record are needed. Except in the case that DVAL,
7033 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7034 unchecked) is replaced by a particular branch of the variant.
7035
7036 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7037 is questionable and may be removed. It can arise during the
7038 processing of an unconstrained-array-of-record type where all the
7039 variant branches have exactly the same size. This is because in
7040 such cases, the compiler does not bother to use the XVS convention
7041 when encoding the record. I am currently dubious of this
7042 shortcut and suspect the compiler should be altered. FIXME. */
7043
7044 static struct type *
7045 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7046 CORE_ADDR address, struct value *dval)
7047 {
7048 struct type *templ_type;
7049
7050 if (TYPE_FIXED_INSTANCE (type0))
7051 return type0;
7052
7053 templ_type = dynamic_template_type (type0);
7054
7055 if (templ_type != NULL)
7056 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7057 else if (variant_field_index (type0) >= 0)
7058 {
7059 if (dval == NULL && valaddr == NULL && address == 0)
7060 return type0;
7061 return to_record_with_fixed_variant_part (type0, valaddr, address,
7062 dval);
7063 }
7064 else
7065 {
7066 TYPE_FIXED_INSTANCE (type0) = 1;
7067 return type0;
7068 }
7069
7070 }
7071
7072 /* An ordinary record type (with fixed-length fields) that describes
7073 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7074 union type. Any necessary discriminants' values should be in DVAL,
7075 a record value. That is, this routine selects the appropriate
7076 branch of the union at ADDR according to the discriminant value
7077 indicated in the union's type name. Returns VAR_TYPE0 itself if
7078 it represents a variant subject to a pragma Unchecked_Union. */
7079
7080 static struct type *
7081 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7082 CORE_ADDR address, struct value *dval)
7083 {
7084 int which;
7085 struct type *templ_type;
7086 struct type *var_type;
7087
7088 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7089 var_type = TYPE_TARGET_TYPE (var_type0);
7090 else
7091 var_type = var_type0;
7092
7093 templ_type = ada_find_parallel_type (var_type, "___XVU");
7094
7095 if (templ_type != NULL)
7096 var_type = templ_type;
7097
7098 if (is_unchecked_variant (var_type, value_type (dval)))
7099 return var_type0;
7100 which =
7101 ada_which_variant_applies (var_type,
7102 value_type (dval), value_contents (dval));
7103
7104 if (which < 0)
7105 return empty_record (var_type);
7106 else if (is_dynamic_field (var_type, which))
7107 return to_fixed_record_type
7108 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7109 valaddr, address, dval);
7110 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7111 return
7112 to_fixed_record_type
7113 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7114 else
7115 return TYPE_FIELD_TYPE (var_type, which);
7116 }
7117
7118 /* Assuming that TYPE0 is an array type describing the type of a value
7119 at ADDR, and that DVAL describes a record containing any
7120 discriminants used in TYPE0, returns a type for the value that
7121 contains no dynamic components (that is, no components whose sizes
7122 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7123 true, gives an error message if the resulting type's size is over
7124 varsize_limit. */
7125
7126 static struct type *
7127 to_fixed_array_type (struct type *type0, struct value *dval,
7128 int ignore_too_big)
7129 {
7130 struct type *index_type_desc;
7131 struct type *result;
7132 int constrained_packed_array_p;
7133
7134 if (TYPE_FIXED_INSTANCE (type0))
7135 return type0;
7136
7137 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7138 if (constrained_packed_array_p)
7139 type0 = decode_constrained_packed_array_type (type0);
7140
7141 index_type_desc = ada_find_parallel_type (type0, "___XA");
7142 if (index_type_desc == NULL)
7143 {
7144 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7145 /* NOTE: elt_type---the fixed version of elt_type0---should never
7146 depend on the contents of the array in properly constructed
7147 debugging data. */
7148 /* Create a fixed version of the array element type.
7149 We're not providing the address of an element here,
7150 and thus the actual object value cannot be inspected to do
7151 the conversion. This should not be a problem, since arrays of
7152 unconstrained objects are not allowed. In particular, all
7153 the elements of an array of a tagged type should all be of
7154 the same type specified in the debugging info. No need to
7155 consult the object tag. */
7156 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7157
7158 /* Make sure we always create a new array type when dealing with
7159 packed array types, since we're going to fix-up the array
7160 type length and element bitsize a little further down. */
7161 if (elt_type0 == elt_type && !constrained_packed_array_p)
7162 result = type0;
7163 else
7164 result = create_array_type (alloc_type_copy (type0),
7165 elt_type, TYPE_INDEX_TYPE (type0));
7166 }
7167 else
7168 {
7169 int i;
7170 struct type *elt_type0;
7171
7172 elt_type0 = type0;
7173 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7174 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7175
7176 /* NOTE: result---the fixed version of elt_type0---should never
7177 depend on the contents of the array in properly constructed
7178 debugging data. */
7179 /* Create a fixed version of the array element type.
7180 We're not providing the address of an element here,
7181 and thus the actual object value cannot be inspected to do
7182 the conversion. This should not be a problem, since arrays of
7183 unconstrained objects are not allowed. In particular, all
7184 the elements of an array of a tagged type should all be of
7185 the same type specified in the debugging info. No need to
7186 consult the object tag. */
7187 result =
7188 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7189
7190 elt_type0 = type0;
7191 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7192 {
7193 struct type *range_type =
7194 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7195 dval, TYPE_INDEX_TYPE (elt_type0));
7196 result = create_array_type (alloc_type_copy (elt_type0),
7197 result, range_type);
7198 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7199 }
7200 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7201 error (_("array type with dynamic size is larger than varsize-limit"));
7202 }
7203
7204 if (constrained_packed_array_p)
7205 {
7206 /* So far, the resulting type has been created as if the original
7207 type was a regular (non-packed) array type. As a result, the
7208 bitsize of the array elements needs to be set again, and the array
7209 length needs to be recomputed based on that bitsize. */
7210 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7211 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7212
7213 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7214 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7215 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7216 TYPE_LENGTH (result)++;
7217 }
7218
7219 TYPE_FIXED_INSTANCE (result) = 1;
7220 return result;
7221 }
7222
7223
7224 /* A standard type (containing no dynamically sized components)
7225 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7226 DVAL describes a record containing any discriminants used in TYPE0,
7227 and may be NULL if there are none, or if the object of type TYPE at
7228 ADDRESS or in VALADDR contains these discriminants.
7229
7230 If CHECK_TAG is not null, in the case of tagged types, this function
7231 attempts to locate the object's tag and use it to compute the actual
7232 type. However, when ADDRESS is null, we cannot use it to determine the
7233 location of the tag, and therefore compute the tagged type's actual type.
7234 So we return the tagged type without consulting the tag. */
7235
7236 static struct type *
7237 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7238 CORE_ADDR address, struct value *dval, int check_tag)
7239 {
7240 type = ada_check_typedef (type);
7241 switch (TYPE_CODE (type))
7242 {
7243 default:
7244 return type;
7245 case TYPE_CODE_STRUCT:
7246 {
7247 struct type *static_type = to_static_fixed_type (type);
7248 struct type *fixed_record_type =
7249 to_fixed_record_type (type, valaddr, address, NULL);
7250 /* If STATIC_TYPE is a tagged type and we know the object's address,
7251 then we can determine its tag, and compute the object's actual
7252 type from there. Note that we have to use the fixed record
7253 type (the parent part of the record may have dynamic fields
7254 and the way the location of _tag is expressed may depend on
7255 them). */
7256
7257 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7258 {
7259 struct type *real_type =
7260 type_from_tag (value_tag_from_contents_and_address
7261 (fixed_record_type,
7262 valaddr,
7263 address));
7264 if (real_type != NULL)
7265 return to_fixed_record_type (real_type, valaddr, address, NULL);
7266 }
7267
7268 /* Check to see if there is a parallel ___XVZ variable.
7269 If there is, then it provides the actual size of our type. */
7270 else if (ada_type_name (fixed_record_type) != NULL)
7271 {
7272 char *name = ada_type_name (fixed_record_type);
7273 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7274 int xvz_found = 0;
7275 LONGEST size;
7276
7277 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7278 size = get_int_var_value (xvz_name, &xvz_found);
7279 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7280 {
7281 fixed_record_type = copy_type (fixed_record_type);
7282 TYPE_LENGTH (fixed_record_type) = size;
7283
7284 /* The FIXED_RECORD_TYPE may have be a stub. We have
7285 observed this when the debugging info is STABS, and
7286 apparently it is something that is hard to fix.
7287
7288 In practice, we don't need the actual type definition
7289 at all, because the presence of the XVZ variable allows us
7290 to assume that there must be a XVS type as well, which we
7291 should be able to use later, when we need the actual type
7292 definition.
7293
7294 In the meantime, pretend that the "fixed" type we are
7295 returning is NOT a stub, because this can cause trouble
7296 when using this type to create new types targeting it.
7297 Indeed, the associated creation routines often check
7298 whether the target type is a stub and will try to replace
7299 it, thus using a type with the wrong size. This, in turn,
7300 might cause the new type to have the wrong size too.
7301 Consider the case of an array, for instance, where the size
7302 of the array is computed from the number of elements in
7303 our array multiplied by the size of its element. */
7304 TYPE_STUB (fixed_record_type) = 0;
7305 }
7306 }
7307 return fixed_record_type;
7308 }
7309 case TYPE_CODE_ARRAY:
7310 return to_fixed_array_type (type, dval, 1);
7311 case TYPE_CODE_UNION:
7312 if (dval == NULL)
7313 return type;
7314 else
7315 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7316 }
7317 }
7318
7319 /* The same as ada_to_fixed_type_1, except that it preserves the type
7320 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7321 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7322
7323 struct type *
7324 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7325 CORE_ADDR address, struct value *dval, int check_tag)
7326
7327 {
7328 struct type *fixed_type =
7329 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7330
7331 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7332 && TYPE_TARGET_TYPE (type) == fixed_type)
7333 return type;
7334
7335 return fixed_type;
7336 }
7337
7338 /* A standard (static-sized) type corresponding as well as possible to
7339 TYPE0, but based on no runtime data. */
7340
7341 static struct type *
7342 to_static_fixed_type (struct type *type0)
7343 {
7344 struct type *type;
7345
7346 if (type0 == NULL)
7347 return NULL;
7348
7349 if (TYPE_FIXED_INSTANCE (type0))
7350 return type0;
7351
7352 type0 = ada_check_typedef (type0);
7353
7354 switch (TYPE_CODE (type0))
7355 {
7356 default:
7357 return type0;
7358 case TYPE_CODE_STRUCT:
7359 type = dynamic_template_type (type0);
7360 if (type != NULL)
7361 return template_to_static_fixed_type (type);
7362 else
7363 return template_to_static_fixed_type (type0);
7364 case TYPE_CODE_UNION:
7365 type = ada_find_parallel_type (type0, "___XVU");
7366 if (type != NULL)
7367 return template_to_static_fixed_type (type);
7368 else
7369 return template_to_static_fixed_type (type0);
7370 }
7371 }
7372
7373 /* A static approximation of TYPE with all type wrappers removed. */
7374
7375 static struct type *
7376 static_unwrap_type (struct type *type)
7377 {
7378 if (ada_is_aligner_type (type))
7379 {
7380 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7381 if (ada_type_name (type1) == NULL)
7382 TYPE_NAME (type1) = ada_type_name (type);
7383
7384 return static_unwrap_type (type1);
7385 }
7386 else
7387 {
7388 struct type *raw_real_type = ada_get_base_type (type);
7389 if (raw_real_type == type)
7390 return type;
7391 else
7392 return to_static_fixed_type (raw_real_type);
7393 }
7394 }
7395
7396 /* In some cases, incomplete and private types require
7397 cross-references that are not resolved as records (for example,
7398 type Foo;
7399 type FooP is access Foo;
7400 V: FooP;
7401 type Foo is array ...;
7402 ). In these cases, since there is no mechanism for producing
7403 cross-references to such types, we instead substitute for FooP a
7404 stub enumeration type that is nowhere resolved, and whose tag is
7405 the name of the actual type. Call these types "non-record stubs". */
7406
7407 /* A type equivalent to TYPE that is not a non-record stub, if one
7408 exists, otherwise TYPE. */
7409
7410 struct type *
7411 ada_check_typedef (struct type *type)
7412 {
7413 if (type == NULL)
7414 return NULL;
7415
7416 CHECK_TYPEDEF (type);
7417 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7418 || !TYPE_STUB (type)
7419 || TYPE_TAG_NAME (type) == NULL)
7420 return type;
7421 else
7422 {
7423 char *name = TYPE_TAG_NAME (type);
7424 struct type *type1 = ada_find_any_type (name);
7425 return (type1 == NULL) ? type : type1;
7426 }
7427 }
7428
7429 /* A value representing the data at VALADDR/ADDRESS as described by
7430 type TYPE0, but with a standard (static-sized) type that correctly
7431 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7432 type, then return VAL0 [this feature is simply to avoid redundant
7433 creation of struct values]. */
7434
7435 static struct value *
7436 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7437 struct value *val0)
7438 {
7439 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7440 if (type == type0 && val0 != NULL)
7441 return val0;
7442 else
7443 return value_from_contents_and_address (type, 0, address);
7444 }
7445
7446 /* A value representing VAL, but with a standard (static-sized) type
7447 that correctly describes it. Does not necessarily create a new
7448 value. */
7449
7450 struct value *
7451 ada_to_fixed_value (struct value *val)
7452 {
7453 return ada_to_fixed_value_create (value_type (val),
7454 value_address (val),
7455 val);
7456 }
7457 \f
7458
7459 /* Attributes */
7460
7461 /* Table mapping attribute numbers to names.
7462 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7463
7464 static const char *attribute_names[] = {
7465 "<?>",
7466
7467 "first",
7468 "last",
7469 "length",
7470 "image",
7471 "max",
7472 "min",
7473 "modulus",
7474 "pos",
7475 "size",
7476 "tag",
7477 "val",
7478 0
7479 };
7480
7481 const char *
7482 ada_attribute_name (enum exp_opcode n)
7483 {
7484 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7485 return attribute_names[n - OP_ATR_FIRST + 1];
7486 else
7487 return attribute_names[0];
7488 }
7489
7490 /* Evaluate the 'POS attribute applied to ARG. */
7491
7492 static LONGEST
7493 pos_atr (struct value *arg)
7494 {
7495 struct value *val = coerce_ref (arg);
7496 struct type *type = value_type (val);
7497
7498 if (!discrete_type_p (type))
7499 error (_("'POS only defined on discrete types"));
7500
7501 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7502 {
7503 int i;
7504 LONGEST v = value_as_long (val);
7505
7506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 {
7508 if (v == TYPE_FIELD_BITPOS (type, i))
7509 return i;
7510 }
7511 error (_("enumeration value is invalid: can't find 'POS"));
7512 }
7513 else
7514 return value_as_long (val);
7515 }
7516
7517 static struct value *
7518 value_pos_atr (struct type *type, struct value *arg)
7519 {
7520 return value_from_longest (type, pos_atr (arg));
7521 }
7522
7523 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7524
7525 static struct value *
7526 value_val_atr (struct type *type, struct value *arg)
7527 {
7528 if (!discrete_type_p (type))
7529 error (_("'VAL only defined on discrete types"));
7530 if (!integer_type_p (value_type (arg)))
7531 error (_("'VAL requires integral argument"));
7532
7533 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7534 {
7535 long pos = value_as_long (arg);
7536 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7537 error (_("argument to 'VAL out of range"));
7538 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7539 }
7540 else
7541 return value_from_longest (type, value_as_long (arg));
7542 }
7543 \f
7544
7545 /* Evaluation */
7546
7547 /* True if TYPE appears to be an Ada character type.
