Handle copy relocations
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 #include "cli/cli-style.h"
58
59 #include "psymtab.h"
60 #include "value.h"
61 #include "mi/mi-common.h"
62 #include "arch-utils.h"
63 #include "cli/cli-utils.h"
64 #include "gdbsupport/function-view.h"
65 #include "gdbsupport/byte-vector.h"
66 #include <algorithm>
67 #include <map>
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
115
116 static void ada_add_all_symbols (struct obstack *, const struct block *,
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
119
120 static int is_nonfunction (struct block_symbol *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 const struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct block_symbol *defns_collected (struct obstack *, int);
128
129 static struct value *resolve_subexp (expression_up *, int *, int,
130 struct type *, int,
131 innermost_block_tracker *);
132
133 static void replace_operator_with_call (expression_up *, int, int, int,
134 struct symbol *, const struct block *);
135
136 static int possible_user_operator_p (enum exp_opcode, struct value **);
137
138 static const char *ada_op_name (enum exp_opcode);
139
140 static const char *ada_decoded_op_name (enum exp_opcode);
141
142 static int numeric_type_p (struct type *);
143
144 static int integer_type_p (struct type *);
145
146 static int scalar_type_p (struct type *);
147
148 static int discrete_type_p (struct type *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
151 int, int);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static int lesseq_defined_than (struct symbol *, struct symbol *);
192
193 static int equiv_types (struct type *, struct type *);
194
195 static int is_name_suffix (const char *);
196
197 static int advance_wild_match (const char **, const char *, int);
198
199 static bool wild_match (const char *name, const char *patn);
200
201 static struct value *ada_coerce_ref (struct value *);
202
203 static LONGEST pos_atr (struct value *);
204
205 static struct value *value_pos_atr (struct type *, struct value *);
206
207 static struct value *value_val_atr (struct type *, struct value *);
208
209 static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
211
212 static struct value *ada_search_struct_field (const char *, struct value *, int,
213 struct type *);
214
215 static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
218 static int find_struct_field (const char *, struct type *, int,
219 struct type **, int *, int *, int *, int *);
220
221 static int ada_resolve_function (struct block_symbol *, int,
222 struct value **, int, const char *,
223 struct type *, int);
224
225 static int ada_is_direct_array_type (struct type *);
226
227 static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
229
230 static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233 static struct value *assign_aggregate (struct value *, struct value *,
234 struct expression *,
235 int *, enum noside);
236
237 static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242 static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248 static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259 static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
261
262 static struct type *ada_find_any_type (const char *name);
263
264 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
267 \f
268
269 /* The result of a symbol lookup to be stored in our symbol cache. */
270
271 struct cache_entry
272 {
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
276 domain_enum domain;
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285 };
286
287 /* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296 #define HASH_SIZE 1009
297
298 struct ada_symbol_cache
299 {
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305 };
306
307 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
308
309 /* Maximum-sized dynamic type. */
310 static unsigned int varsize_limit;
311
312 static const char ada_completer_word_break_characters[] =
313 #ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315 #else
316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
317 #endif
318
319 /* The name of the symbol to use to get the name of the main subprogram. */
320 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
321 = "__gnat_ada_main_program_name";
322
323 /* Limit on the number of warnings to raise per expression evaluation. */
324 static int warning_limit = 2;
325
326 /* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328 static int warnings_issued = 0;
329
330 static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332 };
333
334 static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336 };
337
338 /* Maintenance-related settings for this module. */
339
340 static struct cmd_list_element *maint_set_ada_cmdlist;
341 static struct cmd_list_element *maint_show_ada_cmdlist;
342
343 /* Implement the "maintenance set ada" (prefix) command. */
344
345 static void
346 maint_set_ada_cmd (const char *args, int from_tty)
347 {
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
350 }
351
352 /* Implement the "maintenance show ada" (prefix) command. */
353
354 static void
355 maint_show_ada_cmd (const char *args, int from_tty)
356 {
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358 }
359
360 /* The "maintenance ada set/show ignore-descriptive-type" value. */
361
362 static bool ada_ignore_descriptive_types_p = false;
363
364 /* Inferior-specific data. */
365
366 /* Per-inferior data for this module. */
367
368 struct ada_inferior_data
369 {
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
374 struct type *tsd_type = nullptr;
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
379 const struct exception_support_info *exception_info = nullptr;
380 };
381
382 /* Our key to this module's inferior data. */
383 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
384
385 /* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393 static struct ada_inferior_data *
394 get_ada_inferior_data (struct inferior *inf)
395 {
396 struct ada_inferior_data *data;
397
398 data = ada_inferior_data.get (inf);
399 if (data == NULL)
400 data = ada_inferior_data.emplace (inf);
401
402 return data;
403 }
404
405 /* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408 static void
409 ada_inferior_exit (struct inferior *inf)
410 {
411 ada_inferior_data.clear (inf);
412 }
413
414
415 /* program-space-specific data. */
416
417 /* This module's per-program-space data. */
418 struct ada_pspace_data
419 {
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
426 /* The Ada symbol cache. */
427 struct ada_symbol_cache *sym_cache = nullptr;
428 };
429
430 /* Key to our per-program-space data. */
431 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
432
433 /* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438 static struct ada_pspace_data *
439 get_ada_pspace_data (struct program_space *pspace)
440 {
441 struct ada_pspace_data *data;
442
443 data = ada_pspace_data_handle.get (pspace);
444 if (data == NULL)
445 data = ada_pspace_data_handle.emplace (pspace);
446
447 return data;
448 }
449
450 /* Utilities */
451
452 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
453 all typedef layers have been peeled. Otherwise, return TYPE.
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479 static struct type *
480 ada_typedef_target_type (struct type *type)
481 {
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485 }
486
487 /* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491 static const char *
492 ada_unqualified_name (const char *decoded_name)
493 {
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510 }
511
512 /* Return a string starting with '<', followed by STR, and '>'. */
513
514 static std::string
515 add_angle_brackets (const char *str)
516 {
517 return string_printf ("<%s>", str);
518 }
519
520 static const char *
521 ada_get_gdb_completer_word_break_characters (void)
522 {
523 return ada_completer_word_break_characters;
524 }
525
526 /* Print an array element index using the Ada syntax. */
527
528 static void
529 ada_print_array_index (struct value *index_value, struct ui_file *stream,
530 const struct value_print_options *options)
531 {
532 LA_VALUE_PRINT (index_value, stream, options);
533 fprintf_filtered (stream, " => ");
534 }
535
536 /* la_watch_location_expression for Ada. */
537
538 gdb::unique_xmalloc_ptr<char>
539 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540 {
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545 }
546
547 /* Assuming VECT points to an array of *SIZE objects of size
548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
549 updating *SIZE as necessary and returning the (new) array. */
550
551 void *
552 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
553 {
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
558 *size = min_size;
559 vect = xrealloc (vect, *size * element_size);
560 }
561 return vect;
562 }
563
564 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
565 suffix of FIELD_NAME beginning "___". */
566
567 static int
568 field_name_match (const char *field_name, const char *target)
569 {
570 int len = strlen (target);
571
572 return
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
575 || (startswith (field_name + len, "___")
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
578 }
579
580
581 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
588
589 int
590 ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592 {
593 int fieldno;
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
598 return fieldno;
599
600 if (!maybe_missing)
601 error (_("Unable to find field %s in struct %s. Aborting"),
602 field_name, TYPE_NAME (struct_type));
603
604 return -1;
605 }
606
607 /* The length of the prefix of NAME prior to any "___" suffix. */
608
609 int
610 ada_name_prefix_len (const char *name)
611 {
612 if (name == NULL)
613 return 0;
614 else
615 {
616 const char *p = strstr (name, "___");
617
618 if (p == NULL)
619 return strlen (name);
620 else
621 return p - name;
622 }
623 }
624
625 /* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
628 static int
629 is_suffix (const char *str, const char *suffix)
630 {
631 int len1, len2;
632
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
638 }
639
640 /* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
642
643 static struct value *
644 coerce_unspec_val_to_type (struct value *val, struct type *type)
645 {
646 type = ada_check_typedef (type);
647 if (value_type (val) == type)
648 return val;
649 else
650 {
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
655 ada_ensure_varsize_limit (type);
656
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
664 }
665 set_value_component_location (result, val);
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
670 return result;
671 }
672 }
673
674 static const gdb_byte *
675 cond_offset_host (const gdb_byte *valaddr, long offset)
676 {
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681 }
682
683 static CORE_ADDR
684 cond_offset_target (CORE_ADDR address, long offset)
685 {
686 if (address == 0)
687 return 0;
688 else
689 return address + offset;
690 }
691
692 /* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
696
697 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
699 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
700
701 static void
702 lim_warning (const char *format, ...)
703 {
704 va_list args;
705
706 va_start (args, format);
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
709 vwarning (format, args);
710
711 va_end (args);
712 }
713
714 /* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
718 void
719 ada_ensure_varsize_limit (const struct type *type)
720 {
721 if (TYPE_LENGTH (type) > varsize_limit)
722 error (_("object size is larger than varsize-limit"));
723 }
724
725 /* Maximum value of a SIZE-byte signed integer type. */
726 static LONGEST
727 max_of_size (int size)
728 {
729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
730
731 return top_bit | (top_bit - 1);
732 }
733
734 /* Minimum value of a SIZE-byte signed integer type. */
735 static LONGEST
736 min_of_size (int size)
737 {
738 return -max_of_size (size) - 1;
739 }
740
741 /* Maximum value of a SIZE-byte unsigned integer type. */
742 static ULONGEST
743 umax_of_size (int size)
744 {
745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
746
747 return top_bit | (top_bit - 1);
748 }
749
750 /* Maximum value of integral type T, as a signed quantity. */
751 static LONGEST
752 max_of_type (struct type *t)
753 {
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758 }
759
760 /* Minimum value of integral type T, as a signed quantity. */
761 static LONGEST
762 min_of_type (struct type *t)
763 {
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
768 }
769
770 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
771 LONGEST
772 ada_discrete_type_high_bound (struct type *type)
773 {
774 type = resolve_dynamic_type (type, NULL, 0);
775 switch (TYPE_CODE (type))
776 {
777 case TYPE_CODE_RANGE:
778 return TYPE_HIGH_BOUND (type);
779 case TYPE_CODE_ENUM:
780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
784 case TYPE_CODE_INT:
785 return max_of_type (type);
786 default:
787 error (_("Unexpected type in ada_discrete_type_high_bound."));
788 }
789 }
790
791 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
792 LONGEST
793 ada_discrete_type_low_bound (struct type *type)
794 {
795 type = resolve_dynamic_type (type, NULL, 0);
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_LOW_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, 0);
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return min_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_low_bound."));
809 }
810 }
811
812 /* The identity on non-range types. For range types, the underlying
813 non-range scalar type. */
814
815 static struct type *
816 get_base_type (struct type *type)
817 {
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
825 }
826
827 /* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832 struct value *
833 ada_get_decoded_value (struct value *value)
834 {
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850 }
851
852 /* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857 struct type *
858 ada_get_decoded_type (struct type *type)
859 {
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864 }
865
866 \f
867
868 /* Language Selection */
869
870 /* If the main program is in Ada, return language_ada, otherwise return LANG
871 (the main program is in Ada iif the adainit symbol is found). */
872
873 enum language
874 ada_update_initial_language (enum language lang)
875 {
876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
877 return language_ada;
878
879 return lang;
880 }
881
882 /* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886 char *
887 ada_main_name (void)
888 {
889 struct bound_minimal_symbol msym;
890 static gdb::unique_xmalloc_ptr<char> main_program_name;
891
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
899 if (msym.minsym != NULL)
900 {
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
905 if (main_program_name_addr == 0)
906 error (_("Invalid address for Ada main program name."));
907
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
913 return main_program_name.get ();
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918 }
919 \f
920 /* Symbols */
921
922 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
924
925 const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
948 };
949
950 /* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
954
955 static char *
956 ada_encode_1 (const char *decoded, bool throw_errors)
957 {
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
960 const char *p;
961 int k;
962
963 if (decoded == NULL)
964 return NULL;
965
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
968
969 k = 0;
970 for (p = decoded; *p != '\0'; p += 1)
971 {
972 if (*p == '.')
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
977 else if (*p == '"')
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
982 mapping->encoded != NULL
983 && !startswith (p, mapping->decoded); mapping += 1)
984 ;
985 if (mapping->encoded == NULL)
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
996 else
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
1001 }
1002
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
1005 }
1006
1007 /* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010 char *
1011 ada_encode (const char *decoded)
1012 {
1013 return ada_encode_1 (decoded, true);
1014 }
1015
1016 /* Return NAME folded to lower case, or, if surrounded by single
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
1020 char *
1021 ada_fold_name (const char *name)
1022 {
1023 static char *fold_buffer = NULL;
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1028
1029 if (name[0] == '\'')
1030 {
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
1033 }
1034 else
1035 {
1036 int i;
1037
1038 for (i = 0; i <= len; i += 1)
1039 fold_buffer[i] = tolower (name[i]);
1040 }
1041
1042 return fold_buffer;
1043 }
1044
1045 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047 static int
1048 is_lower_alphanum (const char c)
1049 {
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051 }
1052
1053 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
1060
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065 static void
1066 ada_remove_trailing_digits (const char *encoded, int *len)
1067 {
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
1071
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1079 *len = i - 2;
1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1081 *len = i - 1;
1082 }
1083 }
1084
1085 /* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088 static void
1089 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090 {
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
1096 the 'P' suffix. The second calls the first one after handling
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105 }
1106
1107 /* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1109 replaced by ENCODED. */
1110
1111 std::string
1112 ada_decode (const char *encoded)
1113 {
1114 int i, j;
1115 int len0;
1116 const char *p;
1117 int at_start_name;
1118 std::string decoded;
1119
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
1128 if (startswith (encoded, "_ada_"))
1129 encoded += 5;
1130
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
1134 if (encoded[0] == '_' || encoded[0] == '<')
1135 goto Suppress;
1136
1137 len0 = strlen (encoded);
1138
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
1141
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
1148 {
1149 if (p[3] == 'X')
1150 len0 = p - encoded;
1151 else
1152 goto Suppress;
1153 }
1154
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1160 len0 -= 3;
1161
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1167 len0 -= 2;
1168
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1173 len0 -= 1;
1174
1175 /* Make decoded big enough for possible expansion by operator name. */
1176
1177 decoded.resize (2 * len0 + 1, 'X');
1178
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1182 {
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
1191 }
1192
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
1202 /* Is this a symbol function? */
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
1206
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
1213 {
1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
1224 at_start_name = 0;
1225
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1230 i += 2;
1231
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
1254 of subprograms created by the compiler for each entry. The first
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1319 {
1320 /* Replace '__' by '.'. */
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
1326 else
1327 {
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
1334 }
1335 decoded.resize (j);
1336
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
1340 for (i = 0; i < decoded.length(); ++i)
1341 if (isupper (decoded[i]) || decoded[i] == ' ')
1342 goto Suppress;
1343
1344 return decoded;
1345
1346 Suppress:
1347 if (encoded[0] == '<')
1348 decoded = encoded;
1349 else
1350 decoded = '<' + std::string(encoded) + '>';
1351 return decoded;
1352
1353 }
1354
1355 /* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360 static struct htab *decoded_names_store;
