[Ada] Buffer overflow in ada_unpack_from_contents
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2388
2389 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2390 zero otherwise.
2391
2392 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2393
2394 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2395
2396 static void
2397 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2398 gdb_byte *unpacked, int unpacked_len,
2399 int is_big_endian, int is_signed_type,
2400 int is_scalar)
2401 {
2402 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2403 int src_idx; /* Index into the source area */
2404 int src_bytes_left; /* Number of source bytes left to process. */
2405 int srcBitsLeft; /* Number of source bits left to move */
2406 int unusedLS; /* Number of bits in next significant
2407 byte of source that are unused */
2408
2409 int unpacked_idx; /* Index into the unpacked buffer */
2410 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2411
2412 unsigned long accum; /* Staging area for bits being transferred */
2413 int accumSize; /* Number of meaningful bits in accum */
2414 unsigned char sign;
2415
2416 /* Transmit bytes from least to most significant; delta is the direction
2417 the indices move. */
2418 int delta = is_big_endian ? -1 : 1;
2419
2420 srcBitsLeft = bit_size;
2421 src_bytes_left = src_len;
2422 unpacked_bytes_left = unpacked_len;
2423 sign = 0;
2424
2425 if (is_big_endian)
2426 {
2427 src_idx = src_len - 1;
2428 if (is_signed_type
2429 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2430 sign = ~0;
2431
2432 unusedLS =
2433 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2434 % HOST_CHAR_BIT;
2435
2436 if (is_scalar)
2437 {
2438 accumSize = 0;
2439 unpacked_idx = unpacked_len - 1;
2440 }
2441 else
2442 {
2443 /* Non-scalar values must be aligned at a byte boundary... */
2444 accumSize =
2445 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2446 /* ... And are placed at the beginning (most-significant) bytes
2447 of the target. */
2448 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2449 unpacked_bytes_left = unpacked_idx + 1;
2450 }
2451 }
2452 else
2453 {
2454 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2455
2456 src_idx = unpacked_idx = 0;
2457 unusedLS = bit_offset;
2458 accumSize = 0;
2459
2460 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2461 sign = ~0;
2462 }
2463
2464 accum = 0;
2465 while (src_bytes_left > 0)
2466 {
2467 /* Mask for removing bits of the next source byte that are not
2468 part of the value. */
2469 unsigned int unusedMSMask =
2470 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2471 1;
2472 /* Sign-extend bits for this byte. */
2473 unsigned int signMask = sign & ~unusedMSMask;
2474
2475 accum |=
2476 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2477 accumSize += HOST_CHAR_BIT - unusedLS;
2478 if (accumSize >= HOST_CHAR_BIT)
2479 {
2480 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2481 accumSize -= HOST_CHAR_BIT;
2482 accum >>= HOST_CHAR_BIT;
2483 unpacked_bytes_left -= 1;
2484 unpacked_idx += delta;
2485 }
2486 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2487 unusedLS = 0;
2488 src_bytes_left -= 1;
2489 src_idx += delta;
2490 }
2491 while (unpacked_bytes_left > 0)
2492 {
2493 accum |= sign << accumSize;
2494 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2495 accumSize -= HOST_CHAR_BIT;
2496 if (accumSize < 0)
2497 accumSize = 0;
2498 accum >>= HOST_CHAR_BIT;
2499 unpacked_bytes_left -= 1;
2500 unpacked_idx += delta;
2501 }
2502 }
2503
2504 /* Create a new value of type TYPE from the contents of OBJ starting
2505 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2506 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2507 assigning through the result will set the field fetched from.
2508 VALADDR is ignored unless OBJ is NULL, in which case,
2509 VALADDR+OFFSET must address the start of storage containing the
2510 packed value. The value returned in this case is never an lval.
2511 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2512
2513 struct value *
2514 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2515 long offset, int bit_offset, int bit_size,
2516 struct type *type)
2517 {
2518 struct value *v;
2519 gdb_byte *src; /* First byte containing data to unpack */
2520 gdb_byte *unpacked;
2521 const int is_scalar = is_scalar_type (type);
2522 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2523 gdb_byte *staging = NULL;
2524 int staging_len = 0;
2525 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2526
2527 type = ada_check_typedef (type);
2528
2529 if (obj == NULL)
2530 src = (gdb_byte *) valaddr + offset;
2531 else
2532 src = (gdb_byte *) value_contents (obj) + offset;
2533
2534 if (is_dynamic_type (type))
2535 {
2536 /* The length of TYPE might by dynamic, so we need to resolve
2537 TYPE in order to know its actual size, which we then use
2538 to create the contents buffer of the value we return.
2539 The difficulty is that the data containing our object is
2540 packed, and therefore maybe not at a byte boundary. So, what
2541 we do, is unpack the data into a byte-aligned buffer, and then
2542 use that buffer as our object's value for resolving the type. */
2543 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2544 staging = malloc (staging_len);
2545 make_cleanup (xfree, staging);
2546
2547 ada_unpack_from_contents (src, bit_offset, bit_size,
2548 staging, staging_len,
2549 is_big_endian, has_negatives (type),
2550 is_scalar);
2551 type = resolve_dynamic_type (type, staging, 0);
2552 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2553 {
2554 /* This happens when the length of the object is dynamic,
2555 and is actually smaller than the space reserved for it.
2556 For instance, in an array of variant records, the bit_size
2557 we're given is the array stride, which is constant and
2558 normally equal to the maximum size of its element.
2559 But, in reality, each element only actually spans a portion
2560 of that stride. */
2561 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2562 }
2563 }
2564
2565 if (obj == NULL)
2566 {
2567 v = allocate_value (type);
2568 src = (gdb_byte *) valaddr + offset;
2569 }
2570 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2571 {
2572 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2573
2574 v = value_at (type, value_address (obj) + offset);
2575 src = alloca (src_len);
2576 read_memory (value_address (v), src, src_len);
2577 }
2578 else
2579 {
2580 v = allocate_value (type);
2581 src = (gdb_byte *) value_contents (obj) + offset;
2582 }
2583
2584 if (obj != NULL)
2585 {
2586 long new_offset = offset;
2587
2588 set_value_component_location (v, obj);
2589 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2590 set_value_bitsize (v, bit_size);
2591 if (value_bitpos (v) >= HOST_CHAR_BIT)
2592 {
2593 ++new_offset;
2594 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2595 }
2596 set_value_offset (v, new_offset);
2597
2598 /* Also set the parent value. This is needed when trying to
2599 assign a new value (in inferior memory). */
2600 set_value_parent (v, obj);
2601 }
2602 else
2603 set_value_bitsize (v, bit_size);
2604 unpacked = (gdb_byte *) value_contents (v);
2605
2606 if (bit_size == 0)
2607 {
2608 memset (unpacked, 0, TYPE_LENGTH (type));
2609 do_cleanups (old_chain);
2610 return v;
2611 }
2612
2613 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2614 {
2615 /* Small short-cut: If we've unpacked the data into a buffer
2616 of the same size as TYPE's length, then we can reuse that,
2617 instead of doing the unpacking again. */
2618 memcpy (unpacked, staging, staging_len);
2619 }
2620 else
2621 ada_unpack_from_contents (src, bit_offset, bit_size,
2622 unpacked, TYPE_LENGTH (type),
2623 is_big_endian, has_negatives (type), is_scalar);
2624
2625 do_cleanups (old_chain);
2626 return v;
2627 }
2628
2629 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2630 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2631 not overlap. */
2632 static void
2633 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2634 int src_offset, int n, int bits_big_endian_p)
2635 {
2636 unsigned int accum, mask;
2637 int accum_bits, chunk_size;
2638
2639 target += targ_offset / HOST_CHAR_BIT;
2640 targ_offset %= HOST_CHAR_BIT;
2641 source += src_offset / HOST_CHAR_BIT;
2642 src_offset %= HOST_CHAR_BIT;
2643 if (bits_big_endian_p)
2644 {
2645 accum = (unsigned char) *source;
2646 source += 1;
2647 accum_bits = HOST_CHAR_BIT - src_offset;
2648
2649 while (n > 0)
2650 {
2651 int unused_right;
2652
2653 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2654 accum_bits += HOST_CHAR_BIT;
2655 source += 1;
2656 chunk_size = HOST_CHAR_BIT - targ_offset;
2657 if (chunk_size > n)
2658 chunk_size = n;
2659 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2660 mask = ((1 << chunk_size) - 1) << unused_right;
2661 *target =
2662 (*target & ~mask)
2663 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2664 n -= chunk_size;
2665 accum_bits -= chunk_size;
2666 target += 1;
2667 targ_offset = 0;
2668 }
2669 }
2670 else
2671 {
2672 accum = (unsigned char) *source >> src_offset;
2673 source += 1;
2674 accum_bits = HOST_CHAR_BIT - src_offset;
2675
2676 while (n > 0)
2677 {
2678 accum = accum + ((unsigned char) *source << accum_bits);
2679 accum_bits += HOST_CHAR_BIT;
2680 source += 1;
2681 chunk_size = HOST_CHAR_BIT - targ_offset;
2682 if (chunk_size > n)
2683 chunk_size = n;
2684 mask = ((1 << chunk_size) - 1) << targ_offset;
2685 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2686 n -= chunk_size;
2687 accum_bits -= chunk_size;
2688 accum >>= chunk_size;
2689 target += 1;
2690 targ_offset = 0;
2691 }
2692 }
2693 }
2694
2695 /* Store the contents of FROMVAL into the location of TOVAL.
2696 Return a new value with the location of TOVAL and contents of
2697 FROMVAL. Handles assignment into packed fields that have
2698 floating-point or non-scalar types. */
2699
2700 static struct value *
2701 ada_value_assign (struct value *toval, struct value *fromval)
2702 {
2703 struct type *type = value_type (toval);
2704 int bits = value_bitsize (toval);
2705
2706 toval = ada_coerce_ref (toval);
2707 fromval = ada_coerce_ref (fromval);
2708
2709 if (ada_is_direct_array_type (value_type (toval)))
2710 toval = ada_coerce_to_simple_array (toval);
2711 if (ada_is_direct_array_type (value_type (fromval)))
2712 fromval = ada_coerce_to_simple_array (fromval);
2713
2714 if (!deprecated_value_modifiable (toval))
2715 error (_("Left operand of assignment is not a modifiable lvalue."));
2716
2717 if (VALUE_LVAL (toval) == lval_memory
2718 && bits > 0
2719 && (TYPE_CODE (type) == TYPE_CODE_FLT
2720 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2721 {
2722 int len = (value_bitpos (toval)
2723 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2724 int from_size;
2725 gdb_byte *buffer = (gdb_byte *) alloca (len);
2726 struct value *val;
2727 CORE_ADDR to_addr = value_address (toval);
2728
2729 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2730 fromval = value_cast (type, fromval);
2731
2732 read_memory (to_addr, buffer, len);
2733 from_size = value_bitsize (fromval);
2734 if (from_size == 0)
2735 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2736 if (gdbarch_bits_big_endian (get_type_arch (type)))
2737 move_bits (buffer, value_bitpos (toval),
2738 value_contents (fromval), from_size - bits, bits, 1);
2739 else
2740 move_bits (buffer, value_bitpos (toval),
2741 value_contents (fromval), 0, bits, 0);
2742 write_memory_with_notification (to_addr, buffer, len);
2743
2744 val = value_copy (toval);
2745 memcpy (value_contents_raw (val), value_contents (fromval),
2746 TYPE_LENGTH (type));
2747 deprecated_set_value_type (val, type);
2748
2749 return val;
2750 }
2751
2752 return value_assign (toval, fromval);
2753 }
2754
2755
2756 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2757 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2758 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2759 COMPONENT, and not the inferior's memory. The current contents
2760 of COMPONENT are ignored.
2761
2762 Although not part of the initial design, this function also works
2763 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2764 had a null address, and COMPONENT had an address which is equal to
2765 its offset inside CONTAINER. */
2766
2767 static void
2768 value_assign_to_component (struct value *container, struct value *component,
2769 struct value *val)
2770 {
2771 LONGEST offset_in_container =
2772 (LONGEST) (value_address (component) - value_address (container));
2773 int bit_offset_in_container =
2774 value_bitpos (component) - value_bitpos (container);
2775 int bits;
2776
2777 val = value_cast (value_type (component), val);
2778
2779 if (value_bitsize (component) == 0)
2780 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2781 else
2782 bits = value_bitsize (component);
2783
2784 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2785 move_bits (value_contents_writeable (container) + offset_in_container,
2786 value_bitpos (container) + bit_offset_in_container,
2787 value_contents (val),
2788 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2789 bits, 1);
2790 else
2791 move_bits (value_contents_writeable (container) + offset_in_container,
2792 value_bitpos (container) + bit_offset_in_container,
2793 value_contents (val), 0, bits, 0);
2794 }
2795
2796 /* The value of the element of array ARR at the ARITY indices given in IND.
2797 ARR may be either a simple array, GNAT array descriptor, or pointer
2798 thereto. */
2799
2800 struct value *
2801 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2802 {
2803 int k;
2804 struct value *elt;
2805 struct type *elt_type;
2806
2807 elt = ada_coerce_to_simple_array (arr);
2808
2809 elt_type = ada_check_typedef (value_type (elt));
2810 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2811 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2812 return value_subscript_packed (elt, arity, ind);
2813
2814 for (k = 0; k < arity; k += 1)
2815 {
2816 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2817 error (_("too many subscripts (%d expected)"), k);
2818 elt = value_subscript (elt, pos_atr (ind[k]));
2819 }
2820 return elt;
2821 }
2822
2823 /* Assuming ARR is a pointer to a GDB array, the value of the element
2824 of *ARR at the ARITY indices given in IND.
2825 Does not read the entire array into memory.
2826
2827 Note: Unlike what one would expect, this function is used instead of
2828 ada_value_subscript for basically all non-packed array types. The reason
2829 for this is that a side effect of doing our own pointer arithmetics instead
2830 of relying on value_subscript is that there is no implicit typedef peeling.
2831 This is important for arrays of array accesses, where it allows us to
2832 preserve the fact that the array's element is an array access, where the
2833 access part os encoded in a typedef layer. */
2834
2835 static struct value *
2836 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2837 {
2838 int k;
2839 struct value *array_ind = ada_value_ind (arr);
2840 struct type *type
2841 = check_typedef (value_enclosing_type (array_ind));
2842
2843 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2844 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2845 return value_subscript_packed (array_ind, arity, ind);
2846
2847 for (k = 0; k < arity; k += 1)
2848 {
2849 LONGEST lwb, upb;
2850 struct value *lwb_value;
2851
2852 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2855 value_copy (arr));
2856 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2857 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2858 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2859 type = TYPE_TARGET_TYPE (type);
2860 }
2861
2862 return value_ind (arr);
2863 }
2864
2865 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2866 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2867 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2868 this array is LOW, as per Ada rules. */
2869 static struct value *
2870 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2871 int low, int high)
2872 {
2873 struct type *type0 = ada_check_typedef (type);
2874 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2875 struct type *index_type
2876 = create_static_range_type (NULL, base_index_type, low, high);
2877 struct type *slice_type =
2878 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2879 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2880 LONGEST base_low_pos, low_pos;
2881 CORE_ADDR base;
2882
2883 if (!discrete_position (base_index_type, low, &low_pos)
2884 || !discrete_position (base_index_type, base_low, &base_low_pos))
2885 {
2886 warning (_("unable to get positions in slice, use bounds instead"));
2887 low_pos = low;
2888 base_low_pos = base_low;
2889 }
2890
2891 base = value_as_address (array_ptr)
2892 + ((low_pos - base_low_pos)
2893 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2894 return value_at_lazy (slice_type, base);
2895 }
2896
2897
2898 static struct value *
2899 ada_value_slice (struct value *array, int low, int high)
2900 {
2901 struct type *type = ada_check_typedef (value_type (array));
2902 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2903 struct type *index_type
2904 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2905 struct type *slice_type =
2906 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2907 LONGEST low_pos, high_pos;
2908
2909 if (!discrete_position (base_index_type, low, &low_pos)
2910 || !discrete_position (base_index_type, high, &high_pos))
2911 {
2912 warning (_("unable to get positions in slice, use bounds instead"));
2913 low_pos = low;
2914 high_pos = high;
2915 }
2916
2917 return value_cast (slice_type,
2918 value_slice (array, low, high_pos - low_pos + 1));
2919 }
2920
2921 /* If type is a record type in the form of a standard GNAT array
2922 descriptor, returns the number of dimensions for type. If arr is a
2923 simple array, returns the number of "array of"s that prefix its
2924 type designation. Otherwise, returns 0. */
2925
2926 int
2927 ada_array_arity (struct type *type)
2928 {
2929 int arity;
2930
2931 if (type == NULL)
2932 return 0;
2933
2934 type = desc_base_type (type);
2935
2936 arity = 0;
2937 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2938 return desc_arity (desc_bounds_type (type));
2939 else
2940 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2941 {
2942 arity += 1;
2943 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2944 }
2945
2946 return arity;
2947 }
2948
2949 /* If TYPE is a record type in the form of a standard GNAT array
2950 descriptor or a simple array type, returns the element type for
2951 TYPE after indexing by NINDICES indices, or by all indices if
2952 NINDICES is -1. Otherwise, returns NULL. */
2953
2954 struct type *
2955 ada_array_element_type (struct type *type, int nindices)
2956 {
2957 type = desc_base_type (type);
2958
2959 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2960 {
2961 int k;
2962 struct type *p_array_type;
2963
2964 p_array_type = desc_data_target_type (type);
2965
2966 k = ada_array_arity (type);
2967 if (k == 0)
2968 return NULL;
2969
2970 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2971 if (nindices >= 0 && k > nindices)
2972 k = nindices;
2973 while (k > 0 && p_array_type != NULL)
2974 {
2975 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2976 k -= 1;
2977 }
2978 return p_array_type;
2979 }
2980 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2981 {
2982 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2983 {
2984 type = TYPE_TARGET_TYPE (type);
2985 nindices -= 1;
2986 }
2987 return type;
2988 }
2989
2990 return NULL;
2991 }
2992
2993 /* The type of nth index in arrays of given type (n numbering from 1).
2994 Does not examine memory. Throws an error if N is invalid or TYPE
2995 is not an array type. NAME is the name of the Ada attribute being
2996 evaluated ('range, 'first, 'last, or 'length); it is used in building
2997 the error message. */
2998
2999 static struct type *
3000 ada_index_type (struct type *type, int n, const char *name)
3001 {
3002 struct type *result_type;
3003
3004 type = desc_base_type (type);
3005
3006 if (n < 0 || n > ada_array_arity (type))
3007 error (_("invalid dimension number to '%s"), name);
3008
3009 if (ada_is_simple_array_type (type))
3010 {
3011 int i;
3012
3013 for (i = 1; i < n; i += 1)
3014 type = TYPE_TARGET_TYPE (type);
3015 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3016 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3017 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3018 perhaps stabsread.c would make more sense. */
3019 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3020 result_type = NULL;
3021 }
3022 else
3023 {
3024 result_type = desc_index_type (desc_bounds_type (type), n);
3025 if (result_type == NULL)
3026 error (_("attempt to take bound of something that is not an array"));
3027 }
3028
3029 return result_type;
3030 }
3031
3032 /* Given that arr is an array type, returns the lower bound of the
3033 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3034 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3035 array-descriptor type. It works for other arrays with bounds supplied
3036 by run-time quantities other than discriminants. */
3037
3038 static LONGEST
3039 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3040 {
3041 struct type *type, *index_type_desc, *index_type;
3042 int i;
3043
3044 gdb_assert (which == 0 || which == 1);
3045
3046 if (ada_is_constrained_packed_array_type (arr_type))
3047 arr_type = decode_constrained_packed_array_type (arr_type);
3048
3049 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3050 return (LONGEST) - which;
3051
3052 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3053 type = TYPE_TARGET_TYPE (arr_type);
3054 else
3055 type = arr_type;
3056
3057 if (TYPE_FIXED_INSTANCE (type))
3058 {
3059 /* The array has already been fixed, so we do not need to
3060 check the parallel ___XA type again. That encoding has
3061 already been applied, so ignore it now. */
3062 index_type_desc = NULL;
3063 }
3064 else
3065 {
3066 index_type_desc = ada_find_parallel_type (type, "___XA");
3067 ada_fixup_array_indexes_type (index_type_desc);
3068 }
3069
3070 if (index_type_desc != NULL)
3071 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3072 NULL);
3073 else
3074 {
3075 struct type *elt_type = check_typedef (type);
3076
3077 for (i = 1; i < n; i++)
3078 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3079
3080 index_type = TYPE_INDEX_TYPE (elt_type);
3081 }
3082
3083 return
3084 (LONGEST) (which == 0
3085 ? ada_discrete_type_low_bound (index_type)
3086 : ada_discrete_type_high_bound (index_type));
3087 }
3088
3089 /* Given that arr is an array value, returns the lower bound of the
3090 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3091 WHICH is 1. This routine will also work for arrays with bounds
3092 supplied by run-time quantities other than discriminants. */
3093
3094 static LONGEST
3095 ada_array_bound (struct value *arr, int n, int which)
3096 {
3097 struct type *arr_type;
3098
3099 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3100 arr = value_ind (arr);
3101 arr_type = value_enclosing_type (arr);
3102
3103 if (ada_is_constrained_packed_array_type (arr_type))
3104 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3105 else if (ada_is_simple_array_type (arr_type))
3106 return ada_array_bound_from_type (arr_type, n, which);
3107 else
3108 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3109 }
3110
3111 /* Given that arr is an array value, returns the length of the
3112 nth index. This routine will also work for arrays with bounds
3113 supplied by run-time quantities other than discriminants.
3114 Does not work for arrays indexed by enumeration types with representation
3115 clauses at the moment. */
3116
3117 static LONGEST
3118 ada_array_length (struct value *arr, int n)
3119 {
3120 struct type *arr_type, *index_type;
3121 int low, high;
3122
3123 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3124 arr = value_ind (arr);
3125 arr_type = value_enclosing_type (arr);
3126
3127 if (ada_is_constrained_packed_array_type (arr_type))
3128 return ada_array_length (decode_constrained_packed_array (arr), n);
3129
3130 if (ada_is_simple_array_type (arr_type))
3131 {
3132 low = ada_array_bound_from_type (arr_type, n, 0);
3133 high = ada_array_bound_from_type (arr_type, n, 1);
3134 }
3135 else
3136 {
3137 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3138 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3139 }
3140
3141 arr_type = check_typedef (arr_type);
3142 index_type = TYPE_INDEX_TYPE (arr_type);
3143 if (index_type != NULL)
3144 {
3145 struct type *base_type;
3146 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3147 base_type = TYPE_TARGET_TYPE (index_type);
3148 else
3149 base_type = index_type;
3150
3151 low = pos_atr (value_from_longest (base_type, low));
3152 high = pos_atr (value_from_longest (base_type, high));
3153 }
3154 return high - low + 1;
3155 }
3156
3157 /* An empty array whose type is that of ARR_TYPE (an array type),
3158 with bounds LOW to LOW-1. */
3159
3160 static struct value *
3161 empty_array (struct type *arr_type, int low)
3162 {
3163 struct type *arr_type0 = ada_check_typedef (arr_type);
3164 struct type *index_type
3165 = create_static_range_type
3166 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3167 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3168
3169 return allocate_value (create_array_type (NULL, elt_type, index_type));
3170 }
3171 \f
3172
3173 /* Name resolution */
3174
3175 /* The "decoded" name for the user-definable Ada operator corresponding
3176 to OP. */
3177
3178 static const char *
3179 ada_decoded_op_name (enum exp_opcode op)
3180 {
3181 int i;
3182
3183 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3184 {
3185 if (ada_opname_table[i].op == op)
3186 return ada_opname_table[i].decoded;
3187 }
3188 error (_("Could not find operator name for opcode"));
3189 }
3190
3191
3192 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3193 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3194 undefined namespace) and converts operators that are
3195 user-defined into appropriate function calls. If CONTEXT_TYPE is
3196 non-null, it provides a preferred result type [at the moment, only
3197 type void has any effect---causing procedures to be preferred over
3198 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3199 return type is preferred. May change (expand) *EXP. */
3200
3201 static void
3202 resolve (struct expression **expp, int void_context_p)
3203 {
3204 struct type *context_type = NULL;
3205 int pc = 0;
3206
3207 if (void_context_p)
3208 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3209
3210 resolve_subexp (expp, &pc, 1, context_type);
3211 }
3212
3213 /* Resolve the operator of the subexpression beginning at
3214 position *POS of *EXPP. "Resolving" consists of replacing
3215 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3216 with their resolutions, replacing built-in operators with
3217 function calls to user-defined operators, where appropriate, and,
3218 when DEPROCEDURE_P is non-zero, converting function-valued variables
3219 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3220 are as in ada_resolve, above. */
3221
3222 static struct value *
3223 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3224 struct type *context_type)
3225 {
3226 int pc = *pos;
3227 int i;
3228 struct expression *exp; /* Convenience: == *expp. */
3229 enum exp_opcode op = (*expp)->elts[pc].opcode;
3230 struct value **argvec; /* Vector of operand types (alloca'ed). */
3231 int nargs; /* Number of operands. */
3232 int oplen;
3233
3234 argvec = NULL;
3235 nargs = 0;
3236 exp = *expp;
3237
3238 /* Pass one: resolve operands, saving their types and updating *pos,
3239 if needed. */
3240 switch (op)
3241 {
3242 case OP_FUNCALL:
3243 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3244 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3245 *pos += 7;
3246 else
3247 {
3248 *pos += 3;
3249 resolve_subexp (expp, pos, 0, NULL);
3250 }
3251 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3252 break;
3253
3254 case UNOP_ADDR:
3255 *pos += 1;
3256 resolve_subexp (expp, pos, 0, NULL);
3257 break;
3258
3259 case UNOP_QUAL:
3260 *pos += 3;
3261 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3262 break;
3263
3264 case OP_ATR_MODULUS:
3265 case OP_ATR_SIZE:
3266 case OP_ATR_TAG:
3267 case OP_ATR_FIRST:
3268 case OP_ATR_LAST:
3269 case OP_ATR_LENGTH:
3270 case OP_ATR_POS:
3271 case OP_ATR_VAL:
3272 case OP_ATR_MIN:
3273 case OP_ATR_MAX:
3274 case TERNOP_IN_RANGE:
3275 case BINOP_IN_BOUNDS:
3276 case UNOP_IN_RANGE:
3277 case OP_AGGREGATE:
3278 case OP_OTHERS:
3279 case OP_CHOICES:
3280 case OP_POSITIONAL:
3281 case OP_DISCRETE_RANGE:
3282 case OP_NAME:
3283 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3284 *pos += oplen;
3285 break;
3286
3287 case BINOP_ASSIGN:
3288 {
3289 struct value *arg1;
3290
3291 *pos += 1;
3292 arg1 = resolve_subexp (expp, pos, 0, NULL);
3293 if (arg1 == NULL)
3294 resolve_subexp (expp, pos, 1, NULL);
3295 else
3296 resolve_subexp (expp, pos, 1, value_type (arg1));
3297 break;
3298 }
3299
3300 case UNOP_CAST:
3301 *pos += 3;
3302 nargs = 1;
3303 break;
3304
3305 case BINOP_ADD:
3306 case BINOP_SUB:
3307 case BINOP_MUL:
3308 case BINOP_DIV:
3309 case BINOP_REM:
3310 case BINOP_MOD:
3311 case BINOP_EXP:
3312 case BINOP_CONCAT:
3313 case BINOP_LOGICAL_AND:
3314 case BINOP_LOGICAL_OR:
3315 case BINOP_BITWISE_AND:
3316 case BINOP_BITWISE_IOR:
3317 case BINOP_BITWISE_XOR:
3318
3319 case BINOP_EQUAL:
3320 case BINOP_NOTEQUAL:
3321 case BINOP_LESS:
3322 case BINOP_GTR:
3323 case BINOP_LEQ:
3324 case BINOP_GEQ:
3325
3326 case BINOP_REPEAT:
3327 case BINOP_SUBSCRIPT:
3328 case BINOP_COMMA:
3329 *pos += 1;
3330 nargs = 2;
3331 break;
3332
3333 case UNOP_NEG:
3334 case UNOP_PLUS:
3335 case UNOP_LOGICAL_NOT:
3336 case UNOP_ABS:
3337 case UNOP_IND:
3338 *pos += 1;
3339 nargs = 1;
3340 break;
3341
3342 case OP_LONG:
3343 case OP_DOUBLE:
3344 case OP_VAR_VALUE:
3345 *pos += 4;
3346 break;
3347
3348 case OP_TYPE:
3349 case OP_BOOL:
3350 case OP_LAST:
3351 case OP_INTERNALVAR:
3352 *pos += 3;
3353 break;
3354
3355 case UNOP_MEMVAL:
3356 *pos += 3;
3357 nargs = 1;
3358 break;
3359
3360 case OP_REGISTER:
3361 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3362 break;
3363
3364 case STRUCTOP_STRUCT:
3365 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3366 nargs = 1;
3367 break;
3368
3369 case TERNOP_SLICE:
3370 *pos += 1;
3371 nargs = 3;
3372 break;
3373
3374 case OP_STRING:
3375 break;
3376
3377 default:
3378 error (_("Unexpected operator during name resolution"));
3379 }
3380
3381 argvec = XALLOCAVEC (struct value *, nargs + 1);
3382 for (i = 0; i < nargs; i += 1)
3383 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3384 argvec[i] = NULL;
3385 exp = *expp;
3386
3387 /* Pass two: perform any resolution on principal operator. */
3388 switch (op)
3389 {
3390 default:
3391 break;
3392
3393 case OP_VAR_VALUE:
3394 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3395 {
3396 struct block_symbol *candidates;
3397 int n_candidates;
3398
3399 n_candidates =
3400 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3401 (exp->elts[pc + 2].symbol),
3402 exp->elts[pc + 1].block, VAR_DOMAIN,
3403 &candidates);
3404
3405 if (n_candidates > 1)
3406 {
3407 /* Types tend to get re-introduced locally, so if there
3408 are any local symbols that are not types, first filter
3409 out all types. */
3410 int j;
3411 for (j = 0; j < n_candidates; j += 1)
3412 switch (SYMBOL_CLASS (candidates[j].symbol))
3413 {
3414 case LOC_REGISTER:
3415 case LOC_ARG:
3416 case LOC_REF_ARG:
3417 case LOC_REGPARM_ADDR:
3418 case LOC_LOCAL:
3419 case LOC_COMPUTED:
3420 goto FoundNonType;
3421 default:
3422 break;
3423 }
3424 FoundNonType:
3425 if (j < n_candidates)
3426 {
3427 j = 0;
3428 while (j < n_candidates)
3429 {
3430 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3431 {
3432 candidates[j] = candidates[n_candidates - 1];
3433 n_candidates -= 1;
3434 }
3435 else
3436 j += 1;
3437 }
3438 }
3439 }
3440
3441 if (n_candidates == 0)
3442 error (_("No definition found for %s"),
3443 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3444 else if (n_candidates == 1)
3445 i = 0;
3446 else if (deprocedure_p
3447 && !is_nonfunction (candidates, n_candidates))
3448 {
3449 i = ada_resolve_function
3450 (candidates, n_candidates, NULL, 0,
3451 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3452 context_type);
3453 if (i < 0)
3454 error (_("Could not find a match for %s"),
3455 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3456 }
3457 else
3458 {
3459 printf_filtered (_("Multiple matches for %s\n"),
3460 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3461 user_select_syms (candidates, n_candidates, 1);
3462 i = 0;
3463 }
3464
3465 exp->elts[pc + 1].block = candidates[i].block;
3466 exp->elts[pc + 2].symbol = candidates[i].symbol;
3467 if (innermost_block == NULL
3468 || contained_in (candidates[i].block, innermost_block))
3469 innermost_block = candidates[i].block;
3470 }
3471
3472 if (deprocedure_p
3473 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3474 == TYPE_CODE_FUNC))
3475 {
3476 replace_operator_with_call (expp, pc, 0, 0,
3477 exp->elts[pc + 2].symbol,
3478 exp->elts[pc + 1].block);
3479 exp = *expp;
3480 }
3481 break;
3482
3483 case OP_FUNCALL:
3484 {
3485 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3486 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3487 {
3488 struct block_symbol *candidates;
3489 int n_candidates;
3490
3491 n_candidates =
3492 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3493 (exp->elts[pc + 5].symbol),
3494 exp->elts[pc + 4].block, VAR_DOMAIN,
3495 &candidates);
3496 if (n_candidates == 1)
3497 i = 0;
3498 else
3499 {
3500 i = ada_resolve_function
3501 (candidates, n_candidates,
3502 argvec, nargs,
3503 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3504 context_type);
3505 if (i < 0)
3506 error (_("Could not find a match for %s"),
3507 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3508 }
3509
3510 exp->elts[pc + 4].block = candidates[i].block;
3511 exp->elts[pc + 5].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3515 }
3516 }
3517 break;
3518 case BINOP_ADD:
3519 case BINOP_SUB:
3520 case BINOP_MUL:
3521 case BINOP_DIV:
3522 case BINOP_REM:
3523 case BINOP_MOD:
3524 case BINOP_CONCAT:
3525 case BINOP_BITWISE_AND:
3526 case BINOP_BITWISE_IOR:
3527 case BINOP_BITWISE_XOR:
3528 case BINOP_EQUAL:
3529 case BINOP_NOTEQUAL:
3530 case BINOP_LESS:
3531 case BINOP_GTR:
3532 case BINOP_LEQ:
3533 case BINOP_GEQ:
3534 case BINOP_EXP:
3535 case UNOP_NEG:
3536 case UNOP_PLUS:
3537 case UNOP_LOGICAL_NOT:
3538 case UNOP_ABS:
3539 if (possible_user_operator_p (op, argvec))
3540 {
3541 struct block_symbol *candidates;
3542 int n_candidates;
3543
3544 n_candidates =
3545 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3546 (struct block *) NULL, VAR_DOMAIN,
3547 &candidates);
3548 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3549 ada_decoded_op_name (op), NULL);
3550 if (i < 0)
3551 break;
3552
3553 replace_operator_with_call (expp, pc, nargs, 1,
3554 candidates[i].symbol,
3555 candidates[i].block);
3556 exp = *expp;
3557 }
3558 break;
3559
3560 case OP_TYPE:
3561 case OP_REGISTER:
3562 return NULL;
3563 }
3564
3565 *pos = pc;
3566 return evaluate_subexp_type (exp, pos);
3567 }
3568
3569 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3570 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3571 a non-pointer. */
3572 /* The term "match" here is rather loose. The match is heuristic and
3573 liberal. */
3574
3575 static int
3576 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3577 {
3578 ftype = ada_check_typedef (ftype);
3579 atype = ada_check_typedef (atype);
3580
3581 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3582 ftype = TYPE_TARGET_TYPE (ftype);
3583 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3584 atype = TYPE_TARGET_TYPE (atype);
3585
3586 switch (TYPE_CODE (ftype))
3587 {
3588 default:
3589 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3590 case TYPE_CODE_PTR:
3591 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3592 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3593 TYPE_TARGET_TYPE (atype), 0);
3594 else
3595 return (may_deref
3596 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3597 case TYPE_CODE_INT:
3598 case TYPE_CODE_ENUM:
3599 case TYPE_CODE_RANGE:
3600 switch (TYPE_CODE (atype))
3601 {
3602 case TYPE_CODE_INT:
3603 case TYPE_CODE_ENUM:
3604 case TYPE_CODE_RANGE:
3605 return 1;
3606 default:
3607 return 0;
3608 }
3609
3610 case TYPE_CODE_ARRAY:
3611 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3612 || ada_is_array_descriptor_type (atype));
3613
3614 case TYPE_CODE_STRUCT:
3615 if (ada_is_array_descriptor_type (ftype))
3616 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3617 || ada_is_array_descriptor_type (atype));
3618 else
3619 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3620 && !ada_is_array_descriptor_type (atype));
3621
3622 case TYPE_CODE_UNION:
3623 case TYPE_CODE_FLT:
3624 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3625 }
3626 }
3627
3628 /* Return non-zero if the formals of FUNC "sufficiently match" the
3629 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3630 may also be an enumeral, in which case it is treated as a 0-
3631 argument function. */
3632
3633 static int
3634 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3635 {
3636 int i;
3637 struct type *func_type = SYMBOL_TYPE (func);
3638
3639 if (SYMBOL_CLASS (func) == LOC_CONST
3640 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3641 return (n_actuals == 0);
3642 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3643 return 0;
3644
3645 if (TYPE_NFIELDS (func_type) != n_actuals)
3646 return 0;
3647
3648 for (i = 0; i < n_actuals; i += 1)
3649 {
3650 if (actuals[i] == NULL)
3651 return 0;
3652 else
3653 {
3654 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3655 i));
3656 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3657
3658 if (!ada_type_match (ftype, atype, 1))
3659 return 0;
3660 }
3661 }
3662 return 1;
3663 }
3664
3665 /* False iff function type FUNC_TYPE definitely does not produce a value
3666 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3667 FUNC_TYPE is not a valid function type with a non-null return type
3668 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3669
3670 static int
3671 return_match (struct type *func_type, struct type *context_type)
3672 {
3673 struct type *return_type;
3674
3675 if (func_type == NULL)
3676 return 1;
3677
3678 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3679 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3680 else
3681 return_type = get_base_type (func_type);
3682 if (return_type == NULL)
3683 return 1;
3684
3685 context_type = get_base_type (context_type);
3686
3687 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3688 return context_type == NULL || return_type == context_type;
3689 else if (context_type == NULL)
3690 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3691 else
3692 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3693 }
3694
3695
3696 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3697 function (if any) that matches the types of the NARGS arguments in
3698 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3699 that returns that type, then eliminate matches that don't. If
3700 CONTEXT_TYPE is void and there is at least one match that does not
3701 return void, eliminate all matches that do.
3702
3703 Asks the user if there is more than one match remaining. Returns -1
3704 if there is no such symbol or none is selected. NAME is used
3705 solely for messages. May re-arrange and modify SYMS in
3706 the process; the index returned is for the modified vector. */
3707
3708 static int
3709 ada_resolve_function (struct block_symbol syms[],
3710 int nsyms, struct value **args, int nargs,
3711 const char *name, struct type *context_type)
3712 {
3713 int fallback;
3714 int k;
3715 int m; /* Number of hits */
3716
3717 m = 0;
3718 /* In the first pass of the loop, we only accept functions matching
3719 context_type. If none are found, we add a second pass of the loop
3720 where every function is accepted. */
3721 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3722 {
3723 for (k = 0; k < nsyms; k += 1)
3724 {
3725 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3726
3727 if (ada_args_match (syms[k].symbol, args, nargs)
3728 && (fallback || return_match (type, context_type)))
3729 {
3730 syms[m] = syms[k];
3731 m += 1;
3732 }
3733 }
3734 }
3735
3736 /* If we got multiple matches, ask the user which one to use. Don't do this
3737 interactive thing during completion, though, as the purpose of the
3738 completion is providing a list of all possible matches. Prompting the
3739 user to filter it down would be completely unexpected in this case. */
3740 if (m == 0)
3741 return -1;
3742 else if (m > 1 && !parse_completion)
3743 {
3744 printf_filtered (_("Multiple matches for %s\n"), name);
3745 user_select_syms (syms, m, 1);
3746 return 0;
3747 }
3748 return 0;
3749 }
3750
3751 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3752 in a listing of choices during disambiguation (see sort_choices, below).
3753 The idea is that overloadings of a subprogram name from the
3754 same package should sort in their source order. We settle for ordering
3755 such symbols by their trailing number (__N or $N). */
3756
3757 static int
3758 encoded_ordered_before (const char *N0, const char *N1)
3759 {
3760 if (N1 == NULL)
3761 return 0;
3762 else if (N0 == NULL)
3763 return 1;
3764 else
3765 {
3766 int k0, k1;
3767
3768 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3769 ;
3770 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3771 ;
3772 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3773 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3774 {
3775 int n0, n1;
3776
3777 n0 = k0;
3778 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3779 n0 -= 1;
3780 n1 = k1;
3781 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3782 n1 -= 1;
3783 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3784 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3785 }
3786 return (strcmp (N0, N1) < 0);
3787 }
3788 }
3789
3790 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3791 encoded names. */
3792
3793 static void
3794 sort_choices (struct block_symbol syms[], int nsyms)
3795 {
3796 int i;
3797
3798 for (i = 1; i < nsyms; i += 1)
3799 {
3800 struct block_symbol sym = syms[i];
3801 int j;
3802
3803 for (j = i - 1; j >= 0; j -= 1)
3804 {
3805 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3806 SYMBOL_LINKAGE_NAME (sym.symbol)))
3807 break;
3808 syms[j + 1] = syms[j];
3809 }
3810 syms[j + 1] = sym;
3811 }
3812 }
3813
3814 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3815 by asking the user (if necessary), returning the number selected,
3816 and setting the first elements of SYMS items. Error if no symbols
3817 selected. */
3818
3819 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3820 to be re-integrated one of these days. */
3821
3822 int
3823 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3824 {
3825 int i;
3826 int *chosen = XALLOCAVEC (int , nsyms);
3827 int n_chosen;
3828 int first_choice = (max_results == 1) ? 1 : 2;
3829 const char *select_mode = multiple_symbols_select_mode ();
3830
3831 if (max_results < 1)
3832 error (_("Request to select 0 symbols!"));
3833 if (nsyms <= 1)
3834 return nsyms;
3835
3836 if (select_mode == multiple_symbols_cancel)
3837 error (_("\
3838 canceled because the command is ambiguous\n\
3839 See set/show multiple-symbol."));
3840
3841 /* If select_mode is "all", then return all possible symbols.
3842 Only do that if more than one symbol can be selected, of course.
3843 Otherwise, display the menu as usual. */
3844 if (select_mode == multiple_symbols_all && max_results > 1)
3845 return nsyms;
3846
3847 printf_unfiltered (_("[0] cancel\n"));
3848 if (max_results > 1)
3849 printf_unfiltered (_("[1] all\n"));
3850
3851 sort_choices (syms, nsyms);
3852
3853 for (i = 0; i < nsyms; i += 1)
3854 {
3855 if (syms[i].symbol == NULL)
3856 continue;
3857
3858 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3859 {
3860 struct symtab_and_line sal =
3861 find_function_start_sal (syms[i].symbol, 1);
3862
3863 if (sal.symtab == NULL)
3864 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3865 i + first_choice,
3866 SYMBOL_PRINT_NAME (syms[i].symbol),
3867 sal.line);
3868 else
3869 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3870 SYMBOL_PRINT_NAME (syms[i].symbol),
3871 symtab_to_filename_for_display (sal.symtab),
3872 sal.line);
3873 continue;
3874 }
3875 else
3876 {
3877 int is_enumeral =
3878 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3879 && SYMBOL_TYPE (syms[i].symbol) != NULL
3880 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3881 struct symtab *symtab = NULL;
3882
3883 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3884 symtab = symbol_symtab (syms[i].symbol);
3885
3886 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3887 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3888 i + first_choice,
3889 SYMBOL_PRINT_NAME (syms[i].symbol),
3890 symtab_to_filename_for_display (symtab),
3891 SYMBOL_LINE (syms[i].symbol));
3892 else if (is_enumeral
3893 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3894 {
3895 printf_unfiltered (("[%d] "), i + first_choice);
3896 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3897 gdb_stdout, -1, 0, &type_print_raw_options);
3898 printf_unfiltered (_("'(%s) (enumeral)\n"),
3899 SYMBOL_PRINT_NAME (syms[i].symbol));
3900 }
3901 else if (symtab != NULL)
3902 printf_unfiltered (is_enumeral
3903 ? _("[%d] %s in %s (enumeral)\n")
3904 : _("[%d] %s at %s:?\n"),
3905 i + first_choice,
3906 SYMBOL_PRINT_NAME (syms[i].symbol),
3907 symtab_to_filename_for_display (symtab));
3908 else
3909 printf_unfiltered (is_enumeral
3910 ? _("[%d] %s (enumeral)\n")
3911 : _("[%d] %s at ?\n"),
3912 i + first_choice,
3913 SYMBOL_PRINT_NAME (syms[i].symbol));
3914 }
3915 }
3916
3917 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3918 "overload-choice");
3919
3920 for (i = 0; i < n_chosen; i += 1)
3921 syms[i] = syms[chosen[i]];
3922
3923 return n_chosen;
3924 }
3925
3926 /* Read and validate a set of numeric choices from the user in the
3927 range 0 .. N_CHOICES-1. Place the results in increasing
3928 order in CHOICES[0 .. N-1], and return N.