7548 [At the moment, this is true only for Character and Wide_Character;
7549 It is a heuristic test that could stand improvement]. */
7550
7551 int
7552 ada_is_character_type (struct type *type)
7553 {
7554 const char *name;
7555
7556 /* If the type code says it's a character, then assume it really is,
7557 and don't check any further. */
7558 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7559 return 1;
7560
7561 /* Otherwise, assume it's a character type iff it is a discrete type
7562 with a known character type name. */
7563 name = ada_type_name (type);
7564 return (name != NULL
7565 && (TYPE_CODE (type) == TYPE_CODE_INT
7566 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7567 && (strcmp (name, "character") == 0
7568 || strcmp (name, "wide_character") == 0
7569 || strcmp (name, "wide_wide_character") == 0
7570 || strcmp (name, "unsigned char") == 0));
7571 }
7572
7573 /* True if TYPE appears to be an Ada string type. */
7574
7575 int
7576 ada_is_string_type (struct type *type)
7577 {
7578 type = ada_check_typedef (type);
7579 if (type != NULL
7580 && TYPE_CODE (type) != TYPE_CODE_PTR
7581 && (ada_is_simple_array_type (type)
7582 || ada_is_array_descriptor_type (type))
7583 && ada_array_arity (type) == 1)
7584 {
7585 struct type *elttype = ada_array_element_type (type, 1);
7586
7587 return ada_is_character_type (elttype);
7588 }
7589 else
7590 return 0;
7591 }
7592
7593 /* The compiler sometimes provides a parallel XVS type for a given
7594 PAD type. Normally, it is safe to follow the PAD type directly,
7595 but older versions of the compiler have a bug that causes the offset
7596 of its "F" field to be wrong. Following that field in that case
7597 would lead to incorrect results, but this can be worked around
7598 by ignoring the PAD type and using the associated XVS type instead.
7599
7600 Set to True if the debugger should trust the contents of PAD types.
7601 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7602 static int trust_pad_over_xvs = 1;
7603
7604 /* True if TYPE is a struct type introduced by the compiler to force the
7605 alignment of a value. Such types have a single field with a
7606 distinctive name. */
7607
7608 int
7609 ada_is_aligner_type (struct type *type)
7610 {
7611 type = ada_check_typedef (type);
7612
7613 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7614 return 0;
7615
7616 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7617 && TYPE_NFIELDS (type) == 1
7618 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7619 }
7620
7621 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7622 the parallel type. */
7623
7624 struct type *
7625 ada_get_base_type (struct type *raw_type)
7626 {
7627 struct type *real_type_namer;
7628 struct type *raw_real_type;
7629
7630 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7631 return raw_type;
7632
7633 if (ada_is_aligner_type (raw_type))
7634 /* The encoding specifies that we should always use the aligner type.
7635 So, even if this aligner type has an associated XVS type, we should
7636 simply ignore it.
7637
7638 According to the compiler gurus, an XVS type parallel to an aligner
7639 type may exist because of a stabs limitation. In stabs, aligner
7640 types are empty because the field has a variable-sized type, and
7641 thus cannot actually be used as an aligner type. As a result,
7642 we need the associated parallel XVS type to decode the type.
7643 Since the policy in the compiler is to not change the internal
7644 representation based on the debugging info format, we sometimes
7645 end up having a redundant XVS type parallel to the aligner type. */
7646 return raw_type;
7647
7648 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7649 if (real_type_namer == NULL
7650 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7651 || TYPE_NFIELDS (real_type_namer) != 1)
7652 return raw_type;
7653
7654 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7655 {
7656 /* This is an older encoding form where the base type needs to be
7657 looked up by name. We prefer the newer enconding because it is
7658 more efficient. */
7659 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7660 if (raw_real_type == NULL)
7661 return raw_type;
7662 else
7663 return raw_real_type;
7664 }
7665
7666 /* The field in our XVS type is a reference to the base type. */
7667 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7668 }
7669
7670 /* The type of value designated by TYPE, with all aligners removed. */
7671
7672 struct type *
7673 ada_aligned_type (struct type *type)
7674 {
7675 if (ada_is_aligner_type (type))
7676 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7677 else
7678 return ada_get_base_type (type);
7679 }
7680
7681
7682 /* The address of the aligned value in an object at address VALADDR
7683 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7684
7685 const gdb_byte *
7686 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7687 {
7688 if (ada_is_aligner_type (type))
7689 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7690 valaddr +
7691 TYPE_FIELD_BITPOS (type,
7692 0) / TARGET_CHAR_BIT);
7693 else
7694 return valaddr;
7695 }
7696
7697
7698
7699 /* The printed representation of an enumeration literal with encoded
7700 name NAME. The value is good to the next call of ada_enum_name. */
7701 const char *
7702 ada_enum_name (const char *name)
7703 {
7704 static char *result;
7705 static size_t result_len = 0;
7706 char *tmp;
7707
7708 /* First, unqualify the enumeration name:
7709 1. Search for the last '.' character. If we find one, then skip
7710 all the preceeding characters, the unqualified name starts
7711 right after that dot.
7712 2. Otherwise, we may be debugging on a target where the compiler
7713 translates dots into "__". Search forward for double underscores,
7714 but stop searching when we hit an overloading suffix, which is
7715 of the form "__" followed by digits. */
7716
7717 tmp = strrchr (name, '.');
7718 if (tmp != NULL)
7719 name = tmp + 1;
7720 else
7721 {
7722 while ((tmp = strstr (name, "__")) != NULL)
7723 {
7724 if (isdigit (tmp[2]))
7725 break;
7726 else
7727 name = tmp + 2;
7728 }
7729 }
7730
7731 if (name[0] == 'Q')
7732 {
7733 int v;
7734 if (name[1] == 'U' || name[1] == 'W')
7735 {
7736 if (sscanf (name + 2, "%x", &v) != 1)
7737 return name;
7738 }
7739 else
7740 return name;
7741
7742 GROW_VECT (result, result_len, 16);
7743 if (isascii (v) && isprint (v))
7744 xsnprintf (result, result_len, "'%c'", v);
7745 else if (name[1] == 'U')
7746 xsnprintf (result, result_len, "[\"%02x\"]", v);
7747 else
7748 xsnprintf (result, result_len, "[\"%04x\"]", v);
7749
7750 return result;
7751 }
7752 else
7753 {
7754 tmp = strstr (name, "__");
7755 if (tmp == NULL)
7756 tmp = strstr (name, "$");
7757 if (tmp != NULL)
7758 {
7759 GROW_VECT (result, result_len, tmp - name + 1);
7760 strncpy (result, name, tmp - name);
7761 result[tmp - name] = '\0';
7762 return result;
7763 }
7764
7765 return name;
7766 }
7767 }
7768
7769 /* Evaluate the subexpression of EXP starting at *POS as for
7770 evaluate_type, updating *POS to point just past the evaluated
7771 expression. */
7772
7773 static struct value *
7774 evaluate_subexp_type (struct expression *exp, int *pos)
7775 {
7776 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7777 }
7778
7779 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7780 value it wraps. */
7781
7782 static struct value *
7783 unwrap_value (struct value *val)
7784 {
7785 struct type *type = ada_check_typedef (value_type (val));
7786 if (ada_is_aligner_type (type))
7787 {
7788 struct value *v = ada_value_struct_elt (val, "F", 0);
7789 struct type *val_type = ada_check_typedef (value_type (v));
7790 if (ada_type_name (val_type) == NULL)
7791 TYPE_NAME (val_type) = ada_type_name (type);
7792
7793 return unwrap_value (v);
7794 }
7795 else
7796 {
7797 struct type *raw_real_type =
7798 ada_check_typedef (ada_get_base_type (type));
7799
7800 /* If there is no parallel XVS or XVE type, then the value is
7801 already unwrapped. Return it without further modification. */
7802 if ((type == raw_real_type)
7803 && ada_find_parallel_type (type, "___XVE") == NULL)
7804 return val;
7805
7806 return
7807 coerce_unspec_val_to_type
7808 (val, ada_to_fixed_type (raw_real_type, 0,
7809 value_address (val),
7810 NULL, 1));
7811 }
7812 }
7813
7814 static struct value *
7815 cast_to_fixed (struct type *type, struct value *arg)
7816 {
7817 LONGEST val;
7818
7819 if (type == value_type (arg))
7820 return arg;
7821 else if (ada_is_fixed_point_type (value_type (arg)))
7822 val = ada_float_to_fixed (type,
7823 ada_fixed_to_float (value_type (arg),
7824 value_as_long (arg)));
7825 else
7826 {
7827 DOUBLEST argd = value_as_double (arg);
7828 val = ada_float_to_fixed (type, argd);
7829 }
7830
7831 return value_from_longest (type, val);
7832 }
7833
7834 static struct value *
7835 cast_from_fixed (struct type *type, struct value *arg)
7836 {
7837 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7838 value_as_long (arg));
7839 return value_from_double (type, val);
7840 }
7841
7842 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7843 return the converted value. */
7844
7845 static struct value *
7846 coerce_for_assign (struct type *type, struct value *val)
7847 {
7848 struct type *type2 = value_type (val);
7849 if (type == type2)
7850 return val;
7851
7852 type2 = ada_check_typedef (type2);
7853 type = ada_check_typedef (type);
7854
7855 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7856 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7857 {
7858 val = ada_value_ind (val);
7859 type2 = value_type (val);
7860 }
7861
7862 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7863 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7864 {
7865 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7866 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7867 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7868 error (_("Incompatible types in assignment"));
7869 deprecated_set_value_type (val, type);
7870 }
7871 return val;
7872 }
7873
7874 static struct value *
7875 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7876 {
7877 struct value *val;
7878 struct type *type1, *type2;
7879 LONGEST v, v1, v2;
7880
7881 arg1 = coerce_ref (arg1);
7882 arg2 = coerce_ref (arg2);
7883 type1 = base_type (ada_check_typedef (value_type (arg1)));
7884 type2 = base_type (ada_check_typedef (value_type (arg2)));
7885
7886 if (TYPE_CODE (type1) != TYPE_CODE_INT
7887 || TYPE_CODE (type2) != TYPE_CODE_INT)
7888 return value_binop (arg1, arg2, op);
7889
7890 switch (op)
7891 {
7892 case BINOP_MOD:
7893 case BINOP_DIV:
7894 case BINOP_REM:
7895 break;
7896 default:
7897 return value_binop (arg1, arg2, op);
7898 }
7899
7900 v2 = value_as_long (arg2);
7901 if (v2 == 0)
7902 error (_("second operand of %s must not be zero."), op_string (op));
7903
7904 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7905 return value_binop (arg1, arg2, op);
7906
7907 v1 = value_as_long (arg1);
7908 switch (op)
7909 {
7910 case BINOP_DIV:
7911 v = v1 / v2;
7912 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7913 v += v > 0 ? -1 : 1;
7914 break;
7915 case BINOP_REM:
7916 v = v1 % v2;
7917 if (v * v1 < 0)
7918 v -= v2;
7919 break;
7920 default:
7921 /* Should not reach this point. */
7922 v = 0;
7923 }
7924
7925 val = allocate_value (type1);
7926 store_unsigned_integer (value_contents_raw (val),
7927 TYPE_LENGTH (value_type (val)),
7928 gdbarch_byte_order (get_type_arch (type1)), v);
7929 return val;
7930 }
7931
7932 static int
7933 ada_value_equal (struct value *arg1, struct value *arg2)
7934 {
7935 if (ada_is_direct_array_type (value_type (arg1))
7936 || ada_is_direct_array_type (value_type (arg2)))
7937 {
7938 /* Automatically dereference any array reference before
7939 we attempt to perform the comparison. */
7940 arg1 = ada_coerce_ref (arg1);
7941 arg2 = ada_coerce_ref (arg2);
7942
7943 arg1 = ada_coerce_to_simple_array (arg1);
7944 arg2 = ada_coerce_to_simple_array (arg2);
7945 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7946 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7947 error (_("Attempt to compare array with non-array"));
7948 /* FIXME: The following works only for types whose
7949 representations use all bits (no padding or undefined bits)
7950 and do not have user-defined equality. */
7951 return
7952 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7953 && memcmp (value_contents (arg1), value_contents (arg2),
7954 TYPE_LENGTH (value_type (arg1))) == 0;
7955 }
7956 return value_equal (arg1, arg2);
7957 }
7958
7959 /* Total number of component associations in the aggregate starting at
7960 index PC in EXP. Assumes that index PC is the start of an
7961 OP_AGGREGATE. */
7962
7963 static int
7964 num_component_specs (struct expression *exp, int pc)
7965 {
7966 int n, m, i;
7967 m = exp->elts[pc + 1].longconst;
7968 pc += 3;
7969 n = 0;
7970 for (i = 0; i < m; i += 1)
7971 {
7972 switch (exp->elts[pc].opcode)
7973 {
7974 default:
7975 n += 1;
7976 break;
7977 case OP_CHOICES:
7978 n += exp->elts[pc + 1].longconst;
7979 break;
7980 }
7981 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7982 }
7983 return n;
7984 }
7985
7986 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7987 component of LHS (a simple array or a record), updating *POS past
7988 the expression, assuming that LHS is contained in CONTAINER. Does
7989 not modify the inferior's memory, nor does it modify LHS (unless
7990 LHS == CONTAINER). */
7991
7992 static void
7993 assign_component (struct value *container, struct value *lhs, LONGEST index,
7994 struct expression *exp, int *pos)
7995 {
7996 struct value *mark = value_mark ();
7997 struct value *elt;
7998 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7999 {
8000 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8001 struct value *index_val = value_from_longest (index_type, index);
8002 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8003 }
8004 else
8005 {
8006 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8007 elt = ada_to_fixed_value (unwrap_value (elt));
8008 }
8009
8010 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8011 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8012 else
8013 value_assign_to_component (container, elt,
8014 ada_evaluate_subexp (NULL, exp, pos,
8015 EVAL_NORMAL));
8016
8017 value_free_to_mark (mark);
8018 }
8019
8020 /* Assuming that LHS represents an lvalue having a record or array
8021 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8022 of that aggregate's value to LHS, advancing *POS past the
8023 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8024 lvalue containing LHS (possibly LHS itself). Does not modify
8025 the inferior's memory, nor does it modify the contents of
8026 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8027
8028 static struct value *
8029 assign_aggregate (struct value *container,
8030 struct value *lhs, struct expression *exp,
8031 int *pos, enum noside noside)
8032 {
8033 struct type *lhs_type;
8034 int n = exp->elts[*pos+1].longconst;
8035 LONGEST low_index, high_index;
8036 int num_specs;
8037 LONGEST *indices;
8038 int max_indices, num_indices;
8039 int is_array_aggregate;
8040 int i;
8041 struct value *mark = value_mark ();
8042
8043 *pos += 3;
8044 if (noside != EVAL_NORMAL)
8045 {
8046 int i;
8047 for (i = 0; i < n; i += 1)
8048 ada_evaluate_subexp (NULL, exp, pos, noside);
8049 return container;
8050 }
8051
8052 container = ada_coerce_ref (container);
8053 if (ada_is_direct_array_type (value_type (container)))
8054 container = ada_coerce_to_simple_array (container);
8055 lhs = ada_coerce_ref (lhs);
8056 if (!deprecated_value_modifiable (lhs))
8057 error (_("Left operand of assignment is not a modifiable lvalue."));
8058
8059 lhs_type = value_type (lhs);
8060 if (ada_is_direct_array_type (lhs_type))
8061 {
8062 lhs = ada_coerce_to_simple_array (lhs);
8063 lhs_type = value_type (lhs);
8064 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8065 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8066 is_array_aggregate = 1;
8067 }
8068 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8069 {
8070 low_index = 0;
8071 high_index = num_visible_fields (lhs_type) - 1;
8072 is_array_aggregate = 0;
8073 }
8074 else
8075 error (_("Left-hand side must be array or record."));
8076
8077 num_specs = num_component_specs (exp, *pos - 3);
8078 max_indices = 4 * num_specs + 4;
8079 indices = alloca (max_indices * sizeof (indices[0]));
8080 indices[0] = indices[1] = low_index - 1;
8081 indices[2] = indices[3] = high_index + 1;
8082 num_indices = 4;
8083
8084 for (i = 0; i < n; i += 1)
8085 {
8086 switch (exp->elts[*pos].opcode)
8087 {
8088 case OP_CHOICES:
8089 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8090 &num_indices, max_indices,
8091 low_index, high_index);
8092 break;
8093 case OP_POSITIONAL:
8094 aggregate_assign_positional (container, lhs, exp, pos, indices,
8095 &num_indices, max_indices,
8096 low_index, high_index);
8097 break;
8098 case OP_OTHERS:
8099 if (i != n-1)
8100 error (_("Misplaced 'others' clause"));
8101 aggregate_assign_others (container, lhs, exp, pos, indices,
8102 num_indices, low_index, high_index);
8103 break;
8104 default:
8105 error (_("Internal error: bad aggregate clause"));
8106 }
8107 }
8108
8109 return container;
8110 }
8111
8112 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8113 construct at *POS, updating *POS past the construct, given that
8114 the positions are relative to lower bound LOW, where HIGH is the
8115 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8116 updating *NUM_INDICES as needed. CONTAINER is as for
8117 assign_aggregate. */
8118 static void
8119 aggregate_assign_positional (struct value *container,
8120 struct value *lhs, struct expression *exp,
8121 int *pos, LONGEST *indices, int *num_indices,
8122 int max_indices, LONGEST low, LONGEST high)
