Remove some unused routines.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct symtab *symtab_for_sym (struct symbol *);
130
131 static struct value *resolve_subexp (struct expression **, int *, int,
132 struct type *);
133
134 static void replace_operator_with_call (struct expression **, int, int, int,
135 struct symbol *, struct block *);
136
137 static int possible_user_operator_p (enum exp_opcode, struct value **);
138
139 static char *ada_op_name (enum exp_opcode);
140
141 static const char *ada_decoded_op_name (enum exp_opcode);
142
143 static int numeric_type_p (struct type *);
144
145 static int integer_type_p (struct type *);
146
147 static int scalar_type_p (struct type *);
148
149 static int discrete_type_p (struct type *);
150
151 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156 static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179 static struct type *static_unwrap_type (struct type *type);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344 }
345
346 static char *
347 ada_get_gdb_completer_word_break_characters (void)
348 {
349 return ada_completer_word_break_characters;
350 }
351
352 /* Print an array element index using the Ada syntax. */
353
354 static void
355 ada_print_array_index (struct value *index_value, struct ui_file *stream,
356 const struct value_print_options *options)
357 {
358 LA_VALUE_PRINT (index_value, stream, options);
359 fprintf_filtered (stream, " => ");
360 }
361
362 /* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365 static void
366 extract_string (CORE_ADDR addr, char *buf)
367 {
368 int char_index = 0;
369
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
375 buf + char_index * sizeof (char), sizeof (char));
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
379 }
380
381 /* Assuming VECT points to an array of *SIZE objects of size
382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
383 updating *SIZE as necessary and returning the (new) array. */
384
385 void *
386 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
387 {
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
392 *size = min_size;
393 vect = xrealloc (vect, *size * element_size);
394 }
395 return vect;
396 }
397
398 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
399 suffix of FIELD_NAME beginning "___". */
400
401 static int
402 field_name_match (const char *field_name, const char *target)
403 {
404 int len = strlen (target);
405 return
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
411 }
412
413
414 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421 int
422 ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424 {
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (type));
433
434 return -1;
435 }
436
437 /* The length of the prefix of NAME prior to any "___" suffix. */
438
439 int
440 ada_name_prefix_len (const char *name)
441 {
442 if (name == NULL)
443 return 0;
444 else
445 {
446 const char *p = strstr (name, "___");
447 if (p == NULL)
448 return strlen (name);
449 else
450 return p - name;
451 }
452 }
453
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
457 static int
458 is_suffix (const char *str, const char *suffix)
459 {
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
466 }
467
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
470
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
473 {
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
476 return val;
477 else
478 {
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
483 check_size (type);
484
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 VALUE_ADDRESS (result) += value_offset (val);
490 if (value_lazy (val)
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
493 else
494 memcpy (value_contents_raw (result), value_contents (val),
495 TYPE_LENGTH (type));
496 return result;
497 }
498 }
499
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
502 {
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507 }
508
509 static CORE_ADDR
510 cond_offset_target (CORE_ADDR address, long offset)
511 {
512 if (address == 0)
513 return 0;
514 else
515 return address + offset;
516 }
517
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
522
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
527 static void
528 lim_warning (const char *format, ...)
529 {
530 va_list args;
531 va_start (args, format);
532
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
536
537 va_end (args);
538 }
539
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544 static void
545 check_size (const struct type *type)
546 {
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
549 }
550
551
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556 /* Maximum value of a SIZE-byte signed integer type. */
557 static LONGEST
558 max_of_size (int size)
559 {
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Minimum value of a SIZE-byte signed integer type. */
565 static LONGEST
566 min_of_size (int size)
567 {
568 return -max_of_size (size) - 1;
569 }
570
571 /* Maximum value of a SIZE-byte unsigned integer type. */
572 static ULONGEST
573 umax_of_size (int size)
574 {
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
577 }
578
579 /* Maximum value of integral type T, as a signed quantity. */
580 static LONGEST
581 max_of_type (struct type *t)
582 {
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587 }
588
589 /* Minimum value of integral type T, as a signed quantity. */
590 static LONGEST
591 min_of_type (struct type *t)
592 {
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
597 }
598
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
600 static LONGEST
601 discrete_type_high_bound (struct type *type)
602 {
603 switch (TYPE_CODE (type))
604 {
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
607 case TYPE_CODE_ENUM:
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
612 case TYPE_CODE_INT:
613 return max_of_type (type);
614 default:
615 error (_("Unexpected type in discrete_type_high_bound."));
616 }
617 }
618
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
620 static LONGEST
621 discrete_type_low_bound (struct type *type)
622 {
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
627 case TYPE_CODE_ENUM:
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
632 case TYPE_CODE_INT:
633 return min_of_type (type);
634 default:
635 error (_("Unexpected type in discrete_type_low_bound."));
636 }
637 }
638
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
641
642 static struct type *
643 base_type (struct type *type)
644 {
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
652 }
653 \f
654
655 /* Language Selection */
656
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
660 MAIN_PST is not used. */
661
662 enum language
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
665 {
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
669
670 return lang;
671 }
672
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677 char *
678 ada_main_name (void)
679 {
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
683
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
695 error (_("Invalid address for Ada main program name."));
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703 }
704 \f
705 /* Symbols */
706
707 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
709
710 const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
733 };
734
735 /* The "encoded" form of DECODED, according to GNAT conventions.
736 The result is valid until the next call to ada_encode. */
737
738 char *
739 ada_encode (const char *decoded)
740 {
741 static char *encoding_buffer = NULL;
742 static size_t encoding_buffer_size = 0;
743 const char *p;
744 int k;
745
746 if (decoded == NULL)
747 return NULL;
748
749 GROW_VECT (encoding_buffer, encoding_buffer_size,
750 2 * strlen (decoded) + 10);
751
752 k = 0;
753 for (p = decoded; *p != '\0'; p += 1)
754 {
755 if (*p == '.')
756 {
757 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
758 k += 2;
759 }
760 else if (*p == '"')
761 {
762 const struct ada_opname_map *mapping;
763
764 for (mapping = ada_opname_table;
765 mapping->encoded != NULL
766 && strncmp (mapping->decoded, p,
767 strlen (mapping->decoded)) != 0; mapping += 1)
768 ;
769 if (mapping->encoded == NULL)
770 error (_("invalid Ada operator name: %s"), p);
771 strcpy (encoding_buffer + k, mapping->encoded);
772 k += strlen (mapping->encoded);
773 break;
774 }
775 else
776 {
777 encoding_buffer[k] = *p;
778 k += 1;
779 }
780 }
781
782 encoding_buffer[k] = '\0';
783 return encoding_buffer;
784 }
785
786 /* Return NAME folded to lower case, or, if surrounded by single
787 quotes, unfolded, but with the quotes stripped away. Result good
788 to next call. */
789
790 char *
791 ada_fold_name (const char *name)
792 {
793 static char *fold_buffer = NULL;
794 static size_t fold_buffer_size = 0;
795
796 int len = strlen (name);
797 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
798
799 if (name[0] == '\'')
800 {
801 strncpy (fold_buffer, name + 1, len - 2);
802 fold_buffer[len - 2] = '\000';
803 }
804 else
805 {
806 int i;
807 for (i = 0; i <= len; i += 1)
808 fold_buffer[i] = tolower (name[i]);
809 }
810
811 return fold_buffer;
812 }
813
814 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
815
816 static int
817 is_lower_alphanum (const char c)
818 {
819 return (isdigit (c) || (isalpha (c) && islower (c)));
820 }
821
822 /* Remove either of these suffixes:
823 . .{DIGIT}+
824 . ${DIGIT}+
825 . ___{DIGIT}+
826 . __{DIGIT}+.
827 These are suffixes introduced by the compiler for entities such as
828 nested subprogram for instance, in order to avoid name clashes.
829 They do not serve any purpose for the debugger. */
830
831 static void
832 ada_remove_trailing_digits (const char *encoded, int *len)
833 {
834 if (*len > 1 && isdigit (encoded[*len - 1]))
835 {
836 int i = *len - 2;
837 while (i > 0 && isdigit (encoded[i]))
838 i--;
839 if (i >= 0 && encoded[i] == '.')
840 *len = i;
841 else if (i >= 0 && encoded[i] == '$')
842 *len = i;
843 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
844 *len = i - 2;
845 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
846 *len = i - 1;
847 }
848 }
849
850 /* Remove the suffix introduced by the compiler for protected object
851 subprograms. */
852
853 static void
854 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
855 {
856 /* Remove trailing N. */
857
858 /* Protected entry subprograms are broken into two
859 separate subprograms: The first one is unprotected, and has
860 a 'N' suffix; the second is the protected version, and has
861 the 'P' suffix. The second calls the first one after handling
862 the protection. Since the P subprograms are internally generated,
863 we leave these names undecoded, giving the user a clue that this
864 entity is internal. */
865
866 if (*len > 1
867 && encoded[*len - 1] == 'N'
868 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
869 *len = *len - 1;
870 }
871
872 /* If ENCODED follows the GNAT entity encoding conventions, then return
873 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
874 replaced by ENCODED.
875
876 The resulting string is valid until the next call of ada_decode.
877 If the string is unchanged by decoding, the original string pointer
878 is returned. */
879
880 const char *
881 ada_decode (const char *encoded)
882 {
883 int i, j;
884 int len0;
885 const char *p;
886 char *decoded;
887 int at_start_name;
888 static char *decoding_buffer = NULL;
889 static size_t decoding_buffer_size = 0;
890
891 /* The name of the Ada main procedure starts with "_ada_".
892 This prefix is not part of the decoded name, so skip this part
893 if we see this prefix. */
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 /* If the name starts with '_', then it is not a properly encoded
898 name, so do not attempt to decode it. Similarly, if the name
899 starts with '<', the name should not be decoded. */
900 if (encoded[0] == '_' || encoded[0] == '<')
901 goto Suppress;
902
903 len0 = strlen (encoded);
904
905 ada_remove_trailing_digits (encoded, &len0);
906 ada_remove_po_subprogram_suffix (encoded, &len0);
907
908 /* Remove the ___X.* suffix if present. Do not forget to verify that
909 the suffix is located before the current "end" of ENCODED. We want
910 to avoid re-matching parts of ENCODED that have previously been
911 marked as discarded (by decrementing LEN0). */
912 p = strstr (encoded, "___");
913 if (p != NULL && p - encoded < len0 - 3)
914 {
915 if (p[3] == 'X')
916 len0 = p - encoded;
917 else
918 goto Suppress;
919 }
920
921 /* Remove any trailing TKB suffix. It tells us that this symbol
922 is for the body of a task, but that information does not actually
923 appear in the decoded name. */
924
925 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
926 len0 -= 3;
927
928 /* Remove trailing "B" suffixes. */
929 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
930
931 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
932 len0 -= 1;
933
934 /* Make decoded big enough for possible expansion by operator name. */
935
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 /* Remove trailing __{digit}+ or trailing ${digit}+. */
940
941 if (len0 > 1 && isdigit (encoded[len0 - 1]))
942 {
943 i = len0 - 2;
944 while ((i >= 0 && isdigit (encoded[i]))
945 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
946 i -= 1;
947 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
948 len0 = i - 1;
949 else if (encoded[i] == '$')
950 len0 = i;
951 }
952
953 /* The first few characters that are not alphabetic are not part
954 of any encoding we use, so we can copy them over verbatim. */
955
956 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
957 decoded[j] = encoded[i];
958
959 at_start_name = 1;
960 while (i < len0)
961 {
962 /* Is this a symbol function? */
963 if (at_start_name && encoded[i] == 'O')
964 {
965 int k;
966 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
967 {
968 int op_len = strlen (ada_opname_table[k].encoded);
969 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
970 op_len - 1) == 0)
971 && !isalnum (encoded[i + op_len]))
972 {
973 strcpy (decoded + j, ada_opname_table[k].decoded);
974 at_start_name = 0;
975 i += op_len;
976 j += strlen (ada_opname_table[k].decoded);
977 break;
978 }
979 }
980 if (ada_opname_table[k].encoded != NULL)
981 continue;
982 }
983 at_start_name = 0;
984
985 /* Replace "TK__" with "__", which will eventually be translated
986 into "." (just below). */
987
988 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
989 i += 2;
990
991 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
992 be translated into "." (just below). These are internal names
993 generated for anonymous blocks inside which our symbol is nested. */
994
995 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
996 && encoded [i+2] == 'B' && encoded [i+3] == '_'
997 && isdigit (encoded [i+4]))
998 {
999 int k = i + 5;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++; /* Skip any extra digit. */
1003
1004 /* Double-check that the "__B_{DIGITS}+" sequence we found
1005 is indeed followed by "__". */
1006 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1007 i = k;
1008 }
1009
1010 /* Remove _E{DIGITS}+[sb] */
1011
1012 /* Just as for protected object subprograms, there are 2 categories
1013 of subprograms created by the compiler for each entry. The first
1014 one implements the actual entry code, and has a suffix following
1015 the convention above; the second one implements the barrier and
1016 uses the same convention as above, except that the 'E' is replaced
1017 by a 'B'.
1018
1019 Just as above, we do not decode the name of barrier functions
1020 to give the user a clue that the code he is debugging has been
1021 internally generated. */
1022
1023 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1024 && isdigit (encoded[i+2]))
1025 {
1026 int k = i + 3;
1027
1028 while (k < len0 && isdigit (encoded[k]))
1029 k++;
1030
1031 if (k < len0
1032 && (encoded[k] == 'b' || encoded[k] == 's'))
1033 {
1034 k++;
1035 /* Just as an extra precaution, make sure that if this
1036 suffix is followed by anything else, it is a '_'.
1037 Otherwise, we matched this sequence by accident. */
1038 if (k == len0
1039 || (k < len0 && encoded[k] == '_'))
1040 i = k;
1041 }
1042 }
1043
1044 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1045 the GNAT front-end in protected object subprograms. */
1046
1047 if (i < len0 + 3
1048 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1049 {
1050 /* Backtrack a bit up until we reach either the begining of
1051 the encoded name, or "__". Make sure that we only find
1052 digits or lowercase characters. */
1053 const char *ptr = encoded + i - 1;
1054
1055 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1056 ptr--;
1057 if (ptr < encoded
1058 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1059 i++;
1060 }
1061
1062 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1063 {
1064 /* This is a X[bn]* sequence not separated from the previous
1065 part of the name with a non-alpha-numeric character (in other
1066 words, immediately following an alpha-numeric character), then
1067 verify that it is placed at the end of the encoded name. If
1068 not, then the encoding is not valid and we should abort the
1069 decoding. Otherwise, just skip it, it is used in body-nested
1070 package names. */
1071 do
1072 i += 1;
1073 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1074 if (i < len0)
1075 goto Suppress;
1076 }
1077 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1078 {
1079 /* Replace '__' by '.'. */
1080 decoded[j] = '.';
1081 at_start_name = 1;
1082 i += 2;
1083 j += 1;
1084 }
1085 else
1086 {
1087 /* It's a character part of the decoded name, so just copy it
1088 over. */
1089 decoded[j] = encoded[i];
1090 i += 1;
1091 j += 1;
1092 }
1093 }
1094 decoded[j] = '\000';
1095
1096 /* Decoded names should never contain any uppercase character.
1097 Double-check this, and abort the decoding if we find one. */
1098
1099 for (i = 0; decoded[i] != '\0'; i += 1)
1100 if (isupper (decoded[i]) || decoded[i] == ' ')
1101 goto Suppress;
1102
1103 if (strcmp (decoded, encoded) == 0)
1104 return encoded;
1105 else
1106 return decoded;
1107
1108 Suppress:
1109 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1110 decoded = decoding_buffer;
1111 if (encoded[0] == '<')
1112 strcpy (decoded, encoded);
1113 else
1114 sprintf (decoded, "<%s>", encoded);
1115 return decoded;
1116
1117 }
1118
1119 /* Table for keeping permanent unique copies of decoded names. Once
1120 allocated, names in this table are never released. While this is a
1121 storage leak, it should not be significant unless there are massive
1122 changes in the set of decoded names in successive versions of a
1123 symbol table loaded during a single session. */
1124 static struct htab *decoded_names_store;
1125
1126 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1127 in the language-specific part of GSYMBOL, if it has not been
1128 previously computed. Tries to save the decoded name in the same
1129 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1130 in any case, the decoded symbol has a lifetime at least that of
1131 GSYMBOL).
1132 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1133 const, but nevertheless modified to a semantically equivalent form
1134 when a decoded name is cached in it.
1135 */
1136
1137 char *
1138 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1139 {
1140 char **resultp =
1141 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1142 if (*resultp == NULL)
1143 {
1144 const char *decoded = ada_decode (gsymbol->name);
1145 if (gsymbol->obj_section != NULL)
1146 {
1147 struct objfile *objf = gsymbol->obj_section->objfile;
1148 *resultp = obsavestring (decoded, strlen (decoded),
1149 &objf->objfile_obstack);
1150 }
1151 /* Sometimes, we can't find a corresponding objfile, in which
1152 case, we put the result on the heap. Since we only decode
1153 when needed, we hope this usually does not cause a
1154 significant memory leak (FIXME). */
1155 if (*resultp == NULL)
1156 {
1157 char **slot = (char **) htab_find_slot (decoded_names_store,
1158 decoded, INSERT);
1159 if (*slot == NULL)
1160 *slot = xstrdup (decoded);
1161 *resultp = *slot;
1162 }
1163 }
1164
1165 return *resultp;
1166 }
1167
1168 static char *
1169 ada_la_decode (const char *encoded, int options)
1170 {
1171 return xstrdup (ada_decode (encoded));
1172 }
1173
1174 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1175 suffixes that encode debugging information or leading _ada_ on
1176 SYM_NAME (see is_name_suffix commentary for the debugging
1177 information that is ignored). If WILD, then NAME need only match a
1178 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1179 either argument is NULL. */
1180
1181 static int
1182 ada_match_name (const char *sym_name, const char *name, int wild)
1183 {
1184 if (sym_name == NULL || name == NULL)
1185 return 0;
1186 else if (wild)
1187 return wild_match (name, strlen (name), sym_name);
1188 else
1189 {
1190 int len_name = strlen (name);
1191 return (strncmp (sym_name, name, len_name) == 0
1192 && is_name_suffix (sym_name + len_name))
1193 || (strncmp (sym_name, "_ada_", 5) == 0
1194 && strncmp (sym_name + 5, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name + 5));
1196 }
1197 }
1198 \f
1199
1200 /* Arrays */
1201
1202 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1203
1204 static char *bound_name[] = {
1205 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1206 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1207 };
1208
1209 /* Maximum number of array dimensions we are prepared to handle. */
1210
1211 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1212
1213 /* Like modify_field, but allows bitpos > wordlength. */
1214
1215 static void
1216 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1217 {
1218 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1219 }
1220
1221
1222 /* The desc_* routines return primitive portions of array descriptors
1223 (fat pointers). */
1224
1225 /* The descriptor or array type, if any, indicated by TYPE; removes
1226 level of indirection, if needed. */
1227
1228 static struct type *
1229 desc_base_type (struct type *type)
1230 {
1231 if (type == NULL)
1232 return NULL;
1233 type = ada_check_typedef (type);
1234 if (type != NULL
1235 && (TYPE_CODE (type) == TYPE_CODE_PTR
1236 || TYPE_CODE (type) == TYPE_CODE_REF))
1237 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1238 else
1239 return type;
1240 }
1241
1242 /* True iff TYPE indicates a "thin" array pointer type. */
1243
1244 static int
1245 is_thin_pntr (struct type *type)
1246 {
1247 return
1248 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1249 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1250 }
1251
1252 /* The descriptor type for thin pointer type TYPE. */
1253
1254 static struct type *
1255 thin_descriptor_type (struct type *type)
1256 {
1257 struct type *base_type = desc_base_type (type);
1258 if (base_type == NULL)
1259 return NULL;
1260 if (is_suffix (ada_type_name (base_type), "___XVE"))
1261 return base_type;
1262 else
1263 {
1264 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1265 if (alt_type == NULL)
1266 return base_type;
1267 else
1268 return alt_type;
1269 }
1270 }
1271
1272 /* A pointer to the array data for thin-pointer value VAL. */
1273
1274 static struct value *
1275 thin_data_pntr (struct value *val)
1276 {
1277 struct type *type = value_type (val);
1278 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1279 return value_cast (desc_data_type (thin_descriptor_type (type)),
1280 value_copy (val));
1281 else
1282 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1283 VALUE_ADDRESS (val) + value_offset (val));
1284 }
1285
1286 /* True iff TYPE indicates a "thick" array pointer type. */
1287
1288 static int
1289 is_thick_pntr (struct type *type)
1290 {
1291 type = desc_base_type (type);
1292 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1293 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1294 }
1295
1296 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1297 pointer to one, the type of its bounds data; otherwise, NULL. */
1298
1299 static struct type *
1300 desc_bounds_type (struct type *type)
1301 {
1302 struct type *r;
1303
1304 type = desc_base_type (type);
1305
1306 if (type == NULL)
1307 return NULL;
1308 else if (is_thin_pntr (type))
1309 {
1310 type = thin_descriptor_type (type);
1311 if (type == NULL)
1312 return NULL;
1313 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1314 if (r != NULL)
1315 return ada_check_typedef (r);
1316 }
1317 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1318 {
1319 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1320 if (r != NULL)
1321 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1322 }
1323 return NULL;
1324 }
1325
1326 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1327 one, a pointer to its bounds data. Otherwise NULL. */
1328
1329 static struct value *
1330 desc_bounds (struct value *arr)
1331 {
1332 struct type *type = ada_check_typedef (value_type (arr));
1333 if (is_thin_pntr (type))
1334 {
1335 struct type *bounds_type =
1336 desc_bounds_type (thin_descriptor_type (type));
1337 LONGEST addr;
1338
1339 if (bounds_type == NULL)
1340 error (_("Bad GNAT array descriptor"));
1341
1342 /* NOTE: The following calculation is not really kosher, but
1343 since desc_type is an XVE-encoded type (and shouldn't be),
1344 the correct calculation is a real pain. FIXME (and fix GCC). */
1345 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1346 addr = value_as_long (arr);
1347 else
1348 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1349
1350 return
1351 value_from_longest (lookup_pointer_type (bounds_type),
1352 addr - TYPE_LENGTH (bounds_type));
1353 }
1354
1355 else if (is_thick_pntr (type))
1356 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1357 _("Bad GNAT array descriptor"));
1358 else
1359 return NULL;
1360 }
1361
1362 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1363 position of the field containing the address of the bounds data. */
1364
1365 static int
1366 fat_pntr_bounds_bitpos (struct type *type)
1367 {
1368 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1369 }
1370
1371 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1372 size of the field containing the address of the bounds data. */
1373
1374 static int
1375 fat_pntr_bounds_bitsize (struct type *type)
1376 {
1377 type = desc_base_type (type);
1378
1379 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1380 return TYPE_FIELD_BITSIZE (type, 1);
1381 else
1382 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1383 }
1384
1385 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1386 pointer to one, the type of its array data (a
1387 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1388 ada_type_of_array to get an array type with bounds data. */
1389
1390 static struct type *
1391 desc_data_type (struct type *type)
1392 {
1393 type = desc_base_type (type);
1394
1395 /* NOTE: The following is bogus; see comment in desc_bounds. */
1396 if (is_thin_pntr (type))
1397 return lookup_pointer_type
1398 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1399 else if (is_thick_pntr (type))
1400 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1401 else
1402 return NULL;
1403 }
1404
1405 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1406 its array data. */
1407
1408 static struct value *
1409 desc_data (struct value *arr)
1410 {
1411 struct type *type = value_type (arr);
1412 if (is_thin_pntr (type))
1413 return thin_data_pntr (arr);
1414 else if (is_thick_pntr (type))
1415 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1416 _("Bad GNAT array descriptor"));
1417 else
1418 return NULL;
1419 }
1420
1421
1422 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1423 position of the field containing the address of the data. */
1424
1425 static int
1426 fat_pntr_data_bitpos (struct type *type)
1427 {
1428 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1429 }
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 size of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitsize (struct type *type)
1436 {
1437 type = desc_base_type (type);
1438
1439 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1440 return TYPE_FIELD_BITSIZE (type, 0);
1441 else
1442 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1443 }
1444
1445 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1446 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1447 bound, if WHICH is 1. The first bound is I=1. */
1448
1449 static struct value *
1450 desc_one_bound (struct value *bounds, int i, int which)
1451 {
1452 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1453 _("Bad GNAT array descriptor bounds"));
1454 }
1455
1456 /* If BOUNDS is an array-bounds structure type, return the bit position
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1458 bound, if WHICH is 1. The first bound is I=1. */
1459
1460 static int
1461 desc_bound_bitpos (struct type *type, int i, int which)
1462 {
1463 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1464 }
1465
1466 /* If BOUNDS is an array-bounds structure type, return the bit field size
1467 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1468 bound, if WHICH is 1. The first bound is I=1. */
1469
1470 static int
1471 desc_bound_bitsize (struct type *type, int i, int which)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1476 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1477 else
1478 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1479 }
1480
1481 /* If TYPE is the type of an array-bounds structure, the type of its
1482 Ith bound (numbering from 1). Otherwise, NULL. */
1483
1484 static struct type *
1485 desc_index_type (struct type *type, int i)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1490 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1491 else
1492 return NULL;
1493 }
1494
1495 /* The number of index positions in the array-bounds type TYPE.
1496 Return 0 if TYPE is NULL. */
1497
1498 static int
1499 desc_arity (struct type *type)
1500 {
1501 type = desc_base_type (type);
1502
1503 if (type != NULL)
1504 return TYPE_NFIELDS (type) / 2;
1505 return 0;
1506 }
1507
1508 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1509 an array descriptor type (representing an unconstrained array
1510 type). */
1511
1512 static int
1513 ada_is_direct_array_type (struct type *type)
1514 {
1515 if (type == NULL)
1516 return 0;
1517 type = ada_check_typedef (type);
1518 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1519 || ada_is_array_descriptor_type (type));
1520 }
1521
1522 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1523 * to one. */
1524
1525 static int
1526 ada_is_array_type (struct type *type)
1527 {
1528 while (type != NULL
1529 && (TYPE_CODE (type) == TYPE_CODE_PTR
1530 || TYPE_CODE (type) == TYPE_CODE_REF))
1531 type = TYPE_TARGET_TYPE (type);
1532 return ada_is_direct_array_type (type);
1533 }
1534
1535 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1536
1537 int
1538 ada_is_simple_array_type (struct type *type)
1539 {
1540 if (type == NULL)
1541 return 0;
1542 type = ada_check_typedef (type);
1543 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1544 || (TYPE_CODE (type) == TYPE_CODE_PTR
1545 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1546 }
1547
1548 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1549
1550 int
1551 ada_is_array_descriptor_type (struct type *type)
1552 {
1553 struct type *data_type = desc_data_type (type);
1554
1555 if (type == NULL)
1556 return 0;
1557 type = ada_check_typedef (type);
1558 return
1559 data_type != NULL
1560 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1561 && TYPE_TARGET_TYPE (data_type) != NULL
1562 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1563 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1564 && desc_arity (desc_bounds_type (type)) > 0;
1565 }
1566
1567 /* Non-zero iff type is a partially mal-formed GNAT array
1568 descriptor. FIXME: This is to compensate for some problems with
1569 debugging output from GNAT. Re-examine periodically to see if it
1570 is still needed. */
1571
1572 int
1573 ada_is_bogus_array_descriptor (struct type *type)
1574 {
1575 return
1576 type != NULL
1577 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1578 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1579 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1580 && !ada_is_array_descriptor_type (type);
1581 }
1582
1583
1584 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1585 (fat pointer) returns the type of the array data described---specifically,
1586 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1587 in from the descriptor; otherwise, they are left unspecified. If
1588 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1589 returns NULL. The result is simply the type of ARR if ARR is not
1590 a descriptor. */
1591 struct type *
1592 ada_type_of_array (struct value *arr, int bounds)
1593 {
1594 if (ada_is_packed_array_type (value_type (arr)))
1595 return decode_packed_array_type (value_type (arr));
1596
1597 if (!ada_is_array_descriptor_type (value_type (arr)))
1598 return value_type (arr);
1599
1600 if (!bounds)
1601 return
1602 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1603 else
1604 {
1605 struct type *elt_type;
1606 int arity;
1607 struct value *descriptor;
1608 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1609
1610 elt_type = ada_array_element_type (value_type (arr), -1);
1611 arity = ada_array_arity (value_type (arr));
1612
1613 if (elt_type == NULL || arity == 0)
1614 return ada_check_typedef (value_type (arr));
1615
1616 descriptor = desc_bounds (arr);
1617 if (value_as_long (descriptor) == 0)
1618 return NULL;
1619 while (arity > 0)
1620 {
1621 struct type *range_type = alloc_type (objf);
1622 struct type *array_type = alloc_type (objf);
1623 struct value *low = desc_one_bound (descriptor, arity, 0);
1624 struct value *high = desc_one_bound (descriptor, arity, 1);
1625 arity -= 1;
1626
1627 create_range_type (range_type, value_type (low),
1628 longest_to_int (value_as_long (low)),
1629 longest_to_int (value_as_long (high)));
1630 elt_type = create_array_type (array_type, elt_type, range_type);
1631 }
1632
1633 return lookup_pointer_type (elt_type);
1634 }
1635 }
1636
1637 /* If ARR does not represent an array, returns ARR unchanged.
1638 Otherwise, returns either a standard GDB array with bounds set
1639 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1640 GDB array. Returns NULL if ARR is a null fat pointer. */
1641
1642 struct value *
1643 ada_coerce_to_simple_array_ptr (struct value *arr)
1644 {
1645 if (ada_is_array_descriptor_type (value_type (arr)))
1646 {
1647 struct type *arrType = ada_type_of_array (arr, 1);
1648 if (arrType == NULL)
1649 return NULL;
1650 return value_cast (arrType, value_copy (desc_data (arr)));
1651 }
1652 else if (ada_is_packed_array_type (value_type (arr)))
1653 return decode_packed_array (arr);
1654 else
1655 return arr;
1656 }
1657
1658 /* If ARR does not represent an array, returns ARR unchanged.
1659 Otherwise, returns a standard GDB array describing ARR (which may
1660 be ARR itself if it already is in the proper form). */
1661
1662 static struct value *
1663 ada_coerce_to_simple_array (struct value *arr)
1664 {
1665 if (ada_is_array_descriptor_type (value_type (arr)))
1666 {
1667 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1668 if (arrVal == NULL)
1669 error (_("Bounds unavailable for null array pointer."));
1670 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1671 return value_ind (arrVal);
1672 }
1673 else if (ada_is_packed_array_type (value_type (arr)))
1674 return decode_packed_array (arr);
1675 else
1676 return arr;
1677 }
1678
1679 /* If TYPE represents a GNAT array type, return it translated to an
1680 ordinary GDB array type (possibly with BITSIZE fields indicating
1681 packing). For other types, is the identity. */
1682
1683 struct type *
1684 ada_coerce_to_simple_array_type (struct type *type)
1685 {
1686 struct value *mark = value_mark ();
1687 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1688 struct type *result;
1689 deprecated_set_value_type (dummy, type);
1690 result = ada_type_of_array (dummy, 0);
1691 value_free_to_mark (mark);
1692 return result;
1693 }
1694
1695 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1696
1697 int
1698 ada_is_packed_array_type (struct type *type)
1699 {
1700 if (type == NULL)
1701 return 0;
1702 type = desc_base_type (type);
1703 type = ada_check_typedef (type);
1704 return
1705 ada_type_name (type) != NULL
1706 && strstr (ada_type_name (type), "___XP") != NULL;
1707 }
1708
1709 /* Given that TYPE is a standard GDB array type with all bounds filled
1710 in, and that the element size of its ultimate scalar constituents
1711 (that is, either its elements, or, if it is an array of arrays, its
1712 elements' elements, etc.) is *ELT_BITS, return an identical type,
1713 but with the bit sizes of its elements (and those of any
1714 constituent arrays) recorded in the BITSIZE components of its
1715 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1716 in bits. */
1717
1718 static struct type *
1719 packed_array_type (struct type *type, long *elt_bits)
1720 {
1721 struct type *new_elt_type;
1722 struct type *new_type;
1723 LONGEST low_bound, high_bound;
1724
1725 type = ada_check_typedef (type);
1726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1727 return type;
1728
1729 new_type = alloc_type (TYPE_OBJFILE (type));
1730 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1731 elt_bits);
1732 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1733 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1734 TYPE_NAME (new_type) = ada_type_name (type);
1735
1736 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1737 &low_bound, &high_bound) < 0)
1738 low_bound = high_bound = 0;
1739 if (high_bound < low_bound)
1740 *elt_bits = TYPE_LENGTH (new_type) = 0;
1741 else
1742 {
1743 *elt_bits *= (high_bound - low_bound + 1);
1744 TYPE_LENGTH (new_type) =
1745 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1746 }
1747
1748 TYPE_FIXED_INSTANCE (new_type) = 1;
1749 return new_type;
1750 }
1751
1752 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1753
1754 static struct type *
1755 decode_packed_array_type (struct type *type)
1756 {
1757 struct symbol *sym;
1758 struct block **blocks;
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *name;
1761 char *tail;
1762 struct type *shadow_type;
1763 long bits;
1764 int i, n;
1765
1766 if (!raw_name)
1767 raw_name = ada_type_name (desc_base_type (type));
1768
1769 if (!raw_name)
1770 return NULL;
1771
1772 name = (char *) alloca (strlen (raw_name) + 1);
1773 tail = strstr (raw_name, "___XP");
1774 type = desc_base_type (type);
1775
1776 memcpy (name, raw_name, tail - raw_name);
1777 name[tail - raw_name] = '\000';
1778
1779 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1780 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1781 {
1782 lim_warning (_("could not find bounds information on packed array"));
1783 return NULL;
1784 }
1785 shadow_type = SYMBOL_TYPE (sym);
1786
1787 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1788 {
1789 lim_warning (_("could not understand bounds information on packed array"));
1790 return NULL;
1791 }
1792
1793 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1794 {
1795 lim_warning
1796 (_("could not understand bit size information on packed array"));
1797 return NULL;
1798 }
1799
1800 return packed_array_type (shadow_type, &bits);
1801 }
1802
1803 /* Given that ARR is a struct value *indicating a GNAT packed array,
1804 returns a simple array that denotes that array. Its type is a
1805 standard GDB array type except that the BITSIZEs of the array
1806 target types are set to the number of bits in each element, and the
1807 type length is set appropriately. */
1808
1809 static struct value *
1810 decode_packed_array (struct value *arr)
1811 {
1812 struct type *type;
1813
1814 arr = ada_coerce_ref (arr);
1815 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1816 arr = ada_value_ind (arr);
1817
1818 type = decode_packed_array_type (value_type (arr));
1819 if (type == NULL)
1820 {
1821 error (_("can't unpack array"));
1822 return NULL;
1823 }
1824
1825 if (gdbarch_bits_big_endian (current_gdbarch)
1826 && ada_is_modular_type (value_type (arr)))
1827 {
1828 /* This is a (right-justified) modular type representing a packed
1829 array with no wrapper. In order to interpret the value through
1830 the (left-justified) packed array type we just built, we must
1831 first left-justify it. */
1832 int bit_size, bit_pos;
1833 ULONGEST mod;
1834
1835 mod = ada_modulus (value_type (arr)) - 1;
1836 bit_size = 0;
1837 while (mod > 0)
1838 {
1839 bit_size += 1;
1840 mod >>= 1;
1841 }
1842 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1843 arr = ada_value_primitive_packed_val (arr, NULL,
1844 bit_pos / HOST_CHAR_BIT,
1845 bit_pos % HOST_CHAR_BIT,
1846 bit_size,
1847 type);
1848 }
1849
1850 return coerce_unspec_val_to_type (arr, type);
1851 }
1852
1853
1854 /* The value of the element of packed array ARR at the ARITY indices
1855 given in IND. ARR must be a simple array. */
1856
1857 static struct value *
1858 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1859 {
1860 int i;
1861 int bits, elt_off, bit_off;
1862 long elt_total_bit_offset;
1863 struct type *elt_type;
1864 struct value *v;
1865
1866 bits = 0;
1867 elt_total_bit_offset = 0;
1868 elt_type = ada_check_typedef (value_type (arr));
1869 for (i = 0; i < arity; i += 1)
1870 {
1871 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1872 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1873 error
1874 (_("attempt to do packed indexing of something other than a packed array"));
1875 else
1876 {
1877 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1878 LONGEST lowerbound, upperbound;
1879 LONGEST idx;
1880
1881 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1882 {
1883 lim_warning (_("don't know bounds of array"));
1884 lowerbound = upperbound = 0;
1885 }
1886
1887 idx = pos_atr (ind[i]);
1888 if (idx < lowerbound || idx > upperbound)
1889 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1890 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1891 elt_total_bit_offset += (idx - lowerbound) * bits;
1892 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1893 }
1894 }
1895 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1896 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1897
1898 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1899 bits, elt_type);
1900 return v;
1901 }
1902
1903 /* Non-zero iff TYPE includes negative integer values. */
1904
1905 static int
1906 has_negatives (struct type *type)
1907 {
1908 switch (TYPE_CODE (type))
1909 {
1910 default:
1911 return 0;
1912 case TYPE_CODE_INT:
1913 return !TYPE_UNSIGNED (type);
1914 case TYPE_CODE_RANGE:
1915 return TYPE_LOW_BOUND (type) < 0;
1916 }
1917 }
1918
1919
1920 /* Create a new value of type TYPE from the contents of OBJ starting
1921 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1922 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1923 assigning through the result will set the field fetched from.