3929
3930 The user types choices as a sequence of numbers on one line
3931 separated by blanks, encoding them as follows:
3932
3933 + A choice of 0 means to cancel the selection, throwing an error.
3934 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3935 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3936
3937 The user is not allowed to choose more than MAX_RESULTS values.
3938
3939 ANNOTATION_SUFFIX, if present, is used to annotate the input
3940 prompts (for use with the -f switch). */
3941
3942 int
3943 get_selections (int *choices, int n_choices, int max_results,
3944 int is_all_choice, char *annotation_suffix)
3945 {
3946 char *args;
3947 char *prompt;
3948 int n_chosen;
3949 int first_choice = is_all_choice ? 2 : 1;
3950
3951 prompt = getenv ("PS2");
3952 if (prompt == NULL)
3953 prompt = "> ";
3954
3955 args = command_line_input (prompt, 0, annotation_suffix);
3956
3957 if (args == NULL)
3958 error_no_arg (_("one or more choice numbers"));
3959
3960 n_chosen = 0;
3961
3962 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3963 order, as given in args. Choices are validated. */
3964 while (1)
3965 {
3966 char *args2;
3967 int choice, j;
3968
3969 args = skip_spaces (args);
3970 if (*args == '\0' && n_chosen == 0)
3971 error_no_arg (_("one or more choice numbers"));
3972 else if (*args == '\0')
3973 break;
3974
3975 choice = strtol (args, &args2, 10);
3976 if (args == args2 || choice < 0
3977 || choice > n_choices + first_choice - 1)
3978 error (_("Argument must be choice number"));
3979 args = args2;
3980
3981 if (choice == 0)
3982 error (_("cancelled"));
3983
3984 if (choice < first_choice)
3985 {
3986 n_chosen = n_choices;
3987 for (j = 0; j < n_choices; j += 1)
3988 choices[j] = j;
3989 break;
3990 }
3991 choice -= first_choice;
3992
3993 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3994 {
3995 }
3996
3997 if (j < 0 || choice != choices[j])
3998 {
3999 int k;
4000
4001 for (k = n_chosen - 1; k > j; k -= 1)
4002 choices[k + 1] = choices[k];
4003 choices[j + 1] = choice;
4004 n_chosen += 1;
4005 }
4006 }
4007
4008 if (n_chosen > max_results)
4009 error (_("Select no more than %d of the above"), max_results);
4010
4011 return n_chosen;
4012 }
4013
4014 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4015 on the function identified by SYM and BLOCK, and taking NARGS
4016 arguments. Update *EXPP as needed to hold more space. */
4017
4018 static void
4019 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4020 int oplen, struct symbol *sym,
4021 const struct block *block)
4022 {
4023 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4024 symbol, -oplen for operator being replaced). */
4025 struct expression *newexp = (struct expression *)
4026 xzalloc (sizeof (struct expression)
4027 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4028 struct expression *exp = *expp;
4029
4030 newexp->nelts = exp->nelts + 7 - oplen;
4031 newexp->language_defn = exp->language_defn;
4032 newexp->gdbarch = exp->gdbarch;
4033 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4034 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4035 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4036
4037 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4038 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4039
4040 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4041 newexp->elts[pc + 4].block = block;
4042 newexp->elts[pc + 5].symbol = sym;
4043
4044 *expp = newexp;
4045 xfree (exp);
4046 }
4047
4048 /* Type-class predicates */
4049
4050 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4051 or FLOAT). */
4052
4053 static int
4054 numeric_type_p (struct type *type)
4055 {
4056 if (type == NULL)
4057 return 0;
4058 else
4059 {
4060 switch (TYPE_CODE (type))
4061 {
4062 case TYPE_CODE_INT:
4063 case TYPE_CODE_FLT:
4064 return 1;
4065 case TYPE_CODE_RANGE:
4066 return (type == TYPE_TARGET_TYPE (type)
4067 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4068 default:
4069 return 0;
4070 }
4071 }
4072 }
4073
4074 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4075
4076 static int
4077 integer_type_p (struct type *type)
4078 {
4079 if (type == NULL)
4080 return 0;
4081 else
4082 {
4083 switch (TYPE_CODE (type))
4084 {
4085 case TYPE_CODE_INT:
4086 return 1;
4087 case TYPE_CODE_RANGE:
4088 return (type == TYPE_TARGET_TYPE (type)
4089 || integer_type_p (TYPE_TARGET_TYPE (type)));
4090 default:
4091 return 0;
4092 }
4093 }
4094 }
4095
4096 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4097
4098 static int
4099 scalar_type_p (struct type *type)
4100 {
4101 if (type == NULL)
4102 return 0;
4103 else
4104 {
4105 switch (TYPE_CODE (type))
4106 {
4107 case TYPE_CODE_INT:
4108 case TYPE_CODE_RANGE:
4109 case TYPE_CODE_ENUM:
4110 case TYPE_CODE_FLT:
4111 return 1;
4112 default:
4113 return 0;
4114 }
4115 }
4116 }
4117
4118 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4119
4120 static int
4121 discrete_type_p (struct type *type)
4122 {
4123 if (type == NULL)
4124 return 0;
4125 else
4126 {
4127 switch (TYPE_CODE (type))
4128 {
4129 case TYPE_CODE_INT:
4130 case TYPE_CODE_RANGE:
4131 case TYPE_CODE_ENUM:
4132 case TYPE_CODE_BOOL:
4133 return 1;
4134 default:
4135 return 0;
4136 }
4137 }
4138 }
4139
4140 /* Returns non-zero if OP with operands in the vector ARGS could be
4141 a user-defined function. Errs on the side of pre-defined operators
4142 (i.e., result 0). */
4143
4144 static int
4145 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4146 {
4147 struct type *type0 =
4148 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4149 struct type *type1 =
4150 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4151
4152 if (type0 == NULL)
4153 return 0;
4154
4155 switch (op)
4156 {
4157 default:
4158 return 0;
4159
4160 case BINOP_ADD:
4161 case BINOP_SUB:
4162 case BINOP_MUL:
4163 case BINOP_DIV:
4164 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4165
4166 case BINOP_REM:
4167 case BINOP_MOD:
4168 case BINOP_BITWISE_AND:
4169 case BINOP_BITWISE_IOR:
4170 case BINOP_BITWISE_XOR:
4171 return (!(integer_type_p (type0) && integer_type_p (type1)));
4172
4173 case BINOP_EQUAL:
4174 case BINOP_NOTEQUAL:
4175 case BINOP_LESS:
4176 case BINOP_GTR:
4177 case BINOP_LEQ:
4178 case BINOP_GEQ:
4179 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4180
4181 case BINOP_CONCAT:
4182 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4183
4184 case BINOP_EXP:
4185 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4186
4187 case UNOP_NEG:
4188 case UNOP_PLUS:
4189 case UNOP_LOGICAL_NOT:
4190 case UNOP_ABS:
4191 return (!numeric_type_p (type0));
4192
4193 }
4194 }
4195 \f
4196 /* Renaming */
4197
4198 /* NOTES:
4199
4200 1. In the following, we assume that a renaming type's name may
4201 have an ___XD suffix. It would be nice if this went away at some
4202 point.
4203 2. We handle both the (old) purely type-based representation of
4204 renamings and the (new) variable-based encoding. At some point,
4205 it is devoutly to be hoped that the former goes away
4206 (FIXME: hilfinger-2007-07-09).
4207 3. Subprogram renamings are not implemented, although the XRS
4208 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4209
4210 /* If SYM encodes a renaming,
4211
4212 <renaming> renames <renamed entity>,
4213
4214 sets *LEN to the length of the renamed entity's name,
4215 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4216 the string describing the subcomponent selected from the renamed
4217 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4218 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4219 are undefined). Otherwise, returns a value indicating the category
4220 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4221 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4222 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4223 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4224 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4225 may be NULL, in which case they are not assigned.
4226
4227 [Currently, however, GCC does not generate subprogram renamings.] */
4228
4229 enum ada_renaming_category
4230 ada_parse_renaming (struct symbol *sym,
4231 const char **renamed_entity, int *len,
4232 const char **renaming_expr)
4233 {
4234 enum ada_renaming_category kind;
4235 const char *info;
4236 const char *suffix;
4237
4238 if (sym == NULL)
4239 return ADA_NOT_RENAMING;
4240 switch (SYMBOL_CLASS (sym))
4241 {
4242 default:
4243 return ADA_NOT_RENAMING;
4244 case LOC_TYPEDEF:
4245 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4246 renamed_entity, len, renaming_expr);
4247 case LOC_LOCAL:
4248 case LOC_STATIC:
4249 case LOC_COMPUTED:
4250 case LOC_OPTIMIZED_OUT:
4251 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4252 if (info == NULL)
4253 return ADA_NOT_RENAMING;
4254 switch (info[5])
4255 {
4256 case '_':
4257 kind = ADA_OBJECT_RENAMING;
4258 info += 6;
4259 break;
4260 case 'E':
4261 kind = ADA_EXCEPTION_RENAMING;
4262 info += 7;
4263 break;
4264 case 'P':
4265 kind = ADA_PACKAGE_RENAMING;
4266 info += 7;
4267 break;
4268 case 'S':
4269 kind = ADA_SUBPROGRAM_RENAMING;
4270 info += 7;
4271 break;
4272 default:
4273 return ADA_NOT_RENAMING;
4274 }
4275 }
4276
4277 if (renamed_entity != NULL)
4278 *renamed_entity = info;
4279 suffix = strstr (info, "___XE");
4280 if (suffix == NULL || suffix == info)
4281 return ADA_NOT_RENAMING;
4282 if (len != NULL)
4283 *len = strlen (info) - strlen (suffix);
4284 suffix += 5;
4285 if (renaming_expr != NULL)
4286 *renaming_expr = suffix;
4287 return kind;
4288 }
4289
4290 /* Assuming TYPE encodes a renaming according to the old encoding in
4291 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4292 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4293 ADA_NOT_RENAMING otherwise. */
4294 static enum ada_renaming_category
4295 parse_old_style_renaming (struct type *type,
4296 const char **renamed_entity, int *len,
4297 const char **renaming_expr)
4298 {
4299 enum ada_renaming_category kind;
4300 const char *name;
4301 const char *info;
4302 const char *suffix;
4303
4304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4305 || TYPE_NFIELDS (type) != 1)
4306 return ADA_NOT_RENAMING;
4307
4308 name = type_name_no_tag (type);
4309 if (name == NULL)
4310 return ADA_NOT_RENAMING;
4311
4312 name = strstr (name, "___XR");
4313 if (name == NULL)
4314 return ADA_NOT_RENAMING;
4315 switch (name[5])
4316 {
4317 case '\0':
4318 case '_':
4319 kind = ADA_OBJECT_RENAMING;
4320 break;
4321 case 'E':
4322 kind = ADA_EXCEPTION_RENAMING;
4323 break;
4324 case 'P':
4325 kind = ADA_PACKAGE_RENAMING;
4326 break;
4327 case 'S':
4328 kind = ADA_SUBPROGRAM_RENAMING;
4329 break;
4330 default:
4331 return ADA_NOT_RENAMING;
4332 }
4333
4334 info = TYPE_FIELD_NAME (type, 0);
4335 if (info == NULL)
4336 return ADA_NOT_RENAMING;
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (renaming_expr != NULL)
4341 *renaming_expr = suffix + 5;
4342 if (suffix == NULL || suffix == info)
4343 return ADA_NOT_RENAMING;
4344 if (len != NULL)
4345 *len = suffix - info;
4346 return kind;
4347 }
4348
4349 /* Compute the value of the given RENAMING_SYM, which is expected to
4350 be a symbol encoding a renaming expression. BLOCK is the block
4351 used to evaluate the renaming. */
4352
4353 static struct value *
4354 ada_read_renaming_var_value (struct symbol *renaming_sym,
4355 const struct block *block)
4356 {
4357 const char *sym_name;
4358 struct expression *expr;
4359 struct value *value;
4360 struct cleanup *old_chain = NULL;
4361
4362 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4363 expr = parse_exp_1 (&sym_name, 0, block, 0);
4364 old_chain = make_cleanup (free_current_contents, &expr);
4365 value = evaluate_expression (expr);
4366
4367 do_cleanups (old_chain);
4368 return value;
4369 }
4370 \f
4371
4372 /* Evaluation: Function Calls */
4373
4374 /* Return an lvalue containing the value VAL. This is the identity on
4375 lvalues, and otherwise has the side-effect of allocating memory
4376 in the inferior where a copy of the value contents is copied. */
4377
4378 static struct value *
4379 ensure_lval (struct value *val)
4380 {
4381 if (VALUE_LVAL (val) == not_lval
4382 || VALUE_LVAL (val) == lval_internalvar)
4383 {
4384 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4385 const CORE_ADDR addr =
4386 value_as_long (value_allocate_space_in_inferior (len));
4387
4388 set_value_address (val, addr);
4389 VALUE_LVAL (val) = lval_memory;
4390 write_memory (addr, value_contents (val), len);
4391 }
4392
4393 return val;
4394 }
4395
4396 /* Return the value ACTUAL, converted to be an appropriate value for a
4397 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4398 allocating any necessary descriptors (fat pointers), or copies of
4399 values not residing in memory, updating it as needed. */
4400
4401 struct value *
4402 ada_convert_actual (struct value *actual, struct type *formal_type0)
4403 {
4404 struct type *actual_type = ada_check_typedef (value_type (actual));
4405 struct type *formal_type = ada_check_typedef (formal_type0);
4406 struct type *formal_target =
4407 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4408 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4409 struct type *actual_target =
4410 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4411 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4412
4413 if (ada_is_array_descriptor_type (formal_target)
4414 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4415 return make_array_descriptor (formal_type, actual);
4416 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4417 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4418 {
4419 struct value *result;
4420
4421 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4422 && ada_is_array_descriptor_type (actual_target))
4423 result = desc_data (actual);
4424 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4425 {
4426 if (VALUE_LVAL (actual) != lval_memory)
4427 {
4428 struct value *val;
4429
4430 actual_type = ada_check_typedef (value_type (actual));
4431 val = allocate_value (actual_type);
4432 memcpy ((char *) value_contents_raw (val),
4433 (char *) value_contents (actual),
4434 TYPE_LENGTH (actual_type));
4435 actual = ensure_lval (val);
4436 }
4437 result = value_addr (actual);
4438 }
4439 else
4440 return actual;
4441 return value_cast_pointers (formal_type, result, 0);
4442 }
4443 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4444 return ada_value_ind (actual);
4445 else if (ada_is_aligner_type (formal_type))
4446 {
4447 /* We need to turn this parameter into an aligner type
4448 as well. */
4449 struct value *aligner = allocate_value (formal_type);
4450 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4451
4452 value_assign_to_component (aligner, component, actual);
4453 return aligner;
4454 }
4455
4456 return actual;
4457 }
4458
4459 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4460 type TYPE. This is usually an inefficient no-op except on some targets
4461 (such as AVR) where the representation of a pointer and an address
4462 differs. */
4463
4464 static CORE_ADDR
4465 value_pointer (struct value *value, struct type *type)
4466 {
4467 struct gdbarch *gdbarch = get_type_arch (type);
4468 unsigned len = TYPE_LENGTH (type);
4469 gdb_byte *buf = (gdb_byte *) alloca (len);
4470 CORE_ADDR addr;
4471
4472 addr = value_address (value);
4473 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4474 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4475 return addr;
4476 }
4477
4478
4479 /* Push a descriptor of type TYPE for array value ARR on the stack at
4480 *SP, updating *SP to reflect the new descriptor. Return either
4481 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4482 to-descriptor type rather than a descriptor type), a struct value *
4483 representing a pointer to this descriptor. */
4484
4485 static struct value *
4486 make_array_descriptor (struct type *type, struct value *arr)
4487 {
4488 struct type *bounds_type = desc_bounds_type (type);
4489 struct type *desc_type = desc_base_type (type);
4490 struct value *descriptor = allocate_value (desc_type);
4491 struct value *bounds = allocate_value (bounds_type);
4492 int i;
4493
4494 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4495 i > 0; i -= 1)
4496 {
4497 modify_field (value_type (bounds), value_contents_writeable (bounds),
4498 ada_array_bound (arr, i, 0),
4499 desc_bound_bitpos (bounds_type, i, 0),
4500 desc_bound_bitsize (bounds_type, i, 0));
4501 modify_field (value_type (bounds), value_contents_writeable (bounds),
4502 ada_array_bound (arr, i, 1),
4503 desc_bound_bitpos (bounds_type, i, 1),
4504 desc_bound_bitsize (bounds_type, i, 1));
4505 }
4506
4507 bounds = ensure_lval (bounds);
4508
4509 modify_field (value_type (descriptor),
4510 value_contents_writeable (descriptor),
4511 value_pointer (ensure_lval (arr),
4512 TYPE_FIELD_TYPE (desc_type, 0)),
4513 fat_pntr_data_bitpos (desc_type),
4514 fat_pntr_data_bitsize (desc_type));
4515
4516 modify_field (value_type (descriptor),
4517 value_contents_writeable (descriptor),
4518 value_pointer (bounds,
4519 TYPE_FIELD_TYPE (desc_type, 1)),
4520 fat_pntr_bounds_bitpos (desc_type),
4521 fat_pntr_bounds_bitsize (desc_type));
4522
4523 descriptor = ensure_lval (descriptor);
4524
4525 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4526 return value_addr (descriptor);
4527 else
4528 return descriptor;
4529 }
4530 \f
4531 /* Symbol Cache Module */
4532
4533 /* Performance measurements made as of 2010-01-15 indicate that
4534 this cache does bring some noticeable improvements. Depending
4535 on the type of entity being printed, the cache can make it as much
4536 as an order of magnitude faster than without it.
4537
4538 The descriptive type DWARF extension has significantly reduced
4539 the need for this cache, at least when DWARF is being used. However,
4540 even in this case, some expensive name-based symbol searches are still
4541 sometimes necessary - to find an XVZ variable, mostly. */
4542
4543 /* Initialize the contents of SYM_CACHE. */
4544
4545 static void
4546 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4547 {
4548 obstack_init (&sym_cache->cache_space);
4549 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4550 }
4551
4552 /* Free the memory used by SYM_CACHE. */
4553
4554 static void
4555 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4556 {
4557 obstack_free (&sym_cache->cache_space, NULL);
4558 xfree (sym_cache);
4559 }
4560
4561 /* Return the symbol cache associated to the given program space PSPACE.
4562 If not allocated for this PSPACE yet, allocate and initialize one. */
4563
4564 static struct ada_symbol_cache *
4565 ada_get_symbol_cache (struct program_space *pspace)
4566 {
4567 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4568
4569 if (pspace_data->sym_cache == NULL)
4570 {
4571 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4572 ada_init_symbol_cache (pspace_data->sym_cache);
4573 }
4574
4575 return pspace_data->sym_cache;
4576 }
4577
4578 /* Clear all entries from the symbol cache. */
4579
4580 static void
4581 ada_clear_symbol_cache (void)
4582 {
4583 struct ada_symbol_cache *sym_cache
4584 = ada_get_symbol_cache (current_program_space);
4585
4586 obstack_free (&sym_cache->cache_space, NULL);
4587 ada_init_symbol_cache (sym_cache);
4588 }
4589
4590 /* Search our cache for an entry matching NAME and DOMAIN.
4591 Return it if found, or NULL otherwise. */
4592
4593 static struct cache_entry **
4594 find_entry (const char *name, domain_enum domain)
4595 {
4596 struct ada_symbol_cache *sym_cache
4597 = ada_get_symbol_cache (current_program_space);
4598 int h = msymbol_hash (name) % HASH_SIZE;
4599 struct cache_entry **e;
4600
4601 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4602 {
4603 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4604 return e;
4605 }
4606 return NULL;
4607 }
4608
4609 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4610 Return 1 if found, 0 otherwise.
4611
4612 If an entry was found and SYM is not NULL, set *SYM to the entry's
4613 SYM. Same principle for BLOCK if not NULL. */
4614
4615 static int
4616 lookup_cached_symbol (const char *name, domain_enum domain,
4617 struct symbol **sym, const struct block **block)
4618 {
4619 struct cache_entry **e = find_entry (name, domain);
4620
4621 if (e == NULL)
4622 return 0;
4623 if (sym != NULL)
4624 *sym = (*e)->sym;
4625 if (block != NULL)
4626 *block = (*e)->block;
4627 return 1;
4628 }
4629
4630 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4631 in domain DOMAIN, save this result in our symbol cache. */
4632
4633 static void
4634 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4635 const struct block *block)
4636 {
4637 struct ada_symbol_cache *sym_cache
4638 = ada_get_symbol_cache (current_program_space);
4639 int h;
4640 char *copy;
4641 struct cache_entry *e;
4642
4643 /* Symbols for builtin types don't have a block.
4644 For now don't cache such symbols. */
4645 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4646 return;
4647
4648 /* If the symbol is a local symbol, then do not cache it, as a search
4649 for that symbol depends on the context. To determine whether
4650 the symbol is local or not, we check the block where we found it
4651 against the global and static blocks of its associated symtab. */
4652 if (sym
4653 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4654 GLOBAL_BLOCK) != block
4655 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4656 STATIC_BLOCK) != block)
4657 return;
4658
4659 h = msymbol_hash (name) % HASH_SIZE;
4660 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4661 sizeof (*e));
4662 e->next = sym_cache->root[h];
4663 sym_cache->root[h] = e;
4664 e->name = copy
4665 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4666 strcpy (copy, name);
4667 e->sym = sym;
4668 e->domain = domain;
4669 e->block = block;
4670 }
4671 \f
4672 /* Symbol Lookup */
4673
4674 /* Return nonzero if wild matching should be used when searching for
4675 all symbols matching LOOKUP_NAME.
4676
4677 LOOKUP_NAME is expected to be a symbol name after transformation
4678 for Ada lookups (see ada_name_for_lookup). */
4679
4680 static int
4681 should_use_wild_match (const char *lookup_name)
4682 {
4683 return (strstr (lookup_name, "__") == NULL);
4684 }
4685
4686 /* Return the result of a standard (literal, C-like) lookup of NAME in
4687 given DOMAIN, visible from lexical block BLOCK. */
4688
4689 static struct symbol *
4690 standard_lookup (const char *name, const struct block *block,
4691 domain_enum domain)
4692 {
4693 /* Initialize it just to avoid a GCC false warning. */
4694 struct block_symbol sym = {NULL, NULL};
4695
4696 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4697 return sym.symbol;
4698 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4699 cache_symbol (name, domain, sym.symbol, sym.block);
4700 return sym.symbol;
4701 }
4702
4703
4704 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4705 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4706 since they contend in overloading in the same way. */
4707 static int
4708 is_nonfunction (struct block_symbol syms[], int n)
4709 {
4710 int i;
4711
4712 for (i = 0; i < n; i += 1)
4713 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4714 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4715 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4716 return 1;
4717
4718 return 0;
4719 }
4720
4721 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4722 struct types. Otherwise, they may not. */
4723
4724 static int
4725 equiv_types (struct type *type0, struct type *type1)
4726 {
4727 if (type0 == type1)
4728 return 1;
4729 if (type0 == NULL || type1 == NULL
4730 || TYPE_CODE (type0) != TYPE_CODE (type1))
4731 return 0;
4732 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4733 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4734 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4735 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4736 return 1;
4737
4738 return 0;
4739 }
4740
4741 /* True iff SYM0 represents the same entity as SYM1, or one that is
4742 no more defined than that of SYM1. */
4743
4744 static int
4745 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4746 {
4747 if (sym0 == sym1)
4748 return 1;
4749 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4750 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4751 return 0;
4752
4753 switch (SYMBOL_CLASS (sym0))
4754 {
4755 case LOC_UNDEF:
4756 return 1;
4757 case LOC_TYPEDEF:
4758 {
4759 struct type *type0 = SYMBOL_TYPE (sym0);
4760 struct type *type1 = SYMBOL_TYPE (sym1);
4761 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4762 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4763 int len0 = strlen (name0);
4764
4765 return
4766 TYPE_CODE (type0) == TYPE_CODE (type1)
4767 && (equiv_types (type0, type1)
4768 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4769 && startswith (name1 + len0, "___XV")));
4770 }
4771 case LOC_CONST:
4772 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4773 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4774 default:
4775 return 0;
4776 }
4777 }
4778
4779 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4780 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4781
4782 static void
4783 add_defn_to_vec (struct obstack *obstackp,
4784 struct symbol *sym,
4785 const struct block *block)
4786 {
4787 int i;
4788 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4789
4790 /* Do not try to complete stub types, as the debugger is probably
4791 already scanning all symbols matching a certain name at the
4792 time when this function is called. Trying to replace the stub
4793 type by its associated full type will cause us to restart a scan
4794 which may lead to an infinite recursion. Instead, the client
4795 collecting the matching symbols will end up collecting several
4796 matches, with at least one of them complete. It can then filter
4797 out the stub ones if needed. */
4798
4799 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4800 {
4801 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4802 return;
4803 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4804 {
4805 prevDefns[i].symbol = sym;
4806 prevDefns[i].block = block;
4807 return;
4808 }
4809 }
4810
4811 {
4812 struct block_symbol info;
4813
4814 info.symbol = sym;
4815 info.block = block;
4816 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4817 }
4818 }
4819
4820 /* Number of block_symbol structures currently collected in current vector in
4821 OBSTACKP. */
4822
4823 static int
4824 num_defns_collected (struct obstack *obstackp)
4825 {
4826 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4827 }
4828
4829 /* Vector of block_symbol structures currently collected in current vector in
4830 OBSTACKP. If FINISH, close off the vector and return its final address. */
4831
4832 static struct block_symbol *
4833 defns_collected (struct obstack *obstackp, int finish)
4834 {
4835 if (finish)
4836 return (struct block_symbol *) obstack_finish (obstackp);
4837 else
4838 return (struct block_symbol *) obstack_base (obstackp);
4839 }
4840
4841 /* Return a bound minimal symbol matching NAME according to Ada
4842 decoding rules. Returns an invalid symbol if there is no such
4843 minimal symbol. Names prefixed with "standard__" are handled
4844 specially: "standard__" is first stripped off, and only static and
4845 global symbols are searched. */
4846
4847 struct bound_minimal_symbol
4848 ada_lookup_simple_minsym (const char *name)
4849 {
4850 struct bound_minimal_symbol result;
4851 struct objfile *objfile;
4852 struct minimal_symbol *msymbol;
4853 const int wild_match_p = should_use_wild_match (name);
4854
4855 memset (&result, 0, sizeof (result));
4856
4857 /* Special case: If the user specifies a symbol name inside package
4858 Standard, do a non-wild matching of the symbol name without
4859 the "standard__" prefix. This was primarily introduced in order
4860 to allow the user to specifically access the standard exceptions
4861 using, for instance, Standard.Constraint_Error when Constraint_Error
4862 is ambiguous (due to the user defining its own Constraint_Error
4863 entity inside its program). */
4864 if (startswith (name, "standard__"))
4865 name += sizeof ("standard__") - 1;
4866
4867 ALL_MSYMBOLS (objfile, msymbol)
4868 {
4869 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4870 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4871 {
4872 result.minsym = msymbol;
4873 result.objfile = objfile;
4874 break;
4875 }
4876 }
4877
4878 return result;
4879 }
4880
4881 /* For all subprograms that statically enclose the subprogram of the
4882 selected frame, add symbols matching identifier NAME in DOMAIN
4883 and their blocks to the list of data in OBSTACKP, as for
4884 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4885 with a wildcard prefix. */
4886
4887 static void
4888 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4889 const char *name, domain_enum domain,
4890 int wild_match_p)
4891 {
4892 }
4893
4894 /* True if TYPE is definitely an artificial type supplied to a symbol
4895 for which no debugging information was given in the symbol file. */
4896
4897 static int
4898 is_nondebugging_type (struct type *type)
4899 {
4900 const char *name = ada_type_name (type);
4901
4902 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4903 }
4904
4905 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4906 that are deemed "identical" for practical purposes.
4907
4908 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4909 types and that their number of enumerals is identical (in other
4910 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4911
4912 static int
4913 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4914 {
4915 int i;
4916
4917 /* The heuristic we use here is fairly conservative. We consider
4918 that 2 enumerate types are identical if they have the same
4919 number of enumerals and that all enumerals have the same
4920 underlying value and name. */
4921
4922 /* All enums in the type should have an identical underlying value. */
4923 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4924 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4925 return 0;
4926
4927 /* All enumerals should also have the same name (modulo any numerical
4928 suffix). */
4929 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4930 {
4931 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4932 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4933 int len_1 = strlen (name_1);
4934 int len_2 = strlen (name_2);
4935
4936 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4937 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4938 if (len_1 != len_2
4939 || strncmp (TYPE_FIELD_NAME (type1, i),
4940 TYPE_FIELD_NAME (type2, i),
4941 len_1) != 0)
4942 return 0;
4943 }
4944
4945 return 1;
4946 }
4947
4948 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4949 that are deemed "identical" for practical purposes. Sometimes,
4950 enumerals are not strictly identical, but their types are so similar
4951 that they can be considered identical.
4952
4953 For instance, consider the following code:
4954
4955 type Color is (Black, Red, Green, Blue, White);
4956 type RGB_Color is new Color range Red .. Blue;
4957
4958 Type RGB_Color is a subrange of an implicit type which is a copy
4959 of type Color. If we call that implicit type RGB_ColorB ("B" is
4960 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4961 As a result, when an expression references any of the enumeral
4962 by name (Eg. "print green"), the expression is technically
4963 ambiguous and the user should be asked to disambiguate. But
4964 doing so would only hinder the user, since it wouldn't matter
4965 what choice he makes, the outcome would always be the same.
4966 So, for practical purposes, we consider them as the same. */
4967
4968 static int
4969 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4970 {
4971 int i;
4972
4973 /* Before performing a thorough comparison check of each type,
4974 we perform a series of inexpensive checks. We expect that these
4975 checks will quickly fail in the vast majority of cases, and thus
4976 help prevent the unnecessary use of a more expensive comparison.
4977 Said comparison also expects us to make some of these checks
4978 (see ada_identical_enum_types_p). */
4979
4980 /* Quick check: All symbols should have an enum type. */
4981 for (i = 0; i < nsyms; i++)
4982 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4983 return 0;
4984
4985 /* Quick check: They should all have the same value. */
4986 for (i = 1; i < nsyms; i++)
4987 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4988 return 0;
4989
4990 /* Quick check: They should all have the same number of enumerals. */
4991 for (i = 1; i < nsyms; i++)
4992 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4993 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4994 return 0;
4995
4996 /* All the sanity checks passed, so we might have a set of
4997 identical enumeration types. Perform a more complete
4998 comparison of the type of each symbol. */
4999 for (i = 1; i < nsyms; i++)
5000 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5001 SYMBOL_TYPE (syms[0].symbol)))
5002 return 0;
5003
5004 return 1;
5005 }
5006
5007 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5008 duplicate other symbols in the list (The only case I know of where
5009 this happens is when object files containing stabs-in-ecoff are
5010 linked with files containing ordinary ecoff debugging symbols (or no
5011 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5012 Returns the number of items in the modified list. */
5013
5014 static int
5015 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5016 {
5017 int i, j;
5018
5019 /* We should never be called with less than 2 symbols, as there
5020 cannot be any extra symbol in that case. But it's easy to
5021 handle, since we have nothing to do in that case. */
5022 if (nsyms < 2)
5023 return nsyms;
5024
5025 i = 0;
5026 while (i < nsyms)
5027 {
5028 int remove_p = 0;
5029
5030 /* If two symbols have the same name and one of them is a stub type,
5031 the get rid of the stub. */
5032
5033 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5034 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5035 {
5036 for (j = 0; j < nsyms; j++)
5037 {
5038 if (j != i
5039 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5040 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5041 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5042 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5043 remove_p = 1;
5044 }
5045 }
5046
5047 /* Two symbols with the same name, same class and same address
5048 should be identical. */
5049
5050 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5051 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5052 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5053 {
5054 for (j = 0; j < nsyms; j += 1)
5055 {
5056 if (i != j
5057 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5058 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5059 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5060 && SYMBOL_CLASS (syms[i].symbol)
5061 == SYMBOL_CLASS (syms[j].symbol)
5062 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5063 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5064 remove_p = 1;
5065 }
5066 }
5067
5068 if (remove_p)
5069 {
5070 for (j = i + 1; j < nsyms; j += 1)
5071 syms[j - 1] = syms[j];
5072 nsyms -= 1;
5073 }
5074
5075 i += 1;
5076 }
5077
5078 /* If all the remaining symbols are identical enumerals, then
5079 just keep the first one and discard the rest.
5080
5081 Unlike what we did previously, we do not discard any entry
5082 unless they are ALL identical. This is because the symbol
5083 comparison is not a strict comparison, but rather a practical
5084 comparison. If all symbols are considered identical, then
5085 we can just go ahead and use the first one and discard the rest.
5086 But if we cannot reduce the list to a single element, we have
5087 to ask the user to disambiguate anyways. And if we have to
5088 present a multiple-choice menu, it's less confusing if the list
5089 isn't missing some choices that were identical and yet distinct. */
5090 if (symbols_are_identical_enums (syms, nsyms))
5091 nsyms = 1;
5092
5093 return nsyms;
5094 }
5095
5096 /* Given a type that corresponds to a renaming entity, use the type name
5097 to extract the scope (package name or function name, fully qualified,
5098 and following the GNAT encoding convention) where this renaming has been
5099 defined. The string returned needs to be deallocated after use. */
5100
5101 static char *
5102 xget_renaming_scope (struct type *renaming_type)
5103 {
5104 /* The renaming types adhere to the following convention:
5105 <scope>__<rename>___<XR extension>.
5106 So, to extract the scope, we search for the "___XR" extension,
5107 and then backtrack until we find the first "__". */
5108
5109 const char *name = type_name_no_tag (renaming_type);
5110 const char *suffix = strstr (name, "___XR");
5111 const char *last;
5112 int scope_len;
5113 char *scope;
5114
5115 /* Now, backtrack a bit until we find the first "__". Start looking
5116 at suffix - 3, as the <rename> part is at least one character long. */
5117
5118 for (last = suffix - 3; last > name; last--)
5119 if (last[0] == '_' && last[1] == '_')
5120 break;
5121
5122 /* Make a copy of scope and return it. */
5123
5124 scope_len = last - name;
5125 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5126
5127 strncpy (scope, name, scope_len);
5128 scope[scope_len] = '\0';
5129
5130 return scope;
5131 }
5132
5133 /* Return nonzero if NAME corresponds to a package name. */
5134
5135 static int
5136 is_package_name (const char *name)
5137 {
5138 /* Here, We take advantage of the fact that no symbols are generated
5139 for packages, while symbols are generated for each function.
5140 So the condition for NAME represent a package becomes equivalent
5141 to NAME not existing in our list of symbols. There is only one
5142 small complication with library-level functions (see below). */
5143
5144 char *fun_name;
5145
5146 /* If it is a function that has not been defined at library level,
5147 then we should be able to look it up in the symbols. */
5148 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5149 return 0;
5150
5151 /* Library-level function names start with "_ada_". See if function
5152 "_ada_" followed by NAME can be found. */
5153
5154 /* Do a quick check that NAME does not contain "__", since library-level
5155 functions names cannot contain "__" in them. */
5156 if (strstr (name, "__") != NULL)
5157 return 0;
5158
5159 fun_name = xstrprintf ("_ada_%s", name);
5160
5161 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5162 }
5163
5164 /* Return nonzero if SYM corresponds to a renaming entity that is
5165 not visible from FUNCTION_NAME. */
5166
5167 static int
5168 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5169 {
5170 char *scope;
5171 struct cleanup *old_chain;
5172
5173 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5174 return 0;
5175
5176 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5177 old_chain = make_cleanup (xfree, scope);
5178
5179 /* If the rename has been defined in a package, then it is visible. */
5180 if (is_package_name (scope))
5181 {
5182 do_cleanups (old_chain);
5183 return 0;
5184 }
5185
5186 /* Check that the rename is in the current function scope by checking
5187 that its name starts with SCOPE. */
5188
5189 /* If the function name starts with "_ada_", it means that it is
5190 a library-level function. Strip this prefix before doing the
5191 comparison, as the encoding for the renaming does not contain
5192 this prefix. */
5193 if (startswith (function_name, "_ada_"))
5194 function_name += 5;
5195
5196 {
5197 int is_invisible = !startswith (function_name, scope);
5198
5199 do_cleanups (old_chain);
5200 return is_invisible;
5201 }
5202 }
5203
5204 /* Remove entries from SYMS that corresponds to a renaming entity that
5205 is not visible from the function associated with CURRENT_BLOCK or
5206 that is superfluous due to the presence of more specific renaming
5207 information. Places surviving symbols in the initial entries of
5208 SYMS and returns the number of surviving symbols.
5209
5210 Rationale:
5211 First, in cases where an object renaming is implemented as a
5212 reference variable, GNAT may produce both the actual reference
5213 variable and the renaming encoding. In this case, we discard the
5214 latter.
5215
5216 Second, GNAT emits a type following a specified encoding for each renaming
5217 entity. Unfortunately, STABS currently does not support the definition
5218 of types that are local to a given lexical block, so all renamings types
5219 are emitted at library level. As a consequence, if an application
5220 contains two renaming entities using the same name, and a user tries to
5221 print the value of one of these entities, the result of the ada symbol
5222 lookup will also contain the wrong renaming type.
5223
5224 This function partially covers for this limitation by attempting to
5225 remove from the SYMS list renaming symbols that should be visible
5226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5227 method with the current information available. The implementation
5228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5229
5230 - When the user tries to print a rename in a function while there
5231 is another rename entity defined in a package: Normally, the
5232 rename in the function has precedence over the rename in the
5233 package, so the latter should be removed from the list. This is
5234 currently not the case.
5235
5236 - This function will incorrectly remove valid renames if
5237 the CURRENT_BLOCK corresponds to a function which symbol name
5238 has been changed by an "Export" pragma. As a consequence,
5239 the user will be unable to print such rename entities. */
5240
5241 static int
5242 remove_irrelevant_renamings (struct block_symbol *syms,
5243 int nsyms, const struct block *current_block)
5244 {
5245 struct symbol *current_function;
5246 const char *current_function_name;
5247 int i;
5248 int is_new_style_renaming;
5249
5250 /* If there is both a renaming foo___XR... encoded as a variable and
5251 a simple variable foo in the same block, discard the latter.
5252 First, zero out such symbols, then compress. */
5253 is_new_style_renaming = 0;
5254 for (i = 0; i < nsyms; i += 1)
5255 {
5256 struct symbol *sym = syms[i].symbol;
5257 const struct block *block = syms[i].block;
5258 const char *name;
5259 const char *suffix;
5260
5261 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5262 continue;
5263 name = SYMBOL_LINKAGE_NAME (sym);
5264 suffix = strstr (name, "___XR");
5265
5266 if (suffix != NULL)
5267 {
5268 int name_len = suffix - name;
5269 int j;
5270
5271 is_new_style_renaming = 1;
5272 for (j = 0; j < nsyms; j += 1)
5273 if (i != j && syms[j].symbol != NULL
5274 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5275 name_len) == 0
5276 && block == syms[j].block)
5277 syms[j].symbol = NULL;
5278 }
5279 }
5280 if (is_new_style_renaming)
5281 {
5282 int j, k;
5283
5284 for (j = k = 0; j < nsyms; j += 1)
5285 if (syms[j].symbol != NULL)
5286 {
5287 syms[k] = syms[j];
5288 k += 1;
5289 }
5290 return k;
5291 }
5292
5293 /* Extract the function name associated to CURRENT_BLOCK.
5294 Abort if unable to do so. */
5295
5296 if (current_block == NULL)
5297 return nsyms;
5298
5299 current_function = block_linkage_function (current_block);
5300 if (current_function == NULL)
5301 return nsyms;
5302
5303 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5304 if (current_function_name == NULL)
5305 return nsyms;
5306
5307 /* Check each of the symbols, and remove it from the list if it is
5308 a type corresponding to a renaming that is out of the scope of
5309 the current block. */
5310
5311 i = 0;
5312 while (i < nsyms)
5313 {
5314 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5315 == ADA_OBJECT_RENAMING
5316 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5317 {
5318 int j;
5319
5320 for (j = i + 1; j < nsyms; j += 1)
5321 syms[j - 1] = syms[j];
5322 nsyms -= 1;
5323 }
5324 else
5325 i += 1;
5326 }
5327
5328 return nsyms;
5329 }
5330
5331 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5332 whose name and domain match NAME and DOMAIN respectively.
5333 If no match was found, then extend the search to "enclosing"
5334 routines (in other words, if we're inside a nested function,
5335 search the symbols defined inside the enclosing functions).
5336 If WILD_MATCH_P is nonzero, perform the naming matching in
5337 "wild" mode (see function "wild_match" for more info).