1361
1362 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
1367 GSYMBOL).
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
1370 when a decoded name is cached in it. */
1371
1372 const char *
1373 ada_decode_symbol (const struct general_symbol_info *arg)
1374 {
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
1377 &gsymbol->language_specific.demangled_name;
1378
1379 if (!gsymbol->ada_mangled)
1380 {
1381 std::string decoded = ada_decode (gsymbol->name);
1382 struct obstack *obstack = gsymbol->language_specific.obstack;
1383
1384 gsymbol->ada_mangled = 1;
1385
1386 if (obstack != NULL)
1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
1388 else
1389 {
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
1395 char **slot = (char **) htab_find_slot (decoded_names_store,
1396 decoded.c_str (), INSERT);
1397
1398 if (*slot == NULL)
1399 *slot = xstrdup (decoded.c_str ());
1400 *resultp = *slot;
1401 }
1402 }
1403
1404 return *resultp;
1405 }
1406
1407 static char *
1408 ada_la_decode (const char *encoded, int options)
1409 {
1410 return xstrdup (ada_decode (encoded).c_str ());
1411 }
1412
1413 /* Implement la_sniff_from_mangled_name for Ada. */
1414
1415 static int
1416 ada_sniff_from_mangled_name (const char *mangled, char **out)
1417 {
1418 std::string demangled = ada_decode (mangled);
1419
1420 *out = NULL;
1421
1422 if (demangled != mangled && demangled[0] != '<')
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 \f
1453
1454 /* Arrays */
1455
1456 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479 void
1480 ada_fixup_array_indexes_type (struct type *index_desc_type)
1481 {
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509 }
1510
1511 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1512
1513 static const char *bound_name[] = {
1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516 };
1517
1518 /* Maximum number of array dimensions we are prepared to handle. */
1519
1520 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1521
1522
1523 /* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
1525
1526 /* The descriptor or array type, if any, indicated by TYPE; removes
1527 level of indirection, if needed. */
1528
1529 static struct type *
1530 desc_base_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return NULL;
1534 type = ada_check_typedef (type);
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1542 else
1543 return type;
1544 }
1545
1546 /* True iff TYPE indicates a "thin" array pointer type. */
1547
1548 static int
1549 is_thin_pntr (struct type *type)
1550 {
1551 return
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554 }
1555
1556 /* The descriptor type for thin pointer type TYPE. */
1557
1558 static struct type *
1559 thin_descriptor_type (struct type *type)
1560 {
1561 struct type *base_type = desc_base_type (type);
1562
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
1567 else
1568 {
1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1570
1571 if (alt_type == NULL)
1572 return base_type;
1573 else
1574 return alt_type;
1575 }
1576 }
1577
1578 /* A pointer to the array data for thin-pointer value VAL. */
1579
1580 static struct value *
1581 thin_data_pntr (struct value *val)
1582 {
1583 struct type *type = ada_check_typedef (value_type (val));
1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1585
1586 data_type = lookup_pointer_type (data_type);
1587
1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1589 return value_cast (data_type, value_copy (val));
1590 else
1591 return value_from_longest (data_type, value_address (val));
1592 }
1593
1594 /* True iff TYPE indicates a "thick" array pointer type. */
1595
1596 static int
1597 is_thick_pntr (struct type *type)
1598 {
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
1606
1607 static struct type *
1608 desc_bounds_type (struct type *type)
1609 {
1610 struct type *r;
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
1620 return NULL;
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
1623 return ada_check_typedef (r);
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1630 }
1631 return NULL;
1632 }
1633
1634 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
1637 static struct value *
1638 desc_bounds (struct value *arr)
1639 {
1640 struct type *type = ada_check_typedef (value_type (arr));
1641
1642 if (is_thin_pntr (type))
1643 {
1644 struct type *bounds_type =
1645 desc_bounds_type (thin_descriptor_type (type));
1646 LONGEST addr;
1647
1648 if (bounds_type == NULL)
1649 error (_("Bad GNAT array descriptor"));
1650
1651 /* NOTE: The following calculation is not really kosher, but
1652 since desc_type is an XVE-encoded type (and shouldn't be),
1653 the correct calculation is a real pain. FIXME (and fix GCC). */
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 addr = value_as_long (arr);
1656 else
1657 addr = value_address (arr);
1658
1659 return
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
1662 }
1663
1664 else if (is_thick_pntr (type))
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
1685 else
1686 return NULL;
1687 }
1688
1689 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
1692 static int
1693 fat_pntr_bounds_bitpos (struct type *type)
1694 {
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696 }
1697
1698 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1699 size of the field containing the address of the bounds data. */
1700
1701 static int
1702 fat_pntr_bounds_bitsize (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1710 }
1711
1712 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
1716
1717 static struct type *
1718 desc_data_target_type (struct type *type)
1719 {
1720 type = desc_base_type (type);
1721
1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
1723 if (is_thin_pntr (type))
1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1725 else if (is_thick_pntr (type))
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1732 }
1733
1734 return NULL;
1735 }
1736
1737 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
1739
1740 static struct value *
1741 desc_data (struct value *arr)
1742 {
1743 struct type *type = value_type (arr);
1744
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1749 _("Bad GNAT array descriptor"));
1750 else
1751 return NULL;
1752 }
1753
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the data. */
1757
1758 static int
1759 fat_pntr_data_bitpos (struct type *type)
1760 {
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the data. */
1766
1767 static int
1768 fat_pntr_data_bitsize (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
1774 else
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776 }
1777
1778 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
1782 static struct value *
1783 desc_one_bound (struct value *bounds, int i, int which)
1784 {
1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1786 _("Bad GNAT array descriptor bounds"));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static int
1794 desc_bound_bitpos (struct type *type, int i, int which)
1795 {
1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1797 }
1798
1799 /* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
1803 static int
1804 desc_bound_bitsize (struct type *type, int i, int which)
1805 {
1806 type = desc_base_type (type);
1807
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1812 }
1813
1814 /* If TYPE is the type of an array-bounds structure, the type of its
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
1817 static struct type *
1818 desc_index_type (struct type *type, int i)
1819 {
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
1825 return NULL;
1826 }
1827
1828 /* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
1831 static int
1832 desc_arity (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839 }
1840
1841 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
1845 static int
1846 ada_is_direct_array_type (struct type *type)
1847 {
1848 if (type == NULL)
1849 return 0;
1850 type = ada_check_typedef (type);
1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1852 || ada_is_array_descriptor_type (type));
1853 }
1854
1855 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1856 * to one. */
1857
1858 static int
1859 ada_is_array_type (struct type *type)
1860 {
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866 }
1867
1868 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1869
1870 int
1871 ada_is_simple_array_type (struct type *type)
1872 {
1873 if (type == NULL)
1874 return 0;
1875 type = ada_check_typedef (type);
1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
1880 }
1881
1882 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
1884 int
1885 ada_is_array_descriptor_type (struct type *type)
1886 {
1887 struct type *data_type = desc_data_target_type (type);
1888
1889 if (type == NULL)
1890 return 0;
1891 type = ada_check_typedef (type);
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
1895 }
1896
1897 /* Non-zero iff type is a partially mal-formed GNAT array
1898 descriptor. FIXME: This is to compensate for some problems with
1899 debugging output from GNAT. Re-examine periodically to see if it
1900 is still needed. */
1901
1902 int
1903 ada_is_bogus_array_descriptor (struct type *type)
1904 {
1905 return
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
1911 }
1912
1913
1914 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1915 (fat pointer) returns the type of the array data described---specifically,
1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1917 in from the descriptor; otherwise, they are left unspecified. If
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
1920 a descriptor. */
1921 struct type *
1922 ada_type_of_array (struct value *arr, int bounds)
1923 {
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
1926
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
1929
1930 if (!bounds)
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
1941 else
1942 {
1943 struct type *elt_type;
1944 int arity;
1945 struct value *descriptor;
1946
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
1949
1950 if (elt_type == NULL || arity == 0)
1951 return ada_check_typedef (value_type (arr));
1952
1953 descriptor = desc_bounds (arr);
1954 if (value_as_long (descriptor) == 0)
1955 return NULL;
1956 while (arity > 0)
1957 {
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
1962
1963 arity -= 1;
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
1967 elt_type = create_array_type (array_type, elt_type, range_type);
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
1989 }
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993 }
1994
1995 /* If ARR does not represent an array, returns ARR unchanged.
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
2000 struct value *
2001 ada_coerce_to_simple_array_ptr (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct type *arrType = ada_type_of_array (arr, 1);
2006
2007 if (arrType == NULL)
2008 return NULL;
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
2013 else
2014 return arr;
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
2019 be ARR itself if it already is in the proper form). */
2020
2021 struct value *
2022 ada_coerce_to_simple_array (struct value *arr)
2023 {
2024 if (ada_is_array_descriptor_type (value_type (arr)))
2025 {
2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2027
2028 if (arrVal == NULL)
2029 error (_("Bounds unavailable for null array pointer."));
2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2031 return value_ind (arrVal);
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
2041 packing). For other types, is the identity. */
2042
2043 struct type *
2044 ada_coerce_to_simple_array_type (struct type *type)
2045 {
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
2048
2049 if (ada_is_array_descriptor_type (type))
2050 return ada_check_typedef (desc_data_target_type (type));
2051
2052 return type;
2053 }
2054
2055 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
2057 static int
2058 ada_is_packed_array_type (struct type *type)
2059 {
2060 if (type == NULL)
2061 return 0;
2062 type = desc_base_type (type);
2063 type = ada_check_typedef (type);
2064 return
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067 }
2068
2069 /* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072 int
2073 ada_is_constrained_packed_array_type (struct type *type)
2074 {
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077 }
2078
2079 /* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082 static int
2083 ada_is_unconstrained_packed_array_type (struct type *type)
2084 {
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087 }
2088
2089 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092 static long
2093 decode_packed_array_bitsize (struct type *type)
2094 {
2095 const char *raw_name;
2096 const char *tail;
2097 long bits;
2098
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
2113 gdb_assert (tail != NULL);
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123 }
2124
2125 /* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
2141
2142 static struct type *
2143 constrained_packed_array_type (struct type *type, long *elt_bits)
2144 {
2145 struct type *new_elt_type;
2146 struct type *new_type;
2147 struct type *index_type_desc;
2148 struct type *index_type;
2149 LONGEST low_bound, high_bound;
2150
2151 type = ada_check_typedef (type);
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
2162 new_type = alloc_type_copy (type);
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
2166 create_array_type (new_type, new_elt_type, index_type);
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
2176 else
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
2179 TYPE_LENGTH (new_type) =
2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2181 }
2182
2183 TYPE_FIXED_INSTANCE (new_type) = 1;
2184 return new_type;
2185 }
2186
2187 /* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
2189
2190 static struct type *
2191 decode_constrained_packed_array_type (struct type *type)
2192 {
2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
2194 char *name;
2195 const char *tail;
2196 struct type *shadow_type;
2197 long bits;
2198
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
2207 type = desc_base_type (type);
2208
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
2215 {
2216 lim_warning (_("could not find bounds information on packed array"));
2217 return NULL;
2218 }
2219 shadow_type = check_typedef (shadow_type);
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
2225 return NULL;
2226 }
2227
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
2230 }
2231
2232 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
2236 type length is set appropriately. */
2237
2238 static struct value *
2239 decode_constrained_packed_array (struct value *arr)
2240 {
2241 struct type *type;
2242
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2252 arr = value_ind (arr);
2253
2254 type = decode_constrained_packed_array_type (value_type (arr));
2255 if (type == NULL)
2256 {
2257 error (_("can't unpack array"));
2258 return NULL;
2259 }
2260
2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2262 && ada_is_modular_type (value_type (arr)))
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
2271 mod = ada_modulus (value_type (arr)) - 1;
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
2286 return coerce_unspec_val_to_type (arr, type);
2287 }
2288
2289
2290 /* The value of the element of packed array ARR at the ARITY indices
2291 given in IND. ARR must be a simple array. */
2292
2293 static struct value *
2294 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2295 {
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
2299 struct type *elt_type;
2300 struct value *v;
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
2304 elt_type = ada_check_typedef (value_type (arr));
2305 for (i = 0; i < arity; i += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
2312 else
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
2320 lim_warning (_("don't know bounds of array"));
2321 lowerbound = upperbound = 0;
2322 }
2323
2324 idx = pos_atr (ind[i]);
2325 if (idx < lowerbound || idx > upperbound)
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2331 }
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2337 bits, elt_type);
2338 return v;
2339 }
2340
2341 /* Non-zero iff TYPE includes negative integer values. */
2342
2343 static int
2344 has_negatives (struct type *type)
2345 {
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2354 }
2355 }
2356
2357 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2359 the unpacked buffer.
2360
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
2366
2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2368
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371 static void
2372 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376 {
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
2387 unsigned long accum; /* Staging area for bits being transferred */
2388 int accumSize; /* Number of meaningful bits in accum */
2389 unsigned char sign;
2390
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
2393 int delta = is_big_endian ? -1 : 1;
2394
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
2401 srcBitsLeft = bit_size;
2402 src_bytes_left = src_len;
2403 unpacked_bytes_left = unpacked_len;
2404 sign = 0;
2405
2406 if (is_big_endian)
2407 {
2408 src_idx = src_len - 1;
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2411 sign = ~0;
2412
2413 unusedLS =
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
2416
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
2431 }
2432 }
2433 else
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
2437 src_idx = unpacked_idx = 0;
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2442 sign = ~0;
2443 }
2444
2445 accum = 0;
2446 while (src_bytes_left > 0)
2447 {
2448 /* Mask for removing bits of the next source byte that are not
2449 part of the value. */
2450 unsigned int unusedMSMask =
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
2454 unsigned int signMask = sign & ~unusedMSMask;
2455
2456 accum |=
2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2458 accumSize += HOST_CHAR_BIT - unusedLS;
2459 if (accumSize >= HOST_CHAR_BIT)
2460 {
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
2466 }
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
2469 src_bytes_left -= 1;
2470 src_idx += delta;
2471 }
2472 while (unpacked_bytes_left > 0)
2473 {
2474 accum |= sign << accumSize;
2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2476 accumSize -= HOST_CHAR_BIT;
2477 if (accumSize < 0)
2478 accumSize = 0;
2479 accum >>= HOST_CHAR_BIT;
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
2482 }
2483 }
2484
2485 /* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494 struct value *
2495 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498 {
2499 struct value *v;
2500 const gdb_byte *src; /* First byte containing data to unpack */
2501 gdb_byte *unpacked;
2502 const int is_scalar = is_scalar_type (type);
2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2504 gdb::byte_vector staging;
2505
2506 type = ada_check_typedef (type);
2507
2508 if (obj == NULL)
2509 src = valaddr + offset;
2510 else
2511 src = value_contents (obj) + offset;
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
2526 staging.data (), staging.size (),
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
2529 type = resolve_dynamic_type (type, staging.data (), 0);
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
2541 }
2542
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
2546 src = valaddr + offset;
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2551 gdb_byte *buf;
2552
2553 v = value_at (type, value_address (obj) + offset);
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
2561 src = value_contents (obj) + offset;
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
2584 unpacked = value_contents_writeable (v);
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
2592 if (staging.size () == TYPE_LENGTH (type))
2593 {
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
2597 memcpy (unpacked, staging.data (), staging.size ());
2598 }
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
2603
2604 return v;
2605 }
2606
2607 /* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
2610 floating-point or non-scalar types. */
2611
2612 static struct value *
2613 ada_value_assign (struct value *toval, struct value *fromval)
2614 {
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
2617
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
2626 if (!deprecated_value_modifiable (toval))
2627 error (_("Left operand of assignment is not a modifiable lvalue."));
2628
2629 if (VALUE_LVAL (toval) == lval_memory
2630 && bits > 0
2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2633 {
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2636 int from_size;
2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
2638 struct value *val;
2639 CORE_ADDR to_addr = value_address (toval);
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2642 fromval = value_cast (type, fromval);
2643
2644 read_memory (to_addr, buffer, len);
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
2656 write_memory_with_notification (to_addr, buffer, len);
2657
2658 val = value_copy (toval);
2659 memcpy (value_contents_raw (val), value_contents (fromval),
2660 TYPE_LENGTH (type));
2661 deprecated_set_value_type (val, type);
2662
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667 }
2668
2669
2670 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
2681 static void
2682 value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684 {
2685 LONGEST offset_in_container =
2686 (LONGEST) (value_address (component) - value_address (container));
2687 int bit_offset_in_container =
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
2690
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2710 }
2711 else
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
2715 }
2716
2717 /* Determine if TYPE is an access to an unconstrained array. */
2718
2719 bool
2720 ada_is_access_to_unconstrained_array (struct type *type)
2721 {
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724 }
2725
2726 /* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
2728 thereto. */
2729
2730 struct value *
2731 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2732 {
2733 int k;
2734 struct value *elt;
2735 struct type *elt_type;
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
2739 elt_type = ada_check_typedef (value_type (elt));
2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750
2751 elt = value_subscript (elt, pos_atr (ind[k]));
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
2772 }
2773
2774 return elt;
2775 }
2776
2777 /* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
2788
2789 static struct value *
2790 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2791 {
2792 int k;
2793 struct value *array_ind = ada_value_ind (arr);
2794 struct type *type
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
2804 struct value *lwb_value;
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2807 error (_("too many subscripts (%d expected)"), k);
2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2809 value_copy (arr));
2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817 }
2818
2819 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
2823 static struct value *
2824 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
2826 {
2827 struct type *type0 = ada_check_typedef (type);
2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2829 struct type *index_type
2830 = create_static_range_type (NULL, base_index_type, low, high);
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
2846
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2850 return value_at_lazy (slice_type, base);
2851 }
2852
2853
2854 static struct value *
2855 ada_value_slice (struct value *array, int low, int high)
2856 {
2857 struct type *type = ada_check_typedef (value_type (array));
2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
2865 LONGEST low_pos, high_pos;
2866
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
2877 }
2878
2879 /* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
2882 type designation. Otherwise, returns 0. */
2883
2884 int
2885 ada_array_arity (struct type *type)
2886 {
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2896 return desc_arity (desc_bounds_type (type));
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2899 {
2900 arity += 1;
2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2902 }
2903
2904 return arity;
2905 }
2906
2907 /* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
2910 NINDICES is -1. Otherwise, returns NULL. */
2911
2912 struct type *
2913 ada_array_element_type (struct type *type, int nindices)
2914 {
2915 type = desc_base_type (type);
2916
2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2918 {
2919 int k;
2920 struct type *p_array_type;
2921
2922 p_array_type = desc_data_target_type (type);
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
2926 return NULL;
2927
2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2929 if (nindices >= 0 && k > nindices)
2930 k = nindices;
2931 while (k > 0 && p_array_type != NULL)
2932 {
2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2934 k -= 1;
2935 }
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
2945 return type;
2946 }
2947
2948 return NULL;
2949 }
2950
2951 /* The type of nth index in arrays of given type (n numbering from 1).