8123 {
8124 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8125
8126 if (ind - 1 == high)
8127 warning (_("Extra components in aggregate ignored."));
8128 if (ind <= high)
8129 {
8130 add_component_interval (ind, ind, indices, num_indices, max_indices);
8131 *pos += 3;
8132 assign_component (container, lhs, ind, exp, pos);
8133 }
8134 else
8135 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8136 }
8137
8138 /* Assign into the components of LHS indexed by the OP_CHOICES
8139 construct at *POS, updating *POS past the construct, given that
8140 the allowable indices are LOW..HIGH. Record the indices assigned
8141 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8142 needed. CONTAINER is as for assign_aggregate. */
8143 static void
8144 aggregate_assign_from_choices (struct value *container,
8145 struct value *lhs, struct expression *exp,
8146 int *pos, LONGEST *indices, int *num_indices,
8147 int max_indices, LONGEST low, LONGEST high)
8148 {
8149 int j;
8150 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8151 int choice_pos, expr_pc;
8152 int is_array = ada_is_direct_array_type (value_type (lhs));
8153
8154 choice_pos = *pos += 3;
8155
8156 for (j = 0; j < n_choices; j += 1)
8157 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8158 expr_pc = *pos;
8159 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8160
8161 for (j = 0; j < n_choices; j += 1)
8162 {
8163 LONGEST lower, upper;
8164 enum exp_opcode op = exp->elts[choice_pos].opcode;
8165 if (op == OP_DISCRETE_RANGE)
8166 {
8167 choice_pos += 1;
8168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8169 EVAL_NORMAL));
8170 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8171 EVAL_NORMAL));
8172 }
8173 else if (is_array)
8174 {
8175 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8176 EVAL_NORMAL));
8177 upper = lower;
8178 }
8179 else
8180 {
8181 int ind;
8182 char *name;
8183 switch (op)
8184 {
8185 case OP_NAME:
8186 name = &exp->elts[choice_pos + 2].string;
8187 break;
8188 case OP_VAR_VALUE:
8189 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8190 break;
8191 default:
8192 error (_("Invalid record component association."));
8193 }
8194 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8195 ind = 0;
8196 if (! find_struct_field (name, value_type (lhs), 0,
8197 NULL, NULL, NULL, NULL, &ind))
8198 error (_("Unknown component name: %s."), name);
8199 lower = upper = ind;
8200 }
8201
8202 if (lower <= upper && (lower < low || upper > high))
8203 error (_("Index in component association out of bounds."));
8204
8205 add_component_interval (lower, upper, indices, num_indices,
8206 max_indices);
8207 while (lower <= upper)
8208 {
8209 int pos1;
8210 pos1 = expr_pc;
8211 assign_component (container, lhs, lower, exp, &pos1);
8212 lower += 1;
8213 }
8214 }
8215 }
8216
8217 /* Assign the value of the expression in the OP_OTHERS construct in
8218 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8219 have not been previously assigned. The index intervals already assigned
8220 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8221 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8222 static void
8223 aggregate_assign_others (struct value *container,
8224 struct value *lhs, struct expression *exp,
8225 int *pos, LONGEST *indices, int num_indices,
8226 LONGEST low, LONGEST high)
8227 {
8228 int i;
8229 int expr_pc = *pos+1;
8230
8231 for (i = 0; i < num_indices - 2; i += 2)
8232 {
8233 LONGEST ind;
8234 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8235 {
8236 int pos;
8237 pos = expr_pc;
8238 assign_component (container, lhs, ind, exp, &pos);
8239 }
8240 }
8241 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8242 }
8243
8244 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8245 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8246 modifying *SIZE as needed. It is an error if *SIZE exceeds
8247 MAX_SIZE. The resulting intervals do not overlap. */
8248 static void
8249 add_component_interval (LONGEST low, LONGEST high,
8250 LONGEST* indices, int *size, int max_size)
8251 {
8252 int i, j;
8253 for (i = 0; i < *size; i += 2) {
8254 if (high >= indices[i] && low <= indices[i + 1])
8255 {
8256 int kh;
8257 for (kh = i + 2; kh < *size; kh += 2)
8258 if (high < indices[kh])
8259 break;
8260 if (low < indices[i])
8261 indices[i] = low;
8262 indices[i + 1] = indices[kh - 1];
8263 if (high > indices[i + 1])
8264 indices[i + 1] = high;
8265 memcpy (indices + i + 2, indices + kh, *size - kh);
8266 *size -= kh - i - 2;
8267 return;
8268 }
8269 else if (high < indices[i])
8270 break;
8271 }
8272
8273 if (*size == max_size)
8274 error (_("Internal error: miscounted aggregate components."));
8275 *size += 2;
8276 for (j = *size-1; j >= i+2; j -= 1)
8277 indices[j] = indices[j - 2];
8278 indices[i] = low;
8279 indices[i + 1] = high;
8280 }
8281
8282 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8283 is different. */
8284
8285 static struct value *
8286 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8287 {
8288 if (type == ada_check_typedef (value_type (arg2)))
8289 return arg2;
8290
8291 if (ada_is_fixed_point_type (type))
8292 return (cast_to_fixed (type, arg2));
8293
8294 if (ada_is_fixed_point_type (value_type (arg2)))
8295 return cast_from_fixed (type, arg2);
8296
8297 return value_cast (type, arg2);
8298 }
8299
8300 /* Evaluating Ada expressions, and printing their result.
8301 ------------------------------------------------------
8302
8303 1. Introduction:
8304 ----------------
8305
8306 We usually evaluate an Ada expression in order to print its value.
8307 We also evaluate an expression in order to print its type, which
8308 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8309 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8310 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8311 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8312 similar.
8313
8314 Evaluating expressions is a little more complicated for Ada entities
8315 than it is for entities in languages such as C. The main reason for
8316 this is that Ada provides types whose definition might be dynamic.
8317 One example of such types is variant records. Or another example
8318 would be an array whose bounds can only be known at run time.
8319
8320 The following description is a general guide as to what should be
8321 done (and what should NOT be done) in order to evaluate an expression
8322 involving such types, and when. This does not cover how the semantic
8323 information is encoded by GNAT as this is covered separatly. For the
8324 document used as the reference for the GNAT encoding, see exp_dbug.ads
8325 in the GNAT sources.
8326
8327 Ideally, we should embed each part of this description next to its
8328 associated code. Unfortunately, the amount of code is so vast right
8329 now that it's hard to see whether the code handling a particular
8330 situation might be duplicated or not. One day, when the code is
8331 cleaned up, this guide might become redundant with the comments
8332 inserted in the code, and we might want to remove it.
8333
8334 2. ``Fixing'' an Entity, the Simple Case:
8335 -----------------------------------------
8336
8337 When evaluating Ada expressions, the tricky issue is that they may
8338 reference entities whose type contents and size are not statically
8339 known. Consider for instance a variant record:
8340
8341 type Rec (Empty : Boolean := True) is record
8342 case Empty is
8343 when True => null;
8344 when False => Value : Integer;
8345 end case;
8346 end record;
8347 Yes : Rec := (Empty => False, Value => 1);
8348 No : Rec := (empty => True);
8349
8350 The size and contents of that record depends on the value of the
8351 descriminant (Rec.Empty). At this point, neither the debugging
8352 information nor the associated type structure in GDB are able to
8353 express such dynamic types. So what the debugger does is to create
8354 "fixed" versions of the type that applies to the specific object.
8355 We also informally refer to this opperation as "fixing" an object,
8356 which means creating its associated fixed type.
8357
8358 Example: when printing the value of variable "Yes" above, its fixed
8359 type would look like this:
8360
8361 type Rec is record
8362 Empty : Boolean;
8363 Value : Integer;
8364 end record;
8365
8366 On the other hand, if we printed the value of "No", its fixed type
8367 would become:
8368
8369 type Rec is record
8370 Empty : Boolean;
8371 end record;
8372
8373 Things become a little more complicated when trying to fix an entity
8374 with a dynamic type that directly contains another dynamic type,
8375 such as an array of variant records, for instance. There are
8376 two possible cases: Arrays, and records.
8377
8378 3. ``Fixing'' Arrays:
8379 ---------------------
8380
8381 The type structure in GDB describes an array in terms of its bounds,
8382 and the type of its elements. By design, all elements in the array
8383 have the same type and we cannot represent an array of variant elements
8384 using the current type structure in GDB. When fixing an array,
8385 we cannot fix the array element, as we would potentially need one
8386 fixed type per element of the array. As a result, the best we can do
8387 when fixing an array is to produce an array whose bounds and size
8388 are correct (allowing us to read it from memory), but without having
8389 touched its element type. Fixing each element will be done later,
8390 when (if) necessary.
8391
8392 Arrays are a little simpler to handle than records, because the same
8393 amount of memory is allocated for each element of the array, even if
8394 the amount of space actually used by each element differs from element
8395 to element. Consider for instance the following array of type Rec:
8396
8397 type Rec_Array is array (1 .. 2) of Rec;
8398
8399 The actual amount of memory occupied by each element might be different
8400 from element to element, depending on the value of their discriminant.
8401 But the amount of space reserved for each element in the array remains
8402 fixed regardless. So we simply need to compute that size using
8403 the debugging information available, from which we can then determine
8404 the array size (we multiply the number of elements of the array by
8405 the size of each element).
8406
8407 The simplest case is when we have an array of a constrained element
8408 type. For instance, consider the following type declarations:
8409
8410 type Bounded_String (Max_Size : Integer) is
8411 Length : Integer;
8412 Buffer : String (1 .. Max_Size);
8413 end record;
8414 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8415
8416 In this case, the compiler describes the array as an array of
8417 variable-size elements (identified by its XVS suffix) for which
8418 the size can be read in the parallel XVZ variable.
8419
8420 In the case of an array of an unconstrained element type, the compiler
8421 wraps the array element inside a private PAD type. This type should not
8422 be shown to the user, and must be "unwrap"'ed before printing. Note
8423 that we also use the adjective "aligner" in our code to designate
8424 these wrapper types.
8425
8426 In some cases, the size allocated for each element is statically
8427 known. In that case, the PAD type already has the correct size,
8428 and the array element should remain unfixed.
8429
8430 But there are cases when this size is not statically known.
8431 For instance, assuming that "Five" is an integer variable:
8432
8433 type Dynamic is array (1 .. Five) of Integer;
8434 type Wrapper (Has_Length : Boolean := False) is record
8435 Data : Dynamic;
8436 case Has_Length is
8437 when True => Length : Integer;
8438 when False => null;
8439 end case;
8440 end record;
8441 type Wrapper_Array is array (1 .. 2) of Wrapper;
8442
8443 Hello : Wrapper_Array := (others => (Has_Length => True,
8444 Data => (others => 17),
8445 Length => 1));
8446
8447
8448 The debugging info would describe variable Hello as being an
8449 array of a PAD type. The size of that PAD type is not statically
8450 known, but can be determined using a parallel XVZ variable.
8451 In that case, a copy of the PAD type with the correct size should
8452 be used for the fixed array.
8453
8454 3. ``Fixing'' record type objects:
8455 ----------------------------------
8456
8457 Things are slightly different from arrays in the case of dynamic
8458 record types. In this case, in order to compute the associated
8459 fixed type, we need to determine the size and offset of each of
8460 its components. This, in turn, requires us to compute the fixed
8461 type of each of these components.
8462
8463 Consider for instance the example:
8464
8465 type Bounded_String (Max_Size : Natural) is record
8466 Str : String (1 .. Max_Size);
8467 Length : Natural;
8468 end record;
8469 My_String : Bounded_String (Max_Size => 10);
8470
8471 In that case, the position of field "Length" depends on the size
8472 of field Str, which itself depends on the value of the Max_Size
8473 discriminant. In order to fix the type of variable My_String,
8474 we need to fix the type of field Str. Therefore, fixing a variant
8475 record requires us to fix each of its components.
8476
8477 However, if a component does not have a dynamic size, the component
8478 should not be fixed. In particular, fields that use a PAD type
8479 should not fixed. Here is an example where this might happen
8480 (assuming type Rec above):
8481
8482 type Container (Big : Boolean) is record
8483 First : Rec;
8484 After : Integer;
8485 case Big is
8486 when True => Another : Integer;
8487 when False => null;
8488 end case;
8489 end record;
8490 My_Container : Container := (Big => False,
8491 First => (Empty => True),
8492 After => 42);
8493
8494 In that example, the compiler creates a PAD type for component First,
8495 whose size is constant, and then positions the component After just
8496 right after it. The offset of component After is therefore constant
8497 in this case.
8498
8499 The debugger computes the position of each field based on an algorithm
8500 that uses, among other things, the actual position and size of the field
8501 preceding it. Let's now imagine that the user is trying to print
8502 the value of My_Container. If the type fixing was recursive, we would
8503 end up computing the offset of field After based on the size of the
8504 fixed version of field First. And since in our example First has
8505 only one actual field, the size of the fixed type is actually smaller
8506 than the amount of space allocated to that field, and thus we would
8507 compute the wrong offset of field After.
8508
8509 To make things more complicated, we need to watch out for dynamic
8510 components of variant records (identified by the ___XVL suffix in
8511 the component name). Even if the target type is a PAD type, the size
8512 of that type might not be statically known. So the PAD type needs
8513 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8514 we might end up with the wrong size for our component. This can be
8515 observed with the following type declarations:
8516
8517 type Octal is new Integer range 0 .. 7;
8518 type Octal_Array is array (Positive range <>) of Octal;
8519 pragma Pack (Octal_Array);
8520
8521 type Octal_Buffer (Size : Positive) is record
8522 Buffer : Octal_Array (1 .. Size);
8523 Length : Integer;
8524 end record;
8525
8526 In that case, Buffer is a PAD type whose size is unset and needs
8527 to be computed by fixing the unwrapped type.
8528
8529 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8530 ----------------------------------------------------------
8531
8532 Lastly, when should the sub-elements of an entity that remained unfixed
8533 thus far, be actually fixed?
8534
8535 The answer is: Only when referencing that element. For instance
8536 when selecting one component of a record, this specific component
8537 should be fixed at that point in time. Or when printing the value
8538 of a record, each component should be fixed before its value gets
8539 printed. Similarly for arrays, the element of the array should be
8540 fixed when printing each element of the array, or when extracting
8541 one element out of that array. On the other hand, fixing should
8542 not be performed on the elements when taking a slice of an array!
8543
8544 Note that one of the side-effects of miscomputing the offset and
8545 size of each field is that we end up also miscomputing the size
8546 of the containing type. This can have adverse results when computing
8547 the value of an entity. GDB fetches the value of an entity based
8548 on the size of its type, and thus a wrong size causes GDB to fetch
8549 the wrong amount of memory. In the case where the computed size is
8550 too small, GDB fetches too little data to print the value of our
8551 entiry. Results in this case as unpredicatble, as we usually read
8552 past the buffer containing the data =:-o. */
8553
8554 /* Implement the evaluate_exp routine in the exp_descriptor structure
8555 for the Ada language. */
8556
8557 static struct value *
8558 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8559 int *pos, enum noside noside)
8560 {
8561 enum exp_opcode op;
8562 int tem, tem2, tem3;
8563 int pc;
8564 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8565 struct type *type;
8566 int nargs, oplen;
8567 struct value **argvec;
8568
8569 pc = *pos;
8570 *pos += 1;
8571 op = exp->elts[pc].opcode;
8572
8573 switch (op)
8574 {
8575 default:
8576 *pos -= 1;
8577 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8578 arg1 = unwrap_value (arg1);
8579
8580 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8581 then we need to perform the conversion manually, because
8582 evaluate_subexp_standard doesn't do it. This conversion is
8583 necessary in Ada because the different kinds of float/fixed
8584 types in Ada have different representations.