5338
5339 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5340
5341 static void
5342 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5343 const struct block *block, domain_enum domain,
5344 int wild_match_p)
5345 {
5346 int block_depth = 0;
5347
5348 while (block != NULL)
5349 {
5350 block_depth += 1;
5351 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5352 wild_match_p);
5353
5354 /* If we found a non-function match, assume that's the one. */
5355 if (is_nonfunction (defns_collected (obstackp, 0),
5356 num_defns_collected (obstackp)))
5357 return;
5358
5359 block = BLOCK_SUPERBLOCK (block);
5360 }
5361
5362 /* If no luck so far, try to find NAME as a local symbol in some lexically
5363 enclosing subprogram. */
5364 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5365 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5366 }
5367
5368 /* An object of this type is used as the user_data argument when
5369 calling the map_matching_symbols method. */
5370
5371 struct match_data
5372 {
5373 struct objfile *objfile;
5374 struct obstack *obstackp;
5375 struct symbol *arg_sym;
5376 int found_sym;
5377 };
5378
5379 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5380 to a list of symbols. DATA0 is a pointer to a struct match_data *
5381 containing the obstack that collects the symbol list, the file that SYM
5382 must come from, a flag indicating whether a non-argument symbol has
5383 been found in the current block, and the last argument symbol
5384 passed in SYM within the current block (if any). When SYM is null,
5385 marking the end of a block, the argument symbol is added if no
5386 other has been found. */
5387
5388 static int
5389 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5390 {
5391 struct match_data *data = (struct match_data *) data0;
5392
5393 if (sym == NULL)
5394 {
5395 if (!data->found_sym && data->arg_sym != NULL)
5396 add_defn_to_vec (data->obstackp,
5397 fixup_symbol_section (data->arg_sym, data->objfile),
5398 block);
5399 data->found_sym = 0;
5400 data->arg_sym = NULL;
5401 }
5402 else
5403 {
5404 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5405 return 0;
5406 else if (SYMBOL_IS_ARGUMENT (sym))
5407 data->arg_sym = sym;
5408 else
5409 {
5410 data->found_sym = 1;
5411 add_defn_to_vec (data->obstackp,
5412 fixup_symbol_section (sym, data->objfile),
5413 block);
5414 }
5415 }
5416 return 0;
5417 }
5418
5419 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5420 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5421 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5422 function "wild_match" for more information). Return whether we found such
5423 symbols. */
5424
5425 static int
5426 ada_add_block_renamings (struct obstack *obstackp,
5427 const struct block *block,
5428 const char *name,
5429 domain_enum domain,
5430 int wild_match_p)
5431 {
5432 struct using_direct *renaming;
5433 int defns_mark = num_defns_collected (obstackp);
5434
5435 for (renaming = block_using (block);
5436 renaming != NULL;
5437 renaming = renaming->next)
5438 {
5439 const char *r_name;
5440 int name_match;
5441
5442 /* Avoid infinite recursions: skip this renaming if we are actually
5443 already traversing it.
5444
5445 Currently, symbol lookup in Ada don't use the namespace machinery from
5446 C++/Fortran support: skip namespace imports that use them. */
5447 if (renaming->searched
5448 || (renaming->import_src != NULL
5449 && renaming->import_src[0] != '\0')
5450 || (renaming->import_dest != NULL
5451 && renaming->import_dest[0] != '\0'))
5452 continue;
5453 renaming->searched = 1;
5454
5455 /* TODO: here, we perform another name-based symbol lookup, which can
5456 pull its own multiple overloads. In theory, we should be able to do
5457 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5458 not a simple name. But in order to do this, we would need to enhance
5459 the DWARF reader to associate a symbol to this renaming, instead of a
5460 name. So, for now, we do something simpler: re-use the C++/Fortran
5461 namespace machinery. */
5462 r_name = (renaming->alias != NULL
5463 ? renaming->alias
5464 : renaming->declaration);
5465 name_match
5466 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5467 if (name_match == 0)
5468 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5469 1, NULL);
5470 renaming->searched = 0;
5471 }
5472 return num_defns_collected (obstackp) != defns_mark;
5473 }
5474
5475 /* Implements compare_names, but only applying the comparision using
5476 the given CASING. */
5477
5478 static int
5479 compare_names_with_case (const char *string1, const char *string2,
5480 enum case_sensitivity casing)
5481 {
5482 while (*string1 != '\0' && *string2 != '\0')
5483 {
5484 char c1, c2;
5485
5486 if (isspace (*string1) || isspace (*string2))
5487 return strcmp_iw_ordered (string1, string2);
5488
5489 if (casing == case_sensitive_off)
5490 {
5491 c1 = tolower (*string1);
5492 c2 = tolower (*string2);
5493 }
5494 else
5495 {
5496 c1 = *string1;
5497 c2 = *string2;
5498 }
5499 if (c1 != c2)
5500 break;
5501
5502 string1 += 1;
5503 string2 += 1;
5504 }
5505
5506 switch (*string1)
5507 {
5508 case '(':
5509 return strcmp_iw_ordered (string1, string2);
5510 case '_':
5511 if (*string2 == '\0')
5512 {
5513 if (is_name_suffix (string1))
5514 return 0;
5515 else
5516 return 1;
5517 }
5518 /* FALLTHROUGH */
5519 default:
5520 if (*string2 == '(')
5521 return strcmp_iw_ordered (string1, string2);
5522 else
5523 {
5524 if (casing == case_sensitive_off)
5525 return tolower (*string1) - tolower (*string2);
5526 else
5527 return *string1 - *string2;
5528 }
5529 }
5530 }
5531
5532 /* Compare STRING1 to STRING2, with results as for strcmp.
5533 Compatible with strcmp_iw_ordered in that...
5534
5535 strcmp_iw_ordered (STRING1, STRING2) <= 0
5536
5537 ... implies...
5538
5539 compare_names (STRING1, STRING2) <= 0
5540
5541 (they may differ as to what symbols compare equal). */
5542
5543 static int
5544 compare_names (const char *string1, const char *string2)
5545 {
5546 int result;
5547
5548 /* Similar to what strcmp_iw_ordered does, we need to perform
5549 a case-insensitive comparison first, and only resort to
5550 a second, case-sensitive, comparison if the first one was
5551 not sufficient to differentiate the two strings. */
5552
5553 result = compare_names_with_case (string1, string2, case_sensitive_off);
5554 if (result == 0)
5555 result = compare_names_with_case (string1, string2, case_sensitive_on);
5556
5557 return result;
5558 }
5559
5560 /* Add to OBSTACKP all non-local symbols whose name and domain match
5561 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5562 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5563
5564 static void
5565 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5566 domain_enum domain, int global,
5567 int is_wild_match)
5568 {
5569 struct objfile *objfile;
5570 struct compunit_symtab *cu;
5571 struct match_data data;
5572
5573 memset (&data, 0, sizeof data);
5574 data.obstackp = obstackp;
5575
5576 ALL_OBJFILES (objfile)
5577 {
5578 data.objfile = objfile;
5579
5580 if (is_wild_match)
5581 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5582 aux_add_nonlocal_symbols, &data,
5583 wild_match, NULL);
5584 else
5585 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5586 aux_add_nonlocal_symbols, &data,
5587 full_match, compare_names);
5588
5589 ALL_OBJFILE_COMPUNITS (objfile, cu)
5590 {
5591 const struct block *global_block
5592 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5593
5594 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5595 is_wild_match))
5596 data.found_sym = 1;
5597 }
5598 }
5599
5600 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5601 {
5602 ALL_OBJFILES (objfile)
5603 {
5604 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5605 strcpy (name1, "_ada_");
5606 strcpy (name1 + sizeof ("_ada_") - 1, name);
5607 data.objfile = objfile;
5608 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5609 global,
5610 aux_add_nonlocal_symbols,
5611 &data,
5612 full_match, compare_names);
5613 }
5614 }
5615 }
5616
5617 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5618 non-zero, enclosing scope and in global scopes, returning the number of
5619 matches. Add these to OBSTACKP.
5620
5621 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5622 symbol match within the nest of blocks whose innermost member is BLOCK,
5623 is the one match returned (no other matches in that or
5624 enclosing blocks is returned). If there are any matches in or
5625 surrounding BLOCK, then these alone are returned.
5626
5627 Names prefixed with "standard__" are handled specially: "standard__"
5628 is first stripped off, and only static and global symbols are searched.
5629
5630 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5631 to lookup global symbols. */
5632
5633 static void
5634 ada_add_all_symbols (struct obstack *obstackp,
5635 const struct block *block,
5636 const char *name,
5637 domain_enum domain,
5638 int full_search,
5639 int *made_global_lookup_p)
5640 {
5641 struct symbol *sym;
5642 const int wild_match_p = should_use_wild_match (name);
5643
5644 if (made_global_lookup_p)
5645 *made_global_lookup_p = 0;
5646
5647 /* Special case: If the user specifies a symbol name inside package
5648 Standard, do a non-wild matching of the symbol name without
5649 the "standard__" prefix. This was primarily introduced in order
5650 to allow the user to specifically access the standard exceptions
5651 using, for instance, Standard.Constraint_Error when Constraint_Error
5652 is ambiguous (due to the user defining its own Constraint_Error
5653 entity inside its program). */
5654 if (startswith (name, "standard__"))
5655 {
5656 block = NULL;
5657 name = name + sizeof ("standard__") - 1;
5658 }
5659
5660 /* Check the non-global symbols. If we have ANY match, then we're done. */
5661
5662 if (block != NULL)
5663 {
5664 if (full_search)
5665 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5666 else
5667 {
5668 /* In the !full_search case we're are being called by
5669 ada_iterate_over_symbols, and we don't want to search
5670 superblocks. */
5671 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5672 wild_match_p);
5673 }
5674 if (num_defns_collected (obstackp) > 0 || !full_search)
5675 return;
5676 }
5677
5678 /* No non-global symbols found. Check our cache to see if we have
5679 already performed this search before. If we have, then return
5680 the same result. */
5681
5682 if (lookup_cached_symbol (name, domain, &sym, &block))
5683 {
5684 if (sym != NULL)
5685 add_defn_to_vec (obstackp, sym, block);
5686 return;
5687 }
5688
5689 if (made_global_lookup_p)
5690 *made_global_lookup_p = 1;
5691
5692 /* Search symbols from all global blocks. */
5693
5694 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5695
5696 /* Now add symbols from all per-file blocks if we've gotten no hits
5697 (not strictly correct, but perhaps better than an error). */
5698
5699 if (num_defns_collected (obstackp) == 0)
5700 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5701 }
5702
5703 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5704 non-zero, enclosing scope and in global scopes, returning the number of
5705 matches.
5706 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5707 indicating the symbols found and the blocks and symbol tables (if
5708 any) in which they were found. This vector is transient---good only to
5709 the next call of ada_lookup_symbol_list.
5710
5711 When full_search is non-zero, any non-function/non-enumeral
5712 symbol match within the nest of blocks whose innermost member is BLOCK,
5713 is the one match returned (no other matches in that or
5714 enclosing blocks is returned). If there are any matches in or
5715 surrounding BLOCK, then these alone are returned.
5716
5717 Names prefixed with "standard__" are handled specially: "standard__"
5718 is first stripped off, and only static and global symbols are searched. */
5719
5720 static int
5721 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5722 domain_enum domain,
5723 struct block_symbol **results,
5724 int full_search)
5725 {
5726 const int wild_match_p = should_use_wild_match (name);
5727 int syms_from_global_search;
5728 int ndefns;
5729
5730 obstack_free (&symbol_list_obstack, NULL);
5731 obstack_init (&symbol_list_obstack);
5732 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5733 full_search, &syms_from_global_search);
5734
5735 ndefns = num_defns_collected (&symbol_list_obstack);
5736 *results = defns_collected (&symbol_list_obstack, 1);
5737
5738 ndefns = remove_extra_symbols (*results, ndefns);
5739
5740 if (ndefns == 0 && full_search && syms_from_global_search)
5741 cache_symbol (name, domain, NULL, NULL);
5742
5743 if (ndefns == 1 && full_search && syms_from_global_search)
5744 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5745
5746 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5747 return ndefns;
5748 }
5749
5750 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5751 in global scopes, returning the number of matches, and setting *RESULTS
5752 to a vector of (SYM,BLOCK) tuples.
5753 See ada_lookup_symbol_list_worker for further details. */
5754
5755 int
5756 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5757 domain_enum domain, struct block_symbol **results)
5758 {
5759 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5760 }
5761
5762 /* Implementation of the la_iterate_over_symbols method. */
5763
5764 static void
5765 ada_iterate_over_symbols (const struct block *block,
5766 const char *name, domain_enum domain,
5767 symbol_found_callback_ftype *callback,
5768 void *data)
5769 {
5770 int ndefs, i;
5771 struct block_symbol *results;
5772
5773 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5774 for (i = 0; i < ndefs; ++i)
5775 {
5776 if (! (*callback) (results[i].symbol, data))
5777 break;
5778 }
5779 }
5780
5781 /* If NAME is the name of an entity, return a string that should
5782 be used to look that entity up in Ada units. This string should
5783 be deallocated after use using xfree.
5784
5785 NAME can have any form that the "break" or "print" commands might
5786 recognize. In other words, it does not have to be the "natural"
5787 name, or the "encoded" name. */
5788
5789 char *
5790 ada_name_for_lookup (const char *name)
5791 {
5792 char *canon;
5793 int nlen = strlen (name);
5794
5795 if (name[0] == '<' && name[nlen - 1] == '>')
5796 {
5797 canon = (char *) xmalloc (nlen - 1);
5798 memcpy (canon, name + 1, nlen - 2);
5799 canon[nlen - 2] = '\0';
5800 }
5801 else
5802 canon = xstrdup (ada_encode (ada_fold_name (name)));
5803 return canon;
5804 }
5805
5806 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5807 to 1, but choosing the first symbol found if there are multiple
5808 choices.
5809
5810 The result is stored in *INFO, which must be non-NULL.
5811 If no match is found, INFO->SYM is set to NULL. */
5812
5813 void
5814 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5815 domain_enum domain,
5816 struct block_symbol *info)
5817 {
5818 struct block_symbol *candidates;
5819 int n_candidates;
5820
5821 gdb_assert (info != NULL);
5822 memset (info, 0, sizeof (struct block_symbol));
5823
5824 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5825 if (n_candidates == 0)
5826 return;
5827
5828 *info = candidates[0];
5829 info->symbol = fixup_symbol_section (info->symbol, NULL);
5830 }
5831
5832 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5833 scope and in global scopes, or NULL if none. NAME is folded and
5834 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5835 choosing the first symbol if there are multiple choices.
5836 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5837
5838 struct block_symbol
5839 ada_lookup_symbol (const char *name, const struct block *block0,
5840 domain_enum domain, int *is_a_field_of_this)
5841 {
5842 struct block_symbol info;
5843
5844 if (is_a_field_of_this != NULL)
5845 *is_a_field_of_this = 0;
5846
5847 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5848 block0, domain, &info);
5849 return info;
5850 }
5851
5852 static struct block_symbol
5853 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5854 const char *name,
5855 const struct block *block,
5856 const domain_enum domain)
5857 {
5858 struct block_symbol sym;
5859
5860 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5861 if (sym.symbol != NULL)
5862 return sym;
5863
5864 /* If we haven't found a match at this point, try the primitive
5865 types. In other languages, this search is performed before
5866 searching for global symbols in order to short-circuit that
5867 global-symbol search if it happens that the name corresponds
5868 to a primitive type. But we cannot do the same in Ada, because
5869 it is perfectly legitimate for a program to declare a type which
5870 has the same name as a standard type. If looking up a type in
5871 that situation, we have traditionally ignored the primitive type
5872 in favor of user-defined types. This is why, unlike most other
5873 languages, we search the primitive types this late and only after
5874 having searched the global symbols without success. */
5875
5876 if (domain == VAR_DOMAIN)
5877 {
5878 struct gdbarch *gdbarch;
5879
5880 if (block == NULL)
5881 gdbarch = target_gdbarch ();
5882 else
5883 gdbarch = block_gdbarch (block);
5884 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5885 if (sym.symbol != NULL)
5886 return sym;
5887 }
5888
5889 return (struct block_symbol) {NULL, NULL};
5890 }
5891
5892
5893 /* True iff STR is a possible encoded suffix of a normal Ada name
5894 that is to be ignored for matching purposes. Suffixes of parallel
5895 names (e.g., XVE) are not included here. Currently, the possible suffixes
5896 are given by any of the regular expressions:
5897
5898 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5899 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5900 TKB [subprogram suffix for task bodies]
5901 _E[0-9]+[bs]$ [protected object entry suffixes]
5902 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5903
5904 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5905 match is performed. This sequence is used to differentiate homonyms,
5906 is an optional part of a valid name suffix. */
5907
5908 static int
5909 is_name_suffix (const char *str)
5910 {
5911 int k;
5912 const char *matching;
5913 const int len = strlen (str);
5914
5915 /* Skip optional leading __[0-9]+. */
5916
5917 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5918 {
5919 str += 3;
5920 while (isdigit (str[0]))
5921 str += 1;
5922 }
5923
5924 /* [.$][0-9]+ */
5925
5926 if (str[0] == '.' || str[0] == '$')
5927 {
5928 matching = str + 1;
5929 while (isdigit (matching[0]))
5930 matching += 1;
5931 if (matching[0] == '\0')
5932 return 1;
5933 }
5934
5935 /* ___[0-9]+ */
5936
5937 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5938 {
5939 matching = str + 3;
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
5946 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5947
5948 if (strcmp (str, "TKB") == 0)
5949 return 1;
5950
5951 #if 0
5952 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5953 with a N at the end. Unfortunately, the compiler uses the same
5954 convention for other internal types it creates. So treating
5955 all entity names that end with an "N" as a name suffix causes
5956 some regressions. For instance, consider the case of an enumerated
5957 type. To support the 'Image attribute, it creates an array whose
5958 name ends with N.
5959 Having a single character like this as a suffix carrying some
5960 information is a bit risky. Perhaps we should change the encoding
5961 to be something like "_N" instead. In the meantime, do not do
5962 the following check. */
5963 /* Protected Object Subprograms */
5964 if (len == 1 && str [0] == 'N')
5965 return 1;
5966 #endif
5967
5968 /* _E[0-9]+[bs]$ */
5969 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5970 {
5971 matching = str + 3;
5972 while (isdigit (matching[0]))
5973 matching += 1;
5974 if ((matching[0] == 'b' || matching[0] == 's')
5975 && matching [1] == '\0')
5976 return 1;
5977 }
5978
5979 /* ??? We should not modify STR directly, as we are doing below. This
5980 is fine in this case, but may become problematic later if we find
5981 that this alternative did not work, and want to try matching
5982 another one from the begining of STR. Since we modified it, we
5983 won't be able to find the begining of the string anymore! */
5984 if (str[0] == 'X')
5985 {
5986 str += 1;
5987 while (str[0] != '_' && str[0] != '\0')
5988 {
5989 if (str[0] != 'n' && str[0] != 'b')
5990 return 0;
5991 str += 1;
5992 }
5993 }
5994
5995 if (str[0] == '\000')
5996 return 1;
5997
5998 if (str[0] == '_')
5999 {
6000 if (str[1] != '_' || str[2] == '\000')
6001 return 0;
6002 if (str[2] == '_')
6003 {
6004 if (strcmp (str + 3, "JM") == 0)
6005 return 1;
6006 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6007 the LJM suffix in favor of the JM one. But we will
6008 still accept LJM as a valid suffix for a reasonable
6009 amount of time, just to allow ourselves to debug programs
6010 compiled using an older version of GNAT. */
6011 if (strcmp (str + 3, "LJM") == 0)
6012 return 1;
6013 if (str[3] != 'X')
6014 return 0;
6015 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6016 || str[4] == 'U' || str[4] == 'P')
6017 return 1;
6018 if (str[4] == 'R' && str[5] != 'T')
6019 return 1;
6020 return 0;
6021 }
6022 if (!isdigit (str[2]))
6023 return 0;
6024 for (k = 3; str[k] != '\0'; k += 1)
6025 if (!isdigit (str[k]) && str[k] != '_')
6026 return 0;
6027 return 1;
6028 }
6029 if (str[0] == '$' && isdigit (str[1]))
6030 {
6031 for (k = 2; str[k] != '\0'; k += 1)
6032 if (!isdigit (str[k]) && str[k] != '_')
6033 return 0;
6034 return 1;
6035 }
6036 return 0;
6037 }
6038
6039 /* Return non-zero if the string starting at NAME and ending before
6040 NAME_END contains no capital letters. */
6041
6042 static int
6043 is_valid_name_for_wild_match (const char *name0)
6044 {
6045 const char *decoded_name = ada_decode (name0);
6046 int i;
6047
6048 /* If the decoded name starts with an angle bracket, it means that
6049 NAME0 does not follow the GNAT encoding format. It should then
6050 not be allowed as a possible wild match. */
6051 if (decoded_name[0] == '<')
6052 return 0;
6053
6054 for (i=0; decoded_name[i] != '\0'; i++)
6055 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6056 return 0;
6057
6058 return 1;
6059 }
6060
6061 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6062 that could start a simple name. Assumes that *NAMEP points into
6063 the string beginning at NAME0. */
6064
6065 static int
6066 advance_wild_match (const char **namep, const char *name0, int target0)
6067 {
6068 const char *name = *namep;
6069
6070 while (1)
6071 {
6072 int t0, t1;
6073
6074 t0 = *name;
6075 if (t0 == '_')
6076 {
6077 t1 = name[1];
6078 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6079 {
6080 name += 1;
6081 if (name == name0 + 5 && startswith (name0, "_ada"))
6082 break;
6083 else
6084 name += 1;
6085 }
6086 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6087 || name[2] == target0))
6088 {
6089 name += 2;
6090 break;
6091 }
6092 else
6093 return 0;
6094 }
6095 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6096 name += 1;
6097 else
6098 return 0;
6099 }
6100
6101 *namep = name;
6102 return 1;
6103 }
6104
6105 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6106 informational suffixes of NAME (i.e., for which is_name_suffix is
6107 true). Assumes that PATN is a lower-cased Ada simple name. */
6108
6109 static int
6110 wild_match (const char *name, const char *patn)
6111 {
6112 const char *p;
6113 const char *name0 = name;
6114
6115 while (1)
6116 {
6117 const char *match = name;
6118
6119 if (*name == *patn)
6120 {
6121 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6122 if (*p != *name)
6123 break;
6124 if (*p == '\0' && is_name_suffix (name))
6125 return match != name0 && !is_valid_name_for_wild_match (name0);
6126
6127 if (name[-1] == '_')
6128 name -= 1;
6129 }
6130 if (!advance_wild_match (&name, name0, *patn))
6131 return 1;
6132 }
6133 }
6134
6135 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6136 informational suffix. */
6137
6138 static int
6139 full_match (const char *sym_name, const char *search_name)
6140 {
6141 return !match_name (sym_name, search_name, 0);
6142 }
6143
6144
6145 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6146 vector *defn_symbols, updating the list of symbols in OBSTACKP
6147 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6148 OBJFILE is the section containing BLOCK. */
6149
6150 static void
6151 ada_add_block_symbols (struct obstack *obstackp,
6152 const struct block *block, const char *name,
6153 domain_enum domain, struct objfile *objfile,
6154 int wild)
6155 {
6156 struct block_iterator iter;
6157 int name_len = strlen (name);
6158 /* A matching argument symbol, if any. */
6159 struct symbol *arg_sym;
6160 /* Set true when we find a matching non-argument symbol. */
6161 int found_sym;
6162 struct symbol *sym;
6163
6164 arg_sym = NULL;
6165 found_sym = 0;
6166 if (wild)
6167 {
6168 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6169 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6170 {
6171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6172 SYMBOL_DOMAIN (sym), domain)
6173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6174 {
6175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6176 continue;
6177 else if (SYMBOL_IS_ARGUMENT (sym))
6178 arg_sym = sym;
6179 else
6180 {
6181 found_sym = 1;
6182 add_defn_to_vec (obstackp,
6183 fixup_symbol_section (sym, objfile),
6184 block);
6185 }
6186 }
6187 }
6188 }
6189 else
6190 {
6191 for (sym = block_iter_match_first (block, name, full_match, &iter);
6192 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6193 {
6194 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6195 SYMBOL_DOMAIN (sym), domain))
6196 {
6197 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6198 {
6199 if (SYMBOL_IS_ARGUMENT (sym))
6200 arg_sym = sym;
6201 else
6202 {
6203 found_sym = 1;
6204 add_defn_to_vec (obstackp,
6205 fixup_symbol_section (sym, objfile),
6206 block);
6207 }
6208 }
6209 }
6210 }
6211 }
6212
6213 /* Handle renamings. */
6214
6215 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6216 found_sym = 1;
6217
6218 if (!found_sym && arg_sym != NULL)
6219 {
6220 add_defn_to_vec (obstackp,
6221 fixup_symbol_section (arg_sym, objfile),
6222 block);
6223 }
6224
6225 if (!wild)
6226 {
6227 arg_sym = NULL;
6228 found_sym = 0;
6229
6230 ALL_BLOCK_SYMBOLS (block, iter, sym)
6231 {
6232 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6233 SYMBOL_DOMAIN (sym), domain))
6234 {
6235 int cmp;
6236
6237 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6238 if (cmp == 0)
6239 {
6240 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6241 if (cmp == 0)
6242 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6243 name_len);
6244 }
6245
6246 if (cmp == 0
6247 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6248 {
6249 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6250 {
6251 if (SYMBOL_IS_ARGUMENT (sym))
6252 arg_sym = sym;
6253 else
6254 {
6255 found_sym = 1;
6256 add_defn_to_vec (obstackp,
6257 fixup_symbol_section (sym, objfile),
6258 block);
6259 }
6260 }
6261 }
6262 }
6263 }
6264
6265 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6266 They aren't parameters, right? */
6267 if (!found_sym && arg_sym != NULL)
6268 {
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (arg_sym, objfile),
6271 block);
6272 }
6273 }
6274 }
6275 \f
6276
6277 /* Symbol Completion */
6278
6279 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6280 name in a form that's appropriate for the completion. The result
6281 does not need to be deallocated, but is only good until the next call.
6282
6283 TEXT_LEN is equal to the length of TEXT.
6284 Perform a wild match if WILD_MATCH_P is set.
6285 ENCODED_P should be set if TEXT represents the start of a symbol name
6286 in its encoded form. */
6287
6288 static const char *
6289 symbol_completion_match (const char *sym_name,
6290 const char *text, int text_len,
6291 int wild_match_p, int encoded_p)
6292 {
6293 const int verbatim_match = (text[0] == '<');
6294 int match = 0;
6295
6296 if (verbatim_match)
6297 {
6298 /* Strip the leading angle bracket. */
6299 text = text + 1;
6300 text_len--;
6301 }
6302
6303 /* First, test against the fully qualified name of the symbol. */
6304
6305 if (strncmp (sym_name, text, text_len) == 0)
6306 match = 1;
6307
6308 if (match && !encoded_p)
6309 {
6310 /* One needed check before declaring a positive match is to verify
6311 that iff we are doing a verbatim match, the decoded version
6312 of the symbol name starts with '<'. Otherwise, this symbol name
6313 is not a suitable completion. */
6314 const char *sym_name_copy = sym_name;
6315 int has_angle_bracket;
6316
6317 sym_name = ada_decode (sym_name);
6318 has_angle_bracket = (sym_name[0] == '<');
6319 match = (has_angle_bracket == verbatim_match);
6320 sym_name = sym_name_copy;
6321 }
6322
6323 if (match && !verbatim_match)
6324 {
6325 /* When doing non-verbatim match, another check that needs to
6326 be done is to verify that the potentially matching symbol name
6327 does not include capital letters, because the ada-mode would
6328 not be able to understand these symbol names without the
6329 angle bracket notation. */
6330 const char *tmp;
6331
6332 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6333 if (*tmp != '\0')
6334 match = 0;
6335 }
6336
6337 /* Second: Try wild matching... */
6338
6339 if (!match && wild_match_p)
6340 {
6341 /* Since we are doing wild matching, this means that TEXT
6342 may represent an unqualified symbol name. We therefore must
6343 also compare TEXT against the unqualified name of the symbol. */
6344 sym_name = ada_unqualified_name (ada_decode (sym_name));
6345
6346 if (strncmp (sym_name, text, text_len) == 0)
6347 match = 1;
6348 }
6349
6350 /* Finally: If we found a mach, prepare the result to return. */
6351
6352 if (!match)
6353 return NULL;
6354
6355 if (verbatim_match)
6356 sym_name = add_angle_brackets (sym_name);
6357
6358 if (!encoded_p)
6359 sym_name = ada_decode (sym_name);
6360
6361 return sym_name;
6362 }
6363
6364 /* A companion function to ada_make_symbol_completion_list().
6365 Check if SYM_NAME represents a symbol which name would be suitable
6366 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6367 it is appended at the end of the given string vector SV.
6368
6369 ORIG_TEXT is the string original string from the user command
6370 that needs to be completed. WORD is the entire command on which
6371 completion should be performed. These two parameters are used to
6372 determine which part of the symbol name should be added to the
6373 completion vector.
6374 if WILD_MATCH_P is set, then wild matching is performed.
6375 ENCODED_P should be set if TEXT represents a symbol name in its
6376 encoded formed (in which case the completion should also be
6377 encoded). */
6378
6379 static void
6380 symbol_completion_add (VEC(char_ptr) **sv,
6381 const char *sym_name,
6382 const char *text, int text_len,
6383 const char *orig_text, const char *word,
6384 int wild_match_p, int encoded_p)
6385 {
6386 const char *match = symbol_completion_match (sym_name, text, text_len,
6387 wild_match_p, encoded_p);
6388 char *completion;
6389
6390 if (match == NULL)
6391 return;
6392
6393 /* We found a match, so add the appropriate completion to the given
6394 string vector. */
6395
6396 if (word == orig_text)
6397 {
6398 completion = (char *) xmalloc (strlen (match) + 5);
6399 strcpy (completion, match);
6400 }
6401 else if (word > orig_text)
6402 {
6403 /* Return some portion of sym_name. */
6404 completion = (char *) xmalloc (strlen (match) + 5);
6405 strcpy (completion, match + (word - orig_text));
6406 }
6407 else
6408 {
6409 /* Return some of ORIG_TEXT plus sym_name. */
6410 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6411 strncpy (completion, word, orig_text - word);
6412 completion[orig_text - word] = '\0';
6413 strcat (completion, match);
6414 }
6415
6416 VEC_safe_push (char_ptr, *sv, completion);
6417 }
6418
6419 /* An object of this type is passed as the user_data argument to the
6420 expand_symtabs_matching method. */
6421 struct add_partial_datum
6422 {
6423 VEC(char_ptr) **completions;
6424 const char *text;
6425 int text_len;
6426 const char *text0;
6427 const char *word;
6428 int wild_match;
6429 int encoded;
6430 };
6431
6432 /* A callback for expand_symtabs_matching. */
6433
6434 static int
6435 ada_complete_symbol_matcher (const char *name, void *user_data)
6436 {
6437 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6438
6439 return symbol_completion_match (name, data->text, data->text_len,
6440 data->wild_match, data->encoded) != NULL;
6441 }
6442
6443 /* Return a list of possible symbol names completing TEXT0. WORD is
6444 the entire command on which completion is made. */
6445
6446 static VEC (char_ptr) *
6447 ada_make_symbol_completion_list (const char *text0, const char *word,
6448 enum type_code code)
6449 {
6450 char *text;
6451 int text_len;
6452 int wild_match_p;
6453 int encoded_p;
6454 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6455 struct symbol *sym;
6456 struct compunit_symtab *s;
6457 struct minimal_symbol *msymbol;
6458 struct objfile *objfile;
6459 const struct block *b, *surrounding_static_block = 0;
6460 int i;
6461 struct block_iterator iter;
6462 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6463
6464 gdb_assert (code == TYPE_CODE_UNDEF);
6465
6466 if (text0[0] == '<')
6467 {
6468 text = xstrdup (text0);
6469 make_cleanup (xfree, text);
6470 text_len = strlen (text);
6471 wild_match_p = 0;
6472 encoded_p = 1;
6473 }
6474 else
6475 {
6476 text = xstrdup (ada_encode (text0));
6477 make_cleanup (xfree, text);
6478 text_len = strlen (text);
6479 for (i = 0; i < text_len; i++)
6480 text[i] = tolower (text[i]);
6481
6482 encoded_p = (strstr (text0, "__") != NULL);
6483 /* If the name contains a ".", then the user is entering a fully
6484 qualified entity name, and the match must not be done in wild
6485 mode. Similarly, if the user wants to complete what looks like
6486 an encoded name, the match must not be done in wild mode. */
6487 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6488 }
6489
6490 /* First, look at the partial symtab symbols. */
6491 {
6492 struct add_partial_datum data;
6493
6494 data.completions = &completions;
6495 data.text = text;
6496 data.text_len = text_len;
6497 data.text0 = text0;
6498 data.word = word;
6499 data.wild_match = wild_match_p;
6500 data.encoded = encoded_p;
6501 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6502 ALL_DOMAIN, &data);
6503 }
6504
6505 /* At this point scan through the misc symbol vectors and add each
6506 symbol you find to the list. Eventually we want to ignore
6507 anything that isn't a text symbol (everything else will be
6508 handled by the psymtab code above). */
6509
6510 ALL_MSYMBOLS (objfile, msymbol)
6511 {
6512 QUIT;
6513 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6514 text, text_len, text0, word, wild_match_p,
6515 encoded_p);
6516 }
6517
6518 /* Search upwards from currently selected frame (so that we can
6519 complete on local vars. */
6520
6521 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6522 {
6523 if (!BLOCK_SUPERBLOCK (b))
6524 surrounding_static_block = b; /* For elmin of dups */
6525
6526 ALL_BLOCK_SYMBOLS (b, iter, sym)
6527 {
6528 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6529 text, text_len, text0, word,
6530 wild_match_p, encoded_p);
6531 }
6532 }
6533
6534 /* Go through the symtabs and check the externs and statics for
6535 symbols which match. */
6536
6537 ALL_COMPUNITS (objfile, s)
6538 {
6539 QUIT;
6540 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6541 ALL_BLOCK_SYMBOLS (b, iter, sym)
6542 {
6543 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6544 text, text_len, text0, word,
6545 wild_match_p, encoded_p);
6546 }
6547 }
6548
6549 ALL_COMPUNITS (objfile, s)
6550 {
6551 QUIT;
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
6558 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6559 text, text_len, text0, word,
6560 wild_match_p, encoded_p);
6561 }
6562 }
6563
6564 do_cleanups (old_chain);
6565 return completions;
6566 }
6567
6568 /* Field Access */
6569
6570 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6571 for tagged types. */
6572
6573 static int
6574 ada_is_dispatch_table_ptr_type (struct type *type)
6575 {
6576 const char *name;
6577
6578 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6579 return 0;
6580
6581 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6582 if (name == NULL)
6583 return 0;
6584
6585 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6586 }
6587
6588 /* Return non-zero if TYPE is an interface tag. */
6589
6590 static int
6591 ada_is_interface_tag (struct type *type)
6592 {
6593 const char *name = TYPE_NAME (type);
6594
6595 if (name == NULL)
6596 return 0;
6597
6598 return (strcmp (name, "ada__tags__interface_tag") == 0);
6599 }
6600
6601 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6602 to be invisible to users. */
6603
6604 int
6605 ada_is_ignored_field (struct type *type, int field_num)
6606 {
6607 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6608 return 1;
6609
6610 /* Check the name of that field. */
6611 {
6612 const char *name = TYPE_FIELD_NAME (type, field_num);
6613
6614 /* Anonymous field names should not be printed.
6615 brobecker/2007-02-20: I don't think this can actually happen
6616 but we don't want to print the value of annonymous fields anyway. */
6617 if (name == NULL)
6618 return 1;
6619
6620 /* Normally, fields whose name start with an underscore ("_")
6621 are fields that have been internally generated by the compiler,
6622 and thus should not be printed. The "_parent" field is special,
6623 however: This is a field internally generated by the compiler
6624 for tagged types, and it contains the components inherited from
6625 the parent type. This field should not be printed as is, but
6626 should not be ignored either. */
6627 if (name[0] == '_' && !startswith (name, "_parent"))
6628 return 1;
6629 }
6630
6631 /* If this is the dispatch table of a tagged type or an interface tag,
6632 then ignore. */
6633 if (ada_is_tagged_type (type, 1)
6634 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6635 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6636 return 1;
6637
6638 /* Not a special field, so it should not be ignored. */
6639 return 0;
6640 }
6641
6642 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6643 pointer or reference type whose ultimate target has a tag field. */
6644
6645 int
6646 ada_is_tagged_type (struct type *type, int refok)
6647 {
6648 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6649 }
6650
6651 /* True iff TYPE represents the type of X'Tag */
6652
6653 int
6654 ada_is_tag_type (struct type *type)
6655 {
6656 type = ada_check_typedef (type);
6657
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6659 return 0;
6660 else
6661 {
6662 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6663
6664 return (name != NULL
6665 && strcmp (name, "ada__tags__dispatch_table") == 0);
6666 }
6667 }
6668
6669 /* The type of the tag on VAL. */
6670
6671 struct type *
6672 ada_tag_type (struct value *val)
6673 {
6674 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6675 }
6676
6677 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6678 retired at Ada 05). */
6679
6680 static int
6681 is_ada95_tag (struct value *tag)
6682 {
6683 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6684 }
6685
6686 /* The value of the tag on VAL. */
6687
6688 struct value *
6689 ada_value_tag (struct value *val)
6690 {
6691 return ada_value_struct_elt (val, "_tag", 0);
6692 }
6693
6694 /* The value of the tag on the object of type TYPE whose contents are
6695 saved at VALADDR, if it is non-null, or is at memory address
6696 ADDRESS. */
6697
6698 static struct value *
6699 value_tag_from_contents_and_address (struct type *type,
6700 const gdb_byte *valaddr,
6701 CORE_ADDR address)
6702 {
6703 int tag_byte_offset;
6704 struct type *tag_type;
6705
6706 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6707 NULL, NULL, NULL))
6708 {
6709 const gdb_byte *valaddr1 = ((valaddr == NULL)
6710 ? NULL
6711 : valaddr + tag_byte_offset);
6712 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6713
6714 return value_from_contents_and_address (tag_type, valaddr1, address1);
6715 }
6716 return NULL;
6717 }
6718
6719 static struct type *
6720 type_from_tag (struct value *tag)
6721 {
6722 const char *type_name = ada_tag_name (tag);
6723
6724 if (type_name != NULL)
6725 return ada_find_any_type (ada_encode (type_name));
6726 return NULL;
6727 }
6728
6729 /* Given a value OBJ of a tagged type, return a value of this
6730 type at the base address of the object. The base address, as
6731 defined in Ada.Tags, it is the address of the primary tag of
6732 the object, and therefore where the field values of its full
6733 view can be fetched. */
6734
6735 struct value *
6736 ada_tag_value_at_base_address (struct value *obj)
6737 {
6738 struct value *val;
6739 LONGEST offset_to_top = 0;
6740 struct type *ptr_type, *obj_type;
6741 struct value *tag;
6742 CORE_ADDR base_address;
6743
6744 obj_type = value_type (obj);
6745
6746 /* It is the responsability of the caller to deref pointers. */
6747
6748 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6749 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6750 return obj;
6751
6752 tag = ada_value_tag (obj);
6753 if (!tag)
6754 return obj;
6755
6756 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6757
6758 if (is_ada95_tag (tag))
6759 return obj;
6760
6761 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6762 ptr_type = lookup_pointer_type (ptr_type);
6763 val = value_cast (ptr_type, tag);
6764 if (!val)
6765 return obj;
6766
6767 /* It is perfectly possible that an exception be raised while
6768 trying to determine the base address, just like for the tag;
6769 see ada_tag_name for more details. We do not print the error
6770 message for the same reason. */
6771
6772 TRY
6773 {
6774 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6775 }
6776
6777 CATCH (e, RETURN_MASK_ERROR)
6778 {
6779 return obj;
6780 }
6781 END_CATCH
6782
6783 /* If offset is null, nothing to do. */
6784
6785 if (offset_to_top == 0)
6786 return obj;
6787
6788 /* -1 is a special case in Ada.Tags; however, what should be done
6789 is not quite clear from the documentation. So do nothing for
6790 now. */
6791
6792 if (offset_to_top == -1)
6793 return obj;
6794
6795 base_address = value_address (obj) - offset_to_top;
6796 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6797
6798 /* Make sure that we have a proper tag at the new address.
6799 Otherwise, offset_to_top is bogus (which can happen when
6800 the object is not initialized yet). */
6801
6802 if (!tag)
6803 return obj;
6804
6805 obj_type = type_from_tag (tag);
6806
6807 if (!obj_type)
6808 return obj;
6809
6810 return value_from_contents_and_address (obj_type, NULL, base_address);
6811 }
6812
6813 /* Return the "ada__tags__type_specific_data" type. */
6814
6815 static struct type *
6816 ada_get_tsd_type (struct inferior *inf)
6817 {
6818 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6819
6820 if (data->tsd_type == 0)
6821 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6822 return data->tsd_type;
6823 }
6824
6825 /* Return the TSD (type-specific data) associated to the given TAG.
6826 TAG is assumed to be the tag of a tagged-type entity.
6827
6828 May return NULL if we are unable to get the TSD. */
6829
6830 static struct value *
6831 ada_get_tsd_from_tag (struct value *tag)
6832 {
6833 struct value *val;
6834 struct type *type;
6835
6836 /* First option: The TSD is simply stored as a field of our TAG.
6837 Only older versions of GNAT would use this format, but we have
6838 to test it first, because there are no visible markers for
6839 the current approach except the absence of that field. */
6840
6841 val = ada_value_struct_elt (tag, "tsd", 1);
6842 if (val)
6843 return val;
6844
6845 /* Try the second representation for the dispatch table (in which
6846 there is no explicit 'tsd' field in the referent of the tag pointer,
6847 and instead the tsd pointer is stored just before the dispatch
6848 table. */
6849
6850 type = ada_get_tsd_type (current_inferior());
6851 if (type == NULL)
6852 return NULL;
6853 type = lookup_pointer_type (lookup_pointer_type (type));
6854 val = value_cast (type, tag);
6855 if (val == NULL)
6856 return NULL;
6857 return value_ind (value_ptradd (val, -1));
6858 }
6859
6860 /* Given the TSD of a tag (type-specific data), return a string
6861 containing the name of the associated type.
6862
6863 The returned value is good until the next call. May return NULL
6864 if we are unable to determine the tag name. */
6865
6866 static char *
6867 ada_tag_name_from_tsd (struct value *tsd)
6868 {
6869 static char name[1024];
6870 char *p;
6871 struct value *val;
6872
6873 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6874 if (val == NULL)
6875 return NULL;
6876 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6877 for (p = name; *p != '\0'; p += 1)
6878 if (isalpha (*p))
6879 *p = tolower (*p);
6880 return name;
6881 }
6882
6883 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6884 a C string.
6885
6886 Return NULL if the TAG is not an Ada tag, or if we were unable to
6887 determine the name of that tag. The result is good until the next
6888 call. */
6889
6890 const char *
6891 ada_tag_name (struct value *tag)
6892 {
6893 char *name = NULL;
6894
6895 if (!ada_is_tag_type (value_type (tag)))
6896 return NULL;
6897
6898 /* It is perfectly possible that an exception be raised while trying
6899 to determine the TAG's name, even under normal circumstances:
6900 The associated variable may be uninitialized or corrupted, for
6901 instance. We do not let any exception propagate past this point.
6902 instead we return NULL.