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
2956
2957 static struct type *
2958 ada_index_type (struct type *type, int n, const char *name)
2959 {
2960 struct type *result_type;
2961
2962 type = desc_base_type (type);
2963
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
2966
2967 if (ada_is_simple_array_type (type))
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
2972 type = TYPE_TARGET_TYPE (type);
2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2976 perhaps stabsread.c would make more sense. */
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
2979 }
2980 else
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
2988 }
2989
2990 /* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
2995
2996 static LONGEST
2997 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2998 {
2999 struct type *type, *index_type_desc, *index_type;
3000 int i;
3001
3002 gdb_assert (which == 0 || which == 1);
3003
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
3006
3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3008 return (LONGEST) - which;
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
3028 if (index_type_desc != NULL)
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
3031 else
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
3040
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
3045 }
3046
3047 /* Given that arr is an array value, returns the lower bound of the
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants. */
3051
3052 static LONGEST
3053 ada_array_bound (struct value *arr, int n, int which)
3054 {
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
3060
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3063 else if (ada_is_simple_array_type (arr_type))
3064 return ada_array_bound_from_type (arr_type, n, which);
3065 else
3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3067 }
3068
3069 /* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
3074
3075 static LONGEST
3076 ada_array_length (struct value *arr, int n)
3077 {
3078 struct type *arr_type, *index_type;
3079 int low, high;
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
3087
3088 if (ada_is_simple_array_type (arr_type))
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
3093 else
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
3099 arr_type = check_typedef (arr_type);
3100 index_type = ada_index_type (arr_type, n, "length");
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
3113 }
3114
3115 /* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
3118
3119 static struct value *
3120 empty_array (struct type *arr_type, int low, int high)
3121 {
3122 struct type *arr_type0 = ada_check_typedef (arr_type);
3123 struct type *index_type
3124 = create_static_range_type
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3128
3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
3130 }
3131 \f
3132
3133 /* Name resolution */
3134
3135 /* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
3137
3138 static const char *
3139 ada_decoded_op_name (enum exp_opcode op)
3140 {
3141 int i;
3142
3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3144 {
3145 if (ada_opname_table[i].op == op)
3146 return ada_opname_table[i].decoded;
3147 }
3148 error (_("Could not find operator name for opcode"));
3149 }
3150
3151
3152 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3159 return type is preferred. May change (expand) *EXP. */
3160
3161 static void
3162 resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
3164 {
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3172 }
3173
3174 /* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
3182
3183 static struct value *
3184 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
3187 {
3188 int pc = *pos;
3189 int i;
3190 struct expression *exp; /* Convenience: == *expp. */
3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
3194 int oplen;
3195
3196 argvec = NULL;
3197 nargs = 0;
3198 exp = expp->get ();
3199
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
3202 switch (op)
3203 {
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
3208 else
3209 {
3210 *pos += 3;
3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3214 break;
3215
3216 case UNOP_ADDR:
3217 *pos += 1;
3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3219 break;
3220
3221 case UNOP_QUAL:
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3224 parse_completion, tracker);
3225 break;
3226
3227 case OP_ATR_MODULUS:
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
3252 struct value *arg1;
3253
3254 *pos += 1;
3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3256 if (arg1 == NULL)
3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3258 else
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
3261 break;
3262 }
3263
3264 case UNOP_CAST:
3265 *pos += 3;
3266 nargs = 1;
3267 break;
3268
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
3282
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
3289
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
3293 *pos += 1;
3294 nargs = 2;
3295 break;
3296
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
3305
3306 case OP_LONG:
3307 case OP_FLOAT:
3308 case OP_VAR_VALUE:
3309 case OP_VAR_MSYM_VALUE:
3310 *pos += 4;
3311 break;
3312
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
3319
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
3334 case TERNOP_SLICE:
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
3339 case OP_STRING:
3340 break;
3341
3342 default:
3343 error (_("Unexpected operator during name resolution"));
3344 }
3345
3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
3347 for (i = 0; i < nargs; i += 1)
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
3350 argvec[i] = NULL;
3351 exp = expp->get ();
3352
3353 /* Pass two: perform any resolution on principal operator. */
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
3359 case OP_VAR_VALUE:
3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3361 {
3362 std::vector<struct block_symbol> candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
3369 &candidates);
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
3378 switch (SYMBOL_CLASS (candidates[j].symbol))
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
3385 case LOC_COMPUTED:
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
3408 error (_("No definition found for %s"),
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
3413 && !is_nonfunction (candidates.data (), n_candidates))
3414 {
3415 i = ada_resolve_function
3416 (candidates.data (), n_candidates, NULL, 0,
3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3418 context_type, parse_completion);
3419 if (i < 0)
3420 error (_("Could not find a match for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
3425 printf_filtered (_("Multiple matches for %s\n"),
3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3427 user_select_syms (candidates.data (), n_candidates, 1);
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
3433 tracker->update (candidates[i]);
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
3440 replace_operator_with_call (expp, pc, 0, 4,
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
3443 exp = expp->get ();
3444 }
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3451 {
3452 std::vector<struct block_symbol> candidates;
3453 int n_candidates;
3454
3455 n_candidates =
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
3459 &candidates);
3460
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
3465 i = ada_resolve_function
3466 (candidates.data (), n_candidates,
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3469 context_type, parse_completion);
3470 if (i < 0)
3471 error (_("Could not find a match for %s"),
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
3477 tracker->update (candidates[i]);
3478 }
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
3503 {
3504 std::vector<struct block_symbol> candidates;
3505 int n_candidates;
3506
3507 n_candidates =
3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
3509 NULL, VAR_DOMAIN,
3510 &candidates);
3511
3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
3515 if (i < 0)
3516 break;
3517
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
3521 exp = expp->get ();
3522 }
3523 break;
3524
3525 case OP_TYPE:
3526 case OP_REGISTER:
3527 return NULL;
3528 }
3529
3530 *pos = pc;
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
3537 }
3538
3539 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3541 a non-pointer. */
3542 /* The term "match" here is rather loose. The match is heuristic and
3543 liberal. */
3544
3545 static int
3546 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3547 {
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
3556 switch (TYPE_CODE (ftype))
3557 {
3558 default:
3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
3564 else
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
3579
3580 case TYPE_CODE_ARRAY:
3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3582 || ada_is_array_descriptor_type (atype));
3583
3584 case TYPE_CODE_STRUCT:
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
3588 else
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596 }
3597
3598 /* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
3601 argument function. */
3602
3603 static int
3604 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3605 {
3606 int i;
3607 struct type *func_type = SYMBOL_TYPE (func);
3608
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
3620 if (actuals[i] == NULL)
3621 return 0;
3622 else
3623 {
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3627
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
3631 }
3632 return 1;
3633 }
3634
3635 /* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640 static int
3641 return_match (struct type *func_type, struct type *context_type)
3642 {
3643 struct type *return_type;
3644
3645 if (func_type == NULL)
3646 return 1;
3647
3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3650 else
3651 return_type = get_base_type (func_type);
3652 if (return_type == NULL)
3653 return 1;
3654
3655 context_type = get_base_type (context_type);
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663 }
3664
3665
3666 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3667 function (if any) that matches the types of the NARGS arguments in
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
3677
3678 static int
3679 ada_resolve_function (struct block_symbol syms[],
3680 int nsyms, struct value **args, int nargs,
3681 const char *name, struct type *context_type,
3682 int parse_completion)
3683 {
3684 int fallback;
3685 int k;
3686 int m; /* Number of hits */
3687
3688 m = 0;
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3693 {
3694 for (k = 0; k < nsyms; k += 1)
3695 {
3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3697
3698 if (ada_args_match (syms[k].symbol, args, nargs)
3699 && (fallback || return_match (type, context_type)))
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
3705 }
3706
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
3711 if (m == 0)
3712 return -1;
3713 else if (m > 1 && !parse_completion)
3714 {
3715 printf_filtered (_("Multiple matches for %s\n"), name);
3716 user_select_syms (syms, m, 1);
3717 return 0;
3718 }
3719 return 0;
3720 }
3721
3722 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
3728 static int
3729 encoded_ordered_before (const char *N0, const char *N1)
3730 {
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
3738
3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3740 ;
3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3742 ;
3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
3747
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
3757 return (strcmp (N0, N1) < 0);
3758 }
3759 }
3760
3761 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
3764 static void
3765 sort_choices (struct block_symbol syms[], int nsyms)
3766 {
3767 int i;
3768
3769 for (i = 1; i < nsyms; i += 1)
3770 {
3771 struct block_symbol sym = syms[i];
3772 int j;
3773
3774 for (j = i - 1; j >= 0; j -= 1)
3775 {
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
3781 syms[j + 1] = sym;
3782 }
3783 }
3784
3785 /* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
3787 static bool print_signatures = true;
3788
3789 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794 static void
3795 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797 {
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826 }
3827
3828 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
3832
3833 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3834 to be re-integrated one of these days. */
3835
3836 int
3837 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3838 {
3839 int i;
3840 int *chosen = XALLOCAVEC (int , nsyms);
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
3843 const char *select_mode = multiple_symbols_select_mode ();
3844
3845 if (max_results < 1)
3846 error (_("Request to select 0 symbols!"));
3847 if (nsyms <= 1)
3848 return nsyms;
3849
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852 canceled because the command is ambiguous\n\
3853 See set/show multiple-symbol."));
3854
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
3861 printf_filtered (_("[0] cancel\n"));
3862 if (max_results > 1)
3863 printf_filtered (_("[1] all\n"));
3864
3865 sort_choices (syms, nsyms);
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
3869 if (syms[i].symbol == NULL)
3870 continue;
3871
3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3873 {
3874 struct symtab_and_line sal =
3875 find_function_start_sal (syms[i].symbol, 1);
3876
3877 printf_filtered ("[%d] ", i + first_choice);
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
3880 if (sal.symtab == NULL)
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
3883 else
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
3889 continue;
3890 }
3891 else
3892 {
3893 int is_enumeral =
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3897 struct symtab *symtab = NULL;
3898
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
3901
3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3903 {
3904 printf_filtered ("[%d] ", i + first_choice);
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
3910 }
3911 else if (is_enumeral
3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3913 {
3914 printf_filtered (("[%d] "), i + first_choice);
3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3916 gdb_stdout, -1, 0, &type_print_raw_options);
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
3919 }
3920 else
3921 {
3922 printf_filtered ("[%d] ", i + first_choice);
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
3931 else
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
3935 }
3936 }
3937 }
3938
3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3940 "overload-choice");
3941
3942 for (i = 0; i < n_chosen; i += 1)
3943 syms[i] = syms[chosen[i]];
3944
3945 return n_chosen;
3946 }
3947
3948 /* Read and validate a set of numeric choices from the user in the
3949 range 0 .. N_CHOICES-1. Place the results in increasing
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
3955 + A choice of 0 means to cancel the selection, throwing an error.
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
3959 The user is not allowed to choose more than MAX_RESULTS values.
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
3962 prompts (for use with the -f switch). */
3963
3964 int
3965 get_selections (int *choices, int n_choices, int max_results,
3966 int is_all_choice, const char *annotation_suffix)
3967 {
3968 char *args;
3969 const char *prompt;
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
3972
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
3975 prompt = "> ";
3976
3977 args = command_line_input (prompt, annotation_suffix);
3978
3979 if (args == NULL)
3980 error_no_arg (_("one or more choice numbers"));
3981
3982 n_chosen = 0;
3983
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
3986 while (1)
3987 {
3988 char *args2;
3989 int choice, j;
3990
3991 args = skip_spaces (args);
3992 if (*args == '\0' && n_chosen == 0)
3993 error_no_arg (_("one or more choice numbers"));
3994 else if (*args == '\0')
3995 break;
3996
3997 choice = strtol (args, &args2, 10);
3998 if (args == args2 || choice < 0
3999 || choice > n_choices + first_choice - 1)
4000 error (_("Argument must be choice number"));
4001 args = args2;
4002
4003 if (choice == 0)
4004 error (_("cancelled"));
4005
4006 if (choice < first_choice)
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
4013 choice -= first_choice;
4014
4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4016 {
4017 }
4018
4019 if (j < 0 || choice != choices[j])
4020 {
4021 int k;
4022
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
4028 }
4029
4030 if (n_chosen > max_results)
4031 error (_("Select no more than %d of the above"), max_results);
4032
4033 return n_chosen;
4034 }
4035
4036 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
4039
4040 static void
4041 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4042 int oplen, struct symbol *sym,
4043 const struct block *block)
4044 {
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4046 symbol, -oplen for operator being replaced). */
4047 struct expression *newexp = (struct expression *)
4048 xzalloc (sizeof (struct expression)
4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4050 struct expression *exp = expp->get ();
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
4054 newexp->gdbarch = exp->gdbarch;
4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
4066 expp->reset (newexp);
4067 }
4068
4069 /* Type-class predicates */
4070
4071 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
4073
4074 static int
4075 numeric_type_p (struct type *type)
4076 {
4077 if (type == NULL)
4078 return 0;
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
4092 }
4093 }
4094
4095 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4096
4097 static int
4098 integer_type_p (struct type *type)
4099 {
4100 if (type == NULL)
4101 return 0;
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
4114 }
4115 }
4116
4117 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4118
4119 static int
4120 scalar_type_p (struct type *type)
4121 {
4122 if (type == NULL)
4123 return 0;
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
4136 }
4137 }
4138
4139 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4140
4141 static int
4142 discrete_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
4153 case TYPE_CODE_BOOL:
4154 return 1;
4155 default:
4156 return 0;
4157 }
4158 }
4159 }
4160
4161 /* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
4164
4165 static int
4166 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4167 {
4168 struct type *type0 =
4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4170 struct type *type1 =
4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4172
4173 if (type0 == NULL)
4174 return 0;
4175
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4201
4202 case BINOP_CONCAT:
4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4204
4205 case BINOP_EXP:
4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
4213
4214 }
4215 }
4216 \f
4217 /* Renaming */
4218
4219 /* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231 /* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250 enum ada_renaming_category
4251 ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254 {
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
4262 {
4263 default:
4264 return ADA_NOT_RENAMING;
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
4293 }
4294
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306 }
4307
4308 /* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
4311
4312 static struct value *
4313 ada_read_renaming_var_value (struct symbol *renaming_sym,
4314 const struct block *block)
4315 {
4316 const char *sym_name;
4317
4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
4321 }
4322 \f
4323
4324 /* Evaluation: Function Calls */
4325
4326 /* Return an lvalue containing the value VAL. This is the identity on
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
4329
4330 static struct value *
4331 ensure_lval (struct value *val)
4332 {
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
4335 {
4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
4339
4340 VALUE_LVAL (val) = lval_memory;
4341 set_value_address (val, addr);
4342 write_memory (addr, value_contents (val), len);
4343 }
4344
4345 return val;
4346 }
4347
4348 /* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4351 values not residing in memory, updating it as needed. */
4352
4353 struct value *
4354 ada_convert_actual (struct value *actual, struct type *formal_type0)
4355 {
4356 struct type *actual_type = ada_check_typedef (value_type (actual));
4357 struct type *formal_type = ada_check_typedef (formal_type0);
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4364
4365 if (ada_is_array_descriptor_type (formal_target)
4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4367 return make_array_descriptor (formal_type, actual);
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4370 {
4371 struct value *result;
4372
4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4374 && ada_is_array_descriptor_type (actual_target))
4375 result = desc_data (actual);
4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
4381
4382 actual_type = ada_check_typedef (value_type (actual));
4383 val = allocate_value (actual_type);
4384 memcpy ((char *) value_contents_raw (val),
4385 (char *) value_contents (actual),
4386 TYPE_LENGTH (actual_type));
4387 actual = ensure_lval (val);
4388 }
4389 result = value_addr (actual);
4390 }
4391 else
4392 return actual;
4393 return value_cast_pointers (formal_type, result, 0);
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
4407
4408 return actual;
4409 }
4410
4411 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416 static CORE_ADDR
4417 value_pointer (struct value *value, struct type *type)
4418 {
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
4421 gdb_byte *buf = (gdb_byte *) alloca (len);
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428 }
4429
4430
4431 /* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
4436
4437 static struct value *
4438 make_array_descriptor (struct type *type, struct value *arr)
4439 {
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
4444 int i;
4445
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
4448 {
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
4457 }
4458
4459 bounds = ensure_lval (bounds);
4460
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
4474
4475 descriptor = ensure_lval (descriptor);
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481 }
4482 \f
4483 /* Symbol Cache Module */
4484
4485 /* Performance measurements made as of 2010-01-15 indicate that
4486 this cache does bring some noticeable improvements. Depending
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
4495 /* Initialize the contents of SYM_CACHE. */
4496
4497 static void
4498 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499 {
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502 }
4503
4504 /* Free the memory used by SYM_CACHE. */
4505
4506 static void
4507 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511 }
4512
4513 /* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
4515
4516 static struct ada_symbol_cache *
4517 ada_get_symbol_cache (struct program_space *pspace)
4518 {
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4520
4521 if (pspace_data->sym_cache == NULL)
4522 {
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
4525 }
4526
4527 return pspace_data->sym_cache;
4528 }
4529
4530 /* Clear all entries from the symbol cache. */
4531
4532 static void
4533 ada_clear_symbol_cache (void)
4534 {
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
4540 }
4541
4542 /* Search our cache for an entry matching NAME and DOMAIN.