1924 VALADDR is ignored unless OBJ is NULL, in which case,
1925 VALADDR+OFFSET must address the start of storage containing the
1926 packed value. The value returned in this case is never an lval.
1927 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1928
1929 struct value *
1930 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1931 long offset, int bit_offset, int bit_size,
1932 struct type *type)
1933 {
1934 struct value *v;
1935 int src, /* Index into the source area */
1936 targ, /* Index into the target area */
1937 srcBitsLeft, /* Number of source bits left to move */
1938 nsrc, ntarg, /* Number of source and target bytes */
1939 unusedLS, /* Number of bits in next significant
1940 byte of source that are unused */
1941 accumSize; /* Number of meaningful bits in accum */
1942 unsigned char *bytes; /* First byte containing data to unpack */
1943 unsigned char *unpacked;
1944 unsigned long accum; /* Staging area for bits being transferred */
1945 unsigned char sign;
1946 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1947 /* Transmit bytes from least to most significant; delta is the direction
1948 the indices move. */
1949 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1950
1951 type = ada_check_typedef (type);
1952
1953 if (obj == NULL)
1954 {
1955 v = allocate_value (type);
1956 bytes = (unsigned char *) (valaddr + offset);
1957 }
1958 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1959 {
1960 v = value_at (type,
1961 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1962 bytes = (unsigned char *) alloca (len);
1963 read_memory (VALUE_ADDRESS (v), bytes, len);
1964 }
1965 else
1966 {
1967 v = allocate_value (type);
1968 bytes = (unsigned char *) value_contents (obj) + offset;
1969 }
1970
1971 if (obj != NULL)
1972 {
1973 set_value_component_location (v, obj);
1974 VALUE_ADDRESS (v) += value_offset (obj) + offset;
1975 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1976 set_value_bitsize (v, bit_size);
1977 if (value_bitpos (v) >= HOST_CHAR_BIT)
1978 {
1979 VALUE_ADDRESS (v) += 1;
1980 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1981 }
1982 }
1983 else
1984 set_value_bitsize (v, bit_size);
1985 unpacked = (unsigned char *) value_contents (v);
1986
1987 srcBitsLeft = bit_size;
1988 nsrc = len;
1989 ntarg = TYPE_LENGTH (type);
1990 sign = 0;
1991 if (bit_size == 0)
1992 {
1993 memset (unpacked, 0, TYPE_LENGTH (type));
1994 return v;
1995 }
1996 else if (gdbarch_bits_big_endian (current_gdbarch))
1997 {
1998 src = len - 1;
1999 if (has_negatives (type)
2000 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2001 sign = ~0;
2002
2003 unusedLS =
2004 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2005 % HOST_CHAR_BIT;
2006
2007 switch (TYPE_CODE (type))
2008 {
2009 case TYPE_CODE_ARRAY:
2010 case TYPE_CODE_UNION:
2011 case TYPE_CODE_STRUCT:
2012 /* Non-scalar values must be aligned at a byte boundary... */
2013 accumSize =
2014 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2015 /* ... And are placed at the beginning (most-significant) bytes
2016 of the target. */
2017 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2018 break;
2019 default:
2020 accumSize = 0;
2021 targ = TYPE_LENGTH (type) - 1;
2022 break;
2023 }
2024 }
2025 else
2026 {
2027 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2028
2029 src = targ = 0;
2030 unusedLS = bit_offset;
2031 accumSize = 0;
2032
2033 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2034 sign = ~0;
2035 }
2036
2037 accum = 0;
2038 while (nsrc > 0)
2039 {
2040 /* Mask for removing bits of the next source byte that are not
2041 part of the value. */
2042 unsigned int unusedMSMask =
2043 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2044 1;
2045 /* Sign-extend bits for this byte. */
2046 unsigned int signMask = sign & ~unusedMSMask;
2047 accum |=
2048 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2049 accumSize += HOST_CHAR_BIT - unusedLS;
2050 if (accumSize >= HOST_CHAR_BIT)
2051 {
2052 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2053 accumSize -= HOST_CHAR_BIT;
2054 accum >>= HOST_CHAR_BIT;
2055 ntarg -= 1;
2056 targ += delta;
2057 }
2058 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2059 unusedLS = 0;
2060 nsrc -= 1;
2061 src += delta;
2062 }
2063 while (ntarg > 0)
2064 {
2065 accum |= sign << accumSize;
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
2072
2073 return v;
2074 }
2075
2076 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2077 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2078 not overlap. */
2079 static void
2080 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2081 int src_offset, int n)
2082 {
2083 unsigned int accum, mask;
2084 int accum_bits, chunk_size;
2085
2086 target += targ_offset / HOST_CHAR_BIT;
2087 targ_offset %= HOST_CHAR_BIT;
2088 source += src_offset / HOST_CHAR_BIT;
2089 src_offset %= HOST_CHAR_BIT;
2090 if (gdbarch_bits_big_endian (current_gdbarch))
2091 {
2092 accum = (unsigned char) *source;
2093 source += 1;
2094 accum_bits = HOST_CHAR_BIT - src_offset;
2095
2096 while (n > 0)
2097 {
2098 int unused_right;
2099 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2100 accum_bits += HOST_CHAR_BIT;
2101 source += 1;
2102 chunk_size = HOST_CHAR_BIT - targ_offset;
2103 if (chunk_size > n)
2104 chunk_size = n;
2105 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2106 mask = ((1 << chunk_size) - 1) << unused_right;
2107 *target =
2108 (*target & ~mask)
2109 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2110 n -= chunk_size;
2111 accum_bits -= chunk_size;
2112 target += 1;
2113 targ_offset = 0;
2114 }
2115 }
2116 else
2117 {
2118 accum = (unsigned char) *source >> src_offset;
2119 source += 1;
2120 accum_bits = HOST_CHAR_BIT - src_offset;
2121
2122 while (n > 0)
2123 {
2124 accum = accum + ((unsigned char) *source << accum_bits);
2125 accum_bits += HOST_CHAR_BIT;
2126 source += 1;
2127 chunk_size = HOST_CHAR_BIT - targ_offset;
2128 if (chunk_size > n)
2129 chunk_size = n;
2130 mask = ((1 << chunk_size) - 1) << targ_offset;
2131 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2132 n -= chunk_size;
2133 accum_bits -= chunk_size;
2134 accum >>= chunk_size;
2135 target += 1;
2136 targ_offset = 0;
2137 }
2138 }
2139 }
2140
2141 /* Store the contents of FROMVAL into the location of TOVAL.
2142 Return a new value with the location of TOVAL and contents of
2143 FROMVAL. Handles assignment into packed fields that have
2144 floating-point or non-scalar types. */
2145
2146 static struct value *
2147 ada_value_assign (struct value *toval, struct value *fromval)
2148 {
2149 struct type *type = value_type (toval);
2150 int bits = value_bitsize (toval);
2151
2152 toval = ada_coerce_ref (toval);
2153 fromval = ada_coerce_ref (fromval);
2154
2155 if (ada_is_direct_array_type (value_type (toval)))
2156 toval = ada_coerce_to_simple_array (toval);
2157 if (ada_is_direct_array_type (value_type (fromval)))
2158 fromval = ada_coerce_to_simple_array (fromval);
2159
2160 if (!deprecated_value_modifiable (toval))
2161 error (_("Left operand of assignment is not a modifiable lvalue."));
2162
2163 if (VALUE_LVAL (toval) == lval_memory
2164 && bits > 0
2165 && (TYPE_CODE (type) == TYPE_CODE_FLT
2166 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2167 {
2168 int len = (value_bitpos (toval)
2169 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2170 int from_size;
2171 char *buffer = (char *) alloca (len);
2172 struct value *val;
2173 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2174
2175 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2176 fromval = value_cast (type, fromval);
2177
2178 read_memory (to_addr, buffer, len);
2179 from_size = value_bitsize (fromval);
2180 if (from_size == 0)
2181 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2182 if (gdbarch_bits_big_endian (current_gdbarch))
2183 move_bits (buffer, value_bitpos (toval),
2184 value_contents (fromval), from_size - bits, bits);
2185 else
2186 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2187 0, bits);
2188 write_memory (to_addr, buffer, len);
2189 if (deprecated_memory_changed_hook)
2190 deprecated_memory_changed_hook (to_addr, len);
2191
2192 val = value_copy (toval);
2193 memcpy (value_contents_raw (val), value_contents (fromval),
2194 TYPE_LENGTH (type));
2195 deprecated_set_value_type (val, type);
2196
2197 return val;
2198 }
2199
2200 return value_assign (toval, fromval);
2201 }
2202
2203
2204 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2205 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2206 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2207 * COMPONENT, and not the inferior's memory. The current contents
2208 * of COMPONENT are ignored. */
2209 static void
2210 value_assign_to_component (struct value *container, struct value *component,
2211 struct value *val)
2212 {
2213 LONGEST offset_in_container =
2214 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2215 - VALUE_ADDRESS (container) - value_offset (container));
2216 int bit_offset_in_container =
2217 value_bitpos (component) - value_bitpos (container);
2218 int bits;
2219
2220 val = value_cast (value_type (component), val);
2221
2222 if (value_bitsize (component) == 0)
2223 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2224 else
2225 bits = value_bitsize (component);
2226
2227 if (gdbarch_bits_big_endian (current_gdbarch))
2228 move_bits (value_contents_writeable (container) + offset_in_container,
2229 value_bitpos (container) + bit_offset_in_container,
2230 value_contents (val),
2231 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2232 bits);
2233 else
2234 move_bits (value_contents_writeable (container) + offset_in_container,
2235 value_bitpos (container) + bit_offset_in_container,
2236 value_contents (val), 0, bits);
2237 }
2238
2239 /* The value of the element of array ARR at the ARITY indices given in IND.
2240 ARR may be either a simple array, GNAT array descriptor, or pointer
2241 thereto. */
2242
2243 struct value *
2244 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2245 {
2246 int k;
2247 struct value *elt;
2248 struct type *elt_type;
2249
2250 elt = ada_coerce_to_simple_array (arr);
2251
2252 elt_type = ada_check_typedef (value_type (elt));
2253 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2254 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2255 return value_subscript_packed (elt, arity, ind);
2256
2257 for (k = 0; k < arity; k += 1)
2258 {
2259 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2260 error (_("too many subscripts (%d expected)"), k);
2261 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2262 }
2263 return elt;
2264 }
2265
2266 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2267 value of the element of *ARR at the ARITY indices given in
2268 IND. Does not read the entire array into memory. */
2269
2270 static struct value *
2271 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2272 struct value **ind)
2273 {
2274 int k;
2275
2276 for (k = 0; k < arity; k += 1)
2277 {
2278 LONGEST lwb, upb;
2279 struct value *idx;
2280
2281 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2282 error (_("too many subscripts (%d expected)"), k);
2283 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2284 value_copy (arr));
2285 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2286 idx = value_pos_atr (builtin_type_int32, ind[k]);
2287 if (lwb != 0)
2288 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2289 BINOP_SUB);
2290
2291 arr = value_ptradd (arr, idx);
2292 type = TYPE_TARGET_TYPE (type);
2293 }
2294
2295 return value_ind (arr);
2296 }
2297
2298 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2299 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2300 elements starting at index LOW. The lower bound of this array is LOW, as
2301 per Ada rules. */
2302 static struct value *
2303 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2304 int low, int high)
2305 {
2306 CORE_ADDR base = value_as_address (array_ptr)
2307 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2308 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2309 struct type *index_type =
2310 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2311 low, high);
2312 struct type *slice_type =
2313 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2314 return value_at_lazy (slice_type, base);
2315 }
2316
2317
2318 static struct value *
2319 ada_value_slice (struct value *array, int low, int high)
2320 {
2321 struct type *type = value_type (array);
2322 struct type *index_type =
2323 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2324 struct type *slice_type =
2325 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2326 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2327 }
2328
2329 /* If type is a record type in the form of a standard GNAT array
2330 descriptor, returns the number of dimensions for type. If arr is a
2331 simple array, returns the number of "array of"s that prefix its
2332 type designation. Otherwise, returns 0. */
2333
2334 int
2335 ada_array_arity (struct type *type)
2336 {
2337 int arity;
2338
2339 if (type == NULL)
2340 return 0;
2341
2342 type = desc_base_type (type);
2343
2344 arity = 0;
2345 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2346 return desc_arity (desc_bounds_type (type));
2347 else
2348 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2349 {
2350 arity += 1;
2351 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2352 }
2353
2354 return arity;
2355 }
2356
2357 /* If TYPE is a record type in the form of a standard GNAT array
2358 descriptor or a simple array type, returns the element type for
2359 TYPE after indexing by NINDICES indices, or by all indices if
2360 NINDICES is -1. Otherwise, returns NULL. */
2361
2362 struct type *
2363 ada_array_element_type (struct type *type, int nindices)
2364 {
2365 type = desc_base_type (type);
2366
2367 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2368 {
2369 int k;
2370 struct type *p_array_type;
2371
2372 p_array_type = desc_data_type (type);
2373
2374 k = ada_array_arity (type);
2375 if (k == 0)
2376 return NULL;
2377
2378 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2379 if (nindices >= 0 && k > nindices)
2380 k = nindices;
2381 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2382 while (k > 0 && p_array_type != NULL)
2383 {
2384 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2385 k -= 1;
2386 }
2387 return p_array_type;
2388 }
2389 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2390 {
2391 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2392 {
2393 type = TYPE_TARGET_TYPE (type);
2394 nindices -= 1;
2395 }
2396 return type;
2397 }
2398
2399 return NULL;
2400 }
2401
2402 /* The type of nth index in arrays of given type (n numbering from 1).
2403 Does not examine memory. */
2404
2405 struct type *
2406 ada_index_type (struct type *type, int n)
2407 {
2408 struct type *result_type;
2409
2410 type = desc_base_type (type);
2411
2412 if (n > ada_array_arity (type))
2413 return NULL;
2414
2415 if (ada_is_simple_array_type (type))
2416 {
2417 int i;
2418
2419 for (i = 1; i < n; i += 1)
2420 type = TYPE_TARGET_TYPE (type);
2421 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2422 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2423 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2424 perhaps stabsread.c would make more sense. */
2425 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2426 result_type = builtin_type_int32;
2427
2428 return result_type;
2429 }
2430 else
2431 return desc_index_type (desc_bounds_type (type), n);
2432 }
2433
2434 /* Given that arr is an array type, returns the lower bound of the
2435 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2436 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2437 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2438 bounds type. It works for other arrays with bounds supplied by
2439 run-time quantities other than discriminants. */
2440
2441 static LONGEST
2442 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2443 struct type ** typep)
2444 {
2445 struct type *type, *index_type_desc, *index_type;
2446 LONGEST retval;
2447
2448 gdb_assert (which == 0 || which == 1);
2449
2450 if (ada_is_packed_array_type (arr_type))
2451 arr_type = decode_packed_array_type (arr_type);
2452
2453 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2454 {
2455 if (typep != NULL)
2456 *typep = builtin_type_int32;
2457 return (LONGEST) - which;
2458 }
2459
2460 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2461 type = TYPE_TARGET_TYPE (arr_type);
2462 else
2463 type = arr_type;
2464
2465 index_type_desc = ada_find_parallel_type (type, "___XA");
2466 if (index_type_desc != NULL)
2467 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2468 NULL, TYPE_OBJFILE (arr_type));
2469 else
2470 {
2471 while (n > 1)
2472 {
2473 type = TYPE_TARGET_TYPE (type);
2474 n -= 1;
2475 }
2476
2477 index_type = TYPE_INDEX_TYPE (type);
2478 }
2479
2480 switch (TYPE_CODE (index_type))
2481 {
2482 case TYPE_CODE_RANGE:
2483 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2484 : TYPE_HIGH_BOUND (index_type);
2485 break;
2486 case TYPE_CODE_ENUM:
2487 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2488 : TYPE_FIELD_BITPOS (index_type,
2489 TYPE_NFIELDS (index_type) - 1);
2490 break;
2491 default:
2492 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2493 }
2494
2495 if (typep != NULL)
2496 *typep = index_type;
2497
2498 return retval;
2499 }
2500
2501 /* Given that arr is an array value, returns the lower bound of the
2502 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2503 WHICH is 1. This routine will also work for arrays with bounds
2504 supplied by run-time quantities other than discriminants. */
2505
2506 struct value *
2507 ada_array_bound (struct value *arr, int n, int which)
2508 {
2509 struct type *arr_type = value_type (arr);
2510
2511 if (ada_is_packed_array_type (arr_type))
2512 return ada_array_bound (decode_packed_array (arr), n, which);
2513 else if (ada_is_simple_array_type (arr_type))
2514 {
2515 struct type *type;
2516 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return desc_one_bound (desc_bounds (arr), n, which);
2521 }
2522
2523 /* Given that arr is an array value, returns the length of the
2524 nth index. This routine will also work for arrays with bounds
2525 supplied by run-time quantities other than discriminants.
2526 Does not work for arrays indexed by enumeration types with representation
2527 clauses at the moment. */
2528
2529 static struct value *
2530 ada_array_length (struct value *arr, int n)
2531 {
2532 struct type *arr_type = ada_check_typedef (value_type (arr));
2533
2534 if (ada_is_packed_array_type (arr_type))
2535 return ada_array_length (decode_packed_array (arr), n);
2536
2537 if (ada_is_simple_array_type (arr_type))
2538 {
2539 struct type *type;
2540 LONGEST v =
2541 ada_array_bound_from_type (arr_type, n, 1, &type) -
2542 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2543 return value_from_longest (type, v);
2544 }
2545 else
2546 return
2547 value_from_longest (builtin_type_int32,
2548 value_as_long (desc_one_bound (desc_bounds (arr),
2549 n, 1))
2550 - value_as_long (desc_one_bound (desc_bounds (arr),
2551 n, 0)) + 1);
2552 }
2553
2554 /* An empty array whose type is that of ARR_TYPE (an array type),
2555 with bounds LOW to LOW-1. */
2556
2557 static struct value *
2558 empty_array (struct type *arr_type, int low)
2559 {
2560 struct type *index_type =
2561 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2562 low, low - 1);
2563 struct type *elt_type = ada_array_element_type (arr_type, 1);
2564 return allocate_value (create_array_type (NULL, elt_type, index_type));
2565 }
2566 \f
2567
2568 /* Name resolution */
2569
2570 /* The "decoded" name for the user-definable Ada operator corresponding
2571 to OP. */
2572
2573 static const char *
2574 ada_decoded_op_name (enum exp_opcode op)
2575 {
2576 int i;
2577
2578 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2579 {
2580 if (ada_opname_table[i].op == op)
2581 return ada_opname_table[i].decoded;
2582 }
2583 error (_("Could not find operator name for opcode"));
2584 }
2585
2586
2587 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2588 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2589 undefined namespace) and converts operators that are
2590 user-defined into appropriate function calls. If CONTEXT_TYPE is
2591 non-null, it provides a preferred result type [at the moment, only
2592 type void has any effect---causing procedures to be preferred over
2593 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2594 return type is preferred. May change (expand) *EXP. */
2595
2596 static void
2597 resolve (struct expression **expp, int void_context_p)
2598 {
2599 int pc;
2600 pc = 0;
2601 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2602 }
2603
2604 /* Resolve the operator of the subexpression beginning at
2605 position *POS of *EXPP. "Resolving" consists of replacing
2606 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2607 with their resolutions, replacing built-in operators with
2608 function calls to user-defined operators, where appropriate, and,
2609 when DEPROCEDURE_P is non-zero, converting function-valued variables
2610 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2611 are as in ada_resolve, above. */
2612
2613 static struct value *
2614 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2615 struct type *context_type)
2616 {
2617 int pc = *pos;
2618 int i;
2619 struct expression *exp; /* Convenience: == *expp. */
2620 enum exp_opcode op = (*expp)->elts[pc].opcode;
2621 struct value **argvec; /* Vector of operand types (alloca'ed). */
2622 int nargs; /* Number of operands. */
2623 int oplen;
2624
2625 argvec = NULL;
2626 nargs = 0;
2627 exp = *expp;
2628
2629 /* Pass one: resolve operands, saving their types and updating *pos,
2630 if needed. */
2631 switch (op)
2632 {
2633 case OP_FUNCALL:
2634 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2635 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2636 *pos += 7;
2637 else
2638 {
2639 *pos += 3;
2640 resolve_subexp (expp, pos, 0, NULL);
2641 }
2642 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2643 break;
2644
2645 case UNOP_ADDR:
2646 *pos += 1;
2647 resolve_subexp (expp, pos, 0, NULL);
2648 break;
2649
2650 case UNOP_QUAL:
2651 *pos += 3;
2652 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2653 break;
2654
2655 case OP_ATR_MODULUS:
2656 case OP_ATR_SIZE:
2657 case OP_ATR_TAG:
2658 case OP_ATR_FIRST:
2659 case OP_ATR_LAST:
2660 case OP_ATR_LENGTH:
2661 case OP_ATR_POS:
2662 case OP_ATR_VAL:
2663 case OP_ATR_MIN:
2664 case OP_ATR_MAX:
2665 case TERNOP_IN_RANGE:
2666 case BINOP_IN_BOUNDS:
2667 case UNOP_IN_RANGE:
2668 case OP_AGGREGATE:
2669 case OP_OTHERS:
2670 case OP_CHOICES:
2671 case OP_POSITIONAL:
2672 case OP_DISCRETE_RANGE:
2673 case OP_NAME:
2674 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2675 *pos += oplen;
2676 break;
2677
2678 case BINOP_ASSIGN:
2679 {
2680 struct value *arg1;
2681
2682 *pos += 1;
2683 arg1 = resolve_subexp (expp, pos, 0, NULL);
2684 if (arg1 == NULL)
2685 resolve_subexp (expp, pos, 1, NULL);
2686 else
2687 resolve_subexp (expp, pos, 1, value_type (arg1));
2688 break;
2689 }
2690
2691 case UNOP_CAST:
2692 *pos += 3;
2693 nargs = 1;
2694 break;
2695
2696 case BINOP_ADD:
2697 case BINOP_SUB:
2698 case BINOP_MUL:
2699 case BINOP_DIV:
2700 case BINOP_REM:
2701 case BINOP_MOD:
2702 case BINOP_EXP:
2703 case BINOP_CONCAT:
2704 case BINOP_LOGICAL_AND:
2705 case BINOP_LOGICAL_OR:
2706 case BINOP_BITWISE_AND:
2707 case BINOP_BITWISE_IOR:
2708 case BINOP_BITWISE_XOR:
2709
2710 case BINOP_EQUAL:
2711 case BINOP_NOTEQUAL:
2712 case BINOP_LESS:
2713 case BINOP_GTR:
2714 case BINOP_LEQ:
2715 case BINOP_GEQ:
2716
2717 case BINOP_REPEAT:
2718 case BINOP_SUBSCRIPT:
2719 case BINOP_COMMA:
2720 *pos += 1;
2721 nargs = 2;
2722 break;
2723
2724 case UNOP_NEG:
2725 case UNOP_PLUS:
2726 case UNOP_LOGICAL_NOT:
2727 case UNOP_ABS:
2728 case UNOP_IND:
2729 *pos += 1;
2730 nargs = 1;
2731 break;
2732
2733 case OP_LONG:
2734 case OP_DOUBLE:
2735 case OP_VAR_VALUE:
2736 *pos += 4;
2737 break;
2738
2739 case OP_TYPE:
2740 case OP_BOOL:
2741 case OP_LAST:
2742 case OP_INTERNALVAR:
2743 *pos += 3;
2744 break;
2745
2746 case UNOP_MEMVAL:
2747 *pos += 3;
2748 nargs = 1;
2749 break;
2750
2751 case OP_REGISTER:
2752 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2753 break;
2754
2755 case STRUCTOP_STRUCT:
2756 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2757 nargs = 1;
2758 break;
2759
2760 case TERNOP_SLICE:
2761 *pos += 1;
2762 nargs = 3;
2763 break;
2764
2765 case OP_STRING:
2766 break;
2767
2768 default:
2769 error (_("Unexpected operator during name resolution"));
2770 }
2771
2772 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2773 for (i = 0; i < nargs; i += 1)
2774 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2775 argvec[i] = NULL;
2776 exp = *expp;
2777
2778 /* Pass two: perform any resolution on principal operator. */
2779 switch (op)
2780 {
2781 default:
2782 break;
2783
2784 case OP_VAR_VALUE:
2785 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2786 {
2787 struct ada_symbol_info *candidates;
2788 int n_candidates;
2789
2790 n_candidates =
2791 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2792 (exp->elts[pc + 2].symbol),
2793 exp->elts[pc + 1].block, VAR_DOMAIN,
2794 &candidates);
2795
2796 if (n_candidates > 1)
2797 {
2798 /* Types tend to get re-introduced locally, so if there
2799 are any local symbols that are not types, first filter
2800 out all types. */
2801 int j;
2802 for (j = 0; j < n_candidates; j += 1)
2803 switch (SYMBOL_CLASS (candidates[j].sym))
2804 {
2805 case LOC_REGISTER:
2806 case LOC_ARG:
2807 case LOC_REF_ARG:
2808 case LOC_REGPARM_ADDR:
2809 case LOC_LOCAL:
2810 case LOC_COMPUTED:
2811 goto FoundNonType;
2812 default:
2813 break;
2814 }
2815 FoundNonType:
2816 if (j < n_candidates)
2817 {
2818 j = 0;
2819 while (j < n_candidates)
2820 {
2821 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2822 {
2823 candidates[j] = candidates[n_candidates - 1];
2824 n_candidates -= 1;
2825 }
2826 else
2827 j += 1;
2828 }
2829 }
2830 }
2831
2832 if (n_candidates == 0)
2833 error (_("No definition found for %s"),
2834 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2835 else if (n_candidates == 1)
2836 i = 0;
2837 else if (deprocedure_p
2838 && !is_nonfunction (candidates, n_candidates))
2839 {
2840 i = ada_resolve_function
2841 (candidates, n_candidates, NULL, 0,
2842 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2843 context_type);
2844 if (i < 0)
2845 error (_("Could not find a match for %s"),
2846 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2847 }
2848 else
2849 {
2850 printf_filtered (_("Multiple matches for %s\n"),
2851 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2852 user_select_syms (candidates, n_candidates, 1);
2853 i = 0;
2854 }
2855
2856 exp->elts[pc + 1].block = candidates[i].block;
2857 exp->elts[pc + 2].symbol = candidates[i].sym;
2858 if (innermost_block == NULL
2859 || contained_in (candidates[i].block, innermost_block))
2860 innermost_block = candidates[i].block;
2861 }
2862
2863 if (deprocedure_p
2864 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2865 == TYPE_CODE_FUNC))
2866 {
2867 replace_operator_with_call (expp, pc, 0, 0,
2868 exp->elts[pc + 2].symbol,
2869 exp->elts[pc + 1].block);
2870 exp = *expp;
2871 }
2872 break;
2873
2874 case OP_FUNCALL:
2875 {
2876 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2877 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2878 {
2879 struct ada_symbol_info *candidates;
2880 int n_candidates;
2881
2882 n_candidates =
2883 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2884 (exp->elts[pc + 5].symbol),
2885 exp->elts[pc + 4].block, VAR_DOMAIN,
2886 &candidates);
2887 if (n_candidates == 1)
2888 i = 0;
2889 else
2890 {
2891 i = ada_resolve_function
2892 (candidates, n_candidates,
2893 argvec, nargs,
2894 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2895 context_type);
2896 if (i < 0)
2897 error (_("Could not find a match for %s"),
2898 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2899 }
2900
2901 exp->elts[pc + 4].block = candidates[i].block;
2902 exp->elts[pc + 5].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2906 }
2907 }
2908 break;
2909 case BINOP_ADD:
2910 case BINOP_SUB:
2911 case BINOP_MUL:
2912 case BINOP_DIV:
2913 case BINOP_REM:
2914 case BINOP_MOD:
2915 case BINOP_CONCAT:
2916 case BINOP_BITWISE_AND:
2917 case BINOP_BITWISE_IOR:
2918 case BINOP_BITWISE_XOR:
2919 case BINOP_EQUAL:
2920 case BINOP_NOTEQUAL:
2921 case BINOP_LESS:
2922 case BINOP_GTR:
2923 case BINOP_LEQ:
2924 case BINOP_GEQ:
2925 case BINOP_EXP:
2926 case UNOP_NEG:
2927 case UNOP_PLUS:
2928 case UNOP_LOGICAL_NOT:
2929 case UNOP_ABS:
2930 if (possible_user_operator_p (op, argvec))
2931 {
2932 struct ada_symbol_info *candidates;
2933 int n_candidates;
2934
2935 n_candidates =
2936 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2937 (struct block *) NULL, VAR_DOMAIN,
2938 &candidates);
2939 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2940 ada_decoded_op_name (op), NULL);
2941 if (i < 0)
2942 break;
2943
2944 replace_operator_with_call (expp, pc, nargs, 1,
2945 candidates[i].sym, candidates[i].block);
2946 exp = *expp;
2947 }
2948 break;
2949
2950 case OP_TYPE:
2951 case OP_REGISTER:
2952 return NULL;
2953 }
2954
2955 *pos = pc;
2956 return evaluate_subexp_type (exp, pos);
2957 }
2958
2959 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2960 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2961 a non-pointer. A type of 'void' (which is never a valid expression type)
2962 by convention matches anything. */
2963 /* The term "match" here is rather loose. The match is heuristic and
2964 liberal. FIXME: TOO liberal, in fact. */
2965
2966 static int
2967 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2968 {
2969 ftype = ada_check_typedef (ftype);
2970 atype = ada_check_typedef (atype);
2971
2972 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2973 ftype = TYPE_TARGET_TYPE (ftype);
2974 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2975 atype = TYPE_TARGET_TYPE (atype);
2976
2977 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2978 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2979 return 1;
2980
2981 switch (TYPE_CODE (ftype))
2982 {
2983 default:
2984 return 1;
2985 case TYPE_CODE_PTR:
2986 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2987 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2988 TYPE_TARGET_TYPE (atype), 0);
2989 else
2990 return (may_deref
2991 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2992 case TYPE_CODE_INT:
2993 case TYPE_CODE_ENUM:
2994 case TYPE_CODE_RANGE:
2995 switch (TYPE_CODE (atype))
2996 {
2997 case TYPE_CODE_INT:
2998 case TYPE_CODE_ENUM:
2999 case TYPE_CODE_RANGE:
3000 return 1;
3001 default:
3002 return 0;
3003 }
3004
3005 case TYPE_CODE_ARRAY:
3006 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3007 || ada_is_array_descriptor_type (atype));
3008
3009 case TYPE_CODE_STRUCT:
3010 if (ada_is_array_descriptor_type (ftype))
3011 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3012 || ada_is_array_descriptor_type (atype));
3013 else
3014 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3015 && !ada_is_array_descriptor_type (atype));
3016
3017 case TYPE_CODE_UNION:
3018 case TYPE_CODE_FLT:
3019 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3020 }
3021 }
3022
3023 /* Return non-zero if the formals of FUNC "sufficiently match" the
3024 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3025 may also be an enumeral, in which case it is treated as a 0-
3026 argument function. */
3027
3028 static int
3029 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3030 {
3031 int i;
3032 struct type *func_type = SYMBOL_TYPE (func);
3033
3034 if (SYMBOL_CLASS (func) == LOC_CONST
3035 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3036 return (n_actuals == 0);
3037 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3038 return 0;
3039
3040 if (TYPE_NFIELDS (func_type) != n_actuals)
3041 return 0;
3042
3043 for (i = 0; i < n_actuals; i += 1)
3044 {
3045 if (actuals[i] == NULL)
3046 return 0;
3047 else
3048 {
3049 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3050 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3051
3052 if (!ada_type_match (ftype, atype, 1))
3053 return 0;
3054 }
3055 }
3056 return 1;
3057 }
3058
3059 /* False iff function type FUNC_TYPE definitely does not produce a value
3060 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3061 FUNC_TYPE is not a valid function type with a non-null return type
3062 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3063
3064 static int
3065 return_match (struct type *func_type, struct type *context_type)
3066 {
3067 struct type *return_type;
3068
3069 if (func_type == NULL)
3070 return 1;
3071
3072 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3073 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3074 else
3075 return_type = base_type (func_type);
3076 if (return_type == NULL)
3077 return 1;
3078
3079 context_type = base_type (context_type);
3080
3081 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3082 return context_type == NULL || return_type == context_type;
3083 else if (context_type == NULL)
3084 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3085 else
3086 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3087 }
3088
3089
3090 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3091 function (if any) that matches the types of the NARGS arguments in
3092 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3093 that returns that type, then eliminate matches that don't. If
3094 CONTEXT_TYPE is void and there is at least one match that does not
3095 return void, eliminate all matches that do.
3096
3097 Asks the user if there is more than one match remaining. Returns -1
3098 if there is no such symbol or none is selected. NAME is used
3099 solely for messages. May re-arrange and modify SYMS in
3100 the process; the index returned is for the modified vector. */
3101
3102 static int
3103 ada_resolve_function (struct ada_symbol_info syms[],
3104 int nsyms, struct value **args, int nargs,
3105 const char *name, struct type *context_type)
3106 {
3107 int k;
3108 int m; /* Number of hits */
3109 struct type *fallback;
3110 struct type *return_type;
3111
3112 return_type = context_type;
3113 if (context_type == NULL)
3114 fallback = builtin_type_void;
3115 else
3116 fallback = NULL;
3117
3118 m = 0;
3119 while (1)
3120 {
3121 for (k = 0; k < nsyms; k += 1)
3122 {
3123 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3124
3125 if (ada_args_match (syms[k].sym, args, nargs)
3126 && return_match (type, return_type))
3127 {
3128 syms[m] = syms[k];
3129 m += 1;
3130 }
3131 }
3132 if (m > 0 || return_type == fallback)
3133 break;
3134 else
3135 return_type = fallback;
3136 }
3137
3138 if (m == 0)
3139 return -1;
3140 else if (m > 1)
3141 {
3142 printf_filtered (_("Multiple matches for %s\n"), name);
3143 user_select_syms (syms, m, 1);
3144 return 0;
3145 }
3146 return 0;
3147 }
3148
3149 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3150 in a listing of choices during disambiguation (see sort_choices, below).
3151 The idea is that overloadings of a subprogram name from the
3152 same package should sort in their source order. We settle for ordering
3153 such symbols by their trailing number (__N or $N). */
3154
3155 static int
3156 encoded_ordered_before (char *N0, char *N1)
3157 {
3158 if (N1 == NULL)
3159 return 0;
3160 else if (N0 == NULL)
3161 return 1;
3162 else
3163 {
3164 int k0, k1;
3165 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3166 ;
3167 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3168 ;
3169 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3170 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3171 {
3172 int n0, n1;
3173 n0 = k0;
3174 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3175 n0 -= 1;
3176 n1 = k1;
3177 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3178 n1 -= 1;
3179 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3180 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3181 }
3182 return (strcmp (N0, N1) < 0);
3183 }
3184 }
3185
3186 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3187 encoded names. */
3188
3189 static void
3190 sort_choices (struct ada_symbol_info syms[], int nsyms)
3191 {
3192 int i;
3193 for (i = 1; i < nsyms; i += 1)
3194 {
3195 struct ada_symbol_info sym = syms[i];
3196 int j;
3197
3198 for (j = i - 1; j >= 0; j -= 1)
3199 {
3200 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3201 SYMBOL_LINKAGE_NAME (sym.sym)))
3202 break;
3203 syms[j + 1] = syms[j];
3204 }
3205 syms[j + 1] = sym;
3206 }
3207 }
3208
3209 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3210 by asking the user (if necessary), returning the number selected,
3211 and setting the first elements of SYMS items. Error if no symbols
3212 selected. */
3213
3214 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3215 to be re-integrated one of these days. */
3216
3217 int
3218 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3219 {
3220 int i;
3221 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3222 int n_chosen;
3223 int first_choice = (max_results == 1) ? 1 : 2;
3224 const char *select_mode = multiple_symbols_select_mode ();
3225
3226 if (max_results < 1)
3227 error (_("Request to select 0 symbols!"));
3228 if (nsyms <= 1)
3229 return nsyms;
3230
3231 if (select_mode == multiple_symbols_cancel)
3232 error (_("\
3233 canceled because the command is ambiguous\n\
3234 See set/show multiple-symbol."));
3235
3236 /* If select_mode is "all", then return all possible symbols.