8585
8586 Similarly, we need to perform the conversion from OP_LONG
8587 ourselves. */
8588 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8589 arg1 = ada_value_cast (expect_type, arg1, noside);
8590
8591 return arg1;
8592
8593 case OP_STRING:
8594 {
8595 struct value *result;
8596 *pos -= 1;
8597 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8598 /* The result type will have code OP_STRING, bashed there from
8599 OP_ARRAY. Bash it back. */
8600 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8601 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8602 return result;
8603 }
8604
8605 case UNOP_CAST:
8606 (*pos) += 2;
8607 type = exp->elts[pc + 1].type;
8608 arg1 = evaluate_subexp (type, exp, pos, noside);
8609 if (noside == EVAL_SKIP)
8610 goto nosideret;
8611 arg1 = ada_value_cast (type, arg1, noside);
8612 return arg1;
8613
8614 case UNOP_QUAL:
8615 (*pos) += 2;
8616 type = exp->elts[pc + 1].type;
8617 return ada_evaluate_subexp (type, exp, pos, noside);
8618
8619 case BINOP_ASSIGN:
8620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8622 {
8623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8625 return arg1;
8626 return ada_value_assign (arg1, arg1);
8627 }
8628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8629 except if the lhs of our assignment is a convenience variable.
8630 In the case of assigning to a convenience variable, the lhs
8631 should be exactly the result of the evaluation of the rhs. */
8632 type = value_type (arg1);
8633 if (VALUE_LVAL (arg1) == lval_internalvar)
8634 type = NULL;
8635 arg2 = evaluate_subexp (type, exp, pos, noside);
8636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8637 return arg1;
8638 if (ada_is_fixed_point_type (value_type (arg1)))
8639 arg2 = cast_to_fixed (value_type (arg1), arg2);
8640 else if (ada_is_fixed_point_type (value_type (arg2)))
8641 error
8642 (_("Fixed-point values must be assigned to fixed-point variables"));
8643 else
8644 arg2 = coerce_for_assign (value_type (arg1), arg2);
8645 return ada_value_assign (arg1, arg2);
8646
8647 case BINOP_ADD:
8648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8650 if (noside == EVAL_SKIP)
8651 goto nosideret;
8652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8653 return (value_from_longest
8654 (value_type (arg1),
8655 value_as_long (arg1) + value_as_long (arg2)));
8656 if ((ada_is_fixed_point_type (value_type (arg1))
8657 || ada_is_fixed_point_type (value_type (arg2)))
8658 && value_type (arg1) != value_type (arg2))
8659 error (_("Operands of fixed-point addition must have the same type"));
8660 /* Do the addition, and cast the result to the type of the first
8661 argument. We cannot cast the result to a reference type, so if
8662 ARG1 is a reference type, find its underlying type. */
8663 type = value_type (arg1);
8664 while (TYPE_CODE (type) == TYPE_CODE_REF)
8665 type = TYPE_TARGET_TYPE (type);
8666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8667 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8668
8669 case BINOP_SUB:
8670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8672 if (noside == EVAL_SKIP)
8673 goto nosideret;
8674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8675 return (value_from_longest
8676 (value_type (arg1),
8677 value_as_long (arg1) - value_as_long (arg2)));
8678 if ((ada_is_fixed_point_type (value_type (arg1))
8679 || ada_is_fixed_point_type (value_type (arg2)))
8680 && value_type (arg1) != value_type (arg2))
8681 error (_("Operands of fixed-point subtraction must have the same type"));
8682 /* Do the substraction, and cast the result to the type of the first
8683 argument. We cannot cast the result to a reference type, so if
8684 ARG1 is a reference type, find its underlying type. */
8685 type = value_type (arg1);
8686 while (TYPE_CODE (type) == TYPE_CODE_REF)
8687 type = TYPE_TARGET_TYPE (type);
8688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8689 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8690
8691 case BINOP_MUL:
8692 case BINOP_DIV:
8693 case BINOP_REM:
8694 case BINOP_MOD:
8695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8697 if (noside == EVAL_SKIP)
8698 goto nosideret;
8699 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 {
8701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8702 return value_zero (value_type (arg1), not_lval);
8703 }
8704 else
8705 {
8706 type = builtin_type (exp->gdbarch)->builtin_double;
8707 if (ada_is_fixed_point_type (value_type (arg1)))
8708 arg1 = cast_from_fixed (type, arg1);
8709 if (ada_is_fixed_point_type (value_type (arg2)))
8710 arg2 = cast_from_fixed (type, arg2);
8711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8712 return ada_value_binop (arg1, arg2, op);
8713 }
8714
8715 case BINOP_EQUAL:
8716 case BINOP_NOTEQUAL:
8717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8718 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8719 if (noside == EVAL_SKIP)
8720 goto nosideret;
8721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8722 tem = 0;
8723 else
8724 {
8725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8726 tem = ada_value_equal (arg1, arg2);
8727 }
8728 if (op == BINOP_NOTEQUAL)
8729 tem = !tem;
8730 type = language_bool_type (exp->language_defn, exp->gdbarch);
8731 return value_from_longest (type, (LONGEST) tem);
8732
8733 case UNOP_NEG:
8734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8735 if (noside == EVAL_SKIP)
8736 goto nosideret;
8737 else if (ada_is_fixed_point_type (value_type (arg1)))
8738 return value_cast (value_type (arg1), value_neg (arg1));
8739 else
8740 {
8741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8742 return value_neg (arg1);
8743 }
8744
8745 case BINOP_LOGICAL_AND:
8746 case BINOP_LOGICAL_OR:
8747 case UNOP_LOGICAL_NOT:
8748 {
8749 struct value *val;
8750
8751 *pos -= 1;
8752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8753 type = language_bool_type (exp->language_defn, exp->gdbarch);
8754 return value_cast (type, val);
8755 }
8756
8757 case BINOP_BITWISE_AND:
8758 case BINOP_BITWISE_IOR:
8759 case BINOP_BITWISE_XOR:
8760 {
8761 struct value *val;
8762
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8764 *pos = pc;
8765 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8766
8767 return value_cast (value_type (arg1), val);
8768 }
8769
8770 case OP_VAR_VALUE:
8771 *pos -= 1;
8772
8773 if (noside == EVAL_SKIP)
8774 {
8775 *pos += 4;
8776 goto nosideret;
8777 }
8778 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8779 /* Only encountered when an unresolved symbol occurs in a
8780 context other than a function call, in which case, it is
8781 invalid. */
8782 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8783 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8784 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8785 {
8786 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8787 /* Check to see if this is a tagged type. We also need to handle
8788 the case where the type is a reference to a tagged type, but
8789 we have to be careful to exclude pointers to tagged types.
8790 The latter should be shown as usual (as a pointer), whereas
8791 a reference should mostly be transparent to the user. */
8792 if (ada_is_tagged_type (type, 0)
8793 || (TYPE_CODE(type) == TYPE_CODE_REF
8794 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8795 {
8796 /* Tagged types are a little special in the fact that the real
8797 type is dynamic and can only be determined by inspecting the
8798 object's tag. This means that we need to get the object's
8799 value first (EVAL_NORMAL) and then extract the actual object
8800 type from its tag.
8801
8802 Note that we cannot skip the final step where we extract
8803 the object type from its tag, because the EVAL_NORMAL phase
8804 results in dynamic components being resolved into fixed ones.
8805 This can cause problems when trying to print the type
8806 description of tagged types whose parent has a dynamic size:
8807 We use the type name of the "_parent" component in order
8808 to print the name of the ancestor type in the type description.
8809 If that component had a dynamic size, the resolution into
8810 a fixed type would result in the loss of that type name,
8811 thus preventing us from printing the name of the ancestor
8812 type in the type description. */
8813 struct type *actual_type;
8814
8815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8816 actual_type = type_from_tag (ada_value_tag (arg1));
8817 if (actual_type == NULL)
8818 /* If, for some reason, we were unable to determine
8819 the actual type from the tag, then use the static
8820 approximation that we just computed as a fallback.
8821 This can happen if the debugging information is
8822 incomplete, for instance. */
8823 actual_type = type;
8824
8825 return value_zero (actual_type, not_lval);
8826 }
8827
8828 *pos += 4;
8829 return value_zero
8830 (to_static_fixed_type
8831 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8832 not_lval);
8833 }
8834 else
8835 {
8836 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8837 arg1 = unwrap_value (arg1);
8838 return ada_to_fixed_value (arg1);
8839 }
8840
8841 case OP_FUNCALL:
8842 (*pos) += 2;
8843
8844 /* Allocate arg vector, including space for the function to be
8845 called in argvec[0] and a terminating NULL. */
8846 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8847 argvec =
8848 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8849
8850 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8851 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8852 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8853 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8854 else
8855 {
8856 for (tem = 0; tem <= nargs; tem += 1)
8857 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8858 argvec[tem] = 0;
8859
8860 if (noside == EVAL_SKIP)
8861 goto nosideret;
8862 }
8863
8864 if (ada_is_constrained_packed_array_type
8865 (desc_base_type (value_type (argvec[0]))))
8866 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8867 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8868 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8869 /* This is a packed array that has already been fixed, and
8870 therefore already coerced to a simple array. Nothing further
8871 to do. */
8872 ;
8873 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8874 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8875 && VALUE_LVAL (argvec[0]) == lval_memory))
8876 argvec[0] = value_addr (argvec[0]);
8877
8878 type = ada_check_typedef (value_type (argvec[0]));
8879 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8880 {
8881 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8882 {
8883 case TYPE_CODE_FUNC:
8884 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8885 break;
8886 case TYPE_CODE_ARRAY:
8887 break;
8888 case TYPE_CODE_STRUCT:
8889 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8890 argvec[0] = ada_value_ind (argvec[0]);
8891 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8892 break;
8893 default:
8894 error (_("cannot subscript or call something of type `%s'"),
8895 ada_type_name (value_type (argvec[0])));
8896 break;
8897 }
8898 }
8899
8900 switch (TYPE_CODE (type))
8901 {
8902 case TYPE_CODE_FUNC:
8903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8904 return allocate_value (TYPE_TARGET_TYPE (type));
8905 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8906 case TYPE_CODE_STRUCT:
8907 {
8908 int arity;
8909
8910 arity = ada_array_arity (type);
8911 type = ada_array_element_type (type, nargs);
8912 if (type == NULL)
8913 error (_("cannot subscript or call a record"));
8914 if (arity != nargs)
8915 error (_("wrong number of subscripts; expecting %d"), arity);
8916 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8917 return value_zero (ada_aligned_type (type), lval_memory);
8918 return
8919 unwrap_value (ada_value_subscript
8920 (argvec[0], nargs, argvec + 1));
8921 }
8922 case TYPE_CODE_ARRAY:
8923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8924 {
8925 type = ada_array_element_type (type, nargs);
8926 if (type == NULL)
8927 error (_("element type of array unknown"));
8928 else
8929 return value_zero (ada_aligned_type (type), lval_memory);
8930 }
8931 return
8932 unwrap_value (ada_value_subscript
8933 (ada_coerce_to_simple_array (argvec[0]),
8934 nargs, argvec + 1));
8935 case TYPE_CODE_PTR: /* Pointer to array */
8936 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8938 {
8939 type = ada_array_element_type (type, nargs);
8940 if (type == NULL)
8941 error (_("element type of array unknown"));
8942 else
8943 return value_zero (ada_aligned_type (type), lval_memory);
8944 }
8945 return
8946 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8947 nargs, argvec + 1));
8948
8949 default:
8950 error (_("Attempt to index or call something other than an "
8951 "array or function"));
8952 }
8953
8954 case TERNOP_SLICE:
8955 {
8956 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8957 struct value *low_bound_val =
8958 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8959 struct value *high_bound_val =
8960 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8961 LONGEST low_bound;
8962 LONGEST high_bound;
8963 low_bound_val = coerce_ref (low_bound_val);
8964 high_bound_val = coerce_ref (high_bound_val);
8965 low_bound = pos_atr (low_bound_val);
8966 high_bound = pos_atr (high_bound_val);
8967
8968 if (noside == EVAL_SKIP)
8969 goto nosideret;
8970
8971 /* If this is a reference to an aligner type, then remove all
8972 the aligners. */
8973 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8974 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8975 TYPE_TARGET_TYPE (value_type (array)) =
8976 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8977
8978 if (ada_is_constrained_packed_array_type (value_type (array)))
8979 error (_("cannot slice a packed array"));
8980
8981 /* If this is a reference to an array or an array lvalue,
8982 convert to a pointer. */
8983 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8984 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8985 && VALUE_LVAL (array) == lval_memory))
8986 array = value_addr (array);
8987
8988 if (noside == EVAL_AVOID_SIDE_EFFECTS
8989 && ada_is_array_descriptor_type (ada_check_typedef
8990 (value_type (array))))
8991 return empty_array (ada_type_of_array (array, 0), low_bound);
8992
8993 array = ada_coerce_to_simple_array_ptr (array);
8994
8995 /* If we have more than one level of pointer indirection,
8996 dereference the value until we get only one level. */
8997 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8998 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8999 == TYPE_CODE_PTR))
9000 array = value_ind (array);
9001
9002 /* Make sure we really do have an array type before going further,
9003 to avoid a SEGV when trying to get the index type or the target
9004 type later down the road if the debug info generated by
9005 the compiler is incorrect or incomplete. */
9006 if (!ada_is_simple_array_type (value_type (array)))
9007 error (_("cannot take slice of non-array"));
9008
9009 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9010 {
9011 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9012 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9013 low_bound);
9014 else
9015 {
9016 struct type *arr_type0 =
9017 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9018 NULL, 1);
9019 return ada_value_slice_from_ptr (array, arr_type0,
9020 longest_to_int (low_bound),
9021 longest_to_int (high_bound));
9022 }
9023 }
9024 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9025 return array;
9026 else if (high_bound < low_bound)
9027 return empty_array (value_type (array), low_bound);
9028 else
9029 return ada_value_slice (array, longest_to_int (low_bound),
9030 longest_to_int (high_bound));
9031 }
9032
9033 case UNOP_IN_RANGE:
9034 (*pos) += 2;
9035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9036 type = check_typedef (exp->elts[pc + 1].type);
9037
9038 if (noside == EVAL_SKIP)
9039 goto nosideret;
9040
9041 switch (TYPE_CODE (type))
9042 {
9043 default:
9044 lim_warning (_("Membership test incompletely implemented; "
9045 "always returns true"));
9046 type = language_bool_type (exp->language_defn, exp->gdbarch);
9047 return value_from_longest (type, (LONGEST) 1);
9048
9049 case TYPE_CODE_RANGE:
9050 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9051 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9053 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9054 type = language_bool_type (exp->language_defn, exp->gdbarch);
9055 return
9056 value_from_longest (type,
9057 (value_less (arg1, arg3)
9058 || value_equal (arg1, arg3))
9059 && (value_less (arg2, arg1)
9060 || value_equal (arg2, arg1)));
9061 }
9062
9063 case BINOP_IN_BOUNDS:
9064 (*pos) += 2;
9065 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9066 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9067
9068 if (noside == EVAL_SKIP)
9069 goto nosideret;
9070
9071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 {
9073 type = language_bool_type (exp->language_defn, exp->gdbarch);
9074 return value_zero (type, not_lval);
9075 }
9076
9077 tem = longest_to_int (exp->elts[pc + 1].longconst);
9078
9079 type = ada_index_type (value_type (arg2), tem, "range");
9080 if (!type)
9081 type = value_type (arg1);
9082
9083 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9084 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9085
9086 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9087 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9088 type = language_bool_type (exp->language_defn, exp->gdbarch);
9089 return
9090 value_from_longest (type,
9091 (value_less (arg1, arg3)
9092 || value_equal (arg1, arg3))
9093 && (value_less (arg2, arg1)