4543 Return it if found, or NULL otherwise. */
4544
4545 static struct cache_entry **
4546 find_entry (const char *name, domain_enum domain)
4547 {
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4554 {
4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4556 return e;
4557 }
4558 return NULL;
4559 }
4560
4561 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
4566
4567 static int
4568 lookup_cached_symbol (const char *name, domain_enum domain,
4569 struct symbol **sym, const struct block **block)
4570 {
4571 struct cache_entry **e = find_entry (name, domain);
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
4580 }
4581
4582 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4583 in domain DOMAIN, save this result in our symbol cache. */
4584
4585 static void
4586 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4587 const struct block *block)
4588 {
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4606 GLOBAL_BLOCK) != block
4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4608 STATIC_BLOCK) != block)
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4617 strcpy (copy, name);
4618 e->sym = sym;
4619 e->domain = domain;
4620 e->block = block;
4621 }
4622 \f
4623 /* Symbol Lookup */
4624
4625 /* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
4629 for Ada lookups. */
4630
4631 static symbol_name_match_type
4632 name_match_type_from_name (const char *lookup_name)
4633 {
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
4637 }
4638
4639 /* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642 static struct symbol *
4643 standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645 {
4646 /* Initialize it just to avoid a GCC false warning. */
4647 struct block_symbol sym = {};
4648
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4654 }
4655
4656
4657 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660 static int
4661 is_nonfunction (struct block_symbol syms[], int n)
4662 {
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4669 return 1;
4670
4671 return 0;
4672 }
4673
4674 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4675 struct types. Otherwise, they may not. */
4676
4677 static int
4678 equiv_types (struct type *type0, struct type *type1)
4679 {
4680 if (type0 == type1)
4681 return 1;
4682 if (type0 == NULL || type1 == NULL
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4689 return 1;
4690
4691 return 0;
4692 }
4693
4694 /* True iff SYM0 represents the same entity as SYM1, or one that is
4695 no more defined than that of SYM1. */
4696
4697 static int
4698 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4699 {
4700 if (sym0 == sym1)
4701 return 1;
4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
4706 switch (SYMBOL_CLASS (sym0))
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4716 int len0 = strlen (name0);
4717
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4722 && startswith (name1 + len0, "___XV")));
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4727
4728 case LOC_STATIC:
4729 {
4730 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4731 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4732 return (strcmp (name0, name1) == 0
4733 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4734 }
4735
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4847 {
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867 }
4868
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4874
4875 static void
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
4879 {
4880 }
4881
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4884
4885 static int
4886 is_nondebugging_type (struct type *type)
4887 {
4888 const char *name = ada_type_name (type);
4889
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891 }
4892
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900 static int
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902 {
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934 }
4935
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956 static int
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4958 {
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4990 return 0;
4991
4992 return 1;
4993 }
4994
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5001
5002 static int
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5004 {
5005 int i, j;
5006
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5012
5013 i = 0;
5014 while (i < syms->size ())
5015 {
5016 int remove_p = 0;
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5023 {
5024 for (j = 0; j < syms->size (); j++)
5025 {
5026 if (j != i
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5031 remove_p = 1;
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5041 {
5042 for (j = 0; j < syms->size (); j += 1)
5043 {
5044 if (i != j
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5052 remove_p = 1;
5053 }
5054 }
5055
5056 if (remove_p)
5057 syms->erase (syms->begin () + i);
5058
5059 i += 1;
5060 }
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
5076
5077 return syms->size ();
5078 }
5079
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5083 defined. */
5084
5085 static std::string
5086 xget_renaming_scope (struct type *renaming_type)
5087 {
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5092
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
5096
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5099
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
5103
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5106 }
5107
5108 /* Return nonzero if NAME corresponds to a package name. */
5109
5110 static int
5111 is_package_name (const char *name)
5112 {
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5118
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
5123
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5126
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5130 return 0;
5131
5132 std::string fun_name = string_printf ("_ada_%s", name);
5133
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5135 }
5136
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5139
5140 static int
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5142 {
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5147
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
5151
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5154
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
5159 if (startswith (function_name, "_ada_"))
5160 function_name += 5;
5161
5162 return !startswith (function_name, scope.c_str ());
5163 }
5164
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5170
5171 Rationale:
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5184
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5201
5202 static int
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5205 {
5206 struct symbol *current_function;
5207 const char *current_function_name;
5208 int i;
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5216 {
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5231
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5236 name_len) == 0
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5247 {
5248 (*syms)[k] = (*syms)[j];
5249 k += 1;
5250 }
5251 return k;
5252 }
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5256
5257 if (current_block == NULL)
5258 return syms->size ();
5259
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
5273 while (i < syms->size ())
5274 {
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5280 else
5281 i += 1;
5282 }
5283
5284 return syms->size ();
5285 }
5286
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297 static void
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5301 {
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5321 }
5322
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5325
5326 struct match_data
5327 {
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5331 int found_sym;
5332 };
5333
5334 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5342
5343 static bool
5344 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
5346 {
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return true;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return true;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552
5553 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5554 domain, global, callback,
5555 (is_wild_match
5556 ? NULL : compare_names));
5557
5558 for (compunit_symtab *cu : objfile->compunits ())
5559 {
5560 const struct block *global_block
5561 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5562
5563 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5564 domain))
5565 data.found_sym = 1;
5566 }
5567 }
5568
5569 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5570 {
5571 const char *name = ada_lookup_name (lookup_name);
5572 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5573 symbol_name_match_type::FULL);
5574
5575 for (objfile *objfile : current_program_space->objfiles ())
5576 {
5577 data.objfile = objfile;
5578 objfile->sf->qf->map_matching_symbols (objfile, name1,
5579 domain, global, callback,
5580 compare_names);
5581 }
5582 }
5583 }
5584
5585 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5586 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5587 returning the number of matches. Add these to OBSTACKP.
5588
5589 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5590 symbol match within the nest of blocks whose innermost member is BLOCK,
5591 is the one match returned (no other matches in that or
5592 enclosing blocks is returned). If there are any matches in or
5593 surrounding BLOCK, then these alone are returned.
5594
5595 Names prefixed with "standard__" are handled specially:
5596 "standard__" is first stripped off (by the lookup_name
5597 constructor), and only static and global symbols are searched.
5598
5599 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5600 to lookup global symbols. */
5601
5602 static void
5603 ada_add_all_symbols (struct obstack *obstackp,
5604 const struct block *block,
5605 const lookup_name_info &lookup_name,
5606 domain_enum domain,
5607 int full_search,
5608 int *made_global_lookup_p)
5609 {
5610 struct symbol *sym;
5611
5612 if (made_global_lookup_p)
5613 *made_global_lookup_p = 0;
5614
5615 /* Special case: If the user specifies a symbol name inside package
5616 Standard, do a non-wild matching of the symbol name without
5617 the "standard__" prefix. This was primarily introduced in order
5618 to allow the user to specifically access the standard exceptions
5619 using, for instance, Standard.Constraint_Error when Constraint_Error
5620 is ambiguous (due to the user defining its own Constraint_Error
5621 entity inside its program). */
5622 if (lookup_name.ada ().standard_p ())
5623 block = NULL;
5624
5625 /* Check the non-global symbols. If we have ANY match, then we're done. */
5626
5627 if (block != NULL)
5628 {
5629 if (full_search)
5630 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5631 else
5632 {
5633 /* In the !full_search case we're are being called by
5634 ada_iterate_over_symbols, and we don't want to search
5635 superblocks. */
5636 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5637 }
5638 if (num_defns_collected (obstackp) > 0 || !full_search)
5639 return;
5640 }
5641
5642 /* No non-global symbols found. Check our cache to see if we have
5643 already performed this search before. If we have, then return
5644 the same result. */
5645
5646 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5647 domain, &sym, &block))
5648 {
5649 if (sym != NULL)
5650 add_defn_to_vec (obstackp, sym, block);
5651 return;
5652 }
5653
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 1;
5656
5657 /* Search symbols from all global blocks. */
5658
5659 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5660
5661 /* Now add symbols from all per-file blocks if we've gotten no hits
5662 (not strictly correct, but perhaps better than an error). */
5663
5664 if (num_defns_collected (obstackp) == 0)
5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5666 }
5667
5668 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5669 is non-zero, enclosing scope and in global scopes, returning the number of
5670 matches.
5671 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5672 found and the blocks and symbol tables (if any) in which they were
5673 found.
5674
5675 When full_search is non-zero, any non-function/non-enumeral
5676 symbol match within the nest of blocks whose innermost member is BLOCK,
5677 is the one match returned (no other matches in that or
5678 enclosing blocks is returned). If there are any matches in or
5679 surrounding BLOCK, then these alone are returned.
5680
5681 Names prefixed with "standard__" are handled specially: "standard__"
5682 is first stripped off, and only static and global symbols are searched. */
5683
5684 static int
5685 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5686 const struct block *block,
5687 domain_enum domain,
5688 std::vector<struct block_symbol> *results,
5689 int full_search)
5690 {
5691 int syms_from_global_search;
5692 int ndefns;
5693 auto_obstack obstack;
5694
5695 ada_add_all_symbols (&obstack, block, lookup_name,
5696 domain, full_search, &syms_from_global_search);
5697
5698 ndefns = num_defns_collected (&obstack);
5699
5700 struct block_symbol *base = defns_collected (&obstack, 1);
5701 for (int i = 0; i < ndefns; ++i)
5702 results->push_back (base[i]);
5703
5704 ndefns = remove_extra_symbols (results);
5705
5706 if (ndefns == 0 && full_search && syms_from_global_search)
5707 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5708
5709 if (ndefns == 1 && full_search && syms_from_global_search)
5710 cache_symbol (ada_lookup_name (lookup_name), domain,
5711 (*results)[0].symbol, (*results)[0].block);
5712
5713 ndefns = remove_irrelevant_renamings (results, block);
5714
5715 return ndefns;
5716 }
5717
5718 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5719 in global scopes, returning the number of matches, and filling *RESULTS
5720 with (SYM,BLOCK) tuples.
5721
5722 See ada_lookup_symbol_list_worker for further details. */
5723
5724 int
5725 ada_lookup_symbol_list (const char *name, const struct block *block,
5726 domain_enum domain,
5727 std::vector<struct block_symbol> *results)
5728 {
5729 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5730 lookup_name_info lookup_name (name, name_match_type);
5731
5732 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5733 }
5734
5735 /* Implementation of the la_iterate_over_symbols method. */
5736
5737 static bool
5738 ada_iterate_over_symbols
5739 (const struct block *block, const lookup_name_info &name,
5740 domain_enum domain,
5741 gdb::function_view<symbol_found_callback_ftype> callback)
5742 {
5743 int ndefs, i;
5744 std::vector<struct block_symbol> results;
5745
5746 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5747
5748 for (i = 0; i < ndefs; ++i)
5749 {
5750 if (!callback (&results[i]))
5751 return false;
5752 }
5753
5754 return true;
5755 }
5756
5757 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5758 to 1, but choosing the first symbol found if there are multiple
5759 choices.
5760
5761 The result is stored in *INFO, which must be non-NULL.
5762 If no match is found, INFO->SYM is set to NULL. */
5763
5764 void
5765 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5766 domain_enum domain,
5767 struct block_symbol *info)
5768 {
5769 /* Since we already have an encoded name, wrap it in '<>' to force a
5770 verbatim match. Otherwise, if the name happens to not look like
5771 an encoded name (because it doesn't include a "__"),
5772 ada_lookup_name_info would re-encode/fold it again, and that
5773 would e.g., incorrectly lowercase object renaming names like
5774 "R28b" -> "r28b". */
5775 std::string verbatim = std::string ("<") + name + '>';
5776
5777 gdb_assert (info != NULL);
5778 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5779 }
5780
5781 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5782 scope and in global scopes, or NULL if none. NAME is folded and
5783 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5784 choosing the first symbol if there are multiple choices. */
5785
5786 struct block_symbol
5787 ada_lookup_symbol (const char *name, const struct block *block0,
5788 domain_enum domain)
5789 {
5790 std::vector<struct block_symbol> candidates;
5791 int n_candidates;
5792
5793 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5794
5795 if (n_candidates == 0)
5796 return {};
5797
5798 block_symbol info = candidates[0];
5799 info.symbol = fixup_symbol_section (info.symbol, NULL);
5800 return info;
5801 }
5802
5803 static struct block_symbol
5804 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5805 const char *name,
5806 const struct block *block,
5807 const domain_enum domain)
5808 {
5809 struct block_symbol sym;
5810
5811 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5812 if (sym.symbol != NULL)
5813 return sym;
5814
5815 /* If we haven't found a match at this point, try the primitive
5816 types. In other languages, this search is performed before
5817 searching for global symbols in order to short-circuit that
5818 global-symbol search if it happens that the name corresponds
5819 to a primitive type. But we cannot do the same in Ada, because
5820 it is perfectly legitimate for a program to declare a type which
5821 has the same name as a standard type. If looking up a type in
5822 that situation, we have traditionally ignored the primitive type
5823 in favor of user-defined types. This is why, unlike most other
5824 languages, we search the primitive types this late and only after
5825 having searched the global symbols without success. */
5826
5827 if (domain == VAR_DOMAIN)
5828 {
5829 struct gdbarch *gdbarch;
5830
5831 if (block == NULL)
5832 gdbarch = target_gdbarch ();
5833 else
5834 gdbarch = block_gdbarch (block);
5835 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5836 if (sym.symbol != NULL)
5837 return sym;
5838 }
5839
5840 return {};
5841 }
5842
5843
5844 /* True iff STR is a possible encoded suffix of a normal Ada name
5845 that is to be ignored for matching purposes. Suffixes of parallel
5846 names (e.g., XVE) are not included here. Currently, the possible suffixes
5847 are given by any of the regular expressions:
5848
5849 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5850 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5851 TKB [subprogram suffix for task bodies]
5852 _E[0-9]+[bs]$ [protected object entry suffixes]
5853 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5854
5855 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5856 match is performed. This sequence is used to differentiate homonyms,
5857 is an optional part of a valid name suffix. */
5858
5859 static int
5860 is_name_suffix (const char *str)
5861 {
5862 int k;
5863 const char *matching;
5864 const int len = strlen (str);
5865
5866 /* Skip optional leading __[0-9]+. */
5867
5868 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5869 {
5870 str += 3;
5871 while (isdigit (str[0]))
5872 str += 1;
5873 }
5874
5875 /* [.$][0-9]+ */
5876
5877 if (str[0] == '.' || str[0] == '$')
5878 {
5879 matching = str + 1;
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* ___[0-9]+ */
5887
5888 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5889 {
5890 matching = str + 3;
5891 while (isdigit (matching[0]))
5892 matching += 1;
5893 if (matching[0] == '\0')
5894 return 1;
5895 }
5896
5897 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5898
5899 if (strcmp (str, "TKB") == 0)
5900 return 1;
5901
5902 #if 0
5903 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5904 with a N at the end. Unfortunately, the compiler uses the same
5905 convention for other internal types it creates. So treating
5906 all entity names that end with an "N" as a name suffix causes
5907 some regressions. For instance, consider the case of an enumerated
5908 type. To support the 'Image attribute, it creates an array whose
5909 name ends with N.
5910 Having a single character like this as a suffix carrying some
5911 information is a bit risky. Perhaps we should change the encoding
5912 to be something like "_N" instead. In the meantime, do not do
5913 the following check. */
5914 /* Protected Object Subprograms */
5915 if (len == 1 && str [0] == 'N')
5916 return 1;
5917 #endif
5918
5919 /* _E[0-9]+[bs]$ */
5920 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5921 {
5922 matching = str + 3;
5923 while (isdigit (matching[0]))
5924 matching += 1;
5925 if ((matching[0] == 'b' || matching[0] == 's')
5926 && matching [1] == '\0')
5927 return 1;
5928 }
5929
5930 /* ??? We should not modify STR directly, as we are doing below. This
5931 is fine in this case, but may become problematic later if we find
5932 that this alternative did not work, and want to try matching
5933 another one from the begining of STR. Since we modified it, we
5934 won't be able to find the begining of the string anymore! */
5935 if (str[0] == 'X')
5936 {
5937 str += 1;
5938 while (str[0] != '_' && str[0] != '\0')
5939 {
5940 if (str[0] != 'n' && str[0] != 'b')
5941 return 0;
5942 str += 1;
5943 }
5944 }
5945
5946 if (str[0] == '\000')
5947 return 1;
5948
5949 if (str[0] == '_')
5950 {
5951 if (str[1] != '_' || str[2] == '\000')
5952 return 0;
5953 if (str[2] == '_')
5954 {
5955 if (strcmp (str + 3, "JM") == 0)
5956 return 1;
5957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5958 the LJM suffix in favor of the JM one. But we will
5959 still accept LJM as a valid suffix for a reasonable
5960 amount of time, just to allow ourselves to debug programs
5961 compiled using an older version of GNAT. */
5962 if (strcmp (str + 3, "LJM") == 0)
5963 return 1;
5964 if (str[3] != 'X')
5965 return 0;
5966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5967 || str[4] == 'U' || str[4] == 'P')
5968 return 1;
5969 if (str[4] == 'R' && str[5] != 'T')
5970 return 1;
5971 return 0;
5972 }
5973 if (!isdigit (str[2]))
5974 return 0;
5975 for (k = 3; str[k] != '\0'; k += 1)
5976 if (!isdigit (str[k]) && str[k] != '_')
5977 return 0;
5978 return 1;
5979 }
5980 if (str[0] == '$' && isdigit (str[1]))
5981 {
5982 for (k = 2; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
5985 return 1;
5986 }
5987 return 0;
5988 }
5989
5990 /* Return non-zero if the string starting at NAME and ending before
5991 NAME_END contains no capital letters. */
5992
5993 static int
5994 is_valid_name_for_wild_match (const char *name0)
5995 {
5996 std::string decoded_name = ada_decode (name0);
5997 int i;
5998
5999 /* If the decoded name starts with an angle bracket, it means that
6000 NAME0 does not follow the GNAT encoding format. It should then
6001 not be allowed as a possible wild match. */
6002 if (decoded_name[0] == '<')
6003 return 0;
6004
6005 for (i=0; decoded_name[i] != '\0'; i++)
6006 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6007 return 0;
6008
6009 return 1;
6010 }
6011
6012 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6013 that could start a simple name. Assumes that *NAMEP points into
6014 the string beginning at NAME0. */
6015
6016 static int
6017 advance_wild_match (const char **namep, const char *name0, int target0)
6018 {
6019 const char *name = *namep;
6020
6021 while (1)
6022 {
6023 int t0, t1;
6024
6025 t0 = *name;
6026 if (t0 == '_')
6027 {
6028 t1 = name[1];
6029 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6030 {
6031 name += 1;
6032 if (name == name0 + 5 && startswith (name0, "_ada"))
6033 break;
6034 else
6035 name += 1;
6036 }
6037 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6038 || name[2] == target0))
6039 {
6040 name += 2;
6041 break;
6042 }
6043 else
6044 return 0;
6045 }
6046 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6047 name += 1;
6048 else
6049 return 0;
6050 }
6051
6052 *namep = name;
6053 return 1;
6054 }
6055
6056 /* Return true iff NAME encodes a name of the form prefix.PATN.