6903
6904 We also do not print the error message either (which often is very
6905 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6906 the caller print a more meaningful message if necessary. */
6907 TRY
6908 {
6909 struct value *tsd = ada_get_tsd_from_tag (tag);
6910
6911 if (tsd != NULL)
6912 name = ada_tag_name_from_tsd (tsd);
6913 }
6914 CATCH (e, RETURN_MASK_ERROR)
6915 {
6916 }
6917 END_CATCH
6918
6919 return name;
6920 }
6921
6922 /* The parent type of TYPE, or NULL if none. */
6923
6924 struct type *
6925 ada_parent_type (struct type *type)
6926 {
6927 int i;
6928
6929 type = ada_check_typedef (type);
6930
6931 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6932 return NULL;
6933
6934 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6935 if (ada_is_parent_field (type, i))
6936 {
6937 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6938
6939 /* If the _parent field is a pointer, then dereference it. */
6940 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6941 parent_type = TYPE_TARGET_TYPE (parent_type);
6942 /* If there is a parallel XVS type, get the actual base type. */
6943 parent_type = ada_get_base_type (parent_type);
6944
6945 return ada_check_typedef (parent_type);
6946 }
6947
6948 return NULL;
6949 }
6950
6951 /* True iff field number FIELD_NUM of structure type TYPE contains the
6952 parent-type (inherited) fields of a derived type. Assumes TYPE is
6953 a structure type with at least FIELD_NUM+1 fields. */
6954
6955 int
6956 ada_is_parent_field (struct type *type, int field_num)
6957 {
6958 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6959
6960 return (name != NULL
6961 && (startswith (name, "PARENT")
6962 || startswith (name, "_parent")));
6963 }
6964
6965 /* True iff field number FIELD_NUM of structure type TYPE is a
6966 transparent wrapper field (which should be silently traversed when doing
6967 field selection and flattened when printing). Assumes TYPE is a
6968 structure type with at least FIELD_NUM+1 fields. Such fields are always
6969 structures. */
6970
6971 int
6972 ada_is_wrapper_field (struct type *type, int field_num)
6973 {
6974 const char *name = TYPE_FIELD_NAME (type, field_num);
6975
6976 return (name != NULL
6977 && (startswith (name, "PARENT")
6978 || strcmp (name, "REP") == 0
6979 || startswith (name, "_parent")
6980 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6981 }
6982
6983 /* True iff field number FIELD_NUM of structure or union type TYPE
6984 is a variant wrapper. Assumes TYPE is a structure type with at least
6985 FIELD_NUM+1 fields. */
6986
6987 int
6988 ada_is_variant_part (struct type *type, int field_num)
6989 {
6990 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6991
6992 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6993 || (is_dynamic_field (type, field_num)
6994 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6995 == TYPE_CODE_UNION)));
6996 }
6997
6998 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6999 whose discriminants are contained in the record type OUTER_TYPE,
7000 returns the type of the controlling discriminant for the variant.
7001 May return NULL if the type could not be found. */
7002
7003 struct type *
7004 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7005 {
7006 char *name = ada_variant_discrim_name (var_type);
7007
7008 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7009 }
7010
7011 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7012 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7013 represents a 'when others' clause; otherwise 0. */
7014
7015 int
7016 ada_is_others_clause (struct type *type, int field_num)
7017 {
7018 const char *name = TYPE_FIELD_NAME (type, field_num);
7019
7020 return (name != NULL && name[0] == 'O');
7021 }
7022
7023 /* Assuming that TYPE0 is the type of the variant part of a record,
7024 returns the name of the discriminant controlling the variant.
7025 The value is valid until the next call to ada_variant_discrim_name. */
7026
7027 char *
7028 ada_variant_discrim_name (struct type *type0)
7029 {
7030 static char *result = NULL;
7031 static size_t result_len = 0;
7032 struct type *type;
7033 const char *name;
7034 const char *discrim_end;
7035 const char *discrim_start;
7036
7037 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7038 type = TYPE_TARGET_TYPE (type0);
7039 else
7040 type = type0;
7041
7042 name = ada_type_name (type);
7043
7044 if (name == NULL || name[0] == '\000')
7045 return "";
7046
7047 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7048 discrim_end -= 1)
7049 {
7050 if (startswith (discrim_end, "___XVN"))
7051 break;
7052 }
7053 if (discrim_end == name)
7054 return "";
7055
7056 for (discrim_start = discrim_end; discrim_start != name + 3;
7057 discrim_start -= 1)
7058 {
7059 if (discrim_start == name + 1)
7060 return "";
7061 if ((discrim_start > name + 3
7062 && startswith (discrim_start - 3, "___"))
7063 || discrim_start[-1] == '.')
7064 break;
7065 }
7066
7067 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7068 strncpy (result, discrim_start, discrim_end - discrim_start);
7069 result[discrim_end - discrim_start] = '\0';
7070 return result;
7071 }
7072
7073 /* Scan STR for a subtype-encoded number, beginning at position K.
7074 Put the position of the character just past the number scanned in
7075 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7076 Return 1 if there was a valid number at the given position, and 0
7077 otherwise. A "subtype-encoded" number consists of the absolute value
7078 in decimal, followed by the letter 'm' to indicate a negative number.
7079 Assumes 0m does not occur. */
7080
7081 int
7082 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7083 {
7084 ULONGEST RU;
7085
7086 if (!isdigit (str[k]))
7087 return 0;
7088
7089 /* Do it the hard way so as not to make any assumption about
7090 the relationship of unsigned long (%lu scan format code) and
7091 LONGEST. */
7092 RU = 0;
7093 while (isdigit (str[k]))
7094 {
7095 RU = RU * 10 + (str[k] - '0');
7096 k += 1;
7097 }
7098
7099 if (str[k] == 'm')
7100 {
7101 if (R != NULL)
7102 *R = (-(LONGEST) (RU - 1)) - 1;
7103 k += 1;
7104 }
7105 else if (R != NULL)
7106 *R = (LONGEST) RU;
7107
7108 /* NOTE on the above: Technically, C does not say what the results of
7109 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7110 number representable as a LONGEST (although either would probably work
7111 in most implementations). When RU>0, the locution in the then branch
7112 above is always equivalent to the negative of RU. */
7113
7114 if (new_k != NULL)
7115 *new_k = k;
7116 return 1;
7117 }
7118
7119 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7120 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7121 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7122
7123 int
7124 ada_in_variant (LONGEST val, struct type *type, int field_num)
7125 {
7126 const char *name = TYPE_FIELD_NAME (type, field_num);
7127 int p;
7128
7129 p = 0;
7130 while (1)
7131 {
7132 switch (name[p])
7133 {
7134 case '\0':
7135 return 0;
7136 case 'S':
7137 {
7138 LONGEST W;
7139
7140 if (!ada_scan_number (name, p + 1, &W, &p))
7141 return 0;
7142 if (val == W)
7143 return 1;
7144 break;
7145 }
7146 case 'R':
7147 {
7148 LONGEST L, U;
7149
7150 if (!ada_scan_number (name, p + 1, &L, &p)
7151 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7152 return 0;
7153 if (val >= L && val <= U)
7154 return 1;
7155 break;
7156 }
7157 case 'O':
7158 return 1;
7159 default:
7160 return 0;
7161 }
7162 }
7163 }
7164
7165 /* FIXME: Lots of redundancy below. Try to consolidate. */
7166
7167 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7168 ARG_TYPE, extract and return the value of one of its (non-static)
7169 fields. FIELDNO says which field. Differs from value_primitive_field
7170 only in that it can handle packed values of arbitrary type. */
7171
7172 static struct value *
7173 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7174 struct type *arg_type)
7175 {
7176 struct type *type;
7177
7178 arg_type = ada_check_typedef (arg_type);
7179 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7180
7181 /* Handle packed fields. */
7182
7183 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7184 {
7185 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7186 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7187
7188 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7189 offset + bit_pos / 8,
7190 bit_pos % 8, bit_size, type);
7191 }
7192 else
7193 return value_primitive_field (arg1, offset, fieldno, arg_type);
7194 }
7195
7196 /* Find field with name NAME in object of type TYPE. If found,
7197 set the following for each argument that is non-null:
7198 - *FIELD_TYPE_P to the field's type;
7199 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7200 an object of that type;
7201 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7202 - *BIT_SIZE_P to its size in bits if the field is packed, and
7203 0 otherwise;
7204 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7205 fields up to but not including the desired field, or by the total
7206 number of fields if not found. A NULL value of NAME never
7207 matches; the function just counts visible fields in this case.
7208
7209 Returns 1 if found, 0 otherwise. */
7210
7211 static int
7212 find_struct_field (const char *name, struct type *type, int offset,
7213 struct type **field_type_p,
7214 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7215 int *index_p)
7216 {
7217 int i;
7218
7219 type = ada_check_typedef (type);
7220
7221 if (field_type_p != NULL)
7222 *field_type_p = NULL;
7223 if (byte_offset_p != NULL)
7224 *byte_offset_p = 0;
7225 if (bit_offset_p != NULL)
7226 *bit_offset_p = 0;
7227 if (bit_size_p != NULL)
7228 *bit_size_p = 0;
7229
7230 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7231 {
7232 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7233 int fld_offset = offset + bit_pos / 8;
7234 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7235
7236 if (t_field_name == NULL)
7237 continue;
7238
7239 else if (name != NULL && field_name_match (t_field_name, name))
7240 {
7241 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7242
7243 if (field_type_p != NULL)
7244 *field_type_p = TYPE_FIELD_TYPE (type, i);
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = fld_offset;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = bit_pos % 8;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = bit_size;
7251 return 1;
7252 }
7253 else if (ada_is_wrapper_field (type, i))
7254 {
7255 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7256 field_type_p, byte_offset_p, bit_offset_p,
7257 bit_size_p, index_p))
7258 return 1;
7259 }
7260 else if (ada_is_variant_part (type, i))
7261 {
7262 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7263 fixed type?? */
7264 int j;
7265 struct type *field_type
7266 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7267
7268 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7269 {
7270 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7271 fld_offset
7272 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7273 field_type_p, byte_offset_p,
7274 bit_offset_p, bit_size_p, index_p))
7275 return 1;
7276 }
7277 }
7278 else if (index_p != NULL)
7279 *index_p += 1;
7280 }
7281 return 0;
7282 }
7283
7284 /* Number of user-visible fields in record type TYPE. */
7285
7286 static int
7287 num_visible_fields (struct type *type)
7288 {
7289 int n;
7290
7291 n = 0;
7292 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7293 return n;
7294 }
7295
7296 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7297 and search in it assuming it has (class) type TYPE.
7298 If found, return value, else return NULL.
7299
7300 Searches recursively through wrapper fields (e.g., '_parent'). */
7301
7302 static struct value *
7303 ada_search_struct_field (const char *name, struct value *arg, int offset,
7304 struct type *type)
7305 {
7306 int i;
7307
7308 type = ada_check_typedef (type);
7309 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7310 {
7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7312
7313 if (t_field_name == NULL)
7314 continue;
7315
7316 else if (field_name_match (t_field_name, name))
7317 return ada_value_primitive_field (arg, offset, i, type);
7318
7319 else if (ada_is_wrapper_field (type, i))
7320 {
7321 struct value *v = /* Do not let indent join lines here. */
7322 ada_search_struct_field (name, arg,
7323 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7324 TYPE_FIELD_TYPE (type, i));
7325
7326 if (v != NULL)
7327 return v;
7328 }
7329
7330 else if (ada_is_variant_part (type, i))
7331 {
7332 /* PNH: Do we ever get here? See find_struct_field. */
7333 int j;
7334 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7335 i));
7336 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7337
7338 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7339 {
7340 struct value *v = ada_search_struct_field /* Force line
7341 break. */
7342 (name, arg,
7343 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7344 TYPE_FIELD_TYPE (field_type, j));
7345
7346 if (v != NULL)
7347 return v;
7348 }
7349 }
7350 }
7351 return NULL;
7352 }
7353
7354 static struct value *ada_index_struct_field_1 (int *, struct value *,
7355 int, struct type *);
7356
7357
7358 /* Return field #INDEX in ARG, where the index is that returned by
7359 * find_struct_field through its INDEX_P argument. Adjust the address
7360 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7361 * If found, return value, else return NULL. */
7362
7363 static struct value *
7364 ada_index_struct_field (int index, struct value *arg, int offset,
7365 struct type *type)
7366 {
7367 return ada_index_struct_field_1 (&index, arg, offset, type);
7368 }
7369
7370
7371 /* Auxiliary function for ada_index_struct_field. Like
7372 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7373 * *INDEX_P. */
7374
7375 static struct value *
7376 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7377 struct type *type)
7378 {
7379 int i;
7380 type = ada_check_typedef (type);
7381
7382 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7383 {
7384 if (TYPE_FIELD_NAME (type, i) == NULL)
7385 continue;
7386 else if (ada_is_wrapper_field (type, i))
7387 {
7388 struct value *v = /* Do not let indent join lines here. */
7389 ada_index_struct_field_1 (index_p, arg,
7390 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7391 TYPE_FIELD_TYPE (type, i));
7392
7393 if (v != NULL)
7394 return v;
7395 }
7396
7397 else if (ada_is_variant_part (type, i))
7398 {
7399 /* PNH: Do we ever get here? See ada_search_struct_field,
7400 find_struct_field. */
7401 error (_("Cannot assign this kind of variant record"));
7402 }
7403 else if (*index_p == 0)
7404 return ada_value_primitive_field (arg, offset, i, type);
7405 else
7406 *index_p -= 1;
7407 }
7408 return NULL;
7409 }
7410
7411 /* Given ARG, a value of type (pointer or reference to a)*
7412 structure/union, extract the component named NAME from the ultimate
7413 target structure/union and return it as a value with its
7414 appropriate type.
7415
7416 The routine searches for NAME among all members of the structure itself
7417 and (recursively) among all members of any wrapper members
7418 (e.g., '_parent').
7419
7420 If NO_ERR, then simply return NULL in case of error, rather than
7421 calling error. */
7422
7423 struct value *
7424 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7425 {
7426 struct type *t, *t1;
7427 struct value *v;
7428
7429 v = NULL;
7430 t1 = t = ada_check_typedef (value_type (arg));
7431 if (TYPE_CODE (t) == TYPE_CODE_REF)
7432 {
7433 t1 = TYPE_TARGET_TYPE (t);
7434 if (t1 == NULL)
7435 goto BadValue;
7436 t1 = ada_check_typedef (t1);
7437 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7438 {
7439 arg = coerce_ref (arg);
7440 t = t1;
7441 }
7442 }
7443
7444 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7445 {
7446 t1 = TYPE_TARGET_TYPE (t);
7447 if (t1 == NULL)
7448 goto BadValue;
7449 t1 = ada_check_typedef (t1);
7450 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7451 {
7452 arg = value_ind (arg);
7453 t = t1;
7454 }
7455 else
7456 break;
7457 }
7458
7459 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7460 goto BadValue;
7461
7462 if (t1 == t)
7463 v = ada_search_struct_field (name, arg, 0, t);
7464 else
7465 {
7466 int bit_offset, bit_size, byte_offset;
7467 struct type *field_type;
7468 CORE_ADDR address;
7469
7470 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7471 address = value_address (ada_value_ind (arg));
7472 else
7473 address = value_address (ada_coerce_ref (arg));
7474
7475 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7476 if (find_struct_field (name, t1, 0,
7477 &field_type, &byte_offset, &bit_offset,
7478 &bit_size, NULL))
7479 {
7480 if (bit_size != 0)
7481 {
7482 if (TYPE_CODE (t) == TYPE_CODE_REF)
7483 arg = ada_coerce_ref (arg);
7484 else
7485 arg = ada_value_ind (arg);
7486 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7487 bit_offset, bit_size,
7488 field_type);
7489 }
7490 else
7491 v = value_at_lazy (field_type, address + byte_offset);
7492 }
7493 }
7494
7495 if (v != NULL || no_err)
7496 return v;
7497 else
7498 error (_("There is no member named %s."), name);
7499
7500 BadValue:
7501 if (no_err)
7502 return NULL;
7503 else
7504 error (_("Attempt to extract a component of "
7505 "a value that is not a record."));
7506 }
7507
7508 /* Given a type TYPE, look up the type of the component of type named NAME.
7509 If DISPP is non-null, add its byte displacement from the beginning of a
7510 structure (pointed to by a value) of type TYPE to *DISPP (does not
7511 work for packed fields).
7512
7513 Matches any field whose name has NAME as a prefix, possibly
7514 followed by "___".
7515
7516 TYPE can be either a struct or union. If REFOK, TYPE may also
7517 be a (pointer or reference)+ to a struct or union, and the
7518 ultimate target type will be searched.
7519
7520 Looks recursively into variant clauses and parent types.
7521
7522 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7523 TYPE is not a type of the right kind. */
7524
7525 static struct type *
7526 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7527 int noerr, int *dispp)
7528 {
7529 int i;
7530
7531 if (name == NULL)
7532 goto BadName;
7533
7534 if (refok && type != NULL)
7535 while (1)
7536 {
7537 type = ada_check_typedef (type);
7538 if (TYPE_CODE (type) != TYPE_CODE_PTR
7539 && TYPE_CODE (type) != TYPE_CODE_REF)
7540 break;
7541 type = TYPE_TARGET_TYPE (type);
7542 }
7543
7544 if (type == NULL
7545 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7546 && TYPE_CODE (type) != TYPE_CODE_UNION))
7547 {
7548 if (noerr)
7549 return NULL;
7550 else
7551 {
7552 target_terminal_ours ();
7553 gdb_flush (gdb_stdout);
7554 if (type == NULL)
7555 error (_("Type (null) is not a structure or union type"));
7556 else
7557 {
7558 /* XXX: type_sprint */
7559 fprintf_unfiltered (gdb_stderr, _("Type "));
7560 type_print (type, "", gdb_stderr, -1);
7561 error (_(" is not a structure or union type"));
7562 }
7563 }
7564 }
7565
7566 type = to_static_fixed_type (type);
7567
7568 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7569 {
7570 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7571 struct type *t;
7572 int disp;
7573
7574 if (t_field_name == NULL)
7575 continue;
7576
7577 else if (field_name_match (t_field_name, name))
7578 {
7579 if (dispp != NULL)
7580 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7581 return TYPE_FIELD_TYPE (type, i);
7582 }
7583
7584 else if (ada_is_wrapper_field (type, i))
7585 {
7586 disp = 0;
7587 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7588 0, 1, &disp);
7589 if (t != NULL)
7590 {
7591 if (dispp != NULL)
7592 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7593 return t;
7594 }
7595 }
7596
7597 else if (ada_is_variant_part (type, i))
7598 {
7599 int j;
7600 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7601 i));
7602
7603 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7604 {
7605 /* FIXME pnh 2008/01/26: We check for a field that is
7606 NOT wrapped in a struct, since the compiler sometimes
7607 generates these for unchecked variant types. Revisit
7608 if the compiler changes this practice. */
7609 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7610 disp = 0;
7611 if (v_field_name != NULL
7612 && field_name_match (v_field_name, name))
7613 t = TYPE_FIELD_TYPE (field_type, j);
7614 else
7615 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7616 j),
7617 name, 0, 1, &disp);
7618
7619 if (t != NULL)
7620 {
7621 if (dispp != NULL)
7622 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7623 return t;
7624 }
7625 }
7626 }
7627
7628 }
7629
7630 BadName:
7631 if (!noerr)
7632 {
7633 target_terminal_ours ();
7634 gdb_flush (gdb_stdout);
7635 if (name == NULL)
7636 {
7637 /* XXX: type_sprint */
7638 fprintf_unfiltered (gdb_stderr, _("Type "));
7639 type_print (type, "", gdb_stderr, -1);
7640 error (_(" has no component named <null>"));
7641 }
7642 else
7643 {
7644 /* XXX: type_sprint */
7645 fprintf_unfiltered (gdb_stderr, _("Type "));
7646 type_print (type, "", gdb_stderr, -1);
7647 error (_(" has no component named %s"), name);
7648 }
7649 }
7650
7651 return NULL;
7652 }
7653
7654 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7655 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7656 represents an unchecked union (that is, the variant part of a
7657 record that is named in an Unchecked_Union pragma). */
7658
7659 static int
7660 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7661 {
7662 char *discrim_name = ada_variant_discrim_name (var_type);
7663
7664 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7665 == NULL);
7666 }
7667
7668
7669 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7670 within a value of type OUTER_TYPE that is stored in GDB at
7671 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7672 numbering from 0) is applicable. Returns -1 if none are. */
7673
7674 int
7675 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7676 const gdb_byte *outer_valaddr)
7677 {
7678 int others_clause;
7679 int i;
7680 char *discrim_name = ada_variant_discrim_name (var_type);
7681 struct value *outer;
7682 struct value *discrim;
7683 LONGEST discrim_val;
7684
7685 /* Using plain value_from_contents_and_address here causes problems
7686 because we will end up trying to resolve a type that is currently
7687 being constructed. */
7688 outer = value_from_contents_and_address_unresolved (outer_type,
7689 outer_valaddr, 0);
7690 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7691 if (discrim == NULL)
7692 return -1;
7693 discrim_val = value_as_long (discrim);
7694
7695 others_clause = -1;
7696 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7697 {
7698 if (ada_is_others_clause (var_type, i))
7699 others_clause = i;
7700 else if (ada_in_variant (discrim_val, var_type, i))
7701 return i;
7702 }
7703
7704 return others_clause;
7705 }
7706 \f
7707
7708
7709 /* Dynamic-Sized Records */
7710
7711 /* Strategy: The type ostensibly attached to a value with dynamic size
7712 (i.e., a size that is not statically recorded in the debugging
7713 data) does not accurately reflect the size or layout of the value.
7714 Our strategy is to convert these values to values with accurate,
7715 conventional types that are constructed on the fly. */
7716
7717 /* There is a subtle and tricky problem here. In general, we cannot
7718 determine the size of dynamic records without its data. However,
7719 the 'struct value' data structure, which GDB uses to represent
7720 quantities in the inferior process (the target), requires the size
7721 of the type at the time of its allocation in order to reserve space
7722 for GDB's internal copy of the data. That's why the
7723 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7724 rather than struct value*s.
7725
7726 However, GDB's internal history variables ($1, $2, etc.) are
7727 struct value*s containing internal copies of the data that are not, in
7728 general, the same as the data at their corresponding addresses in
7729 the target. Fortunately, the types we give to these values are all
7730 conventional, fixed-size types (as per the strategy described
7731 above), so that we don't usually have to perform the
7732 'to_fixed_xxx_type' conversions to look at their values.
7733 Unfortunately, there is one exception: if one of the internal
7734 history variables is an array whose elements are unconstrained
7735 records, then we will need to create distinct fixed types for each
7736 element selected. */
7737
7738 /* The upshot of all of this is that many routines take a (type, host
7739 address, target address) triple as arguments to represent a value.
7740 The host address, if non-null, is supposed to contain an internal
7741 copy of the relevant data; otherwise, the program is to consult the
7742 target at the target address. */
7743
7744 /* Assuming that VAL0 represents a pointer value, the result of
7745 dereferencing it. Differs from value_ind in its treatment of
7746 dynamic-sized types. */
7747
7748 struct value *
7749 ada_value_ind (struct value *val0)
7750 {
7751 struct value *val = value_ind (val0);
7752
7753 if (ada_is_tagged_type (value_type (val), 0))
7754 val = ada_tag_value_at_base_address (val);
7755
7756 return ada_to_fixed_value (val);
7757 }
7758
7759 /* The value resulting from dereferencing any "reference to"
7760 qualifiers on VAL0. */
7761
7762 static struct value *
7763 ada_coerce_ref (struct value *val0)
7764 {
7765 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7766 {
7767 struct value *val = val0;
7768
7769 val = coerce_ref (val);
7770
7771 if (ada_is_tagged_type (value_type (val), 0))
7772 val = ada_tag_value_at_base_address (val);
7773
7774 return ada_to_fixed_value (val);
7775 }
7776 else
7777 return val0;
7778 }
7779
7780 /* Return OFF rounded upward if necessary to a multiple of
7781 ALIGNMENT (a power of 2). */
7782
7783 static unsigned int
7784 align_value (unsigned int off, unsigned int alignment)
7785 {
7786 return (off + alignment - 1) & ~(alignment - 1);
7787 }
7788
7789 /* Return the bit alignment required for field #F of template type TYPE. */
7790
7791 static unsigned int
7792 field_alignment (struct type *type, int f)
7793 {
7794 const char *name = TYPE_FIELD_NAME (type, f);
7795 int len;
7796 int align_offset;
7797
7798 /* The field name should never be null, unless the debugging information
7799 is somehow malformed. In this case, we assume the field does not
7800 require any alignment. */
7801 if (name == NULL)
7802 return 1;
7803
7804 len = strlen (name);
7805
7806 if (!isdigit (name[len - 1]))
7807 return 1;
7808
7809 if (isdigit (name[len - 2]))
7810 align_offset = len - 2;
7811 else
7812 align_offset = len - 1;
7813
7814 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7815 return TARGET_CHAR_BIT;
7816
7817 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7818 }
7819
7820 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7821
7822 static struct symbol *
7823 ada_find_any_type_symbol (const char *name)
7824 {
7825 struct symbol *sym;
7826
7827 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7828 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7829 return sym;
7830
7831 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7832 return sym;
7833 }
7834
7835 /* Find a type named NAME. Ignores ambiguity. This routine will look
7836 solely for types defined by debug info, it will not search the GDB
7837 primitive types. */
7838
7839 static struct type *
7840 ada_find_any_type (const char *name)
7841 {
7842 struct symbol *sym = ada_find_any_type_symbol (name);
7843
7844 if (sym != NULL)
7845 return SYMBOL_TYPE (sym);
7846
7847 return NULL;
7848 }
7849
7850 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7851 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7852 symbol, in which case it is returned. Otherwise, this looks for
7853 symbols whose name is that of NAME_SYM suffixed with "___XR".
7854 Return symbol if found, and NULL otherwise. */
7855
7856 struct symbol *
7857 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7858 {
7859 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7860 struct symbol *sym;
7861
7862 if (strstr (name, "___XR") != NULL)
7863 return name_sym;
7864
7865 sym = find_old_style_renaming_symbol (name, block);
7866
7867 if (sym != NULL)
7868 return sym;
7869
7870 /* Not right yet. FIXME pnh 7/20/2007. */
7871 sym = ada_find_any_type_symbol (name);
7872 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7873 return sym;
7874 else
7875 return NULL;
7876 }
7877
7878 static struct symbol *
7879 find_old_style_renaming_symbol (const char *name, const struct block *block)
7880 {
7881 const struct symbol *function_sym = block_linkage_function (block);
7882 char *rename;
7883
7884 if (function_sym != NULL)
7885 {
7886 /* If the symbol is defined inside a function, NAME is not fully
7887 qualified. This means we need to prepend the function name
7888 as well as adding the ``___XR'' suffix to build the name of
7889 the associated renaming symbol. */
7890 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7891 /* Function names sometimes contain suffixes used
7892 for instance to qualify nested subprograms. When building
7893 the XR type name, we need to make sure that this suffix is
7894 not included. So do not include any suffix in the function
7895 name length below. */
7896 int function_name_len = ada_name_prefix_len (function_name);
7897 const int rename_len = function_name_len + 2 /* "__" */
7898 + strlen (name) + 6 /* "___XR\0" */ ;
7899
7900 /* Strip the suffix if necessary. */
7901 ada_remove_trailing_digits (function_name, &function_name_len);
7902 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7903 ada_remove_Xbn_suffix (function_name, &function_name_len);
7904
7905 /* Library-level functions are a special case, as GNAT adds
7906 a ``_ada_'' prefix to the function name to avoid namespace
7907 pollution. However, the renaming symbols themselves do not
7908 have this prefix, so we need to skip this prefix if present. */
7909 if (function_name_len > 5 /* "_ada_" */
7910 && strstr (function_name, "_ada_") == function_name)
7911 {
7912 function_name += 5;
7913 function_name_len -= 5;
7914 }
7915
7916 rename = (char *) alloca (rename_len * sizeof (char));
7917 strncpy (rename, function_name, function_name_len);
7918 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7919 "__%s___XR", name);
7920 }
7921 else
7922 {
7923 const int rename_len = strlen (name) + 6;
7924
7925 rename = (char *) alloca (rename_len * sizeof (char));
7926 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7927 }
7928
7929 return ada_find_any_type_symbol (rename);
7930 }
7931
7932 /* Because of GNAT encoding conventions, several GDB symbols may match a
7933 given type name. If the type denoted by TYPE0 is to be preferred to
7934 that of TYPE1 for purposes of type printing, return non-zero;
7935 otherwise return 0. */
7936
7937 int
7938 ada_prefer_type (struct type *type0, struct type *type1)
7939 {
7940 if (type1 == NULL)
7941 return 1;
7942 else if (type0 == NULL)
7943 return 0;
7944 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7945 return 1;
7946 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7947 return 0;
7948 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7949 return 1;
7950 else if (ada_is_constrained_packed_array_type (type0))
7951 return 1;
7952 else if (ada_is_array_descriptor_type (type0)
7953 && !ada_is_array_descriptor_type (type1))
7954 return 1;
7955 else
7956 {
7957 const char *type0_name = type_name_no_tag (type0);
7958 const char *type1_name = type_name_no_tag (type1);
7959
7960 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7961 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7962 return 1;
7963 }
7964 return 0;
7965 }
7966
7967 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7968 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7969
7970 const char *
7971 ada_type_name (struct type *type)
7972 {
7973 if (type == NULL)
7974 return NULL;
7975 else if (TYPE_NAME (type) != NULL)
7976 return TYPE_NAME (type);
7977 else
7978 return TYPE_TAG_NAME (type);
7979 }
7980
7981 /* Search the list of "descriptive" types associated to TYPE for a type
7982 whose name is NAME. */
7983
7984 static struct type *
7985 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7986 {
7987 struct type *result, *tmp;
7988
7989 if (ada_ignore_descriptive_types_p)
7990 return NULL;
7991
7992 /* If there no descriptive-type info, then there is no parallel type
7993 to be found. */
7994 if (!HAVE_GNAT_AUX_INFO (type))
7995 return NULL;
7996
7997 result = TYPE_DESCRIPTIVE_TYPE (type);
7998 while (result != NULL)
7999 {
8000 const char *result_name = ada_type_name (result);
8001
8002 if (result_name == NULL)
8003 {
8004 warning (_("unexpected null name on descriptive type"));
8005 return NULL;
8006 }
8007
8008 /* If the names match, stop. */
8009 if (strcmp (result_name, name) == 0)
8010 break;
8011
8012 /* Otherwise, look at the next item on the list, if any. */
8013 if (HAVE_GNAT_AUX_INFO (result))
8014 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8015 else
8016 tmp = NULL;
8017
8018 /* If not found either, try after having resolved the typedef. */
8019 if (tmp != NULL)
8020 result = tmp;
8021 else
8022 {
8023 result = check_typedef (result);
8024 if (HAVE_GNAT_AUX_INFO (result))
8025 result = TYPE_DESCRIPTIVE_TYPE (result);
8026 else
8027 result = NULL;
8028 }
8029 }
8030
8031 /* If we didn't find a match, see whether this is a packed array. With
8032 older compilers, the descriptive type information is either absent or
8033 irrelevant when it comes to packed arrays so the above lookup fails.
8034 Fall back to using a parallel lookup by name in this case. */
8035 if (result == NULL && ada_is_constrained_packed_array_type (type))
8036 return ada_find_any_type (name);
8037
8038 return result;
8039 }
8040
8041 /* Find a parallel type to TYPE with the specified NAME, using the
8042 descriptive type taken from the debugging information, if available,
8043 and otherwise using the (slower) name-based method. */
8044
8045 static struct type *
8046 ada_find_parallel_type_with_name (struct type *type, const char *name)
8047 {
8048 struct type *result = NULL;
8049
8050 if (HAVE_GNAT_AUX_INFO (type))
8051 result = find_parallel_type_by_descriptive_type (type, name);
8052 else
8053 result = ada_find_any_type (name);
8054
8055 return result;
8056 }
8057
8058 /* Same as above, but specify the name of the parallel type by appending
8059 SUFFIX to the name of TYPE. */
8060
8061 struct type *
8062 ada_find_parallel_type (struct type *type, const char *suffix)
8063 {
8064 char *name;
8065 const char *type_name = ada_type_name (type);
8066 int len;
8067
8068 if (type_name == NULL)
8069 return NULL;
8070
8071 len = strlen (type_name);
8072
8073 name = (char *) alloca (len + strlen (suffix) + 1);
8074
8075 strcpy (name, type_name);
8076 strcpy (name + len, suffix);
8077
8078 return ada_find_parallel_type_with_name (type, name);
8079 }
8080
8081 /* If TYPE is a variable-size record type, return the corresponding template
8082 type describing its fields. Otherwise, return NULL. */
8083
8084 static struct type *
8085 dynamic_template_type (struct type *type)
8086 {
8087 type = ada_check_typedef (type);
8088
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8090 || ada_type_name (type) == NULL)
8091 return NULL;
8092 else
8093 {
8094 int len = strlen (ada_type_name (type));
8095
8096 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8097 return type;
8098 else
8099 return ada_find_parallel_type (type, "___XVE");
8100 }
8101 }
8102
8103 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8104 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8105
8106 static int
8107 is_dynamic_field (struct type *templ_type, int field_num)
8108 {
8109 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8110
8111 return name != NULL
8112 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8113 && strstr (name, "___XVL") != NULL;
8114 }
8115
8116 /* The index of the variant field of TYPE, or -1 if TYPE does not
8117 represent a variant record type. */
8118
8119 static int
8120 variant_field_index (struct type *type)
8121 {
8122 int f;
8123
8124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8125 return -1;
8126
8127 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8128 {
8129 if (ada_is_variant_part (type, f))
8130 return f;
8131 }
8132 return -1;
8133 }
8134
8135 /* A record type with no fields. */
8136
8137 static struct type *
8138 empty_record (struct type *templ)
8139 {
8140 struct type *type = alloc_type_copy (templ);
8141
8142 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8143 TYPE_NFIELDS (type) = 0;
8144 TYPE_FIELDS (type) = NULL;
8145 INIT_CPLUS_SPECIFIC (type);
8146 TYPE_NAME (type) = "<empty>";
8147 TYPE_TAG_NAME (type) = NULL;
8148 TYPE_LENGTH (type) = 0;
8149 return type;
8150 }
8151
8152 /* An ordinary record type (with fixed-length fields) that describes
8153 the value of type TYPE at VALADDR or ADDRESS (see comments at
8154 the beginning of this section) VAL according to GNAT conventions.
8155 DVAL0 should describe the (portion of a) record that contains any
8156 necessary discriminants. It should be NULL if value_type (VAL) is
8157 an outer-level type (i.e., as opposed to a branch of a variant.) A
8158 variant field (unless unchecked) is replaced by a particular branch
8159 of the variant.
8160
8161 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8162 length are not statically known are discarded. As a consequence,
8163 VALADDR, ADDRESS and DVAL0 are ignored.
8164
8165 NOTE: Limitations: For now, we assume that dynamic fields and
8166 variants occupy whole numbers of bytes. However, they need not be
8167 byte-aligned. */
8168
8169 struct type *
8170 ada_template_to_fixed_record_type_1 (struct type *type,
8171 const gdb_byte *valaddr,
8172 CORE_ADDR address, struct value *dval0,
8173 int keep_dynamic_fields)
8174 {
8175 struct value *mark = value_mark ();
8176 struct value *dval;
8177 struct type *rtype;
8178 int nfields, bit_len;
8179 int variant_field;
8180 long off;
8181 int fld_bit_len;
8182 int f;
8183
8184 /* Compute the number of fields in this record type that are going
8185 to be processed: unless keep_dynamic_fields, this includes only
8186 fields whose position and length are static will be processed. */
8187 if (keep_dynamic_fields)
8188 nfields = TYPE_NFIELDS (type);
8189 else
8190 {
8191 nfields = 0;
8192 while (nfields < TYPE_NFIELDS (type)
8193 && !ada_is_variant_part (type, nfields)
8194 && !is_dynamic_field (type, nfields))
8195 nfields++;
8196 }
8197
8198 rtype = alloc_type_copy (type);
8199 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8200 INIT_CPLUS_SPECIFIC (rtype);
8201 TYPE_NFIELDS (rtype) = nfields;
8202 TYPE_FIELDS (rtype) = (struct field *)
8203 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8204 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8205 TYPE_NAME (rtype) = ada_type_name (type);
8206 TYPE_TAG_NAME (rtype) = NULL;
8207 TYPE_FIXED_INSTANCE (rtype) = 1;
8208
8209 off = 0;
8210 bit_len = 0;
8211 variant_field = -1;
8212
8213 for (f = 0; f < nfields; f += 1)
8214 {
8215 off = align_value (off, field_alignment (type, f))
8216 + TYPE_FIELD_BITPOS (type, f);
8217 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8218 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8219
8220 if (ada_is_variant_part (type, f))
8221 {
8222 variant_field = f;
8223 fld_bit_len = 0;
8224 }
8225 else if (is_dynamic_field (type, f))
8226 {
8227 const gdb_byte *field_valaddr = valaddr;
8228 CORE_ADDR field_address = address;
8229 struct type *field_type =
8230 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8231
8232 if (dval0 == NULL)
8233 {
8234 /* rtype's length is computed based on the run-time
8235 value of discriminants. If the discriminants are not
8236 initialized, the type size may be completely bogus and
8237 GDB may fail to allocate a value for it. So check the
8238 size first before creating the value. */
8239 ada_ensure_varsize_limit (rtype);
8240 /* Using plain value_from_contents_and_address here
8241 causes problems because we will end up trying to
8242 resolve a type that is currently being
8243 constructed. */
8244 dval = value_from_contents_and_address_unresolved (rtype,
8245 valaddr,
8246 address);
8247 rtype = value_type (dval);
8248 }
8249 else
8250 dval = dval0;
8251
8252 /* If the type referenced by this field is an aligner type, we need
8253 to unwrap that aligner type, because its size might not be set.
8254 Keeping the aligner type would cause us to compute the wrong
8255 size for this field, impacting the offset of the all the fields
8256 that follow this one. */
8257 if (ada_is_aligner_type (field_type))
8258 {
8259 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8260
8261 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8262 field_address = cond_offset_target (field_address, field_offset);
8263 field_type = ada_aligned_type (field_type);
8264 }
8265
8266 field_valaddr = cond_offset_host (field_valaddr,
8267 off / TARGET_CHAR_BIT);
8268 field_address = cond_offset_target (field_address,
8269 off / TARGET_CHAR_BIT);
8270
8271 /* Get the fixed type of the field. Note that, in this case,
8272 we do not want to get the real type out of the tag: if
8273 the current field is the parent part of a tagged record,
8274 we will get the tag of the object. Clearly wrong: the real
8275 type of the parent is not the real type of the child. We
8276 would end up in an infinite loop. */
8277 field_type = ada_get_base_type (field_type);
8278 field_type = ada_to_fixed_type (field_type, field_valaddr,
8279 field_address, dval, 0);
8280 /* If the field size is already larger than the maximum
8281 object size, then the record itself will necessarily
8282 be larger than the maximum object size. We need to make
8283 this check now, because the size might be so ridiculously
8284 large (due to an uninitialized variable in the inferior)
8285 that it would cause an overflow when adding it to the
8286 record size. */
8287 ada_ensure_varsize_limit (field_type);
8288
8289 TYPE_FIELD_TYPE (rtype, f) = field_type;
8290 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8291 /* The multiplication can potentially overflow. But because
8292 the field length has been size-checked just above, and
8293 assuming that the maximum size is a reasonable value,
8294 an overflow should not happen in practice. So rather than
8295 adding overflow recovery code to this already complex code,
8296 we just assume that it's not going to happen. */
8297 fld_bit_len =
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8299 }
8300 else
8301 {
8302 /* Note: If this field's type is a typedef, it is important
8303 to preserve the typedef layer.