9094 || value_equal (arg2, arg1)));
9095
9096 case TERNOP_IN_RANGE:
9097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9098 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9099 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100
9101 if (noside == EVAL_SKIP)
9102 goto nosideret;
9103
9104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9105 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9106 type = language_bool_type (exp->language_defn, exp->gdbarch);
9107 return
9108 value_from_longest (type,
9109 (value_less (arg1, arg3)
9110 || value_equal (arg1, arg3))
9111 && (value_less (arg2, arg1)
9112 || value_equal (arg2, arg1)));
9113
9114 case OP_ATR_FIRST:
9115 case OP_ATR_LAST:
9116 case OP_ATR_LENGTH:
9117 {
9118 struct type *type_arg;
9119 if (exp->elts[*pos].opcode == OP_TYPE)
9120 {
9121 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9122 arg1 = NULL;
9123 type_arg = check_typedef (exp->elts[pc + 2].type);
9124 }
9125 else
9126 {
9127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9128 type_arg = NULL;
9129 }
9130
9131 if (exp->elts[*pos].opcode != OP_LONG)
9132 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9133 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9134 *pos += 4;
9135
9136 if (noside == EVAL_SKIP)
9137 goto nosideret;
9138
9139 if (type_arg == NULL)
9140 {
9141 arg1 = ada_coerce_ref (arg1);
9142
9143 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9144 arg1 = ada_coerce_to_simple_array (arg1);
9145
9146 type = ada_index_type (value_type (arg1), tem,
9147 ada_attribute_name (op));
9148 if (type == NULL)
9149 type = builtin_type (exp->gdbarch)->builtin_int;
9150
9151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9152 return allocate_value (type);
9153
9154 switch (op)
9155 {
9156 default: /* Should never happen. */
9157 error (_("unexpected attribute encountered"));
9158 case OP_ATR_FIRST:
9159 return value_from_longest
9160 (type, ada_array_bound (arg1, tem, 0));
9161 case OP_ATR_LAST:
9162 return value_from_longest
9163 (type, ada_array_bound (arg1, tem, 1));
9164 case OP_ATR_LENGTH:
9165 return value_from_longest
9166 (type, ada_array_length (arg1, tem));
9167 }
9168 }
9169 else if (discrete_type_p (type_arg))
9170 {
9171 struct type *range_type;
9172 char *name = ada_type_name (type_arg);
9173 range_type = NULL;
9174 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9175 range_type = to_fixed_range_type (name, NULL, type_arg);
9176 if (range_type == NULL)
9177 range_type = type_arg;
9178 switch (op)
9179 {
9180 default:
9181 error (_("unexpected attribute encountered"));
9182 case OP_ATR_FIRST:
9183 return value_from_longest
9184 (range_type, ada_discrete_type_low_bound (range_type));
9185 case OP_ATR_LAST:
9186 return value_from_longest
9187 (range_type, ada_discrete_type_high_bound (range_type));
9188 case OP_ATR_LENGTH:
9189 error (_("the 'length attribute applies only to array types"));
9190 }
9191 }
9192 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9193 error (_("unimplemented type attribute"));
9194 else
9195 {
9196 LONGEST low, high;
9197
9198 if (ada_is_constrained_packed_array_type (type_arg))
9199 type_arg = decode_constrained_packed_array_type (type_arg);
9200
9201 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9202 if (type == NULL)
9203 type = builtin_type (exp->gdbarch)->builtin_int;
9204
9205 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9206 return allocate_value (type);
9207
9208 switch (op)
9209 {
9210 default:
9211 error (_("unexpected attribute encountered"));
9212 case OP_ATR_FIRST:
9213 low = ada_array_bound_from_type (type_arg, tem, 0);
9214 return value_from_longest (type, low);
9215 case OP_ATR_LAST:
9216 high = ada_array_bound_from_type (type_arg, tem, 1);
9217 return value_from_longest (type, high);
9218 case OP_ATR_LENGTH:
9219 low = ada_array_bound_from_type (type_arg, tem, 0);
9220 high = ada_array_bound_from_type (type_arg, tem, 1);
9221 return value_from_longest (type, high - low + 1);
9222 }
9223 }
9224 }
9225
9226 case OP_ATR_TAG:
9227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9228 if (noside == EVAL_SKIP)
9229 goto nosideret;
9230
9231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9232 return value_zero (ada_tag_type (arg1), not_lval);
9233
9234 return ada_value_tag (arg1);
9235
9236 case OP_ATR_MIN:
9237 case OP_ATR_MAX:
9238 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9241 if (noside == EVAL_SKIP)
9242 goto nosideret;
9243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9244 return value_zero (value_type (arg1), not_lval);
9245 else
9246 {
9247 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9248 return value_binop (arg1, arg2,
9249 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9250 }
9251
9252 case OP_ATR_MODULUS:
9253 {
9254 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9255 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9256
9257 if (noside == EVAL_SKIP)
9258 goto nosideret;
9259
9260 if (!ada_is_modular_type (type_arg))
9261 error (_("'modulus must be applied to modular type"));
9262
9263 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9264 ada_modulus (type_arg));
9265 }
9266
9267
9268 case OP_ATR_POS:
9269 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9271 if (noside == EVAL_SKIP)
9272 goto nosideret;
9273 type = builtin_type (exp->gdbarch)->builtin_int;
9274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9275 return value_zero (type, not_lval);
9276 else
9277 return value_pos_atr (type, arg1);
9278
9279 case OP_ATR_SIZE:
9280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9281 type = value_type (arg1);
9282
9283 /* If the argument is a reference, then dereference its type, since
9284 the user is really asking for the size of the actual object,
9285 not the size of the pointer. */
9286 if (TYPE_CODE (type) == TYPE_CODE_REF)
9287 type = TYPE_TARGET_TYPE (type);
9288
9289 if (noside == EVAL_SKIP)
9290 goto nosideret;
9291 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9292 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9293 else
9294 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9295 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9296
9297 case OP_ATR_VAL:
9298 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9300 type = exp->elts[pc + 2].type;
9301 if (noside == EVAL_SKIP)
9302 goto nosideret;
9303 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9304 return value_zero (type, not_lval);
9305 else
9306 return value_val_atr (type, arg1);
9307
9308 case BINOP_EXP:
9309 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9310 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9311 if (noside == EVAL_SKIP)
9312 goto nosideret;
9313 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9314 return value_zero (value_type (arg1), not_lval);
9315 else
9316 {
9317 /* For integer exponentiation operations,
9318 only promote the first argument. */
9319 if (is_integral_type (value_type (arg2)))
9320 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9321 else
9322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9323
9324 return value_binop (arg1, arg2, op);
9325 }
9326
9327 case UNOP_PLUS:
9328 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9329 if (noside == EVAL_SKIP)
9330 goto nosideret;
9331 else
9332 return arg1;
9333
9334 case UNOP_ABS:
9335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9336 if (noside == EVAL_SKIP)
9337 goto nosideret;
9338 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9339 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9340 return value_neg (arg1);
9341 else
9342 return arg1;
9343
9344 case UNOP_IND:
9345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9346 if (noside == EVAL_SKIP)
9347 goto nosideret;
9348 type = ada_check_typedef (value_type (arg1));
9349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9350 {
9351 if (ada_is_array_descriptor_type (type))
9352 /* GDB allows dereferencing GNAT array descriptors. */
9353 {
9354 struct type *arrType = ada_type_of_array (arg1, 0);
9355 if (arrType == NULL)
9356 error (_("Attempt to dereference null array pointer."));
9357 return value_at_lazy (arrType, 0);
9358 }
9359 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9360 || TYPE_CODE (type) == TYPE_CODE_REF
9361 /* In C you can dereference an array to get the 1st elt. */
9362 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9363 {
9364 type = to_static_fixed_type
9365 (ada_aligned_type
9366 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9367 check_size (type);
9368 return value_zero (type, lval_memory);
9369 }
9370 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9371 {
9372 /* GDB allows dereferencing an int. */
9373 if (expect_type == NULL)
9374 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9375 lval_memory);
9376 else
9377 {
9378 expect_type =
9379 to_static_fixed_type (ada_aligned_type (expect_type));
9380 return value_zero (expect_type, lval_memory);
9381 }
9382 }
9383 else
9384 error (_("Attempt to take contents of a non-pointer value."));
9385 }
9386 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9387 type = ada_check_typedef (value_type (arg1));
9388
9389 if (TYPE_CODE (type) == TYPE_CODE_INT)
9390 /* GDB allows dereferencing an int. If we were given
9391 the expect_type, then use that as the target type.
9392 Otherwise, assume that the target type is an int. */
9393 {
9394 if (expect_type != NULL)
9395 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9396 arg1));
9397 else
9398 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9399 (CORE_ADDR) value_as_address (arg1));
9400 }
9401
9402 if (ada_is_array_descriptor_type (type))
9403 /* GDB allows dereferencing GNAT array descriptors. */
9404 return ada_coerce_to_simple_array (arg1);
9405 else
9406 return ada_value_ind (arg1);
9407
9408 case STRUCTOP_STRUCT:
9409 tem = longest_to_int (exp->elts[pc + 1].longconst);
9410 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9412 if (noside == EVAL_SKIP)
9413 goto nosideret;
9414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9415 {
9416 struct type *type1 = value_type (arg1);
9417 if (ada_is_tagged_type (type1, 1))
9418 {
9419 type = ada_lookup_struct_elt_type (type1,
9420 &exp->elts[pc + 2].string,
9421 1, 1, NULL);
9422 if (type == NULL)
9423 /* In this case, we assume that the field COULD exist
9424 in some extension of the type. Return an object of
9425 "type" void, which will match any formal
9426 (see ada_type_match). */
9427 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9428 lval_memory);
9429 }
9430 else
9431 type =
9432 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9433 0, NULL);
9434
9435 return value_zero (ada_aligned_type (type), lval_memory);
9436 }
9437 else
9438 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9439 arg1 = unwrap_value (arg1);
9440 return ada_to_fixed_value (arg1);
9441
9442 case OP_TYPE:
9443 /* The value is not supposed to be used. This is here to make it
9444 easier to accommodate expressions that contain types. */
9445 (*pos) += 2;
9446 if (noside == EVAL_SKIP)
9447 goto nosideret;
9448 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9449 return allocate_value (exp->elts[pc + 1].type);
9450 else
9451 error (_("Attempt to use a type name as an expression"));
9452
9453 case OP_AGGREGATE:
9454 case OP_CHOICES:
9455 case OP_OTHERS:
9456 case OP_DISCRETE_RANGE:
9457 case OP_POSITIONAL:
9458 case OP_NAME:
9459 if (noside == EVAL_NORMAL)
9460 switch (op)
9461 {
9462 case OP_NAME:
9463 error (_("Undefined name, ambiguous name, or renaming used in "
9464 "component association: %s."), &exp->elts[pc+2].string);
9465 case OP_AGGREGATE:
9466 error (_("Aggregates only allowed on the right of an assignment"));
9467 default:
9468 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9469 }
9470
9471 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9472 *pos += oplen - 1;
9473 for (tem = 0; tem < nargs; tem += 1)
9474 ada_evaluate_subexp (NULL, exp, pos, noside);
9475 goto nosideret;
9476 }
9477
9478 nosideret:
9479 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9480 }
9481 \f
9482
9483 /* Fixed point */
9484
9485 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9486 type name that encodes the 'small and 'delta information.
9487 Otherwise, return NULL. */
9488
9489 static const char *
9490 fixed_type_info (struct type *type)
9491 {
9492 const char *name = ada_type_name (type);
9493 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9494
9495 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9496 {
9497 const char *tail = strstr (name, "___XF_");
9498 if (tail == NULL)
9499 return NULL;
9500 else
9501 return tail + 5;
9502 }
9503 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9504 return fixed_type_info (TYPE_TARGET_TYPE (type));
9505 else
9506 return NULL;
9507 }
9508
9509 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9510
9511 int
9512 ada_is_fixed_point_type (struct type *type)
9513 {
9514 return fixed_type_info (type) != NULL;
9515 }
9516
9517 /* Return non-zero iff TYPE represents a System.Address type. */
9518
9519 int
9520 ada_is_system_address_type (struct type *type)
9521 {
9522 return (TYPE_NAME (type)
9523 && strcmp (TYPE_NAME (type), "system__address") == 0);
9524 }
9525
9526 /* Assuming that TYPE is the representation of an Ada fixed-point
9527 type, return its delta, or -1 if the type is malformed and the
9528 delta cannot be determined. */
9529
9530 DOUBLEST
9531 ada_delta (struct type *type)
9532 {
9533 const char *encoding = fixed_type_info (type);
9534 DOUBLEST num, den;
9535
9536 /* Strictly speaking, num and den are encoded as integer. However,
9537 they may not fit into a long, and they will have to be converted
9538 to DOUBLEST anyway. So scan them as DOUBLEST. */
9539 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9540 &num, &den) < 2)
9541 return -1.0;
9542 else
9543 return num / den;
9544 }
9545
9546 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9547 factor ('SMALL value) associated with the type. */
9548
9549 static DOUBLEST
9550 scaling_factor (struct type *type)
9551 {
9552 const char *encoding = fixed_type_info (type);
9553 DOUBLEST num0, den0, num1, den1;
9554 int n;
9555
9556 /* Strictly speaking, num's and den's are encoded as integer. However,
9557 they may not fit into a long, and they will have to be converted
9558 to DOUBLEST anyway. So scan them as DOUBLEST. */
9559 n = sscanf (encoding,
9560 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9561 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9562 &num0, &den0, &num1, &den1);
9563
9564 if (n < 2)
9565 return 1.0;
9566 else if (n == 4)
9567 return num1 / den1;
9568 else
9569 return num0 / den0;
9570 }
9571
9572
9573 /* Assuming that X is the representation of a value of fixed-point
9574 type TYPE, return its floating-point equivalent. */
9575
9576 DOUBLEST
9577 ada_fixed_to_float (struct type *type, LONGEST x)
9578 {
9579 return (DOUBLEST) x *scaling_factor (type);
9580 }
9581
9582 /* The representation of a fixed-point value of type TYPE
9583 corresponding to the value X. */
9584
9585 LONGEST
9586 ada_float_to_fixed (struct type *type, DOUBLEST x)
9587 {
9588 return (LONGEST) (x / scaling_factor (type) + 0.5);
9589 }
9590
9591 \f
9592
9593 /* Range types */
9594
9595 /* Scan STR beginning at position K for a discriminant name, and
9596 return the value of that discriminant field of DVAL in *PX. If
9597 PNEW_K is not null, put the position of the character beyond the
9598 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9599 not alter *PX and *PNEW_K if unsuccessful. */
9600
9601 static int
9602 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9603 int *pnew_k)
9604 {
9605 static char *bound_buffer = NULL;
9606 static size_t bound_buffer_len = 0;
9607 char *bound;
9608 char *pend;
9609 struct value *bound_val;
9610
9611 if (dval == NULL || str == NULL || str[k] == '\0')
9612 return 0;
9613
9614 pend = strstr (str + k, "__");
9615 if (pend == NULL)
9616 {
9617 bound = str + k;
9618 k += strlen (bound);
9619 }
9620 else
9621 {
9622 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9623 bound = bound_buffer;
9624 strncpy (bound_buffer, str + k, pend - (str + k));
9625 bound[pend - (str + k)] = '\0';
9626 k = pend - str;
9627 }
9628
9629 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9630 if (bound_val == NULL)
9631 return 0;
9632
9633 *px = value_as_long (bound_val);
9634 if (pnew_k != NULL)
9635 *pnew_k = k;
9636 return 1;
9637 }
9638
9639 /* Value of variable named NAME in the current environment. If
9640 no such variable found, then if ERR_MSG is null, returns 0, and
9641 otherwise causes an error with message ERR_MSG. */
9642
9643 static struct value *
9644 get_var_value (char *name, char *err_msg)
9645 {
9646 struct ada_symbol_info *syms;
9647 int nsyms;
9648
9649 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9650 &syms);
9651
9652 if (nsyms != 1)
9653 {
9654 if (err_msg == NULL)
9655 return 0;
9656 else
9657 error (("%s"), err_msg);
9658 }
9659
9660 return value_of_variable (syms[0].sym, syms[0].block);
9661 }
9662
9663 /* Value of integer variable named NAME in the current environment. If
9664 no such variable found, returns 0, and sets *FLAG to 0. If
9665 successful, sets *FLAG to 1. */
9666
9667 LONGEST
9668 get_int_var_value (char *name, int *flag)
9669 {
9670 struct value *var_val = get_var_value (name, 0);
9671
9672 if (var_val == 0)
9673 {
9674 if (flag != NULL)
9675 *flag = 0;
9676 return 0;
9677 }
9678 else
9679 {
9680 if (flag != NULL)
9681 *flag = 1;
9682 return value_as_long (var_val);
9683 }
9684 }
9685
9686
9687 /* Return a range type whose base type is that of the range type named
9688 NAME in the current environment, and whose bounds are calculated
9689 from NAME according to the GNAT range encoding conventions.