6057 Ignores any informational suffixes of NAME (i.e., for which
6058 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6059 simple name. */
6060
6061 static bool
6062 wild_match (const char *name, const char *patn)
6063 {
6064 const char *p;
6065 const char *name0 = name;
6066
6067 while (1)
6068 {
6069 const char *match = name;
6070
6071 if (*name == *patn)
6072 {
6073 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6074 if (*p != *name)
6075 break;
6076 if (*p == '\0' && is_name_suffix (name))
6077 return match == name0 || is_valid_name_for_wild_match (name0);
6078
6079 if (name[-1] == '_')
6080 name -= 1;
6081 }
6082 if (!advance_wild_match (&name, name0, *patn))
6083 return false;
6084 }
6085 }
6086
6087 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6088 any trailing suffixes that encode debugging information or leading
6089 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6090 information that is ignored). */
6091
6092 static bool
6093 full_match (const char *sym_name, const char *search_name)
6094 {
6095 size_t search_name_len = strlen (search_name);
6096
6097 if (strncmp (sym_name, search_name, search_name_len) == 0
6098 && is_name_suffix (sym_name + search_name_len))
6099 return true;
6100
6101 if (startswith (sym_name, "_ada_")
6102 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6103 && is_name_suffix (sym_name + search_name_len + 5))
6104 return true;
6105
6106 return false;
6107 }
6108
6109 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6110 *defn_symbols, updating the list of symbols in OBSTACKP (if
6111 necessary). OBJFILE is the section containing BLOCK. */
6112
6113 static void
6114 ada_add_block_symbols (struct obstack *obstackp,
6115 const struct block *block,
6116 const lookup_name_info &lookup_name,
6117 domain_enum domain, struct objfile *objfile)
6118 {
6119 struct block_iterator iter;
6120 /* A matching argument symbol, if any. */
6121 struct symbol *arg_sym;
6122 /* Set true when we find a matching non-argument symbol. */
6123 int found_sym;
6124 struct symbol *sym;
6125
6126 arg_sym = NULL;
6127 found_sym = 0;
6128 for (sym = block_iter_match_first (block, lookup_name, &iter);
6129 sym != NULL;
6130 sym = block_iter_match_next (lookup_name, &iter))
6131 {
6132 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6133 SYMBOL_DOMAIN (sym), domain))
6134 {
6135 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6136 {
6137 if (SYMBOL_IS_ARGUMENT (sym))
6138 arg_sym = sym;
6139 else
6140 {
6141 found_sym = 1;
6142 add_defn_to_vec (obstackp,
6143 fixup_symbol_section (sym, objfile),
6144 block);
6145 }
6146 }
6147 }
6148 }
6149
6150 /* Handle renamings. */
6151
6152 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6153 found_sym = 1;
6154
6155 if (!found_sym && arg_sym != NULL)
6156 {
6157 add_defn_to_vec (obstackp,
6158 fixup_symbol_section (arg_sym, objfile),
6159 block);
6160 }
6161
6162 if (!lookup_name.ada ().wild_match_p ())
6163 {
6164 arg_sym = NULL;
6165 found_sym = 0;
6166 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6167 const char *name = ada_lookup_name.c_str ();
6168 size_t name_len = ada_lookup_name.size ();
6169
6170 ALL_BLOCK_SYMBOLS (block, iter, sym)
6171 {
6172 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6173 SYMBOL_DOMAIN (sym), domain))
6174 {
6175 int cmp;
6176
6177 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6178 if (cmp == 0)
6179 {
6180 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6181 if (cmp == 0)
6182 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6183 name_len);
6184 }
6185
6186 if (cmp == 0
6187 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6188 {
6189 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6190 {
6191 if (SYMBOL_IS_ARGUMENT (sym))
6192 arg_sym = sym;
6193 else
6194 {
6195 found_sym = 1;
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (sym, objfile),
6198 block);
6199 }
6200 }
6201 }
6202 }
6203 }
6204
6205 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6206 They aren't parameters, right? */
6207 if (!found_sym && arg_sym != NULL)
6208 {
6209 add_defn_to_vec (obstackp,
6210 fixup_symbol_section (arg_sym, objfile),
6211 block);
6212 }
6213 }
6214 }
6215 \f
6216
6217 /* Symbol Completion */
6218
6219 /* See symtab.h. */
6220
6221 bool
6222 ada_lookup_name_info::matches
6223 (const char *sym_name,
6224 symbol_name_match_type match_type,
6225 completion_match_result *comp_match_res) const
6226 {
6227 bool match = false;
6228 const char *text = m_encoded_name.c_str ();
6229 size_t text_len = m_encoded_name.size ();
6230
6231 /* First, test against the fully qualified name of the symbol. */
6232
6233 if (strncmp (sym_name, text, text_len) == 0)
6234 match = true;
6235
6236 std::string decoded_name = ada_decode (sym_name);
6237 if (match && !m_encoded_p)
6238 {
6239 /* One needed check before declaring a positive match is to verify
6240 that iff we are doing a verbatim match, the decoded version
6241 of the symbol name starts with '<'. Otherwise, this symbol name
6242 is not a suitable completion. */
6243
6244 bool has_angle_bracket = (decoded_name[0] == '<');
6245 match = (has_angle_bracket == m_verbatim_p);
6246 }
6247
6248 if (match && !m_verbatim_p)
6249 {
6250 /* When doing non-verbatim match, another check that needs to
6251 be done is to verify that the potentially matching symbol name
6252 does not include capital letters, because the ada-mode would
6253 not be able to understand these symbol names without the
6254 angle bracket notation. */
6255 const char *tmp;
6256
6257 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6258 if (*tmp != '\0')
6259 match = false;
6260 }
6261
6262 /* Second: Try wild matching... */
6263
6264 if (!match && m_wild_match_p)
6265 {
6266 /* Since we are doing wild matching, this means that TEXT
6267 may represent an unqualified symbol name. We therefore must
6268 also compare TEXT against the unqualified name of the symbol. */
6269 sym_name = ada_unqualified_name (decoded_name.c_str ());
6270
6271 if (strncmp (sym_name, text, text_len) == 0)
6272 match = true;
6273 }
6274
6275 /* Finally: If we found a match, prepare the result to return. */
6276
6277 if (!match)
6278 return false;
6279
6280 if (comp_match_res != NULL)
6281 {
6282 std::string &match_str = comp_match_res->match.storage ();
6283
6284 if (!m_encoded_p)
6285 match_str = ada_decode (sym_name);
6286 else
6287 {
6288 if (m_verbatim_p)
6289 match_str = add_angle_brackets (sym_name);
6290 else
6291 match_str = sym_name;
6292
6293 }
6294
6295 comp_match_res->set_match (match_str.c_str ());
6296 }
6297
6298 return true;
6299 }
6300
6301 /* Add the list of possible symbol names completing TEXT to TRACKER.
6302 WORD is the entire command on which completion is made. */
6303
6304 static void
6305 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6306 complete_symbol_mode mode,
6307 symbol_name_match_type name_match_type,
6308 const char *text, const char *word,
6309 enum type_code code)
6310 {
6311 struct symbol *sym;
6312 const struct block *b, *surrounding_static_block = 0;
6313 struct block_iterator iter;
6314
6315 gdb_assert (code == TYPE_CODE_UNDEF);
6316
6317 lookup_name_info lookup_name (text, name_match_type, true);
6318
6319 /* First, look at the partial symtab symbols. */
6320 expand_symtabs_matching (NULL,
6321 lookup_name,
6322 NULL,
6323 NULL,
6324 ALL_DOMAIN);
6325
6326 /* At this point scan through the misc symbol vectors and add each
6327 symbol you find to the list. Eventually we want to ignore
6328 anything that isn't a text symbol (everything else will be
6329 handled by the psymtab code above). */
6330
6331 for (objfile *objfile : current_program_space->objfiles ())
6332 {
6333 for (minimal_symbol *msymbol : objfile->msymbols ())
6334 {
6335 QUIT;
6336
6337 if (completion_skip_symbol (mode, msymbol))
6338 continue;
6339
6340 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6341
6342 /* Ada minimal symbols won't have their language set to Ada. If
6343 we let completion_list_add_name compare using the
6344 default/C-like matcher, then when completing e.g., symbols in a
6345 package named "pck", we'd match internal Ada symbols like
6346 "pckS", which are invalid in an Ada expression, unless you wrap
6347 them in '<' '>' to request a verbatim match.
6348
6349 Unfortunately, some Ada encoded names successfully demangle as
6350 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6351 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6352 with the wrong language set. Paper over that issue here. */
6353 if (symbol_language == language_auto
6354 || symbol_language == language_cplus)
6355 symbol_language = language_ada;
6356
6357 completion_list_add_name (tracker,
6358 symbol_language,
6359 MSYMBOL_LINKAGE_NAME (msymbol),
6360 lookup_name, text, word);
6361 }
6362 }
6363
6364 /* Search upwards from currently selected frame (so that we can
6365 complete on local vars. */
6366
6367 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6368 {
6369 if (!BLOCK_SUPERBLOCK (b))
6370 surrounding_static_block = b; /* For elmin of dups */
6371
6372 ALL_BLOCK_SYMBOLS (b, iter, sym)
6373 {
6374 if (completion_skip_symbol (mode, sym))
6375 continue;
6376
6377 completion_list_add_name (tracker,
6378 SYMBOL_LANGUAGE (sym),
6379 SYMBOL_LINKAGE_NAME (sym),
6380 lookup_name, text, word);
6381 }
6382 }
6383
6384 /* Go through the symtabs and check the externs and statics for
6385 symbols which match. */
6386
6387 for (objfile *objfile : current_program_space->objfiles ())
6388 {
6389 for (compunit_symtab *s : objfile->compunits ())
6390 {
6391 QUIT;
6392 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6393 ALL_BLOCK_SYMBOLS (b, iter, sym)
6394 {
6395 if (completion_skip_symbol (mode, sym))
6396 continue;
6397
6398 completion_list_add_name (tracker,
6399 SYMBOL_LANGUAGE (sym),
6400 SYMBOL_LINKAGE_NAME (sym),
6401 lookup_name, text, word);
6402 }
6403 }
6404 }
6405
6406 for (objfile *objfile : current_program_space->objfiles ())
6407 {
6408 for (compunit_symtab *s : objfile->compunits ())
6409 {
6410 QUIT;
6411 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6412 /* Don't do this block twice. */
6413 if (b == surrounding_static_block)
6414 continue;
6415 ALL_BLOCK_SYMBOLS (b, iter, sym)
6416 {
6417 if (completion_skip_symbol (mode, sym))
6418 continue;
6419
6420 completion_list_add_name (tracker,
6421 SYMBOL_LANGUAGE (sym),
6422 SYMBOL_LINKAGE_NAME (sym),
6423 lookup_name, text, word);
6424 }
6425 }
6426 }
6427 }
6428
6429 /* Field Access */
6430
6431 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6432 for tagged types. */
6433
6434 static int
6435 ada_is_dispatch_table_ptr_type (struct type *type)
6436 {
6437 const char *name;
6438
6439 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6440 return 0;
6441
6442 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6443 if (name == NULL)
6444 return 0;
6445
6446 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6447 }
6448
6449 /* Return non-zero if TYPE is an interface tag. */
6450
6451 static int
6452 ada_is_interface_tag (struct type *type)
6453 {
6454 const char *name = TYPE_NAME (type);
6455
6456 if (name == NULL)
6457 return 0;
6458
6459 return (strcmp (name, "ada__tags__interface_tag") == 0);
6460 }
6461
6462 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6463 to be invisible to users. */
6464
6465 int
6466 ada_is_ignored_field (struct type *type, int field_num)
6467 {
6468 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6469 return 1;
6470
6471 /* Check the name of that field. */
6472 {
6473 const char *name = TYPE_FIELD_NAME (type, field_num);
6474
6475 /* Anonymous field names should not be printed.
6476 brobecker/2007-02-20: I don't think this can actually happen
6477 but we don't want to print the value of annonymous fields anyway. */
6478 if (name == NULL)
6479 return 1;
6480
6481 /* Normally, fields whose name start with an underscore ("_")
6482 are fields that have been internally generated by the compiler,
6483 and thus should not be printed. The "_parent" field is special,
6484 however: This is a field internally generated by the compiler
6485 for tagged types, and it contains the components inherited from
6486 the parent type. This field should not be printed as is, but
6487 should not be ignored either. */
6488 if (name[0] == '_' && !startswith (name, "_parent"))
6489 return 1;
6490 }
6491
6492 /* If this is the dispatch table of a tagged type or an interface tag,
6493 then ignore. */
6494 if (ada_is_tagged_type (type, 1)
6495 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6496 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6497 return 1;
6498
6499 /* Not a special field, so it should not be ignored. */
6500 return 0;
6501 }
6502
6503 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6504 pointer or reference type whose ultimate target has a tag field. */
6505
6506 int
6507 ada_is_tagged_type (struct type *type, int refok)
6508 {
6509 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6510 }
6511
6512 /* True iff TYPE represents the type of X'Tag */
6513
6514 int
6515 ada_is_tag_type (struct type *type)
6516 {
6517 type = ada_check_typedef (type);
6518
6519 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6520 return 0;
6521 else
6522 {
6523 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6524
6525 return (name != NULL
6526 && strcmp (name, "ada__tags__dispatch_table") == 0);
6527 }
6528 }
6529
6530 /* The type of the tag on VAL. */
6531
6532 struct type *
6533 ada_tag_type (struct value *val)
6534 {
6535 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6536 }
6537
6538 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6539 retired at Ada 05). */
6540
6541 static int
6542 is_ada95_tag (struct value *tag)
6543 {
6544 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6545 }
6546
6547 /* The value of the tag on VAL. */
6548
6549 struct value *
6550 ada_value_tag (struct value *val)
6551 {
6552 return ada_value_struct_elt (val, "_tag", 0);
6553 }
6554
6555 /* The value of the tag on the object of type TYPE whose contents are
6556 saved at VALADDR, if it is non-null, or is at memory address
6557 ADDRESS. */
6558
6559 static struct value *
6560 value_tag_from_contents_and_address (struct type *type,
6561 const gdb_byte *valaddr,
6562 CORE_ADDR address)
6563 {
6564 int tag_byte_offset;
6565 struct type *tag_type;
6566
6567 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6568 NULL, NULL, NULL))
6569 {
6570 const gdb_byte *valaddr1 = ((valaddr == NULL)
6571 ? NULL
6572 : valaddr + tag_byte_offset);
6573 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6574
6575 return value_from_contents_and_address (tag_type, valaddr1, address1);
6576 }
6577 return NULL;
6578 }
6579
6580 static struct type *
6581 type_from_tag (struct value *tag)
6582 {
6583 const char *type_name = ada_tag_name (tag);
6584
6585 if (type_name != NULL)
6586 return ada_find_any_type (ada_encode (type_name));
6587 return NULL;
6588 }
6589
6590 /* Given a value OBJ of a tagged type, return a value of this
6591 type at the base address of the object. The base address, as
6592 defined in Ada.Tags, it is the address of the primary tag of
6593 the object, and therefore where the field values of its full
6594 view can be fetched. */
6595
6596 struct value *
6597 ada_tag_value_at_base_address (struct value *obj)
6598 {
6599 struct value *val;
6600 LONGEST offset_to_top = 0;
6601 struct type *ptr_type, *obj_type;
6602 struct value *tag;
6603 CORE_ADDR base_address;
6604
6605 obj_type = value_type (obj);
6606
6607 /* It is the responsability of the caller to deref pointers. */
6608
6609 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6610 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6611 return obj;
6612
6613 tag = ada_value_tag (obj);
6614 if (!tag)
6615 return obj;
6616
6617 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6618
6619 if (is_ada95_tag (tag))
6620 return obj;
6621
6622 ptr_type = language_lookup_primitive_type
6623 (language_def (language_ada), target_gdbarch(), "storage_offset");
6624 ptr_type = lookup_pointer_type (ptr_type);
6625 val = value_cast (ptr_type, tag);
6626 if (!val)
6627 return obj;
6628
6629 /* It is perfectly possible that an exception be raised while
6630 trying to determine the base address, just like for the tag;
6631 see ada_tag_name for more details. We do not print the error
6632 message for the same reason. */
6633
6634 try
6635 {
6636 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6637 }
6638
6639 catch (const gdb_exception_error &e)
6640 {
6641 return obj;
6642 }
6643
6644 /* If offset is null, nothing to do. */
6645
6646 if (offset_to_top == 0)
6647 return obj;
6648
6649 /* -1 is a special case in Ada.Tags; however, what should be done
6650 is not quite clear from the documentation. So do nothing for
6651 now. */
6652
6653 if (offset_to_top == -1)
6654 return obj;
6655
6656 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6657 from the base address. This was however incompatible with
6658 C++ dispatch table: C++ uses a *negative* value to *add*
6659 to the base address. Ada's convention has therefore been
6660 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6661 use the same convention. Here, we support both cases by
6662 checking the sign of OFFSET_TO_TOP. */
6663
6664 if (offset_to_top > 0)
6665 offset_to_top = -offset_to_top;
6666
6667 base_address = value_address (obj) + offset_to_top;
6668 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6669
6670 /* Make sure that we have a proper tag at the new address.