8304
8305 Otherwise, we might be transforming a typedef to a fat
8306 pointer (encoding a pointer to an unconstrained array),
8307 into a basic fat pointer (encoding an unconstrained
8308 array). As both types are implemented using the same
8309 structure, the typedef is the only clue which allows us
8310 to distinguish between the two options. Stripping it
8311 would prevent us from printing this field appropriately. */
8312 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8313 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8314 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8315 fld_bit_len =
8316 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8317 else
8318 {
8319 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8320
8321 /* We need to be careful of typedefs when computing
8322 the length of our field. If this is a typedef,
8323 get the length of the target type, not the length
8324 of the typedef. */
8325 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8326 field_type = ada_typedef_target_type (field_type);
8327
8328 fld_bit_len =
8329 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8330 }
8331 }
8332 if (off + fld_bit_len > bit_len)
8333 bit_len = off + fld_bit_len;
8334 off += fld_bit_len;
8335 TYPE_LENGTH (rtype) =
8336 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8337 }
8338
8339 /* We handle the variant part, if any, at the end because of certain
8340 odd cases in which it is re-ordered so as NOT to be the last field of
8341 the record. This can happen in the presence of representation
8342 clauses. */
8343 if (variant_field >= 0)
8344 {
8345 struct type *branch_type;
8346
8347 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8348
8349 if (dval0 == NULL)
8350 {
8351 /* Using plain value_from_contents_and_address here causes
8352 problems because we will end up trying to resolve a type
8353 that is currently being constructed. */
8354 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8355 address);
8356 rtype = value_type (dval);
8357 }
8358 else
8359 dval = dval0;
8360
8361 branch_type =
8362 to_fixed_variant_branch_type
8363 (TYPE_FIELD_TYPE (type, variant_field),
8364 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8365 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8366 if (branch_type == NULL)
8367 {
8368 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8369 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8370 TYPE_NFIELDS (rtype) -= 1;
8371 }
8372 else
8373 {
8374 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8375 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8376 fld_bit_len =
8377 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8378 TARGET_CHAR_BIT;
8379 if (off + fld_bit_len > bit_len)
8380 bit_len = off + fld_bit_len;
8381 TYPE_LENGTH (rtype) =
8382 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8383 }
8384 }
8385
8386 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8387 should contain the alignment of that record, which should be a strictly
8388 positive value. If null or negative, then something is wrong, most
8389 probably in the debug info. In that case, we don't round up the size
8390 of the resulting type. If this record is not part of another structure,
8391 the current RTYPE length might be good enough for our purposes. */
8392 if (TYPE_LENGTH (type) <= 0)
8393 {
8394 if (TYPE_NAME (rtype))
8395 warning (_("Invalid type size for `%s' detected: %d."),
8396 TYPE_NAME (rtype), TYPE_LENGTH (type));
8397 else
8398 warning (_("Invalid type size for <unnamed> detected: %d."),
8399 TYPE_LENGTH (type));
8400 }
8401 else
8402 {
8403 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8404 TYPE_LENGTH (type));
8405 }
8406
8407 value_free_to_mark (mark);
8408 if (TYPE_LENGTH (rtype) > varsize_limit)
8409 error (_("record type with dynamic size is larger than varsize-limit"));
8410 return rtype;
8411 }
8412
8413 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8414 of 1. */
8415
8416 static struct type *
8417 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8418 CORE_ADDR address, struct value *dval0)
8419 {
8420 return ada_template_to_fixed_record_type_1 (type, valaddr,
8421 address, dval0, 1);
8422 }
8423
8424 /* An ordinary record type in which ___XVL-convention fields and
8425 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8426 static approximations, containing all possible fields. Uses
8427 no runtime values. Useless for use in values, but that's OK,
8428 since the results are used only for type determinations. Works on both
8429 structs and unions. Representation note: to save space, we memorize
8430 the result of this function in the TYPE_TARGET_TYPE of the
8431 template type. */
8432
8433 static struct type *
8434 template_to_static_fixed_type (struct type *type0)
8435 {
8436 struct type *type;
8437 int nfields;
8438 int f;
8439
8440 /* No need no do anything if the input type is already fixed. */
8441 if (TYPE_FIXED_INSTANCE (type0))
8442 return type0;
8443
8444 /* Likewise if we already have computed the static approximation. */
8445 if (TYPE_TARGET_TYPE (type0) != NULL)
8446 return TYPE_TARGET_TYPE (type0);
8447
8448 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8449 type = type0;
8450 nfields = TYPE_NFIELDS (type0);
8451
8452 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8453 recompute all over next time. */
8454 TYPE_TARGET_TYPE (type0) = type;
8455
8456 for (f = 0; f < nfields; f += 1)
8457 {
8458 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8459 struct type *new_type;
8460
8461 if (is_dynamic_field (type0, f))
8462 {
8463 field_type = ada_check_typedef (field_type);
8464 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8465 }
8466 else
8467 new_type = static_unwrap_type (field_type);
8468
8469 if (new_type != field_type)
8470 {
8471 /* Clone TYPE0 only the first time we get a new field type. */
8472 if (type == type0)
8473 {
8474 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8475 TYPE_CODE (type) = TYPE_CODE (type0);
8476 INIT_CPLUS_SPECIFIC (type);
8477 TYPE_NFIELDS (type) = nfields;
8478 TYPE_FIELDS (type) = (struct field *)
8479 TYPE_ALLOC (type, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8481 sizeof (struct field) * nfields);
8482 TYPE_NAME (type) = ada_type_name (type0);
8483 TYPE_TAG_NAME (type) = NULL;
8484 TYPE_FIXED_INSTANCE (type) = 1;
8485 TYPE_LENGTH (type) = 0;
8486 }
8487 TYPE_FIELD_TYPE (type, f) = new_type;
8488 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8489 }
8490 }
8491
8492 return type;
8493 }
8494
8495 /* Given an object of type TYPE whose contents are at VALADDR and
8496 whose address in memory is ADDRESS, returns a revision of TYPE,
8497 which should be a non-dynamic-sized record, in which the variant
8498 part, if any, is replaced with the appropriate branch. Looks
8499 for discriminant values in DVAL0, which can be NULL if the record
8500 contains the necessary discriminant values. */
8501
8502 static struct type *
8503 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8504 CORE_ADDR address, struct value *dval0)
8505 {
8506 struct value *mark = value_mark ();
8507 struct value *dval;
8508 struct type *rtype;
8509 struct type *branch_type;
8510 int nfields = TYPE_NFIELDS (type);
8511 int variant_field = variant_field_index (type);
8512
8513 if (variant_field == -1)
8514 return type;
8515
8516 if (dval0 == NULL)
8517 {
8518 dval = value_from_contents_and_address (type, valaddr, address);
8519 type = value_type (dval);
8520 }
8521 else
8522 dval = dval0;
8523
8524 rtype = alloc_type_copy (type);
8525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8526 INIT_CPLUS_SPECIFIC (rtype);
8527 TYPE_NFIELDS (rtype) = nfields;
8528 TYPE_FIELDS (rtype) =
8529 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8530 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8531 sizeof (struct field) * nfields);
8532 TYPE_NAME (rtype) = ada_type_name (type);
8533 TYPE_TAG_NAME (rtype) = NULL;
8534 TYPE_FIXED_INSTANCE (rtype) = 1;
8535 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8536
8537 branch_type = to_fixed_variant_branch_type
8538 (TYPE_FIELD_TYPE (type, variant_field),
8539 cond_offset_host (valaddr,
8540 TYPE_FIELD_BITPOS (type, variant_field)
8541 / TARGET_CHAR_BIT),
8542 cond_offset_target (address,
8543 TYPE_FIELD_BITPOS (type, variant_field)
8544 / TARGET_CHAR_BIT), dval);
8545 if (branch_type == NULL)
8546 {
8547 int f;
8548
8549 for (f = variant_field + 1; f < nfields; f += 1)
8550 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8551 TYPE_NFIELDS (rtype) -= 1;
8552 }
8553 else
8554 {
8555 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8556 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8557 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8558 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8559 }
8560 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8561
8562 value_free_to_mark (mark);
8563 return rtype;
8564 }
8565
8566 /* An ordinary record type (with fixed-length fields) that describes
8567 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8568 beginning of this section]. Any necessary discriminants' values
8569 should be in DVAL, a record value; it may be NULL if the object
8570 at ADDR itself contains any necessary discriminant values.
8571 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8572 values from the record are needed. Except in the case that DVAL,
8573 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8574 unchecked) is replaced by a particular branch of the variant.
8575
8576 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8577 is questionable and may be removed. It can arise during the
8578 processing of an unconstrained-array-of-record type where all the
8579 variant branches have exactly the same size. This is because in
8580 such cases, the compiler does not bother to use the XVS convention
8581 when encoding the record. I am currently dubious of this
8582 shortcut and suspect the compiler should be altered. FIXME. */
8583
8584 static struct type *
8585 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8586 CORE_ADDR address, struct value *dval)
8587 {
8588 struct type *templ_type;
8589
8590 if (TYPE_FIXED_INSTANCE (type0))
8591 return type0;
8592
8593 templ_type = dynamic_template_type (type0);
8594
8595 if (templ_type != NULL)
8596 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8597 else if (variant_field_index (type0) >= 0)
8598 {
8599 if (dval == NULL && valaddr == NULL && address == 0)
8600 return type0;
8601 return to_record_with_fixed_variant_part (type0, valaddr, address,
8602 dval);
8603 }
8604 else
8605 {
8606 TYPE_FIXED_INSTANCE (type0) = 1;
8607 return type0;
8608 }
8609
8610 }
8611
8612 /* An ordinary record type (with fixed-length fields) that describes
8613 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8614 union type. Any necessary discriminants' values should be in DVAL,
8615 a record value. That is, this routine selects the appropriate
8616 branch of the union at ADDR according to the discriminant value
8617 indicated in the union's type name. Returns VAR_TYPE0 itself if
8618 it represents a variant subject to a pragma Unchecked_Union. */
8619
8620 static struct type *
8621 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8622 CORE_ADDR address, struct value *dval)
8623 {
8624 int which;
8625 struct type *templ_type;
8626 struct type *var_type;
8627
8628 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8629 var_type = TYPE_TARGET_TYPE (var_type0);
8630 else
8631 var_type = var_type0;
8632
8633 templ_type = ada_find_parallel_type (var_type, "___XVU");
8634
8635 if (templ_type != NULL)
8636 var_type = templ_type;
8637
8638 if (is_unchecked_variant (var_type, value_type (dval)))
8639 return var_type0;
8640 which =
8641 ada_which_variant_applies (var_type,
8642 value_type (dval), value_contents (dval));
8643
8644 if (which < 0)
8645 return empty_record (var_type);
8646 else if (is_dynamic_field (var_type, which))
8647 return to_fixed_record_type
8648 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8649 valaddr, address, dval);
8650 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8651 return
8652 to_fixed_record_type
8653 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8654 else
8655 return TYPE_FIELD_TYPE (var_type, which);
8656 }
8657
8658 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8659 ENCODING_TYPE, a type following the GNAT conventions for discrete
8660 type encodings, only carries redundant information. */
8661
8662 static int
8663 ada_is_redundant_range_encoding (struct type *range_type,
8664 struct type *encoding_type)
8665 {
8666 struct type *fixed_range_type;
8667 const char *bounds_str;
8668 int n;
8669 LONGEST lo, hi;
8670
8671 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8672
8673 if (TYPE_CODE (get_base_type (range_type))
8674 != TYPE_CODE (get_base_type (encoding_type)))
8675 {
8676 /* The compiler probably used a simple base type to describe
8677 the range type instead of the range's actual base type,
8678 expecting us to get the real base type from the encoding
8679 anyway. In this situation, the encoding cannot be ignored
8680 as redundant. */
8681 return 0;
8682 }
8683
8684 if (is_dynamic_type (range_type))
8685 return 0;
8686
8687 if (TYPE_NAME (encoding_type) == NULL)
8688 return 0;
8689
8690 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8691 if (bounds_str == NULL)
8692 return 0;
8693
8694 n = 8; /* Skip "___XDLU_". */
8695 if (!ada_scan_number (bounds_str, n, &lo, &n))
8696 return 0;
8697 if (TYPE_LOW_BOUND (range_type) != lo)
8698 return 0;
8699
8700 n += 2; /* Skip the "__" separator between the two bounds. */
8701 if (!ada_scan_number (bounds_str, n, &hi, &n))
8702 return 0;
8703 if (TYPE_HIGH_BOUND (range_type) != hi)
8704 return 0;
8705
8706 return 1;
8707 }
8708
8709 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8710 a type following the GNAT encoding for describing array type
8711 indices, only carries redundant information. */
8712
8713 static int
8714 ada_is_redundant_index_type_desc (struct type *array_type,
8715 struct type *desc_type)
8716 {
8717 struct type *this_layer = check_typedef (array_type);
8718 int i;
8719
8720 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8721 {
8722 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8723 TYPE_FIELD_TYPE (desc_type, i)))
8724 return 0;
8725 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8726 }
8727
8728 return 1;
8729 }
8730
8731 /* Assuming that TYPE0 is an array type describing the type of a value
8732 at ADDR, and that DVAL describes a record containing any
8733 discriminants used in TYPE0, returns a type for the value that
8734 contains no dynamic components (that is, no components whose sizes
8735 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8736 true, gives an error message if the resulting type's size is over
8737 varsize_limit. */
8738
8739 static struct type *
8740 to_fixed_array_type (struct type *type0, struct value *dval,
8741 int ignore_too_big)
8742 {
8743 struct type *index_type_desc;
8744 struct type *result;
8745 int constrained_packed_array_p;
8746 static const char *xa_suffix = "___XA";
8747
8748 type0 = ada_check_typedef (type0);
8749 if (TYPE_FIXED_INSTANCE (type0))
8750 return type0;
8751
8752 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8753 if (constrained_packed_array_p)
8754 type0 = decode_constrained_packed_array_type (type0);
8755
8756 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8757
8758 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8759 encoding suffixed with 'P' may still be generated. If so,
8760 it should be used to find the XA type. */
8761
8762 if (index_type_desc == NULL)
8763 {
8764 const char *type_name = ada_type_name (type0);
8765
8766 if (type_name != NULL)
8767 {
8768 const int len = strlen (type_name);
8769 char *name = (char *) alloca (len + strlen (xa_suffix));
8770
8771 if (type_name[len - 1] == 'P')
8772 {
8773 strcpy (name, type_name);
8774 strcpy (name + len - 1, xa_suffix);
8775 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8776 }
8777 }
8778 }
8779
8780 ada_fixup_array_indexes_type (index_type_desc);
8781 if (index_type_desc != NULL
8782 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8783 {
8784 /* Ignore this ___XA parallel type, as it does not bring any
8785 useful information. This allows us to avoid creating fixed
8786 versions of the array's index types, which would be identical
8787 to the original ones. This, in turn, can also help avoid
8788 the creation of fixed versions of the array itself. */
8789 index_type_desc = NULL;
8790 }
8791
8792 if (index_type_desc == NULL)
8793 {
8794 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8795
8796 /* NOTE: elt_type---the fixed version of elt_type0---should never
8797 depend on the contents of the array in properly constructed
8798 debugging data. */
8799 /* Create a fixed version of the array element type.
8800 We're not providing the address of an element here,
8801 and thus the actual object value cannot be inspected to do
8802 the conversion. This should not be a problem, since arrays of
8803 unconstrained objects are not allowed. In particular, all
8804 the elements of an array of a tagged type should all be of
8805 the same type specified in the debugging info. No need to
8806 consult the object tag. */
8807 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8808
8809 /* Make sure we always create a new array type when dealing with
8810 packed array types, since we're going to fix-up the array
8811 type length and element bitsize a little further down. */
8812 if (elt_type0 == elt_type && !constrained_packed_array_p)
8813 result = type0;
8814 else
8815 result = create_array_type (alloc_type_copy (type0),
8816 elt_type, TYPE_INDEX_TYPE (type0));
8817 }
8818 else
8819 {
8820 int i;
8821 struct type *elt_type0;
8822
8823 elt_type0 = type0;
8824 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8825 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8826
8827 /* NOTE: result---the fixed version of elt_type0---should never
8828 depend on the contents of the array in properly constructed
8829 debugging data. */
8830 /* Create a fixed version of the array element type.
8831 We're not providing the address of an element here,
8832 and thus the actual object value cannot be inspected to do
8833 the conversion. This should not be a problem, since arrays of
8834 unconstrained objects are not allowed. In particular, all
8835 the elements of an array of a tagged type should all be of
8836 the same type specified in the debugging info. No need to
8837 consult the object tag. */
8838 result =
8839 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8840
8841 elt_type0 = type0;
8842 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8843 {
8844 struct type *range_type =
8845 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8846
8847 result = create_array_type (alloc_type_copy (elt_type0),
8848 result, range_type);
8849 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8850 }
8851 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8852 error (_("array type with dynamic size is larger than varsize-limit"));
8853 }
8854
8855 /* We want to preserve the type name. This can be useful when
8856 trying to get the type name of a value that has already been
8857 printed (for instance, if the user did "print VAR; whatis $". */
8858 TYPE_NAME (result) = TYPE_NAME (type0);
8859
8860 if (constrained_packed_array_p)
8861 {
8862 /* So far, the resulting type has been created as if the original
8863 type was a regular (non-packed) array type. As a result, the
8864 bitsize of the array elements needs to be set again, and the array
8865 length needs to be recomputed based on that bitsize. */
8866 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8867 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8868
8869 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8870 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8871 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8872 TYPE_LENGTH (result)++;
8873 }
8874
8875 TYPE_FIXED_INSTANCE (result) = 1;
8876 return result;
8877 }
8878
8879
8880 /* A standard type (containing no dynamically sized components)
8881 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8882 DVAL describes a record containing any discriminants used in TYPE0,
8883 and may be NULL if there are none, or if the object of type TYPE at
8884 ADDRESS or in VALADDR contains these discriminants.
8885
8886 If CHECK_TAG is not null, in the case of tagged types, this function
8887 attempts to locate the object's tag and use it to compute the actual
8888 type. However, when ADDRESS is null, we cannot use it to determine the
8889 location of the tag, and therefore compute the tagged type's actual type.
8890 So we return the tagged type without consulting the tag. */
8891
8892 static struct type *
8893 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8894 CORE_ADDR address, struct value *dval, int check_tag)
8895 {
8896 type = ada_check_typedef (type);
8897 switch (TYPE_CODE (type))
8898 {
8899 default:
8900 return type;
8901 case TYPE_CODE_STRUCT:
8902 {
8903 struct type *static_type = to_static_fixed_type (type);
8904 struct type *fixed_record_type =
8905 to_fixed_record_type (type, valaddr, address, NULL);
8906
8907 /* If STATIC_TYPE is a tagged type and we know the object's address,
8908 then we can determine its tag, and compute the object's actual
8909 type from there. Note that we have to use the fixed record
8910 type (the parent part of the record may have dynamic fields
8911 and the way the location of _tag is expressed may depend on
8912 them). */
8913
8914 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8915 {
8916 struct value *tag =
8917 value_tag_from_contents_and_address
8918 (fixed_record_type,
8919 valaddr,
8920 address);
8921 struct type *real_type = type_from_tag (tag);
8922 struct value *obj =
8923 value_from_contents_and_address (fixed_record_type,
8924 valaddr,
8925 address);
8926 fixed_record_type = value_type (obj);
8927 if (real_type != NULL)
8928 return to_fixed_record_type
8929 (real_type, NULL,
8930 value_address (ada_tag_value_at_base_address (obj)), NULL);
8931 }
8932
8933 /* Check to see if there is a parallel ___XVZ variable.
8934 If there is, then it provides the actual size of our type. */
8935 else if (ada_type_name (fixed_record_type) != NULL)
8936 {
8937 const char *name = ada_type_name (fixed_record_type);
8938 char *xvz_name
8939 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8940 int xvz_found = 0;
8941 LONGEST size;
8942
8943 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8944 size = get_int_var_value (xvz_name, &xvz_found);
8945 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8946 {
8947 fixed_record_type = copy_type (fixed_record_type);
8948 TYPE_LENGTH (fixed_record_type) = size;
8949
8950 /* The FIXED_RECORD_TYPE may have be a stub. We have
8951 observed this when the debugging info is STABS, and
8952 apparently it is something that is hard to fix.
8953
8954 In practice, we don't need the actual type definition
8955 at all, because the presence of the XVZ variable allows us
8956 to assume that there must be a XVS type as well, which we
8957 should be able to use later, when we need the actual type
8958 definition.
8959
8960 In the meantime, pretend that the "fixed" type we are
8961 returning is NOT a stub, because this can cause trouble
8962 when using this type to create new types targeting it.
8963 Indeed, the associated creation routines often check
8964 whether the target type is a stub and will try to replace
8965 it, thus using a type with the wrong size. This, in turn,
8966 might cause the new type to have the wrong size too.
8967 Consider the case of an array, for instance, where the size
8968 of the array is computed from the number of elements in
8969 our array multiplied by the size of its element. */
8970 TYPE_STUB (fixed_record_type) = 0;
8971 }
8972 }
8973 return fixed_record_type;
8974 }
8975 case TYPE_CODE_ARRAY:
8976 return to_fixed_array_type (type, dval, 1);
8977 case TYPE_CODE_UNION:
8978 if (dval == NULL)
8979 return type;
8980 else
8981 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8982 }
8983 }
8984
8985 /* The same as ada_to_fixed_type_1, except that it preserves the type
8986 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8987
8988 The typedef layer needs be preserved in order to differentiate between
8989 arrays and array pointers when both types are implemented using the same
8990 fat pointer. In the array pointer case, the pointer is encoded as
8991 a typedef of the pointer type. For instance, considering:
8992
8993 type String_Access is access String;
8994 S1 : String_Access := null;
8995
8996 To the debugger, S1 is defined as a typedef of type String. But
8997 to the user, it is a pointer. So if the user tries to print S1,
8998 we should not dereference the array, but print the array address
8999 instead.
9000
9001 If we didn't preserve the typedef layer, we would lose the fact that
9002 the type is to be presented as a pointer (needs de-reference before
9003 being printed). And we would also use the source-level type name. */
9004
9005 struct type *
9006 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9007 CORE_ADDR address, struct value *dval, int check_tag)
9008
9009 {
9010 struct type *fixed_type =
9011 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9012
9013 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9014 then preserve the typedef layer.
9015
9016 Implementation note: We can only check the main-type portion of
9017 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9018 from TYPE now returns a type that has the same instance flags
9019 as TYPE. For instance, if TYPE is a "typedef const", and its
9020 target type is a "struct", then the typedef elimination will return
9021 a "const" version of the target type. See check_typedef for more
9022 details about how the typedef layer elimination is done.
9023
9024 brobecker/2010-11-19: It seems to me that the only case where it is
9025 useful to preserve the typedef layer is when dealing with fat pointers.
9026 Perhaps, we could add a check for that and preserve the typedef layer
9027 only in that situation. But this seems unecessary so far, probably
9028 because we call check_typedef/ada_check_typedef pretty much everywhere.
9029 */
9030 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9031 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9032 == TYPE_MAIN_TYPE (fixed_type)))
9033 return type;
9034
9035 return fixed_type;
9036 }
9037
9038 /* A standard (static-sized) type corresponding as well as possible to
9039 TYPE0, but based on no runtime data. */
9040
9041 static struct type *
9042 to_static_fixed_type (struct type *type0)
9043 {
9044 struct type *type;
9045
9046 if (type0 == NULL)
9047 return NULL;
9048
9049 if (TYPE_FIXED_INSTANCE (type0))
9050 return type0;
9051
9052 type0 = ada_check_typedef (type0);
9053
9054 switch (TYPE_CODE (type0))
9055 {
9056 default:
9057 return type0;
9058 case TYPE_CODE_STRUCT:
9059 type = dynamic_template_type (type0);
9060 if (type != NULL)
9061 return template_to_static_fixed_type (type);
9062 else
9063 return template_to_static_fixed_type (type0);
9064 case TYPE_CODE_UNION:
9065 type = ada_find_parallel_type (type0, "___XVU");
9066 if (type != NULL)
9067 return template_to_static_fixed_type (type);
9068 else
9069 return template_to_static_fixed_type (type0);
9070 }
9071 }
9072
9073 /* A static approximation of TYPE with all type wrappers removed. */
9074
9075 static struct type *
9076 static_unwrap_type (struct type *type)
9077 {
9078 if (ada_is_aligner_type (type))
9079 {
9080 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9081 if (ada_type_name (type1) == NULL)
9082 TYPE_NAME (type1) = ada_type_name (type);
9083
9084 return static_unwrap_type (type1);
9085 }
9086 else
9087 {
9088 struct type *raw_real_type = ada_get_base_type (type);
9089
9090 if (raw_real_type == type)
9091 return type;
9092 else
9093 return to_static_fixed_type (raw_real_type);
9094 }
9095 }
9096
9097 /* In some cases, incomplete and private types require
9098 cross-references that are not resolved as records (for example,
9099 type Foo;
9100 type FooP is access Foo;
9101 V: FooP;
9102 type Foo is array ...;
9103 ). In these cases, since there is no mechanism for producing
9104 cross-references to such types, we instead substitute for FooP a
9105 stub enumeration type that is nowhere resolved, and whose tag is
9106 the name of the actual type. Call these types "non-record stubs". */
9107
9108 /* A type equivalent to TYPE that is not a non-record stub, if one
9109 exists, otherwise TYPE. */
9110
9111 struct type *
9112 ada_check_typedef (struct type *type)
9113 {
9114 if (type == NULL)
9115 return NULL;
9116
9117 /* If our type is a typedef type of a fat pointer, then we're done.
9118 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9119 what allows us to distinguish between fat pointers that represent
9120 array types, and fat pointers that represent array access types
9121 (in both cases, the compiler implements them as fat pointers). */
9122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9123 && is_thick_pntr (ada_typedef_target_type (type)))
9124 return type;
9125
9126 type = check_typedef (type);
9127 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9128 || !TYPE_STUB (type)
9129 || TYPE_TAG_NAME (type) == NULL)
9130 return type;
9131 else
9132 {
9133 const char *name = TYPE_TAG_NAME (type);
9134 struct type *type1 = ada_find_any_type (name);
9135
9136 if (type1 == NULL)
9137 return type;
9138
9139 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9140 stubs pointing to arrays, as we don't create symbols for array
9141 types, only for the typedef-to-array types). If that's the case,
9142 strip the typedef layer. */
9143 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9144 type1 = ada_check_typedef (type1);
9145
9146 return type1;
9147 }
9148 }
9149
9150 /* A value representing the data at VALADDR/ADDRESS as described by
9151 type TYPE0, but with a standard (static-sized) type that correctly
9152 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9153 type, then return VAL0 [this feature is simply to avoid redundant
9154 creation of struct values]. */
9155
9156 static struct value *
9157 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9158 struct value *val0)
9159 {
9160 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9161
9162 if (type == type0 && val0 != NULL)
9163 return val0;
9164 else
9165 return value_from_contents_and_address (type, 0, address);
9166 }
9167
9168 /* A value representing VAL, but with a standard (static-sized) type
9169 that correctly describes it. Does not necessarily create a new
9170 value. */
9171
9172 struct value *
9173 ada_to_fixed_value (struct value *val)
9174 {
9175 val = unwrap_value (val);
9176 val = ada_to_fixed_value_create (value_type (val),
9177 value_address (val),
9178 val);
9179 return val;
9180 }
9181 \f
9182
9183 /* Attributes */
9184
9185 /* Table mapping attribute numbers to names.
9186 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9187
9188 static const char *attribute_names[] = {
9189 "<?>",
9190
9191 "first",
9192 "last",
9193 "length",
9194 "image",
9195 "max",
9196 "min",
9197 "modulus",
9198 "pos",
9199 "size",
9200 "tag",
9201 "val",
9202 0
9203 };
9204
9205 const char *
9206 ada_attribute_name (enum exp_opcode n)
9207 {
9208 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9209 return attribute_names[n - OP_ATR_FIRST + 1];
9210 else
9211 return attribute_names[0];
9212 }
9213
9214 /* Evaluate the 'POS attribute applied to ARG. */
9215
9216 static LONGEST
9217 pos_atr (struct value *arg)
9218 {
9219 struct value *val = coerce_ref (arg);
9220 struct type *type = value_type (val);
9221 LONGEST result;
9222
9223 if (!discrete_type_p (type))
9224 error (_("'POS only defined on discrete types"));
9225
9226 if (!discrete_position (type, value_as_long (val), &result))
9227 error (_("enumeration value is invalid: can't find 'POS"));
9228
9229 return result;
9230 }
9231
9232 static struct value *
9233 value_pos_atr (struct type *type, struct value *arg)
9234 {
9235 return value_from_longest (type, pos_atr (arg));
9236 }
9237
9238 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9239
9240 static struct value *
9241 value_val_atr (struct type *type, struct value *arg)
9242 {
9243 if (!discrete_type_p (type))
9244 error (_("'VAL only defined on discrete types"));
9245 if (!integer_type_p (value_type (arg)))
9246 error (_("'VAL requires integral argument"));
9247
9248 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9249 {
9250 long pos = value_as_long (arg);
9251
9252 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9253 error (_("argument to 'VAL out of range"));
9254 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9255 }
9256 else
9257 return value_from_longest (type, value_as_long (arg));
9258 }
9259 \f
9260
9261 /* Evaluation */
9262
9263 /* True if TYPE appears to be an Ada character type.
9264 [At the moment, this is true only for Character and Wide_Character;
9265 It is a heuristic test that could stand improvement]. */
9266
9267 int
9268 ada_is_character_type (struct type *type)
9269 {
9270 const char *name;
9271
9272 /* If the type code says it's a character, then assume it really is,
9273 and don't check any further. */
9274 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9275 return 1;
9276
9277 /* Otherwise, assume it's a character type iff it is a discrete type
9278 with a known character type name. */
9279 name = ada_type_name (type);
9280 return (name != NULL
9281 && (TYPE_CODE (type) == TYPE_CODE_INT
9282 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9283 && (strcmp (name, "character") == 0
9284 || strcmp (name, "wide_character") == 0
9285 || strcmp (name, "wide_wide_character") == 0
9286 || strcmp (name, "unsigned char") == 0));
9287 }
9288
9289 /* True if TYPE appears to be an Ada string type. */
9290
9291 int
9292 ada_is_string_type (struct type *type)
9293 {
9294 type = ada_check_typedef (type);
9295 if (type != NULL
9296 && TYPE_CODE (type) != TYPE_CODE_PTR
9297 && (ada_is_simple_array_type (type)
9298 || ada_is_array_descriptor_type (type))
9299 && ada_array_arity (type) == 1)
9300 {
9301 struct type *elttype = ada_array_element_type (type, 1);
9302
9303 return ada_is_character_type (elttype);
9304 }
9305 else
9306 return 0;
9307 }
9308
9309 /* The compiler sometimes provides a parallel XVS type for a given
9310 PAD type. Normally, it is safe to follow the PAD type directly,
9311 but older versions of the compiler have a bug that causes the offset
9312 of its "F" field to be wrong. Following that field in that case
9313 would lead to incorrect results, but this can be worked around
9314 by ignoring the PAD type and using the associated XVS type instead.
9315
9316 Set to True if the debugger should trust the contents of PAD types.
9317 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9318 static int trust_pad_over_xvs = 1;
9319
9320 /* True if TYPE is a struct type introduced by the compiler to force the
9321 alignment of a value. Such types have a single field with a
9322 distinctive name. */
9323
9324 int
9325 ada_is_aligner_type (struct type *type)
9326 {
9327 type = ada_check_typedef (type);
9328
9329 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9330 return 0;
9331
9332 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9333 && TYPE_NFIELDS (type) == 1
9334 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9335 }
9336
9337 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9338 the parallel type. */
9339
9340 struct type *
9341 ada_get_base_type (struct type *raw_type)
9342 {
9343 struct type *real_type_namer;
9344 struct type *raw_real_type;
9345
9346 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9347 return raw_type;
9348
9349 if (ada_is_aligner_type (raw_type))
9350 /* The encoding specifies that we should always use the aligner type.
9351 So, even if this aligner type has an associated XVS type, we should
9352 simply ignore it.
9353
9354 According to the compiler gurus, an XVS type parallel to an aligner
9355 type may exist because of a stabs limitation. In stabs, aligner
9356 types are empty because the field has a variable-sized type, and
9357 thus cannot actually be used as an aligner type. As a result,
9358 we need the associated parallel XVS type to decode the type.
9359 Since the policy in the compiler is to not change the internal
9360 representation based on the debugging info format, we sometimes
9361 end up having a redundant XVS type parallel to the aligner type. */
9362 return raw_type;
9363
9364 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9365 if (real_type_namer == NULL
9366 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9367 || TYPE_NFIELDS (real_type_namer) != 1)
9368 return raw_type;
9369
9370 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9371 {
9372 /* This is an older encoding form where the base type needs to be
9373 looked up by name. We prefer the newer enconding because it is
9374 more efficient. */
9375 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9376 if (raw_real_type == NULL)
9377 return raw_type;
9378 else
9379 return raw_real_type;
9380 }
9381
9382 /* The field in our XVS type is a reference to the base type. */
9383 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9384 }
9385
9386 /* The type of value designated by TYPE, with all aligners removed. */
9387
9388 struct type *
9389 ada_aligned_type (struct type *type)
9390 {
9391 if (ada_is_aligner_type (type))
9392 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9393 else
9394 return ada_get_base_type (type);
9395 }
9396
9397
9398 /* The address of the aligned value in an object at address VALADDR
9399 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9400
9401 const gdb_byte *
9402 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9403 {
9404 if (ada_is_aligner_type (type))
9405 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9406 valaddr +
9407 TYPE_FIELD_BITPOS (type,
9408 0) / TARGET_CHAR_BIT);
9409 else
9410 return valaddr;
9411 }
9412
9413
9414
9415 /* The printed representation of an enumeration literal with encoded
9416 name NAME. The value is good to the next call of ada_enum_name. */
9417 const char *
9418 ada_enum_name (const char *name)
9419 {
9420 static char *result;
9421 static size_t result_len = 0;
9422 char *tmp;
9423
9424 /* First, unqualify the enumeration name:
9425 1. Search for the last '.' character. If we find one, then skip
9426 all the preceding characters, the unqualified name starts
9427 right after that dot.
9428 2. Otherwise, we may be debugging on a target where the compiler
9429 translates dots into "__". Search forward for double underscores,
9430 but stop searching when we hit an overloading suffix, which is
9431 of the form "__" followed by digits. */
9432
9433 tmp = strrchr (name, '.');
9434 if (tmp != NULL)
9435 name = tmp + 1;
9436 else
9437 {
9438 while ((tmp = strstr (name, "__")) != NULL)
9439 {
9440 if (isdigit (tmp[2]))
9441 break;
9442 else
9443 name = tmp + 2;
9444 }
9445 }
9446
9447 if (name[0] == 'Q')
9448 {
9449 int v;
9450
9451 if (name[1] == 'U' || name[1] == 'W')
9452 {
9453 if (sscanf (name + 2, "%x", &v) != 1)
9454 return name;
9455 }
9456 else
9457 return name;
9458
9459 GROW_VECT (result, result_len, 16);
9460 if (isascii (v) && isprint (v))
9461 xsnprintf (result, result_len, "'%c'", v);
9462 else if (name[1] == 'U')
9463 xsnprintf (result, result_len, "[\"%02x\"]", v);
9464 else
9465 xsnprintf (result, result_len, "[\"%04x\"]", v);
9466
9467 return result;
9468 }
9469 else
9470 {
9471 tmp = strstr (name, "__");
9472 if (tmp == NULL)
9473 tmp = strstr (name, "$");
9474 if (tmp != NULL)
9475 {
9476 GROW_VECT (result, result_len, tmp - name + 1);
9477 strncpy (result, name, tmp - name);
9478 result[tmp - name] = '\0';
9479 return result;
9480 }
9481
9482 return name;
9483 }
9484 }
9485
9486 /* Evaluate the subexpression of EXP starting at *POS as for
9487 evaluate_type, updating *POS to point just past the evaluated
9488 expression. */
9489
9490 static struct value *
9491 evaluate_subexp_type (struct expression *exp, int *pos)
9492 {
9493 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9494 }
9495
9496 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9497 value it wraps. */
9498
9499 static struct value *
9500 unwrap_value (struct value *val)
9501 {
9502 struct type *type = ada_check_typedef (value_type (val));
9503
9504 if (ada_is_aligner_type (type))
9505 {
9506 struct value *v = ada_value_struct_elt (val, "F", 0);
9507 struct type *val_type = ada_check_typedef (value_type (v));
9508
9509 if (ada_type_name (val_type) == NULL)
9510 TYPE_NAME (val_type) = ada_type_name (type);
9511
9512 return unwrap_value (v);
9513 }
9514 else
9515 {
9516 struct type *raw_real_type =
9517 ada_check_typedef (ada_get_base_type (type));
9518
9519 /* If there is no parallel XVS or XVE type, then the value is
9520 already unwrapped. Return it without further modification. */
9521 if ((type == raw_real_type)
9522 && ada_find_parallel_type (type, "___XVE") == NULL)
9523 return val;
9524
9525 return
9526 coerce_unspec_val_to_type
9527 (val, ada_to_fixed_type (raw_real_type, 0,
9528 value_address (val),
9529 NULL, 1));
9530 }
9531 }
9532
9533 static struct value *
9534 cast_to_fixed (struct type *type, struct value *arg)
9535 {
9536 LONGEST val;
9537
9538 if (type == value_type (arg))
9539 return arg;
9540 else if (ada_is_fixed_point_type (value_type (arg)))
9541 val = ada_float_to_fixed (type,
9542 ada_fixed_to_float (value_type (arg),
9543 value_as_long (arg)));
9544 else
9545 {
9546 DOUBLEST argd = value_as_double (arg);
9547
9548 val = ada_float_to_fixed (type, argd);
9549 }
9550
9551 return value_from_longest (type, val);
9552 }
9553
9554 static struct value *
9555 cast_from_fixed (struct type *type, struct value *arg)
9556 {
9557 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9558 value_as_long (arg));
9559
9560 return value_from_double (type, val);
9561 }
9562
9563 /* Given two array types T1 and T2, return nonzero iff both arrays
9564 contain the same number of elements. */
9565
9566 static int
9567 ada_same_array_size_p (struct type *t1, struct type *t2)
9568 {
9569 LONGEST lo1, hi1, lo2, hi2;
9570
9571 /* Get the array bounds in order to verify that the size of
9572 the two arrays match. */
9573 if (!get_array_bounds (t1, &lo1, &hi1)
9574 || !get_array_bounds (t2, &lo2, &hi2))
9575 error (_("unable to determine array bounds"));
9576
9577 /* To make things easier for size comparison, normalize a bit
9578 the case of empty arrays by making sure that the difference
9579 between upper bound and lower bound is always -1. */
9580 if (lo1 > hi1)
9581 hi1 = lo1 - 1;
9582 if (lo2 > hi2)
9583 hi2 = lo2 - 1;
9584
9585 return (hi1 - lo1 == hi2 - lo2);
9586 }
9587
9588 /* Assuming that VAL is an array of integrals, and TYPE represents
9589 an array with the same number of elements, but with wider integral
9590 elements, return an array "casted" to TYPE. In practice, this
9591 means that the returned array is built by casting each element
9592 of the original array into TYPE's (wider) element type. */
9593
9594 static struct value *
9595 ada_promote_array_of_integrals (struct type *type, struct value *val)
9596 {
9597 struct type *elt_type = TYPE_TARGET_TYPE (type);
9598 LONGEST lo, hi;
9599 struct value *res;
9600 LONGEST i;
9601
9602 /* Verify that both val and type are arrays of scalars, and
9603 that the size of val's elements is smaller than the size
9604 of type's element. */
9605 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9606 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9607 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9608 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9609 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9610 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9611
9612 if (!get_array_bounds (type, &lo, &hi))
9613 error (_("unable to determine array bounds"));
9614
9615 res = allocate_value (type);
9616
9617 /* Promote each array element. */
9618 for (i = 0; i < hi - lo + 1; i++)
9619 {
9620 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9621
9622 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9623 value_contents_all (elt), TYPE_LENGTH (elt_type));
9624 }
9625
9626 return res;
9627 }
9628
9629 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9630 return the converted value. */
9631
9632 static struct value *
9633 coerce_for_assign (struct type *type, struct value *val)
9634 {
9635 struct type *type2 = value_type (val);
9636
9637 if (type == type2)
9638 return val;
9639
9640 type2 = ada_check_typedef (type2);
9641 type = ada_check_typedef (type);
9642
9643 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9644 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9645 {
9646 val = ada_value_ind (val);
9647 type2 = value_type (val);
9648 }
9649
9650 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9651 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9652 {
9653 if (!ada_same_array_size_p (type, type2))
9654 error (_("cannot assign arrays of different length"));
9655
9656 if (is_integral_type (TYPE_TARGET_TYPE (type))
9657 && is_integral_type (TYPE_TARGET_TYPE (type2))
9658 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9659 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9660 {
9661 /* Allow implicit promotion of the array elements to
9662 a wider type. */
9663 return ada_promote_array_of_integrals (type, val);
9664 }
9665
9666 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9667 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9668 error (_("Incompatible types in assignment"));
9669 deprecated_set_value_type (val, type);
9670 }
9671 return val;
9672 }
9673
9674 static struct value *
9675 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9676 {
9677 struct value *val;
9678 struct type *type1, *type2;
9679 LONGEST v, v1, v2;
9680
9681 arg1 = coerce_ref (arg1);
9682 arg2 = coerce_ref (arg2);
9683 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9684 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9685
9686 if (TYPE_CODE (type1) != TYPE_CODE_INT
9687 || TYPE_CODE (type2) != TYPE_CODE_INT)
9688 return value_binop (arg1, arg2, op);
9689
9690 switch (op)
9691 {
9692 case BINOP_MOD:
9693 case BINOP_DIV:
9694 case BINOP_REM:
9695 break;
9696 default:
9697 return value_binop (arg1, arg2, op);
9698 }
9699
9700 v2 = value_as_long (arg2);
9701 if (v2 == 0)
9702 error (_("second operand of %s must not be zero."), op_string (op));
9703
9704 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9705 return value_binop (arg1, arg2, op);
9706
9707 v1 = value_as_long (arg1);
9708 switch (op)
9709 {
9710 case BINOP_DIV:
9711 v = v1 / v2;
9712 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9713 v += v > 0 ? -1 : 1;
9714 break;
9715 case BINOP_REM:
9716 v = v1 % v2;
9717 if (v * v1 < 0)
9718 v -= v2;
9719 break;
9720 default:
9721 /* Should not reach this point. */
9722 v = 0;
9723 }
9724
9725 val = allocate_value (type1);
9726 store_unsigned_integer (value_contents_raw (val),
9727 TYPE_LENGTH (value_type (val)),
9728 gdbarch_byte_order (get_type_arch (type1)), v);
9729 return val;
9730 }
9731
9732 static int
9733 ada_value_equal (struct value *arg1, struct value *arg2)
9734 {
9735 if (ada_is_direct_array_type (value_type (arg1))
9736 || ada_is_direct_array_type (value_type (arg2)))
9737 {
9738 /* Automatically dereference any array reference before
9739 we attempt to perform the comparison. */
9740 arg1 = ada_coerce_ref (arg1);
9741 arg2 = ada_coerce_ref (arg2);
9742
9743 arg1 = ada_coerce_to_simple_array (arg1);
9744 arg2 = ada_coerce_to_simple_array (arg2);
9745 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9747 error (_("Attempt to compare array with non-array"));
9748 /* FIXME: The following works only for types whose
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
9751 return
9752 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9753 && memcmp (value_contents (arg1), value_contents (arg2),
9754 TYPE_LENGTH (value_type (arg1))) == 0;
9755 }
9756 return value_equal (arg1, arg2);
9757 }
9758
9759 /* Total number of component associations in the aggregate starting at
9760 index PC in EXP. Assumes that index PC is the start of an
9761 OP_AGGREGATE. */
9762
9763 static int
9764 num_component_specs (struct expression *exp, int pc)
9765 {
9766 int n, m, i;
9767
9768 m = exp->elts[pc + 1].longconst;
9769 pc += 3;
9770 n = 0;
9771 for (i = 0; i < m; i += 1)
9772 {
9773 switch (exp->elts[pc].opcode)
9774 {
9775 default:
9776 n += 1;
9777 break;
9778 case OP_CHOICES:
9779 n += exp->elts[pc + 1].longconst;
9780 break;
9781 }
9782 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9783 }
9784 return n;
9785 }
9786
9787 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9788 component of LHS (a simple array or a record), updating *POS past
9789 the expression, assuming that LHS is contained in CONTAINER. Does
9790 not modify the inferior's memory, nor does it modify LHS (unless
9791 LHS == CONTAINER). */
9792
9793 static void
9794 assign_component (struct value *container, struct value *lhs, LONGEST index,
9795 struct expression *exp, int *pos)
9796 {
9797 struct value *mark = value_mark ();
9798 struct value *elt;
9799
9800 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9801 {
9802 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9803 struct value *index_val = value_from_longest (index_type, index);
9804
9805 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9806 }
9807 else
9808 {
9809 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9810 elt = ada_to_fixed_value (elt);
9811 }
9812
9813 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9814 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9815 else
9816 value_assign_to_component (container, elt,
9817 ada_evaluate_subexp (NULL, exp, pos,
9818 EVAL_NORMAL));
9819
9820 value_free_to_mark (mark);
9821 }
9822
9823 /* Assuming that LHS represents an lvalue having a record or array
9824 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9825 of that aggregate's value to LHS, advancing *POS past the
9826 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9827 lvalue containing LHS (possibly LHS itself). Does not modify
9828 the inferior's memory, nor does it modify the contents of
9829 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9830
9831 static struct value *
9832 assign_aggregate (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, enum noside noside)
9835 {
9836 struct type *lhs_type;
9837 int n = exp->elts[*pos+1].longconst;
9838 LONGEST low_index, high_index;
9839 int num_specs;
9840 LONGEST *indices;
9841 int max_indices, num_indices;
9842 int i;
9843
9844 *pos += 3;
9845 if (noside != EVAL_NORMAL)
9846 {
9847 for (i = 0; i < n; i += 1)
9848 ada_evaluate_subexp (NULL, exp, pos, noside);
9849 return container;
9850 }
9851
9852 container = ada_coerce_ref (container);
9853 if (ada_is_direct_array_type (value_type (container)))
9854 container = ada_coerce_to_simple_array (container);
9855 lhs = ada_coerce_ref (lhs);
9856 if (!deprecated_value_modifiable (lhs))
9857 error (_("Left operand of assignment is not a modifiable lvalue."));
9858
9859 lhs_type = value_type (lhs);
9860 if (ada_is_direct_array_type (lhs_type))
9861 {
9862 lhs = ada_coerce_to_simple_array (lhs);
9863 lhs_type = value_type (lhs);
9864 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9865 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9866 }
9867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9868 {
9869 low_index = 0;
9870 high_index = num_visible_fields (lhs_type) - 1;
9871 }
9872 else
9873 error (_("Left-hand side must be array or record."));
9874
9875 num_specs = num_component_specs (exp, *pos - 3);
9876 max_indices = 4 * num_specs + 4;
9877 indices = XALLOCAVEC (LONGEST, max_indices);
9878 indices[0] = indices[1] = low_index - 1;
9879 indices[2] = indices[3] = high_index + 1;
9880 num_indices = 4;
9881
9882 for (i = 0; i < n; i += 1)
9883 {
9884 switch (exp->elts[*pos].opcode)
9885 {
9886 case OP_CHOICES:
9887 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9888 &num_indices, max_indices,
9889 low_index, high_index);
9890 break;
9891 case OP_POSITIONAL:
9892 aggregate_assign_positional (container, lhs, exp, pos, indices,
9893 &num_indices, max_indices,
9894 low_index, high_index);
9895 break;
9896 case OP_OTHERS:
9897 if (i != n-1)
9898 error (_("Misplaced 'others' clause"));
9899 aggregate_assign_others (container, lhs, exp, pos, indices,
9900 num_indices, low_index, high_index);
9901 break;
9902 default:
9903 error (_("Internal error: bad aggregate clause"));
9904 }
9905 }
9906
9907 return container;
9908 }
9909
9910 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9911 construct at *POS, updating *POS past the construct, given that
9912 the positions are relative to lower bound LOW, where HIGH is the
9913 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9914 updating *NUM_INDICES as needed. CONTAINER is as for
9915 assign_aggregate. */
9916 static void
9917 aggregate_assign_positional (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, LONGEST *indices, int *num_indices,
9920 int max_indices, LONGEST low, LONGEST high)
9921 {
9922 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9923
9924 if (ind - 1 == high)
9925 warning (_("Extra components in aggregate ignored."));
9926 if (ind <= high)
9927 {
9928 add_component_interval (ind, ind, indices, num_indices, max_indices);
9929 *pos += 3;
9930 assign_component (container, lhs, ind, exp, pos);
9931 }
9932 else
9933 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9934 }
9935
9936 /* Assign into the components of LHS indexed by the OP_CHOICES
9937 construct at *POS, updating *POS past the construct, given that
9938 the allowable indices are LOW..HIGH. Record the indices assigned
9939 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9940 needed. CONTAINER is as for assign_aggregate. */
9941 static void
9942 aggregate_assign_from_choices (struct value *container,
9943 struct value *lhs, struct expression *exp,
9944 int *pos, LONGEST *indices, int *num_indices,
9945 int max_indices, LONGEST low, LONGEST high)
9946 {
9947 int j;
9948 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9949 int choice_pos, expr_pc;
9950 int is_array = ada_is_direct_array_type (value_type (lhs));
9951
9952 choice_pos = *pos += 3;
9953
9954 for (j = 0; j < n_choices; j += 1)
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 expr_pc = *pos;
9957 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9958
9959 for (j = 0; j < n_choices; j += 1)
9960 {
9961 LONGEST lower, upper;
9962 enum exp_opcode op = exp->elts[choice_pos].opcode;
9963
9964 if (op == OP_DISCRETE_RANGE)
9965 {
9966 choice_pos += 1;
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 EVAL_NORMAL));
9969 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9970 EVAL_NORMAL));
9971 }
9972 else if (is_array)
9973 {
9974 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9975 EVAL_NORMAL));
9976 upper = lower;
9977 }
9978 else
9979 {
9980 int ind;
9981 const char *name;
9982
9983 switch (op)
9984 {
9985 case OP_NAME:
9986 name = &exp->elts[choice_pos + 2].string;
9987 break;
9988 case OP_VAR_VALUE:
9989 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9990 break;
9991 default:
9992 error (_("Invalid record component association."));
9993 }
9994 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9995 ind = 0;
9996 if (! find_struct_field (name, value_type (lhs), 0,
9997 NULL, NULL, NULL, NULL, &ind))
9998 error (_("Unknown component name: %s."), name);
9999 lower = upper = ind;
10000 }
10001
10002 if (lower <= upper && (lower < low || upper > high))
10003 error (_("Index in component association out of bounds."));
10004
10005 add_component_interval (lower, upper, indices, num_indices,
10006 max_indices);
10007 while (lower <= upper)
10008 {
10009 int pos1;
10010
10011 pos1 = expr_pc;
10012 assign_component (container, lhs, lower, exp, &pos1);
10013 lower += 1;
10014 }
10015 }
10016 }
10017
10018 /* Assign the value of the expression in the OP_OTHERS construct in
10019 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10020 have not been previously assigned. The index intervals already assigned
10021 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10022 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10023 static void
10024 aggregate_assign_others (struct value *container,
10025 struct value *lhs, struct expression *exp,
10026 int *pos, LONGEST *indices, int num_indices,
10027 LONGEST low, LONGEST high)
10028 {
10029 int i;
10030 int expr_pc = *pos + 1;
10031
10032 for (i = 0; i < num_indices - 2; i += 2)
10033 {
10034 LONGEST ind;
10035
10036 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10037 {
10038 int localpos;
10039
10040 localpos = expr_pc;
10041 assign_component (container, lhs, ind, exp, &localpos);
10042 }
10043 }
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045 }
10046
10047 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10048 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10049 modifying *SIZE as needed. It is an error if *SIZE exceeds
10050 MAX_SIZE. The resulting intervals do not overlap. */
10051 static void
10052 add_component_interval (LONGEST low, LONGEST high,
10053 LONGEST* indices, int *size, int max_size)
10054 {
10055 int i, j;
10056
10057 for (i = 0; i < *size; i += 2) {
10058 if (high >= indices[i] && low <= indices[i + 1])
10059 {
10060 int kh;
10061
10062 for (kh = i + 2; kh < *size; kh += 2)
10063 if (high < indices[kh])
10064 break;
10065 if (low < indices[i])
10066 indices[i] = low;
10067 indices[i + 1] = indices[kh - 1];
10068 if (high > indices[i + 1])
10069 indices[i + 1] = high;
10070 memcpy (indices + i + 2, indices + kh, *size - kh);
10071 *size -= kh - i - 2;
10072 return;
10073 }
10074 else if (high < indices[i])
10075 break;
10076 }
10077
10078 if (*size == max_size)
10079 error (_("Internal error: miscounted aggregate components."));
10080 *size += 2;
10081 for (j = *size-1; j >= i+2; j -= 1)
10082 indices[j] = indices[j - 2];
10083 indices[i] = low;
10084 indices[i + 1] = high;
10085 }
10086
10087 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10088 is different. */
10089
10090 static struct value *
10091 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10092 {
10093 if (type == ada_check_typedef (value_type (arg2)))
10094 return arg2;
10095
10096 if (ada_is_fixed_point_type (type))
10097 return (cast_to_fixed (type, arg2));
10098
10099 if (ada_is_fixed_point_type (value_type (arg2)))
10100 return cast_from_fixed (type, arg2);
10101
10102 return value_cast (type, arg2);
10103 }
10104
10105 /* Evaluating Ada expressions, and printing their result.