3237 Only do that if more than one symbol can be selected, of course.
3238 Otherwise, display the menu as usual. */
3239 if (select_mode == multiple_symbols_all && max_results > 1)
3240 return nsyms;
3241
3242 printf_unfiltered (_("[0] cancel\n"));
3243 if (max_results > 1)
3244 printf_unfiltered (_("[1] all\n"));
3245
3246 sort_choices (syms, nsyms);
3247
3248 for (i = 0; i < nsyms; i += 1)
3249 {
3250 if (syms[i].sym == NULL)
3251 continue;
3252
3253 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3254 {
3255 struct symtab_and_line sal =
3256 find_function_start_sal (syms[i].sym, 1);
3257 if (sal.symtab == NULL)
3258 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3259 i + first_choice,
3260 SYMBOL_PRINT_NAME (syms[i].sym),
3261 sal.line);
3262 else
3263 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3264 SYMBOL_PRINT_NAME (syms[i].sym),
3265 sal.symtab->filename, sal.line);
3266 continue;
3267 }
3268 else
3269 {
3270 int is_enumeral =
3271 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3272 && SYMBOL_TYPE (syms[i].sym) != NULL
3273 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3274 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3275
3276 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3277 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename, SYMBOL_LINE (syms[i].sym));
3281 else if (is_enumeral
3282 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3283 {
3284 printf_unfiltered (("[%d] "), i + first_choice);
3285 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3286 gdb_stdout, -1, 0);
3287 printf_unfiltered (_("'(%s) (enumeral)\n"),
3288 SYMBOL_PRINT_NAME (syms[i].sym));
3289 }
3290 else if (symtab != NULL)
3291 printf_unfiltered (is_enumeral
3292 ? _("[%d] %s in %s (enumeral)\n")
3293 : _("[%d] %s at %s:?\n"),
3294 i + first_choice,
3295 SYMBOL_PRINT_NAME (syms[i].sym),
3296 symtab->filename);
3297 else
3298 printf_unfiltered (is_enumeral
3299 ? _("[%d] %s (enumeral)\n")
3300 : _("[%d] %s at ?\n"),
3301 i + first_choice,
3302 SYMBOL_PRINT_NAME (syms[i].sym));
3303 }
3304 }
3305
3306 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3307 "overload-choice");
3308
3309 for (i = 0; i < n_chosen; i += 1)
3310 syms[i] = syms[chosen[i]];
3311
3312 return n_chosen;
3313 }
3314
3315 /* Read and validate a set of numeric choices from the user in the
3316 range 0 .. N_CHOICES-1. Place the results in increasing
3317 order in CHOICES[0 .. N-1], and return N.
3318
3319 The user types choices as a sequence of numbers on one line
3320 separated by blanks, encoding them as follows:
3321
3322 + A choice of 0 means to cancel the selection, throwing an error.
3323 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3324 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3325
3326 The user is not allowed to choose more than MAX_RESULTS values.
3327
3328 ANNOTATION_SUFFIX, if present, is used to annotate the input
3329 prompts (for use with the -f switch). */
3330
3331 int
3332 get_selections (int *choices, int n_choices, int max_results,
3333 int is_all_choice, char *annotation_suffix)
3334 {
3335 char *args;
3336 char *prompt;
3337 int n_chosen;
3338 int first_choice = is_all_choice ? 2 : 1;
3339
3340 prompt = getenv ("PS2");
3341 if (prompt == NULL)
3342 prompt = "> ";
3343
3344 args = command_line_input (prompt, 0, annotation_suffix);
3345
3346 if (args == NULL)
3347 error_no_arg (_("one or more choice numbers"));
3348
3349 n_chosen = 0;
3350
3351 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3352 order, as given in args. Choices are validated. */
3353 while (1)
3354 {
3355 char *args2;
3356 int choice, j;
3357
3358 while (isspace (*args))
3359 args += 1;
3360 if (*args == '\0' && n_chosen == 0)
3361 error_no_arg (_("one or more choice numbers"));
3362 else if (*args == '\0')
3363 break;
3364
3365 choice = strtol (args, &args2, 10);
3366 if (args == args2 || choice < 0
3367 || choice > n_choices + first_choice - 1)
3368 error (_("Argument must be choice number"));
3369 args = args2;
3370
3371 if (choice == 0)
3372 error (_("cancelled"));
3373
3374 if (choice < first_choice)
3375 {
3376 n_chosen = n_choices;
3377 for (j = 0; j < n_choices; j += 1)
3378 choices[j] = j;
3379 break;
3380 }
3381 choice -= first_choice;
3382
3383 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3384 {
3385 }
3386
3387 if (j < 0 || choice != choices[j])
3388 {
3389 int k;
3390 for (k = n_chosen - 1; k > j; k -= 1)
3391 choices[k + 1] = choices[k];
3392 choices[j + 1] = choice;
3393 n_chosen += 1;
3394 }
3395 }
3396
3397 if (n_chosen > max_results)
3398 error (_("Select no more than %d of the above"), max_results);
3399
3400 return n_chosen;
3401 }
3402
3403 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3404 on the function identified by SYM and BLOCK, and taking NARGS
3405 arguments. Update *EXPP as needed to hold more space. */
3406
3407 static void
3408 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3409 int oplen, struct symbol *sym,
3410 struct block *block)
3411 {
3412 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3413 symbol, -oplen for operator being replaced). */
3414 struct expression *newexp = (struct expression *)
3415 xmalloc (sizeof (struct expression)
3416 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3417 struct expression *exp = *expp;
3418
3419 newexp->nelts = exp->nelts + 7 - oplen;
3420 newexp->language_defn = exp->language_defn;
3421 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3422 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3423 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3424
3425 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3426 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3427
3428 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3429 newexp->elts[pc + 4].block = block;
3430 newexp->elts[pc + 5].symbol = sym;
3431
3432 *expp = newexp;
3433 xfree (exp);
3434 }
3435
3436 /* Type-class predicates */
3437
3438 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3439 or FLOAT). */
3440
3441 static int
3442 numeric_type_p (struct type *type)
3443 {
3444 if (type == NULL)
3445 return 0;
3446 else
3447 {
3448 switch (TYPE_CODE (type))
3449 {
3450 case TYPE_CODE_INT:
3451 case TYPE_CODE_FLT:
3452 return 1;
3453 case TYPE_CODE_RANGE:
3454 return (type == TYPE_TARGET_TYPE (type)
3455 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3456 default:
3457 return 0;
3458 }
3459 }
3460 }
3461
3462 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3463
3464 static int
3465 integer_type_p (struct type *type)
3466 {
3467 if (type == NULL)
3468 return 0;
3469 else
3470 {
3471 switch (TYPE_CODE (type))
3472 {
3473 case TYPE_CODE_INT:
3474 return 1;
3475 case TYPE_CODE_RANGE:
3476 return (type == TYPE_TARGET_TYPE (type)
3477 || integer_type_p (TYPE_TARGET_TYPE (type)));
3478 default:
3479 return 0;
3480 }
3481 }
3482 }
3483
3484 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3485
3486 static int
3487 scalar_type_p (struct type *type)
3488 {
3489 if (type == NULL)
3490 return 0;
3491 else
3492 {
3493 switch (TYPE_CODE (type))
3494 {
3495 case TYPE_CODE_INT:
3496 case TYPE_CODE_RANGE:
3497 case TYPE_CODE_ENUM:
3498 case TYPE_CODE_FLT:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3507
3508 static int
3509 discrete_type_p (struct type *type)
3510 {
3511 if (type == NULL)
3512 return 0;
3513 else
3514 {
3515 switch (TYPE_CODE (type))
3516 {
3517 case TYPE_CODE_INT:
3518 case TYPE_CODE_RANGE:
3519 case TYPE_CODE_ENUM:
3520 return 1;
3521 default:
3522 return 0;
3523 }
3524 }
3525 }
3526
3527 /* Returns non-zero if OP with operands in the vector ARGS could be
3528 a user-defined function. Errs on the side of pre-defined operators
3529 (i.e., result 0). */
3530
3531 static int
3532 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3533 {
3534 struct type *type0 =
3535 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3536 struct type *type1 =
3537 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3538
3539 if (type0 == NULL)
3540 return 0;
3541
3542 switch (op)
3543 {
3544 default:
3545 return 0;
3546
3547 case BINOP_ADD:
3548 case BINOP_SUB:
3549 case BINOP_MUL:
3550 case BINOP_DIV:
3551 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3552
3553 case BINOP_REM:
3554 case BINOP_MOD:
3555 case BINOP_BITWISE_AND:
3556 case BINOP_BITWISE_IOR:
3557 case BINOP_BITWISE_XOR:
3558 return (!(integer_type_p (type0) && integer_type_p (type1)));
3559
3560 case BINOP_EQUAL:
3561 case BINOP_NOTEQUAL:
3562 case BINOP_LESS:
3563 case BINOP_GTR:
3564 case BINOP_LEQ:
3565 case BINOP_GEQ:
3566 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3567
3568 case BINOP_CONCAT:
3569 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3570
3571 case BINOP_EXP:
3572 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3573
3574 case UNOP_NEG:
3575 case UNOP_PLUS:
3576 case UNOP_LOGICAL_NOT:
3577 case UNOP_ABS:
3578 return (!numeric_type_p (type0));
3579
3580 }
3581 }
3582 \f
3583 /* Renaming */
3584
3585 /* NOTES:
3586
3587 1. In the following, we assume that a renaming type's name may
3588 have an ___XD suffix. It would be nice if this went away at some
3589 point.
3590 2. We handle both the (old) purely type-based representation of
3591 renamings and the (new) variable-based encoding. At some point,
3592 it is devoutly to be hoped that the former goes away
3593 (FIXME: hilfinger-2007-07-09).
3594 3. Subprogram renamings are not implemented, although the XRS
3595 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3596
3597 /* If SYM encodes a renaming,
3598
3599 <renaming> renames <renamed entity>,
3600
3601 sets *LEN to the length of the renamed entity's name,
3602 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3603 the string describing the subcomponent selected from the renamed
3604 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3605 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3606 are undefined). Otherwise, returns a value indicating the category
3607 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3608 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3609 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3610 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3611 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3612 may be NULL, in which case they are not assigned.
3613
3614 [Currently, however, GCC does not generate subprogram renamings.] */
3615
3616 enum ada_renaming_category
3617 ada_parse_renaming (struct symbol *sym,
3618 const char **renamed_entity, int *len,
3619 const char **renaming_expr)
3620 {
3621 enum ada_renaming_category kind;
3622 const char *info;
3623 const char *suffix;
3624
3625 if (sym == NULL)
3626 return ADA_NOT_RENAMING;
3627 switch (SYMBOL_CLASS (sym))
3628 {
3629 default:
3630 return ADA_NOT_RENAMING;
3631 case LOC_TYPEDEF:
3632 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3633 renamed_entity, len, renaming_expr);
3634 case LOC_LOCAL:
3635 case LOC_STATIC:
3636 case LOC_COMPUTED:
3637 case LOC_OPTIMIZED_OUT:
3638 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3639 if (info == NULL)
3640 return ADA_NOT_RENAMING;
3641 switch (info[5])
3642 {
3643 case '_':
3644 kind = ADA_OBJECT_RENAMING;
3645 info += 6;
3646 break;
3647 case 'E':
3648 kind = ADA_EXCEPTION_RENAMING;
3649 info += 7;
3650 break;
3651 case 'P':
3652 kind = ADA_PACKAGE_RENAMING;
3653 info += 7;
3654 break;
3655 case 'S':
3656 kind = ADA_SUBPROGRAM_RENAMING;
3657 info += 7;
3658 break;
3659 default:
3660 return ADA_NOT_RENAMING;
3661 }
3662 }
3663
3664 if (renamed_entity != NULL)
3665 *renamed_entity = info;
3666 suffix = strstr (info, "___XE");
3667 if (suffix == NULL || suffix == info)
3668 return ADA_NOT_RENAMING;
3669 if (len != NULL)
3670 *len = strlen (info) - strlen (suffix);
3671 suffix += 5;
3672 if (renaming_expr != NULL)
3673 *renaming_expr = suffix;
3674 return kind;
3675 }
3676
3677 /* Assuming TYPE encodes a renaming according to the old encoding in
3678 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3679 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3680 ADA_NOT_RENAMING otherwise. */
3681 static enum ada_renaming_category
3682 parse_old_style_renaming (struct type *type,
3683 const char **renamed_entity, int *len,
3684 const char **renaming_expr)
3685 {
3686 enum ada_renaming_category kind;
3687 const char *name;
3688 const char *info;
3689 const char *suffix;
3690
3691 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3692 || TYPE_NFIELDS (type) != 1)
3693 return ADA_NOT_RENAMING;
3694
3695 name = type_name_no_tag (type);
3696 if (name == NULL)
3697 return ADA_NOT_RENAMING;
3698
3699 name = strstr (name, "___XR");
3700 if (name == NULL)
3701 return ADA_NOT_RENAMING;
3702 switch (name[5])
3703 {
3704 case '\0':
3705 case '_':
3706 kind = ADA_OBJECT_RENAMING;
3707 break;
3708 case 'E':
3709 kind = ADA_EXCEPTION_RENAMING;
3710 break;
3711 case 'P':
3712 kind = ADA_PACKAGE_RENAMING;
3713 break;
3714 case 'S':
3715 kind = ADA_SUBPROGRAM_RENAMING;
3716 break;
3717 default:
3718 return ADA_NOT_RENAMING;
3719 }
3720
3721 info = TYPE_FIELD_NAME (type, 0);
3722 if (info == NULL)
3723 return ADA_NOT_RENAMING;
3724 if (renamed_entity != NULL)
3725 *renamed_entity = info;
3726 suffix = strstr (info, "___XE");
3727 if (renaming_expr != NULL)
3728 *renaming_expr = suffix + 5;
3729 if (suffix == NULL || suffix == info)
3730 return ADA_NOT_RENAMING;
3731 if (len != NULL)
3732 *len = suffix - info;
3733 return kind;
3734 }
3735
3736 \f
3737
3738 /* Evaluation: Function Calls */
3739
3740 /* Return an lvalue containing the value VAL. This is the identity on
3741 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3742 on the stack, using and updating *SP as the stack pointer, and
3743 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3744
3745 static struct value *
3746 ensure_lval (struct value *val, CORE_ADDR *sp)
3747 {
3748 if (! VALUE_LVAL (val))
3749 {
3750 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3751
3752 /* The following is taken from the structure-return code in
3753 call_function_by_hand. FIXME: Therefore, some refactoring seems
3754 indicated. */
3755 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3756 {
3757 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3758 reserving sufficient space. */
3759 *sp -= len;
3760 if (gdbarch_frame_align_p (current_gdbarch))
3761 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3762 VALUE_ADDRESS (val) = *sp;
3763 }
3764 else
3765 {
3766 /* Stack grows upward. Align the frame, allocate space, and
3767 then again, re-align the frame. */
3768 if (gdbarch_frame_align_p (current_gdbarch))
3769 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3770 VALUE_ADDRESS (val) = *sp;
3771 *sp += len;
3772 if (gdbarch_frame_align_p (current_gdbarch))
3773 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3774 }
3775 VALUE_LVAL (val) = lval_memory;
3776
3777 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3778 }
3779
3780 return val;
3781 }
3782
3783 /* Return the value ACTUAL, converted to be an appropriate value for a
3784 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3785 allocating any necessary descriptors (fat pointers), or copies of
3786 values not residing in memory, updating it as needed. */
3787
3788 struct value *
3789 ada_convert_actual (struct value *actual, struct type *formal_type0,
3790 CORE_ADDR *sp)
3791 {
3792 struct type *actual_type = ada_check_typedef (value_type (actual));
3793 struct type *formal_type = ada_check_typedef (formal_type0);
3794 struct type *formal_target =
3795 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3796 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3797 struct type *actual_target =
3798 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3799 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3800
3801 if (ada_is_array_descriptor_type (formal_target)
3802 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3803 return make_array_descriptor (formal_type, actual, sp);
3804 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3805 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3806 {
3807 struct value *result;
3808 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3809 && ada_is_array_descriptor_type (actual_target))
3810 result = desc_data (actual);
3811 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3812 {
3813 if (VALUE_LVAL (actual) != lval_memory)
3814 {
3815 struct value *val;
3816 actual_type = ada_check_typedef (value_type (actual));
3817 val = allocate_value (actual_type);
3818 memcpy ((char *) value_contents_raw (val),
3819 (char *) value_contents (actual),
3820 TYPE_LENGTH (actual_type));
3821 actual = ensure_lval (val, sp);
3822 }
3823 result = value_addr (actual);
3824 }
3825 else
3826 return actual;
3827 return value_cast_pointers (formal_type, result);
3828 }
3829 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3830 return ada_value_ind (actual);
3831
3832 return actual;
3833 }
3834
3835
3836 /* Push a descriptor of type TYPE for array value ARR on the stack at
3837 *SP, updating *SP to reflect the new descriptor. Return either
3838 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3839 to-descriptor type rather than a descriptor type), a struct value *
3840 representing a pointer to this descriptor. */
3841
3842 static struct value *
3843 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3844 {
3845 struct type *bounds_type = desc_bounds_type (type);
3846 struct type *desc_type = desc_base_type (type);
3847 struct value *descriptor = allocate_value (desc_type);
3848 struct value *bounds = allocate_value (bounds_type);
3849 int i;
3850
3851 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3852 {
3853 modify_general_field (value_contents_writeable (bounds),
3854 value_as_long (ada_array_bound (arr, i, 0)),
3855 desc_bound_bitpos (bounds_type, i, 0),
3856 desc_bound_bitsize (bounds_type, i, 0));
3857 modify_general_field (value_contents_writeable (bounds),
3858 value_as_long (ada_array_bound (arr, i, 1)),
3859 desc_bound_bitpos (bounds_type, i, 1),
3860 desc_bound_bitsize (bounds_type, i, 1));
3861 }
3862
3863 bounds = ensure_lval (bounds, sp);
3864
3865 modify_general_field (value_contents_writeable (descriptor),
3866 VALUE_ADDRESS (ensure_lval (arr, sp)),
3867 fat_pntr_data_bitpos (desc_type),
3868 fat_pntr_data_bitsize (desc_type));
3869
3870 modify_general_field (value_contents_writeable (descriptor),
3871 VALUE_ADDRESS (bounds),
3872 fat_pntr_bounds_bitpos (desc_type),
3873 fat_pntr_bounds_bitsize (desc_type));
3874
3875 descriptor = ensure_lval (descriptor, sp);
3876
3877 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3878 return value_addr (descriptor);
3879 else
3880 return descriptor;
3881 }
3882 \f
3883 /* Dummy definitions for an experimental caching module that is not
3884 * used in the public sources. */
3885
3886 static int
3887 lookup_cached_symbol (const char *name, domain_enum namespace,
3888 struct symbol **sym, struct block **block)
3889 {
3890 return 0;
3891 }
3892
3893 static void
3894 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3895 struct block *block)
3896 {
3897 }
3898 \f
3899 /* Symbol Lookup */
3900
3901 /* Return the result of a standard (literal, C-like) lookup of NAME in
3902 given DOMAIN, visible from lexical block BLOCK. */
3903
3904 static struct symbol *
3905 standard_lookup (const char *name, const struct block *block,
3906 domain_enum domain)
3907 {
3908 struct symbol *sym;
3909
3910 if (lookup_cached_symbol (name, domain, &sym, NULL))
3911 return sym;
3912 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3913 cache_symbol (name, domain, sym, block_found);
3914 return sym;
3915 }
3916
3917
3918 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3919 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3920 since they contend in overloading in the same way. */
3921 static int
3922 is_nonfunction (struct ada_symbol_info syms[], int n)
3923 {
3924 int i;
3925
3926 for (i = 0; i < n; i += 1)
3927 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3928 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3929 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3930 return 1;
3931
3932 return 0;
3933 }
3934
3935 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3936 struct types. Otherwise, they may not. */
3937
3938 static int
3939 equiv_types (struct type *type0, struct type *type1)
3940 {
3941 if (type0 == type1)
3942 return 1;
3943 if (type0 == NULL || type1 == NULL
3944 || TYPE_CODE (type0) != TYPE_CODE (type1))
3945 return 0;
3946 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3947 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3948 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3949 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3950 return 1;
3951
3952 return 0;
3953 }
3954
3955 /* True iff SYM0 represents the same entity as SYM1, or one that is
3956 no more defined than that of SYM1. */
3957
3958 static int
3959 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3960 {
3961 if (sym0 == sym1)
3962 return 1;
3963 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3964 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3965 return 0;
3966
3967 switch (SYMBOL_CLASS (sym0))
3968 {
3969 case LOC_UNDEF:
3970 return 1;
3971 case LOC_TYPEDEF:
3972 {
3973 struct type *type0 = SYMBOL_TYPE (sym0);
3974 struct type *type1 = SYMBOL_TYPE (sym1);
3975 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3976 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3977 int len0 = strlen (name0);
3978 return
3979 TYPE_CODE (type0) == TYPE_CODE (type1)
3980 && (equiv_types (type0, type1)
3981 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3982 && strncmp (name1 + len0, "___XV", 5) == 0));
3983 }
3984 case LOC_CONST:
3985 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3986 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3987 default:
3988 return 0;
3989 }
3990 }
3991
3992 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3993 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3994
3995 static void
3996 add_defn_to_vec (struct obstack *obstackp,
3997 struct symbol *sym,
3998 struct block *block)
3999 {
4000 int i;
4001 size_t tmp;
4002 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4003
4004 /* Do not try to complete stub types, as the debugger is probably
4005 already scanning all symbols matching a certain name at the
4006 time when this function is called. Trying to replace the stub
4007 type by its associated full type will cause us to restart a scan
4008 which may lead to an infinite recursion. Instead, the client
4009 collecting the matching symbols will end up collecting several
4010 matches, with at least one of them complete. It can then filter
4011 out the stub ones if needed. */
4012
4013 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4014 {
4015 if (lesseq_defined_than (sym, prevDefns[i].sym))
4016 return;
4017 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4018 {
4019 prevDefns[i].sym = sym;
4020 prevDefns[i].block = block;
4021 return;
4022 }
4023 }
4024
4025 {
4026 struct ada_symbol_info info;
4027
4028 info.sym = sym;
4029 info.block = block;
4030 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4031 }
4032 }
4033
4034 /* Number of ada_symbol_info structures currently collected in
4035 current vector in *OBSTACKP. */
4036
4037 static int
4038 num_defns_collected (struct obstack *obstackp)
4039 {
4040 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4041 }
4042
4043 /* Vector of ada_symbol_info structures currently collected in current
4044 vector in *OBSTACKP. If FINISH, close off the vector and return
4045 its final address. */
4046
4047 static struct ada_symbol_info *
4048 defns_collected (struct obstack *obstackp, int finish)
4049 {
4050 if (finish)
4051 return obstack_finish (obstackp);
4052 else
4053 return (struct ada_symbol_info *) obstack_base (obstackp);
4054 }
4055
4056 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4057 Check the global symbols if GLOBAL, the static symbols if not.
4058 Do wild-card match if WILD. */
4059
4060 static struct partial_symbol *
4061 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4062 int global, domain_enum namespace, int wild)
4063 {
4064 struct partial_symbol **start;
4065 int name_len = strlen (name);
4066 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4067 int i;
4068
4069 if (length == 0)
4070 {
4071 return (NULL);
4072 }
4073
4074 start = (global ?
4075 pst->objfile->global_psymbols.list + pst->globals_offset :
4076 pst->objfile->static_psymbols.list + pst->statics_offset);
4077
4078 if (wild)
4079 {
4080 for (i = 0; i < length; i += 1)
4081 {
4082 struct partial_symbol *psym = start[i];
4083
4084 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4085 SYMBOL_DOMAIN (psym), namespace)
4086 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4087 return psym;
4088 }
4089 return NULL;
4090 }
4091 else
4092 {
4093 if (global)
4094 {
4095 int U;
4096 i = 0;
4097 U = length - 1;
4098 while (U - i > 4)
4099 {
4100 int M = (U + i) >> 1;
4101 struct partial_symbol *psym = start[M];
4102 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4103 i = M + 1;
4104 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4105 U = M - 1;
4106 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4107 i = M + 1;
4108 else
4109 U = M;
4110 }
4111 }
4112 else
4113 i = 0;
4114
4115 while (i < length)
4116 {
4117 struct partial_symbol *psym = start[i];
4118
4119 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4120 SYMBOL_DOMAIN (psym), namespace))
4121 {
4122 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4123
4124 if (cmp < 0)
4125 {
4126 if (global)
4127 break;
4128 }
4129 else if (cmp == 0
4130 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4131 + name_len))
4132 return psym;
4133 }
4134 i += 1;
4135 }
4136
4137 if (global)
4138 {
4139 int U;
4140 i = 0;
4141 U = length - 1;
4142 while (U - i > 4)
4143 {
4144 int M = (U + i) >> 1;
4145 struct partial_symbol *psym = start[M];
4146 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4147 i = M + 1;
4148 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4149 U = M - 1;
4150 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4151 i = M + 1;
4152 else
4153 U = M;
4154 }
4155 }
4156 else
4157 i = 0;
4158
4159 while (i < length)
4160 {
4161 struct partial_symbol *psym = start[i];
4162
4163 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4164 SYMBOL_DOMAIN (psym), namespace))
4165 {
4166 int cmp;
4167
4168 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4169 if (cmp == 0)
4170 {
4171 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4172 if (cmp == 0)
4173 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4174 name_len);
4175 }
4176
4177 if (cmp < 0)
4178 {
4179 if (global)
4180 break;
4181 }
4182 else if (cmp == 0
4183 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4184 + name_len + 5))
4185 return psym;
4186 }
4187 i += 1;
4188 }
4189 }
4190 return NULL;
4191 }
4192
4193 /* Find a symbol table containing symbol SYM or NULL if none. */
4194
4195 static struct symtab *
4196 symtab_for_sym (struct symbol *sym)
4197 {
4198 struct symtab *s;
4199 struct objfile *objfile;
4200 struct block *b;
4201 struct symbol *tmp_sym;
4202 struct dict_iterator iter;
4203 int j;
4204
4205 ALL_PRIMARY_SYMTABS (objfile, s)
4206 {
4207 switch (SYMBOL_CLASS (sym))
4208 {
4209 case LOC_CONST:
4210 case LOC_STATIC:
4211 case LOC_TYPEDEF:
4212 case LOC_REGISTER:
4213 case LOC_LABEL:
4214 case LOC_BLOCK:
4215 case LOC_CONST_BYTES:
4216 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4217 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4218 return s;
4219 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4220 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4221 return s;
4222 break;
4223 default:
4224 break;
4225 }
4226 switch (SYMBOL_CLASS (sym))
4227 {
4228 case LOC_REGISTER:
4229 case LOC_ARG:
4230 case LOC_REF_ARG:
4231 case LOC_REGPARM_ADDR:
4232 case LOC_LOCAL:
4233 case LOC_TYPEDEF:
4234 case LOC_COMPUTED:
4235 for (j = FIRST_LOCAL_BLOCK;
4236 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4237 {
4238 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4239 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4240 return s;
4241 }
4242 break;
4243 default:
4244 break;
4245 }
4246 }
4247 return NULL;
4248 }
4249
4250 /* Return a minimal symbol matching NAME according to Ada decoding
4251 rules. Returns NULL if there is no such minimal symbol. Names
4252 prefixed with "standard__" are handled specially: "standard__" is
4253 first stripped off, and only static and global symbols are searched. */
4254
4255 struct minimal_symbol *
4256 ada_lookup_simple_minsym (const char *name)
4257 {
4258 struct objfile *objfile;
4259 struct minimal_symbol *msymbol;
4260 int wild_match;
4261
4262 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4263 {
4264 name += sizeof ("standard__") - 1;
4265 wild_match = 0;
4266 }
4267 else
4268 wild_match = (strstr (name, "__") == NULL);
4269
4270 ALL_MSYMBOLS (objfile, msymbol)
4271 {
4272 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4273 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4274 return msymbol;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 /* For all subprograms that statically enclose the subprogram of the
4281 selected frame, add symbols matching identifier NAME in DOMAIN
4282 and their blocks to the list of data in OBSTACKP, as for
4283 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4284 wildcard prefix. */
4285
4286 static void
4287 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4288 const char *name, domain_enum namespace,
4289 int wild_match)
4290 {
4291 }
4292
4293 /* True if TYPE is definitely an artificial type supplied to a symbol
4294 for which no debugging information was given in the symbol file. */
4295
4296 static int
4297 is_nondebugging_type (struct type *type)
4298 {
4299 char *name = ada_type_name (type);
4300 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4301 }
4302
4303 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4304 duplicate other symbols in the list (The only case I know of where
4305 this happens is when object files containing stabs-in-ecoff are
4306 linked with files containing ordinary ecoff debugging symbols (or no
4307 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4308 Returns the number of items in the modified list. */
4309
4310 static int
4311 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4312 {
4313 int i, j;
4314
4315 i = 0;
4316 while (i < nsyms)
4317 {
4318 int remove = 0;
4319
4320 /* If two symbols have the same name and one of them is a stub type,
4321 the get rid of the stub. */
4322
4323 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4324 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4325 {
4326 for (j = 0; j < nsyms; j++)
4327 {
4328 if (j != i
4329 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4330 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4331 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4332 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4333 remove = 1;
4334 }
4335 }
4336
4337 /* Two symbols with the same name, same class and same address
4338 should be identical. */
4339
4340 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4341 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4342 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4343 {
4344 for (j = 0; j < nsyms; j += 1)
4345 {
4346 if (i != j
4347 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4348 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4349 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4350 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4351 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4352 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4353 remove = 1;
4354 }
4355 }
4356
4357 if (remove)
4358 {
4359 for (j = i + 1; j < nsyms; j += 1)
4360 syms[j - 1] = syms[j];
4361 nsyms -= 1;
4362 }
4363
4364 i += 1;
4365 }
4366 return nsyms;
4367 }
4368
4369 /* Given a type that corresponds to a renaming entity, use the type name
4370 to extract the scope (package name or function name, fully qualified,
4371 and following the GNAT encoding convention) where this renaming has been
4372 defined. The string returned needs to be deallocated after use. */
4373
4374 static char *
4375 xget_renaming_scope (struct type *renaming_type)
4376 {
4377 /* The renaming types adhere to the following convention:
4378 <scope>__<rename>___<XR extension>.
4379 So, to extract the scope, we search for the "___XR" extension,
4380 and then backtrack until we find the first "__". */
4381
4382 const char *name = type_name_no_tag (renaming_type);
4383 char *suffix = strstr (name, "___XR");
4384 char *last;
4385 int scope_len;
4386 char *scope;
4387
4388 /* Now, backtrack a bit until we find the first "__". Start looking
4389 at suffix - 3, as the <rename> part is at least one character long. */
4390
4391 for (last = suffix - 3; last > name; last--)
4392 if (last[0] == '_' && last[1] == '_')
4393 break;
4394
4395 /* Make a copy of scope and return it. */
4396
4397 scope_len = last - name;
4398 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4399
4400 strncpy (scope, name, scope_len);
4401 scope[scope_len] = '\0';
4402
4403 return scope;
4404 }
4405
4406 /* Return nonzero if NAME corresponds to a package name. */
4407
4408 static int
4409 is_package_name (const char *name)
4410 {
4411 /* Here, We take advantage of the fact that no symbols are generated
4412 for packages, while symbols are generated for each function.
4413 So the condition for NAME represent a package becomes equivalent
4414 to NAME not existing in our list of symbols. There is only one
4415 small complication with library-level functions (see below). */
4416
4417 char *fun_name;
4418
4419 /* If it is a function that has not been defined at library level,
4420 then we should be able to look it up in the symbols. */
4421 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4422 return 0;
4423
4424 /* Library-level function names start with "_ada_". See if function
4425 "_ada_" followed by NAME can be found. */
4426
4427 /* Do a quick check that NAME does not contain "__", since library-level
4428 functions names cannot contain "__" in them. */
4429 if (strstr (name, "__") != NULL)
4430 return 0;
4431
4432 fun_name = xstrprintf ("_ada_%s", name);
4433
4434 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4435 }
4436
4437 /* Return nonzero if SYM corresponds to a renaming entity that is
4438 not visible from FUNCTION_NAME. */
4439
4440 static int
4441 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4442 {
4443 char *scope;
4444
4445 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4446 return 0;
4447
4448 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4449
4450 make_cleanup (xfree, scope);
4451
4452 /* If the rename has been defined in a package, then it is visible. */
4453 if (is_package_name (scope))
4454 return 0;
4455
4456 /* Check that the rename is in the current function scope by checking
4457 that its name starts with SCOPE. */
4458
4459 /* If the function name starts with "_ada_", it means that it is
4460 a library-level function. Strip this prefix before doing the
4461 comparison, as the encoding for the renaming does not contain
4462 this prefix. */
4463 if (strncmp (function_name, "_ada_", 5) == 0)
4464 function_name += 5;
4465
4466 return (strncmp (function_name, scope, strlen (scope)) != 0);
4467 }
4468
4469 /* Remove entries from SYMS that corresponds to a renaming entity that
4470 is not visible from the function associated with CURRENT_BLOCK or
4471 that is superfluous due to the presence of more specific renaming
4472 information. Places surviving symbols in the initial entries of
4473 SYMS and returns the number of surviving symbols.
4474
4475 Rationale:
4476 First, in cases where an object renaming is implemented as a
4477 reference variable, GNAT may produce both the actual reference
4478 variable and the renaming encoding. In this case, we discard the
4479 latter.
4480
4481 Second, GNAT emits a type following a specified encoding for each renaming
4482 entity. Unfortunately, STABS currently does not support the definition
4483 of types that are local to a given lexical block, so all renamings types
4484 are emitted at library level. As a consequence, if an application
4485 contains two renaming entities using the same name, and a user tries to
4486 print the value of one of these entities, the result of the ada symbol
4487 lookup will also contain the wrong renaming type.
4488
4489 This function partially covers for this limitation by attempting to
4490 remove from the SYMS list renaming symbols that should be visible
4491 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4492 method with the current information available. The implementation
4493 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4494
4495 - When the user tries to print a rename in a function while there
4496 is another rename entity defined in a package: Normally, the
4497 rename in the function has precedence over the rename in the
4498 package, so the latter should be removed from the list. This is
4499 currently not the case.
4500
4501 - This function will incorrectly remove valid renames if
4502 the CURRENT_BLOCK corresponds to a function which symbol name
4503 has been changed by an "Export" pragma. As a consequence,
4504 the user will be unable to print such rename entities. */
4505
4506 static int
4507 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4508 int nsyms, const struct block *current_block)
4509 {
4510 struct symbol *current_function;
4511 char *current_function_name;
4512 int i;
4513 int is_new_style_renaming;
4514
4515 /* If there is both a renaming foo___XR... encoded as a variable and
4516 a simple variable foo in the same block, discard the latter.
4517 First, zero out such symbols, then compress. */
4518 is_new_style_renaming = 0;
4519 for (i = 0; i < nsyms; i += 1)
4520 {
4521 struct symbol *sym = syms[i].sym;
4522 struct block *block = syms[i].block;
4523 const char *name;
4524 const char *suffix;
4525
4526 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4527 continue;
4528 name = SYMBOL_LINKAGE_NAME (sym);
4529 suffix = strstr (name, "___XR");
4530
4531 if (suffix != NULL)
4532 {
4533 int name_len = suffix - name;
4534 int j;
4535 is_new_style_renaming = 1;
4536 for (j = 0; j < nsyms; j += 1)
4537 if (i != j && syms[j].sym != NULL
4538 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4539 name_len) == 0
4540 && block == syms[j].block)
4541 syms[j].sym = NULL;
4542 }
4543 }
4544 if (is_new_style_renaming)
4545 {
4546 int j, k;
4547
4548 for (j = k = 0; j < nsyms; j += 1)
4549 if (syms[j].sym != NULL)
4550 {
4551 syms[k] = syms[j];
4552 k += 1;
4553 }
4554 return k;
4555 }
4556
4557 /* Extract the function name associated to CURRENT_BLOCK.
4558 Abort if unable to do so. */
4559
4560 if (current_block == NULL)
4561 return nsyms;
4562
4563 current_function = block_linkage_function (current_block);
4564 if (current_function == NULL)
4565 return nsyms;
4566
4567 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4568 if (current_function_name == NULL)
4569 return nsyms;
4570
4571 /* Check each of the symbols, and remove it from the list if it is
4572 a type corresponding to a renaming that is out of the scope of
4573 the current block. */
4574
4575 i = 0;
4576 while (i < nsyms)
4577 {
4578 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4579 == ADA_OBJECT_RENAMING
4580 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4581 {
4582 int j;
4583 for (j = i + 1; j < nsyms; j += 1)
4584 syms[j - 1] = syms[j];
4585 nsyms -= 1;
4586 }
4587 else
4588 i += 1;
4589 }
4590
4591 return nsyms;
4592 }
4593
4594 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4595 whose name and domain match NAME and DOMAIN respectively.
4596 If no match was found, then extend the search to "enclosing"
4597 routines (in other words, if we're inside a nested function,
4598 search the symbols defined inside the enclosing functions).
4599
4600 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4601
4602 static void
4603 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4604 struct block *block, domain_enum domain,
4605 int wild_match)
4606 {
4607 int block_depth = 0;
4608
4609 while (block != NULL)
4610 {
4611 block_depth += 1;
4612 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4613
4614 /* If we found a non-function match, assume that's the one. */
4615 if (is_nonfunction (defns_collected (obstackp, 0),
4616 num_defns_collected (obstackp)))
4617 return;
4618
4619 block = BLOCK_SUPERBLOCK (block);
4620 }
4621
4622 /* If no luck so far, try to find NAME as a local symbol in some lexically
4623 enclosing subprogram. */
4624 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4625 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4626 }
4627
4628 /* Add to OBSTACKP all non-local symbols whose name and domain match
4629 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4630 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4631
4632 static void
4633 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4634 domain_enum domain, int global,
4635 int wild_match)
4636 {
4637 struct objfile *objfile;
4638 struct partial_symtab *ps;
4639
4640 ALL_PSYMTABS (objfile, ps)
4641 {
4642 QUIT;
4643 if (ps->readin
4644 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4645 {
4646 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4647 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4648
4649 if (s == NULL || !s->primary)
4650 continue;
4651 ada_add_block_symbols (obstackp,
4652 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4653 name, domain, objfile, wild_match);
4654 }
4655 }
4656 }
4657
4658 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4659 scope and in global scopes, returning the number of matches. Sets
4660 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4661 indicating the symbols found and the blocks and symbol tables (if
4662 any) in which they were found. This vector are transient---good only to
4663 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4664 symbol match within the nest of blocks whose innermost member is BLOCK0,
4665 is the one match returned (no other matches in that or
4666 enclosing blocks is returned). If there are any matches in or
4667 surrounding BLOCK0, then these alone are returned. Otherwise, the
4668 search extends to global and file-scope (static) symbol tables.