6671 Otherwise, offset_to_top is bogus (which can happen when
6672 the object is not initialized yet). */
6673
6674 if (!tag)
6675 return obj;
6676
6677 obj_type = type_from_tag (tag);
6678
6679 if (!obj_type)
6680 return obj;
6681
6682 return value_from_contents_and_address (obj_type, NULL, base_address);
6683 }
6684
6685 /* Return the "ada__tags__type_specific_data" type. */
6686
6687 static struct type *
6688 ada_get_tsd_type (struct inferior *inf)
6689 {
6690 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6691
6692 if (data->tsd_type == 0)
6693 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6694 return data->tsd_type;
6695 }
6696
6697 /* Return the TSD (type-specific data) associated to the given TAG.
6698 TAG is assumed to be the tag of a tagged-type entity.
6699
6700 May return NULL if we are unable to get the TSD. */
6701
6702 static struct value *
6703 ada_get_tsd_from_tag (struct value *tag)
6704 {
6705 struct value *val;
6706 struct type *type;
6707
6708 /* First option: The TSD is simply stored as a field of our TAG.
6709 Only older versions of GNAT would use this format, but we have
6710 to test it first, because there are no visible markers for
6711 the current approach except the absence of that field. */
6712
6713 val = ada_value_struct_elt (tag, "tsd", 1);
6714 if (val)
6715 return val;
6716
6717 /* Try the second representation for the dispatch table (in which
6718 there is no explicit 'tsd' field in the referent of the tag pointer,
6719 and instead the tsd pointer is stored just before the dispatch
6720 table. */
6721
6722 type = ada_get_tsd_type (current_inferior());
6723 if (type == NULL)
6724 return NULL;
6725 type = lookup_pointer_type (lookup_pointer_type (type));
6726 val = value_cast (type, tag);
6727 if (val == NULL)
6728 return NULL;
6729 return value_ind (value_ptradd (val, -1));
6730 }
6731
6732 /* Given the TSD of a tag (type-specific data), return a string
6733 containing the name of the associated type.
6734
6735 The returned value is good until the next call. May return NULL
6736 if we are unable to determine the tag name. */
6737
6738 static char *
6739 ada_tag_name_from_tsd (struct value *tsd)
6740 {
6741 static char name[1024];
6742 char *p;
6743 struct value *val;
6744
6745 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6746 if (val == NULL)
6747 return NULL;
6748 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6749 for (p = name; *p != '\0'; p += 1)
6750 if (isalpha (*p))
6751 *p = tolower (*p);
6752 return name;
6753 }
6754
6755 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6756 a C string.
6757
6758 Return NULL if the TAG is not an Ada tag, or if we were unable to
6759 determine the name of that tag. The result is good until the next
6760 call. */
6761
6762 const char *
6763 ada_tag_name (struct value *tag)
6764 {
6765 char *name = NULL;
6766
6767 if (!ada_is_tag_type (value_type (tag)))
6768 return NULL;
6769
6770 /* It is perfectly possible that an exception be raised while trying
6771 to determine the TAG's name, even under normal circumstances:
6772 The associated variable may be uninitialized or corrupted, for
6773 instance. We do not let any exception propagate past this point.
6774 instead we return NULL.
6775
6776 We also do not print the error message either (which often is very
6777 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6778 the caller print a more meaningful message if necessary. */
6779 try
6780 {
6781 struct value *tsd = ada_get_tsd_from_tag (tag);
6782
6783 if (tsd != NULL)
6784 name = ada_tag_name_from_tsd (tsd);
6785 }
6786 catch (const gdb_exception_error &e)
6787 {
6788 }
6789
6790 return name;
6791 }
6792
6793 /* The parent type of TYPE, or NULL if none. */
6794
6795 struct type *
6796 ada_parent_type (struct type *type)
6797 {
6798 int i;
6799
6800 type = ada_check_typedef (type);
6801
6802 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6803 return NULL;
6804
6805 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6806 if (ada_is_parent_field (type, i))
6807 {
6808 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6809
6810 /* If the _parent field is a pointer, then dereference it. */
6811 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6812 parent_type = TYPE_TARGET_TYPE (parent_type);
6813 /* If there is a parallel XVS type, get the actual base type. */
6814 parent_type = ada_get_base_type (parent_type);
6815
6816 return ada_check_typedef (parent_type);
6817 }
6818
6819 return NULL;
6820 }
6821
6822 /* True iff field number FIELD_NUM of structure type TYPE contains the
6823 parent-type (inherited) fields of a derived type. Assumes TYPE is
6824 a structure type with at least FIELD_NUM+1 fields. */
6825
6826 int
6827 ada_is_parent_field (struct type *type, int field_num)
6828 {
6829 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6830
6831 return (name != NULL
6832 && (startswith (name, "PARENT")
6833 || startswith (name, "_parent")));
6834 }
6835
6836 /* True iff field number FIELD_NUM of structure type TYPE is a
6837 transparent wrapper field (which should be silently traversed when doing
6838 field selection and flattened when printing). Assumes TYPE is a
6839 structure type with at least FIELD_NUM+1 fields. Such fields are always
6840 structures. */
6841
6842 int
6843 ada_is_wrapper_field (struct type *type, int field_num)
6844 {
6845 const char *name = TYPE_FIELD_NAME (type, field_num);
6846
6847 if (name != NULL && strcmp (name, "RETVAL") == 0)
6848 {
6849 /* This happens in functions with "out" or "in out" parameters
6850 which are passed by copy. For such functions, GNAT describes
6851 the function's return type as being a struct where the return
6852 value is in a field called RETVAL, and where the other "out"
6853 or "in out" parameters are fields of that struct. This is not
6854 a wrapper. */
6855 return 0;
6856 }
6857
6858 return (name != NULL
6859 && (startswith (name, "PARENT")
6860 || strcmp (name, "REP") == 0
6861 || startswith (name, "_parent")
6862 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6863 }
6864
6865 /* True iff field number FIELD_NUM of structure or union type TYPE
6866 is a variant wrapper. Assumes TYPE is a structure type with at least
6867 FIELD_NUM+1 fields. */
6868
6869 int
6870 ada_is_variant_part (struct type *type, int field_num)
6871 {
6872 /* Only Ada types are eligible. */
6873 if (!ADA_TYPE_P (type))
6874 return 0;
6875
6876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6877
6878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6879 || (is_dynamic_field (type, field_num)
6880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6881 == TYPE_CODE_UNION)));
6882 }
6883
6884 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6885 whose discriminants are contained in the record type OUTER_TYPE,
6886 returns the type of the controlling discriminant for the variant.
6887 May return NULL if the type could not be found. */
6888
6889 struct type *
6890 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6891 {
6892 const char *name = ada_variant_discrim_name (var_type);
6893
6894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6895 }
6896
6897 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6899 represents a 'when others' clause; otherwise 0. */
6900
6901 int
6902 ada_is_others_clause (struct type *type, int field_num)
6903 {
6904 const char *name = TYPE_FIELD_NAME (type, field_num);
6905
6906 return (name != NULL && name[0] == 'O');
6907 }
6908
6909 /* Assuming that TYPE0 is the type of the variant part of a record,
6910 returns the name of the discriminant controlling the variant.
6911 The value is valid until the next call to ada_variant_discrim_name. */
6912
6913 const char *
6914 ada_variant_discrim_name (struct type *type0)
6915 {
6916 static char *result = NULL;
6917 static size_t result_len = 0;
6918 struct type *type;
6919 const char *name;
6920 const char *discrim_end;
6921 const char *discrim_start;
6922
6923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6924 type = TYPE_TARGET_TYPE (type0);
6925 else
6926 type = type0;
6927
6928 name = ada_type_name (type);
6929
6930 if (name == NULL || name[0] == '\000')
6931 return "";
6932
6933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6934 discrim_end -= 1)
6935 {
6936 if (startswith (discrim_end, "___XVN"))
6937 break;
6938 }
6939 if (discrim_end == name)
6940 return "";
6941
6942 for (discrim_start = discrim_end; discrim_start != name + 3;
6943 discrim_start -= 1)
6944 {
6945 if (discrim_start == name + 1)
6946 return "";
6947 if ((discrim_start > name + 3
6948 && startswith (discrim_start - 3, "___"))
6949 || discrim_start[-1] == '.')
6950 break;
6951 }
6952
6953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6954 strncpy (result, discrim_start, discrim_end - discrim_start);
6955 result[discrim_end - discrim_start] = '\0';
6956 return result;
6957 }
6958
6959 /* Scan STR for a subtype-encoded number, beginning at position K.
6960 Put the position of the character just past the number scanned in
6961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6962 Return 1 if there was a valid number at the given position, and 0
6963 otherwise. A "subtype-encoded" number consists of the absolute value
6964 in decimal, followed by the letter 'm' to indicate a negative number.
6965 Assumes 0m does not occur. */
6966
6967 int
6968 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6969 {
6970 ULONGEST RU;
6971
6972 if (!isdigit (str[k]))
6973 return 0;
6974
6975 /* Do it the hard way so as not to make any assumption about
6976 the relationship of unsigned long (%lu scan format code) and
6977 LONGEST. */
6978 RU = 0;
6979 while (isdigit (str[k]))
6980 {
6981 RU = RU * 10 + (str[k] - '0');
6982 k += 1;
6983 }
6984
6985 if (str[k] == 'm')
6986 {
6987 if (R != NULL)
6988 *R = (-(LONGEST) (RU - 1)) - 1;
6989 k += 1;
6990 }
6991 else if (R != NULL)
6992 *R = (LONGEST) RU;
6993
6994 /* NOTE on the above: Technically, C does not say what the results of
6995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6996 number representable as a LONGEST (although either would probably work
6997 in most implementations). When RU>0, the locution in the then branch
6998 above is always equivalent to the negative of RU. */
6999
7000 if (new_k != NULL)
7001 *new_k = k;
7002 return 1;
7003 }
7004
7005 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7008
7009 int
7010 ada_in_variant (LONGEST val, struct type *type, int field_num)
7011 {
7012 const char *name = TYPE_FIELD_NAME (type, field_num);
7013 int p;
7014
7015 p = 0;
7016 while (1)
7017 {
7018 switch (name[p])
7019 {
7020 case '\0':
7021 return 0;
7022 case 'S':
7023 {
7024 LONGEST W;
7025
7026 if (!ada_scan_number (name, p + 1, &W, &p))
7027 return 0;
7028 if (val == W)
7029 return 1;
7030 break;
7031 }
7032 case 'R':
7033 {
7034 LONGEST L, U;
7035
7036 if (!ada_scan_number (name, p + 1, &L, &p)
7037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7038 return 0;
7039 if (val >= L && val <= U)
7040 return 1;
7041 break;
7042 }
7043 case 'O':
7044 return 1;
7045 default:
7046 return 0;
7047 }
7048 }
7049 }
7050
7051 /* FIXME: Lots of redundancy below. Try to consolidate. */
7052
7053 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7054 ARG_TYPE, extract and return the value of one of its (non-static)
7055 fields. FIELDNO says which field. Differs from value_primitive_field
7056 only in that it can handle packed values of arbitrary type. */
7057
7058 static struct value *
7059 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7060 struct type *arg_type)
7061 {
7062 struct type *type;
7063
7064 arg_type = ada_check_typedef (arg_type);
7065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7066
7067 /* Handle packed fields. It might be that the field is not packed
7068 relative to its containing structure, but the structure itself is
7069 packed; in this case we must take the bit-field path. */
7070 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7071 {
7072 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7073 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7074
7075 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7076 offset + bit_pos / 8,
7077 bit_pos % 8, bit_size, type);
7078 }
7079 else
7080 return value_primitive_field (arg1, offset, fieldno, arg_type);
7081 }
7082
7083 /* Find field with name NAME in object of type TYPE. If found,
7084 set the following for each argument that is non-null:
7085 - *FIELD_TYPE_P to the field's type;
7086 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7087 an object of that type;
7088 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7089 - *BIT_SIZE_P to its size in bits if the field is packed, and
7090 0 otherwise;
7091 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7092 fields up to but not including the desired field, or by the total
7093 number of fields if not found. A NULL value of NAME never
7094 matches; the function just counts visible fields in this case.
7095
7096 Notice that we need to handle when a tagged record hierarchy
7097 has some components with the same name, like in this scenario:
7098
7099 type Top_T is tagged record
7100 N : Integer := 1;
7101 U : Integer := 974;
7102 A : Integer := 48;
7103 end record;
7104
7105 type Middle_T is new Top.Top_T with record
7106 N : Character := 'a';
7107 C : Integer := 3;
7108 end record;
7109
7110 type Bottom_T is new Middle.Middle_T with record
7111 N : Float := 4.0;
7112 C : Character := '5';
7113 X : Integer := 6;
7114 A : Character := 'J';
7115 end record;
7116
7117 Let's say we now have a variable declared and initialized as follow:
7118
7119 TC : Top_A := new Bottom_T;
7120
7121 And then we use this variable to call this function
7122
7123 procedure Assign (Obj: in out Top_T; TV : Integer);
7124
7125 as follow:
7126
7127 Assign (Top_T (B), 12);
7128
7129 Now, we're in the debugger, and we're inside that procedure
7130 then and we want to print the value of obj.c:
7131
7132 Usually, the tagged record or one of the parent type owns the
7133 component to print and there's no issue but in this particular
7134 case, what does it mean to ask for Obj.C? Since the actual
7135 type for object is type Bottom_T, it could mean two things: type
7136 component C from the Middle_T view, but also component C from
7137 Bottom_T. So in that "undefined" case, when the component is
7138 not found in the non-resolved type (which includes all the
7139 components of the parent type), then resolve it and see if we
7140 get better luck once expanded.
7141
7142 In the case of homonyms in the derived tagged type, we don't
7143 guaranty anything, and pick the one that's easiest for us
7144 to program.
7145
7146 Returns 1 if found, 0 otherwise. */
7147
7148 static int
7149 find_struct_field (const char *name, struct type *type, int offset,
7150 struct type **field_type_p,
7151 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7152 int *index_p)
7153 {
7154 int i;
7155 int parent_offset = -1;
7156
7157 type = ada_check_typedef (type);
7158
7159 if (field_type_p != NULL)
7160 *field_type_p = NULL;
7161 if (byte_offset_p != NULL)
7162 *byte_offset_p = 0;
7163 if (bit_offset_p != NULL)
7164 *bit_offset_p = 0;
7165 if (bit_size_p != NULL)
7166 *bit_size_p = 0;
7167
7168 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7169 {
7170 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7171 int fld_offset = offset + bit_pos / 8;
7172 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7173
7174 if (t_field_name == NULL)
7175 continue;
7176
7177 else if (ada_is_parent_field (type, i))
7178 {
7179 /* This is a field pointing us to the parent type of a tagged
7180 type. As hinted in this function's documentation, we give
7181 preference to fields in the current record first, so what
7182 we do here is just record the index of this field before
7183 we skip it. If it turns out we couldn't find our field
7184 in the current record, then we'll get back to it and search
7185 inside it whether the field might exist in the parent. */
7186
7187 parent_offset = i;
7188 continue;
7189 }
7190
7191 else if (name != NULL && field_name_match (t_field_name, name))
7192 {
7193 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7194
7195 if (field_type_p != NULL)
7196 *field_type_p = TYPE_FIELD_TYPE (type, i);
7197 if (byte_offset_p != NULL)
7198 *byte_offset_p = fld_offset;
7199 if (bit_offset_p != NULL)
7200 *bit_offset_p = bit_pos % 8;
7201 if (bit_size_p != NULL)
7202 *bit_size_p = bit_size;
7203 return 1;
7204 }
7205 else if (ada_is_wrapper_field (type, i))
7206 {
7207 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7208 field_type_p, byte_offset_p, bit_offset_p,
7209 bit_size_p, index_p))
7210 return 1;
7211 }
7212 else if (ada_is_variant_part (type, i))
7213 {
7214 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7215 fixed type?? */
7216 int j;
7217 struct type *field_type
7218 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7219
7220 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7221 {
7222 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7223 fld_offset
7224 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7225 field_type_p, byte_offset_p,
7226 bit_offset_p, bit_size_p, index_p))
7227 return 1;
7228 }
7229 }
7230 else if (index_p != NULL)
7231 *index_p += 1;
7232 }
7233
7234 /* Field not found so far. If this is a tagged type which
7235 has a parent, try finding that field in the parent now. */
7236
7237 if (parent_offset != -1)
7238 {
7239 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7240 int fld_offset = offset + bit_pos / 8;
7241
7242 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7243 fld_offset, field_type_p, byte_offset_p,
7244 bit_offset_p, bit_size_p, index_p))
7245 return 1;
7246 }
7247
7248 return 0;
7249 }
7250
7251 /* Number of user-visible fields in record type TYPE. */
7252
7253 static int
7254 num_visible_fields (struct type *type)
7255 {
7256 int n;
7257
7258 n = 0;
7259 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7260 return n;
7261 }
7262
7263 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7264 and search in it assuming it has (class) type TYPE.