10106 ------------------------------------------------------
10107
10108 1. Introduction:
10109 ----------------
10110
10111 We usually evaluate an Ada expression in order to print its value.
10112 We also evaluate an expression in order to print its type, which
10113 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10114 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10115 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10116 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10117 similar.
10118
10119 Evaluating expressions is a little more complicated for Ada entities
10120 than it is for entities in languages such as C. The main reason for
10121 this is that Ada provides types whose definition might be dynamic.
10122 One example of such types is variant records. Or another example
10123 would be an array whose bounds can only be known at run time.
10124
10125 The following description is a general guide as to what should be
10126 done (and what should NOT be done) in order to evaluate an expression
10127 involving such types, and when. This does not cover how the semantic
10128 information is encoded by GNAT as this is covered separatly. For the
10129 document used as the reference for the GNAT encoding, see exp_dbug.ads
10130 in the GNAT sources.
10131
10132 Ideally, we should embed each part of this description next to its
10133 associated code. Unfortunately, the amount of code is so vast right
10134 now that it's hard to see whether the code handling a particular
10135 situation might be duplicated or not. One day, when the code is
10136 cleaned up, this guide might become redundant with the comments
10137 inserted in the code, and we might want to remove it.
10138
10139 2. ``Fixing'' an Entity, the Simple Case:
10140 -----------------------------------------
10141
10142 When evaluating Ada expressions, the tricky issue is that they may
10143 reference entities whose type contents and size are not statically
10144 known. Consider for instance a variant record:
10145
10146 type Rec (Empty : Boolean := True) is record
10147 case Empty is
10148 when True => null;
10149 when False => Value : Integer;
10150 end case;
10151 end record;
10152 Yes : Rec := (Empty => False, Value => 1);
10153 No : Rec := (empty => True);
10154
10155 The size and contents of that record depends on the value of the
10156 descriminant (Rec.Empty). At this point, neither the debugging
10157 information nor the associated type structure in GDB are able to
10158 express such dynamic types. So what the debugger does is to create
10159 "fixed" versions of the type that applies to the specific object.
10160 We also informally refer to this opperation as "fixing" an object,
10161 which means creating its associated fixed type.
10162
10163 Example: when printing the value of variable "Yes" above, its fixed
10164 type would look like this:
10165
10166 type Rec is record
10167 Empty : Boolean;
10168 Value : Integer;
10169 end record;
10170
10171 On the other hand, if we printed the value of "No", its fixed type
10172 would become:
10173
10174 type Rec is record
10175 Empty : Boolean;
10176 end record;
10177
10178 Things become a little more complicated when trying to fix an entity
10179 with a dynamic type that directly contains another dynamic type,
10180 such as an array of variant records, for instance. There are
10181 two possible cases: Arrays, and records.
10182
10183 3. ``Fixing'' Arrays:
10184 ---------------------
10185
10186 The type structure in GDB describes an array in terms of its bounds,
10187 and the type of its elements. By design, all elements in the array
10188 have the same type and we cannot represent an array of variant elements
10189 using the current type structure in GDB. When fixing an array,
10190 we cannot fix the array element, as we would potentially need one
10191 fixed type per element of the array. As a result, the best we can do
10192 when fixing an array is to produce an array whose bounds and size
10193 are correct (allowing us to read it from memory), but without having
10194 touched its element type. Fixing each element will be done later,
10195 when (if) necessary.
10196
10197 Arrays are a little simpler to handle than records, because the same
10198 amount of memory is allocated for each element of the array, even if
10199 the amount of space actually used by each element differs from element
10200 to element. Consider for instance the following array of type Rec:
10201
10202 type Rec_Array is array (1 .. 2) of Rec;
10203
10204 The actual amount of memory occupied by each element might be different
10205 from element to element, depending on the value of their discriminant.
10206 But the amount of space reserved for each element in the array remains
10207 fixed regardless. So we simply need to compute that size using
10208 the debugging information available, from which we can then determine
10209 the array size (we multiply the number of elements of the array by
10210 the size of each element).
10211
10212 The simplest case is when we have an array of a constrained element
10213 type. For instance, consider the following type declarations:
10214
10215 type Bounded_String (Max_Size : Integer) is
10216 Length : Integer;
10217 Buffer : String (1 .. Max_Size);
10218 end record;
10219 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10220
10221 In this case, the compiler describes the array as an array of
10222 variable-size elements (identified by its XVS suffix) for which
10223 the size can be read in the parallel XVZ variable.
10224
10225 In the case of an array of an unconstrained element type, the compiler
10226 wraps the array element inside a private PAD type. This type should not
10227 be shown to the user, and must be "unwrap"'ed before printing. Note
10228 that we also use the adjective "aligner" in our code to designate
10229 these wrapper types.
10230
10231 In some cases, the size allocated for each element is statically
10232 known. In that case, the PAD type already has the correct size,
10233 and the array element should remain unfixed.
10234
10235 But there are cases when this size is not statically known.
10236 For instance, assuming that "Five" is an integer variable:
10237
10238 type Dynamic is array (1 .. Five) of Integer;
10239 type Wrapper (Has_Length : Boolean := False) is record
10240 Data : Dynamic;
10241 case Has_Length is
10242 when True => Length : Integer;
10243 when False => null;
10244 end case;
10245 end record;
10246 type Wrapper_Array is array (1 .. 2) of Wrapper;
10247
10248 Hello : Wrapper_Array := (others => (Has_Length => True,
10249 Data => (others => 17),
10250 Length => 1));
10251
10252
10253 The debugging info would describe variable Hello as being an
10254 array of a PAD type. The size of that PAD type is not statically
10255 known, but can be determined using a parallel XVZ variable.
10256 In that case, a copy of the PAD type with the correct size should
10257 be used for the fixed array.
10258
10259 3. ``Fixing'' record type objects:
10260 ----------------------------------
10261
10262 Things are slightly different from arrays in the case of dynamic
10263 record types. In this case, in order to compute the associated
10264 fixed type, we need to determine the size and offset of each of
10265 its components. This, in turn, requires us to compute the fixed
10266 type of each of these components.
10267
10268 Consider for instance the example:
10269
10270 type Bounded_String (Max_Size : Natural) is record
10271 Str : String (1 .. Max_Size);
10272 Length : Natural;
10273 end record;
10274 My_String : Bounded_String (Max_Size => 10);
10275
10276 In that case, the position of field "Length" depends on the size
10277 of field Str, which itself depends on the value of the Max_Size
10278 discriminant. In order to fix the type of variable My_String,
10279 we need to fix the type of field Str. Therefore, fixing a variant
10280 record requires us to fix each of its components.
10281
10282 However, if a component does not have a dynamic size, the component
10283 should not be fixed. In particular, fields that use a PAD type
10284 should not fixed. Here is an example where this might happen
10285 (assuming type Rec above):
10286
10287 type Container (Big : Boolean) is record
10288 First : Rec;
10289 After : Integer;
10290 case Big is
10291 when True => Another : Integer;
10292 when False => null;
10293 end case;
10294 end record;
10295 My_Container : Container := (Big => False,
10296 First => (Empty => True),
10297 After => 42);
10298
10299 In that example, the compiler creates a PAD type for component First,
10300 whose size is constant, and then positions the component After just
10301 right after it. The offset of component After is therefore constant
10302 in this case.
10303
10304 The debugger computes the position of each field based on an algorithm
10305 that uses, among other things, the actual position and size of the field
10306 preceding it. Let's now imagine that the user is trying to print
10307 the value of My_Container. If the type fixing was recursive, we would
10308 end up computing the offset of field After based on the size of the
10309 fixed version of field First. And since in our example First has
10310 only one actual field, the size of the fixed type is actually smaller
10311 than the amount of space allocated to that field, and thus we would
10312 compute the wrong offset of field After.
10313
10314 To make things more complicated, we need to watch out for dynamic
10315 components of variant records (identified by the ___XVL suffix in
10316 the component name). Even if the target type is a PAD type, the size
10317 of that type might not be statically known. So the PAD type needs
10318 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10319 we might end up with the wrong size for our component. This can be
10320 observed with the following type declarations:
10321
10322 type Octal is new Integer range 0 .. 7;
10323 type Octal_Array is array (Positive range <>) of Octal;
10324 pragma Pack (Octal_Array);
10325
10326 type Octal_Buffer (Size : Positive) is record
10327 Buffer : Octal_Array (1 .. Size);
10328 Length : Integer;
10329 end record;
10330
10331 In that case, Buffer is a PAD type whose size is unset and needs
10332 to be computed by fixing the unwrapped type.
10333
10334 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10335 ----------------------------------------------------------
10336
10337 Lastly, when should the sub-elements of an entity that remained unfixed
10338 thus far, be actually fixed?
10339
10340 The answer is: Only when referencing that element. For instance
10341 when selecting one component of a record, this specific component
10342 should be fixed at that point in time. Or when printing the value
10343 of a record, each component should be fixed before its value gets
10344 printed. Similarly for arrays, the element of the array should be
10345 fixed when printing each element of the array, or when extracting
10346 one element out of that array. On the other hand, fixing should
10347 not be performed on the elements when taking a slice of an array!
10348
10349 Note that one of the side-effects of miscomputing the offset and
10350 size of each field is that we end up also miscomputing the size
10351 of the containing type. This can have adverse results when computing
10352 the value of an entity. GDB fetches the value of an entity based
10353 on the size of its type, and thus a wrong size causes GDB to fetch
10354 the wrong amount of memory. In the case where the computed size is
10355 too small, GDB fetches too little data to print the value of our
10356 entiry. Results in this case as unpredicatble, as we usually read
10357 past the buffer containing the data =:-o. */
10358
10359 /* Implement the evaluate_exp routine in the exp_descriptor structure
10360 for the Ada language. */
10361
10362 static struct value *
10363 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10364 int *pos, enum noside noside)
10365 {
10366 enum exp_opcode op;
10367 int tem;
10368 int pc;
10369 int preeval_pos;
10370 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10371 struct type *type;
10372 int nargs, oplen;
10373 struct value **argvec;
10374
10375 pc = *pos;
10376 *pos += 1;
10377 op = exp->elts[pc].opcode;
10378
10379 switch (op)
10380 {
10381 default:
10382 *pos -= 1;
10383 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10384
10385 if (noside == EVAL_NORMAL)
10386 arg1 = unwrap_value (arg1);
10387
10388 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10389 then we need to perform the conversion manually, because
10390 evaluate_subexp_standard doesn't do it. This conversion is
10391 necessary in Ada because the different kinds of float/fixed
10392 types in Ada have different representations.
10393
10394 Similarly, we need to perform the conversion from OP_LONG
10395 ourselves. */
10396 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10397 arg1 = ada_value_cast (expect_type, arg1, noside);
10398
10399 return arg1;
10400
10401 case OP_STRING:
10402 {
10403 struct value *result;
10404
10405 *pos -= 1;
10406 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10407 /* The result type will have code OP_STRING, bashed there from
10408 OP_ARRAY. Bash it back. */
10409 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10410 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10411 return result;
10412 }
10413
10414 case UNOP_CAST:
10415 (*pos) += 2;
10416 type = exp->elts[pc + 1].type;
10417 arg1 = evaluate_subexp (type, exp, pos, noside);
10418 if (noside == EVAL_SKIP)
10419 goto nosideret;
10420 arg1 = ada_value_cast (type, arg1, noside);
10421 return arg1;
10422
10423 case UNOP_QUAL:
10424 (*pos) += 2;
10425 type = exp->elts[pc + 1].type;
10426 return ada_evaluate_subexp (type, exp, pos, noside);
10427
10428 case BINOP_ASSIGN:
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10430 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10431 {
10432 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10433 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return arg1;
10435 return ada_value_assign (arg1, arg1);
10436 }
10437 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10438 except if the lhs of our assignment is a convenience variable.
10439 In the case of assigning to a convenience variable, the lhs
10440 should be exactly the result of the evaluation of the rhs. */
10441 type = value_type (arg1);
10442 if (VALUE_LVAL (arg1) == lval_internalvar)
10443 type = NULL;
10444 arg2 = evaluate_subexp (type, exp, pos, noside);
10445 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10446 return arg1;
10447 if (ada_is_fixed_point_type (value_type (arg1)))
10448 arg2 = cast_to_fixed (value_type (arg1), arg2);
10449 else if (ada_is_fixed_point_type (value_type (arg2)))
10450 error
10451 (_("Fixed-point values must be assigned to fixed-point variables"));
10452 else
10453 arg2 = coerce_for_assign (value_type (arg1), arg2);
10454 return ada_value_assign (arg1, arg2);
10455
10456 case BINOP_ADD:
10457 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10458 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10459 if (noside == EVAL_SKIP)
10460 goto nosideret;
10461 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10462 return (value_from_longest
10463 (value_type (arg1),
10464 value_as_long (arg1) + value_as_long (arg2)));
10465 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10466 return (value_from_longest
10467 (value_type (arg2),
10468 value_as_long (arg1) + value_as_long (arg2)));
10469 if ((ada_is_fixed_point_type (value_type (arg1))
10470 || ada_is_fixed_point_type (value_type (arg2)))
10471 && value_type (arg1) != value_type (arg2))
10472 error (_("Operands of fixed-point addition must have the same type"));
10473 /* Do the addition, and cast the result to the type of the first
10474 argument. We cannot cast the result to a reference type, so if
10475 ARG1 is a reference type, find its underlying type. */
10476 type = value_type (arg1);
10477 while (TYPE_CODE (type) == TYPE_CODE_REF)
10478 type = TYPE_TARGET_TYPE (type);
10479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10480 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10481
10482 case BINOP_SUB:
10483 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10484 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10485 if (noside == EVAL_SKIP)
10486 goto nosideret;
10487 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10488 return (value_from_longest
10489 (value_type (arg1),
10490 value_as_long (arg1) - value_as_long (arg2)));
10491 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10492 return (value_from_longest
10493 (value_type (arg2),
10494 value_as_long (arg1) - value_as_long (arg2)));
10495 if ((ada_is_fixed_point_type (value_type (arg1))
10496 || ada_is_fixed_point_type (value_type (arg2)))
10497 && value_type (arg1) != value_type (arg2))
10498 error (_("Operands of fixed-point subtraction "
10499 "must have the same type"));
10500 /* Do the substraction, and cast the result to the type of the first
10501 argument. We cannot cast the result to a reference type, so if
10502 ARG1 is a reference type, find its underlying type. */
10503 type = value_type (arg1);
10504 while (TYPE_CODE (type) == TYPE_CODE_REF)
10505 type = TYPE_TARGET_TYPE (type);
10506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10507 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10508
10509 case BINOP_MUL:
10510 case BINOP_DIV:
10511 case BINOP_REM:
10512 case BINOP_MOD:
10513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10515 if (noside == EVAL_SKIP)
10516 goto nosideret;
10517 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10518 {
10519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10520 return value_zero (value_type (arg1), not_lval);
10521 }
10522 else
10523 {
10524 type = builtin_type (exp->gdbarch)->builtin_double;
10525 if (ada_is_fixed_point_type (value_type (arg1)))
10526 arg1 = cast_from_fixed (type, arg1);
10527 if (ada_is_fixed_point_type (value_type (arg2)))
10528 arg2 = cast_from_fixed (type, arg2);
10529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10530 return ada_value_binop (arg1, arg2, op);
10531 }
10532
10533 case BINOP_EQUAL:
10534 case BINOP_NOTEQUAL:
10535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10536 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10537 if (noside == EVAL_SKIP)
10538 goto nosideret;
10539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10540 tem = 0;
10541 else
10542 {
10543 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10544 tem = ada_value_equal (arg1, arg2);
10545 }
10546 if (op == BINOP_NOTEQUAL)
10547 tem = !tem;
10548 type = language_bool_type (exp->language_defn, exp->gdbarch);
10549 return value_from_longest (type, (LONGEST) tem);
10550
10551 case UNOP_NEG:
10552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10553 if (noside == EVAL_SKIP)
10554 goto nosideret;
10555 else if (ada_is_fixed_point_type (value_type (arg1)))
10556 return value_cast (value_type (arg1), value_neg (arg1));
10557 else
10558 {
10559 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10560 return value_neg (arg1);
10561 }
10562
10563 case BINOP_LOGICAL_AND:
10564 case BINOP_LOGICAL_OR:
10565 case UNOP_LOGICAL_NOT:
10566 {
10567 struct value *val;
10568
10569 *pos -= 1;
10570 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10571 type = language_bool_type (exp->language_defn, exp->gdbarch);
10572 return value_cast (type, val);
10573 }
10574
10575 case BINOP_BITWISE_AND:
10576 case BINOP_BITWISE_IOR:
10577 case BINOP_BITWISE_XOR:
10578 {
10579 struct value *val;
10580
10581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10582 *pos = pc;
10583 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10584
10585 return value_cast (value_type (arg1), val);
10586 }
10587
10588 case OP_VAR_VALUE:
10589 *pos -= 1;
10590
10591 if (noside == EVAL_SKIP)
10592 {
10593 *pos += 4;
10594 goto nosideret;
10595 }
10596
10597 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10598 /* Only encountered when an unresolved symbol occurs in a
10599 context other than a function call, in which case, it is
10600 invalid. */
10601 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10602 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10603
10604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10605 {
10606 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10607 /* Check to see if this is a tagged type. We also need to handle
10608 the case where the type is a reference to a tagged type, but
10609 we have to be careful to exclude pointers to tagged types.
10610 The latter should be shown as usual (as a pointer), whereas
10611 a reference should mostly be transparent to the user. */
10612 if (ada_is_tagged_type (type, 0)
10613 || (TYPE_CODE (type) == TYPE_CODE_REF
10614 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10615 {
10616 /* Tagged types are a little special in the fact that the real
10617 type is dynamic and can only be determined by inspecting the
10618 object's tag. This means that we need to get the object's
10619 value first (EVAL_NORMAL) and then extract the actual object
10620 type from its tag.
10621
10622 Note that we cannot skip the final step where we extract
10623 the object type from its tag, because the EVAL_NORMAL phase
10624 results in dynamic components being resolved into fixed ones.
10625 This can cause problems when trying to print the type
10626 description of tagged types whose parent has a dynamic size:
10627 We use the type name of the "_parent" component in order
10628 to print the name of the ancestor type in the type description.
10629 If that component had a dynamic size, the resolution into
10630 a fixed type would result in the loss of that type name,
10631 thus preventing us from printing the name of the ancestor
10632 type in the type description. */
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10634
10635 if (TYPE_CODE (type) != TYPE_CODE_REF)
10636 {
10637 struct type *actual_type;
10638
10639 actual_type = type_from_tag (ada_value_tag (arg1));
10640 if (actual_type == NULL)
10641 /* If, for some reason, we were unable to determine
10642 the actual type from the tag, then use the static
10643 approximation that we just computed as a fallback.
10644 This can happen if the debugging information is
10645 incomplete, for instance. */
10646 actual_type = type;
10647 return value_zero (actual_type, not_lval);
10648 }
10649 else
10650 {
10651 /* In the case of a ref, ada_coerce_ref takes care
10652 of determining the actual type. But the evaluation
10653 should return a ref as it should be valid to ask
10654 for its address; so rebuild a ref after coerce. */
10655 arg1 = ada_coerce_ref (arg1);
10656 return value_ref (arg1);
10657 }
10658 }
10659
10660 /* Records and unions for which GNAT encodings have been
10661 generated need to be statically fixed as well.
10662 Otherwise, non-static fixing produces a type where
10663 all dynamic properties are removed, which prevents "ptype"
10664 from being able to completely describe the type.
10665 For instance, a case statement in a variant record would be
10666 replaced by the relevant components based on the actual
10667 value of the discriminants. */
10668 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10669 && dynamic_template_type (type) != NULL)
10670 || (TYPE_CODE (type) == TYPE_CODE_UNION
10671 && ada_find_parallel_type (type, "___XVU") != NULL))
10672 {
10673 *pos += 4;
10674 return value_zero (to_static_fixed_type (type), not_lval);
10675 }
10676 }
10677
10678 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10679 return ada_to_fixed_value (arg1);
10680
10681 case OP_FUNCALL:
10682 (*pos) += 2;
10683
10684 /* Allocate arg vector, including space for the function to be
10685 called in argvec[0] and a terminating NULL. */
10686 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10687 argvec = XALLOCAVEC (struct value *, nargs + 2);
10688
10689 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10690 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10691 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10692 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10693 else
10694 {
10695 for (tem = 0; tem <= nargs; tem += 1)
10696 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 argvec[tem] = 0;
10698
10699 if (noside == EVAL_SKIP)
10700 goto nosideret;
10701 }
10702
10703 if (ada_is_constrained_packed_array_type
10704 (desc_base_type (value_type (argvec[0]))))
10705 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10706 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10707 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10708 /* This is a packed array that has already been fixed, and
10709 therefore already coerced to a simple array. Nothing further
10710 to do. */
10711 ;
10712 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10713 {
10714 /* Make sure we dereference references so that all the code below
10715 feels like it's really handling the referenced value. Wrapping
10716 types (for alignment) may be there, so make sure we strip them as
10717 well. */
10718 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10719 }
10720 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10721 && VALUE_LVAL (argvec[0]) == lval_memory)
10722 argvec[0] = value_addr (argvec[0]);
10723
10724 type = ada_check_typedef (value_type (argvec[0]));
10725
10726 /* Ada allows us to implicitly dereference arrays when subscripting
10727 them. So, if this is an array typedef (encoding use for array
10728 access types encoded as fat pointers), strip it now. */
10729 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10730 type = ada_typedef_target_type (type);
10731
10732 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10733 {
10734 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10735 {
10736 case TYPE_CODE_FUNC:
10737 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10738 break;
10739 case TYPE_CODE_ARRAY:
10740 break;
10741 case TYPE_CODE_STRUCT:
10742 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10743 argvec[0] = ada_value_ind (argvec[0]);
10744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10745 break;
10746 default:
10747 error (_("cannot subscript or call something of type `%s'"),
10748 ada_type_name (value_type (argvec[0])));
10749 break;
10750 }
10751 }
10752
10753 switch (TYPE_CODE (type))
10754 {
10755 case TYPE_CODE_FUNC:
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10757 {
10758 struct type *rtype = TYPE_TARGET_TYPE (type);
10759
10760 if (TYPE_GNU_IFUNC (type))
10761 return allocate_value (TYPE_TARGET_TYPE (rtype));
10762 return allocate_value (rtype);
10763 }
10764 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10765 case TYPE_CODE_INTERNAL_FUNCTION:
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 /* We don't know anything about what the internal
10768 function might return, but we have to return
10769 something. */
10770 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10771 not_lval);
10772 else
10773 return call_internal_function (exp->gdbarch, exp->language_defn,
10774 argvec[0], nargs, argvec + 1);
10775
10776 case TYPE_CODE_STRUCT:
10777 {
10778 int arity;
10779
10780 arity = ada_array_arity (type);
10781 type = ada_array_element_type (type, nargs);
10782 if (type == NULL)
10783 error (_("cannot subscript or call a record"));
10784 if (arity != nargs)
10785 error (_("wrong number of subscripts; expecting %d"), arity);
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 return value_zero (ada_aligned_type (type), lval_memory);
10788 return
10789 unwrap_value (ada_value_subscript
10790 (argvec[0], nargs, argvec + 1));
10791 }
10792 case TYPE_CODE_ARRAY:
10793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10794 {
10795 type = ada_array_element_type (type, nargs);
10796 if (type == NULL)
10797 error (_("element type of array unknown"));
10798 else
10799 return value_zero (ada_aligned_type (type), lval_memory);
10800 }
10801 return
10802 unwrap_value (ada_value_subscript
10803 (ada_coerce_to_simple_array (argvec[0]),
10804 nargs, argvec + 1));
10805 case TYPE_CODE_PTR: /* Pointer to array */
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
10808 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10809 type = ada_array_element_type (type, nargs);
10810 if (type == NULL)
10811 error (_("element type of array unknown"));
10812 else
10813 return value_zero (ada_aligned_type (type), lval_memory);
10814 }
10815 return
10816 unwrap_value (ada_value_ptr_subscript (argvec[0],
10817 nargs, argvec + 1));
10818
10819 default:
10820 error (_("Attempt to index or call something other than an "
10821 "array or function"));
10822 }
10823
10824 case TERNOP_SLICE:
10825 {
10826 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10827 struct value *low_bound_val =
10828 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10829 struct value *high_bound_val =
10830 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10831 LONGEST low_bound;
10832 LONGEST high_bound;
10833
10834 low_bound_val = coerce_ref (low_bound_val);
10835 high_bound_val = coerce_ref (high_bound_val);
10836 low_bound = value_as_long (low_bound_val);
10837 high_bound = value_as_long (high_bound_val);
10838
10839 if (noside == EVAL_SKIP)
10840 goto nosideret;
10841
10842 /* If this is a reference to an aligner type, then remove all
10843 the aligners. */
10844 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10845 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10846 TYPE_TARGET_TYPE (value_type (array)) =
10847 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10848
10849 if (ada_is_constrained_packed_array_type (value_type (array)))
10850 error (_("cannot slice a packed array"));
10851
10852 /* If this is a reference to an array or an array lvalue,
10853 convert to a pointer. */
10854 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10855 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10856 && VALUE_LVAL (array) == lval_memory))
10857 array = value_addr (array);
10858
10859 if (noside == EVAL_AVOID_SIDE_EFFECTS
10860 && ada_is_array_descriptor_type (ada_check_typedef
10861 (value_type (array))))
10862 return empty_array (ada_type_of_array (array, 0), low_bound);
10863
10864 array = ada_coerce_to_simple_array_ptr (array);
10865
10866 /* If we have more than one level of pointer indirection,
10867 dereference the value until we get only one level. */
10868 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10869 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10870 == TYPE_CODE_PTR))
10871 array = value_ind (array);
10872
10873 /* Make sure we really do have an array type before going further,
10874 to avoid a SEGV when trying to get the index type or the target
10875 type later down the road if the debug info generated by
10876 the compiler is incorrect or incomplete. */
10877 if (!ada_is_simple_array_type (value_type (array)))
10878 error (_("cannot take slice of non-array"));
10879
10880 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10881 == TYPE_CODE_PTR)
10882 {
10883 struct type *type0 = ada_check_typedef (value_type (array));
10884
10885 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10886 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10887 else
10888 {
10889 struct type *arr_type0 =
10890 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10891
10892 return ada_value_slice_from_ptr (array, arr_type0,
10893 longest_to_int (low_bound),
10894 longest_to_int (high_bound));
10895 }
10896 }
10897 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 return array;
10899 else if (high_bound < low_bound)
10900 return empty_array (value_type (array), low_bound);
10901 else
10902 return ada_value_slice (array, longest_to_int (low_bound),
10903 longest_to_int (high_bound));
10904 }
10905
10906 case UNOP_IN_RANGE:
10907 (*pos) += 2;
10908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909 type = check_typedef (exp->elts[pc + 1].type);
10910
10911 if (noside == EVAL_SKIP)
10912 goto nosideret;
10913
10914 switch (TYPE_CODE (type))
10915 {
10916 default:
10917 lim_warning (_("Membership test incompletely implemented; "
10918 "always returns true"));
10919 type = language_bool_type (exp->language_defn, exp->gdbarch);
10920 return value_from_longest (type, (LONGEST) 1);
10921
10922 case TYPE_CODE_RANGE:
10923 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10924 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10925 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10926 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10927 type = language_bool_type (exp->language_defn, exp->gdbarch);
10928 return
10929 value_from_longest (type,
10930 (value_less (arg1, arg3)
10931 || value_equal (arg1, arg3))
10932 && (value_less (arg2, arg1)
10933 || value_equal (arg2, arg1)));
10934 }
10935
10936 case BINOP_IN_BOUNDS:
10937 (*pos) += 2;
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940
10941 if (noside == EVAL_SKIP)
10942 goto nosideret;
10943
10944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10945 {
10946 type = language_bool_type (exp->language_defn, exp->gdbarch);
10947 return value_zero (type, not_lval);
10948 }
10949
10950 tem = longest_to_int (exp->elts[pc + 1].longconst);
10951
10952 type = ada_index_type (value_type (arg2), tem, "range");
10953 if (!type)
10954 type = value_type (arg1);
10955
10956 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10957 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10958
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10961 type = language_bool_type (exp->language_defn, exp->gdbarch);
10962 return
10963 value_from_longest (type,
10964 (value_less (arg1, arg3)
10965 || value_equal (arg1, arg3))
10966 && (value_less (arg2, arg1)
10967 || value_equal (arg2, arg1)));
10968
10969 case TERNOP_IN_RANGE:
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973
10974 if (noside == EVAL_SKIP)
10975 goto nosideret;
10976
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10980 return
10981 value_from_longest (type,
10982 (value_less (arg1, arg3)
10983 || value_equal (arg1, arg3))
10984 && (value_less (arg2, arg1)
10985 || value_equal (arg2, arg1)));
10986
10987 case OP_ATR_FIRST:
10988 case OP_ATR_LAST:
10989 case OP_ATR_LENGTH:
10990 {
10991 struct type *type_arg;
10992
10993 if (exp->elts[*pos].opcode == OP_TYPE)
10994 {
10995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10996 arg1 = NULL;
10997 type_arg = check_typedef (exp->elts[pc + 2].type);
10998 }
10999 else
11000 {
11001 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 type_arg = NULL;
11003 }
11004
11005 if (exp->elts[*pos].opcode != OP_LONG)
11006 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11007 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11008 *pos += 4;
11009
11010 if (noside == EVAL_SKIP)
11011 goto nosideret;
11012
11013 if (type_arg == NULL)
11014 {
11015 arg1 = ada_coerce_ref (arg1);
11016
11017 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11018 arg1 = ada_coerce_to_simple_array (arg1);
11019
11020 if (op == OP_ATR_LENGTH)
11021 type = builtin_type (exp->gdbarch)->builtin_int;
11022 else
11023 {
11024 type = ada_index_type (value_type (arg1), tem,
11025 ada_attribute_name (op));
11026 if (type == NULL)
11027 type = builtin_type (exp->gdbarch)->builtin_int;
11028 }
11029
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11031 return allocate_value (type);
11032
11033 switch (op)
11034 {
11035 default: /* Should never happen. */
11036 error (_("unexpected attribute encountered"));
11037 case OP_ATR_FIRST:
11038 return value_from_longest
11039 (type, ada_array_bound (arg1, tem, 0));
11040 case OP_ATR_LAST:
11041 return value_from_longest
11042 (type, ada_array_bound (arg1, tem, 1));
11043 case OP_ATR_LENGTH:
11044 return value_from_longest
11045 (type, ada_array_length (arg1, tem));
11046 }
11047 }
11048 else if (discrete_type_p (type_arg))
11049 {
11050 struct type *range_type;
11051 const char *name = ada_type_name (type_arg);
11052
11053 range_type = NULL;
11054 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11055 range_type = to_fixed_range_type (type_arg, NULL);
11056 if (range_type == NULL)
11057 range_type = type_arg;
11058 switch (op)
11059 {
11060 default:
11061 error (_("unexpected attribute encountered"));
11062 case OP_ATR_FIRST:
11063 return value_from_longest
11064 (range_type, ada_discrete_type_low_bound (range_type));
11065 case OP_ATR_LAST:
11066 return value_from_longest
11067 (range_type, ada_discrete_type_high_bound (range_type));
11068 case OP_ATR_LENGTH:
11069 error (_("the 'length attribute applies only to array types"));
11070 }
11071 }
11072 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11073 error (_("unimplemented type attribute"));
11074 else
11075 {
11076 LONGEST low, high;
11077
11078 if (ada_is_constrained_packed_array_type (type_arg))
11079 type_arg = decode_constrained_packed_array_type (type_arg);
11080
11081 if (op == OP_ATR_LENGTH)
11082 type = builtin_type (exp->gdbarch)->builtin_int;
11083 else
11084 {
11085 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11086 if (type == NULL)
11087 type = builtin_type (exp->gdbarch)->builtin_int;
11088 }
11089
11090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11091 return allocate_value (type);
11092
11093 switch (op)
11094 {
11095 default:
11096 error (_("unexpected attribute encountered"));
11097 case OP_ATR_FIRST:
11098 low = ada_array_bound_from_type (type_arg, tem, 0);
11099 return value_from_longest (type, low);
11100 case OP_ATR_LAST:
11101 high = ada_array_bound_from_type (type_arg, tem, 1);
11102 return value_from_longest (type, high);
11103 case OP_ATR_LENGTH:
11104 low = ada_array_bound_from_type (type_arg, tem, 0);
11105 high = ada_array_bound_from_type (type_arg, tem, 1);
11106 return value_from_longest (type, high - low + 1);
11107 }
11108 }
11109 }
11110
11111 case OP_ATR_TAG:
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 if (noside == EVAL_SKIP)
11114 goto nosideret;
11115
11116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11117 return value_zero (ada_tag_type (arg1), not_lval);
11118
11119 return ada_value_tag (arg1);
11120
11121 case OP_ATR_MIN:
11122 case OP_ATR_MAX:
11123 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11125 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 if (noside == EVAL_SKIP)
11127 goto nosideret;
11128 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11129 return value_zero (value_type (arg1), not_lval);
11130 else
11131 {
11132 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11133 return value_binop (arg1, arg2,
11134 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11135 }
11136
11137 case OP_ATR_MODULUS:
11138 {
11139 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11140
11141 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
11144
11145 if (!ada_is_modular_type (type_arg))
11146 error (_("'modulus must be applied to modular type"));
11147
11148 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11149 ada_modulus (type_arg));
11150 }
11151
11152
11153 case OP_ATR_POS:
11154 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
11157 goto nosideret;
11158 type = builtin_type (exp->gdbarch)->builtin_int;
11159 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11160 return value_zero (type, not_lval);
11161 else
11162 return value_pos_atr (type, arg1);
11163
11164 case OP_ATR_SIZE:
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166 type = value_type (arg1);
11167
11168 /* If the argument is a reference, then dereference its type, since
11169 the user is really asking for the size of the actual object,
11170 not the size of the pointer. */
11171 if (TYPE_CODE (type) == TYPE_CODE_REF)
11172 type = TYPE_TARGET_TYPE (type);
11173
11174 if (noside == EVAL_SKIP)
11175 goto nosideret;
11176 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11177 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11178 else
11179 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11180 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11181
11182 case OP_ATR_VAL:
11183 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 type = exp->elts[pc + 2].type;
11186 if (noside == EVAL_SKIP)
11187 goto nosideret;
11188 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11189 return value_zero (type, not_lval);
11190 else
11191 return value_val_atr (type, arg1);
11192
11193 case BINOP_EXP:
11194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11199 return value_zero (value_type (arg1), not_lval);
11200 else
11201 {
11202 /* For integer exponentiation operations,
11203 only promote the first argument. */
11204 if (is_integral_type (value_type (arg2)))
11205 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11206 else
11207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11208
11209 return value_binop (arg1, arg2, op);
11210 }
11211
11212 case UNOP_PLUS:
11213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11214 if (noside == EVAL_SKIP)
11215 goto nosideret;
11216 else
11217 return arg1;
11218
11219 case UNOP_ABS:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11224 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11225 return value_neg (arg1);
11226 else
11227 return arg1;
11228
11229 case UNOP_IND:
11230 preeval_pos = *pos;
11231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11232 if (noside == EVAL_SKIP)
11233 goto nosideret;
11234 type = ada_check_typedef (value_type (arg1));
11235 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11236 {
11237 if (ada_is_array_descriptor_type (type))
11238 /* GDB allows dereferencing GNAT array descriptors. */
11239 {
11240 struct type *arrType = ada_type_of_array (arg1, 0);
11241
11242 if (arrType == NULL)
11243 error (_("Attempt to dereference null array pointer."));
11244 return value_at_lazy (arrType, 0);
11245 }
11246 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11247 || TYPE_CODE (type) == TYPE_CODE_REF
11248 /* In C you can dereference an array to get the 1st elt. */
11249 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11250 {
11251 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11252 only be determined by inspecting the object's tag.
11253 This means that we need to evaluate completely the
11254 expression in order to get its type. */
11255
11256 if ((TYPE_CODE (type) == TYPE_CODE_REF
11257 || TYPE_CODE (type) == TYPE_CODE_PTR)
11258 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11259 {
11260 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11261 EVAL_NORMAL);
11262 type = value_type (ada_value_ind (arg1));
11263 }
11264 else
11265 {
11266 type = to_static_fixed_type
11267 (ada_aligned_type
11268 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11269 }
11270 ada_ensure_varsize_limit (type);
11271 return value_zero (type, lval_memory);
11272 }
11273 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11274 {
11275 /* GDB allows dereferencing an int. */
11276 if (expect_type == NULL)
11277 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11278 lval_memory);
11279 else
11280 {
11281 expect_type =
11282 to_static_fixed_type (ada_aligned_type (expect_type));
11283 return value_zero (expect_type, lval_memory);
11284 }
11285 }
11286 else
11287 error (_("Attempt to take contents of a non-pointer value."));
11288 }
11289 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11290 type = ada_check_typedef (value_type (arg1));
11291
11292 if (TYPE_CODE (type) == TYPE_CODE_INT)
11293 /* GDB allows dereferencing an int. If we were given
11294 the expect_type, then use that as the target type.