4669 Names prefixed with "standard__" are handled specially: "standard__"
4670 is first stripped off, and only static and global symbols are searched. */
4671
4672 int
4673 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4674 domain_enum namespace,
4675 struct ada_symbol_info **results)
4676 {
4677 struct symbol *sym;
4678 struct block *block;
4679 const char *name;
4680 int wild_match;
4681 int cacheIfUnique;
4682 int ndefns;
4683
4684 obstack_free (&symbol_list_obstack, NULL);
4685 obstack_init (&symbol_list_obstack);
4686
4687 cacheIfUnique = 0;
4688
4689 /* Search specified block and its superiors. */
4690
4691 wild_match = (strstr (name0, "__") == NULL);
4692 name = name0;
4693 block = (struct block *) block0; /* FIXME: No cast ought to be
4694 needed, but adding const will
4695 have a cascade effect. */
4696
4697 /* Special case: If the user specifies a symbol name inside package
4698 Standard, do a non-wild matching of the symbol name without
4699 the "standard__" prefix. This was primarily introduced in order
4700 to allow the user to specifically access the standard exceptions
4701 using, for instance, Standard.Constraint_Error when Constraint_Error
4702 is ambiguous (due to the user defining its own Constraint_Error
4703 entity inside its program). */
4704 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4705 {
4706 wild_match = 0;
4707 block = NULL;
4708 name = name0 + sizeof ("standard__") - 1;
4709 }
4710
4711 /* Check the non-global symbols. If we have ANY match, then we're done. */
4712
4713 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4714 wild_match);
4715 if (num_defns_collected (&symbol_list_obstack) > 0)
4716 goto done;
4717
4718 /* No non-global symbols found. Check our cache to see if we have
4719 already performed this search before. If we have, then return
4720 the same result. */
4721
4722 cacheIfUnique = 1;
4723 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4724 {
4725 if (sym != NULL)
4726 add_defn_to_vec (&symbol_list_obstack, sym, block);
4727 goto done;
4728 }
4729
4730 /* Search symbols from all global blocks. */
4731
4732 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4733 wild_match);
4734
4735 /* Now add symbols from all per-file blocks if we've gotten no hits
4736 (not strictly correct, but perhaps better than an error). */
4737
4738 if (num_defns_collected (&symbol_list_obstack) == 0)
4739 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4740 wild_match);
4741
4742 done:
4743 ndefns = num_defns_collected (&symbol_list_obstack);
4744 *results = defns_collected (&symbol_list_obstack, 1);
4745
4746 ndefns = remove_extra_symbols (*results, ndefns);
4747
4748 if (ndefns == 0)
4749 cache_symbol (name0, namespace, NULL, NULL);
4750
4751 if (ndefns == 1 && cacheIfUnique)
4752 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4753
4754 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4755
4756 return ndefns;
4757 }
4758
4759 struct symbol *
4760 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4761 domain_enum namespace, struct block **block_found)
4762 {
4763 struct ada_symbol_info *candidates;
4764 int n_candidates;
4765
4766 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4767
4768 if (n_candidates == 0)
4769 return NULL;
4770
4771 if (block_found != NULL)
4772 *block_found = candidates[0].block;
4773
4774 return fixup_symbol_section (candidates[0].sym, NULL);
4775 }
4776
4777 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4778 scope and in global scopes, or NULL if none. NAME is folded and
4779 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4780 choosing the first symbol if there are multiple choices.
4781 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4782 table in which the symbol was found (in both cases, these
4783 assignments occur only if the pointers are non-null). */
4784 struct symbol *
4785 ada_lookup_symbol (const char *name, const struct block *block0,
4786 domain_enum namespace, int *is_a_field_of_this)
4787 {
4788 if (is_a_field_of_this != NULL)
4789 *is_a_field_of_this = 0;
4790
4791 return
4792 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4793 block0, namespace, NULL);
4794 }
4795
4796 static struct symbol *
4797 ada_lookup_symbol_nonlocal (const char *name,
4798 const char *linkage_name,
4799 const struct block *block,
4800 const domain_enum domain)
4801 {
4802 if (linkage_name == NULL)
4803 linkage_name = name;
4804 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4805 NULL);
4806 }
4807
4808
4809 /* True iff STR is a possible encoded suffix of a normal Ada name
4810 that is to be ignored for matching purposes. Suffixes of parallel
4811 names (e.g., XVE) are not included here. Currently, the possible suffixes
4812 are given by any of the regular expressions:
4813
4814 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4815 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4816 _E[0-9]+[bs]$ [protected object entry suffixes]
4817 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4818
4819 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4820 match is performed. This sequence is used to differentiate homonyms,
4821 is an optional part of a valid name suffix. */
4822
4823 static int
4824 is_name_suffix (const char *str)
4825 {
4826 int k;
4827 const char *matching;
4828 const int len = strlen (str);
4829
4830 /* Skip optional leading __[0-9]+. */
4831
4832 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4833 {
4834 str += 3;
4835 while (isdigit (str[0]))
4836 str += 1;
4837 }
4838
4839 /* [.$][0-9]+ */
4840
4841 if (str[0] == '.' || str[0] == '$')
4842 {
4843 matching = str + 1;
4844 while (isdigit (matching[0]))
4845 matching += 1;
4846 if (matching[0] == '\0')
4847 return 1;
4848 }
4849
4850 /* ___[0-9]+ */
4851
4852 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4853 {
4854 matching = str + 3;
4855 while (isdigit (matching[0]))
4856 matching += 1;
4857 if (matching[0] == '\0')
4858 return 1;
4859 }
4860
4861 #if 0
4862 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4863 with a N at the end. Unfortunately, the compiler uses the same
4864 convention for other internal types it creates. So treating
4865 all entity names that end with an "N" as a name suffix causes
4866 some regressions. For instance, consider the case of an enumerated
4867 type. To support the 'Image attribute, it creates an array whose
4868 name ends with N.
4869 Having a single character like this as a suffix carrying some
4870 information is a bit risky. Perhaps we should change the encoding
4871 to be something like "_N" instead. In the meantime, do not do
4872 the following check. */
4873 /* Protected Object Subprograms */
4874 if (len == 1 && str [0] == 'N')
4875 return 1;
4876 #endif
4877
4878 /* _E[0-9]+[bs]$ */
4879 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4880 {
4881 matching = str + 3;
4882 while (isdigit (matching[0]))
4883 matching += 1;
4884 if ((matching[0] == 'b' || matching[0] == 's')
4885 && matching [1] == '\0')
4886 return 1;
4887 }
4888
4889 /* ??? We should not modify STR directly, as we are doing below. This
4890 is fine in this case, but may become problematic later if we find
4891 that this alternative did not work, and want to try matching
4892 another one from the begining of STR. Since we modified it, we
4893 won't be able to find the begining of the string anymore! */
4894 if (str[0] == 'X')
4895 {
4896 str += 1;
4897 while (str[0] != '_' && str[0] != '\0')
4898 {
4899 if (str[0] != 'n' && str[0] != 'b')
4900 return 0;
4901 str += 1;
4902 }
4903 }
4904
4905 if (str[0] == '\000')
4906 return 1;
4907
4908 if (str[0] == '_')
4909 {
4910 if (str[1] != '_' || str[2] == '\000')
4911 return 0;
4912 if (str[2] == '_')
4913 {
4914 if (strcmp (str + 3, "JM") == 0)
4915 return 1;
4916 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4917 the LJM suffix in favor of the JM one. But we will
4918 still accept LJM as a valid suffix for a reasonable
4919 amount of time, just to allow ourselves to debug programs
4920 compiled using an older version of GNAT. */
4921 if (strcmp (str + 3, "LJM") == 0)
4922 return 1;
4923 if (str[3] != 'X')
4924 return 0;
4925 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4926 || str[4] == 'U' || str[4] == 'P')
4927 return 1;
4928 if (str[4] == 'R' && str[5] != 'T')
4929 return 1;
4930 return 0;
4931 }
4932 if (!isdigit (str[2]))
4933 return 0;
4934 for (k = 3; str[k] != '\0'; k += 1)
4935 if (!isdigit (str[k]) && str[k] != '_')
4936 return 0;
4937 return 1;
4938 }
4939 if (str[0] == '$' && isdigit (str[1]))
4940 {
4941 for (k = 2; str[k] != '\0'; k += 1)
4942 if (!isdigit (str[k]) && str[k] != '_')
4943 return 0;
4944 return 1;
4945 }
4946 return 0;
4947 }
4948
4949 /* Return non-zero if the string starting at NAME and ending before
4950 NAME_END contains no capital letters. */
4951
4952 static int
4953 is_valid_name_for_wild_match (const char *name0)
4954 {
4955 const char *decoded_name = ada_decode (name0);
4956 int i;
4957
4958 /* If the decoded name starts with an angle bracket, it means that
4959 NAME0 does not follow the GNAT encoding format. It should then
4960 not be allowed as a possible wild match. */
4961 if (decoded_name[0] == '<')
4962 return 0;
4963
4964 for (i=0; decoded_name[i] != '\0'; i++)
4965 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4966 return 0;
4967
4968 return 1;
4969 }
4970
4971 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4972 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4973 informational suffixes of NAME (i.e., for which is_name_suffix is
4974 true). */
4975
4976 static int
4977 wild_match (const char *patn0, int patn_len, const char *name0)
4978 {
4979 char* match;
4980 const char* start;
4981 start = name0;
4982 while (1)
4983 {
4984 match = strstr (start, patn0);
4985 if (match == NULL)
4986 return 0;
4987 if ((match == name0
4988 || match[-1] == '.'
4989 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4990 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4991 && is_name_suffix (match + patn_len))
4992 return (match == name0 || is_valid_name_for_wild_match (name0));
4993 start = match + 1;
4994 }
4995 }
4996
4997
4998 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4999 vector *defn_symbols, updating the list of symbols in OBSTACKP
5000 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5001 OBJFILE is the section containing BLOCK.
5002 SYMTAB is recorded with each symbol added. */
5003
5004 static void
5005 ada_add_block_symbols (struct obstack *obstackp,
5006 struct block *block, const char *name,
5007 domain_enum domain, struct objfile *objfile,
5008 int wild)
5009 {
5010 struct dict_iterator iter;
5011 int name_len = strlen (name);
5012 /* A matching argument symbol, if any. */
5013 struct symbol *arg_sym;
5014 /* Set true when we find a matching non-argument symbol. */
5015 int found_sym;
5016 struct symbol *sym;
5017
5018 arg_sym = NULL;
5019 found_sym = 0;
5020 if (wild)
5021 {
5022 struct symbol *sym;
5023 ALL_BLOCK_SYMBOLS (block, iter, sym)
5024 {
5025 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5026 SYMBOL_DOMAIN (sym), domain)
5027 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5028 {
5029 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5030 continue;
5031 else if (SYMBOL_IS_ARGUMENT (sym))
5032 arg_sym = sym;
5033 else
5034 {
5035 found_sym = 1;
5036 add_defn_to_vec (obstackp,
5037 fixup_symbol_section (sym, objfile),
5038 block);
5039 }
5040 }
5041 }
5042 }
5043 else
5044 {
5045 ALL_BLOCK_SYMBOLS (block, iter, sym)
5046 {
5047 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5048 SYMBOL_DOMAIN (sym), domain))
5049 {
5050 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5051 if (cmp == 0
5052 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5053 {
5054 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5055 {
5056 if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = 1;
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 }
5067 }
5068 }
5069 }
5070
5071 if (!found_sym && arg_sym != NULL)
5072 {
5073 add_defn_to_vec (obstackp,
5074 fixup_symbol_section (arg_sym, objfile),
5075 block);
5076 }
5077
5078 if (!wild)
5079 {
5080 arg_sym = NULL;
5081 found_sym = 0;
5082
5083 ALL_BLOCK_SYMBOLS (block, iter, sym)
5084 {
5085 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5086 SYMBOL_DOMAIN (sym), domain))
5087 {
5088 int cmp;
5089
5090 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5091 if (cmp == 0)
5092 {
5093 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5094 if (cmp == 0)
5095 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5096 name_len);
5097 }
5098
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5101 {
5102 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5103 {
5104 if (SYMBOL_IS_ARGUMENT (sym))
5105 arg_sym = sym;
5106 else
5107 {
5108 found_sym = 1;
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (sym, objfile),
5111 block);
5112 }
5113 }
5114 }
5115 }
5116 }
5117
5118 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5119 They aren't parameters, right? */
5120 if (!found_sym && arg_sym != NULL)
5121 {
5122 add_defn_to_vec (obstackp,
5123 fixup_symbol_section (arg_sym, objfile),
5124 block);
5125 }
5126 }
5127 }
5128 \f
5129
5130 /* Symbol Completion */
5131
5132 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5133 name in a form that's appropriate for the completion. The result
5134 does not need to be deallocated, but is only good until the next call.
5135
5136 TEXT_LEN is equal to the length of TEXT.
5137 Perform a wild match if WILD_MATCH is set.
5138 ENCODED should be set if TEXT represents the start of a symbol name
5139 in its encoded form. */
5140
5141 static const char *
5142 symbol_completion_match (const char *sym_name,
5143 const char *text, int text_len,
5144 int wild_match, int encoded)
5145 {
5146 char *result;
5147 const int verbatim_match = (text[0] == '<');
5148 int match = 0;
5149
5150 if (verbatim_match)
5151 {
5152 /* Strip the leading angle bracket. */
5153 text = text + 1;
5154 text_len--;
5155 }
5156
5157 /* First, test against the fully qualified name of the symbol. */
5158
5159 if (strncmp (sym_name, text, text_len) == 0)
5160 match = 1;
5161
5162 if (match && !encoded)
5163 {
5164 /* One needed check before declaring a positive match is to verify
5165 that iff we are doing a verbatim match, the decoded version
5166 of the symbol name starts with '<'. Otherwise, this symbol name
5167 is not a suitable completion. */
5168 const char *sym_name_copy = sym_name;
5169 int has_angle_bracket;
5170
5171 sym_name = ada_decode (sym_name);
5172 has_angle_bracket = (sym_name[0] == '<');
5173 match = (has_angle_bracket == verbatim_match);
5174 sym_name = sym_name_copy;
5175 }
5176
5177 if (match && !verbatim_match)
5178 {
5179 /* When doing non-verbatim match, another check that needs to
5180 be done is to verify that the potentially matching symbol name
5181 does not include capital letters, because the ada-mode would
5182 not be able to understand these symbol names without the
5183 angle bracket notation. */
5184 const char *tmp;
5185
5186 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5187 if (*tmp != '\0')
5188 match = 0;
5189 }
5190
5191 /* Second: Try wild matching... */
5192
5193 if (!match && wild_match)
5194 {
5195 /* Since we are doing wild matching, this means that TEXT
5196 may represent an unqualified symbol name. We therefore must
5197 also compare TEXT against the unqualified name of the symbol. */
5198 sym_name = ada_unqualified_name (ada_decode (sym_name));
5199
5200 if (strncmp (sym_name, text, text_len) == 0)
5201 match = 1;
5202 }
5203
5204 /* Finally: If we found a mach, prepare the result to return. */
5205
5206 if (!match)
5207 return NULL;
5208
5209 if (verbatim_match)
5210 sym_name = add_angle_brackets (sym_name);
5211
5212 if (!encoded)
5213 sym_name = ada_decode (sym_name);
5214
5215 return sym_name;
5216 }
5217
5218 typedef char *char_ptr;
5219 DEF_VEC_P (char_ptr);
5220
5221 /* A companion function to ada_make_symbol_completion_list().
5222 Check if SYM_NAME represents a symbol which name would be suitable
5223 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5224 it is appended at the end of the given string vector SV.
5225
5226 ORIG_TEXT is the string original string from the user command
5227 that needs to be completed. WORD is the entire command on which
5228 completion should be performed. These two parameters are used to
5229 determine which part of the symbol name should be added to the
5230 completion vector.
5231 if WILD_MATCH is set, then wild matching is performed.
5232 ENCODED should be set if TEXT represents a symbol name in its
5233 encoded formed (in which case the completion should also be
5234 encoded). */
5235
5236 static void
5237 symbol_completion_add (VEC(char_ptr) **sv,
5238 const char *sym_name,
5239 const char *text, int text_len,
5240 const char *orig_text, const char *word,
5241 int wild_match, int encoded)
5242 {
5243 const char *match = symbol_completion_match (sym_name, text, text_len,
5244 wild_match, encoded);
5245 char *completion;
5246
5247 if (match == NULL)
5248 return;
5249
5250 /* We found a match, so add the appropriate completion to the given
5251 string vector. */
5252
5253 if (word == orig_text)
5254 {
5255 completion = xmalloc (strlen (match) + 5);
5256 strcpy (completion, match);
5257 }
5258 else if (word > orig_text)
5259 {
5260 /* Return some portion of sym_name. */
5261 completion = xmalloc (strlen (match) + 5);
5262 strcpy (completion, match + (word - orig_text));
5263 }
5264 else
5265 {
5266 /* Return some of ORIG_TEXT plus sym_name. */
5267 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5268 strncpy (completion, word, orig_text - word);
5269 completion[orig_text - word] = '\0';
5270 strcat (completion, match);
5271 }
5272
5273 VEC_safe_push (char_ptr, *sv, completion);
5274 }
5275
5276 /* Return a list of possible symbol names completing TEXT0. The list
5277 is NULL terminated. WORD is the entire command on which completion
5278 is made. */
5279
5280 static char **
5281 ada_make_symbol_completion_list (char *text0, char *word)
5282 {
5283 char *text;
5284 int text_len;
5285 int wild_match;
5286 int encoded;
5287 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5288 struct symbol *sym;
5289 struct symtab *s;
5290 struct partial_symtab *ps;
5291 struct minimal_symbol *msymbol;
5292 struct objfile *objfile;
5293 struct block *b, *surrounding_static_block = 0;
5294 int i;
5295 struct dict_iterator iter;
5296
5297 if (text0[0] == '<')
5298 {
5299 text = xstrdup (text0);
5300 make_cleanup (xfree, text);
5301 text_len = strlen (text);
5302 wild_match = 0;
5303 encoded = 1;
5304 }
5305 else
5306 {
5307 text = xstrdup (ada_encode (text0));
5308 make_cleanup (xfree, text);
5309 text_len = strlen (text);
5310 for (i = 0; i < text_len; i++)
5311 text[i] = tolower (text[i]);
5312
5313 encoded = (strstr (text0, "__") != NULL);
5314 /* If the name contains a ".", then the user is entering a fully
5315 qualified entity name, and the match must not be done in wild
5316 mode. Similarly, if the user wants to complete what looks like
5317 an encoded name, the match must not be done in wild mode. */
5318 wild_match = (strchr (text0, '.') == NULL && !encoded);
5319 }
5320
5321 /* First, look at the partial symtab symbols. */
5322 ALL_PSYMTABS (objfile, ps)
5323 {
5324 struct partial_symbol **psym;
5325
5326 /* If the psymtab's been read in we'll get it when we search
5327 through the blockvector. */
5328 if (ps->readin)
5329 continue;
5330
5331 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5332 psym < (objfile->global_psymbols.list + ps->globals_offset
5333 + ps->n_global_syms); psym++)
5334 {
5335 QUIT;
5336 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5337 text, text_len, text0, word,
5338 wild_match, encoded);
5339 }
5340
5341 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5342 psym < (objfile->static_psymbols.list + ps->statics_offset
5343 + ps->n_static_syms); psym++)
5344 {
5345 QUIT;
5346 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5347 text, text_len, text0, word,
5348 wild_match, encoded);
5349 }
5350 }
5351
5352 /* At this point scan through the misc symbol vectors and add each
5353 symbol you find to the list. Eventually we want to ignore
5354 anything that isn't a text symbol (everything else will be
5355 handled by the psymtab code above). */
5356
5357 ALL_MSYMBOLS (objfile, msymbol)
5358 {
5359 QUIT;
5360 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5361 text, text_len, text0, word, wild_match, encoded);
5362 }
5363
5364 /* Search upwards from currently selected frame (so that we can
5365 complete on local vars. */
5366
5367 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5368 {
5369 if (!BLOCK_SUPERBLOCK (b))
5370 surrounding_static_block = b; /* For elmin of dups */
5371
5372 ALL_BLOCK_SYMBOLS (b, iter, sym)
5373 {
5374 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5375 text, text_len, text0, word,
5376 wild_match, encoded);
5377 }
5378 }
5379
5380 /* Go through the symtabs and check the externs and statics for
5381 symbols which match. */
5382
5383 ALL_SYMTABS (objfile, s)
5384 {
5385 QUIT;
5386 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 ALL_SYMTABS (objfile, s)
5396 {
5397 QUIT;
5398 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5399 /* Don't do this block twice. */
5400 if (b == surrounding_static_block)
5401 continue;
5402 ALL_BLOCK_SYMBOLS (b, iter, sym)
5403 {
5404 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5405 text, text_len, text0, word,
5406 wild_match, encoded);
5407 }
5408 }
5409
5410 /* Append the closing NULL entry. */
5411 VEC_safe_push (char_ptr, completions, NULL);
5412
5413 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5414 return the copy. It's unfortunate that we have to make a copy
5415 of an array that we're about to destroy, but there is nothing much
5416 we can do about it. Fortunately, it's typically not a very large
5417 array. */
5418 {
5419 const size_t completions_size =
5420 VEC_length (char_ptr, completions) * sizeof (char *);
5421 char **result = malloc (completions_size);
5422
5423 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5424
5425 VEC_free (char_ptr, completions);
5426 return result;
5427 }
5428 }
5429
5430 /* Field Access */
5431
5432 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5433 for tagged types. */
5434
5435 static int
5436 ada_is_dispatch_table_ptr_type (struct type *type)
5437 {
5438 char *name;
5439
5440 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5441 return 0;
5442
5443 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5444 if (name == NULL)
5445 return 0;
5446
5447 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5448 }
5449
5450 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5451 to be invisible to users. */
5452
5453 int
5454 ada_is_ignored_field (struct type *type, int field_num)
5455 {
5456 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5457 return 1;
5458
5459 /* Check the name of that field. */
5460 {
5461 const char *name = TYPE_FIELD_NAME (type, field_num);
5462
5463 /* Anonymous field names should not be printed.
5464 brobecker/2007-02-20: I don't think this can actually happen
5465 but we don't want to print the value of annonymous fields anyway. */
5466 if (name == NULL)
5467 return 1;
5468
5469 /* A field named "_parent" is internally generated by GNAT for
5470 tagged types, and should not be printed either. */
5471 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5472 return 1;
5473 }
5474
5475 /* If this is the dispatch table of a tagged type, then ignore. */
5476 if (ada_is_tagged_type (type, 1)
5477 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5478 return 1;
5479
5480 /* Not a special field, so it should not be ignored. */
5481 return 0;
5482 }
5483
5484 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5485 pointer or reference type whose ultimate target has a tag field. */
5486
5487 int
5488 ada_is_tagged_type (struct type *type, int refok)
5489 {
5490 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5491 }
5492
5493 /* True iff TYPE represents the type of X'Tag */
5494
5495 int
5496 ada_is_tag_type (struct type *type)
5497 {
5498 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5499 return 0;
5500 else
5501 {
5502 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5503 return (name != NULL
5504 && strcmp (name, "ada__tags__dispatch_table") == 0);
5505 }
5506 }
5507
5508 /* The type of the tag on VAL. */
5509
5510 struct type *
5511 ada_tag_type (struct value *val)
5512 {
5513 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5514 }
5515
5516 /* The value of the tag on VAL. */
5517
5518 struct value *
5519 ada_value_tag (struct value *val)
5520 {
5521 return ada_value_struct_elt (val, "_tag", 0);
5522 }
5523
5524 /* The value of the tag on the object of type TYPE whose contents are
5525 saved at VALADDR, if it is non-null, or is at memory address
5526 ADDRESS. */
5527
5528 static struct value *
5529 value_tag_from_contents_and_address (struct type *type,
5530 const gdb_byte *valaddr,
5531 CORE_ADDR address)
5532 {
5533 int tag_byte_offset, dummy1, dummy2;
5534 struct type *tag_type;
5535 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5536 NULL, NULL, NULL))
5537 {
5538 const gdb_byte *valaddr1 = ((valaddr == NULL)
5539 ? NULL
5540 : valaddr + tag_byte_offset);
5541 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5542
5543 return value_from_contents_and_address (tag_type, valaddr1, address1);
5544 }
5545 return NULL;
5546 }
5547
5548 static struct type *
5549 type_from_tag (struct value *tag)
5550 {
5551 const char *type_name = ada_tag_name (tag);
5552 if (type_name != NULL)
5553 return ada_find_any_type (ada_encode (type_name));
5554 return NULL;
5555 }
5556
5557 struct tag_args
5558 {
5559 struct value *tag;
5560 char *name;
5561 };
5562
5563
5564 static int ada_tag_name_1 (void *);
5565 static int ada_tag_name_2 (struct tag_args *);
5566
5567 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5568 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5569 The value stored in ARGS->name is valid until the next call to
5570 ada_tag_name_1. */
5571
5572 static int
5573 ada_tag_name_1 (void *args0)
5574 {
5575 struct tag_args *args = (struct tag_args *) args0;
5576 static char name[1024];
5577 char *p;
5578 struct value *val;
5579 args->name = NULL;
5580 val = ada_value_struct_elt (args->tag, "tsd", 1);
5581 if (val == NULL)
5582 return ada_tag_name_2 (args);
5583 val = ada_value_struct_elt (val, "expanded_name", 1);
5584 if (val == NULL)
5585 return 0;
5586 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5587 for (p = name; *p != '\0'; p += 1)
5588 if (isalpha (*p))
5589 *p = tolower (*p);
5590 args->name = name;
5591 return 0;
5592 }
5593
5594 /* Utility function for ada_tag_name_1 that tries the second
5595 representation for the dispatch table (in which there is no
5596 explicit 'tsd' field in the referent of the tag pointer, and instead
5597 the tsd pointer is stored just before the dispatch table. */
5598
5599 static int
5600 ada_tag_name_2 (struct tag_args *args)
5601 {
5602 struct type *info_type;
5603 static char name[1024];
5604 char *p;
5605 struct value *val, *valp;
5606
5607 args->name = NULL;
5608 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5609 if (info_type == NULL)
5610 return 0;
5611 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5612 valp = value_cast (info_type, args->tag);
5613 if (valp == NULL)
5614 return 0;
5615 val = value_ind (value_ptradd (valp,
5616 value_from_longest (builtin_type_int8, -1)));
5617 if (val == NULL)
5618 return 0;
5619 val = ada_value_struct_elt (val, "expanded_name", 1);
5620 if (val == NULL)
5621 return 0;
5622 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5623 for (p = name; *p != '\0'; p += 1)
5624 if (isalpha (*p))
5625 *p = tolower (*p);
5626 args->name = name;
5627 return 0;
5628 }
5629
5630 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5631 * a C string. */
5632
5633 const char *
5634 ada_tag_name (struct value *tag)
5635 {
5636 struct tag_args args;
5637 if (!ada_is_tag_type (value_type (tag)))
5638 return NULL;
5639 args.tag = tag;
5640 args.name = NULL;
5641 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5642 return args.name;
5643 }
5644
5645 /* The parent type of TYPE, or NULL if none. */
5646
5647 struct type *
5648 ada_parent_type (struct type *type)
5649 {
5650 int i;
5651
5652 type = ada_check_typedef (type);
5653
5654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5655 return NULL;
5656
5657 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5658 if (ada_is_parent_field (type, i))
5659 {
5660 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5661
5662 /* If the _parent field is a pointer, then dereference it. */
5663 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5664 parent_type = TYPE_TARGET_TYPE (parent_type);
5665 /* If there is a parallel XVS type, get the actual base type. */
5666 parent_type = ada_get_base_type (parent_type);
5667
5668 return ada_check_typedef (parent_type);
5669 }
5670
5671 return NULL;
5672 }
5673
5674 /* True iff field number FIELD_NUM of structure type TYPE contains the
5675 parent-type (inherited) fields of a derived type. Assumes TYPE is
5676 a structure type with at least FIELD_NUM+1 fields. */
5677
5678 int
5679 ada_is_parent_field (struct type *type, int field_num)
5680 {
5681 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5682 return (name != NULL
5683 && (strncmp (name, "PARENT", 6) == 0
5684 || strncmp (name, "_parent", 7) == 0));
5685 }
5686
5687 /* True iff field number FIELD_NUM of structure type TYPE is a
5688 transparent wrapper field (which should be silently traversed when doing
5689 field selection and flattened when printing). Assumes TYPE is a
5690 structure type with at least FIELD_NUM+1 fields. Such fields are always
5691 structures. */
5692
5693 int
5694 ada_is_wrapper_field (struct type *type, int field_num)
5695 {
5696 const char *name = TYPE_FIELD_NAME (type, field_num);
5697 return (name != NULL
5698 && (strncmp (name, "PARENT", 6) == 0
5699 || strcmp (name, "REP") == 0
5700 || strncmp (name, "_parent", 7) == 0
5701 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5702 }
5703
5704 /* True iff field number FIELD_NUM of structure or union type TYPE
5705 is a variant wrapper. Assumes TYPE is a structure type with at least
5706 FIELD_NUM+1 fields. */
5707
5708 int
5709 ada_is_variant_part (struct type *type, int field_num)
5710 {
5711 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5712 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5713 || (is_dynamic_field (type, field_num)
5714 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5715 == TYPE_CODE_UNION)));
5716 }
5717
5718 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5719 whose discriminants are contained in the record type OUTER_TYPE,
5720 returns the type of the controlling discriminant for the variant. */
5721
5722 struct type *
5723 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5724 {
5725 char *name = ada_variant_discrim_name (var_type);
5726 struct type *type =
5727 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5728 if (type == NULL)
5729 return builtin_type_int32;
5730 else
5731 return type;
5732 }
5733
5734 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5735 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5736 represents a 'when others' clause; otherwise 0. */
5737
5738 int
5739 ada_is_others_clause (struct type *type, int field_num)
5740 {
5741 const char *name = TYPE_FIELD_NAME (type, field_num);
5742 return (name != NULL && name[0] == 'O');
5743 }
5744
5745 /* Assuming that TYPE0 is the type of the variant part of a record,
5746 returns the name of the discriminant controlling the variant.
5747 The value is valid until the next call to ada_variant_discrim_name. */
5748
5749 char *
5750 ada_variant_discrim_name (struct type *type0)
5751 {
5752 static char *result = NULL;
5753 static size_t result_len = 0;
5754 struct type *type;
5755 const char *name;
5756 const char *discrim_end;
5757 const char *discrim_start;
5758
5759 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5760 type = TYPE_TARGET_TYPE (type0);
5761 else
5762 type = type0;
5763
5764 name = ada_type_name (type);
5765
5766 if (name == NULL || name[0] == '\000')
5767 return "";
5768
5769 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5770 discrim_end -= 1)
5771 {
5772 if (strncmp (discrim_end, "___XVN", 6) == 0)
5773 break;
5774 }
5775 if (discrim_end == name)
5776 return "";
5777
5778 for (discrim_start = discrim_end; discrim_start != name + 3;
5779 discrim_start -= 1)
5780 {
5781 if (discrim_start == name + 1)
5782 return "";
5783 if ((discrim_start > name + 3
5784 && strncmp (discrim_start - 3, "___", 3) == 0)
5785 || discrim_start[-1] == '.')
5786 break;
5787 }
5788
5789 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5790 strncpy (result, discrim_start, discrim_end - discrim_start);
5791 result[discrim_end - discrim_start] = '\0';
5792 return result;
5793 }
5794
5795 /* Scan STR for a subtype-encoded number, beginning at position K.
5796 Put the position of the character just past the number scanned in
5797 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5798 Return 1 if there was a valid number at the given position, and 0
5799 otherwise. A "subtype-encoded" number consists of the absolute value
5800 in decimal, followed by the letter 'm' to indicate a negative number.
5801 Assumes 0m does not occur. */
5802
5803 int
5804 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5805 {
5806 ULONGEST RU;
5807
5808 if (!isdigit (str[k]))
5809 return 0;
5810
5811 /* Do it the hard way so as not to make any assumption about
5812 the relationship of unsigned long (%lu scan format code) and
5813 LONGEST. */
5814 RU = 0;
5815 while (isdigit (str[k]))
5816 {
5817 RU = RU * 10 + (str[k] - '0');
5818 k += 1;
5819 }
5820
5821 if (str[k] == 'm')
5822 {
5823 if (R != NULL)
5824 *R = (-(LONGEST) (RU - 1)) - 1;
5825 k += 1;
5826 }
5827 else if (R != NULL)
5828 *R = (LONGEST) RU;
5829
5830 /* NOTE on the above: Technically, C does not say what the results of
5831 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5832 number representable as a LONGEST (although either would probably work
5833 in most implementations). When RU>0, the locution in the then branch
5834 above is always equivalent to the negative of RU. */
5835
5836 if (new_k != NULL)
5837 *new_k = k;
5838 return 1;
5839 }
5840
5841 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5842 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5843 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5844
5845 int
5846 ada_in_variant (LONGEST val, struct type *type, int field_num)
5847 {
5848 const char *name = TYPE_FIELD_NAME (type, field_num);
5849 int p;
5850
5851 p = 0;
5852 while (1)
5853 {
5854 switch (name[p])
5855 {
5856 case '\0':
5857 return 0;
5858 case 'S':
5859 {
5860 LONGEST W;
5861 if (!ada_scan_number (name, p + 1, &W, &p))
5862 return 0;
5863 if (val == W)
5864 return 1;
5865 break;
5866 }
5867 case 'R':
5868 {
5869 LONGEST L, U;
5870 if (!ada_scan_number (name, p + 1, &L, &p)
5871 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5872 return 0;
5873 if (val >= L && val <= U)
5874 return 1;
5875 break;
5876 }
5877 case 'O':
5878 return 1;
5879 default:
5880 return 0;
5881 }
5882 }
5883 }
5884
5885 /* FIXME: Lots of redundancy below. Try to consolidate. */
5886
5887 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5888 ARG_TYPE, extract and return the value of one of its (non-static)
5889 fields. FIELDNO says which field. Differs from value_primitive_field
5890 only in that it can handle packed values of arbitrary type. */
5891
5892 static struct value *
5893 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5894 struct type *arg_type)
5895 {
5896 struct type *type;
5897
5898 arg_type = ada_check_typedef (arg_type);
5899 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5900
5901 /* Handle packed fields. */
5902
5903 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5904 {
5905 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5906 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5907
5908 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5909 offset + bit_pos / 8,
5910 bit_pos % 8, bit_size, type);
5911 }
5912 else
5913 return value_primitive_field (arg1, offset, fieldno, arg_type);
5914 }
5915
5916 /* Find field with name NAME in object of type TYPE. If found,
5917 set the following for each argument that is non-null:
5918 - *FIELD_TYPE_P to the field's type;
5919 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5920 an object of that type;
5921 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5922 - *BIT_SIZE_P to its size in bits if the field is packed, and
5923 0 otherwise;
5924 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5925 fields up to but not including the desired field, or by the total
5926 number of fields if not found. A NULL value of NAME never
5927 matches; the function just counts visible fields in this case.
5928
5929 Returns 1 if found, 0 otherwise. */
5930
5931 static int
5932 find_struct_field (char *name, struct type *type, int offset,
5933 struct type **field_type_p,
5934 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5935 int *index_p)
5936 {
5937 int i;
5938
5939 type = ada_check_typedef (type);
5940
5941 if (field_type_p != NULL)
5942 *field_type_p = NULL;
5943 if (byte_offset_p != NULL)
5944 *byte_offset_p = 0;
5945 if (bit_offset_p != NULL)
5946 *bit_offset_p = 0;
5947 if (bit_size_p != NULL)
5948 *bit_size_p = 0;
5949
5950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5951 {
5952 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5953 int fld_offset = offset + bit_pos / 8;
5954 char *t_field_name = TYPE_FIELD_NAME (type, i);
5955
5956 if (t_field_name == NULL)
5957 continue;
5958
5959 else if (name != NULL && field_name_match (t_field_name, name))
5960 {
5961 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5962 if (field_type_p != NULL)
5963 *field_type_p = TYPE_FIELD_TYPE (type, i);
5964 if (byte_offset_p != NULL)
5965 *byte_offset_p = fld_offset;
5966 if (bit_offset_p != NULL)
5967 *bit_offset_p = bit_pos % 8;
5968 if (bit_size_p != NULL)
5969 *bit_size_p = bit_size;
5970 return 1;
5971 }
5972 else if (ada_is_wrapper_field (type, i))
5973 {
5974 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5975 field_type_p, byte_offset_p, bit_offset_p,
5976 bit_size_p, index_p))
5977 return 1;
5978 }
5979 else if (ada_is_variant_part (type, i))
5980 {
5981 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5982 fixed type?? */
5983 int j;
5984 struct type *field_type
5985 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5986
5987 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5988 {
5989 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5990 fld_offset
5991 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5992 field_type_p, byte_offset_p,
5993 bit_offset_p, bit_size_p, index_p))
5994 return 1;
5995 }
5996 }
5997 else if (index_p != NULL)
5998 *index_p += 1;
5999 }
6000 return 0;
6001 }
6002
6003 /* Number of user-visible fields in record type TYPE. */
6004
6005 static int
6006 num_visible_fields (struct type *type)
6007 {
6008 int n;
6009 n = 0;
6010 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6011 return n;
6012 }
6013
6014 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6015 and search in it assuming it has (class) type TYPE.