7265 If found, return value, else return NULL.
7266
7267 Searches recursively through wrapper fields (e.g., '_parent').
7268
7269 In the case of homonyms in the tagged types, please refer to the
7270 long explanation in find_struct_field's function documentation. */
7271
7272 static struct value *
7273 ada_search_struct_field (const char *name, struct value *arg, int offset,
7274 struct type *type)
7275 {
7276 int i;
7277 int parent_offset = -1;
7278
7279 type = ada_check_typedef (type);
7280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7281 {
7282 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7283
7284 if (t_field_name == NULL)
7285 continue;
7286
7287 else if (ada_is_parent_field (type, i))
7288 {
7289 /* This is a field pointing us to the parent type of a tagged
7290 type. As hinted in this function's documentation, we give
7291 preference to fields in the current record first, so what
7292 we do here is just record the index of this field before
7293 we skip it. If it turns out we couldn't find our field
7294 in the current record, then we'll get back to it and search
7295 inside it whether the field might exist in the parent. */
7296
7297 parent_offset = i;
7298 continue;
7299 }
7300
7301 else if (field_name_match (t_field_name, name))
7302 return ada_value_primitive_field (arg, offset, i, type);
7303
7304 else if (ada_is_wrapper_field (type, i))
7305 {
7306 struct value *v = /* Do not let indent join lines here. */
7307 ada_search_struct_field (name, arg,
7308 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7309 TYPE_FIELD_TYPE (type, i));
7310
7311 if (v != NULL)
7312 return v;
7313 }
7314
7315 else if (ada_is_variant_part (type, i))
7316 {
7317 /* PNH: Do we ever get here? See find_struct_field. */
7318 int j;
7319 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7320 i));
7321 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7322
7323 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7324 {
7325 struct value *v = ada_search_struct_field /* Force line
7326 break. */
7327 (name, arg,
7328 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7329 TYPE_FIELD_TYPE (field_type, j));
7330
7331 if (v != NULL)
7332 return v;
7333 }
7334 }
7335 }
7336
7337 /* Field not found so far. If this is a tagged type which
7338 has a parent, try finding that field in the parent now. */
7339
7340 if (parent_offset != -1)
7341 {
7342 struct value *v = ada_search_struct_field (
7343 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7344 TYPE_FIELD_TYPE (type, parent_offset));
7345
7346 if (v != NULL)
7347 return v;
7348 }
7349
7350 return NULL;
7351 }
7352
7353 static struct value *ada_index_struct_field_1 (int *, struct value *,
7354 int, struct type *);
7355
7356
7357 /* Return field #INDEX in ARG, where the index is that returned by
7358 * find_struct_field through its INDEX_P argument. Adjust the address
7359 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7360 * If found, return value, else return NULL. */
7361
7362 static struct value *
7363 ada_index_struct_field (int index, struct value *arg, int offset,
7364 struct type *type)
7365 {
7366 return ada_index_struct_field_1 (&index, arg, offset, type);
7367 }
7368
7369
7370 /* Auxiliary function for ada_index_struct_field. Like
7371 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7372 * *INDEX_P. */
7373
7374 static struct value *
7375 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7376 struct type *type)
7377 {
7378 int i;
7379 type = ada_check_typedef (type);
7380
7381 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7382 {
7383 if (TYPE_FIELD_NAME (type, i) == NULL)
7384 continue;
7385 else if (ada_is_wrapper_field (type, i))
7386 {
7387 struct value *v = /* Do not let indent join lines here. */
7388 ada_index_struct_field_1 (index_p, arg,
7389 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7390 TYPE_FIELD_TYPE (type, i));
7391
7392 if (v != NULL)
7393 return v;
7394 }
7395
7396 else if (ada_is_variant_part (type, i))
7397 {
7398 /* PNH: Do we ever get here? See ada_search_struct_field,
7399 find_struct_field. */
7400 error (_("Cannot assign this kind of variant record"));
7401 }
7402 else if (*index_p == 0)
7403 return ada_value_primitive_field (arg, offset, i, type);
7404 else
7405 *index_p -= 1;
7406 }
7407 return NULL;
7408 }
7409
7410 /* Given ARG, a value of type (pointer or reference to a)*
7411 structure/union, extract the component named NAME from the ultimate
7412 target structure/union and return it as a value with its
7413 appropriate type.
7414
7415 The routine searches for NAME among all members of the structure itself
7416 and (recursively) among all members of any wrapper members
7417 (e.g., '_parent').
7418
7419 If NO_ERR, then simply return NULL in case of error, rather than
7420 calling error. */
7421
7422 struct value *
7423 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7424 {
7425 struct type *t, *t1;
7426 struct value *v;
7427 int check_tag;
7428
7429 v = NULL;
7430 t1 = t = ada_check_typedef (value_type (arg));
7431 if (TYPE_CODE (t) == TYPE_CODE_REF)
7432 {
7433 t1 = TYPE_TARGET_TYPE (t);
7434 if (t1 == NULL)
7435 goto BadValue;
7436 t1 = ada_check_typedef (t1);
7437 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7438 {
7439 arg = coerce_ref (arg);
7440 t = t1;
7441 }
7442 }
7443
7444 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7445 {
7446 t1 = TYPE_TARGET_TYPE (t);
7447 if (t1 == NULL)
7448 goto BadValue;
7449 t1 = ada_check_typedef (t1);
7450 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7451 {
7452 arg = value_ind (arg);
7453 t = t1;
7454 }
7455 else
7456 break;
7457 }
7458
7459 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7460 goto BadValue;
7461
7462 if (t1 == t)
7463 v = ada_search_struct_field (name, arg, 0, t);
7464 else
7465 {
7466 int bit_offset, bit_size, byte_offset;
7467 struct type *field_type;
7468 CORE_ADDR address;
7469
7470 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7471 address = value_address (ada_value_ind (arg));
7472 else
7473 address = value_address (ada_coerce_ref (arg));
7474
7475 /* Check to see if this is a tagged type. We also need to handle
7476 the case where the type is a reference to a tagged type, but
7477 we have to be careful to exclude pointers to tagged types.
7478 The latter should be shown as usual (as a pointer), whereas
7479 a reference should mostly be transparent to the user. */
7480
7481 if (ada_is_tagged_type (t1, 0)
7482 || (TYPE_CODE (t1) == TYPE_CODE_REF
7483 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7484 {
7485 /* We first try to find the searched field in the current type.
7486 If not found then let's look in the fixed type. */
7487
7488 if (!find_struct_field (name, t1, 0,
7489 &field_type, &byte_offset, &bit_offset,
7490 &bit_size, NULL))
7491 check_tag = 1;
7492 else
7493 check_tag = 0;
7494 }
7495 else
7496 check_tag = 0;
7497
7498 /* Convert to fixed type in all cases, so that we have proper
7499 offsets to each field in unconstrained record types. */
7500 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7501 address, NULL, check_tag);
7502
7503 if (find_struct_field (name, t1, 0,
7504 &field_type, &byte_offset, &bit_offset,
7505 &bit_size, NULL))
7506 {
7507 if (bit_size != 0)
7508 {
7509 if (TYPE_CODE (t) == TYPE_CODE_REF)
7510 arg = ada_coerce_ref (arg);
7511 else
7512 arg = ada_value_ind (arg);
7513 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7514 bit_offset, bit_size,
7515 field_type);
7516 }
7517 else
7518 v = value_at_lazy (field_type, address + byte_offset);
7519 }
7520 }
7521
7522 if (v != NULL || no_err)
7523 return v;
7524 else
7525 error (_("There is no member named %s."), name);
7526
7527 BadValue:
7528 if (no_err)
7529 return NULL;
7530 else
7531 error (_("Attempt to extract a component of "
7532 "a value that is not a record."));
7533 }
7534
7535 /* Return a string representation of type TYPE. */
7536
7537 static std::string
7538 type_as_string (struct type *type)
7539 {
7540 string_file tmp_stream;
7541
7542 type_print (type, "", &tmp_stream, -1);
7543
7544 return std::move (tmp_stream.string ());
7545 }
7546
7547 /* Given a type TYPE, look up the type of the component of type named NAME.
7548 If DISPP is non-null, add its byte displacement from the beginning of a
7549 structure (pointed to by a value) of type TYPE to *DISPP (does not
7550 work for packed fields).
7551
7552 Matches any field whose name has NAME as a prefix, possibly
7553 followed by "___".
7554
7555 TYPE can be either a struct or union. If REFOK, TYPE may also
7556 be a (pointer or reference)+ to a struct or union, and the
7557 ultimate target type will be searched.
7558
7559 Looks recursively into variant clauses and parent types.
7560
7561 In the case of homonyms in the tagged types, please refer to the
7562 long explanation in find_struct_field's function documentation.
7563
7564 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7565 TYPE is not a type of the right kind. */
7566
7567 static struct type *
7568 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7569 int noerr)
7570 {
7571 int i;
7572 int parent_offset = -1;
7573
7574 if (name == NULL)
7575 goto BadName;
7576
7577 if (refok && type != NULL)
7578 while (1)
7579 {
7580 type = ada_check_typedef (type);
7581 if (TYPE_CODE (type) != TYPE_CODE_PTR
7582 && TYPE_CODE (type) != TYPE_CODE_REF)
7583 break;
7584 type = TYPE_TARGET_TYPE (type);
7585 }
7586
7587 if (type == NULL
7588 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7589 && TYPE_CODE (type) != TYPE_CODE_UNION))
7590 {
7591 if (noerr)
7592 return NULL;
7593
7594 error (_("Type %s is not a structure or union type"),
7595 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7596 }
7597
7598 type = to_static_fixed_type (type);
7599
7600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7601 {
7602 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7603 struct type *t;
7604
7605 if (t_field_name == NULL)
7606 continue;
7607
7608 else if (ada_is_parent_field (type, i))
7609 {
7610 /* This is a field pointing us to the parent type of a tagged
7611 type. As hinted in this function's documentation, we give
7612 preference to fields in the current record first, so what
7613 we do here is just record the index of this field before
7614 we skip it. If it turns out we couldn't find our field
7615 in the current record, then we'll get back to it and search
7616 inside it whether the field might exist in the parent. */
7617
7618 parent_offset = i;
7619 continue;
7620 }
7621
7622 else if (field_name_match (t_field_name, name))
7623 return TYPE_FIELD_TYPE (type, i);
7624
7625 else if (ada_is_wrapper_field (type, i))
7626 {
7627 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7628 0, 1);
7629 if (t != NULL)
7630 return t;
7631 }
7632
7633 else if (ada_is_variant_part (type, i))
7634 {
7635 int j;
7636 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7637 i));
7638
7639 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7640 {
7641 /* FIXME pnh 2008/01/26: We check for a field that is
7642 NOT wrapped in a struct, since the compiler sometimes
7643 generates these for unchecked variant types. Revisit
7644 if the compiler changes this practice. */
7645 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7646
7647 if (v_field_name != NULL
7648 && field_name_match (v_field_name, name))
7649 t = TYPE_FIELD_TYPE (field_type, j);
7650 else
7651 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7652 j),
7653 name, 0, 1);
7654
7655 if (t != NULL)
7656 return t;
7657 }
7658 }
7659
7660 }
7661
7662 /* Field not found so far. If this is a tagged type which
7663 has a parent, try finding that field in the parent now. */
7664
7665 if (parent_offset != -1)
7666 {
7667 struct type *t;
7668
7669 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7670 name, 0, 1);
7671 if (t != NULL)
7672 return t;
7673 }
7674
7675 BadName:
7676 if (!noerr)
7677 {
7678 const char *name_str = name != NULL ? name : _("<null>");
7679
7680 error (_("Type %s has no component named %s"),
7681 type_as_string (type).c_str (), name_str);
7682 }
7683
7684 return NULL;
7685 }
7686
7687 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7688 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7689 represents an unchecked union (that is, the variant part of a
7690 record that is named in an Unchecked_Union pragma). */
7691
7692 static int
7693 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7694 {
7695 const char *discrim_name = ada_variant_discrim_name (var_type);
7696
7697 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7698 }
7699
7700
7701 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7702 within a value of type OUTER_TYPE that is stored in GDB at
7703 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7704 numbering from 0) is applicable. Returns -1 if none are. */
7705
7706 int
7707 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7708 const gdb_byte *outer_valaddr)
7709 {
7710 int others_clause;
7711 int i;
7712 const char *discrim_name = ada_variant_discrim_name (var_type);
7713 struct value *outer;
7714 struct value *discrim;
7715 LONGEST discrim_val;
7716
7717 /* Using plain value_from_contents_and_address here causes problems
7718 because we will end up trying to resolve a type that is currently
7719 being constructed. */
7720 outer = value_from_contents_and_address_unresolved (outer_type,
7721 outer_valaddr, 0);
7722 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7723 if (discrim == NULL)
7724 return -1;
7725 discrim_val = value_as_long (discrim);
7726
7727 others_clause = -1;
7728 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7729 {
7730 if (ada_is_others_clause (var_type, i))
7731 others_clause = i;
7732 else if (ada_in_variant (discrim_val, var_type, i))
7733 return i;
7734 }
7735
7736 return others_clause;
7737 }
7738 \f
7739
7740
7741 /* Dynamic-Sized Records */
7742
7743 /* Strategy: The type ostensibly attached to a value with dynamic size
7744 (i.e., a size that is not statically recorded in the debugging
7745 data) does not accurately reflect the size or layout of the value.
7746 Our strategy is to convert these values to values with accurate,
7747 conventional types that are constructed on the fly. */
7748
7749 /* There is a subtle and tricky problem here. In general, we cannot
7750 determine the size of dynamic records without its data. However,
7751 the 'struct value' data structure, which GDB uses to represent
7752 quantities in the inferior process (the target), requires the size
7753 of the type at the time of its allocation in order to reserve space
7754 for GDB's internal copy of the data. That's why the
7755 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7756 rather than struct value*s.
7757
7758 However, GDB's internal history variables ($1, $2, etc.) are
7759 struct value*s containing internal copies of the data that are not, in
7760 general, the same as the data at their corresponding addresses in
7761 the target. Fortunately, the types we give to these values are all
7762 conventional, fixed-size types (as per the strategy described
7763 above), so that we don't usually have to perform the
7764 'to_fixed_xxx_type' conversions to look at their values.
7765 Unfortunately, there is one exception: if one of the internal
7766 history variables is an array whose elements are unconstrained
7767 records, then we will need to create distinct fixed types for each
7768 element selected. */
7769
7770 /* The upshot of all of this is that many routines take a (type, host
7771 address, target address) triple as arguments to represent a value.
7772 The host address, if non-null, is supposed to contain an internal
7773 copy of the relevant data; otherwise, the program is to consult the
7774 target at the target address. */
7775
7776 /* Assuming that VAL0 represents a pointer value, the result of
7777 dereferencing it. Differs from value_ind in its treatment of
7778 dynamic-sized types. */
7779
7780 struct value *
7781 ada_value_ind (struct value *val0)
7782 {
7783 struct value *val = value_ind (val0);
7784
7785 if (ada_is_tagged_type (value_type (val), 0))
7786 val = ada_tag_value_at_base_address (val);
7787
7788 return ada_to_fixed_value (val);
7789 }
7790
7791 /* The value resulting from dereferencing any "reference to"
7792 qualifiers on VAL0. */
7793
7794 static struct value *
7795 ada_coerce_ref (struct value *val0)
7796 {
7797 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7798 {
7799 struct value *val = val0;
7800
7801 val = coerce_ref (val);
7802
7803 if (ada_is_tagged_type (value_type (val), 0))
7804 val = ada_tag_value_at_base_address (val);
7805
7806 return ada_to_fixed_value (val);
7807 }
7808 else
7809 return val0;
7810 }
7811
7812 /* Return OFF rounded upward if necessary to a multiple of
7813 ALIGNMENT (a power of 2). */
7814
7815 static unsigned int
7816 align_value (unsigned int off, unsigned int alignment)
7817 {
7818 return (off + alignment - 1) & ~(alignment - 1);
7819 }
7820
7821 /* Return the bit alignment required for field #F of template type TYPE. */
7822
7823 static unsigned int
7824 field_alignment (struct type *type, int f)
7825 {
7826 const char *name = TYPE_FIELD_NAME (type, f);
7827 int len;
7828 int align_offset;
7829
7830 /* The field name should never be null, unless the debugging information
7831 is somehow malformed. In this case, we assume the field does not
7832 require any alignment. */
7833 if (name == NULL)
7834 return 1;
7835
7836 len = strlen (name);
7837
7838 if (!isdigit (name[len - 1]))
7839 return 1;
7840
7841 if (isdigit (name[len - 2]))
7842 align_offset = len - 2;
7843 else
7844 align_offset = len - 1;
7845
7846 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7847 return TARGET_CHAR_BIT;
7848
7849 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7850 }
7851
7852 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7853
7854 static struct symbol *
7855 ada_find_any_type_symbol (const char *name)
7856 {
7857 struct symbol *sym;
7858
7859 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7860 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7861 return sym;
7862
7863 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7864 return sym;
7865 }
7866
7867 /* Find a type named NAME. Ignores ambiguity. This routine will look
7868 solely for types defined by debug info, it will not search the GDB
7869 primitive types. */
7870
7871 static struct type *
7872 ada_find_any_type (const char *name)
7873 {
7874 struct symbol *sym = ada_find_any_type_symbol (name);
7875
7876 if (sym != NULL)
7877 return SYMBOL_TYPE (sym);
7878
7879 return NULL;
7880 }
7881
7882 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7883 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7884 symbol, in which case it is returned. Otherwise, this looks for
7885 symbols whose name is that of NAME_SYM suffixed with "___XR".