11295 Otherwise, assume that the target type is an int. */
11296 {
11297 if (expect_type != NULL)
11298 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11299 arg1));
11300 else
11301 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11302 (CORE_ADDR) value_as_address (arg1));
11303 }
11304
11305 if (ada_is_array_descriptor_type (type))
11306 /* GDB allows dereferencing GNAT array descriptors. */
11307 return ada_coerce_to_simple_array (arg1);
11308 else
11309 return ada_value_ind (arg1);
11310
11311 case STRUCTOP_STRUCT:
11312 tem = longest_to_int (exp->elts[pc + 1].longconst);
11313 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11314 preeval_pos = *pos;
11315 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11316 if (noside == EVAL_SKIP)
11317 goto nosideret;
11318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11319 {
11320 struct type *type1 = value_type (arg1);
11321
11322 if (ada_is_tagged_type (type1, 1))
11323 {
11324 type = ada_lookup_struct_elt_type (type1,
11325 &exp->elts[pc + 2].string,
11326 1, 1, NULL);
11327
11328 /* If the field is not found, check if it exists in the
11329 extension of this object's type. This means that we
11330 need to evaluate completely the expression. */
11331
11332 if (type == NULL)
11333 {
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11335 EVAL_NORMAL);
11336 arg1 = ada_value_struct_elt (arg1,
11337 &exp->elts[pc + 2].string,
11338 0);
11339 arg1 = unwrap_value (arg1);
11340 type = value_type (ada_to_fixed_value (arg1));
11341 }
11342 }
11343 else
11344 type =
11345 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11346 0, NULL);
11347
11348 return value_zero (ada_aligned_type (type), lval_memory);
11349 }
11350 else
11351 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11352 arg1 = unwrap_value (arg1);
11353 return ada_to_fixed_value (arg1);
11354
11355 case OP_TYPE:
11356 /* The value is not supposed to be used. This is here to make it
11357 easier to accommodate expressions that contain types. */
11358 (*pos) += 2;
11359 if (noside == EVAL_SKIP)
11360 goto nosideret;
11361 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11362 return allocate_value (exp->elts[pc + 1].type);
11363 else
11364 error (_("Attempt to use a type name as an expression"));
11365
11366 case OP_AGGREGATE:
11367 case OP_CHOICES:
11368 case OP_OTHERS:
11369 case OP_DISCRETE_RANGE:
11370 case OP_POSITIONAL:
11371 case OP_NAME:
11372 if (noside == EVAL_NORMAL)
11373 switch (op)
11374 {
11375 case OP_NAME:
11376 error (_("Undefined name, ambiguous name, or renaming used in "
11377 "component association: %s."), &exp->elts[pc+2].string);
11378 case OP_AGGREGATE:
11379 error (_("Aggregates only allowed on the right of an assignment"));
11380 default:
11381 internal_error (__FILE__, __LINE__,
11382 _("aggregate apparently mangled"));
11383 }
11384
11385 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11386 *pos += oplen - 1;
11387 for (tem = 0; tem < nargs; tem += 1)
11388 ada_evaluate_subexp (NULL, exp, pos, noside);
11389 goto nosideret;
11390 }
11391
11392 nosideret:
11393 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11394 }
11395 \f
11396
11397 /* Fixed point */
11398
11399 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11400 type name that encodes the 'small and 'delta information.
11401 Otherwise, return NULL. */
11402
11403 static const char *
11404 fixed_type_info (struct type *type)
11405 {
11406 const char *name = ada_type_name (type);
11407 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11408
11409 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11410 {
11411 const char *tail = strstr (name, "___XF_");
11412
11413 if (tail == NULL)
11414 return NULL;
11415 else
11416 return tail + 5;
11417 }
11418 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11419 return fixed_type_info (TYPE_TARGET_TYPE (type));
11420 else
11421 return NULL;
11422 }
11423
11424 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11425
11426 int
11427 ada_is_fixed_point_type (struct type *type)
11428 {
11429 return fixed_type_info (type) != NULL;
11430 }
11431
11432 /* Return non-zero iff TYPE represents a System.Address type. */
11433
11434 int
11435 ada_is_system_address_type (struct type *type)
11436 {
11437 return (TYPE_NAME (type)
11438 && strcmp (TYPE_NAME (type), "system__address") == 0);
11439 }
11440
11441 /* Assuming that TYPE is the representation of an Ada fixed-point
11442 type, return its delta, or -1 if the type is malformed and the
11443 delta cannot be determined. */
11444
11445 DOUBLEST
11446 ada_delta (struct type *type)
11447 {
11448 const char *encoding = fixed_type_info (type);
11449 DOUBLEST num, den;
11450
11451 /* Strictly speaking, num and den are encoded as integer. However,
11452 they may not fit into a long, and they will have to be converted
11453 to DOUBLEST anyway. So scan them as DOUBLEST. */
11454 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11455 &num, &den) < 2)
11456 return -1.0;
11457 else
11458 return num / den;
11459 }
11460
11461 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11462 factor ('SMALL value) associated with the type. */
11463
11464 static DOUBLEST
11465 scaling_factor (struct type *type)
11466 {
11467 const char *encoding = fixed_type_info (type);
11468 DOUBLEST num0, den0, num1, den1;
11469 int n;
11470
11471 /* Strictly speaking, num's and den's are encoded as integer. However,
11472 they may not fit into a long, and they will have to be converted
11473 to DOUBLEST anyway. So scan them as DOUBLEST. */
11474 n = sscanf (encoding,
11475 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11476 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11477 &num0, &den0, &num1, &den1);
11478
11479 if (n < 2)
11480 return 1.0;
11481 else if (n == 4)
11482 return num1 / den1;
11483 else
11484 return num0 / den0;
11485 }
11486
11487
11488 /* Assuming that X is the representation of a value of fixed-point
11489 type TYPE, return its floating-point equivalent. */
11490
11491 DOUBLEST
11492 ada_fixed_to_float (struct type *type, LONGEST x)
11493 {
11494 return (DOUBLEST) x *scaling_factor (type);
11495 }
11496
11497 /* The representation of a fixed-point value of type TYPE
11498 corresponding to the value X. */
11499
11500 LONGEST
11501 ada_float_to_fixed (struct type *type, DOUBLEST x)
11502 {
11503 return (LONGEST) (x / scaling_factor (type) + 0.5);
11504 }
11505
11506 \f
11507
11508 /* Range types */
11509
11510 /* Scan STR beginning at position K for a discriminant name, and
11511 return the value of that discriminant field of DVAL in *PX. If
11512 PNEW_K is not null, put the position of the character beyond the
11513 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11514 not alter *PX and *PNEW_K if unsuccessful. */
11515
11516 static int
11517 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11518 int *pnew_k)
11519 {
11520 static char *bound_buffer = NULL;
11521 static size_t bound_buffer_len = 0;
11522 const char *pstart, *pend, *bound;
11523 struct value *bound_val;
11524
11525 if (dval == NULL || str == NULL || str[k] == '\0')
11526 return 0;
11527
11528 pstart = str + k;
11529 pend = strstr (pstart, "__");
11530 if (pend == NULL)
11531 {
11532 bound = pstart;
11533 k += strlen (bound);
11534 }
11535 else
11536 {
11537 int len = pend - pstart;
11538
11539 /* Strip __ and beyond. */
11540 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11541 strncpy (bound_buffer, pstart, len);
11542 bound_buffer[len] = '\0';
11543
11544 bound = bound_buffer;
11545 k = pend - str;
11546 }
11547
11548 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11549 if (bound_val == NULL)
11550 return 0;
11551
11552 *px = value_as_long (bound_val);
11553 if (pnew_k != NULL)
11554 *pnew_k = k;
11555 return 1;
11556 }
11557
11558 /* Value of variable named NAME in the current environment. If
11559 no such variable found, then if ERR_MSG is null, returns 0, and
11560 otherwise causes an error with message ERR_MSG. */
11561
11562 static struct value *
11563 get_var_value (char *name, char *err_msg)
11564 {
11565 struct block_symbol *syms;
11566 int nsyms;
11567
11568 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11569 &syms);
11570
11571 if (nsyms != 1)
11572 {
11573 if (err_msg == NULL)
11574 return 0;
11575 else
11576 error (("%s"), err_msg);
11577 }
11578
11579 return value_of_variable (syms[0].symbol, syms[0].block);
11580 }
11581
11582 /* Value of integer variable named NAME in the current environment. If
11583 no such variable found, returns 0, and sets *FLAG to 0. If
11584 successful, sets *FLAG to 1. */
11585
11586 LONGEST
11587 get_int_var_value (char *name, int *flag)
11588 {
11589 struct value *var_val = get_var_value (name, 0);
11590
11591 if (var_val == 0)
11592 {
11593 if (flag != NULL)
11594 *flag = 0;
11595 return 0;
11596 }
11597 else
11598 {
11599 if (flag != NULL)
11600 *flag = 1;
11601 return value_as_long (var_val);
11602 }
11603 }
11604
11605
11606 /* Return a range type whose base type is that of the range type named
11607 NAME in the current environment, and whose bounds are calculated
11608 from NAME according to the GNAT range encoding conventions.
11609 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11610 corresponding range type from debug information; fall back to using it
11611 if symbol lookup fails. If a new type must be created, allocate it
11612 like ORIG_TYPE was. The bounds information, in general, is encoded
11613 in NAME, the base type given in the named range type. */
11614
11615 static struct type *
11616 to_fixed_range_type (struct type *raw_type, struct value *dval)
11617 {
11618 const char *name;
11619 struct type *base_type;
11620 const char *subtype_info;
11621
11622 gdb_assert (raw_type != NULL);
11623 gdb_assert (TYPE_NAME (raw_type) != NULL);
11624
11625 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11626 base_type = TYPE_TARGET_TYPE (raw_type);
11627 else
11628 base_type = raw_type;
11629
11630 name = TYPE_NAME (raw_type);
11631 subtype_info = strstr (name, "___XD");
11632 if (subtype_info == NULL)
11633 {
11634 LONGEST L = ada_discrete_type_low_bound (raw_type);
11635 LONGEST U = ada_discrete_type_high_bound (raw_type);
11636
11637 if (L < INT_MIN || U > INT_MAX)
11638 return raw_type;
11639 else
11640 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11641 L, U);
11642 }
11643 else
11644 {
11645 static char *name_buf = NULL;
11646 static size_t name_len = 0;
11647 int prefix_len = subtype_info - name;
11648 LONGEST L, U;
11649 struct type *type;
11650 const char *bounds_str;
11651 int n;
11652
11653 GROW_VECT (name_buf, name_len, prefix_len + 5);
11654 strncpy (name_buf, name, prefix_len);
11655 name_buf[prefix_len] = '\0';
11656
11657 subtype_info += 5;
11658 bounds_str = strchr (subtype_info, '_');
11659 n = 1;
11660
11661 if (*subtype_info == 'L')
11662 {
11663 if (!ada_scan_number (bounds_str, n, &L, &n)
11664 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11665 return raw_type;
11666 if (bounds_str[n] == '_')
11667 n += 2;
11668 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11669 n += 1;
11670 subtype_info += 1;
11671 }
11672 else
11673 {
11674 int ok;
11675
11676 strcpy (name_buf + prefix_len, "___L");
11677 L = get_int_var_value (name_buf, &ok);
11678 if (!ok)
11679 {
11680 lim_warning (_("Unknown lower bound, using 1."));
11681 L = 1;
11682 }
11683 }
11684
11685 if (*subtype_info == 'U')
11686 {
11687 if (!ada_scan_number (bounds_str, n, &U, &n)
11688 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11689 return raw_type;
11690 }
11691 else
11692 {
11693 int ok;
11694
11695 strcpy (name_buf + prefix_len, "___U");
11696 U = get_int_var_value (name_buf, &ok);
11697 if (!ok)
11698 {
11699 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11700 U = L;
11701 }
11702 }
11703
11704 type = create_static_range_type (alloc_type_copy (raw_type),
11705 base_type, L, U);
11706 TYPE_NAME (type) = name;
11707 return type;
11708 }
11709 }
11710
11711 /* True iff NAME is the name of a range type. */
11712
11713 int
11714 ada_is_range_type_name (const char *name)
11715 {
11716 return (name != NULL && strstr (name, "___XD"));
11717 }
11718 \f
11719
11720 /* Modular types */
11721
11722 /* True iff TYPE is an Ada modular type. */
11723
11724 int
11725 ada_is_modular_type (struct type *type)
11726 {
11727 struct type *subranged_type = get_base_type (type);
11728
11729 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11730 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11731 && TYPE_UNSIGNED (subranged_type));
11732 }
11733
11734 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11735
11736 ULONGEST
11737 ada_modulus (struct type *type)
11738 {
11739 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11740 }
11741 \f
11742
11743 /* Ada exception catchpoint support:
11744 ---------------------------------
11745
11746 We support 3 kinds of exception catchpoints:
11747 . catchpoints on Ada exceptions
11748 . catchpoints on unhandled Ada exceptions
11749 . catchpoints on failed assertions
11750
11751 Exceptions raised during failed assertions, or unhandled exceptions
11752 could perfectly be caught with the general catchpoint on Ada exceptions.
11753 However, we can easily differentiate these two special cases, and having
11754 the option to distinguish these two cases from the rest can be useful
11755 to zero-in on certain situations.
11756
11757 Exception catchpoints are a specialized form of breakpoint,
11758 since they rely on inserting breakpoints inside known routines
11759 of the GNAT runtime. The implementation therefore uses a standard
11760 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11761 of breakpoint_ops.
11762
11763 Support in the runtime for exception catchpoints have been changed
11764 a few times already, and these changes affect the implementation
11765 of these catchpoints. In order to be able to support several
11766 variants of the runtime, we use a sniffer that will determine
11767 the runtime variant used by the program being debugged. */
11768
11769 /* Ada's standard exceptions.
11770
11771 The Ada 83 standard also defined Numeric_Error. But there so many
11772 situations where it was unclear from the Ada 83 Reference Manual
11773 (RM) whether Constraint_Error or Numeric_Error should be raised,
11774 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11775 Interpretation saying that anytime the RM says that Numeric_Error
11776 should be raised, the implementation may raise Constraint_Error.
11777 Ada 95 went one step further and pretty much removed Numeric_Error
11778 from the list of standard exceptions (it made it a renaming of
11779 Constraint_Error, to help preserve compatibility when compiling
11780 an Ada83 compiler). As such, we do not include Numeric_Error from
11781 this list of standard exceptions. */
11782
11783 static char *standard_exc[] = {
11784 "constraint_error",
11785 "program_error",
11786 "storage_error",
11787 "tasking_error"
11788 };
11789
11790 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11791
11792 /* A structure that describes how to support exception catchpoints
11793 for a given executable. */
11794
11795 struct exception_support_info
11796 {
11797 /* The name of the symbol to break on in order to insert
11798 a catchpoint on exceptions. */
11799 const char *catch_exception_sym;
11800
11801 /* The name of the symbol to break on in order to insert
11802 a catchpoint on unhandled exceptions. */
11803 const char *catch_exception_unhandled_sym;
11804
11805 /* The name of the symbol to break on in order to insert
11806 a catchpoint on failed assertions. */
11807 const char *catch_assert_sym;
11808
11809 /* Assuming that the inferior just triggered an unhandled exception
11810 catchpoint, this function is responsible for returning the address
11811 in inferior memory where the name of that exception is stored.
11812 Return zero if the address could not be computed. */
11813 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11814 };
11815
11816 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11817 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11818
11819 /* The following exception support info structure describes how to
11820 implement exception catchpoints with the latest version of the
11821 Ada runtime (as of 2007-03-06). */
11822
11823 static const struct exception_support_info default_exception_support_info =
11824 {
11825 "__gnat_debug_raise_exception", /* catch_exception_sym */
11826 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11827 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11828 ada_unhandled_exception_name_addr
11829 };
11830
11831 /* The following exception support info structure describes how to
11832 implement exception catchpoints with a slightly older version
11833 of the Ada runtime. */
11834
11835 static const struct exception_support_info exception_support_info_fallback =
11836 {
11837 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11838 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11839 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11840 ada_unhandled_exception_name_addr_from_raise
11841 };
11842
11843 /* Return nonzero if we can detect the exception support routines
11844 described in EINFO.
11845
11846 This function errors out if an abnormal situation is detected
11847 (for instance, if we find the exception support routines, but
11848 that support is found to be incomplete). */
11849
11850 static int
11851 ada_has_this_exception_support (const struct exception_support_info *einfo)
11852 {
11853 struct symbol *sym;
11854
11855 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11856 that should be compiled with debugging information. As a result, we
11857 expect to find that symbol in the symtabs. */
11858
11859 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11860 if (sym == NULL)
11861 {
11862 /* Perhaps we did not find our symbol because the Ada runtime was
11863 compiled without debugging info, or simply stripped of it.
11864 It happens on some GNU/Linux distributions for instance, where
11865 users have to install a separate debug package in order to get
11866 the runtime's debugging info. In that situation, let the user
11867 know why we cannot insert an Ada exception catchpoint.
11868
11869 Note: Just for the purpose of inserting our Ada exception
11870 catchpoint, we could rely purely on the associated minimal symbol.
11871 But we would be operating in degraded mode anyway, since we are
11872 still lacking the debugging info needed later on to extract
11873 the name of the exception being raised (this name is printed in
11874 the catchpoint message, and is also used when trying to catch
11875 a specific exception). We do not handle this case for now. */
11876 struct bound_minimal_symbol msym
11877 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11878
11879 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11880 error (_("Your Ada runtime appears to be missing some debugging "
11881 "information.\nCannot insert Ada exception catchpoint "
11882 "in this configuration."));
11883
11884 return 0;
11885 }
11886
11887 /* Make sure that the symbol we found corresponds to a function. */
11888
11889 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11890 error (_("Symbol \"%s\" is not a function (class = %d)"),
11891 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11892
11893 return 1;
11894 }
11895
11896 /* Inspect the Ada runtime and determine which exception info structure
11897 should be used to provide support for exception catchpoints.
11898
11899 This function will always set the per-inferior exception_info,
11900 or raise an error. */
11901
11902 static void
11903 ada_exception_support_info_sniffer (void)
11904 {
11905 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11906
11907 /* If the exception info is already known, then no need to recompute it. */
11908 if (data->exception_info != NULL)
11909 return;
11910
11911 /* Check the latest (default) exception support info. */
11912 if (ada_has_this_exception_support (&default_exception_support_info))
11913 {
11914 data->exception_info = &default_exception_support_info;
11915 return;
11916 }
11917
11918 /* Try our fallback exception suport info. */
11919 if (ada_has_this_exception_support (&exception_support_info_fallback))
11920 {
11921 data->exception_info = &exception_support_info_fallback;
11922 return;
11923 }
11924
11925 /* Sometimes, it is normal for us to not be able to find the routine
11926 we are looking for. This happens when the program is linked with
11927 the shared version of the GNAT runtime, and the program has not been
11928 started yet. Inform the user of these two possible causes if
11929 applicable. */
11930
11931 if (ada_update_initial_language (language_unknown) != language_ada)
11932 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11933
11934 /* If the symbol does not exist, then check that the program is
11935 already started, to make sure that shared libraries have been
11936 loaded. If it is not started, this may mean that the symbol is
11937 in a shared library. */
11938
11939 if (ptid_get_pid (inferior_ptid) == 0)
11940 error (_("Unable to insert catchpoint. Try to start the program first."));
11941
11942 /* At this point, we know that we are debugging an Ada program and
11943 that the inferior has been started, but we still are not able to
11944 find the run-time symbols. That can mean that we are in
11945 configurable run time mode, or that a-except as been optimized
11946 out by the linker... In any case, at this point it is not worth
11947 supporting this feature. */
11948
11949 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11950 }
11951
11952 /* True iff FRAME is very likely to be that of a function that is
11953 part of the runtime system. This is all very heuristic, but is
11954 intended to be used as advice as to what frames are uninteresting
11955 to most users. */
11956
11957 static int
11958 is_known_support_routine (struct frame_info *frame)
11959 {
11960 struct symtab_and_line sal;
11961 char *func_name;
11962 enum language func_lang;
11963 int i;
11964 const char *fullname;
11965
11966 /* If this code does not have any debugging information (no symtab),
11967 This cannot be any user code. */
11968
11969 find_frame_sal (frame, &sal);
11970 if (sal.symtab == NULL)
11971 return 1;
11972
11973 /* If there is a symtab, but the associated source file cannot be
11974 located, then assume this is not user code: Selecting a frame
11975 for which we cannot display the code would not be very helpful
11976 for the user. This should also take care of case such as VxWorks
11977 where the kernel has some debugging info provided for a few units. */
11978
11979 fullname = symtab_to_fullname (sal.symtab);
11980 if (access (fullname, R_OK) != 0)
11981 return 1;
11982
11983 /* Check the unit filename againt the Ada runtime file naming.
11984 We also check the name of the objfile against the name of some
11985 known system libraries that sometimes come with debugging info
11986 too. */
11987
11988 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11989 {
11990 re_comp (known_runtime_file_name_patterns[i]);
11991 if (re_exec (lbasename (sal.symtab->filename)))
11992 return 1;
11993 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11994 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11995 return 1;
11996 }
11997
11998 /* Check whether the function is a GNAT-generated entity. */
11999
12000 find_frame_funname (frame, &func_name, &func_lang, NULL);
12001 if (func_name == NULL)
12002 return 1;
12003
12004 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12005 {
12006 re_comp (known_auxiliary_function_name_patterns[i]);
12007 if (re_exec (func_name))
12008 {
12009 xfree (func_name);
12010 return 1;
12011 }
12012 }
12013
12014 xfree (func_name);
12015 return 0;
12016 }
12017
12018 /* Find the first frame that contains debugging information and that is not
12019 part of the Ada run-time, starting from FI and moving upward. */
12020
12021 void
12022 ada_find_printable_frame (struct frame_info *fi)
12023 {
12024 for (; fi != NULL; fi = get_prev_frame (fi))
12025 {
12026 if (!is_known_support_routine (fi))
12027 {
12028 select_frame (fi);
12029 break;
12030 }
12031 }
12032
12033 }
12034
12035 /* Assuming that the inferior just triggered an unhandled exception
12036 catchpoint, return the address in inferior memory where the name
12037 of the exception is stored.
12038
12039 Return zero if the address could not be computed. */
12040
12041 static CORE_ADDR
12042 ada_unhandled_exception_name_addr (void)
12043 {
12044 return parse_and_eval_address ("e.full_name");
12045 }
12046
12047 /* Same as ada_unhandled_exception_name_addr, except that this function
12048 should be used when the inferior uses an older version of the runtime,
12049 where the exception name needs to be extracted from a specific frame
12050 several frames up in the callstack. */
12051
12052 static CORE_ADDR
12053 ada_unhandled_exception_name_addr_from_raise (void)
12054 {
12055 int frame_level;
12056 struct frame_info *fi;
12057 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12058 struct cleanup *old_chain;
12059
12060 /* To determine the name of this exception, we need to select
12061 the frame corresponding to RAISE_SYM_NAME. This frame is
12062 at least 3 levels up, so we simply skip the first 3 frames
12063 without checking the name of their associated function. */
12064 fi = get_current_frame ();
12065 for (frame_level = 0; frame_level < 3; frame_level += 1)
12066 if (fi != NULL)
12067 fi = get_prev_frame (fi);
12068
12069 old_chain = make_cleanup (null_cleanup, NULL);
12070 while (fi != NULL)
12071 {
12072 char *func_name;
12073 enum language func_lang;
12074
12075 find_frame_funname (fi, &func_name, &func_lang, NULL);
12076 if (func_name != NULL)
12077 {
12078 make_cleanup (xfree, func_name);
12079
12080 if (strcmp (func_name,
12081 data->exception_info->catch_exception_sym) == 0)
12082 break; /* We found the frame we were looking for... */
12083 fi = get_prev_frame (fi);
12084 }
12085 }
12086 do_cleanups (old_chain);
12087
12088 if (fi == NULL)
12089 return 0;
12090
12091 select_frame (fi);
12092 return parse_and_eval_address ("id.full_name");
12093 }
12094
12095 /* Assuming the inferior just triggered an Ada exception catchpoint
12096 (of any type), return the address in inferior memory where the name
12097 of the exception is stored, if applicable.
12098
12099 Return zero if the address could not be computed, or if not relevant. */
12100
12101 static CORE_ADDR
12102 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12103 struct breakpoint *b)
12104 {
12105 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12106
12107 switch (ex)
12108 {
12109 case ada_catch_exception:
12110 return (parse_and_eval_address ("e.full_name"));
12111 break;
12112
12113 case ada_catch_exception_unhandled:
12114 return data->exception_info->unhandled_exception_name_addr ();
12115 break;
12116
12117 case ada_catch_assert:
12118 return 0; /* Exception name is not relevant in this case. */
12119 break;
12120
12121 default:
12122 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12123 break;
12124 }
12125
12126 return 0; /* Should never be reached. */
12127 }
12128
12129 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12130 any error that ada_exception_name_addr_1 might cause to be thrown.
12131 When an error is intercepted, a warning with the error message is printed,
12132 and zero is returned. */
12133
12134 static CORE_ADDR
12135 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12136 struct breakpoint *b)
12137 {
12138 CORE_ADDR result = 0;
12139
12140 TRY
12141 {
12142 result = ada_exception_name_addr_1 (ex, b);
12143 }
12144
12145 CATCH (e, RETURN_MASK_ERROR)
12146 {
12147 warning (_("failed to get exception name: %s"), e.message);
12148 return 0;
12149 }
12150 END_CATCH
12151
12152 return result;
12153 }
12154
12155 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12156
12157 /* Ada catchpoints.
12158
12159 In the case of catchpoints on Ada exceptions, the catchpoint will
12160 stop the target on every exception the program throws. When a user
12161 specifies the name of a specific exception, we translate this
12162 request into a condition expression (in text form), and then parse
12163 it into an expression stored in each of the catchpoint's locations.
12164 We then use this condition to check whether the exception that was
12165 raised is the one the user is interested in. If not, then the
12166 target is resumed again. We store the name of the requested
12167 exception, in order to be able to re-set the condition expression
12168 when symbols change. */
12169
12170 /* An instance of this type is used to represent an Ada catchpoint
12171 breakpoint location. It includes a "struct bp_location" as a kind
12172 of base class; users downcast to "struct bp_location *" when
12173 needed. */
12174
12175 struct ada_catchpoint_location
12176 {
12177 /* The base class. */
12178 struct bp_location base;
12179
12180 /* The condition that checks whether the exception that was raised
12181 is the specific exception the user specified on catchpoint
12182 creation. */
12183 struct expression *excep_cond_expr;
12184 };
12185
12186 /* Implement the DTOR method in the bp_location_ops structure for all
12187 Ada exception catchpoint kinds. */
12188
12189 static void
12190 ada_catchpoint_location_dtor (struct bp_location *bl)
12191 {
12192 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12193
12194 xfree (al->excep_cond_expr);
12195 }
12196
12197 /* The vtable to be used in Ada catchpoint locations. */
12198
12199 static const struct bp_location_ops ada_catchpoint_location_ops =
12200 {
12201 ada_catchpoint_location_dtor
12202 };
12203
12204 /* An instance of this type is used to represent an Ada catchpoint.
12205 It includes a "struct breakpoint" as a kind of base class; users
12206 downcast to "struct breakpoint *" when needed. */
12207
12208 struct ada_catchpoint
12209 {
12210 /* The base class. */
12211 struct breakpoint base;
12212
12213 /* The name of the specific exception the user specified. */
12214 char *excep_string;
12215 };
12216
12217 /* Parse the exception condition string in the context of each of the
12218 catchpoint's locations, and store them for later evaluation. */
12219
12220 static void
12221 create_excep_cond_exprs (struct ada_catchpoint *c)
12222 {
12223 struct cleanup *old_chain;
12224 struct bp_location *bl;
12225 char *cond_string;
12226
12227 /* Nothing to do if there's no specific exception to catch. */
12228 if (c->excep_string == NULL)
12229 return;
12230
12231 /* Same if there are no locations... */
12232 if (c->base.loc == NULL)
12233 return;
12234
12235 /* Compute the condition expression in text form, from the specific
12236 expection we want to catch. */
12237 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12238 old_chain = make_cleanup (xfree, cond_string);
12239
12240 /* Iterate over all the catchpoint's locations, and parse an
12241 expression for each. */
12242 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12243 {
12244 struct ada_catchpoint_location *ada_loc
12245 = (struct ada_catchpoint_location *) bl;
12246 struct expression *exp = NULL;
12247
12248 if (!bl->shlib_disabled)
12249 {
12250 const char *s;
12251
12252 s = cond_string;
12253 TRY
12254 {
12255 exp = parse_exp_1 (&s, bl->address,
12256 block_for_pc (bl->address), 0);
12257 }
12258 CATCH (e, RETURN_MASK_ERROR)
12259 {
12260 warning (_("failed to reevaluate internal exception condition "
12261 "for catchpoint %d: %s"),
12262 c->base.number, e.message);
12263 /* There is a bug in GCC on sparc-solaris when building with
12264 optimization which causes EXP to change unexpectedly
12265 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12266 The problem should be fixed starting with GCC 4.9.
12267 In the meantime, work around it by forcing EXP back
12268 to NULL. */
12269 exp = NULL;
12270 }
12271 END_CATCH
12272 }
12273
12274 ada_loc->excep_cond_expr = exp;
12275 }
12276
12277 do_cleanups (old_chain);
12278 }
12279
12280 /* Implement the DTOR method in the breakpoint_ops structure for all
12281 exception catchpoint kinds. */
12282
12283 static void
12284 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12285 {
12286 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12287
12288 xfree (c->excep_string);
12289
12290 bkpt_breakpoint_ops.dtor (b);
12291 }
12292
12293 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12294 structure for all exception catchpoint kinds. */
12295
12296 static struct bp_location *
12297 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12298 struct breakpoint *self)
12299 {
12300 struct ada_catchpoint_location *loc;
12301
12302 loc = XNEW (struct ada_catchpoint_location);
12303 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12304 loc->excep_cond_expr = NULL;
12305 return &loc->base;
12306 }
12307
12308 /* Implement the RE_SET method in the breakpoint_ops structure for all
12309 exception catchpoint kinds. */
12310
12311 static void
12312 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12313 {
12314 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12315
12316 /* Call the base class's method. This updates the catchpoint's
12317 locations. */
12318 bkpt_breakpoint_ops.re_set (b);
12319
12320 /* Reparse the exception conditional expressions. One for each
12321 location. */
12322 create_excep_cond_exprs (c);
12323 }
12324
12325 /* Returns true if we should stop for this breakpoint hit. If the
12326 user specified a specific exception, we only want to cause a stop
12327 if the program thrown that exception. */
12328
12329 static int
12330 should_stop_exception (const struct bp_location *bl)
12331 {
12332 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12333 const struct ada_catchpoint_location *ada_loc
12334 = (const struct ada_catchpoint_location *) bl;
12335 int stop;
12336
12337 /* With no specific exception, should always stop. */
12338 if (c->excep_string == NULL)
12339 return 1;
12340
12341 if (ada_loc->excep_cond_expr == NULL)
12342 {
12343 /* We will have a NULL expression if back when we were creating
12344 the expressions, this location's had failed to parse. */
12345 return 1;
12346 }
12347
12348 stop = 1;
12349 TRY
12350 {
12351 struct value *mark;
12352
12353 mark = value_mark ();
12354 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12355 value_free_to_mark (mark);
12356 }
12357 CATCH (ex, RETURN_MASK_ALL)
12358 {
12359 exception_fprintf (gdb_stderr, ex,
12360 _("Error in testing exception condition:\n"));
12361 }
12362 END_CATCH
12363
12364 return stop;
12365 }
12366
12367 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12368 for all exception catchpoint kinds. */
12369
12370 static void
12371 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12372 {
12373 bs->stop = should_stop_exception (bs->bp_location_at);
12374 }
12375
12376 /* Implement the PRINT_IT method in the breakpoint_ops structure
12377 for all exception catchpoint kinds. */
12378
12379 static enum print_stop_action
12380 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12381 {
12382 struct ui_out *uiout = current_uiout;
12383 struct breakpoint *b = bs->breakpoint_at;
12384
12385 annotate_catchpoint (b->number);
12386
12387 if (ui_out_is_mi_like_p (uiout))
12388 {
12389 ui_out_field_string (uiout, "reason",
12390 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12391 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12392 }
12393
12394 ui_out_text (uiout,
12395 b->disposition == disp_del ? "\nTemporary catchpoint "
12396 : "\nCatchpoint ");
12397 ui_out_field_int (uiout, "bkptno", b->number);
12398 ui_out_text (uiout, ", ");
12399
12400 switch (ex)
12401 {
12402 case ada_catch_exception:
12403 case ada_catch_exception_unhandled:
12404 {
12405 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12406 char exception_name[256];
12407
12408 if (addr != 0)
12409 {
12410 read_memory (addr, (gdb_byte *) exception_name,
12411 sizeof (exception_name) - 1);
12412 exception_name [sizeof (exception_name) - 1] = '\0';
12413 }
12414 else
12415 {
12416 /* For some reason, we were unable to read the exception
12417 name. This could happen if the Runtime was compiled
12418 without debugging info, for instance. In that case,
12419 just replace the exception name by the generic string
12420 "exception" - it will read as "an exception" in the
12421 notification we are about to print. */
12422 memcpy (exception_name, "exception", sizeof ("exception"));
12423 }
12424 /* In the case of unhandled exception breakpoints, we print
12425 the exception name as "unhandled EXCEPTION_NAME", to make
12426 it clearer to the user which kind of catchpoint just got
12427 hit. We used ui_out_text to make sure that this extra
12428 info does not pollute the exception name in the MI case. */
12429 if (ex == ada_catch_exception_unhandled)
12430 ui_out_text (uiout, "unhandled ");
12431 ui_out_field_string (uiout, "exception-name", exception_name);
12432 }
12433 break;
12434 case ada_catch_assert:
12435 /* In this case, the name of the exception is not really
12436 important. Just print "failed assertion" to make it clearer
12437 that his program just hit an assertion-failure catchpoint.
12438 We used ui_out_text because this info does not belong in
12439 the MI output. */
12440 ui_out_text (uiout, "failed assertion");
12441 break;
12442 }
12443 ui_out_text (uiout, " at ");
12444 ada_find_printable_frame (get_current_frame ());
12445
12446 return PRINT_SRC_AND_LOC;
12447 }
12448
12449 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12450 for all exception catchpoint kinds. */
12451
12452 static void
12453 print_one_exception (enum ada_exception_catchpoint_kind ex,
12454 struct breakpoint *b, struct bp_location **last_loc)
12455 {
12456 struct ui_out *uiout = current_uiout;
12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12458 struct value_print_options opts;
12459
12460 get_user_print_options (&opts);
12461 if (opts.addressprint)
12462 {
12463 annotate_field (4);
12464 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12465 }
12466
12467 annotate_field (5);
12468 *last_loc = b->loc;
12469 switch (ex)
12470 {
12471 case ada_catch_exception:
12472 if (c->excep_string != NULL)
12473 {
12474 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12475
12476 ui_out_field_string (uiout, "what", msg);
12477 xfree (msg);
12478 }
12479 else
12480 ui_out_field_string (uiout, "what", "all Ada exceptions");
12481
12482 break;
12483
12484 case ada_catch_exception_unhandled:
12485 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12486 break;
12487
12488 case ada_catch_assert:
12489 ui_out_field_string (uiout, "what", "failed Ada assertions");
12490 break;
12491
12492 default:
12493 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12494 break;
12495 }
12496 }
12497
12498 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12499 for all exception catchpoint kinds. */
12500
12501 static void
12502 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12503 struct breakpoint *b)
12504 {
12505 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12506 struct ui_out *uiout = current_uiout;
12507
12508 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12509 : _("Catchpoint "));
12510 ui_out_field_int (uiout, "bkptno", b->number);
12511 ui_out_text (uiout, ": ");
12512
12513 switch (ex)
12514 {
12515 case ada_catch_exception:
12516 if (c->excep_string != NULL)
12517 {
12518 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12519 struct cleanup *old_chain = make_cleanup (xfree, info);
12520
12521 ui_out_text (uiout, info);
12522 do_cleanups (old_chain);
12523 }
12524 else
12525 ui_out_text (uiout, _("all Ada exceptions"));
12526 break;
12527
12528 case ada_catch_exception_unhandled:
12529 ui_out_text (uiout, _("unhandled Ada exceptions"));
12530 break;
12531
12532 case ada_catch_assert:
12533 ui_out_text (uiout, _("failed Ada assertions"));
12534 break;
12535
12536 default:
12537 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12538 break;
12539 }
12540 }
12541
12542 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12543 for all exception catchpoint kinds. */
12544
12545 static void
12546 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12547 struct breakpoint *b, struct ui_file *fp)
12548 {
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550
12551 switch (ex)
12552 {
12553 case ada_catch_exception:
12554 fprintf_filtered (fp, "catch exception");
12555 if (c->excep_string != NULL)
12556 fprintf_filtered (fp, " %s", c->excep_string);
12557 break;
12558
12559 case ada_catch_exception_unhandled:
12560 fprintf_filtered (fp, "catch exception unhandled");
12561 break;
12562
12563 case ada_catch_assert:
12564 fprintf_filtered (fp, "catch assert");
12565 break;
12566
12567 default:
12568 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12569 }
12570 print_recreate_thread (b, fp);
12571 }
12572
12573 /* Virtual table for "catch exception" breakpoints. */
12574
12575 static void
12576 dtor_catch_exception (struct breakpoint *b)
12577 {
12578 dtor_exception (ada_catch_exception, b);
12579 }
12580
12581 static struct bp_location *
12582 allocate_location_catch_exception (struct breakpoint *self)
12583 {
12584 return allocate_location_exception (ada_catch_exception, self);
12585 }
12586
12587 static void
12588 re_set_catch_exception (struct breakpoint *b)
12589 {
12590 re_set_exception (ada_catch_exception, b);
12591 }
12592
12593 static void
12594 check_status_catch_exception (bpstat bs)
12595 {
12596 check_status_exception (ada_catch_exception, bs);
12597 }
12598
12599 static enum print_stop_action
12600 print_it_catch_exception (bpstat bs)
12601 {
12602 return print_it_exception (ada_catch_exception, bs);
12603 }
12604
12605 static void
12606 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12607 {
12608 print_one_exception (ada_catch_exception, b, last_loc);
12609 }
12610
12611 static void
12612 print_mention_catch_exception (struct breakpoint *b)
12613 {
12614 print_mention_exception (ada_catch_exception, b);
12615 }
12616
12617 static void
12618 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12619 {
12620 print_recreate_exception (ada_catch_exception, b, fp);
12621 }
12622
12623 static struct breakpoint_ops catch_exception_breakpoint_ops;
12624
12625 /* Virtual table for "catch exception unhandled" breakpoints. */
12626
12627 static void
12628 dtor_catch_exception_unhandled (struct breakpoint *b)
12629 {
12630 dtor_exception (ada_catch_exception_unhandled, b);
12631 }
12632
12633 static struct bp_location *
12634 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12635 {
12636 return allocate_location_exception (ada_catch_exception_unhandled, self);
12637 }
12638
12639 static void
12640 re_set_catch_exception_unhandled (struct breakpoint *b)
12641 {
12642 re_set_exception (ada_catch_exception_unhandled, b);
12643 }
12644
12645 static void
12646 check_status_catch_exception_unhandled (bpstat bs)
12647 {
12648 check_status_exception (ada_catch_exception_unhandled, bs);
12649 }
12650
12651 static enum print_stop_action
12652 print_it_catch_exception_unhandled (bpstat bs)
12653 {
12654 return print_it_exception (ada_catch_exception_unhandled, bs);
12655 }
12656
12657 static void
12658 print_one_catch_exception_unhandled (struct breakpoint *b,
12659 struct bp_location **last_loc)
12660 {
12661 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12662 }
12663
12664 static void
12665 print_mention_catch_exception_unhandled (struct breakpoint *b)
12666 {
12667 print_mention_exception (ada_catch_exception_unhandled, b);
12668 }
12669
12670 static void
12671 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12672 struct ui_file *fp)
12673 {
12674 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12675 }
12676
12677 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12678
12679 /* Virtual table for "catch assert" breakpoints. */
12680
12681 static void
12682 dtor_catch_assert (struct breakpoint *b)
12683 {
12684 dtor_exception (ada_catch_assert, b);
12685 }
12686
12687 static struct bp_location *
12688 allocate_location_catch_assert (struct breakpoint *self)
12689 {
12690 return allocate_location_exception (ada_catch_assert, self);
12691 }
12692
12693 static void
12694 re_set_catch_assert (struct breakpoint *b)
12695 {
12696 re_set_exception (ada_catch_assert, b);
12697 }
12698
12699 static void
12700 check_status_catch_assert (bpstat bs)
12701 {
12702 check_status_exception (ada_catch_assert, bs);
12703 }
12704
12705 static enum print_stop_action
12706 print_it_catch_assert (bpstat bs)
12707 {
12708 return print_it_exception (ada_catch_assert, bs);
12709 }
12710
12711 static void
12712 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12713 {
12714 print_one_exception (ada_catch_assert, b, last_loc);
12715 }
12716
12717 static void
12718 print_mention_catch_assert (struct breakpoint *b)
12719 {
12720 print_mention_exception (ada_catch_assert, b);
12721 }
12722
12723 static void
12724 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12725 {
12726 print_recreate_exception (ada_catch_assert, b, fp);
12727 }
12728
12729 static struct breakpoint_ops catch_assert_breakpoint_ops;
12730
12731 /* Return a newly allocated copy of the first space-separated token
12732 in ARGSP, and then adjust ARGSP to point immediately after that
12733 token.
12734
12735 Return NULL if ARGPS does not contain any more tokens. */
12736
12737 static char *
12738 ada_get_next_arg (char **argsp)
12739 {
12740 char *args = *argsp;
12741 char *end;
12742 char *result;
12743
12744 args = skip_spaces (args);
12745 if (args[0] == '\0')
12746 return NULL; /* No more arguments. */
12747
12748 /* Find the end of the current argument. */
12749
12750 end = skip_to_space (args);
12751
12752 /* Adjust ARGSP to point to the start of the next argument. */
12753
12754 *argsp = end;
12755
12756 /* Make a copy of the current argument and return it. */
12757
12758 result = (char *) xmalloc (end - args + 1);
12759 strncpy (result, args, end - args);
12760 result[end - args] = '\0';
12761
12762 return result;
12763 }
12764
12765 /* Split the arguments specified in a "catch exception" command.
12766 Set EX to the appropriate catchpoint type.
12767 Set EXCEP_STRING to the name of the specific exception if
12768 specified by the user.