6016 If found, return value, else return NULL.
6017
6018 Searches recursively through wrapper fields (e.g., '_parent'). */
6019
6020 static struct value *
6021 ada_search_struct_field (char *name, struct value *arg, int offset,
6022 struct type *type)
6023 {
6024 int i;
6025 type = ada_check_typedef (type);
6026
6027 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6028 {
6029 char *t_field_name = TYPE_FIELD_NAME (type, i);
6030
6031 if (t_field_name == NULL)
6032 continue;
6033
6034 else if (field_name_match (t_field_name, name))
6035 return ada_value_primitive_field (arg, offset, i, type);
6036
6037 else if (ada_is_wrapper_field (type, i))
6038 {
6039 struct value *v = /* Do not let indent join lines here. */
6040 ada_search_struct_field (name, arg,
6041 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6042 TYPE_FIELD_TYPE (type, i));
6043 if (v != NULL)
6044 return v;
6045 }
6046
6047 else if (ada_is_variant_part (type, i))
6048 {
6049 /* PNH: Do we ever get here? See find_struct_field. */
6050 int j;
6051 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6052 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6053
6054 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6055 {
6056 struct value *v = ada_search_struct_field /* Force line break. */
6057 (name, arg,
6058 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6059 TYPE_FIELD_TYPE (field_type, j));
6060 if (v != NULL)
6061 return v;
6062 }
6063 }
6064 }
6065 return NULL;
6066 }
6067
6068 static struct value *ada_index_struct_field_1 (int *, struct value *,
6069 int, struct type *);
6070
6071
6072 /* Return field #INDEX in ARG, where the index is that returned by
6073 * find_struct_field through its INDEX_P argument. Adjust the address
6074 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6075 * If found, return value, else return NULL. */
6076
6077 static struct value *
6078 ada_index_struct_field (int index, struct value *arg, int offset,
6079 struct type *type)
6080 {
6081 return ada_index_struct_field_1 (&index, arg, offset, type);
6082 }
6083
6084
6085 /* Auxiliary function for ada_index_struct_field. Like
6086 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6087 * *INDEX_P. */
6088
6089 static struct value *
6090 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6091 struct type *type)
6092 {
6093 int i;
6094 type = ada_check_typedef (type);
6095
6096 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6097 {
6098 if (TYPE_FIELD_NAME (type, i) == NULL)
6099 continue;
6100 else if (ada_is_wrapper_field (type, i))
6101 {
6102 struct value *v = /* Do not let indent join lines here. */
6103 ada_index_struct_field_1 (index_p, arg,
6104 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6105 TYPE_FIELD_TYPE (type, i));
6106 if (v != NULL)
6107 return v;
6108 }
6109
6110 else if (ada_is_variant_part (type, i))
6111 {
6112 /* PNH: Do we ever get here? See ada_search_struct_field,
6113 find_struct_field. */
6114 error (_("Cannot assign this kind of variant record"));
6115 }
6116 else if (*index_p == 0)
6117 return ada_value_primitive_field (arg, offset, i, type);
6118 else
6119 *index_p -= 1;
6120 }
6121 return NULL;
6122 }
6123
6124 /* Given ARG, a value of type (pointer or reference to a)*
6125 structure/union, extract the component named NAME from the ultimate
6126 target structure/union and return it as a value with its
6127 appropriate type.
6128
6129 The routine searches for NAME among all members of the structure itself
6130 and (recursively) among all members of any wrapper members
6131 (e.g., '_parent').
6132
6133 If NO_ERR, then simply return NULL in case of error, rather than
6134 calling error. */
6135
6136 struct value *
6137 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6138 {
6139 struct type *t, *t1;
6140 struct value *v;
6141
6142 v = NULL;
6143 t1 = t = ada_check_typedef (value_type (arg));
6144 if (TYPE_CODE (t) == TYPE_CODE_REF)
6145 {
6146 t1 = TYPE_TARGET_TYPE (t);
6147 if (t1 == NULL)
6148 goto BadValue;
6149 t1 = ada_check_typedef (t1);
6150 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6151 {
6152 arg = coerce_ref (arg);
6153 t = t1;
6154 }
6155 }
6156
6157 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6158 {
6159 t1 = TYPE_TARGET_TYPE (t);
6160 if (t1 == NULL)
6161 goto BadValue;
6162 t1 = ada_check_typedef (t1);
6163 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6164 {
6165 arg = value_ind (arg);
6166 t = t1;
6167 }
6168 else
6169 break;
6170 }
6171
6172 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6173 goto BadValue;
6174
6175 if (t1 == t)
6176 v = ada_search_struct_field (name, arg, 0, t);
6177 else
6178 {
6179 int bit_offset, bit_size, byte_offset;
6180 struct type *field_type;
6181 CORE_ADDR address;
6182
6183 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6184 address = value_as_address (arg);
6185 else
6186 address = unpack_pointer (t, value_contents (arg));
6187
6188 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6189 if (find_struct_field (name, t1, 0,
6190 &field_type, &byte_offset, &bit_offset,
6191 &bit_size, NULL))
6192 {
6193 if (bit_size != 0)
6194 {
6195 if (TYPE_CODE (t) == TYPE_CODE_REF)
6196 arg = ada_coerce_ref (arg);
6197 else
6198 arg = ada_value_ind (arg);
6199 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6200 bit_offset, bit_size,
6201 field_type);
6202 }
6203 else
6204 v = value_at_lazy (field_type, address + byte_offset);
6205 }
6206 }
6207
6208 if (v != NULL || no_err)
6209 return v;
6210 else
6211 error (_("There is no member named %s."), name);
6212
6213 BadValue:
6214 if (no_err)
6215 return NULL;
6216 else
6217 error (_("Attempt to extract a component of a value that is not a record."));
6218 }
6219
6220 /* Given a type TYPE, look up the type of the component of type named NAME.
6221 If DISPP is non-null, add its byte displacement from the beginning of a
6222 structure (pointed to by a value) of type TYPE to *DISPP (does not
6223 work for packed fields).
6224
6225 Matches any field whose name has NAME as a prefix, possibly
6226 followed by "___".
6227
6228 TYPE can be either a struct or union. If REFOK, TYPE may also
6229 be a (pointer or reference)+ to a struct or union, and the
6230 ultimate target type will be searched.
6231
6232 Looks recursively into variant clauses and parent types.
6233
6234 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6235 TYPE is not a type of the right kind. */
6236
6237 static struct type *
6238 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6239 int noerr, int *dispp)
6240 {
6241 int i;
6242
6243 if (name == NULL)
6244 goto BadName;
6245
6246 if (refok && type != NULL)
6247 while (1)
6248 {
6249 type = ada_check_typedef (type);
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR
6251 && TYPE_CODE (type) != TYPE_CODE_REF)
6252 break;
6253 type = TYPE_TARGET_TYPE (type);
6254 }
6255
6256 if (type == NULL
6257 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6258 && TYPE_CODE (type) != TYPE_CODE_UNION))
6259 {
6260 if (noerr)
6261 return NULL;
6262 else
6263 {
6264 target_terminal_ours ();
6265 gdb_flush (gdb_stdout);
6266 if (type == NULL)
6267 error (_("Type (null) is not a structure or union type"));
6268 else
6269 {
6270 /* XXX: type_sprint */
6271 fprintf_unfiltered (gdb_stderr, _("Type "));
6272 type_print (type, "", gdb_stderr, -1);
6273 error (_(" is not a structure or union type"));
6274 }
6275 }
6276 }
6277
6278 type = to_static_fixed_type (type);
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 {
6282 char *t_field_name = TYPE_FIELD_NAME (type, i);
6283 struct type *t;
6284 int disp;
6285
6286 if (t_field_name == NULL)
6287 continue;
6288
6289 else if (field_name_match (t_field_name, name))
6290 {
6291 if (dispp != NULL)
6292 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6293 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6294 }
6295
6296 else if (ada_is_wrapper_field (type, i))
6297 {
6298 disp = 0;
6299 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6300 0, 1, &disp);
6301 if (t != NULL)
6302 {
6303 if (dispp != NULL)
6304 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6305 return t;
6306 }
6307 }
6308
6309 else if (ada_is_variant_part (type, i))
6310 {
6311 int j;
6312 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6313
6314 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6315 {
6316 /* FIXME pnh 2008/01/26: We check for a field that is
6317 NOT wrapped in a struct, since the compiler sometimes
6318 generates these for unchecked variant types. Revisit
6319 if the compiler changes this practice. */
6320 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6321 disp = 0;
6322 if (v_field_name != NULL
6323 && field_name_match (v_field_name, name))
6324 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6325 else
6326 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6327 name, 0, 1, &disp);
6328
6329 if (t != NULL)
6330 {
6331 if (dispp != NULL)
6332 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6333 return t;
6334 }
6335 }
6336 }
6337
6338 }
6339
6340 BadName:
6341 if (!noerr)
6342 {
6343 target_terminal_ours ();
6344 gdb_flush (gdb_stdout);
6345 if (name == NULL)
6346 {
6347 /* XXX: type_sprint */
6348 fprintf_unfiltered (gdb_stderr, _("Type "));
6349 type_print (type, "", gdb_stderr, -1);
6350 error (_(" has no component named <null>"));
6351 }
6352 else
6353 {
6354 /* XXX: type_sprint */
6355 fprintf_unfiltered (gdb_stderr, _("Type "));
6356 type_print (type, "", gdb_stderr, -1);
6357 error (_(" has no component named %s"), name);
6358 }
6359 }
6360
6361 return NULL;
6362 }
6363
6364 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6365 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6366 represents an unchecked union (that is, the variant part of a
6367 record that is named in an Unchecked_Union pragma). */
6368
6369 static int
6370 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6371 {
6372 char *discrim_name = ada_variant_discrim_name (var_type);
6373 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6374 == NULL);
6375 }
6376
6377
6378 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6379 within a value of type OUTER_TYPE that is stored in GDB at
6380 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6381 numbering from 0) is applicable. Returns -1 if none are. */
6382
6383 int
6384 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6385 const gdb_byte *outer_valaddr)
6386 {
6387 int others_clause;
6388 int i;
6389 char *discrim_name = ada_variant_discrim_name (var_type);
6390 struct value *outer;
6391 struct value *discrim;
6392 LONGEST discrim_val;
6393
6394 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6395 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6396 if (discrim == NULL)
6397 return -1;
6398 discrim_val = value_as_long (discrim);
6399
6400 others_clause = -1;
6401 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6402 {
6403 if (ada_is_others_clause (var_type, i))
6404 others_clause = i;
6405 else if (ada_in_variant (discrim_val, var_type, i))
6406 return i;
6407 }
6408
6409 return others_clause;
6410 }
6411 \f
6412
6413
6414 /* Dynamic-Sized Records */
6415
6416 /* Strategy: The type ostensibly attached to a value with dynamic size
6417 (i.e., a size that is not statically recorded in the debugging
6418 data) does not accurately reflect the size or layout of the value.
6419 Our strategy is to convert these values to values with accurate,
6420 conventional types that are constructed on the fly. */
6421
6422 /* There is a subtle and tricky problem here. In general, we cannot
6423 determine the size of dynamic records without its data. However,
6424 the 'struct value' data structure, which GDB uses to represent
6425 quantities in the inferior process (the target), requires the size
6426 of the type at the time of its allocation in order to reserve space
6427 for GDB's internal copy of the data. That's why the
6428 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6429 rather than struct value*s.
6430
6431 However, GDB's internal history variables ($1, $2, etc.) are
6432 struct value*s containing internal copies of the data that are not, in
6433 general, the same as the data at their corresponding addresses in
6434 the target. Fortunately, the types we give to these values are all
6435 conventional, fixed-size types (as per the strategy described
6436 above), so that we don't usually have to perform the
6437 'to_fixed_xxx_type' conversions to look at their values.
6438 Unfortunately, there is one exception: if one of the internal
6439 history variables is an array whose elements are unconstrained
6440 records, then we will need to create distinct fixed types for each
6441 element selected. */
6442
6443 /* The upshot of all of this is that many routines take a (type, host
6444 address, target address) triple as arguments to represent a value.
6445 The host address, if non-null, is supposed to contain an internal
6446 copy of the relevant data; otherwise, the program is to consult the
6447 target at the target address. */
6448
6449 /* Assuming that VAL0 represents a pointer value, the result of
6450 dereferencing it. Differs from value_ind in its treatment of
6451 dynamic-sized types. */
6452
6453 struct value *
6454 ada_value_ind (struct value *val0)
6455 {
6456 struct value *val = unwrap_value (value_ind (val0));
6457 return ada_to_fixed_value (val);
6458 }
6459
6460 /* The value resulting from dereferencing any "reference to"
6461 qualifiers on VAL0. */
6462
6463 static struct value *
6464 ada_coerce_ref (struct value *val0)
6465 {
6466 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6467 {
6468 struct value *val = val0;
6469 val = coerce_ref (val);
6470 val = unwrap_value (val);
6471 return ada_to_fixed_value (val);
6472 }
6473 else
6474 return val0;
6475 }
6476
6477 /* Return OFF rounded upward if necessary to a multiple of
6478 ALIGNMENT (a power of 2). */
6479
6480 static unsigned int
6481 align_value (unsigned int off, unsigned int alignment)
6482 {
6483 return (off + alignment - 1) & ~(alignment - 1);
6484 }
6485
6486 /* Return the bit alignment required for field #F of template type TYPE. */
6487
6488 static unsigned int
6489 field_alignment (struct type *type, int f)
6490 {
6491 const char *name = TYPE_FIELD_NAME (type, f);
6492 int len;
6493 int align_offset;
6494
6495 /* The field name should never be null, unless the debugging information
6496 is somehow malformed. In this case, we assume the field does not
6497 require any alignment. */
6498 if (name == NULL)
6499 return 1;
6500
6501 len = strlen (name);
6502
6503 if (!isdigit (name[len - 1]))
6504 return 1;
6505
6506 if (isdigit (name[len - 2]))
6507 align_offset = len - 2;
6508 else
6509 align_offset = len - 1;
6510
6511 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6512 return TARGET_CHAR_BIT;
6513
6514 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6515 }
6516
6517 /* Find a symbol named NAME. Ignores ambiguity. */
6518
6519 struct symbol *
6520 ada_find_any_symbol (const char *name)
6521 {
6522 struct symbol *sym;
6523
6524 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6525 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6526 return sym;
6527
6528 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6529 return sym;
6530 }
6531
6532 /* Find a type named NAME. Ignores ambiguity. */
6533
6534 struct type *
6535 ada_find_any_type (const char *name)
6536 {
6537 struct symbol *sym = ada_find_any_symbol (name);
6538
6539 if (sym != NULL)
6540 return SYMBOL_TYPE (sym);
6541
6542 return NULL;
6543 }
6544
6545 /* Given NAME and an associated BLOCK, search all symbols for
6546 NAME suffixed with "___XR", which is the ``renaming'' symbol
6547 associated to NAME. Return this symbol if found, return
6548 NULL otherwise. */
6549
6550 struct symbol *
6551 ada_find_renaming_symbol (const char *name, struct block *block)
6552 {
6553 struct symbol *sym;
6554
6555 sym = find_old_style_renaming_symbol (name, block);
6556
6557 if (sym != NULL)
6558 return sym;
6559
6560 /* Not right yet. FIXME pnh 7/20/2007. */
6561 sym = ada_find_any_symbol (name);
6562 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6563 return sym;
6564 else
6565 return NULL;
6566 }
6567
6568 static struct symbol *
6569 find_old_style_renaming_symbol (const char *name, struct block *block)
6570 {
6571 const struct symbol *function_sym = block_linkage_function (block);
6572 char *rename;
6573
6574 if (function_sym != NULL)
6575 {
6576 /* If the symbol is defined inside a function, NAME is not fully
6577 qualified. This means we need to prepend the function name
6578 as well as adding the ``___XR'' suffix to build the name of
6579 the associated renaming symbol. */
6580 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6581 /* Function names sometimes contain suffixes used
6582 for instance to qualify nested subprograms. When building
6583 the XR type name, we need to make sure that this suffix is
6584 not included. So do not include any suffix in the function
6585 name length below. */
6586 const int function_name_len = ada_name_prefix_len (function_name);
6587 const int rename_len = function_name_len + 2 /* "__" */
6588 + strlen (name) + 6 /* "___XR\0" */ ;
6589
6590 /* Strip the suffix if necessary. */
6591 function_name[function_name_len] = '\0';
6592
6593 /* Library-level functions are a special case, as GNAT adds
6594 a ``_ada_'' prefix to the function name to avoid namespace
6595 pollution. However, the renaming symbols themselves do not
6596 have this prefix, so we need to skip this prefix if present. */
6597 if (function_name_len > 5 /* "_ada_" */
6598 && strstr (function_name, "_ada_") == function_name)
6599 function_name = function_name + 5;
6600
6601 rename = (char *) alloca (rename_len * sizeof (char));
6602 sprintf (rename, "%s__%s___XR", function_name, name);
6603 }
6604 else
6605 {
6606 const int rename_len = strlen (name) + 6;
6607 rename = (char *) alloca (rename_len * sizeof (char));
6608 sprintf (rename, "%s___XR", name);
6609 }
6610
6611 return ada_find_any_symbol (rename);
6612 }
6613
6614 /* Because of GNAT encoding conventions, several GDB symbols may match a
6615 given type name. If the type denoted by TYPE0 is to be preferred to
6616 that of TYPE1 for purposes of type printing, return non-zero;
6617 otherwise return 0. */
6618
6619 int
6620 ada_prefer_type (struct type *type0, struct type *type1)
6621 {
6622 if (type1 == NULL)
6623 return 1;
6624 else if (type0 == NULL)
6625 return 0;
6626 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6627 return 1;
6628 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6629 return 0;
6630 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6631 return 1;
6632 else if (ada_is_packed_array_type (type0))
6633 return 1;
6634 else if (ada_is_array_descriptor_type (type0)
6635 && !ada_is_array_descriptor_type (type1))
6636 return 1;
6637 else
6638 {
6639 const char *type0_name = type_name_no_tag (type0);
6640 const char *type1_name = type_name_no_tag (type1);
6641
6642 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6643 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6644 return 1;
6645 }
6646 return 0;
6647 }
6648
6649 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6650 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6651
6652 char *
6653 ada_type_name (struct type *type)
6654 {
6655 if (type == NULL)
6656 return NULL;
6657 else if (TYPE_NAME (type) != NULL)
6658 return TYPE_NAME (type);
6659 else
6660 return TYPE_TAG_NAME (type);
6661 }
6662
6663 /* Find a parallel type to TYPE whose name is formed by appending
6664 SUFFIX to the name of TYPE. */
6665
6666 struct type *
6667 ada_find_parallel_type (struct type *type, const char *suffix)
6668 {
6669 static char *name;
6670 static size_t name_len = 0;
6671 int len;
6672 char *typename = ada_type_name (type);
6673
6674 if (typename == NULL)
6675 return NULL;
6676
6677 len = strlen (typename);
6678
6679 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6680
6681 strcpy (name, typename);
6682 strcpy (name + len, suffix);
6683
6684 return ada_find_any_type (name);
6685 }
6686
6687
6688 /* If TYPE is a variable-size record type, return the corresponding template
6689 type describing its fields. Otherwise, return NULL. */
6690
6691 static struct type *
6692 dynamic_template_type (struct type *type)
6693 {
6694 type = ada_check_typedef (type);
6695
6696 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6697 || ada_type_name (type) == NULL)
6698 return NULL;
6699 else
6700 {
6701 int len = strlen (ada_type_name (type));
6702 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6703 return type;
6704 else
6705 return ada_find_parallel_type (type, "___XVE");
6706 }
6707 }
6708
6709 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6710 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6711
6712 static int
6713 is_dynamic_field (struct type *templ_type, int field_num)
6714 {
6715 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6716 return name != NULL
6717 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6718 && strstr (name, "___XVL") != NULL;
6719 }
6720
6721 /* The index of the variant field of TYPE, or -1 if TYPE does not
6722 represent a variant record type. */
6723
6724 static int
6725 variant_field_index (struct type *type)
6726 {
6727 int f;
6728
6729 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6730 return -1;
6731
6732 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6733 {
6734 if (ada_is_variant_part (type, f))
6735 return f;
6736 }
6737 return -1;
6738 }
6739
6740 /* A record type with no fields. */
6741
6742 static struct type *
6743 empty_record (struct objfile *objfile)
6744 {
6745 struct type *type = alloc_type (objfile);
6746 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6747 TYPE_NFIELDS (type) = 0;
6748 TYPE_FIELDS (type) = NULL;
6749 INIT_CPLUS_SPECIFIC (type);
6750 TYPE_NAME (type) = "<empty>";
6751 TYPE_TAG_NAME (type) = NULL;
6752 TYPE_LENGTH (type) = 0;
6753 return type;
6754 }
6755
6756 /* An ordinary record type (with fixed-length fields) that describes
6757 the value of type TYPE at VALADDR or ADDRESS (see comments at
6758 the beginning of this section) VAL according to GNAT conventions.
6759 DVAL0 should describe the (portion of a) record that contains any
6760 necessary discriminants. It should be NULL if value_type (VAL) is
6761 an outer-level type (i.e., as opposed to a branch of a variant.) A
6762 variant field (unless unchecked) is replaced by a particular branch
6763 of the variant.
6764
6765 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6766 length are not statically known are discarded. As a consequence,
6767 VALADDR, ADDRESS and DVAL0 are ignored.
6768
6769 NOTE: Limitations: For now, we assume that dynamic fields and
6770 variants occupy whole numbers of bytes. However, they need not be
6771 byte-aligned. */
6772
6773 struct type *
6774 ada_template_to_fixed_record_type_1 (struct type *type,
6775 const gdb_byte *valaddr,
6776 CORE_ADDR address, struct value *dval0,
6777 int keep_dynamic_fields)
6778 {
6779 struct value *mark = value_mark ();
6780 struct value *dval;
6781 struct type *rtype;
6782 int nfields, bit_len;
6783 int variant_field;
6784 long off;
6785 int fld_bit_len, bit_incr;
6786 int f;
6787
6788 /* Compute the number of fields in this record type that are going
6789 to be processed: unless keep_dynamic_fields, this includes only
6790 fields whose position and length are static will be processed. */
6791 if (keep_dynamic_fields)
6792 nfields = TYPE_NFIELDS (type);
6793 else
6794 {
6795 nfields = 0;
6796 while (nfields < TYPE_NFIELDS (type)
6797 && !ada_is_variant_part (type, nfields)
6798 && !is_dynamic_field (type, nfields))
6799 nfields++;
6800 }
6801
6802 rtype = alloc_type (TYPE_OBJFILE (type));
6803 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6804 INIT_CPLUS_SPECIFIC (rtype);
6805 TYPE_NFIELDS (rtype) = nfields;
6806 TYPE_FIELDS (rtype) = (struct field *)
6807 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6808 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6809 TYPE_NAME (rtype) = ada_type_name (type);
6810 TYPE_TAG_NAME (rtype) = NULL;
6811 TYPE_FIXED_INSTANCE (rtype) = 1;
6812
6813 off = 0;
6814 bit_len = 0;
6815 variant_field = -1;
6816
6817 for (f = 0; f < nfields; f += 1)
6818 {
6819 off = align_value (off, field_alignment (type, f))
6820 + TYPE_FIELD_BITPOS (type, f);
6821 TYPE_FIELD_BITPOS (rtype, f) = off;
6822 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6823
6824 if (ada_is_variant_part (type, f))
6825 {
6826 variant_field = f;
6827 fld_bit_len = bit_incr = 0;
6828 }
6829 else if (is_dynamic_field (type, f))
6830 {
6831 if (dval0 == NULL)
6832 {
6833 /* rtype's length is computed based on the run-time
6834 value of discriminants. If the discriminants are not
6835 initialized, the type size may be completely bogus and
6836 GDB may fail to allocate a value for it. So check the
6837 size first before creating the value. */
6838 check_size (rtype);
6839 dval = value_from_contents_and_address (rtype, valaddr, address);
6840 }
6841 else
6842 dval = dval0;
6843
6844 /* Get the fixed type of the field. Note that, in this case, we
6845 do not want to get the real type out of the tag: if the current
6846 field is the parent part of a tagged record, we will get the
6847 tag of the object. Clearly wrong: the real type of the parent
6848 is not the real type of the child. We would end up in an infinite
6849 loop. */
6850 TYPE_FIELD_TYPE (rtype, f) =
6851 ada_to_fixed_type
6852 (ada_get_base_type
6853 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6854 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6855 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6856 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6857 bit_incr = fld_bit_len =
6858 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6859 }
6860 else
6861 {
6862 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6863 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6864 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6865 bit_incr = fld_bit_len =
6866 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6867 else
6868 bit_incr = fld_bit_len =
6869 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6870 }
6871 if (off + fld_bit_len > bit_len)
6872 bit_len = off + fld_bit_len;
6873 off += bit_incr;
6874 TYPE_LENGTH (rtype) =
6875 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6876 }
6877
6878 /* We handle the variant part, if any, at the end because of certain
6879 odd cases in which it is re-ordered so as NOT to be the last field of
6880 the record. This can happen in the presence of representation
6881 clauses. */
6882 if (variant_field >= 0)
6883 {
6884 struct type *branch_type;
6885
6886 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6887
6888 if (dval0 == NULL)
6889 dval = value_from_contents_and_address (rtype, valaddr, address);
6890 else
6891 dval = dval0;
6892
6893 branch_type =
6894 to_fixed_variant_branch_type
6895 (TYPE_FIELD_TYPE (type, variant_field),
6896 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6897 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6898 if (branch_type == NULL)
6899 {
6900 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6901 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6902 TYPE_NFIELDS (rtype) -= 1;
6903 }
6904 else
6905 {
6906 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6907 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6908 fld_bit_len =
6909 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6910 TARGET_CHAR_BIT;
6911 if (off + fld_bit_len > bit_len)
6912 bit_len = off + fld_bit_len;
6913 TYPE_LENGTH (rtype) =
6914 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6915 }
6916 }
6917
6918 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6919 should contain the alignment of that record, which should be a strictly
6920 positive value. If null or negative, then something is wrong, most
6921 probably in the debug info. In that case, we don't round up the size
6922 of the resulting type. If this record is not part of another structure,
6923 the current RTYPE length might be good enough for our purposes. */
6924 if (TYPE_LENGTH (type) <= 0)
6925 {
6926 if (TYPE_NAME (rtype))
6927 warning (_("Invalid type size for `%s' detected: %d."),
6928 TYPE_NAME (rtype), TYPE_LENGTH (type));
6929 else
6930 warning (_("Invalid type size for <unnamed> detected: %d."),
6931 TYPE_LENGTH (type));
6932 }
6933 else
6934 {
6935 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6936 TYPE_LENGTH (type));
6937 }
6938
6939 value_free_to_mark (mark);
6940 if (TYPE_LENGTH (rtype) > varsize_limit)
6941 error (_("record type with dynamic size is larger than varsize-limit"));
6942 return rtype;
6943 }
6944
6945 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6946 of 1. */
6947
6948 static struct type *
6949 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6950 CORE_ADDR address, struct value *dval0)
6951 {
6952 return ada_template_to_fixed_record_type_1 (type, valaddr,
6953 address, dval0, 1);
6954 }
6955
6956 /* An ordinary record type in which ___XVL-convention fields and
6957 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6958 static approximations, containing all possible fields. Uses
6959 no runtime values. Useless for use in values, but that's OK,
6960 since the results are used only for type determinations. Works on both
6961 structs and unions. Representation note: to save space, we memorize
6962 the result of this function in the TYPE_TARGET_TYPE of the
6963 template type. */
6964
6965 static struct type *
6966 template_to_static_fixed_type (struct type *type0)
6967 {
6968 struct type *type;
6969 int nfields;
6970 int f;
6971
6972 if (TYPE_TARGET_TYPE (type0) != NULL)
6973 return TYPE_TARGET_TYPE (type0);
6974
6975 nfields = TYPE_NFIELDS (type0);
6976 type = type0;
6977
6978 for (f = 0; f < nfields; f += 1)
6979 {
6980 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6981 struct type *new_type;
6982
6983 if (is_dynamic_field (type0, f))
6984 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6985 else
6986 new_type = static_unwrap_type (field_type);
6987 if (type == type0 && new_type != field_type)
6988 {
6989 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6990 TYPE_CODE (type) = TYPE_CODE (type0);
6991 INIT_CPLUS_SPECIFIC (type);
6992 TYPE_NFIELDS (type) = nfields;
6993 TYPE_FIELDS (type) = (struct field *)
6994 TYPE_ALLOC (type, nfields * sizeof (struct field));
6995 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6996 sizeof (struct field) * nfields);
6997 TYPE_NAME (type) = ada_type_name (type0);
6998 TYPE_TAG_NAME (type) = NULL;
6999 TYPE_FIXED_INSTANCE (type) = 1;
7000 TYPE_LENGTH (type) = 0;
7001 }
7002 TYPE_FIELD_TYPE (type, f) = new_type;
7003 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7004 }
7005 return type;
7006 }
7007
7008 /* Given an object of type TYPE whose contents are at VALADDR and
7009 whose address in memory is ADDRESS, returns a revision of TYPE,
7010 which should be a non-dynamic-sized record, in which the variant
7011 part, if any, is replaced with the appropriate branch. Looks
7012 for discriminant values in DVAL0, which can be NULL if the record
7013 contains the necessary discriminant values. */
7014
7015 static struct type *
7016 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7017 CORE_ADDR address, struct value *dval0)
7018 {
7019 struct value *mark = value_mark ();
7020 struct value *dval;
7021 struct type *rtype;
7022 struct type *branch_type;
7023 int nfields = TYPE_NFIELDS (type);
7024 int variant_field = variant_field_index (type);
7025
7026 if (variant_field == -1)
7027 return type;
7028
7029 if (dval0 == NULL)
7030 dval = value_from_contents_and_address (type, valaddr, address);
7031 else
7032 dval = dval0;
7033
7034 rtype = alloc_type (TYPE_OBJFILE (type));
7035 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7036 INIT_CPLUS_SPECIFIC (rtype);
7037 TYPE_NFIELDS (rtype) = nfields;
7038 TYPE_FIELDS (rtype) =
7039 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7040 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7041 sizeof (struct field) * nfields);
7042 TYPE_NAME (rtype) = ada_type_name (type);
7043 TYPE_TAG_NAME (rtype) = NULL;
7044 TYPE_FIXED_INSTANCE (rtype) = 1;
7045 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7046
7047 branch_type = to_fixed_variant_branch_type
7048 (TYPE_FIELD_TYPE (type, variant_field),
7049 cond_offset_host (valaddr,
7050 TYPE_FIELD_BITPOS (type, variant_field)
7051 / TARGET_CHAR_BIT),
7052 cond_offset_target (address,
7053 TYPE_FIELD_BITPOS (type, variant_field)
7054 / TARGET_CHAR_BIT), dval);
7055 if (branch_type == NULL)
7056 {
7057 int f;
7058 for (f = variant_field + 1; f < nfields; f += 1)
7059 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7060 TYPE_NFIELDS (rtype) -= 1;
7061 }
7062 else
7063 {
7064 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7065 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7066 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7067 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7068 }
7069 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7070
7071 value_free_to_mark (mark);
7072 return rtype;
7073 }
7074
7075 /* An ordinary record type (with fixed-length fields) that describes
7076 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7077 beginning of this section]. Any necessary discriminants' values
7078 should be in DVAL, a record value; it may be NULL if the object
7079 at ADDR itself contains any necessary discriminant values.
7080 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7081 values from the record are needed. Except in the case that DVAL,
7082 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7083 unchecked) is replaced by a particular branch of the variant.
7084
7085 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7086 is questionable and may be removed. It can arise during the
7087 processing of an unconstrained-array-of-record type where all the
7088 variant branches have exactly the same size. This is because in
7089 such cases, the compiler does not bother to use the XVS convention
7090 when encoding the record. I am currently dubious of this
7091 shortcut and suspect the compiler should be altered. FIXME. */
7092
7093 static struct type *
7094 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7095 CORE_ADDR address, struct value *dval)
7096 {
7097 struct type *templ_type;
7098
7099 if (TYPE_FIXED_INSTANCE (type0))
7100 return type0;
7101
7102 templ_type = dynamic_template_type (type0);
7103
7104 if (templ_type != NULL)
7105 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7106 else if (variant_field_index (type0) >= 0)
7107 {
7108 if (dval == NULL && valaddr == NULL && address == 0)
7109 return type0;
7110 return to_record_with_fixed_variant_part (type0, valaddr, address,
7111 dval);
7112 }
7113 else
7114 {
7115 TYPE_FIXED_INSTANCE (type0) = 1;
7116 return type0;
7117 }
7118
7119 }
7120
7121 /* An ordinary record type (with fixed-length fields) that describes
7122 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7123 union type. Any necessary discriminants' values should be in DVAL,
7124 a record value. That is, this routine selects the appropriate
7125 branch of the union at ADDR according to the discriminant value
7126 indicated in the union's type name. Returns VAR_TYPE0 itself if
7127 it represents a variant subject to a pragma Unchecked_Union. */
7128
7129 static struct type *
7130 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7131 CORE_ADDR address, struct value *dval)
7132 {
7133 int which;
7134 struct type *templ_type;
7135 struct type *var_type;
7136
7137 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7138 var_type = TYPE_TARGET_TYPE (var_type0);
7139 else
7140 var_type = var_type0;
7141
7142 templ_type = ada_find_parallel_type (var_type, "___XVU");
7143
7144 if (templ_type != NULL)
7145 var_type = templ_type;
7146
7147 if (is_unchecked_variant (var_type, value_type (dval)))
7148 return var_type0;
7149 which =
7150 ada_which_variant_applies (var_type,
7151 value_type (dval), value_contents (dval));
7152
7153 if (which < 0)
7154 return empty_record (TYPE_OBJFILE (var_type));
7155 else if (is_dynamic_field (var_type, which))
7156 return to_fixed_record_type
7157 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7158 valaddr, address, dval);
7159 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7160 return
7161 to_fixed_record_type
7162 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7163 else
7164 return TYPE_FIELD_TYPE (var_type, which);
7165 }
7166
7167 /* Assuming that TYPE0 is an array type describing the type of a value
7168 at ADDR, and that DVAL describes a record containing any
7169 discriminants used in TYPE0, returns a type for the value that
7170 contains no dynamic components (that is, no components whose sizes
7171 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7172 true, gives an error message if the resulting type's size is over
7173 varsize_limit. */
7174
7175 static struct type *
7176 to_fixed_array_type (struct type *type0, struct value *dval,
7177 int ignore_too_big)
7178 {
7179 struct type *index_type_desc;
7180 struct type *result;
7181
7182 if (ada_is_packed_array_type (type0) /* revisit? */
7183 || TYPE_FIXED_INSTANCE (type0))
7184 return type0;
7185
7186 index_type_desc = ada_find_parallel_type (type0, "___XA");
7187 if (index_type_desc == NULL)
7188 {
7189 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7190 /* NOTE: elt_type---the fixed version of elt_type0---should never
7191 depend on the contents of the array in properly constructed
7192 debugging data. */
7193 /* Create a fixed version of the array element type.
7194 We're not providing the address of an element here,
7195 and thus the actual object value cannot be inspected to do
7196 the conversion. This should not be a problem, since arrays of
7197 unconstrained objects are not allowed. In particular, all
7198 the elements of an array of a tagged type should all be of
7199 the same type specified in the debugging info. No need to
7200 consult the object tag. */
7201 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7202
7203 if (elt_type0 == elt_type)
7204 result = type0;
7205 else
7206 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7207 elt_type, TYPE_INDEX_TYPE (type0));
7208 }
7209 else
7210 {
7211 int i;
7212 struct type *elt_type0;
7213
7214 elt_type0 = type0;
7215 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7216 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7217
7218 /* NOTE: result---the fixed version of elt_type0---should never
7219 depend on the contents of the array in properly constructed
7220 debugging data. */
7221 /* Create a fixed version of the array element type.