9690 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9691 corresponding range type from debug information; fall back to using it
9692 if symbol lookup fails. If a new type must be created, allocate it
9693 like ORIG_TYPE was. The bounds information, in general, is encoded
9694 in NAME, the base type given in the named range type. */
9695
9696 static struct type *
9697 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9698 {
9699 struct type *raw_type = ada_find_any_type (name);
9700 struct type *base_type;
9701 char *subtype_info;
9702
9703 /* Fall back to the original type if symbol lookup failed. */
9704 if (raw_type == NULL)
9705 raw_type = orig_type;
9706
9707 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9708 base_type = TYPE_TARGET_TYPE (raw_type);
9709 else
9710 base_type = raw_type;
9711
9712 subtype_info = strstr (name, "___XD");
9713 if (subtype_info == NULL)
9714 {
9715 LONGEST L = ada_discrete_type_low_bound (raw_type);
9716 LONGEST U = ada_discrete_type_high_bound (raw_type);
9717 if (L < INT_MIN || U > INT_MAX)
9718 return raw_type;
9719 else
9720 return create_range_type (alloc_type_copy (orig_type), raw_type,
9721 ada_discrete_type_low_bound (raw_type),
9722 ada_discrete_type_high_bound (raw_type));
9723 }
9724 else
9725 {
9726 static char *name_buf = NULL;
9727 static size_t name_len = 0;
9728 int prefix_len = subtype_info - name;
9729 LONGEST L, U;
9730 struct type *type;
9731 char *bounds_str;
9732 int n;
9733
9734 GROW_VECT (name_buf, name_len, prefix_len + 5);
9735 strncpy (name_buf, name, prefix_len);
9736 name_buf[prefix_len] = '\0';
9737
9738 subtype_info += 5;
9739 bounds_str = strchr (subtype_info, '_');
9740 n = 1;
9741
9742 if (*subtype_info == 'L')
9743 {
9744 if (!ada_scan_number (bounds_str, n, &L, &n)
9745 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9746 return raw_type;
9747 if (bounds_str[n] == '_')
9748 n += 2;
9749 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9750 n += 1;
9751 subtype_info += 1;
9752 }
9753 else
9754 {
9755 int ok;
9756 strcpy (name_buf + prefix_len, "___L");
9757 L = get_int_var_value (name_buf, &ok);
9758 if (!ok)
9759 {
9760 lim_warning (_("Unknown lower bound, using 1."));
9761 L = 1;
9762 }
9763 }
9764
9765 if (*subtype_info == 'U')
9766 {
9767 if (!ada_scan_number (bounds_str, n, &U, &n)
9768 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9769 return raw_type;
9770 }
9771 else
9772 {
9773 int ok;
9774 strcpy (name_buf + prefix_len, "___U");
9775 U = get_int_var_value (name_buf, &ok);
9776 if (!ok)
9777 {
9778 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9779 U = L;
9780 }
9781 }
9782
9783 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9784 TYPE_NAME (type) = name;
9785 return type;
9786 }
9787 }
9788
9789 /* True iff NAME is the name of a range type. */
9790
9791 int
9792 ada_is_range_type_name (const char *name)
9793 {
9794 return (name != NULL && strstr (name, "___XD"));
9795 }
9796 \f
9797
9798 /* Modular types */
9799
9800 /* True iff TYPE is an Ada modular type. */
9801
9802 int
9803 ada_is_modular_type (struct type *type)
9804 {
9805 struct type *subranged_type = base_type (type);
9806
9807 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9808 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9809 && TYPE_UNSIGNED (subranged_type));
9810 }
9811
9812 /* Try to determine the lower and upper bounds of the given modular type
9813 using the type name only. Return non-zero and set L and U as the lower
9814 and upper bounds (respectively) if successful. */
9815
9816 int
9817 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9818 {
9819 char *name = ada_type_name (type);
9820 char *suffix;
9821 int k;
9822 LONGEST U;
9823
9824 if (name == NULL)
9825 return 0;
9826
9827 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9828 we are looking for static bounds, which means an __XDLU suffix.
9829 Moreover, we know that the lower bound of modular types is always
9830 zero, so the actual suffix should start with "__XDLU_0__", and
9831 then be followed by the upper bound value. */
9832 suffix = strstr (name, "__XDLU_0__");
9833 if (suffix == NULL)
9834 return 0;
9835 k = 10;
9836 if (!ada_scan_number (suffix, k, &U, NULL))
9837 return 0;
9838
9839 *modulus = (ULONGEST) U + 1;
9840 return 1;
9841 }
9842
9843 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9844
9845 ULONGEST
9846 ada_modulus (struct type *type)
9847 {
9848 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9849 }
9850 \f
9851
9852 /* Ada exception catchpoint support:
9853 ---------------------------------
9854
9855 We support 3 kinds of exception catchpoints:
9856 . catchpoints on Ada exceptions
9857 . catchpoints on unhandled Ada exceptions
9858 . catchpoints on failed assertions
9859
9860 Exceptions raised during failed assertions, or unhandled exceptions
9861 could perfectly be caught with the general catchpoint on Ada exceptions.
9862 However, we can easily differentiate these two special cases, and having
9863 the option to distinguish these two cases from the rest can be useful
9864 to zero-in on certain situations.
9865
9866 Exception catchpoints are a specialized form of breakpoint,
9867 since they rely on inserting breakpoints inside known routines
9868 of the GNAT runtime. The implementation therefore uses a standard
9869 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9870 of breakpoint_ops.
9871
9872 Support in the runtime for exception catchpoints have been changed
9873 a few times already, and these changes affect the implementation
9874 of these catchpoints. In order to be able to support several
9875 variants of the runtime, we use a sniffer that will determine
9876 the runtime variant used by the program being debugged.
9877
9878 At this time, we do not support the use of conditions on Ada exception
9879 catchpoints. The COND and COND_STRING fields are therefore set
9880 to NULL (most of the time, see below).
9881
9882 Conditions where EXP_STRING, COND, and COND_STRING are used:
9883
9884 When a user specifies the name of a specific exception in the case
9885 of catchpoints on Ada exceptions, we store the name of that exception
9886 in the EXP_STRING. We then translate this request into an actual
9887 condition stored in COND_STRING, and then parse it into an expression
9888 stored in COND. */
9889
9890 /* The different types of catchpoints that we introduced for catching
9891 Ada exceptions. */
9892
9893 enum exception_catchpoint_kind
9894 {
9895 ex_catch_exception,
9896 ex_catch_exception_unhandled,
9897 ex_catch_assert
9898 };
9899
9900 /* Ada's standard exceptions. */
9901
9902 static char *standard_exc[] = {
9903 "constraint_error",
9904 "program_error",
9905 "storage_error",
9906 "tasking_error"
9907 };
9908
9909 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9910
9911 /* A structure that describes how to support exception catchpoints
9912 for a given executable. */
9913
9914 struct exception_support_info
9915 {
9916 /* The name of the symbol to break on in order to insert
9917 a catchpoint on exceptions. */
9918 const char *catch_exception_sym;
9919
9920 /* The name of the symbol to break on in order to insert
9921 a catchpoint on unhandled exceptions. */
9922 const char *catch_exception_unhandled_sym;
9923
9924 /* The name of the symbol to break on in order to insert
9925 a catchpoint on failed assertions. */
9926 const char *catch_assert_sym;
9927
9928 /* Assuming that the inferior just triggered an unhandled exception
9929 catchpoint, this function is responsible for returning the address
9930 in inferior memory where the name of that exception is stored.
9931 Return zero if the address could not be computed. */
9932 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9933 };
9934
9935 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9936 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9937
9938 /* The following exception support info structure describes how to
9939 implement exception catchpoints with the latest version of the
9940 Ada runtime (as of 2007-03-06). */
9941
9942 static const struct exception_support_info default_exception_support_info =
9943 {
9944 "__gnat_debug_raise_exception", /* catch_exception_sym */
9945 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9946 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9947 ada_unhandled_exception_name_addr
9948 };
9949
9950 /* The following exception support info structure describes how to
9951 implement exception catchpoints with a slightly older version
9952 of the Ada runtime. */
9953
9954 static const struct exception_support_info exception_support_info_fallback =
9955 {
9956 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9957 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9958 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9959 ada_unhandled_exception_name_addr_from_raise
9960 };
9961
9962 /* For each executable, we sniff which exception info structure to use
9963 and cache it in the following global variable. */
9964
9965 static const struct exception_support_info *exception_info = NULL;
9966
9967 /* Inspect the Ada runtime and determine which exception info structure
9968 should be used to provide support for exception catchpoints.
9969
9970 This function will always set exception_info, or raise an error. */
9971
9972 static void
9973 ada_exception_support_info_sniffer (void)
9974 {
9975 struct symbol *sym;
9976
9977 /* If the exception info is already known, then no need to recompute it. */
9978 if (exception_info != NULL)
9979 return;
9980
9981 /* Check the latest (default) exception support info. */
9982 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9983 NULL, VAR_DOMAIN);
9984 if (sym != NULL)
9985 {
9986 exception_info = &default_exception_support_info;
9987 return;
9988 }
9989
9990 /* Try our fallback exception suport info. */
9991 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9992 NULL, VAR_DOMAIN);
9993 if (sym != NULL)
9994 {
9995 exception_info = &exception_support_info_fallback;
9996 return;
9997 }
9998
9999 /* Sometimes, it is normal for us to not be able to find the routine
10000 we are looking for. This happens when the program is linked with
10001 the shared version of the GNAT runtime, and the program has not been
10002 started yet. Inform the user of these two possible causes if
10003 applicable. */
10004
10005 if (ada_update_initial_language (language_unknown) != language_ada)
10006 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10007
10008 /* If the symbol does not exist, then check that the program is
10009 already started, to make sure that shared libraries have been
10010 loaded. If it is not started, this may mean that the symbol is
10011 in a shared library. */
10012
10013 if (ptid_get_pid (inferior_ptid) == 0)
10014 error (_("Unable to insert catchpoint. Try to start the program first."));
10015
10016 /* At this point, we know that we are debugging an Ada program and
10017 that the inferior has been started, but we still are not able to
10018 find the run-time symbols. That can mean that we are in
10019 configurable run time mode, or that a-except as been optimized
10020 out by the linker... In any case, at this point it is not worth
10021 supporting this feature. */
10022
10023 error (_("Cannot insert catchpoints in this configuration."));
10024 }
10025
10026 /* An observer of "executable_changed" events.
10027 Its role is to clear certain cached values that need to be recomputed
10028 each time a new executable is loaded by GDB. */
10029
10030 static void
10031 ada_executable_changed_observer (void)
10032 {
10033 /* If the executable changed, then it is possible that the Ada runtime
10034 is different. So we need to invalidate the exception support info
10035 cache. */
10036 exception_info = NULL;
10037 }
10038
10039 /* True iff FRAME is very likely to be that of a function that is
10040 part of the runtime system. This is all very heuristic, but is
10041 intended to be used as advice as to what frames are uninteresting
10042 to most users. */
10043
10044 static int
10045 is_known_support_routine (struct frame_info *frame)
10046 {
10047 struct symtab_and_line sal;
10048 char *func_name;
10049 enum language func_lang;
10050 int i;
10051
10052 /* If this code does not have any debugging information (no symtab),
10053 This cannot be any user code. */
10054
10055 find_frame_sal (frame, &sal);
10056 if (sal.symtab == NULL)
10057 return 1;
10058
10059 /* If there is a symtab, but the associated source file cannot be
10060 located, then assume this is not user code: Selecting a frame
10061 for which we cannot display the code would not be very helpful
10062 for the user. This should also take care of case such as VxWorks
10063 where the kernel has some debugging info provided for a few units. */
10064
10065 if (symtab_to_fullname (sal.symtab) == NULL)
10066 return 1;
10067
10068 /* Check the unit filename againt the Ada runtime file naming.
10069 We also check the name of the objfile against the name of some
10070 known system libraries that sometimes come with debugging info
10071 too. */
10072
10073 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10074 {
10075 re_comp (known_runtime_file_name_patterns[i]);
10076 if (re_exec (sal.symtab->filename))
10077 return 1;
10078 if (sal.symtab->objfile != NULL
10079 && re_exec (sal.symtab->objfile->name))
10080 return 1;
10081 }
10082
10083 /* Check whether the function is a GNAT-generated entity. */
10084
10085 find_frame_funname (frame, &func_name, &func_lang);
10086 if (func_name == NULL)
10087 return 1;
10088
10089 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10090 {
10091 re_comp (known_auxiliary_function_name_patterns[i]);
10092 if (re_exec (func_name))
10093 return 1;
10094 }
10095
10096 return 0;
10097 }
10098
10099 /* Find the first frame that contains debugging information and that is not
10100 part of the Ada run-time, starting from FI and moving upward. */
10101
10102 void
10103 ada_find_printable_frame (struct frame_info *fi)
10104 {
10105 for (; fi != NULL; fi = get_prev_frame (fi))
10106 {
10107 if (!is_known_support_routine (fi))
10108 {
10109 select_frame (fi);
10110 break;
10111 }
10112 }
10113
10114 }
10115
10116 /* Assuming that the inferior just triggered an unhandled exception
10117 catchpoint, return the address in inferior memory where the name
10118 of the exception is stored.
10119
10120 Return zero if the address could not be computed. */
10121
10122 static CORE_ADDR
10123 ada_unhandled_exception_name_addr (void)
10124 {
10125 return parse_and_eval_address ("e.full_name");
10126 }
10127
10128 /* Same as ada_unhandled_exception_name_addr, except that this function
10129 should be used when the inferior uses an older version of the runtime,
10130 where the exception name needs to be extracted from a specific frame
10131 several frames up in the callstack. */
10132
10133 static CORE_ADDR
10134 ada_unhandled_exception_name_addr_from_raise (void)
10135 {
10136 int frame_level;
10137 struct frame_info *fi;
10138
10139 /* To determine the name of this exception, we need to select
10140 the frame corresponding to RAISE_SYM_NAME. This frame is
10141 at least 3 levels up, so we simply skip the first 3 frames
10142 without checking the name of their associated function. */
10143 fi = get_current_frame ();
10144 for (frame_level = 0; frame_level < 3; frame_level += 1)
10145 if (fi != NULL)
10146 fi = get_prev_frame (fi);
10147
10148 while (fi != NULL)
10149 {
10150 char *func_name;
10151 enum language func_lang;
10152
10153 find_frame_funname (fi, &func_name, &func_lang);
10154 if (func_name != NULL
10155 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10156 break; /* We found the frame we were looking for... */
10157 fi = get_prev_frame (fi);
10158 }
10159
10160 if (fi == NULL)
10161 return 0;
10162
10163 select_frame (fi);
10164 return parse_and_eval_address ("id.full_name");
10165 }
10166
10167 /* Assuming the inferior just triggered an Ada exception catchpoint
10168 (of any type), return the address in inferior memory where the name
10169 of the exception is stored, if applicable.
10170
10171 Return zero if the address could not be computed, or if not relevant. */
10172
10173 static CORE_ADDR
10174 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10175 struct breakpoint *b)
10176 {
10177 switch (ex)
10178 {
10179 case ex_catch_exception:
10180 return (parse_and_eval_address ("e.full_name"));
10181 break;
10182
10183 case ex_catch_exception_unhandled:
10184 return exception_info->unhandled_exception_name_addr ();
10185 break;
10186
10187 case ex_catch_assert:
10188 return 0; /* Exception name is not relevant in this case. */
10189 break;
10190
10191 default:
10192 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10193 break;
10194 }
10195
10196 return 0; /* Should never be reached. */
10197 }
10198
10199 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10200 any error that ada_exception_name_addr_1 might cause to be thrown.