12769 If a condition is found at the end of the arguments, the condition
12770 expression is stored in COND_STRING (memory must be deallocated
12771 after use). Otherwise COND_STRING is set to NULL. */
12772
12773 static void
12774 catch_ada_exception_command_split (char *args,
12775 enum ada_exception_catchpoint_kind *ex,
12776 char **excep_string,
12777 char **cond_string)
12778 {
12779 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12780 char *exception_name;
12781 char *cond = NULL;
12782
12783 exception_name = ada_get_next_arg (&args);
12784 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12785 {
12786 /* This is not an exception name; this is the start of a condition
12787 expression for a catchpoint on all exceptions. So, "un-get"
12788 this token, and set exception_name to NULL. */
12789 xfree (exception_name);
12790 exception_name = NULL;
12791 args -= 2;
12792 }
12793 make_cleanup (xfree, exception_name);
12794
12795 /* Check to see if we have a condition. */
12796
12797 args = skip_spaces (args);
12798 if (startswith (args, "if")
12799 && (isspace (args[2]) || args[2] == '\0'))
12800 {
12801 args += 2;
12802 args = skip_spaces (args);
12803
12804 if (args[0] == '\0')
12805 error (_("Condition missing after `if' keyword"));
12806 cond = xstrdup (args);
12807 make_cleanup (xfree, cond);
12808
12809 args += strlen (args);
12810 }
12811
12812 /* Check that we do not have any more arguments. Anything else
12813 is unexpected. */
12814
12815 if (args[0] != '\0')
12816 error (_("Junk at end of expression"));
12817
12818 discard_cleanups (old_chain);
12819
12820 if (exception_name == NULL)
12821 {
12822 /* Catch all exceptions. */
12823 *ex = ada_catch_exception;
12824 *excep_string = NULL;
12825 }
12826 else if (strcmp (exception_name, "unhandled") == 0)
12827 {
12828 /* Catch unhandled exceptions. */
12829 *ex = ada_catch_exception_unhandled;
12830 *excep_string = NULL;
12831 }
12832 else
12833 {
12834 /* Catch a specific exception. */
12835 *ex = ada_catch_exception;
12836 *excep_string = exception_name;
12837 }
12838 *cond_string = cond;
12839 }
12840
12841 /* Return the name of the symbol on which we should break in order to
12842 implement a catchpoint of the EX kind. */
12843
12844 static const char *
12845 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12846 {
12847 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12848
12849 gdb_assert (data->exception_info != NULL);
12850
12851 switch (ex)
12852 {
12853 case ada_catch_exception:
12854 return (data->exception_info->catch_exception_sym);
12855 break;
12856 case ada_catch_exception_unhandled:
12857 return (data->exception_info->catch_exception_unhandled_sym);
12858 break;
12859 case ada_catch_assert:
12860 return (data->exception_info->catch_assert_sym);
12861 break;
12862 default:
12863 internal_error (__FILE__, __LINE__,
12864 _("unexpected catchpoint kind (%d)"), ex);
12865 }
12866 }
12867
12868 /* Return the breakpoint ops "virtual table" used for catchpoints
12869 of the EX kind. */
12870
12871 static const struct breakpoint_ops *
12872 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12873 {
12874 switch (ex)
12875 {
12876 case ada_catch_exception:
12877 return (&catch_exception_breakpoint_ops);
12878 break;
12879 case ada_catch_exception_unhandled:
12880 return (&catch_exception_unhandled_breakpoint_ops);
12881 break;
12882 case ada_catch_assert:
12883 return (&catch_assert_breakpoint_ops);
12884 break;
12885 default:
12886 internal_error (__FILE__, __LINE__,
12887 _("unexpected catchpoint kind (%d)"), ex);
12888 }
12889 }
12890
12891 /* Return the condition that will be used to match the current exception
12892 being raised with the exception that the user wants to catch. This
12893 assumes that this condition is used when the inferior just triggered
12894 an exception catchpoint.
12895
12896 The string returned is a newly allocated string that needs to be
12897 deallocated later. */
12898
12899 static char *
12900 ada_exception_catchpoint_cond_string (const char *excep_string)
12901 {
12902 int i;
12903
12904 /* The standard exceptions are a special case. They are defined in
12905 runtime units that have been compiled without debugging info; if
12906 EXCEP_STRING is the not-fully-qualified name of a standard
12907 exception (e.g. "constraint_error") then, during the evaluation
12908 of the condition expression, the symbol lookup on this name would
12909 *not* return this standard exception. The catchpoint condition
12910 may then be set only on user-defined exceptions which have the
12911 same not-fully-qualified name (e.g. my_package.constraint_error).
12912
12913 To avoid this unexcepted behavior, these standard exceptions are
12914 systematically prefixed by "standard". This means that "catch
12915 exception constraint_error" is rewritten into "catch exception
12916 standard.constraint_error".
12917
12918 If an exception named contraint_error is defined in another package of
12919 the inferior program, then the only way to specify this exception as a
12920 breakpoint condition is to use its fully-qualified named:
12921 e.g. my_package.constraint_error. */
12922
12923 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12924 {
12925 if (strcmp (standard_exc [i], excep_string) == 0)
12926 {
12927 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12928 excep_string);
12929 }
12930 }
12931 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12932 }
12933
12934 /* Return the symtab_and_line that should be used to insert an exception
12935 catchpoint of the TYPE kind.
12936
12937 EXCEP_STRING should contain the name of a specific exception that
12938 the catchpoint should catch, or NULL otherwise.
12939
12940 ADDR_STRING returns the name of the function where the real
12941 breakpoint that implements the catchpoints is set, depending on the
12942 type of catchpoint we need to create. */
12943
12944 static struct symtab_and_line
12945 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12946 char **addr_string, const struct breakpoint_ops **ops)
12947 {
12948 const char *sym_name;
12949 struct symbol *sym;
12950
12951 /* First, find out which exception support info to use. */
12952 ada_exception_support_info_sniffer ();
12953
12954 /* Then lookup the function on which we will break in order to catch
12955 the Ada exceptions requested by the user. */
12956 sym_name = ada_exception_sym_name (ex);
12957 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12958
12959 /* We can assume that SYM is not NULL at this stage. If the symbol
12960 did not exist, ada_exception_support_info_sniffer would have
12961 raised an exception.
12962
12963 Also, ada_exception_support_info_sniffer should have already
12964 verified that SYM is a function symbol. */
12965 gdb_assert (sym != NULL);
12966 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12967
12968 /* Set ADDR_STRING. */
12969 *addr_string = xstrdup (sym_name);
12970
12971 /* Set OPS. */
12972 *ops = ada_exception_breakpoint_ops (ex);
12973
12974 return find_function_start_sal (sym, 1);
12975 }
12976
12977 /* Create an Ada exception catchpoint.
12978
12979 EX_KIND is the kind of exception catchpoint to be created.
12980
12981 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12982 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12983 of the exception to which this catchpoint applies. When not NULL,
12984 the string must be allocated on the heap, and its deallocation
12985 is no longer the responsibility of the caller.
12986
12987 COND_STRING, if not NULL, is the catchpoint condition. This string
12988 must be allocated on the heap, and its deallocation is no longer
12989 the responsibility of the caller.
12990
12991 TEMPFLAG, if nonzero, means that the underlying breakpoint
12992 should be temporary.
12993
12994 FROM_TTY is the usual argument passed to all commands implementations. */
12995
12996 void
12997 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12998 enum ada_exception_catchpoint_kind ex_kind,
12999 char *excep_string,
13000 char *cond_string,
13001 int tempflag,
13002 int disabled,
13003 int from_tty)
13004 {
13005 struct ada_catchpoint *c;
13006 char *addr_string = NULL;
13007 const struct breakpoint_ops *ops = NULL;
13008 struct symtab_and_line sal
13009 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13010
13011 c = XNEW (struct ada_catchpoint);
13012 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13013 ops, tempflag, disabled, from_tty);
13014 c->excep_string = excep_string;
13015 create_excep_cond_exprs (c);
13016 if (cond_string != NULL)
13017 set_breakpoint_condition (&c->base, cond_string, from_tty);
13018 install_breakpoint (0, &c->base, 1);
13019 }
13020
13021 /* Implement the "catch exception" command. */
13022
13023 static void
13024 catch_ada_exception_command (char *arg, int from_tty,
13025 struct cmd_list_element *command)
13026 {
13027 struct gdbarch *gdbarch = get_current_arch ();
13028 int tempflag;
13029 enum ada_exception_catchpoint_kind ex_kind;
13030 char *excep_string = NULL;
13031 char *cond_string = NULL;
13032
13033 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13034
13035 if (!arg)
13036 arg = "";
13037 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13038 &cond_string);
13039 create_ada_exception_catchpoint (gdbarch, ex_kind,
13040 excep_string, cond_string,
13041 tempflag, 1 /* enabled */,
13042 from_tty);
13043 }
13044
13045 /* Split the arguments specified in a "catch assert" command.
13046
13047 ARGS contains the command's arguments (or the empty string if
13048 no arguments were passed).
13049
13050 If ARGS contains a condition, set COND_STRING to that condition
13051 (the memory needs to be deallocated after use). */
13052
13053 static void
13054 catch_ada_assert_command_split (char *args, char **cond_string)
13055 {
13056 args = skip_spaces (args);
13057
13058 /* Check whether a condition was provided. */
13059 if (startswith (args, "if")
13060 && (isspace (args[2]) || args[2] == '\0'))
13061 {
13062 args += 2;
13063 args = skip_spaces (args);
13064 if (args[0] == '\0')
13065 error (_("condition missing after `if' keyword"));
13066 *cond_string = xstrdup (args);
13067 }
13068
13069 /* Otherwise, there should be no other argument at the end of
13070 the command. */
13071 else if (args[0] != '\0')
13072 error (_("Junk at end of arguments."));
13073 }
13074
13075 /* Implement the "catch assert" command. */
13076
13077 static void
13078 catch_assert_command (char *arg, int from_tty,
13079 struct cmd_list_element *command)
13080 {
13081 struct gdbarch *gdbarch = get_current_arch ();
13082 int tempflag;
13083 char *cond_string = NULL;
13084
13085 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13086
13087 if (!arg)
13088 arg = "";
13089 catch_ada_assert_command_split (arg, &cond_string);
13090 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13091 NULL, cond_string,
13092 tempflag, 1 /* enabled */,
13093 from_tty);
13094 }
13095
13096 /* Return non-zero if the symbol SYM is an Ada exception object. */
13097
13098 static int
13099 ada_is_exception_sym (struct symbol *sym)
13100 {
13101 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13102
13103 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13104 && SYMBOL_CLASS (sym) != LOC_BLOCK
13105 && SYMBOL_CLASS (sym) != LOC_CONST
13106 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13107 && type_name != NULL && strcmp (type_name, "exception") == 0);
13108 }
13109
13110 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13111 Ada exception object. This matches all exceptions except the ones
13112 defined by the Ada language. */
13113
13114 static int
13115 ada_is_non_standard_exception_sym (struct symbol *sym)
13116 {
13117 int i;
13118
13119 if (!ada_is_exception_sym (sym))
13120 return 0;
13121
13122 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13123 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13124 return 0; /* A standard exception. */
13125
13126 /* Numeric_Error is also a standard exception, so exclude it.
13127 See the STANDARD_EXC description for more details as to why
13128 this exception is not listed in that array. */
13129 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13130 return 0;
13131
13132 return 1;
13133 }
13134
13135 /* A helper function for qsort, comparing two struct ada_exc_info
13136 objects.
13137
13138 The comparison is determined first by exception name, and then
13139 by exception address. */
13140
13141 static int
13142 compare_ada_exception_info (const void *a, const void *b)
13143 {
13144 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13145 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13146 int result;
13147
13148 result = strcmp (exc_a->name, exc_b->name);
13149 if (result != 0)
13150 return result;
13151
13152 if (exc_a->addr < exc_b->addr)
13153 return -1;
13154 if (exc_a->addr > exc_b->addr)
13155 return 1;
13156
13157 return 0;
13158 }
13159
13160 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13161 routine, but keeping the first SKIP elements untouched.
13162
13163 All duplicates are also removed. */
13164
13165 static void
13166 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13167 int skip)
13168 {
13169 struct ada_exc_info *to_sort
13170 = VEC_address (ada_exc_info, *exceptions) + skip;
13171 int to_sort_len
13172 = VEC_length (ada_exc_info, *exceptions) - skip;
13173 int i, j;
13174
13175 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13176 compare_ada_exception_info);
13177
13178 for (i = 1, j = 1; i < to_sort_len; i++)
13179 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13180 to_sort[j++] = to_sort[i];
13181 to_sort_len = j;
13182 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13183 }
13184
13185 /* A function intended as the "name_matcher" callback in the struct
13186 quick_symbol_functions' expand_symtabs_matching method.
13187
13188 SEARCH_NAME is the symbol's search name.
13189
13190 If USER_DATA is not NULL, it is a pointer to a regext_t object
13191 used to match the symbol (by natural name). Otherwise, when USER_DATA
13192 is null, no filtering is performed, and all symbols are a positive
13193 match. */
13194
13195 static int
13196 ada_exc_search_name_matches (const char *search_name, void *user_data)
13197 {
13198 regex_t *preg = (regex_t *) user_data;
13199
13200 if (preg == NULL)
13201 return 1;
13202
13203 /* In Ada, the symbol "search name" is a linkage name, whereas
13204 the regular expression used to do the matching refers to
13205 the natural name. So match against the decoded name. */
13206 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13207 }
13208
13209 /* Add all exceptions defined by the Ada standard whose name match
13210 a regular expression.
13211
13212 If PREG is not NULL, then this regexp_t object is used to
13213 perform the symbol name matching. Otherwise, no name-based
13214 filtering is performed.
13215
13216 EXCEPTIONS is a vector of exceptions to which matching exceptions
13217 gets pushed. */
13218
13219 static void
13220 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13221 {
13222 int i;
13223
13224 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13225 {
13226 if (preg == NULL
13227 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13228 {
13229 struct bound_minimal_symbol msymbol
13230 = ada_lookup_simple_minsym (standard_exc[i]);
13231
13232 if (msymbol.minsym != NULL)
13233 {
13234 struct ada_exc_info info
13235 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13236
13237 VEC_safe_push (ada_exc_info, *exceptions, &info);
13238 }
13239 }
13240 }
13241 }
13242
13243 /* Add all Ada exceptions defined locally and accessible from the given
13244 FRAME.
13245
13246 If PREG is not NULL, then this regexp_t object is used to
13247 perform the symbol name matching. Otherwise, no name-based
13248 filtering is performed.
13249
13250 EXCEPTIONS is a vector of exceptions to which matching exceptions
13251 gets pushed. */
13252
13253 static void
13254 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13255 VEC(ada_exc_info) **exceptions)
13256 {
13257 const struct block *block = get_frame_block (frame, 0);
13258
13259 while (block != 0)
13260 {
13261 struct block_iterator iter;
13262 struct symbol *sym;
13263
13264 ALL_BLOCK_SYMBOLS (block, iter, sym)
13265 {
13266 switch (SYMBOL_CLASS (sym))
13267 {
13268 case LOC_TYPEDEF:
13269 case LOC_BLOCK:
13270 case LOC_CONST:
13271 break;
13272 default:
13273 if (ada_is_exception_sym (sym))
13274 {
13275 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13276 SYMBOL_VALUE_ADDRESS (sym)};
13277
13278 VEC_safe_push (ada_exc_info, *exceptions, &info);
13279 }
13280 }
13281 }
13282 if (BLOCK_FUNCTION (block) != NULL)
13283 break;
13284 block = BLOCK_SUPERBLOCK (block);
13285 }
13286 }
13287
13288 /* Add all exceptions defined globally whose name name match
13289 a regular expression, excluding standard exceptions.
13290
13291 The reason we exclude standard exceptions is that they need
13292 to be handled separately: Standard exceptions are defined inside
13293 a runtime unit which is normally not compiled with debugging info,
13294 and thus usually do not show up in our symbol search. However,
13295 if the unit was in fact built with debugging info, we need to
13296 exclude them because they would duplicate the entry we found
13297 during the special loop that specifically searches for those
13298 standard exceptions.
13299
13300 If PREG is not NULL, then this regexp_t object is used to
13301 perform the symbol name matching. Otherwise, no name-based
13302 filtering is performed.
13303
13304 EXCEPTIONS is a vector of exceptions to which matching exceptions
13305 gets pushed. */
13306
13307 static void
13308 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13309 {
13310 struct objfile *objfile;
13311 struct compunit_symtab *s;
13312
13313 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13314 VARIABLES_DOMAIN, preg);
13315
13316 ALL_COMPUNITS (objfile, s)
13317 {
13318 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13319 int i;
13320
13321 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13322 {
13323 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13324 struct block_iterator iter;
13325 struct symbol *sym;
13326
13327 ALL_BLOCK_SYMBOLS (b, iter, sym)
13328 if (ada_is_non_standard_exception_sym (sym)
13329 && (preg == NULL
13330 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13331 0, NULL, 0) == 0))
13332 {
13333 struct ada_exc_info info
13334 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13335
13336 VEC_safe_push (ada_exc_info, *exceptions, &info);
13337 }
13338 }
13339 }
13340 }
13341
13342 /* Implements ada_exceptions_list with the regular expression passed
13343 as a regex_t, rather than a string.
13344
13345 If not NULL, PREG is used to filter out exceptions whose names
13346 do not match. Otherwise, all exceptions are listed. */
13347
13348 static VEC(ada_exc_info) *
13349 ada_exceptions_list_1 (regex_t *preg)
13350 {
13351 VEC(ada_exc_info) *result = NULL;
13352 struct cleanup *old_chain
13353 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13354 int prev_len;
13355
13356 /* First, list the known standard exceptions. These exceptions
13357 need to be handled separately, as they are usually defined in
13358 runtime units that have been compiled without debugging info. */
13359
13360 ada_add_standard_exceptions (preg, &result);
13361
13362 /* Next, find all exceptions whose scope is local and accessible
13363 from the currently selected frame. */
13364
13365 if (has_stack_frames ())
13366 {
13367 prev_len = VEC_length (ada_exc_info, result);
13368 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13369 &result);
13370 if (VEC_length (ada_exc_info, result) > prev_len)
13371 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13372 }
13373
13374 /* Add all exceptions whose scope is global. */
13375
13376 prev_len = VEC_length (ada_exc_info, result);
13377 ada_add_global_exceptions (preg, &result);
13378 if (VEC_length (ada_exc_info, result) > prev_len)
13379 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13380
13381 discard_cleanups (old_chain);
13382 return result;
13383 }
13384
13385 /* Return a vector of ada_exc_info.
13386
13387 If REGEXP is NULL, all exceptions are included in the result.
13388 Otherwise, it should contain a valid regular expression,
13389 and only the exceptions whose names match that regular expression
13390 are included in the result.
13391
13392 The exceptions are sorted in the following order:
13393 - Standard exceptions (defined by the Ada language), in
13394 alphabetical order;
13395 - Exceptions only visible from the current frame, in
13396 alphabetical order;
13397 - Exceptions whose scope is global, in alphabetical order. */
13398
13399 VEC(ada_exc_info) *
13400 ada_exceptions_list (const char *regexp)
13401 {
13402 VEC(ada_exc_info) *result = NULL;
13403 struct cleanup *old_chain = NULL;
13404 regex_t reg;
13405
13406 if (regexp != NULL)
13407 old_chain = compile_rx_or_error (&reg, regexp,
13408 _("invalid regular expression"));
13409
13410 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13411
13412 if (old_chain != NULL)
13413 do_cleanups (old_chain);
13414 return result;
13415 }
13416
13417 /* Implement the "info exceptions" command. */
13418
13419 static void
13420 info_exceptions_command (char *regexp, int from_tty)
13421 {
13422 VEC(ada_exc_info) *exceptions;
13423 struct cleanup *cleanup;
13424 struct gdbarch *gdbarch = get_current_arch ();
13425 int ix;
13426 struct ada_exc_info *info;
13427
13428 exceptions = ada_exceptions_list (regexp);
13429 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13430
13431 if (regexp != NULL)
13432 printf_filtered
13433 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13434 else
13435 printf_filtered (_("All defined Ada exceptions:\n"));
13436
13437 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13438 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13439
13440 do_cleanups (cleanup);
13441 }
13442
13443 /* Operators */
13444 /* Information about operators given special treatment in functions
13445 below. */
13446 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13447
13448 #define ADA_OPERATORS \
13449 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13450 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13451 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13452 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13453 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13454 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13455 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13456 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13457 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13458 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13459 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13460 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13461 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13462 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13463 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13464 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13465 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13466 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13467 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13468
13469 static void
13470 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13471 int *argsp)
13472 {
13473 switch (exp->elts[pc - 1].opcode)
13474 {
13475 default:
13476 operator_length_standard (exp, pc, oplenp, argsp);
13477 break;
13478
13479 #define OP_DEFN(op, len, args, binop) \
13480 case op: *oplenp = len; *argsp = args; break;
13481 ADA_OPERATORS;
13482 #undef OP_DEFN
13483
13484 case OP_AGGREGATE:
13485 *oplenp = 3;
13486 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13487 break;
13488
13489 case OP_CHOICES:
13490 *oplenp = 3;
13491 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13492 break;
13493 }
13494 }
13495
13496 /* Implementation of the exp_descriptor method operator_check. */
13497
13498 static int
13499 ada_operator_check (struct expression *exp, int pos,
13500 int (*objfile_func) (struct objfile *objfile, void *data),
13501 void *data)
13502 {
13503 const union exp_element *const elts = exp->elts;
13504 struct type *type = NULL;
13505
13506 switch (elts[pos].opcode)
13507 {
13508 case UNOP_IN_RANGE:
13509 case UNOP_QUAL:
13510 type = elts[pos + 1].type;
13511 break;
13512
13513 default:
13514 return operator_check_standard (exp, pos, objfile_func, data);
13515 }
13516
13517 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13518
13519 if (type && TYPE_OBJFILE (type)
13520 && (*objfile_func) (TYPE_OBJFILE (type), data))
13521 return 1;
13522
13523 return 0;
13524 }
13525
13526 static char *
13527 ada_op_name (enum exp_opcode opcode)
13528 {
13529 switch (opcode)
13530 {
13531 default:
13532 return op_name_standard (opcode);
13533
13534 #define OP_DEFN(op, len, args, binop) case op: return #op;
13535 ADA_OPERATORS;
13536 #undef OP_DEFN
13537
13538 case OP_AGGREGATE:
13539 return "OP_AGGREGATE";
13540 case OP_CHOICES:
13541 return "OP_CHOICES";
13542 case OP_NAME:
13543 return "OP_NAME";
13544 }
13545 }
13546
13547 /* As for operator_length, but assumes PC is pointing at the first
13548 element of the operator, and gives meaningful results only for the
13549 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13550
13551 static void
13552 ada_forward_operator_length (struct expression *exp, int pc,
13553 int *oplenp, int *argsp)
13554 {
13555 switch (exp->elts[pc].opcode)
13556 {
13557 default:
13558 *oplenp = *argsp = 0;
13559 break;
13560
13561 #define OP_DEFN(op, len, args, binop) \
13562 case op: *oplenp = len; *argsp = args; break;
13563 ADA_OPERATORS;
13564 #undef OP_DEFN
13565
13566 case OP_AGGREGATE:
13567 *oplenp = 3;
13568 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13569 break;
13570
13571 case OP_CHOICES:
13572 *oplenp = 3;
13573 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13574 break;
13575
13576 case OP_STRING:
13577 case OP_NAME:
13578 {
13579 int len = longest_to_int (exp->elts[pc + 1].longconst);
13580
13581 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13582 *argsp = 0;
13583 break;
13584 }
13585 }
13586 }
13587
13588 static int
13589 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13590 {
13591 enum exp_opcode op = exp->elts[elt].opcode;
13592 int oplen, nargs;
13593 int pc = elt;
13594 int i;
13595
13596 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13597
13598 switch (op)
13599 {
13600 /* Ada attributes ('Foo). */
13601 case OP_ATR_FIRST:
13602 case OP_ATR_LAST:
13603 case OP_ATR_LENGTH:
13604 case OP_ATR_IMAGE:
13605 case OP_ATR_MAX:
13606 case OP_ATR_MIN:
13607 case OP_ATR_MODULUS:
13608 case OP_ATR_POS:
13609 case OP_ATR_SIZE:
13610 case OP_ATR_TAG:
13611 case OP_ATR_VAL:
13612 break;
13613
13614 case UNOP_IN_RANGE:
13615 case UNOP_QUAL:
13616 /* XXX: gdb_sprint_host_address, type_sprint */
13617 fprintf_filtered (stream, _("Type @"));
13618 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13619 fprintf_filtered (stream, " (");
13620 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13621 fprintf_filtered (stream, ")");
13622 break;
13623 case BINOP_IN_BOUNDS:
13624 fprintf_filtered (stream, " (%d)",
13625 longest_to_int (exp->elts[pc + 2].longconst));
13626 break;
13627 case TERNOP_IN_RANGE:
13628 break;
13629
13630 case OP_AGGREGATE:
13631 case OP_OTHERS:
13632 case OP_DISCRETE_RANGE:
13633 case OP_POSITIONAL:
13634 case OP_CHOICES:
13635 break;
13636
13637 case OP_NAME:
13638 case OP_STRING:
13639 {
13640 char *name = &exp->elts[elt + 2].string;
13641 int len = longest_to_int (exp->elts[elt + 1].longconst);
13642
13643 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13644 break;
13645 }
13646
13647 default:
13648 return dump_subexp_body_standard (exp, stream, elt);
13649 }
13650
13651 elt += oplen;
13652 for (i = 0; i < nargs; i += 1)
13653 elt = dump_subexp (exp, stream, elt);
13654
13655 return elt;
13656 }
13657
13658 /* The Ada extension of print_subexp (q.v.). */
13659
13660 static void
13661 ada_print_subexp (struct expression *exp, int *pos,
13662 struct ui_file *stream, enum precedence prec)
13663 {
13664 int oplen, nargs, i;
13665 int pc = *pos;
13666 enum exp_opcode op = exp->elts[pc].opcode;
13667
13668 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13669
13670 *pos += oplen;
13671 switch (op)
13672 {
13673 default:
13674 *pos -= oplen;
13675 print_subexp_standard (exp, pos, stream, prec);
13676 return;
13677
13678 case OP_VAR_VALUE:
13679 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13680 return;
13681
13682 case BINOP_IN_BOUNDS:
13683 /* XXX: sprint_subexp */
13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
13685 fputs_filtered (" in ", stream);
13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
13687 fputs_filtered ("'range", stream);
13688 if (exp->elts[pc + 1].longconst > 1)
13689 fprintf_filtered (stream, "(%ld)",
13690 (long) exp->elts[pc + 1].longconst);
13691 return;
13692
13693 case TERNOP_IN_RANGE:
13694 if (prec >= PREC_EQUAL)
13695 fputs_filtered ("(", stream);
13696 /* XXX: sprint_subexp */
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 fputs_filtered (" in ", stream);
13699 print_subexp (exp, pos, stream, PREC_EQUAL);
13700 fputs_filtered (" .. ", stream);
13701 print_subexp (exp, pos, stream, PREC_EQUAL);
13702 if (prec >= PREC_EQUAL)
13703 fputs_filtered (")", stream);
13704 return;
13705
13706 case OP_ATR_FIRST:
13707 case OP_ATR_LAST:
13708 case OP_ATR_LENGTH:
13709 case OP_ATR_IMAGE:
13710 case OP_ATR_MAX:
13711 case OP_ATR_MIN:
13712 case OP_ATR_MODULUS:
13713 case OP_ATR_POS:
13714 case OP_ATR_SIZE:
13715 case OP_ATR_TAG:
13716 case OP_ATR_VAL:
13717 if (exp->elts[*pos].opcode == OP_TYPE)
13718 {
13719 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13720 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13721 &type_print_raw_options);
13722 *pos += 3;
13723 }
13724 else
13725 print_subexp (exp, pos, stream, PREC_SUFFIX);
13726 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13727 if (nargs > 1)
13728 {
13729 int tem;
13730
13731 for (tem = 1; tem < nargs; tem += 1)
13732 {
13733 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13734 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13735 }
13736 fputs_filtered (")", stream);
13737 }
13738 return;
13739
13740 case UNOP_QUAL:
13741 type_print (exp->elts[pc + 1].type, "", stream, 0);
13742 fputs_filtered ("'(", stream);
13743 print_subexp (exp, pos, stream, PREC_PREFIX);
13744 fputs_filtered (")", stream);
13745 return;
13746
13747 case UNOP_IN_RANGE:
13748 /* XXX: sprint_subexp */
13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
13750 fputs_filtered (" in ", stream);
13751 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13752 &type_print_raw_options);
13753 return;
13754
13755 case OP_DISCRETE_RANGE:
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 fputs_filtered ("..", stream);
13758 print_subexp (exp, pos, stream, PREC_SUFFIX);
13759 return;
13760
13761 case OP_OTHERS:
13762 fputs_filtered ("others => ", stream);
13763 print_subexp (exp, pos, stream, PREC_SUFFIX);
13764 return;
13765
13766 case OP_CHOICES:
13767 for (i = 0; i < nargs-1; i += 1)
13768 {
13769 if (i > 0)
13770 fputs_filtered ("|", stream);
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 }
13773 fputs_filtered (" => ", stream);
13774 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 return;
13776
13777 case OP_POSITIONAL:
13778 print_subexp (exp, pos, stream, PREC_SUFFIX);
13779 return;
13780
13781 case OP_AGGREGATE:
13782 fputs_filtered ("(", stream);
13783 for (i = 0; i < nargs; i += 1)
13784 {
13785 if (i > 0)
13786 fputs_filtered (", ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 }
13789 fputs_filtered (")", stream);
13790 return;
13791 }
13792 }
13793
13794 /* Table mapping opcodes into strings for printing operators
13795 and precedences of the operators. */
13796
13797 static const struct op_print ada_op_print_tab[] = {
13798 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13799 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13800 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13801 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13802 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13803 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13804 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13805 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13806 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13807 {">=", BINOP_GEQ, PREC_ORDER, 0},
13808 {">", BINOP_GTR, PREC_ORDER, 0},
13809 {"<", BINOP_LESS, PREC_ORDER, 0},
13810 {">>", BINOP_RSH, PREC_SHIFT, 0},
13811 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13812 {"+", BINOP_ADD, PREC_ADD, 0},
13813 {"-", BINOP_SUB, PREC_ADD, 0},
13814 {"&", BINOP_CONCAT, PREC_ADD, 0},
13815 {"*", BINOP_MUL, PREC_MUL, 0},
13816 {"/", BINOP_DIV, PREC_MUL, 0},
13817 {"rem", BINOP_REM, PREC_MUL, 0},
13818 {"mod", BINOP_MOD, PREC_MUL, 0},
13819 {"**", BINOP_EXP, PREC_REPEAT, 0},
13820 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13821 {"-", UNOP_NEG, PREC_PREFIX, 0},
13822 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13823 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13824 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13825 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13826 {".all", UNOP_IND, PREC_SUFFIX, 1},
13827 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13828 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13829 {NULL, OP_NULL, PREC_SUFFIX, 0}
13830 };
13831 \f
13832 enum ada_primitive_types {
13833 ada_primitive_type_int,
13834 ada_primitive_type_long,
13835 ada_primitive_type_short,
13836 ada_primitive_type_char,
13837 ada_primitive_type_float,
13838 ada_primitive_type_double,
13839 ada_primitive_type_void,
13840 ada_primitive_type_long_long,
13841 ada_primitive_type_long_double,
13842 ada_primitive_type_natural,
13843 ada_primitive_type_positive,
13844 ada_primitive_type_system_address,
13845 nr_ada_primitive_types
13846 };
13847
13848 static void
13849 ada_language_arch_info (struct gdbarch *gdbarch,
13850 struct language_arch_info *lai)
13851 {
13852 const struct builtin_type *builtin = builtin_type (gdbarch);
13853
13854 lai->primitive_type_vector
13855 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13856 struct type *);
13857
13858 lai->primitive_type_vector [ada_primitive_type_int]
13859 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13860 0, "integer");
13861 lai->primitive_type_vector [ada_primitive_type_long]
13862 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13863 0, "long_integer");
13864 lai->primitive_type_vector [ada_primitive_type_short]
13865 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13866 0, "short_integer");
13867 lai->string_char_type
13868 = lai->primitive_type_vector [ada_primitive_type_char]
13869 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13870 lai->primitive_type_vector [ada_primitive_type_float]
13871 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13872 "float", NULL);
13873 lai->primitive_type_vector [ada_primitive_type_double]
13874 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13875 "long_float", NULL);
13876 lai->primitive_type_vector [ada_primitive_type_long_long]
13877 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13878 0, "long_long_integer");
13879 lai->primitive_type_vector [ada_primitive_type_long_double]
13880 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13881 "long_long_float", NULL);
13882 lai->primitive_type_vector [ada_primitive_type_natural]
13883 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13884 0, "natural");
13885 lai->primitive_type_vector [ada_primitive_type_positive]
13886 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13887 0, "positive");
13888 lai->primitive_type_vector [ada_primitive_type_void]
13889 = builtin->builtin_void;
13890
13891 lai->primitive_type_vector [ada_primitive_type_system_address]
13892 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13893 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13894 = "system__address";
13895
13896 lai->bool_type_symbol = NULL;
13897 lai->bool_type_default = builtin->builtin_bool;
13898 }
13899 \f
13900 /* Language vector */
13901
13902 /* Not really used, but needed in the ada_language_defn. */
13903
13904 static void
13905 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13906 {
13907 ada_emit_char (c, type, stream, quoter, 1);
13908 }
13909
13910 static int
13911 parse (struct parser_state *ps)
13912 {
13913 warnings_issued = 0;
13914 return ada_parse (ps);
13915 }
13916
13917 static const struct exp_descriptor ada_exp_descriptor = {
13918 ada_print_subexp,
13919 ada_operator_length,
13920 ada_operator_check,
13921 ada_op_name,
13922 ada_dump_subexp_body,
13923 ada_evaluate_subexp
13924 };
13925
13926 /* Implement the "la_get_symbol_name_cmp" language_defn method
13927 for Ada. */
13928
13929 static symbol_name_cmp_ftype
13930 ada_get_symbol_name_cmp (const char *lookup_name)
13931 {
13932 if (should_use_wild_match (lookup_name))
13933 return wild_match;
13934 else
13935 return compare_names;
13936 }
13937
13938 /* Implement the "la_read_var_value" language_defn method for Ada. */
13939
13940 static struct value *
13941 ada_read_var_value (struct symbol *var, const struct block *var_block,
13942 struct frame_info *frame)
13943 {
13944 const struct block *frame_block = NULL;
13945 struct symbol *renaming_sym = NULL;
13946
13947 /* The only case where default_read_var_value is not sufficient
13948 is when VAR is a renaming... */
13949 if (frame)
13950 frame_block = get_frame_block (frame, NULL);
13951 if (frame_block)
13952 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13953 if (renaming_sym != NULL)
13954 return ada_read_renaming_var_value (renaming_sym, frame_block);
13955
13956 /* This is a typical case where we expect the default_read_var_value
13957 function to work. */
13958 return default_read_var_value (var, var_block, frame);
13959 }
13960
13961 const struct language_defn ada_language_defn = {
13962 "ada", /* Language name */
13963 "Ada",
13964 language_ada,
13965 range_check_off,
13966 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13967 that's not quite what this means. */
13968 array_row_major,
13969 macro_expansion_no,
13970 &ada_exp_descriptor,
13971 parse,
13972 ada_error,
13973 resolve,
13974 ada_printchar, /* Print a character constant */
13975 ada_printstr, /* Function to print string constant */
13976 emit_char, /* Function to print single char (not used) */
13977 ada_print_type, /* Print a type using appropriate syntax */
13978 ada_print_typedef, /* Print a typedef using appropriate syntax */
13979 ada_val_print, /* Print a value using appropriate syntax */
13980 ada_value_print, /* Print a top-level value */
13981 ada_read_var_value, /* la_read_var_value */
13982 NULL, /* Language specific skip_trampoline */
13983 NULL, /* name_of_this */
13984 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13985 basic_lookup_transparent_type, /* lookup_transparent_type */
13986 ada_la_decode, /* Language specific symbol demangler */
13987 NULL, /* Language specific
13988 class_name_from_physname */
13989 ada_op_print_tab, /* expression operators for printing */
13990 0, /* c-style arrays */
13991 1, /* String lower bound */
13992 ada_get_gdb_completer_word_break_characters,
13993 ada_make_symbol_completion_list,
13994 ada_language_arch_info,
13995 ada_print_array_index,
13996 default_pass_by_reference,
13997 c_get_string,
13998 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13999 ada_iterate_over_symbols,
14000 &ada_varobj_ops,
14001 NULL,
14002 NULL,
14003 LANG_MAGIC
14004 };
14005
14006 /* Provide a prototype to silence -Wmissing-prototypes. */
14007 extern initialize_file_ftype _initialize_ada_language;
14008
14009 /* Command-list for the "set/show ada" prefix command. */
14010 static struct cmd_list_element *set_ada_list;
14011 static struct cmd_list_element *show_ada_list;
14012
14013 /* Implement the "set ada" prefix command. */
14014
14015 static void
14016 set_ada_command (char *arg, int from_tty)
14017 {
14018 printf_unfiltered (_(\
14019 "\"set ada\" must be followed by the name of a setting.\n"));
14020 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14021 }
14022
14023 /* Implement the "show ada" prefix command. */
14024
14025 static void
14026 show_ada_command (char *args, int from_tty)
14027 {
14028 cmd_show_list (show_ada_list, from_tty, "");
14029 }
14030
14031 static void
14032 initialize_ada_catchpoint_ops (void)
14033 {
14034 struct breakpoint_ops *ops;
14035
14036 initialize_breakpoint_ops ();
14037
14038 ops = &catch_exception_breakpoint_ops;
14039 *ops = bkpt_breakpoint_ops;
14040 ops->dtor = dtor_catch_exception;
14041 ops->allocate_location = allocate_location_catch_exception;
14042 ops->re_set = re_set_catch_exception;
14043 ops->check_status = check_status_catch_exception;
14044 ops->print_it = print_it_catch_exception;
14045 ops->print_one = print_one_catch_exception;
14046 ops->print_mention = print_mention_catch_exception;
14047 ops->print_recreate = print_recreate_catch_exception;
14048
14049 ops = &catch_exception_unhandled_breakpoint_ops;
14050 *ops = bkpt_breakpoint_ops;
14051 ops->dtor = dtor_catch_exception_unhandled;
14052 ops->allocate_location = allocate_location_catch_exception_unhandled;
14053 ops->re_set = re_set_catch_exception_unhandled;
14054 ops->check_status = check_status_catch_exception_unhandled;
14055 ops->print_it = print_it_catch_exception_unhandled;
14056 ops->print_one = print_one_catch_exception_unhandled;
14057 ops->print_mention = print_mention_catch_exception_unhandled;
14058 ops->print_recreate = print_recreate_catch_exception_unhandled;
14059
14060 ops = &catch_assert_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_assert;
14063 ops->allocate_location = allocate_location_catch_assert;
14064 ops->re_set = re_set_catch_assert;
14065 ops->check_status = check_status_catch_assert;
14066 ops->print_it = print_it_catch_assert;
14067 ops->print_one = print_one_catch_assert;
14068 ops->print_mention = print_mention_catch_assert;
14069 ops->print_recreate = print_recreate_catch_assert;
14070 }
14071
14072 /* This module's 'new_objfile' observer. */
14073
14074 static void
14075 ada_new_objfile_observer (struct objfile *objfile)
14076 {
14077 ada_clear_symbol_cache ();
14078 }
14079
14080 /* This module's 'free_objfile' observer. */
14081
14082 static void
14083 ada_free_objfile_observer (struct objfile *objfile)
14084 {
14085 ada_clear_symbol_cache ();
14086 }
14087
14088 void
14089 _initialize_ada_language (void)
14090 {
14091 add_language (&ada_language_defn);
14092
14093 initialize_ada_catchpoint_ops ();
14094
14095 add_prefix_cmd ("ada", no_class, set_ada_command,
14096 _("Prefix command for changing Ada-specfic settings"),
14097 &set_ada_list, "set ada ", 0, &setlist);
14098
14099 add_prefix_cmd ("ada", no_class, show_ada_command,
14100 _("Generic command for showing Ada-specific settings."),
14101 &show_ada_list, "show ada ", 0, &showlist);
14102
14103 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14104 &trust_pad_over_xvs, _("\
14105 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14106 Show whether an optimization trusting PAD types over XVS types is activated"),
14107 _("\
14108 This is related to the encoding used by the GNAT compiler. The debugger\n\
14109 should normally trust the contents of PAD types, but certain older versions\n\
14110 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14111 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14112 work around this bug. It is always safe to turn this option \"off\", but\n\
14113 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14114 this option to \"off\" unless necessary."),
14115 NULL, NULL, &set_ada_list, &show_ada_list);
14116
14117 add_catch_command ("exception", _("\
14118 Catch Ada exceptions, when raised.\n\
14119 With an argument, catch only exceptions with the given name."),
14120 catch_ada_exception_command,
14121 NULL,
14122 CATCH_PERMANENT,
14123 CATCH_TEMPORARY);
14124 add_catch_command ("assert", _("\
14125 Catch failed Ada assertions, when raised.\n\
14126 With an argument, catch only exceptions with the given name."),
14127 catch_assert_command,
14128 NULL,
14129 CATCH_PERMANENT,
14130 CATCH_TEMPORARY);
14131
14132 varsize_limit = 65536;
14133
14134 add_info ("exceptions", info_exceptions_command,
14135 _("\
14136 List all Ada exception names.\n\
14137 If a regular expression is passed as an argument, only those matching\n\
14138 the regular expression are listed."));
14139
14140 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14141 _("Set Ada maintenance-related variables."),
14142 &maint_set_ada_cmdlist, "maintenance set ada ",
14143 0/*allow-unknown*/, &maintenance_set_cmdlist);
14144
14145 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14146 _("Show Ada maintenance-related variables"),
14147 &maint_show_ada_cmdlist, "maintenance show ada ",
14148 0/*allow-unknown*/, &maintenance_show_cmdlist);
14149
14150 add_setshow_boolean_cmd
14151 ("ignore-descriptive-types", class_maintenance,
14152 &ada_ignore_descriptive_types_p,
14153 _("Set whether descriptive types generated by GNAT should be ignored."),
14154 _("Show whether descriptive types generated by GNAT should be ignored."),
14155 _("\
14156 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14157 DWARF attribute."),
14158 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14159
14160 obstack_init (&symbol_list_obstack);
14161
14162 decoded_names_store = htab_create_alloc
14163 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14164 NULL, xcalloc, xfree);
14165
14166 /* The ada-lang observers. */
14167 observer_attach_new_objfile (ada_new_objfile_observer);
14168 observer_attach_free_objfile (ada_free_objfile_observer);
14169 observer_attach_inferior_exit (ada_inferior_exit);
14170
14171 /* Setup various context-specific data. */
14172 ada_inferior_data
14173 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14174 ada_pspace_data_handle
14175 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14176 }
This page took 0.313447 seconds and 5 git commands to generate.