7222 We're not providing the address of an element here,
7223 and thus the actual object value cannot be inspected to do
7224 the conversion. This should not be a problem, since arrays of
7225 unconstrained objects are not allowed. In particular, all
7226 the elements of an array of a tagged type should all be of
7227 the same type specified in the debugging info. No need to
7228 consult the object tag. */
7229 result =
7230 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7231 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7232 {
7233 struct type *range_type =
7234 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7235 dval, TYPE_OBJFILE (type0));
7236 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7237 result, range_type);
7238 }
7239 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7240 error (_("array type with dynamic size is larger than varsize-limit"));
7241 }
7242
7243 TYPE_FIXED_INSTANCE (result) = 1;
7244 return result;
7245 }
7246
7247
7248 /* A standard type (containing no dynamically sized components)
7249 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7250 DVAL describes a record containing any discriminants used in TYPE0,
7251 and may be NULL if there are none, or if the object of type TYPE at
7252 ADDRESS or in VALADDR contains these discriminants.
7253
7254 If CHECK_TAG is not null, in the case of tagged types, this function
7255 attempts to locate the object's tag and use it to compute the actual
7256 type. However, when ADDRESS is null, we cannot use it to determine the
7257 location of the tag, and therefore compute the tagged type's actual type.
7258 So we return the tagged type without consulting the tag. */
7259
7260 static struct type *
7261 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7262 CORE_ADDR address, struct value *dval, int check_tag)
7263 {
7264 type = ada_check_typedef (type);
7265 switch (TYPE_CODE (type))
7266 {
7267 default:
7268 return type;
7269 case TYPE_CODE_STRUCT:
7270 {
7271 struct type *static_type = to_static_fixed_type (type);
7272 struct type *fixed_record_type =
7273 to_fixed_record_type (type, valaddr, address, NULL);
7274 /* If STATIC_TYPE is a tagged type and we know the object's address,
7275 then we can determine its tag, and compute the object's actual
7276 type from there. Note that we have to use the fixed record
7277 type (the parent part of the record may have dynamic fields
7278 and the way the location of _tag is expressed may depend on
7279 them). */
7280
7281 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7282 {
7283 struct type *real_type =
7284 type_from_tag (value_tag_from_contents_and_address
7285 (fixed_record_type,
7286 valaddr,
7287 address));
7288 if (real_type != NULL)
7289 return to_fixed_record_type (real_type, valaddr, address, NULL);
7290 }
7291
7292 /* Check to see if there is a parallel ___XVZ variable.
7293 If there is, then it provides the actual size of our type. */
7294 else if (ada_type_name (fixed_record_type) != NULL)
7295 {
7296 char *name = ada_type_name (fixed_record_type);
7297 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7298 int xvz_found = 0;
7299 LONGEST size;
7300
7301 sprintf (xvz_name, "%s___XVZ", name);
7302 size = get_int_var_value (xvz_name, &xvz_found);
7303 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7304 {
7305 fixed_record_type = copy_type (fixed_record_type);
7306 TYPE_LENGTH (fixed_record_type) = size;
7307
7308 /* The FIXED_RECORD_TYPE may have be a stub. We have
7309 observed this when the debugging info is STABS, and
7310 apparently it is something that is hard to fix.
7311
7312 In practice, we don't need the actual type definition
7313 at all, because the presence of the XVZ variable allows us
7314 to assume that there must be a XVS type as well, which we
7315 should be able to use later, when we need the actual type
7316 definition.
7317
7318 In the meantime, pretend that the "fixed" type we are
7319 returning is NOT a stub, because this can cause trouble
7320 when using this type to create new types targeting it.
7321 Indeed, the associated creation routines often check
7322 whether the target type is a stub and will try to replace
7323 it, thus using a type with the wrong size. This, in turn,
7324 might cause the new type to have the wrong size too.
7325 Consider the case of an array, for instance, where the size
7326 of the array is computed from the number of elements in
7327 our array multiplied by the size of its element. */
7328 TYPE_STUB (fixed_record_type) = 0;
7329 }
7330 }
7331 return fixed_record_type;
7332 }
7333 case TYPE_CODE_ARRAY:
7334 return to_fixed_array_type (type, dval, 1);
7335 case TYPE_CODE_UNION:
7336 if (dval == NULL)
7337 return type;
7338 else
7339 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7340 }
7341 }
7342
7343 /* The same as ada_to_fixed_type_1, except that it preserves the type
7344 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7345 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7346
7347 struct type *
7348 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7349 CORE_ADDR address, struct value *dval, int check_tag)
7350
7351 {
7352 struct type *fixed_type =
7353 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7354
7355 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7356 && TYPE_TARGET_TYPE (type) == fixed_type)
7357 return type;
7358
7359 return fixed_type;
7360 }
7361
7362 /* A standard (static-sized) type corresponding as well as possible to
7363 TYPE0, but based on no runtime data. */
7364
7365 static struct type *
7366 to_static_fixed_type (struct type *type0)
7367 {
7368 struct type *type;
7369
7370 if (type0 == NULL)
7371 return NULL;
7372
7373 if (TYPE_FIXED_INSTANCE (type0))
7374 return type0;
7375
7376 type0 = ada_check_typedef (type0);
7377
7378 switch (TYPE_CODE (type0))
7379 {
7380 default:
7381 return type0;
7382 case TYPE_CODE_STRUCT:
7383 type = dynamic_template_type (type0);
7384 if (type != NULL)
7385 return template_to_static_fixed_type (type);
7386 else
7387 return template_to_static_fixed_type (type0);
7388 case TYPE_CODE_UNION:
7389 type = ada_find_parallel_type (type0, "___XVU");
7390 if (type != NULL)
7391 return template_to_static_fixed_type (type);
7392 else
7393 return template_to_static_fixed_type (type0);
7394 }
7395 }
7396
7397 /* A static approximation of TYPE with all type wrappers removed. */
7398
7399 static struct type *
7400 static_unwrap_type (struct type *type)
7401 {
7402 if (ada_is_aligner_type (type))
7403 {
7404 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7405 if (ada_type_name (type1) == NULL)
7406 TYPE_NAME (type1) = ada_type_name (type);
7407
7408 return static_unwrap_type (type1);
7409 }
7410 else
7411 {
7412 struct type *raw_real_type = ada_get_base_type (type);
7413 if (raw_real_type == type)
7414 return type;
7415 else
7416 return to_static_fixed_type (raw_real_type);
7417 }
7418 }
7419
7420 /* In some cases, incomplete and private types require
7421 cross-references that are not resolved as records (for example,
7422 type Foo;
7423 type FooP is access Foo;
7424 V: FooP;
7425 type Foo is array ...;
7426 ). In these cases, since there is no mechanism for producing
7427 cross-references to such types, we instead substitute for FooP a
7428 stub enumeration type that is nowhere resolved, and whose tag is
7429 the name of the actual type. Call these types "non-record stubs". */
7430
7431 /* A type equivalent to TYPE that is not a non-record stub, if one
7432 exists, otherwise TYPE. */
7433
7434 struct type *
7435 ada_check_typedef (struct type *type)
7436 {
7437 if (type == NULL)
7438 return NULL;
7439
7440 CHECK_TYPEDEF (type);
7441 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7442 || !TYPE_STUB (type)
7443 || TYPE_TAG_NAME (type) == NULL)
7444 return type;
7445 else
7446 {
7447 char *name = TYPE_TAG_NAME (type);
7448 struct type *type1 = ada_find_any_type (name);
7449 return (type1 == NULL) ? type : type1;
7450 }
7451 }
7452
7453 /* A value representing the data at VALADDR/ADDRESS as described by
7454 type TYPE0, but with a standard (static-sized) type that correctly
7455 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7456 type, then return VAL0 [this feature is simply to avoid redundant
7457 creation of struct values]. */
7458
7459 static struct value *
7460 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7461 struct value *val0)
7462 {
7463 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7464 if (type == type0 && val0 != NULL)
7465 return val0;
7466 else
7467 return value_from_contents_and_address (type, 0, address);
7468 }
7469
7470 /* A value representing VAL, but with a standard (static-sized) type
7471 that correctly describes it. Does not necessarily create a new
7472 value. */
7473
7474 static struct value *
7475 ada_to_fixed_value (struct value *val)
7476 {
7477 return ada_to_fixed_value_create (value_type (val),
7478 VALUE_ADDRESS (val) + value_offset (val),
7479 val);
7480 }
7481
7482 /* A value representing VAL, but with a standard (static-sized) type
7483 chosen to approximate the real type of VAL as well as possible, but
7484 without consulting any runtime values. For Ada dynamic-sized
7485 types, therefore, the type of the result is likely to be inaccurate. */
7486
7487 static struct value *
7488 ada_to_static_fixed_value (struct value *val)
7489 {
7490 struct type *type =
7491 to_static_fixed_type (static_unwrap_type (value_type (val)));
7492 if (type == value_type (val))
7493 return val;
7494 else
7495 return coerce_unspec_val_to_type (val, type);
7496 }
7497 \f
7498
7499 /* Attributes */
7500
7501 /* Table mapping attribute numbers to names.
7502 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7503
7504 static const char *attribute_names[] = {
7505 "<?>",
7506
7507 "first",
7508 "last",
7509 "length",
7510 "image",
7511 "max",
7512 "min",
7513 "modulus",
7514 "pos",
7515 "size",
7516 "tag",
7517 "val",
7518 0
7519 };
7520
7521 const char *
7522 ada_attribute_name (enum exp_opcode n)
7523 {
7524 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7525 return attribute_names[n - OP_ATR_FIRST + 1];
7526 else
7527 return attribute_names[0];
7528 }
7529
7530 /* Evaluate the 'POS attribute applied to ARG. */
7531
7532 static LONGEST
7533 pos_atr (struct value *arg)
7534 {
7535 struct value *val = coerce_ref (arg);
7536 struct type *type = value_type (val);
7537
7538 if (!discrete_type_p (type))
7539 error (_("'POS only defined on discrete types"));
7540
7541 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7542 {
7543 int i;
7544 LONGEST v = value_as_long (val);
7545
7546 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7547 {
7548 if (v == TYPE_FIELD_BITPOS (type, i))
7549 return i;
7550 }
7551 error (_("enumeration value is invalid: can't find 'POS"));
7552 }
7553 else
7554 return value_as_long (val);
7555 }
7556
7557 static struct value *
7558 value_pos_atr (struct type *type, struct value *arg)
7559 {
7560 return value_from_longest (type, pos_atr (arg));
7561 }
7562
7563 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7564
7565 static struct value *
7566 value_val_atr (struct type *type, struct value *arg)
7567 {
7568 if (!discrete_type_p (type))
7569 error (_("'VAL only defined on discrete types"));
7570 if (!integer_type_p (value_type (arg)))
7571 error (_("'VAL requires integral argument"));
7572
7573 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7574 {
7575 long pos = value_as_long (arg);
7576 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7577 error (_("argument to 'VAL out of range"));
7578 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7579 }
7580 else
7581 return value_from_longest (type, value_as_long (arg));
7582 }
7583 \f
7584
7585 /* Evaluation */
7586
7587 /* True if TYPE appears to be an Ada character type.
7588 [At the moment, this is true only for Character and Wide_Character;
7589 It is a heuristic test that could stand improvement]. */
7590
7591 int
7592 ada_is_character_type (struct type *type)
7593 {
7594 const char *name;
7595
7596 /* If the type code says it's a character, then assume it really is,
7597 and don't check any further. */
7598 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7599 return 1;
7600
7601 /* Otherwise, assume it's a character type iff it is a discrete type
7602 with a known character type name. */
7603 name = ada_type_name (type);
7604 return (name != NULL
7605 && (TYPE_CODE (type) == TYPE_CODE_INT
7606 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7607 && (strcmp (name, "character") == 0
7608 || strcmp (name, "wide_character") == 0
7609 || strcmp (name, "wide_wide_character") == 0
7610 || strcmp (name, "unsigned char") == 0));
7611 }
7612
7613 /* True if TYPE appears to be an Ada string type. */
7614
7615 int
7616 ada_is_string_type (struct type *type)
7617 {
7618 type = ada_check_typedef (type);
7619 if (type != NULL
7620 && TYPE_CODE (type) != TYPE_CODE_PTR
7621 && (ada_is_simple_array_type (type)
7622 || ada_is_array_descriptor_type (type))
7623 && ada_array_arity (type) == 1)
7624 {
7625 struct type *elttype = ada_array_element_type (type, 1);
7626
7627 return ada_is_character_type (elttype);
7628 }
7629 else
7630 return 0;
7631 }
7632
7633
7634 /* True if TYPE is a struct type introduced by the compiler to force the
7635 alignment of a value. Such types have a single field with a
7636 distinctive name. */
7637
7638 int
7639 ada_is_aligner_type (struct type *type)
7640 {
7641 type = ada_check_typedef (type);
7642
7643 /* If we can find a parallel XVS type, then the XVS type should
7644 be used instead of this type. And hence, this is not an aligner
7645 type. */
7646 if (ada_find_parallel_type (type, "___XVS") != NULL)
7647 return 0;
7648
7649 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7650 && TYPE_NFIELDS (type) == 1
7651 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7652 }
7653
7654 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7655 the parallel type. */
7656
7657 struct type *
7658 ada_get_base_type (struct type *raw_type)
7659 {
7660 struct type *real_type_namer;
7661 struct type *raw_real_type;
7662
7663 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7664 return raw_type;
7665
7666 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7667 if (real_type_namer == NULL
7668 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7669 || TYPE_NFIELDS (real_type_namer) != 1)
7670 return raw_type;
7671
7672 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7673 if (raw_real_type == NULL)
7674 return raw_type;
7675 else
7676 return raw_real_type;
7677 }
7678
7679 /* The type of value designated by TYPE, with all aligners removed. */
7680
7681 struct type *
7682 ada_aligned_type (struct type *type)
7683 {
7684 if (ada_is_aligner_type (type))
7685 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7686 else
7687 return ada_get_base_type (type);
7688 }
7689
7690
7691 /* The address of the aligned value in an object at address VALADDR
7692 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7693
7694 const gdb_byte *
7695 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7696 {
7697 if (ada_is_aligner_type (type))
7698 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7699 valaddr +
7700 TYPE_FIELD_BITPOS (type,
7701 0) / TARGET_CHAR_BIT);
7702 else
7703 return valaddr;
7704 }
7705
7706
7707
7708 /* The printed representation of an enumeration literal with encoded
7709 name NAME. The value is good to the next call of ada_enum_name. */
7710 const char *
7711 ada_enum_name (const char *name)
7712 {
7713 static char *result;
7714 static size_t result_len = 0;
7715 char *tmp;
7716
7717 /* First, unqualify the enumeration name:
7718 1. Search for the last '.' character. If we find one, then skip
7719 all the preceeding characters, the unqualified name starts
7720 right after that dot.
7721 2. Otherwise, we may be debugging on a target where the compiler
7722 translates dots into "__". Search forward for double underscores,
7723 but stop searching when we hit an overloading suffix, which is
7724 of the form "__" followed by digits. */
7725
7726 tmp = strrchr (name, '.');
7727 if (tmp != NULL)
7728 name = tmp + 1;
7729 else
7730 {
7731 while ((tmp = strstr (name, "__")) != NULL)
7732 {
7733 if (isdigit (tmp[2]))
7734 break;
7735 else
7736 name = tmp + 2;
7737 }
7738 }
7739
7740 if (name[0] == 'Q')
7741 {
7742 int v;
7743 if (name[1] == 'U' || name[1] == 'W')
7744 {
7745 if (sscanf (name + 2, "%x", &v) != 1)
7746 return name;
7747 }
7748 else
7749 return name;
7750
7751 GROW_VECT (result, result_len, 16);
7752 if (isascii (v) && isprint (v))
7753 sprintf (result, "'%c'", v);
7754 else if (name[1] == 'U')
7755 sprintf (result, "[\"%02x\"]", v);
7756 else
7757 sprintf (result, "[\"%04x\"]", v);
7758
7759 return result;
7760 }
7761 else
7762 {
7763 tmp = strstr (name, "__");
7764 if (tmp == NULL)
7765 tmp = strstr (name, "$");
7766 if (tmp != NULL)
7767 {
7768 GROW_VECT (result, result_len, tmp - name + 1);
7769 strncpy (result, name, tmp - name);
7770 result[tmp - name] = '\0';
7771 return result;
7772 }
7773
7774 return name;
7775 }
7776 }
7777
7778 static struct value *
7779 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7780 enum noside noside)
7781 {
7782 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7783 (expect_type, exp, pos, noside);
7784 }
7785
7786 /* Evaluate the subexpression of EXP starting at *POS as for
7787 evaluate_type, updating *POS to point just past the evaluated
7788 expression. */
7789
7790 static struct value *
7791 evaluate_subexp_type (struct expression *exp, int *pos)
7792 {
7793 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7794 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7795 }
7796
7797 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7798 value it wraps. */
7799
7800 static struct value *
7801 unwrap_value (struct value *val)
7802 {
7803 struct type *type = ada_check_typedef (value_type (val));
7804 if (ada_is_aligner_type (type))
7805 {
7806 struct value *v = ada_value_struct_elt (val, "F", 0);
7807 struct type *val_type = ada_check_typedef (value_type (v));
7808 if (ada_type_name (val_type) == NULL)
7809 TYPE_NAME (val_type) = ada_type_name (type);
7810
7811 return unwrap_value (v);
7812 }
7813 else
7814 {
7815 struct type *raw_real_type =
7816 ada_check_typedef (ada_get_base_type (type));
7817
7818 if (type == raw_real_type)
7819 return val;
7820
7821 return
7822 coerce_unspec_val_to_type
7823 (val, ada_to_fixed_type (raw_real_type, 0,
7824 VALUE_ADDRESS (val) + value_offset (val),
7825 NULL, 1));
7826 }
7827 }
7828
7829 static struct value *
7830 cast_to_fixed (struct type *type, struct value *arg)
7831 {
7832 LONGEST val;
7833
7834 if (type == value_type (arg))
7835 return arg;
7836 else if (ada_is_fixed_point_type (value_type (arg)))
7837 val = ada_float_to_fixed (type,
7838 ada_fixed_to_float (value_type (arg),
7839 value_as_long (arg)));
7840 else
7841 {
7842 DOUBLEST argd = value_as_double (arg);
7843 val = ada_float_to_fixed (type, argd);
7844 }
7845
7846 return value_from_longest (type, val);
7847 }
7848
7849 static struct value *
7850 cast_from_fixed (struct type *type, struct value *arg)
7851 {
7852 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7853 value_as_long (arg));
7854 return value_from_double (type, val);
7855 }
7856
7857 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7858 return the converted value. */
7859
7860 static struct value *
7861 coerce_for_assign (struct type *type, struct value *val)
7862 {
7863 struct type *type2 = value_type (val);
7864 if (type == type2)
7865 return val;
7866
7867 type2 = ada_check_typedef (type2);
7868 type = ada_check_typedef (type);
7869
7870 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7871 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7872 {
7873 val = ada_value_ind (val);
7874 type2 = value_type (val);
7875 }
7876
7877 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7878 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7879 {
7880 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7881 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7882 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7883 error (_("Incompatible types in assignment"));
7884 deprecated_set_value_type (val, type);
7885 }
7886 return val;
7887 }
7888
7889 static struct value *
7890 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7891 {
7892 struct value *val;
7893 struct type *type1, *type2;
7894 LONGEST v, v1, v2;
7895
7896 arg1 = coerce_ref (arg1);
7897 arg2 = coerce_ref (arg2);
7898 type1 = base_type (ada_check_typedef (value_type (arg1)));
7899 type2 = base_type (ada_check_typedef (value_type (arg2)));
7900
7901 if (TYPE_CODE (type1) != TYPE_CODE_INT
7902 || TYPE_CODE (type2) != TYPE_CODE_INT)
7903 return value_binop (arg1, arg2, op);
7904
7905 switch (op)
7906 {
7907 case BINOP_MOD:
7908 case BINOP_DIV:
7909 case BINOP_REM:
7910 break;
7911 default:
7912 return value_binop (arg1, arg2, op);
7913 }
7914
7915 v2 = value_as_long (arg2);
7916 if (v2 == 0)
7917 error (_("second operand of %s must not be zero."), op_string (op));
7918
7919 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7920 return value_binop (arg1, arg2, op);
7921
7922 v1 = value_as_long (arg1);
7923 switch (op)
7924 {
7925 case BINOP_DIV:
7926 v = v1 / v2;
7927 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7928 v += v > 0 ? -1 : 1;
7929 break;
7930 case BINOP_REM:
7931 v = v1 % v2;
7932 if (v * v1 < 0)
7933 v -= v2;
7934 break;
7935 default:
7936 /* Should not reach this point. */
7937 v = 0;
7938 }
7939
7940 val = allocate_value (type1);
7941 store_unsigned_integer (value_contents_raw (val),
7942 TYPE_LENGTH (value_type (val)), v);
7943 return val;
7944 }
7945
7946 static int
7947 ada_value_equal (struct value *arg1, struct value *arg2)
7948 {
7949 if (ada_is_direct_array_type (value_type (arg1))
7950 || ada_is_direct_array_type (value_type (arg2)))
7951 {
7952 /* Automatically dereference any array reference before
7953 we attempt to perform the comparison. */
7954 arg1 = ada_coerce_ref (arg1);
7955 arg2 = ada_coerce_ref (arg2);
7956
7957 arg1 = ada_coerce_to_simple_array (arg1);
7958 arg2 = ada_coerce_to_simple_array (arg2);
7959 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7960 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7961 error (_("Attempt to compare array with non-array"));
7962 /* FIXME: The following works only for types whose
7963 representations use all bits (no padding or undefined bits)
7964 and do not have user-defined equality. */
7965 return
7966 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7967 && memcmp (value_contents (arg1), value_contents (arg2),
7968 TYPE_LENGTH (value_type (arg1))) == 0;
7969 }
7970 return value_equal (arg1, arg2);
7971 }
7972
7973 /* Total number of component associations in the aggregate starting at
7974 index PC in EXP. Assumes that index PC is the start of an
7975 OP_AGGREGATE. */
7976
7977 static int
7978 num_component_specs (struct expression *exp, int pc)
7979 {
7980 int n, m, i;
7981 m = exp->elts[pc + 1].longconst;
7982 pc += 3;
7983 n = 0;
7984 for (i = 0; i < m; i += 1)
7985 {
7986 switch (exp->elts[pc].opcode)
7987 {
7988 default:
7989 n += 1;
7990 break;
7991 case OP_CHOICES:
7992 n += exp->elts[pc + 1].longconst;
7993 break;
7994 }
7995 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7996 }
7997 return n;
7998 }
7999
8000 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8001 component of LHS (a simple array or a record), updating *POS past
8002 the expression, assuming that LHS is contained in CONTAINER. Does
8003 not modify the inferior's memory, nor does it modify LHS (unless
8004 LHS == CONTAINER). */
8005
8006 static void
8007 assign_component (struct value *container, struct value *lhs, LONGEST index,
8008 struct expression *exp, int *pos)
8009 {
8010 struct value *mark = value_mark ();
8011 struct value *elt;
8012 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8013 {
8014 struct value *index_val = value_from_longest (builtin_type_int32, index);
8015 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8016 }
8017 else
8018 {
8019 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8020 elt = ada_to_fixed_value (unwrap_value (elt));
8021 }
8022
8023 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8024 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8025 else
8026 value_assign_to_component (container, elt,
8027 ada_evaluate_subexp (NULL, exp, pos,
8028 EVAL_NORMAL));
8029
8030 value_free_to_mark (mark);
8031 }
8032
8033 /* Assuming that LHS represents an lvalue having a record or array
8034 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8035 of that aggregate's value to LHS, advancing *POS past the
8036 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8037 lvalue containing LHS (possibly LHS itself). Does not modify
8038 the inferior's memory, nor does it modify the contents of
8039 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8040
8041 static struct value *
8042 assign_aggregate (struct value *container,
8043 struct value *lhs, struct expression *exp,
8044 int *pos, enum noside noside)
8045 {
8046 struct type *lhs_type;
8047 int n = exp->elts[*pos+1].longconst;
8048 LONGEST low_index, high_index;
8049 int num_specs;
8050 LONGEST *indices;
8051 int max_indices, num_indices;
8052 int is_array_aggregate;
8053 int i;
8054 struct value *mark = value_mark ();
8055
8056 *pos += 3;
8057 if (noside != EVAL_NORMAL)
8058 {
8059 int i;
8060 for (i = 0; i < n; i += 1)
8061 ada_evaluate_subexp (NULL, exp, pos, noside);
8062 return container;
8063 }
8064
8065 container = ada_coerce_ref (container);
8066 if (ada_is_direct_array_type (value_type (container)))
8067 container = ada_coerce_to_simple_array (container);
8068 lhs = ada_coerce_ref (lhs);
8069 if (!deprecated_value_modifiable (lhs))
8070 error (_("Left operand of assignment is not a modifiable lvalue."));
8071
8072 lhs_type = value_type (lhs);
8073 if (ada_is_direct_array_type (lhs_type))
8074 {
8075 lhs = ada_coerce_to_simple_array (lhs);
8076 lhs_type = value_type (lhs);
8077 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8078 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8079 is_array_aggregate = 1;
8080 }
8081 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8082 {
8083 low_index = 0;
8084 high_index = num_visible_fields (lhs_type) - 1;
8085 is_array_aggregate = 0;
8086 }
8087 else
8088 error (_("Left-hand side must be array or record."));
8089
8090 num_specs = num_component_specs (exp, *pos - 3);
8091 max_indices = 4 * num_specs + 4;
8092 indices = alloca (max_indices * sizeof (indices[0]));
8093 indices[0] = indices[1] = low_index - 1;
8094 indices[2] = indices[3] = high_index + 1;
8095 num_indices = 4;
8096
8097 for (i = 0; i < n; i += 1)
8098 {
8099 switch (exp->elts[*pos].opcode)
8100 {
8101 case OP_CHOICES:
8102 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8103 &num_indices, max_indices,
8104 low_index, high_index);
8105 break;
8106 case OP_POSITIONAL:
8107 aggregate_assign_positional (container, lhs, exp, pos, indices,
8108 &num_indices, max_indices,
8109 low_index, high_index);
8110 break;
8111 case OP_OTHERS:
8112 if (i != n-1)
8113 error (_("Misplaced 'others' clause"));
8114 aggregate_assign_others (container, lhs, exp, pos, indices,
8115 num_indices, low_index, high_index);
8116 break;
8117 default:
8118 error (_("Internal error: bad aggregate clause"));
8119 }
8120 }
8121
8122 return container;
8123 }
8124
8125 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8126 construct at *POS, updating *POS past the construct, given that
8127 the positions are relative to lower bound LOW, where HIGH is the
8128 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8129 updating *NUM_INDICES as needed. CONTAINER is as for
8130 assign_aggregate. */
8131 static void
8132 aggregate_assign_positional (struct value *container,
8133 struct value *lhs, struct expression *exp,
8134 int *pos, LONGEST *indices, int *num_indices,
8135 int max_indices, LONGEST low, LONGEST high)
8136 {
8137 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8138
8139 if (ind - 1 == high)
8140 warning (_("Extra components in aggregate ignored."));
8141 if (ind <= high)
8142 {
8143 add_component_interval (ind, ind, indices, num_indices, max_indices);
8144 *pos += 3;
8145 assign_component (container, lhs, ind, exp, pos);
8146 }
8147 else
8148 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8149 }
8150
8151 /* Assign into the components of LHS indexed by the OP_CHOICES
8152 construct at *POS, updating *POS past the construct, given that
8153 the allowable indices are LOW..HIGH. Record the indices assigned
8154 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8155 needed. CONTAINER is as for assign_aggregate. */
8156 static void
8157 aggregate_assign_from_choices (struct value *container,
8158 struct value *lhs, struct expression *exp,
8159 int *pos, LONGEST *indices, int *num_indices,
8160 int max_indices, LONGEST low, LONGEST high)
8161 {
8162 int j;
8163 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8164 int choice_pos, expr_pc;
8165 int is_array = ada_is_direct_array_type (value_type (lhs));
8166
8167 choice_pos = *pos += 3;
8168
8169 for (j = 0; j < n_choices; j += 1)
8170 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8171 expr_pc = *pos;
8172 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8173
8174 for (j = 0; j < n_choices; j += 1)
8175 {
8176 LONGEST lower, upper;
8177 enum exp_opcode op = exp->elts[choice_pos].opcode;
8178 if (op == OP_DISCRETE_RANGE)
8179 {
8180 choice_pos += 1;
8181 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8182 EVAL_NORMAL));
8183 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8184 EVAL_NORMAL));
8185 }
8186 else if (is_array)
8187 {
8188 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8189 EVAL_NORMAL));
8190 upper = lower;
8191 }
8192 else
8193 {
8194 int ind;
8195 char *name;
8196 switch (op)
8197 {
8198 case OP_NAME:
8199 name = &exp->elts[choice_pos + 2].string;
8200 break;
8201 case OP_VAR_VALUE:
8202 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8203 break;
8204 default:
8205 error (_("Invalid record component association."));
8206 }
8207 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8208 ind = 0;
8209 if (! find_struct_field (name, value_type (lhs), 0,
8210 NULL, NULL, NULL, NULL, &ind))
8211 error (_("Unknown component name: %s."), name);
8212 lower = upper = ind;
8213 }
8214
8215 if (lower <= upper && (lower < low || upper > high))
8216 error (_("Index in component association out of bounds."));
8217
8218 add_component_interval (lower, upper, indices, num_indices,
8219 max_indices);
8220 while (lower <= upper)
8221 {
8222 int pos1;
8223 pos1 = expr_pc;
8224 assign_component (container, lhs, lower, exp, &pos1);
8225 lower += 1;
8226 }
8227 }
8228 }
8229
8230 /* Assign the value of the expression in the OP_OTHERS construct in
8231 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8232 have not been previously assigned. The index intervals already assigned
8233 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8234 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8235 static void
8236 aggregate_assign_others (struct value *container,
8237 struct value *lhs, struct expression *exp,
8238 int *pos, LONGEST *indices, int num_indices,
8239 LONGEST low, LONGEST high)
8240 {
8241 int i;
8242 int expr_pc = *pos+1;
8243
8244 for (i = 0; i < num_indices - 2; i += 2)
8245 {
8246 LONGEST ind;
8247 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8248 {
8249 int pos;
8250 pos = expr_pc;
8251 assign_component (container, lhs, ind, exp, &pos);
8252 }
8253 }
8254 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8255 }
8256
8257 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8258 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8259 modifying *SIZE as needed. It is an error if *SIZE exceeds
8260 MAX_SIZE. The resulting intervals do not overlap. */
8261 static void
8262 add_component_interval (LONGEST low, LONGEST high,
8263 LONGEST* indices, int *size, int max_size)
8264 {
8265 int i, j;
8266 for (i = 0; i < *size; i += 2) {
8267 if (high >= indices[i] && low <= indices[i + 1])
8268 {
8269 int kh;
8270 for (kh = i + 2; kh < *size; kh += 2)
8271 if (high < indices[kh])
8272 break;
8273 if (low < indices[i])
8274 indices[i] = low;
8275 indices[i + 1] = indices[kh - 1];
8276 if (high > indices[i + 1])
8277 indices[i + 1] = high;
8278 memcpy (indices + i + 2, indices + kh, *size - kh);
8279 *size -= kh - i - 2;
8280 return;
8281 }
8282 else if (high < indices[i])
8283 break;
8284 }
8285
8286 if (*size == max_size)
8287 error (_("Internal error: miscounted aggregate components."));
8288 *size += 2;
8289 for (j = *size-1; j >= i+2; j -= 1)
8290 indices[j] = indices[j - 2];
8291 indices[i] = low;
8292 indices[i + 1] = high;
8293 }
8294
8295 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8296 is different. */
8297
8298 static struct value *
8299 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8300 {
8301 if (type == ada_check_typedef (value_type (arg2)))
8302 return arg2;
8303
8304 if (ada_is_fixed_point_type (type))
8305 return (cast_to_fixed (type, arg2));
8306
8307 if (ada_is_fixed_point_type (value_type (arg2)))
8308 return cast_from_fixed (type, arg2);
8309
8310 return value_cast (type, arg2);
8311 }
8312
8313 static struct value *
8314 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8315 int *pos, enum noside noside)
8316 {
8317 enum exp_opcode op;
8318 int tem, tem2, tem3;
8319 int pc;
8320 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8321 struct type *type;
8322 int nargs, oplen;
8323 struct value **argvec;
8324
8325 pc = *pos;
8326 *pos += 1;
8327 op = exp->elts[pc].opcode;
8328
8329 switch (op)
8330 {
8331 default:
8332 *pos -= 1;
8333 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8334 arg1 = unwrap_value (arg1);
8335
8336 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8337 then we need to perform the conversion manually, because
8338 evaluate_subexp_standard doesn't do it. This conversion is
8339 necessary in Ada because the different kinds of float/fixed
8340 types in Ada have different representations.
8341
8342 Similarly, we need to perform the conversion from OP_LONG
8343 ourselves. */
8344 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8345 arg1 = ada_value_cast (expect_type, arg1, noside);
8346
8347 return arg1;
8348
8349 case OP_STRING:
8350 {
8351 struct value *result;
8352 *pos -= 1;
8353 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8354 /* The result type will have code OP_STRING, bashed there from
8355 OP_ARRAY. Bash it back. */
8356 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8357 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8358 return result;
8359 }
8360
8361 case UNOP_CAST:
8362 (*pos) += 2;
8363 type = exp->elts[pc + 1].type;
8364 arg1 = evaluate_subexp (type, exp, pos, noside);
8365 if (noside == EVAL_SKIP)
8366 goto nosideret;
8367 arg1 = ada_value_cast (type, arg1, noside);
8368 return arg1;
8369
8370 case UNOP_QUAL:
8371 (*pos) += 2;
8372 type = exp->elts[pc + 1].type;
8373 return ada_evaluate_subexp (type, exp, pos, noside);
8374
8375 case BINOP_ASSIGN:
8376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8377 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8378 {
8379 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8380 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8381 return arg1;
8382 return ada_value_assign (arg1, arg1);
8383 }
8384 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8385 except if the lhs of our assignment is a convenience variable.
8386 In the case of assigning to a convenience variable, the lhs
8387 should be exactly the result of the evaluation of the rhs. */
8388 type = value_type (arg1);
8389 if (VALUE_LVAL (arg1) == lval_internalvar)
8390 type = NULL;
8391 arg2 = evaluate_subexp (type, exp, pos, noside);
8392 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8393 return arg1;
8394 if (ada_is_fixed_point_type (value_type (arg1)))
8395 arg2 = cast_to_fixed (value_type (arg1), arg2);
8396 else if (ada_is_fixed_point_type (value_type (arg2)))
8397 error
8398 (_("Fixed-point values must be assigned to fixed-point variables"));
8399 else
8400 arg2 = coerce_for_assign (value_type (arg1), arg2);
8401 return ada_value_assign (arg1, arg2);
8402
8403 case BINOP_ADD:
8404 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8405 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8406 if (noside == EVAL_SKIP)
8407 goto nosideret;
8408 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8409 return (value_from_longest
8410 (value_type (arg1),
8411 value_as_long (arg1) + value_as_long (arg2)));
8412 if ((ada_is_fixed_point_type (value_type (arg1))
8413 || ada_is_fixed_point_type (value_type (arg2)))
8414 && value_type (arg1) != value_type (arg2))
8415 error (_("Operands of fixed-point addition must have the same type"));
8416 /* Do the addition, and cast the result to the type of the first
8417 argument. We cannot cast the result to a reference type, so if
8418 ARG1 is a reference type, find its underlying type. */
8419 type = value_type (arg1);
8420 while (TYPE_CODE (type) == TYPE_CODE_REF)
8421 type = TYPE_TARGET_TYPE (type);
8422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8423 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8424
8425 case BINOP_SUB:
8426 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8427 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8428 if (noside == EVAL_SKIP)
8429 goto nosideret;
8430 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8431 return (value_from_longest
8432 (value_type (arg1),
8433 value_as_long (arg1) - value_as_long (arg2)));
8434 if ((ada_is_fixed_point_type (value_type (arg1))
8435 || ada_is_fixed_point_type (value_type (arg2)))
8436 && value_type (arg1) != value_type (arg2))
8437 error (_("Operands of fixed-point subtraction must have the same type"));
8438 /* Do the substraction, and cast the result to the type of the first
8439 argument. We cannot cast the result to a reference type, so if
8440 ARG1 is a reference type, find its underlying type. */
8441 type = value_type (arg1);
8442 while (TYPE_CODE (type) == TYPE_CODE_REF)
8443 type = TYPE_TARGET_TYPE (type);
8444 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8445 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8446
8447 case BINOP_MUL:
8448 case BINOP_DIV:
8449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8450 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8451 if (noside == EVAL_SKIP)
8452 goto nosideret;
8453 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8454 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8455 return value_zero (value_type (arg1), not_lval);
8456 else
8457 {
8458 type = builtin_type (exp->gdbarch)->builtin_double;
8459 if (ada_is_fixed_point_type (value_type (arg1)))
8460 arg1 = cast_from_fixed (type, arg1);
8461 if (ada_is_fixed_point_type (value_type (arg2)))
8462 arg2 = cast_from_fixed (type, arg2);
8463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8464 return ada_value_binop (arg1, arg2, op);
8465 }
8466
8467 case BINOP_REM:
8468 case BINOP_MOD:
8469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8470 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8471 if (noside == EVAL_SKIP)
8472 goto nosideret;
8473 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8474 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8475 return value_zero (value_type (arg1), not_lval);
8476 else
8477 {
8478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8479 return ada_value_binop (arg1, arg2, op);
8480 }
8481
8482 case BINOP_EQUAL:
8483 case BINOP_NOTEQUAL:
8484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8485 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8486 if (noside == EVAL_SKIP)
8487 goto nosideret;
8488 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8489 tem = 0;
8490 else
8491 {
8492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8493 tem = ada_value_equal (arg1, arg2);
8494 }
8495 if (op == BINOP_NOTEQUAL)
8496 tem = !tem;
8497 type = language_bool_type (exp->language_defn, exp->gdbarch);
8498 return value_from_longest (type, (LONGEST) tem);
8499
8500 case UNOP_NEG:
8501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8502 if (noside == EVAL_SKIP)
8503 goto nosideret;
8504 else if (ada_is_fixed_point_type (value_type (arg1)))
8505 return value_cast (value_type (arg1), value_neg (arg1));
8506 else
8507 {
8508 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8509 return value_neg (arg1);
8510 }
8511
8512 case BINOP_LOGICAL_AND:
8513 case BINOP_LOGICAL_OR:
8514 case UNOP_LOGICAL_NOT:
8515 {
8516 struct value *val;
8517
8518 *pos -= 1;
8519 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8520 type = language_bool_type (exp->language_defn, exp->gdbarch);
8521 return value_cast (type, val);
8522 }
8523
8524 case BINOP_BITWISE_AND:
8525 case BINOP_BITWISE_IOR:
8526 case BINOP_BITWISE_XOR:
8527 {
8528 struct value *val;
8529
8530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8531 *pos = pc;
8532 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8533
8534 return value_cast (value_type (arg1), val);
8535 }
8536
8537 case OP_VAR_VALUE:
8538 *pos -= 1;
8539
8540 if (noside == EVAL_SKIP)
8541 {
8542 *pos += 4;
8543 goto nosideret;
8544 }
8545 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8546 /* Only encountered when an unresolved symbol occurs in a
8547 context other than a function call, in which case, it is
8548 invalid. */
8549 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8550 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8552 {
8553 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8554 if (ada_is_tagged_type (type, 0))
8555 {
8556 /* Tagged types are a little special in the fact that the real
8557 type is dynamic and can only be determined by inspecting the
8558 object's tag. This means that we need to get the object's
8559 value first (EVAL_NORMAL) and then extract the actual object
8560 type from its tag.