10201 When an error is intercepted, a warning with the error message is printed,
10202 and zero is returned. */
10203
10204 static CORE_ADDR
10205 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10206 struct breakpoint *b)
10207 {
10208 struct gdb_exception e;
10209 CORE_ADDR result = 0;
10210
10211 TRY_CATCH (e, RETURN_MASK_ERROR)
10212 {
10213 result = ada_exception_name_addr_1 (ex, b);
10214 }
10215
10216 if (e.reason < 0)
10217 {
10218 warning (_("failed to get exception name: %s"), e.message);
10219 return 0;
10220 }
10221
10222 return result;
10223 }
10224
10225 /* Implement the PRINT_IT method in the breakpoint_ops structure
10226 for all exception catchpoint kinds. */
10227
10228 static enum print_stop_action
10229 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10230 {
10231 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10232 char exception_name[256];
10233
10234 if (addr != 0)
10235 {
10236 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10237 exception_name [sizeof (exception_name) - 1] = '\0';
10238 }
10239
10240 ada_find_printable_frame (get_current_frame ());
10241
10242 annotate_catchpoint (b->number);
10243 switch (ex)
10244 {
10245 case ex_catch_exception:
10246 if (addr != 0)
10247 printf_filtered (_("\nCatchpoint %d, %s at "),
10248 b->number, exception_name);
10249 else
10250 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10251 break;
10252 case ex_catch_exception_unhandled:
10253 if (addr != 0)
10254 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10255 b->number, exception_name);
10256 else
10257 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10258 b->number);
10259 break;
10260 case ex_catch_assert:
10261 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10262 b->number);
10263 break;
10264 }
10265
10266 return PRINT_SRC_AND_LOC;
10267 }
10268
10269 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10270 for all exception catchpoint kinds. */
10271
10272 static void
10273 print_one_exception (enum exception_catchpoint_kind ex,
10274 struct breakpoint *b, struct bp_location **last_loc)
10275 {
10276 struct value_print_options opts;
10277
10278 get_user_print_options (&opts);
10279 if (opts.addressprint)
10280 {
10281 annotate_field (4);
10282 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10283 }
10284
10285 annotate_field (5);
10286 *last_loc = b->loc;
10287 switch (ex)
10288 {
10289 case ex_catch_exception:
10290 if (b->exp_string != NULL)
10291 {
10292 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10293
10294 ui_out_field_string (uiout, "what", msg);
10295 xfree (msg);
10296 }
10297 else
10298 ui_out_field_string (uiout, "what", "all Ada exceptions");
10299
10300 break;
10301
10302 case ex_catch_exception_unhandled:
10303 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10304 break;
10305
10306 case ex_catch_assert:
10307 ui_out_field_string (uiout, "what", "failed Ada assertions");
10308 break;
10309
10310 default:
10311 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10312 break;
10313 }
10314 }
10315
10316 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10317 for all exception catchpoint kinds. */
10318
10319 static void
10320 print_mention_exception (enum exception_catchpoint_kind ex,
10321 struct breakpoint *b)
10322 {
10323 switch (ex)
10324 {
10325 case ex_catch_exception:
10326 if (b->exp_string != NULL)
10327 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10328 b->number, b->exp_string);
10329 else
10330 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10331
10332 break;
10333
10334 case ex_catch_exception_unhandled:
10335 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10336 b->number);
10337 break;
10338
10339 case ex_catch_assert:
10340 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10341 break;
10342
10343 default:
10344 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10345 break;
10346 }
10347 }
10348
10349 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10350 for all exception catchpoint kinds. */
10351
10352 static void
10353 print_recreate_exception (enum exception_catchpoint_kind ex,
10354 struct breakpoint *b, struct ui_file *fp)
10355 {
10356 switch (ex)
10357 {
10358 case ex_catch_exception:
10359 fprintf_filtered (fp, "catch exception");
10360 if (b->exp_string != NULL)
10361 fprintf_filtered (fp, " %s", b->exp_string);
10362 break;
10363
10364 case ex_catch_exception_unhandled:
10365 fprintf_filtered (fp, "catch exception unhandled");
10366 break;
10367
10368 case ex_catch_assert:
10369 fprintf_filtered (fp, "catch assert");
10370 break;
10371
10372 default:
10373 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10374 }
10375 }
10376
10377 /* Virtual table for "catch exception" breakpoints. */
10378
10379 static enum print_stop_action
10380 print_it_catch_exception (struct breakpoint *b)
10381 {
10382 return print_it_exception (ex_catch_exception, b);
10383 }
10384
10385 static void
10386 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10387 {
10388 print_one_exception (ex_catch_exception, b, last_loc);
10389 }
10390
10391 static void
10392 print_mention_catch_exception (struct breakpoint *b)
10393 {
10394 print_mention_exception (ex_catch_exception, b);
10395 }
10396
10397 static void
10398 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10399 {
10400 print_recreate_exception (ex_catch_exception, b, fp);
10401 }
10402
10403 static struct breakpoint_ops catch_exception_breakpoint_ops =
10404 {
10405 NULL, /* insert */
10406 NULL, /* remove */
10407 NULL, /* breakpoint_hit */
10408 print_it_catch_exception,
10409 print_one_catch_exception,
10410 print_mention_catch_exception,
10411 print_recreate_catch_exception
10412 };
10413
10414 /* Virtual table for "catch exception unhandled" breakpoints. */
10415
10416 static enum print_stop_action
10417 print_it_catch_exception_unhandled (struct breakpoint *b)
10418 {
10419 return print_it_exception (ex_catch_exception_unhandled, b);
10420 }
10421
10422 static void
10423 print_one_catch_exception_unhandled (struct breakpoint *b,
10424 struct bp_location **last_loc)
10425 {
10426 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10427 }
10428
10429 static void
10430 print_mention_catch_exception_unhandled (struct breakpoint *b)
10431 {
10432 print_mention_exception (ex_catch_exception_unhandled, b);
10433 }
10434
10435 static void
10436 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10437 struct ui_file *fp)
10438 {
10439 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10440 }
10441
10442 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10443 NULL, /* insert */
10444 NULL, /* remove */
10445 NULL, /* breakpoint_hit */
10446 print_it_catch_exception_unhandled,
10447 print_one_catch_exception_unhandled,
10448 print_mention_catch_exception_unhandled,
10449 print_recreate_catch_exception_unhandled
10450 };
10451
10452 /* Virtual table for "catch assert" breakpoints. */
10453
10454 static enum print_stop_action
10455 print_it_catch_assert (struct breakpoint *b)
10456 {
10457 return print_it_exception (ex_catch_assert, b);
10458 }
10459
10460 static void
10461 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10462 {
10463 print_one_exception (ex_catch_assert, b, last_loc);
10464 }
10465
10466 static void
10467 print_mention_catch_assert (struct breakpoint *b)
10468 {
10469 print_mention_exception (ex_catch_assert, b);
10470 }
10471
10472 static void
10473 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10474 {
10475 print_recreate_exception (ex_catch_assert, b, fp);
10476 }
10477
10478 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10479 NULL, /* insert */
10480 NULL, /* remove */
10481 NULL, /* breakpoint_hit */
10482 print_it_catch_assert,
10483 print_one_catch_assert,
10484 print_mention_catch_assert,
10485 print_recreate_catch_assert
10486 };
10487
10488 /* Return non-zero if B is an Ada exception catchpoint. */
10489
10490 int
10491 ada_exception_catchpoint_p (struct breakpoint *b)
10492 {
10493 return (b->ops == &catch_exception_breakpoint_ops
10494 || b->ops == &catch_exception_unhandled_breakpoint_ops
10495 || b->ops == &catch_assert_breakpoint_ops);
10496 }
10497
10498 /* Return a newly allocated copy of the first space-separated token
10499 in ARGSP, and then adjust ARGSP to point immediately after that
10500 token.
10501
10502 Return NULL if ARGPS does not contain any more tokens. */
10503
10504 static char *
10505 ada_get_next_arg (char **argsp)
10506 {
10507 char *args = *argsp;
10508 char *end;
10509 char *result;
10510
10511 /* Skip any leading white space. */
10512
10513 while (isspace (*args))
10514 args++;
10515
10516 if (args[0] == '\0')
10517 return NULL; /* No more arguments. */
10518
10519 /* Find the end of the current argument. */
10520
10521 end = args;
10522 while (*end != '\0' && !isspace (*end))
10523 end++;
10524
10525 /* Adjust ARGSP to point to the start of the next argument. */
10526
10527 *argsp = end;
10528
10529 /* Make a copy of the current argument and return it. */
10530
10531 result = xmalloc (end - args + 1);
10532 strncpy (result, args, end - args);
10533 result[end - args] = '\0';
10534
10535 return result;
10536 }
10537
10538 /* Split the arguments specified in a "catch exception" command.
10539 Set EX to the appropriate catchpoint type.
10540 Set EXP_STRING to the name of the specific exception if
10541 specified by the user. */
10542
10543 static void
10544 catch_ada_exception_command_split (char *args,
10545 enum exception_catchpoint_kind *ex,
10546 char **exp_string)
10547 {
10548 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10549 char *exception_name;
10550
10551 exception_name = ada_get_next_arg (&args);
10552 make_cleanup (xfree, exception_name);
10553
10554 /* Check that we do not have any more arguments. Anything else
10555 is unexpected. */
10556
10557 while (isspace (*args))
10558 args++;
10559
10560 if (args[0] != '\0')
10561 error (_("Junk at end of expression"));
10562
10563 discard_cleanups (old_chain);
10564
10565 if (exception_name == NULL)
10566 {
10567 /* Catch all exceptions. */
10568 *ex = ex_catch_exception;
10569 *exp_string = NULL;
10570 }
10571 else if (strcmp (exception_name, "unhandled") == 0)
10572 {
10573 /* Catch unhandled exceptions. */
10574 *ex = ex_catch_exception_unhandled;
10575 *exp_string = NULL;
10576 }
10577 else
10578 {
10579 /* Catch a specific exception. */
10580 *ex = ex_catch_exception;
10581 *exp_string = exception_name;
10582 }
10583 }
10584
10585 /* Return the name of the symbol on which we should break in order to
10586 implement a catchpoint of the EX kind. */
10587
10588 static const char *
10589 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10590 {
10591 gdb_assert (exception_info != NULL);
10592
10593 switch (ex)
10594 {
10595 case ex_catch_exception:
10596 return (exception_info->catch_exception_sym);
10597 break;
10598 case ex_catch_exception_unhandled:
10599 return (exception_info->catch_exception_unhandled_sym);
10600 break;
10601 case ex_catch_assert:
10602 return (exception_info->catch_assert_sym);
10603 break;
10604 default:
10605 internal_error (__FILE__, __LINE__,
10606 _("unexpected catchpoint kind (%d)"), ex);
10607 }
10608 }
10609
10610 /* Return the breakpoint ops "virtual table" used for catchpoints
10611 of the EX kind. */
10612
10613 static struct breakpoint_ops *
10614 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10615 {
10616 switch (ex)
10617 {
10618 case ex_catch_exception:
10619 return (&catch_exception_breakpoint_ops);
10620 break;
10621 case ex_catch_exception_unhandled:
10622 return (&catch_exception_unhandled_breakpoint_ops);
10623 break;
10624 case ex_catch_assert:
10625 return (&catch_assert_breakpoint_ops);
10626 break;
10627 default:
10628 internal_error (__FILE__, __LINE__,
10629 _("unexpected catchpoint kind (%d)"), ex);
10630 }
10631 }
10632
10633 /* Return the condition that will be used to match the current exception
10634 being raised with the exception that the user wants to catch. This
10635 assumes that this condition is used when the inferior just triggered
10636 an exception catchpoint.
10637
10638 The string returned is a newly allocated string that needs to be
10639 deallocated later. */
10640
10641 static char *
10642 ada_exception_catchpoint_cond_string (const char *exp_string)
10643 {
10644 int i;
10645
10646 /* The standard exceptions are a special case. They are defined in
10647 runtime units that have been compiled without debugging info; if
10648 EXP_STRING is the not-fully-qualified name of a standard
10649 exception (e.g. "constraint_error") then, during the evaluation
10650 of the condition expression, the symbol lookup on this name would
10651 *not* return this standard exception. The catchpoint condition
10652 may then be set only on user-defined exceptions which have the
10653 same not-fully-qualified name (e.g. my_package.constraint_error).
10654
10655 To avoid this unexcepted behavior, these standard exceptions are
10656 systematically prefixed by "standard". This means that "catch
10657 exception constraint_error" is rewritten into "catch exception
10658 standard.constraint_error".
10659
10660 If an exception named contraint_error is defined in another package of
10661 the inferior program, then the only way to specify this exception as a
10662 breakpoint condition is to use its fully-qualified named:
10663 e.g. my_package.constraint_error. */
10664
10665 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10666 {
10667 if (strcmp (standard_exc [i], exp_string) == 0)
10668 {
10669 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10670 exp_string);
10671 }
10672 }
10673 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10674 }
10675
10676 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10677
10678 static struct expression *
10679 ada_parse_catchpoint_condition (char *cond_string,
10680 struct symtab_and_line sal)
10681 {
10682 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10683 }
10684
10685 /* Return the symtab_and_line that should be used to insert an exception
10686 catchpoint of the TYPE kind.
10687
10688 EX_STRING should contain the name of a specific exception
10689 that the catchpoint should catch, or NULL otherwise.
10690
10691 The idea behind all the remaining parameters is that their names match
10692 the name of certain fields in the breakpoint structure that are used to
10693 handle exception catchpoints. This function returns the value to which
10694 these fields should be set, depending on the type of catchpoint we need
10695 to create.
10696
10697 If COND and COND_STRING are both non-NULL, any value they might
10698 hold will be free'ed, and then replaced by newly allocated ones.
10699 These parameters are left untouched otherwise. */
10700
10701 static struct symtab_and_line
10702 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10703 char **addr_string, char **cond_string,
10704 struct expression **cond, struct breakpoint_ops **ops)
10705 {
10706 const char *sym_name;
10707 struct symbol *sym;
10708 struct symtab_and_line sal;
10709
10710 /* First, find out which exception support info to use. */
10711 ada_exception_support_info_sniffer ();
10712
10713 /* Then lookup the function on which we will break in order to catch
10714 the Ada exceptions requested by the user. */
10715
10716 sym_name = ada_exception_sym_name (ex);
10717 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10718
10719 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10720 that should be compiled with debugging information. As a result, we
10721 expect to find that symbol in the symtabs. If we don't find it, then
10722 the target most likely does not support Ada exceptions, or we cannot
10723 insert exception breakpoints yet, because the GNAT runtime hasn't been
10724 loaded yet. */
10725
10726 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10727 in such a way that no debugging information is produced for the symbol
10728 we are looking for. In this case, we could search the minimal symbols
10729 as a fall-back mechanism. This would still be operating in degraded
10730 mode, however, as we would still be missing the debugging information
10731 that is needed in order to extract the name of the exception being
10732 raised (this name is printed in the catchpoint message, and is also
10733 used when trying to catch a specific exception). We do not handle
10734 this case for now. */
10735
10736 if (sym == NULL)
10737 error (_("Unable to break on '%s' in this configuration."), sym_name);
10738
10739 /* Make sure that the symbol we found corresponds to a function. */
10740 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10741 error (_("Symbol \"%s\" is not a function (class = %d)"),
10742 sym_name, SYMBOL_CLASS (sym));
10743
10744 sal = find_function_start_sal (sym, 1);
10745
10746 /* Set ADDR_STRING. */
10747
10748 *addr_string = xstrdup (sym_name);
10749
10750 /* Set the COND and COND_STRING (if not NULL). */
10751
10752 if (cond_string != NULL && cond != NULL)
10753 {
10754 if (*cond_string != NULL)
10755 {
10756 xfree (*cond_string);
10757 *cond_string = NULL;
10758 }
10759 if (*cond != NULL)
10760 {
10761 xfree (*cond);
10762 *cond = NULL;
10763 }
10764 if (exp_string != NULL)
10765 {
10766 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10767 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10768 }
10769 }
10770
10771 /* Set OPS. */
10772 *ops = ada_exception_breakpoint_ops (ex);
10773
10774 return sal;
10775 }
10776
10777 /* Parse the arguments (ARGS) of the "catch exception" command.
10778
10779 Set TYPE to the appropriate exception catchpoint type.
10780 If the user asked the catchpoint to catch only a specific
10781 exception, then save the exception name in ADDR_STRING.