8561
8562 Note that we cannot skip the final step where we extract
8563 the object type from its tag, because the EVAL_NORMAL phase
8564 results in dynamic components being resolved into fixed ones.
8565 This can cause problems when trying to print the type
8566 description of tagged types whose parent has a dynamic size:
8567 We use the type name of the "_parent" component in order
8568 to print the name of the ancestor type in the type description.
8569 If that component had a dynamic size, the resolution into
8570 a fixed type would result in the loss of that type name,
8571 thus preventing us from printing the name of the ancestor
8572 type in the type description. */
8573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8574 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8575 }
8576
8577 *pos += 4;
8578 return value_zero
8579 (to_static_fixed_type
8580 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8581 not_lval);
8582 }
8583 else
8584 {
8585 arg1 =
8586 unwrap_value (evaluate_subexp_standard
8587 (expect_type, exp, pos, noside));
8588 return ada_to_fixed_value (arg1);
8589 }
8590
8591 case OP_FUNCALL:
8592 (*pos) += 2;
8593
8594 /* Allocate arg vector, including space for the function to be
8595 called in argvec[0] and a terminating NULL. */
8596 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8597 argvec =
8598 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8599
8600 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8601 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8602 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8603 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8604 else
8605 {
8606 for (tem = 0; tem <= nargs; tem += 1)
8607 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8608 argvec[tem] = 0;
8609
8610 if (noside == EVAL_SKIP)
8611 goto nosideret;
8612 }
8613
8614 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8615 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8616 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8617 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8618 && VALUE_LVAL (argvec[0]) == lval_memory))
8619 argvec[0] = value_addr (argvec[0]);
8620
8621 type = ada_check_typedef (value_type (argvec[0]));
8622 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8623 {
8624 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8625 {
8626 case TYPE_CODE_FUNC:
8627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8628 break;
8629 case TYPE_CODE_ARRAY:
8630 break;
8631 case TYPE_CODE_STRUCT:
8632 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8633 argvec[0] = ada_value_ind (argvec[0]);
8634 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8635 break;
8636 default:
8637 error (_("cannot subscript or call something of type `%s'"),
8638 ada_type_name (value_type (argvec[0])));
8639 break;
8640 }
8641 }
8642
8643 switch (TYPE_CODE (type))
8644 {
8645 case TYPE_CODE_FUNC:
8646 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8647 return allocate_value (TYPE_TARGET_TYPE (type));
8648 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8649 case TYPE_CODE_STRUCT:
8650 {
8651 int arity;
8652
8653 arity = ada_array_arity (type);
8654 type = ada_array_element_type (type, nargs);
8655 if (type == NULL)
8656 error (_("cannot subscript or call a record"));
8657 if (arity != nargs)
8658 error (_("wrong number of subscripts; expecting %d"), arity);
8659 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8660 return value_zero (ada_aligned_type (type), lval_memory);
8661 return
8662 unwrap_value (ada_value_subscript
8663 (argvec[0], nargs, argvec + 1));
8664 }
8665 case TYPE_CODE_ARRAY:
8666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8667 {
8668 type = ada_array_element_type (type, nargs);
8669 if (type == NULL)
8670 error (_("element type of array unknown"));
8671 else
8672 return value_zero (ada_aligned_type (type), lval_memory);
8673 }
8674 return
8675 unwrap_value (ada_value_subscript
8676 (ada_coerce_to_simple_array (argvec[0]),
8677 nargs, argvec + 1));
8678 case TYPE_CODE_PTR: /* Pointer to array */
8679 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8681 {
8682 type = ada_array_element_type (type, nargs);
8683 if (type == NULL)
8684 error (_("element type of array unknown"));
8685 else
8686 return value_zero (ada_aligned_type (type), lval_memory);
8687 }
8688 return
8689 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8690 nargs, argvec + 1));
8691
8692 default:
8693 error (_("Attempt to index or call something other than an "
8694 "array or function"));
8695 }
8696
8697 case TERNOP_SLICE:
8698 {
8699 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8700 struct value *low_bound_val =
8701 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8702 struct value *high_bound_val =
8703 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8704 LONGEST low_bound;
8705 LONGEST high_bound;
8706 low_bound_val = coerce_ref (low_bound_val);
8707 high_bound_val = coerce_ref (high_bound_val);
8708 low_bound = pos_atr (low_bound_val);
8709 high_bound = pos_atr (high_bound_val);
8710
8711 if (noside == EVAL_SKIP)
8712 goto nosideret;
8713
8714 /* If this is a reference to an aligner type, then remove all
8715 the aligners. */
8716 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8717 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8718 TYPE_TARGET_TYPE (value_type (array)) =
8719 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8720
8721 if (ada_is_packed_array_type (value_type (array)))
8722 error (_("cannot slice a packed array"));
8723
8724 /* If this is a reference to an array or an array lvalue,
8725 convert to a pointer. */
8726 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8727 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8728 && VALUE_LVAL (array) == lval_memory))
8729 array = value_addr (array);
8730
8731 if (noside == EVAL_AVOID_SIDE_EFFECTS
8732 && ada_is_array_descriptor_type (ada_check_typedef
8733 (value_type (array))))
8734 return empty_array (ada_type_of_array (array, 0), low_bound);
8735
8736 array = ada_coerce_to_simple_array_ptr (array);
8737
8738 /* If we have more than one level of pointer indirection,
8739 dereference the value until we get only one level. */
8740 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8741 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8742 == TYPE_CODE_PTR))
8743 array = value_ind (array);
8744
8745 /* Make sure we really do have an array type before going further,
8746 to avoid a SEGV when trying to get the index type or the target
8747 type later down the road if the debug info generated by
8748 the compiler is incorrect or incomplete. */
8749 if (!ada_is_simple_array_type (value_type (array)))
8750 error (_("cannot take slice of non-array"));
8751
8752 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8753 {
8754 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8755 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8756 low_bound);
8757 else
8758 {
8759 struct type *arr_type0 =
8760 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8761 NULL, 1);
8762 return ada_value_slice_from_ptr (array, arr_type0,
8763 longest_to_int (low_bound),
8764 longest_to_int (high_bound));
8765 }
8766 }
8767 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8768 return array;
8769 else if (high_bound < low_bound)
8770 return empty_array (value_type (array), low_bound);
8771 else
8772 return ada_value_slice (array, longest_to_int (low_bound),
8773 longest_to_int (high_bound));
8774 }
8775
8776 case UNOP_IN_RANGE:
8777 (*pos) += 2;
8778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8779 type = exp->elts[pc + 1].type;
8780
8781 if (noside == EVAL_SKIP)
8782 goto nosideret;
8783
8784 switch (TYPE_CODE (type))
8785 {
8786 default:
8787 lim_warning (_("Membership test incompletely implemented; "
8788 "always returns true"));
8789 type = language_bool_type (exp->language_defn, exp->gdbarch);
8790 return value_from_longest (type, (LONGEST) 1);
8791
8792 case TYPE_CODE_RANGE:
8793 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8794 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8796 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8797 type = language_bool_type (exp->language_defn, exp->gdbarch);
8798 return
8799 value_from_longest (type,
8800 (value_less (arg1, arg3)
8801 || value_equal (arg1, arg3))
8802 && (value_less (arg2, arg1)
8803 || value_equal (arg2, arg1)));
8804 }
8805
8806 case BINOP_IN_BOUNDS:
8807 (*pos) += 2;
8808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8809 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8810
8811 if (noside == EVAL_SKIP)
8812 goto nosideret;
8813
8814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8815 {
8816 type = language_bool_type (exp->language_defn, exp->gdbarch);
8817 return value_zero (type, not_lval);
8818 }
8819
8820 tem = longest_to_int (exp->elts[pc + 1].longconst);
8821
8822 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8823 error (_("invalid dimension number to 'range"));
8824
8825 arg3 = ada_array_bound (arg2, tem, 1);
8826 arg2 = ada_array_bound (arg2, tem, 0);
8827
8828 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8829 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8830 type = language_bool_type (exp->language_defn, exp->gdbarch);
8831 return
8832 value_from_longest (type,
8833 (value_less (arg1, arg3)
8834 || value_equal (arg1, arg3))
8835 && (value_less (arg2, arg1)
8836 || value_equal (arg2, arg1)));
8837
8838 case TERNOP_IN_RANGE:
8839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8840 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8841 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8842
8843 if (noside == EVAL_SKIP)
8844 goto nosideret;
8845
8846 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8847 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8848 type = language_bool_type (exp->language_defn, exp->gdbarch);
8849 return
8850 value_from_longest (type,
8851 (value_less (arg1, arg3)
8852 || value_equal (arg1, arg3))
8853 && (value_less (arg2, arg1)
8854 || value_equal (arg2, arg1)));
8855
8856 case OP_ATR_FIRST:
8857 case OP_ATR_LAST:
8858 case OP_ATR_LENGTH:
8859 {
8860 struct type *type_arg;
8861 if (exp->elts[*pos].opcode == OP_TYPE)
8862 {
8863 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8864 arg1 = NULL;
8865 type_arg = exp->elts[pc + 2].type;
8866 }
8867 else
8868 {
8869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8870 type_arg = NULL;
8871 }
8872
8873 if (exp->elts[*pos].opcode != OP_LONG)
8874 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8875 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8876 *pos += 4;
8877
8878 if (noside == EVAL_SKIP)
8879 goto nosideret;
8880
8881 if (type_arg == NULL)
8882 {
8883 arg1 = ada_coerce_ref (arg1);
8884
8885 if (ada_is_packed_array_type (value_type (arg1)))
8886 arg1 = ada_coerce_to_simple_array (arg1);
8887
8888 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8889 error (_("invalid dimension number to '%s"),
8890 ada_attribute_name (op));
8891
8892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 {
8894 type = ada_index_type (value_type (arg1), tem);
8895 if (type == NULL)
8896 error
8897 (_("attempt to take bound of something that is not an array"));
8898 return allocate_value (type);
8899 }
8900
8901 switch (op)
8902 {
8903 default: /* Should never happen. */
8904 error (_("unexpected attribute encountered"));
8905 case OP_ATR_FIRST:
8906 return ada_array_bound (arg1, tem, 0);
8907 case OP_ATR_LAST:
8908 return ada_array_bound (arg1, tem, 1);
8909 case OP_ATR_LENGTH:
8910 return ada_array_length (arg1, tem);
8911 }
8912 }
8913 else if (discrete_type_p (type_arg))
8914 {
8915 struct type *range_type;
8916 char *name = ada_type_name (type_arg);
8917 range_type = NULL;
8918 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8919 range_type =
8920 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8921 if (range_type == NULL)
8922 range_type = type_arg;
8923 switch (op)
8924 {
8925 default:
8926 error (_("unexpected attribute encountered"));
8927 case OP_ATR_FIRST:
8928 return value_from_longest
8929 (range_type, discrete_type_low_bound (range_type));
8930 case OP_ATR_LAST:
8931 return value_from_longest
8932 (range_type, discrete_type_high_bound (range_type));
8933 case OP_ATR_LENGTH:
8934 error (_("the 'length attribute applies only to array types"));
8935 }
8936 }
8937 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8938 error (_("unimplemented type attribute"));
8939 else
8940 {
8941 LONGEST low, high;
8942
8943 if (ada_is_packed_array_type (type_arg))
8944 type_arg = decode_packed_array_type (type_arg);
8945
8946 if (tem < 1 || tem > ada_array_arity (type_arg))
8947 error (_("invalid dimension number to '%s"),
8948 ada_attribute_name (op));
8949
8950 type = ada_index_type (type_arg, tem);
8951 if (type == NULL)
8952 error
8953 (_("attempt to take bound of something that is not an array"));
8954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8955 return allocate_value (type);
8956
8957 switch (op)
8958 {
8959 default:
8960 error (_("unexpected attribute encountered"));
8961 case OP_ATR_FIRST:
8962 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8963 return value_from_longest (type, low);
8964 case OP_ATR_LAST:
8965 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8966 return value_from_longest (type, high);
8967 case OP_ATR_LENGTH:
8968 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8969 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8970 return value_from_longest (type, high - low + 1);
8971 }
8972 }
8973 }
8974
8975 case OP_ATR_TAG:
8976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8977 if (noside == EVAL_SKIP)
8978 goto nosideret;
8979
8980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8981 return value_zero (ada_tag_type (arg1), not_lval);
8982
8983 return ada_value_tag (arg1);
8984
8985 case OP_ATR_MIN:
8986 case OP_ATR_MAX:
8987 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8989 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8990 if (noside == EVAL_SKIP)
8991 goto nosideret;
8992 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8993 return value_zero (value_type (arg1), not_lval);
8994 else
8995 {
8996 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8997 return value_binop (arg1, arg2,
8998 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8999 }
9000
9001 case OP_ATR_MODULUS:
9002 {
9003 struct type *type_arg = exp->elts[pc + 2].type;
9004 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9005
9006 if (noside == EVAL_SKIP)
9007 goto nosideret;
9008
9009 if (!ada_is_modular_type (type_arg))
9010 error (_("'modulus must be applied to modular type"));
9011
9012 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9013 ada_modulus (type_arg));
9014 }
9015
9016
9017 case OP_ATR_POS:
9018 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9020 if (noside == EVAL_SKIP)
9021 goto nosideret;
9022 type = builtin_type (exp->gdbarch)->builtin_int;
9023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9024 return value_zero (type, not_lval);
9025 else
9026 return value_pos_atr (type, arg1);
9027
9028 case OP_ATR_SIZE:
9029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 type = value_type (arg1);
9031
9032 /* If the argument is a reference, then dereference its type, since
9033 the user is really asking for the size of the actual object,
9034 not the size of the pointer. */
9035 if (TYPE_CODE (type) == TYPE_CODE_REF)
9036 type = TYPE_TARGET_TYPE (type);
9037
9038 if (noside == EVAL_SKIP)
9039 goto nosideret;
9040 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9041 return value_zero (builtin_type_int32, not_lval);
9042 else
9043 return value_from_longest (builtin_type_int32,
9044 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9045
9046 case OP_ATR_VAL:
9047 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9049 type = exp->elts[pc + 2].type;
9050 if (noside == EVAL_SKIP)
9051 goto nosideret;
9052 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9053 return value_zero (type, not_lval);
9054 else
9055 return value_val_atr (type, arg1);
9056
9057 case BINOP_EXP:
9058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9059 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9060 if (noside == EVAL_SKIP)
9061 goto nosideret;
9062 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9063 return value_zero (value_type (arg1), not_lval);
9064 else
9065 {
9066 /* For integer exponentiation operations,
9067 only promote the first argument. */
9068 if (is_integral_type (value_type (arg2)))
9069 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9070 else
9071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9072
9073 return value_binop (arg1, arg2, op);
9074 }
9075
9076 case UNOP_PLUS:
9077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080 else
9081 return arg1;
9082
9083 case UNOP_ABS:
9084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9085 if (noside == EVAL_SKIP)
9086 goto nosideret;
9087 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9088 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9089 return value_neg (arg1);
9090 else
9091 return arg1;
9092
9093 case UNOP_IND:
9094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9095 if (noside == EVAL_SKIP)
9096 goto nosideret;
9097 type = ada_check_typedef (value_type (arg1));
9098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9099 {
9100 if (ada_is_array_descriptor_type (type))
9101 /* GDB allows dereferencing GNAT array descriptors. */
9102 {
9103 struct type *arrType = ada_type_of_array (arg1, 0);
9104 if (arrType == NULL)
9105 error (_("Attempt to dereference null array pointer."));
9106 return value_at_lazy (arrType, 0);
9107 }
9108 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9109 || TYPE_CODE (type) == TYPE_CODE_REF
9110 /* In C you can dereference an array to get the 1st elt. */
9111 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9112 {
9113 type = to_static_fixed_type
9114 (ada_aligned_type
9115 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9116 check_size (type);
9117 return value_zero (type, lval_memory);
9118 }
9119 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9120 {
9121 /* GDB allows dereferencing an int. */
9122 if (expect_type == NULL)
9123 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9124 lval_memory);
9125 else
9126 {
9127 expect_type =
9128 to_static_fixed_type (ada_aligned_type (expect_type));
9129 return value_zero (expect_type, lval_memory);
9130 }
9131 }
9132 else
9133 error (_("Attempt to take contents of a non-pointer value."));
9134 }
9135 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9136 type = ada_check_typedef (value_type (arg1));
9137
9138 if (TYPE_CODE (type) == TYPE_CODE_INT)
9139 /* GDB allows dereferencing an int. If we were given
9140 the expect_type, then use that as the target type.
9141 Otherwise, assume that the target type is an int. */
9142 {
9143 if (expect_type != NULL)
9144 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9145 arg1));
9146 else
9147 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9148 (CORE_ADDR) value_as_address (arg1));
9149 }
9150
9151 if (ada_is_array_descriptor_type (type))
9152 /* GDB allows dereferencing GNAT array descriptors. */
9153 return ada_coerce_to_simple_array (arg1);
9154 else
9155 return ada_value_ind (arg1);
9156
9157 case STRUCTOP_STRUCT:
9158 tem = longest_to_int (exp->elts[pc + 1].longconst);
9159 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9161 if (noside == EVAL_SKIP)
9162 goto nosideret;
9163 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9164 {
9165 struct type *type1 = value_type (arg1);
9166 if (ada_is_tagged_type (type1, 1))
9167 {
9168 type = ada_lookup_struct_elt_type (type1,
9169 &exp->elts[pc + 2].string,
9170 1, 1, NULL);
9171 if (type == NULL)
9172 /* In this case, we assume that the field COULD exist
9173 in some extension of the type. Return an object of
9174 "type" void, which will match any formal
9175 (see ada_type_match). */
9176 return value_zero (builtin_type_void, lval_memory);
9177 }
9178 else
9179 type =
9180 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9181 0, NULL);
9182
9183 return value_zero (ada_aligned_type (type), lval_memory);
9184 }
9185 else
9186 return
9187 ada_to_fixed_value (unwrap_value
9188 (ada_value_struct_elt
9189 (arg1, &exp->elts[pc + 2].string, 0)));
9190 case OP_TYPE:
9191 /* The value is not supposed to be used. This is here to make it
9192 easier to accommodate expressions that contain types. */
9193 (*pos) += 2;
9194 if (noside == EVAL_SKIP)
9195 goto nosideret;
9196 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9197 return allocate_value (exp->elts[pc + 1].type);
9198 else
9199 error (_("Attempt to use a type name as an expression"));
9200
9201 case OP_AGGREGATE:
9202 case OP_CHOICES:
9203 case OP_OTHERS:
9204 case OP_DISCRETE_RANGE:
9205 case OP_POSITIONAL:
9206 case OP_NAME:
9207 if (noside == EVAL_NORMAL)
9208 switch (op)
9209 {
9210 case OP_NAME:
9211 error (_("Undefined name, ambiguous name, or renaming used in "
9212 "component association: %s."), &exp->elts[pc+2].string);
9213 case OP_AGGREGATE:
9214 error (_("Aggregates only allowed on the right of an assignment"));
9215 default:
9216 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9217 }
9218
9219 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9220 *pos += oplen - 1;
9221 for (tem = 0; tem < nargs; tem += 1)
9222 ada_evaluate_subexp (NULL, exp, pos, noside);
9223 goto nosideret;
9224 }
9225
9226 nosideret:
9227 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9228 }
9229 \f
9230
9231 /* Fixed point */
9232
9233 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9234 type name that encodes the 'small and 'delta information.
9235 Otherwise, return NULL. */
9236
9237 static const char *
9238 fixed_type_info (struct type *type)
9239 {
9240 const char *name = ada_type_name (type);
9241 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9242
9243 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9244 {
9245 const char *tail = strstr (name, "___XF_");
9246 if (tail == NULL)
9247 return NULL;
9248 else
9249 return tail + 5;
9250 }
9251 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9252 return fixed_type_info (TYPE_TARGET_TYPE (type));
9253 else
9254 return NULL;
9255 }
9256
9257 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9258
9259 int
9260 ada_is_fixed_point_type (struct type *type)
9261 {
9262 return fixed_type_info (type) != NULL;
9263 }
9264
9265 /* Return non-zero iff TYPE represents a System.Address type. */
9266
9267 int
9268 ada_is_system_address_type (struct type *type)
9269 {
9270 return (TYPE_NAME (type)
9271 && strcmp (TYPE_NAME (type), "system__address") == 0);
9272 }
9273
9274 /* Assuming that TYPE is the representation of an Ada fixed-point
9275 type, return its delta, or -1 if the type is malformed and the
9276 delta cannot be determined. */
9277
9278 DOUBLEST
9279 ada_delta (struct type *type)
9280 {
9281 const char *encoding = fixed_type_info (type);
9282 long num, den;
9283
9284 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9285 return -1.0;
9286 else
9287 return (DOUBLEST) num / (DOUBLEST) den;
9288 }
9289
9290 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9291 factor ('SMALL value) associated with the type. */
9292
9293 static DOUBLEST
9294 scaling_factor (struct type *type)
9295 {
9296 const char *encoding = fixed_type_info (type);
9297 unsigned long num0, den0, num1, den1;
9298 int n;
9299
9300 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9301
9302 if (n < 2)
9303 return 1.0;
9304 else if (n == 4)
9305 return (DOUBLEST) num1 / (DOUBLEST) den1;
9306 else
9307 return (DOUBLEST) num0 / (DOUBLEST) den0;
9308 }
9309
9310
9311 /* Assuming that X is the representation of a value of fixed-point
9312 type TYPE, return its floating-point equivalent. */
9313
9314 DOUBLEST
9315 ada_fixed_to_float (struct type *type, LONGEST x)
9316 {
9317 return (DOUBLEST) x *scaling_factor (type);
9318 }
9319
9320 /* The representation of a fixed-point value of type TYPE
9321 corresponding to the value X. */
9322
9323 LONGEST
9324 ada_float_to_fixed (struct type *type, DOUBLEST x)
9325 {
9326 return (LONGEST) (x / scaling_factor (type) + 0.5);
9327 }
9328
9329
9330 /* VAX floating formats */
9331
9332 /* Non-zero iff TYPE represents one of the special VAX floating-point
9333 types. */
9334
9335 int
9336 ada_is_vax_floating_type (struct type *type)
9337 {
9338 int name_len =
9339 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9340 return
9341 name_len > 6
9342 && (TYPE_CODE (type) == TYPE_CODE_INT
9343 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9344 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9345 }
9346
9347 /* The type of special VAX floating-point type this is, assuming
9348 ada_is_vax_floating_point. */
9349
9350 int
9351 ada_vax_float_type_suffix (struct type *type)
9352 {
9353 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9354 }
9355
9356 /* A value representing the special debugging function that outputs
9357 VAX floating-point values of the type represented by TYPE. Assumes
9358 ada_is_vax_floating_type (TYPE). */
9359
9360 struct value *
9361 ada_vax_float_print_function (struct type *type)
9362 {
9363 switch (ada_vax_float_type_suffix (type))
9364 {
9365 case 'F':
9366 return get_var_value ("DEBUG_STRING_F", 0);
9367 case 'D':
9368 return get_var_value ("DEBUG_STRING_D", 0);
9369 case 'G':
9370 return get_var_value ("DEBUG_STRING_G", 0);
9371 default:
9372 error (_("invalid VAX floating-point type"));
9373 }
9374 }
9375 \f
9376
9377 /* Range types */
9378
9379 /* Scan STR beginning at position K for a discriminant name, and
9380 return the value of that discriminant field of DVAL in *PX. If
9381 PNEW_K is not null, put the position of the character beyond the
9382 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9383 not alter *PX and *PNEW_K if unsuccessful. */
9384
9385 static int
9386 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9387 int *pnew_k)
9388 {
9389 static char *bound_buffer = NULL;
9390 static size_t bound_buffer_len = 0;
9391 char *bound;
9392 char *pend;
9393 struct value *bound_val;
9394
9395 if (dval == NULL || str == NULL || str[k] == '\0')
9396 return 0;
9397
9398 pend = strstr (str + k, "__");
9399 if (pend == NULL)
9400 {
9401 bound = str + k;
9402 k += strlen (bound);
9403 }
9404 else
9405 {
9406 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9407 bound = bound_buffer;
9408 strncpy (bound_buffer, str + k, pend - (str + k));
9409 bound[pend - (str + k)] = '\0';
9410 k = pend - str;
9411 }
9412
9413 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9414 if (bound_val == NULL)
9415 return 0;
9416
9417 *px = value_as_long (bound_val);
9418 if (pnew_k != NULL)
9419 *pnew_k = k;
9420 return 1;
9421 }
9422
9423 /* Value of variable named NAME in the current environment. If
9424 no such variable found, then if ERR_MSG is null, returns 0, and
9425 otherwise causes an error with message ERR_MSG. */
9426
9427 static struct value *
9428 get_var_value (char *name, char *err_msg)
9429 {
9430 struct ada_symbol_info *syms;
9431 int nsyms;
9432
9433 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9434 &syms);
9435
9436 if (nsyms != 1)
9437 {
9438 if (err_msg == NULL)
9439 return 0;
9440 else
9441 error (("%s"), err_msg);
9442 }
9443
9444 return value_of_variable (syms[0].sym, syms[0].block);
9445 }
9446
9447 /* Value of integer variable named NAME in the current environment. If
9448 no such variable found, returns 0, and sets *FLAG to 0. If
9449 successful, sets *FLAG to 1. */
9450
9451 LONGEST
9452 get_int_var_value (char *name, int *flag)
9453 {
9454 struct value *var_val = get_var_value (name, 0);
9455
9456 if (var_val == 0)
9457 {
9458 if (flag != NULL)
9459 *flag = 0;
9460 return 0;
9461 }
9462 else
9463 {
9464 if (flag != NULL)
9465 *flag = 1;
9466 return value_as_long (var_val);
9467 }
9468 }
9469
9470
9471 /* Return a range type whose base type is that of the range type named
9472 NAME in the current environment, and whose bounds are calculated
9473 from NAME according to the GNAT range encoding conventions.
9474 Extract discriminant values, if needed, from DVAL. If a new type
9475 must be created, allocate in OBJFILE's space. The bounds
9476 information, in general, is encoded in NAME, the base type given in
9477 the named range type. */
9478
9479 static struct type *
9480 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9481 {
9482 struct type *raw_type = ada_find_any_type (name);
9483 struct type *base_type;
9484 char *subtype_info;
9485
9486 if (raw_type == NULL)
9487 base_type = builtin_type_int32;
9488 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9489 base_type = TYPE_TARGET_TYPE (raw_type);
9490 else
9491 base_type = raw_type;
9492
9493 subtype_info = strstr (name, "___XD");
9494 if (subtype_info == NULL)
9495 {
9496 LONGEST L = discrete_type_low_bound (raw_type);
9497 LONGEST U = discrete_type_high_bound (raw_type);
9498 if (L < INT_MIN || U > INT_MAX)
9499 return raw_type;
9500 else
9501 return create_range_type (alloc_type (objfile), raw_type,
9502 discrete_type_low_bound (raw_type),
9503 discrete_type_high_bound (raw_type));
9504 }
9505 else
9506 {
9507 static char *name_buf = NULL;
9508 static size_t name_len = 0;
9509 int prefix_len = subtype_info - name;
9510 LONGEST L, U;
9511 struct type *type;
9512 char *bounds_str;
9513 int n;
9514
9515 GROW_VECT (name_buf, name_len, prefix_len + 5);
9516 strncpy (name_buf, name, prefix_len);
9517 name_buf[prefix_len] = '\0';
9518
9519 subtype_info += 5;
9520 bounds_str = strchr (subtype_info, '_');
9521 n = 1;
9522
9523 if (*subtype_info == 'L')
9524 {
9525 if (!ada_scan_number (bounds_str, n, &L, &n)
9526 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9527 return raw_type;
9528 if (bounds_str[n] == '_')
9529 n += 2;
9530 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9531 n += 1;
9532 subtype_info += 1;
9533 }
9534 else
9535 {
9536 int ok;
9537 strcpy (name_buf + prefix_len, "___L");
9538 L = get_int_var_value (name_buf, &ok);
9539 if (!ok)
9540 {
9541 lim_warning (_("Unknown lower bound, using 1."));
9542 L = 1;
9543 }
9544 }
9545
9546 if (*subtype_info == 'U')
9547 {
9548 if (!ada_scan_number (bounds_str, n, &U, &n)
9549 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9550 return raw_type;
9551 }
9552 else
9553 {
9554 int ok;
9555 strcpy (name_buf + prefix_len, "___U");
9556 U = get_int_var_value (name_buf, &ok);
9557 if (!ok)
9558 {
9559 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9560 U = L;
9561 }
9562 }
9563
9564 if (objfile == NULL)
9565 objfile = TYPE_OBJFILE (base_type);
9566 type = create_range_type (alloc_type (objfile), base_type, L, U);
9567 TYPE_NAME (type) = name;
9568 return type;
9569 }
9570 }
9571
9572 /* True iff NAME is the name of a range type. */
9573
9574 int
9575 ada_is_range_type_name (const char *name)
9576 {
9577 return (name != NULL && strstr (name, "___XD"));
9578 }
9579 \f
9580
9581 /* Modular types */
9582
9583 /* True iff TYPE is an Ada modular type. */
9584
9585 int
9586 ada_is_modular_type (struct type *type)
9587 {
9588 struct type *subranged_type = base_type (type);
9589
9590 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9591 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9592 && TYPE_UNSIGNED (subranged_type));
9593 }
9594
9595 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9596
9597 ULONGEST
9598 ada_modulus (struct type * type)
9599 {
9600 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9601 }
9602 \f
9603
9604 /* Ada exception catchpoint support:
9605 ---------------------------------
9606
9607 We support 3 kinds of exception catchpoints:
9608 . catchpoints on Ada exceptions
9609 . catchpoints on unhandled Ada exceptions
9610 . catchpoints on failed assertions
9611
9612 Exceptions raised during failed assertions, or unhandled exceptions
9613 could perfectly be caught with the general catchpoint on Ada exceptions.
9614 However, we can easily differentiate these two special cases, and having
9615 the option to distinguish these two cases from the rest can be useful
9616 to zero-in on certain situations.
9617
9618 Exception catchpoints are a specialized form of breakpoint,
9619 since they rely on inserting breakpoints inside known routines
9620 of the GNAT runtime. The implementation therefore uses a standard
9621 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9622 of breakpoint_ops.
9623
9624 Support in the runtime for exception catchpoints have been changed
9625 a few times already, and these changes affect the implementation
9626 of these catchpoints. In order to be able to support several
9627 variants of the runtime, we use a sniffer that will determine
9628 the runtime variant used by the program being debugged.
9629
9630 At this time, we do not support the use of conditions on Ada exception
9631 catchpoints. The COND and COND_STRING fields are therefore set
9632 to NULL (most of the time, see below).
9633
9634 Conditions where EXP_STRING, COND, and COND_STRING are used:
9635
9636 When a user specifies the name of a specific exception in the case
9637 of catchpoints on Ada exceptions, we store the name of that exception
9638 in the EXP_STRING. We then translate this request into an actual
9639 condition stored in COND_STRING, and then parse it into an expression
9640 stored in COND. */
9641
9642 /* The different types of catchpoints that we introduced for catching
9643 Ada exceptions. */
9644
9645 enum exception_catchpoint_kind
9646 {
9647 ex_catch_exception,
9648 ex_catch_exception_unhandled,
9649 ex_catch_assert
9650 };
9651
9652 /* Ada's standard exceptions. */
9653
9654 static char *standard_exc[] = {
9655 "constraint_error",
9656 "program_error",
9657 "storage_error",
9658 "tasking_error"
9659 };
9660
9661 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9662
9663 /* A structure that describes how to support exception catchpoints
9664 for a given executable. */
9665
9666 struct exception_support_info
9667 {
9668 /* The name of the symbol to break on in order to insert
9669 a catchpoint on exceptions. */
9670 const char *catch_exception_sym;
9671
9672 /* The name of the symbol to break on in order to insert
9673 a catchpoint on unhandled exceptions. */
9674 const char *catch_exception_unhandled_sym;
9675
9676 /* The name of the symbol to break on in order to insert
9677 a catchpoint on failed assertions. */
9678 const char *catch_assert_sym;
9679
9680 /* Assuming that the inferior just triggered an unhandled exception
9681 catchpoint, this function is responsible for returning the address
9682 in inferior memory where the name of that exception is stored.
9683 Return zero if the address could not be computed. */
9684 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9685 };
9686
9687 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9688 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9689
9690 /* The following exception support info structure describes how to
9691 implement exception catchpoints with the latest version of the
9692 Ada runtime (as of 2007-03-06). */
9693
9694 static const struct exception_support_info default_exception_support_info =
9695 {
9696 "__gnat_debug_raise_exception", /* catch_exception_sym */
9697 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9698 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9699 ada_unhandled_exception_name_addr
9700 };
9701
9702 /* The following exception support info structure describes how to
9703 implement exception catchpoints with a slightly older version
9704 of the Ada runtime. */
9705
9706 static const struct exception_support_info exception_support_info_fallback =
9707 {
9708 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9709 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9710 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9711 ada_unhandled_exception_name_addr_from_raise
9712 };
9713
9714 /* For each executable, we sniff which exception info structure to use
9715 and cache it in the following global variable. */
9716
9717 static const struct exception_support_info *exception_info = NULL;
9718
9719 /* Inspect the Ada runtime and determine which exception info structure
9720 should be used to provide support for exception catchpoints.
9721
9722 This function will always set exception_info, or raise an error. */
9723
9724 static void
9725 ada_exception_support_info_sniffer (void)
9726 {
9727 struct symbol *sym;
9728
9729 /* If the exception info is already known, then no need to recompute it. */
9730 if (exception_info != NULL)
9731 return;
9732
9733 /* Check the latest (default) exception support info. */
9734 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9735 NULL, VAR_DOMAIN);
9736 if (sym != NULL)
9737 {
9738 exception_info = &default_exception_support_info;
9739 return;
9740 }
9741
9742 /* Try our fallback exception suport info. */
9743 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9744 NULL, VAR_DOMAIN);
9745 if (sym != NULL)
9746 {
9747 exception_info = &exception_support_info_fallback;
9748 return;
9749 }
9750
9751 /* Sometimes, it is normal for us to not be able to find the routine
9752 we are looking for. This happens when the program is linked with
9753 the shared version of the GNAT runtime, and the program has not been
9754 started yet. Inform the user of these two possible causes if
9755 applicable. */
9756
9757 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9758 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9759
9760 /* If the symbol does not exist, then check that the program is
9761 already started, to make sure that shared libraries have been
9762 loaded. If it is not started, this may mean that the symbol is
9763 in a shared library. */
9764
9765 if (ptid_get_pid (inferior_ptid) == 0)
9766 error (_("Unable to insert catchpoint. Try to start the program first."));
9767
9768 /* At this point, we know that we are debugging an Ada program and
9769 that the inferior has been started, but we still are not able to
9770 find the run-time symbols. That can mean that we are in
9771 configurable run time mode, or that a-except as been optimized
9772 out by the linker... In any case, at this point it is not worth
9773 supporting this feature. */
9774
9775 error (_("Cannot insert catchpoints in this configuration."));
9776 }
9777
9778 /* An observer of "executable_changed" events.