10782
10783 See ada_exception_sal for a description of all the remaining
10784 function arguments of this function. */
10785
10786 struct symtab_and_line
10787 ada_decode_exception_location (char *args, char **addr_string,
10788 char **exp_string, char **cond_string,
10789 struct expression **cond,
10790 struct breakpoint_ops **ops)
10791 {
10792 enum exception_catchpoint_kind ex;
10793
10794 catch_ada_exception_command_split (args, &ex, exp_string);
10795 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10796 cond, ops);
10797 }
10798
10799 struct symtab_and_line
10800 ada_decode_assert_location (char *args, char **addr_string,
10801 struct breakpoint_ops **ops)
10802 {
10803 /* Check that no argument where provided at the end of the command. */
10804
10805 if (args != NULL)
10806 {
10807 while (isspace (*args))
10808 args++;
10809 if (*args != '\0')
10810 error (_("Junk at end of arguments."));
10811 }
10812
10813 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10814 ops);
10815 }
10816
10817 /* Operators */
10818 /* Information about operators given special treatment in functions
10819 below. */
10820 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10821
10822 #define ADA_OPERATORS \
10823 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10824 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10825 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10826 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10827 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10828 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10829 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10830 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10831 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10832 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10833 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10834 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10835 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10836 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10837 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10838 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10839 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10840 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10841 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10842
10843 static void
10844 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10845 {
10846 switch (exp->elts[pc - 1].opcode)
10847 {
10848 default:
10849 operator_length_standard (exp, pc, oplenp, argsp);
10850 break;
10851
10852 #define OP_DEFN(op, len, args, binop) \
10853 case op: *oplenp = len; *argsp = args; break;
10854 ADA_OPERATORS;
10855 #undef OP_DEFN
10856
10857 case OP_AGGREGATE:
10858 *oplenp = 3;
10859 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10860 break;
10861
10862 case OP_CHOICES:
10863 *oplenp = 3;
10864 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10865 break;
10866 }
10867 }
10868
10869 static char *
10870 ada_op_name (enum exp_opcode opcode)
10871 {
10872 switch (opcode)
10873 {
10874 default:
10875 return op_name_standard (opcode);
10876
10877 #define OP_DEFN(op, len, args, binop) case op: return #op;
10878 ADA_OPERATORS;
10879 #undef OP_DEFN
10880
10881 case OP_AGGREGATE:
10882 return "OP_AGGREGATE";
10883 case OP_CHOICES:
10884 return "OP_CHOICES";
10885 case OP_NAME:
10886 return "OP_NAME";
10887 }
10888 }
10889
10890 /* As for operator_length, but assumes PC is pointing at the first
10891 element of the operator, and gives meaningful results only for the
10892 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10893
10894 static void
10895 ada_forward_operator_length (struct expression *exp, int pc,
10896 int *oplenp, int *argsp)
10897 {
10898 switch (exp->elts[pc].opcode)
10899 {
10900 default:
10901 *oplenp = *argsp = 0;
10902 break;
10903
10904 #define OP_DEFN(op, len, args, binop) \
10905 case op: *oplenp = len; *argsp = args; break;
10906 ADA_OPERATORS;
10907 #undef OP_DEFN
10908
10909 case OP_AGGREGATE:
10910 *oplenp = 3;
10911 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10912 break;
10913
10914 case OP_CHOICES:
10915 *oplenp = 3;
10916 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10917 break;
10918
10919 case OP_STRING:
10920 case OP_NAME:
10921 {
10922 int len = longest_to_int (exp->elts[pc + 1].longconst);
10923 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10924 *argsp = 0;
10925 break;
10926 }
10927 }
10928 }
10929
10930 static int
10931 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10932 {
10933 enum exp_opcode op = exp->elts[elt].opcode;
10934 int oplen, nargs;
10935 int pc = elt;
10936 int i;
10937
10938 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10939
10940 switch (op)
10941 {
10942 /* Ada attributes ('Foo). */
10943 case OP_ATR_FIRST:
10944 case OP_ATR_LAST:
10945 case OP_ATR_LENGTH:
10946 case OP_ATR_IMAGE:
10947 case OP_ATR_MAX:
10948 case OP_ATR_MIN:
10949 case OP_ATR_MODULUS:
10950 case OP_ATR_POS:
10951 case OP_ATR_SIZE:
10952 case OP_ATR_TAG:
10953 case OP_ATR_VAL:
10954 break;
10955
10956 case UNOP_IN_RANGE:
10957 case UNOP_QUAL:
10958 /* XXX: gdb_sprint_host_address, type_sprint */
10959 fprintf_filtered (stream, _("Type @"));
10960 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10961 fprintf_filtered (stream, " (");
10962 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10963 fprintf_filtered (stream, ")");
10964 break;
10965 case BINOP_IN_BOUNDS:
10966 fprintf_filtered (stream, " (%d)",
10967 longest_to_int (exp->elts[pc + 2].longconst));
10968 break;
10969 case TERNOP_IN_RANGE:
10970 break;
10971
10972 case OP_AGGREGATE:
10973 case OP_OTHERS:
10974 case OP_DISCRETE_RANGE:
10975 case OP_POSITIONAL:
10976 case OP_CHOICES:
10977 break;
10978
10979 case OP_NAME:
10980 case OP_STRING:
10981 {
10982 char *name = &exp->elts[elt + 2].string;
10983 int len = longest_to_int (exp->elts[elt + 1].longconst);
10984 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10985 break;
10986 }
10987
10988 default:
10989 return dump_subexp_body_standard (exp, stream, elt);
10990 }
10991
10992 elt += oplen;
10993 for (i = 0; i < nargs; i += 1)
10994 elt = dump_subexp (exp, stream, elt);
10995
10996 return elt;
10997 }
10998
10999 /* The Ada extension of print_subexp (q.v.). */
11000
11001 static void
11002 ada_print_subexp (struct expression *exp, int *pos,
11003 struct ui_file *stream, enum precedence prec)
11004 {
11005 int oplen, nargs, i;
11006 int pc = *pos;
11007 enum exp_opcode op = exp->elts[pc].opcode;
11008
11009 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11010
11011 *pos += oplen;
11012 switch (op)
11013 {
11014 default:
11015 *pos -= oplen;
11016 print_subexp_standard (exp, pos, stream, prec);
11017 return;
11018
11019 case OP_VAR_VALUE:
11020 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11021 return;
11022
11023 case BINOP_IN_BOUNDS:
11024 /* XXX: sprint_subexp */
11025 print_subexp (exp, pos, stream, PREC_SUFFIX);
11026 fputs_filtered (" in ", stream);
11027 print_subexp (exp, pos, stream, PREC_SUFFIX);
11028 fputs_filtered ("'range", stream);
11029 if (exp->elts[pc + 1].longconst > 1)
11030 fprintf_filtered (stream, "(%ld)",
11031 (long) exp->elts[pc + 1].longconst);
11032 return;
11033
11034 case TERNOP_IN_RANGE:
11035 if (prec >= PREC_EQUAL)
11036 fputs_filtered ("(", stream);
11037 /* XXX: sprint_subexp */
11038 print_subexp (exp, pos, stream, PREC_SUFFIX);
11039 fputs_filtered (" in ", stream);
11040 print_subexp (exp, pos, stream, PREC_EQUAL);
11041 fputs_filtered (" .. ", stream);
11042 print_subexp (exp, pos, stream, PREC_EQUAL);
11043 if (prec >= PREC_EQUAL)
11044 fputs_filtered (")", stream);
11045 return;
11046
11047 case OP_ATR_FIRST:
11048 case OP_ATR_LAST:
11049 case OP_ATR_LENGTH:
11050 case OP_ATR_IMAGE:
11051 case OP_ATR_MAX:
11052 case OP_ATR_MIN:
11053 case OP_ATR_MODULUS:
11054 case OP_ATR_POS:
11055 case OP_ATR_SIZE:
11056 case OP_ATR_TAG:
11057 case OP_ATR_VAL:
11058 if (exp->elts[*pos].opcode == OP_TYPE)
11059 {
11060 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11061 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11062 *pos += 3;
11063 }
11064 else
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11067 if (nargs > 1)
11068 {
11069 int tem;
11070 for (tem = 1; tem < nargs; tem += 1)
11071 {
11072 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11073 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11074 }
11075 fputs_filtered (")", stream);
11076 }
11077 return;
11078
11079 case UNOP_QUAL:
11080 type_print (exp->elts[pc + 1].type, "", stream, 0);
11081 fputs_filtered ("'(", stream);
11082 print_subexp (exp, pos, stream, PREC_PREFIX);
11083 fputs_filtered (")", stream);
11084 return;
11085
11086 case UNOP_IN_RANGE:
11087 /* XXX: sprint_subexp */
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11089 fputs_filtered (" in ", stream);
11090 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11091 return;
11092
11093 case OP_DISCRETE_RANGE:
11094 print_subexp (exp, pos, stream, PREC_SUFFIX);
11095 fputs_filtered ("..", stream);
11096 print_subexp (exp, pos, stream, PREC_SUFFIX);
11097 return;
11098
11099 case OP_OTHERS:
11100 fputs_filtered ("others => ", stream);
11101 print_subexp (exp, pos, stream, PREC_SUFFIX);
11102 return;
11103
11104 case OP_CHOICES:
11105 for (i = 0; i < nargs-1; i += 1)
11106 {
11107 if (i > 0)
11108 fputs_filtered ("|", stream);
11109 print_subexp (exp, pos, stream, PREC_SUFFIX);
11110 }
11111 fputs_filtered (" => ", stream);
11112 print_subexp (exp, pos, stream, PREC_SUFFIX);
11113 return;
11114
11115 case OP_POSITIONAL:
11116 print_subexp (exp, pos, stream, PREC_SUFFIX);
11117 return;
11118
11119 case OP_AGGREGATE:
11120 fputs_filtered ("(", stream);
11121 for (i = 0; i < nargs; i += 1)
11122 {
11123 if (i > 0)
11124 fputs_filtered (", ", stream);
11125 print_subexp (exp, pos, stream, PREC_SUFFIX);
11126 }
11127 fputs_filtered (")", stream);
11128 return;
11129 }
11130 }
11131
11132 /* Table mapping opcodes into strings for printing operators
11133 and precedences of the operators. */
11134
11135 static const struct op_print ada_op_print_tab[] = {
11136 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11137 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11138 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11139 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11140 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11141 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11142 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11143 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11144 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11145 {">=", BINOP_GEQ, PREC_ORDER, 0},
11146 {">", BINOP_GTR, PREC_ORDER, 0},
11147 {"<", BINOP_LESS, PREC_ORDER, 0},
11148 {">>", BINOP_RSH, PREC_SHIFT, 0},
11149 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11150 {"+", BINOP_ADD, PREC_ADD, 0},
11151 {"-", BINOP_SUB, PREC_ADD, 0},
11152 {"&", BINOP_CONCAT, PREC_ADD, 0},
11153 {"*", BINOP_MUL, PREC_MUL, 0},
11154 {"/", BINOP_DIV, PREC_MUL, 0},
11155 {"rem", BINOP_REM, PREC_MUL, 0},
11156 {"mod", BINOP_MOD, PREC_MUL, 0},
11157 {"**", BINOP_EXP, PREC_REPEAT, 0},
11158 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11159 {"-", UNOP_NEG, PREC_PREFIX, 0},
11160 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11161 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11162 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11163 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11164 {".all", UNOP_IND, PREC_SUFFIX, 1},
11165 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11166 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11167 {NULL, 0, 0, 0}
11168 };
11169 \f
11170 enum ada_primitive_types {
11171 ada_primitive_type_int,
11172 ada_primitive_type_long,
11173 ada_primitive_type_short,
11174 ada_primitive_type_char,
11175 ada_primitive_type_float,
11176 ada_primitive_type_double,
11177 ada_primitive_type_void,
11178 ada_primitive_type_long_long,
11179 ada_primitive_type_long_double,
11180 ada_primitive_type_natural,
11181 ada_primitive_type_positive,
11182 ada_primitive_type_system_address,
11183 nr_ada_primitive_types
11184 };
11185
11186 static void
11187 ada_language_arch_info (struct gdbarch *gdbarch,
11188 struct language_arch_info *lai)
11189 {
11190 const struct builtin_type *builtin = builtin_type (gdbarch);
11191 lai->primitive_type_vector
11192 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11193 struct type *);
11194
11195 lai->primitive_type_vector [ada_primitive_type_int]
11196 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11197 0, "integer");
11198 lai->primitive_type_vector [ada_primitive_type_long]
11199 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11200 0, "long_integer");
11201 lai->primitive_type_vector [ada_primitive_type_short]
11202 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11203 0, "short_integer");
11204 lai->string_char_type
11205 = lai->primitive_type_vector [ada_primitive_type_char]
11206 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11207 lai->primitive_type_vector [ada_primitive_type_float]
11208 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11209 "float", NULL);
11210 lai->primitive_type_vector [ada_primitive_type_double]
11211 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11212 "long_float", NULL);
11213 lai->primitive_type_vector [ada_primitive_type_long_long]
11214 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11215 0, "long_long_integer");
11216 lai->primitive_type_vector [ada_primitive_type_long_double]
11217 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11218 "long_long_float", NULL);
11219 lai->primitive_type_vector [ada_primitive_type_natural]
11220 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11221 0, "natural");
11222 lai->primitive_type_vector [ada_primitive_type_positive]
11223 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11224 0, "positive");
11225 lai->primitive_type_vector [ada_primitive_type_void]
11226 = builtin->builtin_void;
11227
11228 lai->primitive_type_vector [ada_primitive_type_system_address]
11229 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11230 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11231 = "system__address";
11232
11233 lai->bool_type_symbol = NULL;
11234 lai->bool_type_default = builtin->builtin_bool;
11235 }
11236 \f
11237 /* Language vector */
11238
11239 /* Not really used, but needed in the ada_language_defn. */
11240
11241 static void
11242 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11243 {
11244 ada_emit_char (c, type, stream, quoter, 1);
11245 }
11246
11247 static int
11248 parse (void)
11249 {
11250 warnings_issued = 0;
11251 return ada_parse ();
11252 }
11253
11254 static const struct exp_descriptor ada_exp_descriptor = {
11255 ada_print_subexp,
11256 ada_operator_length,
11257 ada_op_name,
11258 ada_dump_subexp_body,
11259 ada_evaluate_subexp
11260 };
11261
11262 const struct language_defn ada_language_defn = {
11263 "ada", /* Language name */
11264 language_ada,
11265 range_check_off,
11266 type_check_off,
11267 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11268 that's not quite what this means. */
11269 array_row_major,
11270 macro_expansion_no,
11271 &ada_exp_descriptor,
11272 parse,
11273 ada_error,
11274 resolve,
11275 ada_printchar, /* Print a character constant */
11276 ada_printstr, /* Function to print string constant */
11277 emit_char, /* Function to print single char (not used) */
11278 ada_print_type, /* Print a type using appropriate syntax */
11279 default_print_typedef, /* Print a typedef using appropriate syntax */
11280 ada_val_print, /* Print a value using appropriate syntax */
11281 ada_value_print, /* Print a top-level value */
11282 NULL, /* Language specific skip_trampoline */
11283 NULL, /* name_of_this */
11284 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11285 basic_lookup_transparent_type, /* lookup_transparent_type */
11286 ada_la_decode, /* Language specific symbol demangler */
11287 NULL, /* Language specific class_name_from_physname */
11288 ada_op_print_tab, /* expression operators for printing */
11289 0, /* c-style arrays */
11290 1, /* String lower bound */
11291 ada_get_gdb_completer_word_break_characters,
11292 ada_make_symbol_completion_list,
11293 ada_language_arch_info,
11294 ada_print_array_index,
11295 default_pass_by_reference,
11296 c_get_string,
11297 LANG_MAGIC
11298 };
11299
11300 /* Provide a prototype to silence -Wmissing-prototypes. */
11301 extern initialize_file_ftype _initialize_ada_language;
11302
11303 /* Command-list for the "set/show ada" prefix command. */
11304 static struct cmd_list_element *set_ada_list;
11305 static struct cmd_list_element *show_ada_list;
11306
11307 /* Implement the "set ada" prefix command. */
11308
11309 static void
11310 set_ada_command (char *arg, int from_tty)
11311 {
11312 printf_unfiltered (_(\
11313 "\"set ada\" must be followed by the name of a setting.\n"));
11314 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11315 }
11316
11317 /* Implement the "show ada" prefix command. */
11318
11319 static void
11320 show_ada_command (char *args, int from_tty)
11321 {
11322 cmd_show_list (show_ada_list, from_tty, "");
11323 }
11324
11325 void
11326 _initialize_ada_language (void)
11327 {
11328 add_language (&ada_language_defn);
11329
11330 add_prefix_cmd ("ada", no_class, set_ada_command,
11331 _("Prefix command for changing Ada-specfic settings"),
11332 &set_ada_list, "set ada ", 0, &setlist);
11333
11334 add_prefix_cmd ("ada", no_class, show_ada_command,
11335 _("Generic command for showing Ada-specific settings."),
11336 &show_ada_list, "show ada ", 0, &showlist);
11337
11338 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11339 &trust_pad_over_xvs, _("\
11340 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11341 Show whether an optimization trusting PAD types over XVS types is activated"),
11342 _("\
11343 This is related to the encoding used by the GNAT compiler. The debugger\n\
11344 should normally trust the contents of PAD types, but certain older versions\n\
11345 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11346 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11347 work around this bug. It is always safe to turn this option \"off\", but\n\
11348 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11349 this option to \"off\" unless necessary."),
11350 NULL, NULL, &set_ada_list, &show_ada_list);
11351
11352 varsize_limit = 65536;
11353
11354 obstack_init (&symbol_list_obstack);
11355
11356 decoded_names_store = htab_create_alloc
11357 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11358 NULL, xcalloc, xfree);
11359
11360 observer_attach_executable_changed (ada_executable_changed_observer);
11361 }
This page took 0.254622 seconds and 5 git commands to generate.