9779 Its role is to clear certain cached values that need to be recomputed
9780 each time a new executable is loaded by GDB. */
9781
9782 static void
9783 ada_executable_changed_observer (void)
9784 {
9785 /* If the executable changed, then it is possible that the Ada runtime
9786 is different. So we need to invalidate the exception support info
9787 cache. */
9788 exception_info = NULL;
9789 }
9790
9791 /* Return the name of the function at PC, NULL if could not find it.
9792 This function only checks the debugging information, not the symbol
9793 table. */
9794
9795 static char *
9796 function_name_from_pc (CORE_ADDR pc)
9797 {
9798 char *func_name;
9799
9800 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9801 return NULL;
9802
9803 return func_name;
9804 }
9805
9806 /* True iff FRAME is very likely to be that of a function that is
9807 part of the runtime system. This is all very heuristic, but is
9808 intended to be used as advice as to what frames are uninteresting
9809 to most users. */
9810
9811 static int
9812 is_known_support_routine (struct frame_info *frame)
9813 {
9814 struct symtab_and_line sal;
9815 char *func_name;
9816 int i;
9817
9818 /* If this code does not have any debugging information (no symtab),
9819 This cannot be any user code. */
9820
9821 find_frame_sal (frame, &sal);
9822 if (sal.symtab == NULL)
9823 return 1;
9824
9825 /* If there is a symtab, but the associated source file cannot be
9826 located, then assume this is not user code: Selecting a frame
9827 for which we cannot display the code would not be very helpful
9828 for the user. This should also take care of case such as VxWorks
9829 where the kernel has some debugging info provided for a few units. */
9830
9831 if (symtab_to_fullname (sal.symtab) == NULL)
9832 return 1;
9833
9834 /* Check the unit filename againt the Ada runtime file naming.
9835 We also check the name of the objfile against the name of some
9836 known system libraries that sometimes come with debugging info
9837 too. */
9838
9839 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9840 {
9841 re_comp (known_runtime_file_name_patterns[i]);
9842 if (re_exec (sal.symtab->filename))
9843 return 1;
9844 if (sal.symtab->objfile != NULL
9845 && re_exec (sal.symtab->objfile->name))
9846 return 1;
9847 }
9848
9849 /* Check whether the function is a GNAT-generated entity. */
9850
9851 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9852 if (func_name == NULL)
9853 return 1;
9854
9855 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9856 {
9857 re_comp (known_auxiliary_function_name_patterns[i]);
9858 if (re_exec (func_name))
9859 return 1;
9860 }
9861
9862 return 0;
9863 }
9864
9865 /* Find the first frame that contains debugging information and that is not
9866 part of the Ada run-time, starting from FI and moving upward. */
9867
9868 void
9869 ada_find_printable_frame (struct frame_info *fi)
9870 {
9871 for (; fi != NULL; fi = get_prev_frame (fi))
9872 {
9873 if (!is_known_support_routine (fi))
9874 {
9875 select_frame (fi);
9876 break;
9877 }
9878 }
9879
9880 }
9881
9882 /* Assuming that the inferior just triggered an unhandled exception
9883 catchpoint, return the address in inferior memory where the name
9884 of the exception is stored.
9885
9886 Return zero if the address could not be computed. */
9887
9888 static CORE_ADDR
9889 ada_unhandled_exception_name_addr (void)
9890 {
9891 return parse_and_eval_address ("e.full_name");
9892 }
9893
9894 /* Same as ada_unhandled_exception_name_addr, except that this function
9895 should be used when the inferior uses an older version of the runtime,
9896 where the exception name needs to be extracted from a specific frame
9897 several frames up in the callstack. */
9898
9899 static CORE_ADDR
9900 ada_unhandled_exception_name_addr_from_raise (void)
9901 {
9902 int frame_level;
9903 struct frame_info *fi;
9904
9905 /* To determine the name of this exception, we need to select
9906 the frame corresponding to RAISE_SYM_NAME. This frame is
9907 at least 3 levels up, so we simply skip the first 3 frames
9908 without checking the name of their associated function. */
9909 fi = get_current_frame ();
9910 for (frame_level = 0; frame_level < 3; frame_level += 1)
9911 if (fi != NULL)
9912 fi = get_prev_frame (fi);
9913
9914 while (fi != NULL)
9915 {
9916 const char *func_name =
9917 function_name_from_pc (get_frame_address_in_block (fi));
9918 if (func_name != NULL
9919 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9920 break; /* We found the frame we were looking for... */
9921 fi = get_prev_frame (fi);
9922 }
9923
9924 if (fi == NULL)
9925 return 0;
9926
9927 select_frame (fi);
9928 return parse_and_eval_address ("id.full_name");
9929 }
9930
9931 /* Assuming the inferior just triggered an Ada exception catchpoint
9932 (of any type), return the address in inferior memory where the name
9933 of the exception is stored, if applicable.
9934
9935 Return zero if the address could not be computed, or if not relevant. */
9936
9937 static CORE_ADDR
9938 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9939 struct breakpoint *b)
9940 {
9941 switch (ex)
9942 {
9943 case ex_catch_exception:
9944 return (parse_and_eval_address ("e.full_name"));
9945 break;
9946
9947 case ex_catch_exception_unhandled:
9948 return exception_info->unhandled_exception_name_addr ();
9949 break;
9950
9951 case ex_catch_assert:
9952 return 0; /* Exception name is not relevant in this case. */
9953 break;
9954
9955 default:
9956 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9957 break;
9958 }
9959
9960 return 0; /* Should never be reached. */
9961 }
9962
9963 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9964 any error that ada_exception_name_addr_1 might cause to be thrown.
9965 When an error is intercepted, a warning with the error message is printed,
9966 and zero is returned. */
9967
9968 static CORE_ADDR
9969 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9970 struct breakpoint *b)
9971 {
9972 struct gdb_exception e;
9973 CORE_ADDR result = 0;
9974
9975 TRY_CATCH (e, RETURN_MASK_ERROR)
9976 {
9977 result = ada_exception_name_addr_1 (ex, b);
9978 }
9979
9980 if (e.reason < 0)
9981 {
9982 warning (_("failed to get exception name: %s"), e.message);
9983 return 0;
9984 }
9985
9986 return result;
9987 }
9988
9989 /* Implement the PRINT_IT method in the breakpoint_ops structure
9990 for all exception catchpoint kinds. */
9991
9992 static enum print_stop_action
9993 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9994 {
9995 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9996 char exception_name[256];
9997
9998 if (addr != 0)
9999 {
10000 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10001 exception_name [sizeof (exception_name) - 1] = '\0';
10002 }
10003
10004 ada_find_printable_frame (get_current_frame ());
10005
10006 annotate_catchpoint (b->number);
10007 switch (ex)
10008 {
10009 case ex_catch_exception:
10010 if (addr != 0)
10011 printf_filtered (_("\nCatchpoint %d, %s at "),
10012 b->number, exception_name);
10013 else
10014 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10015 break;
10016 case ex_catch_exception_unhandled:
10017 if (addr != 0)
10018 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10019 b->number, exception_name);
10020 else
10021 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10022 b->number);
10023 break;
10024 case ex_catch_assert:
10025 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10026 b->number);
10027 break;
10028 }
10029
10030 return PRINT_SRC_AND_LOC;
10031 }
10032
10033 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10034 for all exception catchpoint kinds. */
10035
10036 static void
10037 print_one_exception (enum exception_catchpoint_kind ex,
10038 struct breakpoint *b, CORE_ADDR *last_addr)
10039 {
10040 struct value_print_options opts;
10041
10042 get_user_print_options (&opts);
10043 if (opts.addressprint)
10044 {
10045 annotate_field (4);
10046 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10047 }
10048
10049 annotate_field (5);
10050 *last_addr = b->loc->address;
10051 switch (ex)
10052 {
10053 case ex_catch_exception:
10054 if (b->exp_string != NULL)
10055 {
10056 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10057
10058 ui_out_field_string (uiout, "what", msg);
10059 xfree (msg);
10060 }
10061 else
10062 ui_out_field_string (uiout, "what", "all Ada exceptions");
10063
10064 break;
10065
10066 case ex_catch_exception_unhandled:
10067 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10068 break;
10069
10070 case ex_catch_assert:
10071 ui_out_field_string (uiout, "what", "failed Ada assertions");
10072 break;
10073
10074 default:
10075 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10076 break;
10077 }
10078 }
10079
10080 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10081 for all exception catchpoint kinds. */
10082
10083 static void
10084 print_mention_exception (enum exception_catchpoint_kind ex,
10085 struct breakpoint *b)
10086 {
10087 switch (ex)
10088 {
10089 case ex_catch_exception:
10090 if (b->exp_string != NULL)
10091 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10092 b->number, b->exp_string);
10093 else
10094 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10095
10096 break;
10097
10098 case ex_catch_exception_unhandled:
10099 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10100 b->number);
10101 break;
10102
10103 case ex_catch_assert:
10104 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10105 break;
10106
10107 default:
10108 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10109 break;
10110 }
10111 }
10112
10113 /* Virtual table for "catch exception" breakpoints. */
10114
10115 static enum print_stop_action
10116 print_it_catch_exception (struct breakpoint *b)
10117 {
10118 return print_it_exception (ex_catch_exception, b);
10119 }
10120
10121 static void
10122 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10123 {
10124 print_one_exception (ex_catch_exception, b, last_addr);
10125 }
10126
10127 static void
10128 print_mention_catch_exception (struct breakpoint *b)
10129 {
10130 print_mention_exception (ex_catch_exception, b);
10131 }
10132
10133 static struct breakpoint_ops catch_exception_breakpoint_ops =
10134 {
10135 NULL, /* insert */
10136 NULL, /* remove */
10137 NULL, /* breakpoint_hit */
10138 print_it_catch_exception,
10139 print_one_catch_exception,
10140 print_mention_catch_exception
10141 };
10142
10143 /* Virtual table for "catch exception unhandled" breakpoints. */
10144
10145 static enum print_stop_action
10146 print_it_catch_exception_unhandled (struct breakpoint *b)
10147 {
10148 return print_it_exception (ex_catch_exception_unhandled, b);
10149 }
10150
10151 static void
10152 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10153 {
10154 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10155 }
10156
10157 static void
10158 print_mention_catch_exception_unhandled (struct breakpoint *b)
10159 {
10160 print_mention_exception (ex_catch_exception_unhandled, b);
10161 }
10162
10163 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10164 NULL, /* insert */
10165 NULL, /* remove */
10166 NULL, /* breakpoint_hit */
10167 print_it_catch_exception_unhandled,
10168 print_one_catch_exception_unhandled,
10169 print_mention_catch_exception_unhandled
10170 };
10171
10172 /* Virtual table for "catch assert" breakpoints. */
10173
10174 static enum print_stop_action
10175 print_it_catch_assert (struct breakpoint *b)
10176 {
10177 return print_it_exception (ex_catch_assert, b);
10178 }
10179
10180 static void
10181 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10182 {
10183 print_one_exception (ex_catch_assert, b, last_addr);
10184 }
10185
10186 static void
10187 print_mention_catch_assert (struct breakpoint *b)
10188 {
10189 print_mention_exception (ex_catch_assert, b);
10190 }
10191
10192 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10193 NULL, /* insert */
10194 NULL, /* remove */
10195 NULL, /* breakpoint_hit */
10196 print_it_catch_assert,
10197 print_one_catch_assert,
10198 print_mention_catch_assert
10199 };
10200
10201 /* Return non-zero if B is an Ada exception catchpoint. */
10202
10203 int
10204 ada_exception_catchpoint_p (struct breakpoint *b)
10205 {
10206 return (b->ops == &catch_exception_breakpoint_ops
10207 || b->ops == &catch_exception_unhandled_breakpoint_ops
10208 || b->ops == &catch_assert_breakpoint_ops);
10209 }
10210
10211 /* Return a newly allocated copy of the first space-separated token
10212 in ARGSP, and then adjust ARGSP to point immediately after that
10213 token.
10214
10215 Return NULL if ARGPS does not contain any more tokens. */
10216
10217 static char *
10218 ada_get_next_arg (char **argsp)
10219 {
10220 char *args = *argsp;
10221 char *end;
10222 char *result;
10223
10224 /* Skip any leading white space. */
10225
10226 while (isspace (*args))
10227 args++;
10228
10229 if (args[0] == '\0')
10230 return NULL; /* No more arguments. */
10231
10232 /* Find the end of the current argument. */
10233
10234 end = args;
10235 while (*end != '\0' && !isspace (*end))
10236 end++;
10237
10238 /* Adjust ARGSP to point to the start of the next argument. */
10239
10240 *argsp = end;
10241
10242 /* Make a copy of the current argument and return it. */
10243
10244 result = xmalloc (end - args + 1);
10245 strncpy (result, args, end - args);
10246 result[end - args] = '\0';
10247
10248 return result;
10249 }
10250
10251 /* Split the arguments specified in a "catch exception" command.
10252 Set EX to the appropriate catchpoint type.
10253 Set EXP_STRING to the name of the specific exception if
10254 specified by the user. */
10255
10256 static void
10257 catch_ada_exception_command_split (char *args,
10258 enum exception_catchpoint_kind *ex,
10259 char **exp_string)
10260 {
10261 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10262 char *exception_name;
10263
10264 exception_name = ada_get_next_arg (&args);
10265 make_cleanup (xfree, exception_name);
10266
10267 /* Check that we do not have any more arguments. Anything else
10268 is unexpected. */
10269
10270 while (isspace (*args))
10271 args++;
10272
10273 if (args[0] != '\0')
10274 error (_("Junk at end of expression"));
10275
10276 discard_cleanups (old_chain);
10277
10278 if (exception_name == NULL)
10279 {
10280 /* Catch all exceptions. */
10281 *ex = ex_catch_exception;
10282 *exp_string = NULL;
10283 }
10284 else if (strcmp (exception_name, "unhandled") == 0)
10285 {
10286 /* Catch unhandled exceptions. */
10287 *ex = ex_catch_exception_unhandled;
10288 *exp_string = NULL;
10289 }
10290 else
10291 {
10292 /* Catch a specific exception. */
10293 *ex = ex_catch_exception;
10294 *exp_string = exception_name;
10295 }
10296 }
10297
10298 /* Return the name of the symbol on which we should break in order to
10299 implement a catchpoint of the EX kind. */
10300
10301 static const char *
10302 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10303 {
10304 gdb_assert (exception_info != NULL);
10305
10306 switch (ex)
10307 {
10308 case ex_catch_exception:
10309 return (exception_info->catch_exception_sym);
10310 break;
10311 case ex_catch_exception_unhandled:
10312 return (exception_info->catch_exception_unhandled_sym);
10313 break;
10314 case ex_catch_assert:
10315 return (exception_info->catch_assert_sym);
10316 break;
10317 default:
10318 internal_error (__FILE__, __LINE__,
10319 _("unexpected catchpoint kind (%d)"), ex);
10320 }
10321 }
10322
10323 /* Return the breakpoint ops "virtual table" used for catchpoints
10324 of the EX kind. */
10325
10326 static struct breakpoint_ops *
10327 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10328 {
10329 switch (ex)
10330 {
10331 case ex_catch_exception:
10332 return (&catch_exception_breakpoint_ops);
10333 break;
10334 case ex_catch_exception_unhandled:
10335 return (&catch_exception_unhandled_breakpoint_ops);
10336 break;
10337 case ex_catch_assert:
10338 return (&catch_assert_breakpoint_ops);
10339 break;
10340 default:
10341 internal_error (__FILE__, __LINE__,
10342 _("unexpected catchpoint kind (%d)"), ex);
10343 }
10344 }
10345
10346 /* Return the condition that will be used to match the current exception
10347 being raised with the exception that the user wants to catch. This
10348 assumes that this condition is used when the inferior just triggered
10349 an exception catchpoint.
10350
10351 The string returned is a newly allocated string that needs to be
10352 deallocated later. */
10353
10354 static char *
10355 ada_exception_catchpoint_cond_string (const char *exp_string)
10356 {
10357 int i;
10358
10359 /* The standard exceptions are a special case. They are defined in
10360 runtime units that have been compiled without debugging info; if
10361 EXP_STRING is the not-fully-qualified name of a standard
10362 exception (e.g. "constraint_error") then, during the evaluation
10363 of the condition expression, the symbol lookup on this name would
10364 *not* return this standard exception. The catchpoint condition
10365 may then be set only on user-defined exceptions which have the
10366 same not-fully-qualified name (e.g. my_package.constraint_error).
10367
10368 To avoid this unexcepted behavior, these standard exceptions are
10369 systematically prefixed by "standard". This means that "catch
10370 exception constraint_error" is rewritten into "catch exception
10371 standard.constraint_error".
10372
10373 If an exception named contraint_error is defined in another package of
10374 the inferior program, then the only way to specify this exception as a
10375 breakpoint condition is to use its fully-qualified named:
10376 e.g. my_package.constraint_error. */
10377
10378 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10379 {
10380 if (strcmp (standard_exc [i], exp_string) == 0)
10381 {
10382 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10383 exp_string);
10384 }
10385 }
10386 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10387 }
10388
10389 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10390
10391 static struct expression *
10392 ada_parse_catchpoint_condition (char *cond_string,
10393 struct symtab_and_line sal)
10394 {
10395 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10396 }
10397
10398 /* Return the symtab_and_line that should be used to insert an exception
10399 catchpoint of the TYPE kind.
10400
10401 EX_STRING should contain the name of a specific exception
10402 that the catchpoint should catch, or NULL otherwise.
10403
10404 The idea behind all the remaining parameters is that their names match
10405 the name of certain fields in the breakpoint structure that are used to
10406 handle exception catchpoints. This function returns the value to which
10407 these fields should be set, depending on the type of catchpoint we need
10408 to create.
10409
10410 If COND and COND_STRING are both non-NULL, any value they might
10411 hold will be free'ed, and then replaced by newly allocated ones.
10412 These parameters are left untouched otherwise. */
10413
10414 static struct symtab_and_line
10415 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10416 char **addr_string, char **cond_string,
10417 struct expression **cond, struct breakpoint_ops **ops)
10418 {
10419 const char *sym_name;
10420 struct symbol *sym;
10421 struct symtab_and_line sal;
10422
10423 /* First, find out which exception support info to use. */
10424 ada_exception_support_info_sniffer ();
10425
10426 /* Then lookup the function on which we will break in order to catch
10427 the Ada exceptions requested by the user. */
10428
10429 sym_name = ada_exception_sym_name (ex);
10430 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10431
10432 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10433 that should be compiled with debugging information. As a result, we
10434 expect to find that symbol in the symtabs. If we don't find it, then
10435 the target most likely does not support Ada exceptions, or we cannot
10436 insert exception breakpoints yet, because the GNAT runtime hasn't been
10437 loaded yet. */
10438
10439 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10440 in such a way that no debugging information is produced for the symbol
10441 we are looking for. In this case, we could search the minimal symbols
10442 as a fall-back mechanism. This would still be operating in degraded
10443 mode, however, as we would still be missing the debugging information
10444 that is needed in order to extract the name of the exception being
10445 raised (this name is printed in the catchpoint message, and is also
10446 used when trying to catch a specific exception). We do not handle
10447 this case for now. */
10448
10449 if (sym == NULL)
10450 error (_("Unable to break on '%s' in this configuration."), sym_name);
10451
10452 /* Make sure that the symbol we found corresponds to a function. */
10453 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10454 error (_("Symbol \"%s\" is not a function (class = %d)"),
10455 sym_name, SYMBOL_CLASS (sym));
10456
10457 sal = find_function_start_sal (sym, 1);
10458
10459 /* Set ADDR_STRING. */
10460
10461 *addr_string = xstrdup (sym_name);
10462
10463 /* Set the COND and COND_STRING (if not NULL). */
10464
10465 if (cond_string != NULL && cond != NULL)
10466 {
10467 if (*cond_string != NULL)
10468 {
10469 xfree (*cond_string);
10470 *cond_string = NULL;
10471 }
10472 if (*cond != NULL)
10473 {
10474 xfree (*cond);
10475 *cond = NULL;
10476 }
10477 if (exp_string != NULL)
10478 {
10479 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10480 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10481 }
10482 }
10483
10484 /* Set OPS. */
10485 *ops = ada_exception_breakpoint_ops (ex);
10486
10487 return sal;
10488 }
10489
10490 /* Parse the arguments (ARGS) of the "catch exception" command.
10491
10492 Set TYPE to the appropriate exception catchpoint type.
10493 If the user asked the catchpoint to catch only a specific
10494 exception, then save the exception name in ADDR_STRING.
10495
10496 See ada_exception_sal for a description of all the remaining
10497 function arguments of this function. */
10498
10499 struct symtab_and_line
10500 ada_decode_exception_location (char *args, char **addr_string,
10501 char **exp_string, char **cond_string,
10502 struct expression **cond,
10503 struct breakpoint_ops **ops)
10504 {
10505 enum exception_catchpoint_kind ex;
10506
10507 catch_ada_exception_command_split (args, &ex, exp_string);
10508 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10509 cond, ops);
10510 }
10511
10512 struct symtab_and_line
10513 ada_decode_assert_location (char *args, char **addr_string,
10514 struct breakpoint_ops **ops)
10515 {
10516 /* Check that no argument where provided at the end of the command. */
10517
10518 if (args != NULL)
10519 {
10520 while (isspace (*args))
10521 args++;
10522 if (*args != '\0')
10523 error (_("Junk at end of arguments."));
10524 }
10525
10526 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10527 ops);
10528 }
10529
10530 /* Operators */
10531 /* Information about operators given special treatment in functions
10532 below. */
10533 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10534
10535 #define ADA_OPERATORS \
10536 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10537 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10538 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10539 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10540 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10541 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10542 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10543 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10544 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10545 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10546 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10547 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10548 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10549 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10550 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10551 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10552 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10553 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10554 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10555
10556 static void
10557 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10558 {
10559 switch (exp->elts[pc - 1].opcode)
10560 {
10561 default:
10562 operator_length_standard (exp, pc, oplenp, argsp);
10563 break;
10564
10565 #define OP_DEFN(op, len, args, binop) \
10566 case op: *oplenp = len; *argsp = args; break;
10567 ADA_OPERATORS;
10568 #undef OP_DEFN
10569
10570 case OP_AGGREGATE:
10571 *oplenp = 3;
10572 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10573 break;
10574
10575 case OP_CHOICES:
10576 *oplenp = 3;
10577 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10578 break;
10579 }
10580 }
10581
10582 static char *
10583 ada_op_name (enum exp_opcode opcode)
10584 {
10585 switch (opcode)
10586 {
10587 default:
10588 return op_name_standard (opcode);
10589
10590 #define OP_DEFN(op, len, args, binop) case op: return #op;
10591 ADA_OPERATORS;
10592 #undef OP_DEFN
10593
10594 case OP_AGGREGATE:
10595 return "OP_AGGREGATE";
10596 case OP_CHOICES:
10597 return "OP_CHOICES";
10598 case OP_NAME:
10599 return "OP_NAME";
10600 }
10601 }
10602
10603 /* As for operator_length, but assumes PC is pointing at the first
10604 element of the operator, and gives meaningful results only for the
10605 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10606
10607 static void
10608 ada_forward_operator_length (struct expression *exp, int pc,
10609 int *oplenp, int *argsp)
10610 {
10611 switch (exp->elts[pc].opcode)
10612 {
10613 default:
10614 *oplenp = *argsp = 0;
10615 break;
10616
10617 #define OP_DEFN(op, len, args, binop) \
10618 case op: *oplenp = len; *argsp = args; break;
10619 ADA_OPERATORS;
10620 #undef OP_DEFN
10621
10622 case OP_AGGREGATE:
10623 *oplenp = 3;
10624 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10625 break;
10626
10627 case OP_CHOICES:
10628 *oplenp = 3;
10629 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10630 break;
10631
10632 case OP_STRING:
10633 case OP_NAME:
10634 {
10635 int len = longest_to_int (exp->elts[pc + 1].longconst);
10636 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10637 *argsp = 0;
10638 break;
10639 }
10640 }
10641 }
10642
10643 static int
10644 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10645 {
10646 enum exp_opcode op = exp->elts[elt].opcode;
10647 int oplen, nargs;
10648 int pc = elt;
10649 int i;
10650
10651 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10652
10653 switch (op)
10654 {
10655 /* Ada attributes ('Foo). */
10656 case OP_ATR_FIRST:
10657 case OP_ATR_LAST:
10658 case OP_ATR_LENGTH:
10659 case OP_ATR_IMAGE:
10660 case OP_ATR_MAX:
10661 case OP_ATR_MIN:
10662 case OP_ATR_MODULUS:
10663 case OP_ATR_POS:
10664 case OP_ATR_SIZE:
10665 case OP_ATR_TAG:
10666 case OP_ATR_VAL:
10667 break;
10668
10669 case UNOP_IN_RANGE:
10670 case UNOP_QUAL:
10671 /* XXX: gdb_sprint_host_address, type_sprint */
10672 fprintf_filtered (stream, _("Type @"));
10673 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10674 fprintf_filtered (stream, " (");
10675 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10676 fprintf_filtered (stream, ")");
10677 break;
10678 case BINOP_IN_BOUNDS:
10679 fprintf_filtered (stream, " (%d)",
10680 longest_to_int (exp->elts[pc + 2].longconst));
10681 break;
10682 case TERNOP_IN_RANGE:
10683 break;
10684
10685 case OP_AGGREGATE:
10686 case OP_OTHERS:
10687 case OP_DISCRETE_RANGE:
10688 case OP_POSITIONAL:
10689 case OP_CHOICES:
10690 break;
10691
10692 case OP_NAME:
10693 case OP_STRING:
10694 {
10695 char *name = &exp->elts[elt + 2].string;
10696 int len = longest_to_int (exp->elts[elt + 1].longconst);
10697 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10698 break;
10699 }
10700
10701 default:
10702 return dump_subexp_body_standard (exp, stream, elt);
10703 }
10704
10705 elt += oplen;
10706 for (i = 0; i < nargs; i += 1)
10707 elt = dump_subexp (exp, stream, elt);
10708
10709 return elt;
10710 }
10711
10712 /* The Ada extension of print_subexp (q.v.). */
10713
10714 static void
10715 ada_print_subexp (struct expression *exp, int *pos,
10716 struct ui_file *stream, enum precedence prec)
10717 {
10718 int oplen, nargs, i;
10719 int pc = *pos;
10720 enum exp_opcode op = exp->elts[pc].opcode;
10721
10722 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10723
10724 *pos += oplen;
10725 switch (op)
10726 {
10727 default:
10728 *pos -= oplen;
10729 print_subexp_standard (exp, pos, stream, prec);
10730 return;
10731
10732 case OP_VAR_VALUE:
10733 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10734 return;
10735
10736 case BINOP_IN_BOUNDS:
10737 /* XXX: sprint_subexp */
10738 print_subexp (exp, pos, stream, PREC_SUFFIX);
10739 fputs_filtered (" in ", stream);
10740 print_subexp (exp, pos, stream, PREC_SUFFIX);
10741 fputs_filtered ("'range", stream);
10742 if (exp->elts[pc + 1].longconst > 1)
10743 fprintf_filtered (stream, "(%ld)",
10744 (long) exp->elts[pc + 1].longconst);
10745 return;
10746
10747 case TERNOP_IN_RANGE:
10748 if (prec >= PREC_EQUAL)
10749 fputs_filtered ("(", stream);
10750 /* XXX: sprint_subexp */
10751 print_subexp (exp, pos, stream, PREC_SUFFIX);
10752 fputs_filtered (" in ", stream);
10753 print_subexp (exp, pos, stream, PREC_EQUAL);
10754 fputs_filtered (" .. ", stream);
10755 print_subexp (exp, pos, stream, PREC_EQUAL);
10756 if (prec >= PREC_EQUAL)
10757 fputs_filtered (")", stream);
10758 return;
10759
10760 case OP_ATR_FIRST:
10761 case OP_ATR_LAST:
10762 case OP_ATR_LENGTH:
10763 case OP_ATR_IMAGE:
10764 case OP_ATR_MAX:
10765 case OP_ATR_MIN:
10766 case OP_ATR_MODULUS:
10767 case OP_ATR_POS:
10768 case OP_ATR_SIZE:
10769 case OP_ATR_TAG:
10770 case OP_ATR_VAL:
10771 if (exp->elts[*pos].opcode == OP_TYPE)
10772 {
10773 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10774 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10775 *pos += 3;
10776 }
10777 else
10778 print_subexp (exp, pos, stream, PREC_SUFFIX);
10779 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10780 if (nargs > 1)
10781 {
10782 int tem;
10783 for (tem = 1; tem < nargs; tem += 1)
10784 {
10785 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10786 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10787 }
10788 fputs_filtered (")", stream);
10789 }
10790 return;
10791
10792 case UNOP_QUAL:
10793 type_print (exp->elts[pc + 1].type, "", stream, 0);
10794 fputs_filtered ("'(", stream);
10795 print_subexp (exp, pos, stream, PREC_PREFIX);
10796 fputs_filtered (")", stream);
10797 return;
10798
10799 case UNOP_IN_RANGE:
10800 /* XXX: sprint_subexp */
10801 print_subexp (exp, pos, stream, PREC_SUFFIX);
10802 fputs_filtered (" in ", stream);
10803 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10804 return;
10805
10806 case OP_DISCRETE_RANGE:
10807 print_subexp (exp, pos, stream, PREC_SUFFIX);
10808 fputs_filtered ("..", stream);
10809 print_subexp (exp, pos, stream, PREC_SUFFIX);
10810 return;
10811
10812 case OP_OTHERS:
10813 fputs_filtered ("others => ", stream);
10814 print_subexp (exp, pos, stream, PREC_SUFFIX);
10815 return;
10816
10817 case OP_CHOICES:
10818 for (i = 0; i < nargs-1; i += 1)
10819 {
10820 if (i > 0)
10821 fputs_filtered ("|", stream);
10822 print_subexp (exp, pos, stream, PREC_SUFFIX);
10823 }
10824 fputs_filtered (" => ", stream);
10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
10826 return;
10827
10828 case OP_POSITIONAL:
10829 print_subexp (exp, pos, stream, PREC_SUFFIX);
10830 return;
10831
10832 case OP_AGGREGATE:
10833 fputs_filtered ("(", stream);
10834 for (i = 0; i < nargs; i += 1)
10835 {
10836 if (i > 0)
10837 fputs_filtered (", ", stream);
10838 print_subexp (exp, pos, stream, PREC_SUFFIX);
10839 }
10840 fputs_filtered (")", stream);
10841 return;
10842 }
10843 }
10844
10845 /* Table mapping opcodes into strings for printing operators
10846 and precedences of the operators. */
10847
10848 static const struct op_print ada_op_print_tab[] = {
10849 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10850 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10851 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10852 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10853 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10854 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10855 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10856 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10857 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10858 {">=", BINOP_GEQ, PREC_ORDER, 0},
10859 {">", BINOP_GTR, PREC_ORDER, 0},
10860 {"<", BINOP_LESS, PREC_ORDER, 0},
10861 {">>", BINOP_RSH, PREC_SHIFT, 0},
10862 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10863 {"+", BINOP_ADD, PREC_ADD, 0},
10864 {"-", BINOP_SUB, PREC_ADD, 0},
10865 {"&", BINOP_CONCAT, PREC_ADD, 0},
10866 {"*", BINOP_MUL, PREC_MUL, 0},
10867 {"/", BINOP_DIV, PREC_MUL, 0},
10868 {"rem", BINOP_REM, PREC_MUL, 0},
10869 {"mod", BINOP_MOD, PREC_MUL, 0},
10870 {"**", BINOP_EXP, PREC_REPEAT, 0},
10871 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10872 {"-", UNOP_NEG, PREC_PREFIX, 0},
10873 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10874 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10875 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10876 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10877 {".all", UNOP_IND, PREC_SUFFIX, 1},
10878 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10879 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10880 {NULL, 0, 0, 0}
10881 };
10882 \f
10883 enum ada_primitive_types {
10884 ada_primitive_type_int,
10885 ada_primitive_type_long,
10886 ada_primitive_type_short,
10887 ada_primitive_type_char,
10888 ada_primitive_type_float,
10889 ada_primitive_type_double,
10890 ada_primitive_type_void,
10891 ada_primitive_type_long_long,
10892 ada_primitive_type_long_double,
10893 ada_primitive_type_natural,
10894 ada_primitive_type_positive,
10895 ada_primitive_type_system_address,
10896 nr_ada_primitive_types
10897 };
10898
10899 static void
10900 ada_language_arch_info (struct gdbarch *gdbarch,
10901 struct language_arch_info *lai)
10902 {
10903 const struct builtin_type *builtin = builtin_type (gdbarch);
10904 lai->primitive_type_vector
10905 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10906 struct type *);
10907 lai->primitive_type_vector [ada_primitive_type_int] =
10908 init_type (TYPE_CODE_INT,
10909 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10910 0, "integer", (struct objfile *) NULL);
10911 lai->primitive_type_vector [ada_primitive_type_long] =
10912 init_type (TYPE_CODE_INT,
10913 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10914 0, "long_integer", (struct objfile *) NULL);
10915 lai->primitive_type_vector [ada_primitive_type_short] =
10916 init_type (TYPE_CODE_INT,
10917 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10918 0, "short_integer", (struct objfile *) NULL);
10919 lai->string_char_type =
10920 lai->primitive_type_vector [ada_primitive_type_char] =
10921 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10922 0, "character", (struct objfile *) NULL);
10923 lai->primitive_type_vector [ada_primitive_type_float] =
10924 init_type (TYPE_CODE_FLT,
10925 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10926 0, "float", (struct objfile *) NULL);
10927 lai->primitive_type_vector [ada_primitive_type_double] =
10928 init_type (TYPE_CODE_FLT,
10929 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10930 0, "long_float", (struct objfile *) NULL);
10931 lai->primitive_type_vector [ada_primitive_type_long_long] =
10932 init_type (TYPE_CODE_INT,
10933 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10934 0, "long_long_integer", (struct objfile *) NULL);
10935 lai->primitive_type_vector [ada_primitive_type_long_double] =
10936 init_type (TYPE_CODE_FLT,
10937 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10938 0, "long_long_float", (struct objfile *) NULL);
10939 lai->primitive_type_vector [ada_primitive_type_natural] =
10940 init_type (TYPE_CODE_INT,
10941 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10942 0, "natural", (struct objfile *) NULL);
10943 lai->primitive_type_vector [ada_primitive_type_positive] =
10944 init_type (TYPE_CODE_INT,
10945 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10946 0, "positive", (struct objfile *) NULL);
10947 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10948
10949 lai->primitive_type_vector [ada_primitive_type_system_address] =
10950 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10951 (struct objfile *) NULL));
10952 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10953 = "system__address";
10954
10955 lai->bool_type_symbol = "boolean";
10956 lai->bool_type_default = builtin->builtin_bool;
10957 }
10958 \f
10959 /* Language vector */
10960
10961 /* Not really used, but needed in the ada_language_defn. */
10962
10963 static void
10964 emit_char (int c, struct ui_file *stream, int quoter)
10965 {
10966 ada_emit_char (c, stream, quoter, 1);
10967 }
10968
10969 static int
10970 parse (void)
10971 {
10972 warnings_issued = 0;
10973 return ada_parse ();
10974 }
10975
10976 static const struct exp_descriptor ada_exp_descriptor = {
10977 ada_print_subexp,
10978 ada_operator_length,
10979 ada_op_name,
10980 ada_dump_subexp_body,
10981 ada_evaluate_subexp
10982 };
10983
10984 const struct language_defn ada_language_defn = {
10985 "ada", /* Language name */
10986 language_ada,
10987 range_check_off,
10988 type_check_off,
10989 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10990 that's not quite what this means. */
10991 array_row_major,
10992 macro_expansion_no,
10993 &ada_exp_descriptor,
10994 parse,
10995 ada_error,
10996 resolve,
10997 ada_printchar, /* Print a character constant */
10998 ada_printstr, /* Function to print string constant */
10999 emit_char, /* Function to print single char (not used) */
11000 ada_print_type, /* Print a type using appropriate syntax */
11001 default_print_typedef, /* Print a typedef using appropriate syntax */
11002 ada_val_print, /* Print a value using appropriate syntax */
11003 ada_value_print, /* Print a top-level value */
11004 NULL, /* Language specific skip_trampoline */
11005 NULL, /* name_of_this */
11006 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11007 basic_lookup_transparent_type, /* lookup_transparent_type */
11008 ada_la_decode, /* Language specific symbol demangler */
11009 NULL, /* Language specific class_name_from_physname */
11010 ada_op_print_tab, /* expression operators for printing */
11011 0, /* c-style arrays */
11012 1, /* String lower bound */
11013 ada_get_gdb_completer_word_break_characters,
11014 ada_make_symbol_completion_list,
11015 ada_language_arch_info,
11016 ada_print_array_index,
11017 default_pass_by_reference,
11018 c_get_string,
11019 LANG_MAGIC
11020 };
11021
11022 /* Provide a prototype to silence -Wmissing-prototypes. */
11023 extern initialize_file_ftype _initialize_ada_language;
11024
11025 void
11026 _initialize_ada_language (void)
11027 {
11028 add_language (&ada_language_defn);
11029
11030 varsize_limit = 65536;
11031
11032 obstack_init (&symbol_list_obstack);
11033
11034 decoded_names_store = htab_create_alloc
11035 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11036 NULL, xcalloc, xfree);
11037
11038 observer_attach_executable_changed (ada_executable_changed_observer);
11039 }
This page took 0.258574 seconds and 5 git commands to generate.