7886 Return symbol if found, and NULL otherwise. */
7887
7888 static bool
7889 ada_is_renaming_symbol (struct symbol *name_sym)
7890 {
7891 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7892 return strstr (name, "___XR") != NULL;
7893 }
7894
7895 /* Because of GNAT encoding conventions, several GDB symbols may match a
7896 given type name. If the type denoted by TYPE0 is to be preferred to
7897 that of TYPE1 for purposes of type printing, return non-zero;
7898 otherwise return 0. */
7899
7900 int
7901 ada_prefer_type (struct type *type0, struct type *type1)
7902 {
7903 if (type1 == NULL)
7904 return 1;
7905 else if (type0 == NULL)
7906 return 0;
7907 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7908 return 1;
7909 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7910 return 0;
7911 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7912 return 1;
7913 else if (ada_is_constrained_packed_array_type (type0))
7914 return 1;
7915 else if (ada_is_array_descriptor_type (type0)
7916 && !ada_is_array_descriptor_type (type1))
7917 return 1;
7918 else
7919 {
7920 const char *type0_name = TYPE_NAME (type0);
7921 const char *type1_name = TYPE_NAME (type1);
7922
7923 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7924 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7925 return 1;
7926 }
7927 return 0;
7928 }
7929
7930 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7931 null. */
7932
7933 const char *
7934 ada_type_name (struct type *type)
7935 {
7936 if (type == NULL)
7937 return NULL;
7938 return TYPE_NAME (type);
7939 }
7940
7941 /* Search the list of "descriptive" types associated to TYPE for a type
7942 whose name is NAME. */
7943
7944 static struct type *
7945 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7946 {
7947 struct type *result, *tmp;
7948
7949 if (ada_ignore_descriptive_types_p)
7950 return NULL;
7951
7952 /* If there no descriptive-type info, then there is no parallel type
7953 to be found. */
7954 if (!HAVE_GNAT_AUX_INFO (type))
7955 return NULL;
7956
7957 result = TYPE_DESCRIPTIVE_TYPE (type);
7958 while (result != NULL)
7959 {
7960 const char *result_name = ada_type_name (result);
7961
7962 if (result_name == NULL)
7963 {
7964 warning (_("unexpected null name on descriptive type"));
7965 return NULL;
7966 }
7967
7968 /* If the names match, stop. */
7969 if (strcmp (result_name, name) == 0)
7970 break;
7971
7972 /* Otherwise, look at the next item on the list, if any. */
7973 if (HAVE_GNAT_AUX_INFO (result))
7974 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7975 else
7976 tmp = NULL;
7977
7978 /* If not found either, try after having resolved the typedef. */
7979 if (tmp != NULL)
7980 result = tmp;
7981 else
7982 {
7983 result = check_typedef (result);
7984 if (HAVE_GNAT_AUX_INFO (result))
7985 result = TYPE_DESCRIPTIVE_TYPE (result);
7986 else
7987 result = NULL;
7988 }
7989 }
7990
7991 /* If we didn't find a match, see whether this is a packed array. With
7992 older compilers, the descriptive type information is either absent or
7993 irrelevant when it comes to packed arrays so the above lookup fails.
7994 Fall back to using a parallel lookup by name in this case. */
7995 if (result == NULL && ada_is_constrained_packed_array_type (type))
7996 return ada_find_any_type (name);
7997
7998 return result;
7999 }
8000
8001 /* Find a parallel type to TYPE with the specified NAME, using the
8002 descriptive type taken from the debugging information, if available,
8003 and otherwise using the (slower) name-based method. */
8004
8005 static struct type *
8006 ada_find_parallel_type_with_name (struct type *type, const char *name)
8007 {
8008 struct type *result = NULL;
8009
8010 if (HAVE_GNAT_AUX_INFO (type))
8011 result = find_parallel_type_by_descriptive_type (type, name);
8012 else
8013 result = ada_find_any_type (name);
8014
8015 return result;
8016 }
8017
8018 /* Same as above, but specify the name of the parallel type by appending
8019 SUFFIX to the name of TYPE. */
8020
8021 struct type *
8022 ada_find_parallel_type (struct type *type, const char *suffix)
8023 {
8024 char *name;
8025 const char *type_name = ada_type_name (type);
8026 int len;
8027
8028 if (type_name == NULL)
8029 return NULL;
8030
8031 len = strlen (type_name);
8032
8033 name = (char *) alloca (len + strlen (suffix) + 1);
8034
8035 strcpy (name, type_name);
8036 strcpy (name + len, suffix);
8037
8038 return ada_find_parallel_type_with_name (type, name);
8039 }
8040
8041 /* If TYPE is a variable-size record type, return the corresponding template
8042 type describing its fields. Otherwise, return NULL. */
8043
8044 static struct type *
8045 dynamic_template_type (struct type *type)
8046 {
8047 type = ada_check_typedef (type);
8048
8049 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8050 || ada_type_name (type) == NULL)
8051 return NULL;
8052 else
8053 {
8054 int len = strlen (ada_type_name (type));
8055
8056 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8057 return type;
8058 else
8059 return ada_find_parallel_type (type, "___XVE");
8060 }
8061 }
8062
8063 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8064 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8065
8066 static int
8067 is_dynamic_field (struct type *templ_type, int field_num)
8068 {
8069 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8070
8071 return name != NULL
8072 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8073 && strstr (name, "___XVL") != NULL;
8074 }
8075
8076 /* The index of the variant field of TYPE, or -1 if TYPE does not
8077 represent a variant record type. */
8078
8079 static int
8080 variant_field_index (struct type *type)
8081 {
8082 int f;
8083
8084 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8085 return -1;
8086
8087 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8088 {
8089 if (ada_is_variant_part (type, f))
8090 return f;
8091 }
8092 return -1;
8093 }
8094
8095 /* A record type with no fields. */
8096
8097 static struct type *
8098 empty_record (struct type *templ)
8099 {
8100 struct type *type = alloc_type_copy (templ);
8101
8102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8103 TYPE_NFIELDS (type) = 0;
8104 TYPE_FIELDS (type) = NULL;
8105 INIT_NONE_SPECIFIC (type);
8106 TYPE_NAME (type) = "<empty>";
8107 TYPE_LENGTH (type) = 0;
8108 return type;
8109 }
8110
8111 /* An ordinary record type (with fixed-length fields) that describes
8112 the value of type TYPE at VALADDR or ADDRESS (see comments at
8113 the beginning of this section) VAL according to GNAT conventions.
8114 DVAL0 should describe the (portion of a) record that contains any
8115 necessary discriminants. It should be NULL if value_type (VAL) is
8116 an outer-level type (i.e., as opposed to a branch of a variant.) A
8117 variant field (unless unchecked) is replaced by a particular branch
8118 of the variant.
8119
8120 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8121 length are not statically known are discarded. As a consequence,
8122 VALADDR, ADDRESS and DVAL0 are ignored.
8123
8124 NOTE: Limitations: For now, we assume that dynamic fields and
8125 variants occupy whole numbers of bytes. However, they need not be
8126 byte-aligned. */
8127
8128 struct type *
8129 ada_template_to_fixed_record_type_1 (struct type *type,
8130 const gdb_byte *valaddr,
8131 CORE_ADDR address, struct value *dval0,
8132 int keep_dynamic_fields)
8133 {
8134 struct value *mark = value_mark ();
8135 struct value *dval;
8136 struct type *rtype;
8137 int nfields, bit_len;
8138 int variant_field;
8139 long off;
8140 int fld_bit_len;
8141 int f;
8142
8143 /* Compute the number of fields in this record type that are going
8144 to be processed: unless keep_dynamic_fields, this includes only
8145 fields whose position and length are static will be processed. */
8146 if (keep_dynamic_fields)
8147 nfields = TYPE_NFIELDS (type);
8148 else
8149 {
8150 nfields = 0;
8151 while (nfields < TYPE_NFIELDS (type)
8152 && !ada_is_variant_part (type, nfields)
8153 && !is_dynamic_field (type, nfields))
8154 nfields++;
8155 }
8156
8157 rtype = alloc_type_copy (type);
8158 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8159 INIT_NONE_SPECIFIC (rtype);
8160 TYPE_NFIELDS (rtype) = nfields;
8161 TYPE_FIELDS (rtype) = (struct field *)
8162 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8163 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8164 TYPE_NAME (rtype) = ada_type_name (type);
8165 TYPE_FIXED_INSTANCE (rtype) = 1;
8166
8167 off = 0;
8168 bit_len = 0;
8169 variant_field = -1;
8170
8171 for (f = 0; f < nfields; f += 1)
8172 {
8173 off = align_value (off, field_alignment (type, f))
8174 + TYPE_FIELD_BITPOS (type, f);
8175 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8176 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8177
8178 if (ada_is_variant_part (type, f))
8179 {
8180 variant_field = f;
8181 fld_bit_len = 0;
8182 }
8183 else if (is_dynamic_field (type, f))
8184 {
8185 const gdb_byte *field_valaddr = valaddr;
8186 CORE_ADDR field_address = address;
8187 struct type *field_type =
8188 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8189
8190 if (dval0 == NULL)
8191 {
8192 /* rtype's length is computed based on the run-time
8193 value of discriminants. If the discriminants are not
8194 initialized, the type size may be completely bogus and
8195 GDB may fail to allocate a value for it. So check the
8196 size first before creating the value. */
8197 ada_ensure_varsize_limit (rtype);
8198 /* Using plain value_from_contents_and_address here
8199 causes problems because we will end up trying to
8200 resolve a type that is currently being
8201 constructed. */
8202 dval = value_from_contents_and_address_unresolved (rtype,
8203 valaddr,
8204 address);
8205 rtype = value_type (dval);
8206 }
8207 else
8208 dval = dval0;
8209
8210 /* If the type referenced by this field is an aligner type, we need
8211 to unwrap that aligner type, because its size might not be set.
8212 Keeping the aligner type would cause us to compute the wrong
8213 size for this field, impacting the offset of the all the fields
8214 that follow this one. */
8215 if (ada_is_aligner_type (field_type))
8216 {
8217 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8218
8219 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8220 field_address = cond_offset_target (field_address, field_offset);
8221 field_type = ada_aligned_type (field_type);
8222 }
8223
8224 field_valaddr = cond_offset_host (field_valaddr,
8225 off / TARGET_CHAR_BIT);
8226 field_address = cond_offset_target (field_address,
8227 off / TARGET_CHAR_BIT);
8228
8229 /* Get the fixed type of the field. Note that, in this case,
8230 we do not want to get the real type out of the tag: if
8231 the current field is the parent part of a tagged record,
8232 we will get the tag of the object. Clearly wrong: the real
8233 type of the parent is not the real type of the child. We
8234 would end up in an infinite loop. */
8235 field_type = ada_get_base_type (field_type);
8236 field_type = ada_to_fixed_type (field_type, field_valaddr,
8237 field_address, dval, 0);
8238 /* If the field size is already larger than the maximum
8239 object size, then the record itself will necessarily
8240 be larger than the maximum object size. We need to make
8241 this check now, because the size might be so ridiculously
8242 large (due to an uninitialized variable in the inferior)
8243 that it would cause an overflow when adding it to the
8244 record size. */
8245 ada_ensure_varsize_limit (field_type);
8246
8247 TYPE_FIELD_TYPE (rtype, f) = field_type;
8248 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8249 /* The multiplication can potentially overflow. But because
8250 the field length has been size-checked just above, and
8251 assuming that the maximum size is a reasonable value,
8252 an overflow should not happen in practice. So rather than
8253 adding overflow recovery code to this already complex code,
8254 we just assume that it's not going to happen. */
8255 fld_bit_len =
8256 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8257 }
8258 else
8259 {
8260 /* Note: If this field's type is a typedef, it is important
8261 to preserve the typedef layer.
8262
8263 Otherwise, we might be transforming a typedef to a fat
8264 pointer (encoding a pointer to an unconstrained array),
8265 into a basic fat pointer (encoding an unconstrained
8266 array). As both types are implemented using the same
8267 structure, the typedef is the only clue which allows us
8268 to distinguish between the two options. Stripping it
8269 would prevent us from printing this field appropriately. */
8270 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8271 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8272 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8273 fld_bit_len =
8274 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8275 else
8276 {
8277 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8278
8279 /* We need to be careful of typedefs when computing
8280 the length of our field. If this is a typedef,
8281 get the length of the target type, not the length
8282 of the typedef. */
8283 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8284 field_type = ada_typedef_target_type (field_type);
8285
8286 fld_bit_len =
8287 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8288 }
8289 }
8290 if (off + fld_bit_len > bit_len)
8291 bit_len = off + fld_bit_len;
8292 off += fld_bit_len;
8293 TYPE_LENGTH (rtype) =
8294 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8295 }
8296
8297 /* We handle the variant part, if any, at the end because of certain
8298 odd cases in which it is re-ordered so as NOT to be the last field of
8299 the record. This can happen in the presence of representation
8300 clauses. */
8301 if (variant_field >= 0)
8302 {
8303 struct type *branch_type;
8304
8305 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8306
8307 if (dval0 == NULL)
8308 {
8309 /* Using plain value_from_contents_and_address here causes
8310 problems because we will end up trying to resolve a type
8311 that is currently being constructed. */
8312 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8313 address);
8314 rtype = value_type (dval);
8315 }
8316 else
8317 dval = dval0;
8318
8319 branch_type =
8320 to_fixed_variant_branch_type
8321 (TYPE_FIELD_TYPE (type, variant_field),
8322 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8323 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8324 if (branch_type == NULL)
8325 {
8326 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8327 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8328 TYPE_NFIELDS (rtype) -= 1;
8329 }
8330 else
8331 {
8332 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8333 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8334 fld_bit_len =
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8336 TARGET_CHAR_BIT;
8337 if (off + fld_bit_len > bit_len)
8338 bit_len = off + fld_bit_len;
8339 TYPE_LENGTH (rtype) =
8340 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8341 }
8342 }
8343
8344 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8345 should contain the alignment of that record, which should be a strictly
8346 positive value. If null or negative, then something is wrong, most
8347 probably in the debug info. In that case, we don't round up the size
8348 of the resulting type. If this record is not part of another structure,
8349 the current RTYPE length might be good enough for our purposes. */
8350 if (TYPE_LENGTH (type) <= 0)
8351 {
8352 if (TYPE_NAME (rtype))
8353 warning (_("Invalid type size for `%s' detected: %s."),
8354 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8355 else
8356 warning (_("Invalid type size for <unnamed> detected: %s."),
8357 pulongest (TYPE_LENGTH (type)));
8358 }
8359 else
8360 {
8361 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8362 TYPE_LENGTH (type));
8363 }
8364
8365 value_free_to_mark (mark);
8366 if (TYPE_LENGTH (rtype) > varsize_limit)
8367 error (_("record type with dynamic size is larger than varsize-limit"));
8368 return rtype;
8369 }
8370
8371 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8372 of 1. */
8373
8374 static struct type *
8375 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8376 CORE_ADDR address, struct value *dval0)
8377 {
8378 return ada_template_to_fixed_record_type_1 (type, valaddr,
8379 address, dval0, 1);
8380 }
8381
8382 /* An ordinary record type in which ___XVL-convention fields and
8383 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8384 static approximations, containing all possible fields. Uses
8385 no runtime values. Useless for use in values, but that's OK,
8386 since the results are used only for type determinations. Works on both
8387 structs and unions. Representation note: to save space, we memorize
8388 the result of this function in the TYPE_TARGET_TYPE of the
8389 template type. */
8390
8391 static struct type *
8392 template_to_static_fixed_type (struct type *type0)
8393 {
8394 struct type *type;
8395 int nfields;
8396 int f;
8397
8398 /* No need no do anything if the input type is already fixed. */
8399 if (TYPE_FIXED_INSTANCE (type0))
8400 return type0;
8401
8402 /* Likewise if we already have computed the static approximation. */
8403 if (TYPE_TARGET_TYPE (type0) != NULL)
8404 return TYPE_TARGET_TYPE (type0);
8405
8406 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8407 type = type0;
8408 nfields = TYPE_NFIELDS (type0);
8409
8410 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8411 recompute all over next time. */
8412 TYPE_TARGET_TYPE (type0) = type;
8413
8414 for (f = 0; f < nfields; f += 1)
8415 {
8416 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8417 struct type *new_type;
8418
8419 if (is_dynamic_field (type0, f))
8420 {
8421 field_type = ada_check_typedef (field_type);
8422 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8423 }
8424 else
8425 new_type = static_unwrap_type (field_type);
8426
8427 if (new_type != field_type)
8428 {
8429 /* Clone TYPE0 only the first time we get a new field type. */
8430 if (type == type0)
8431 {
8432 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8433 TYPE_CODE (type) = TYPE_CODE (type0);
8434 INIT_NONE_SPECIFIC (type);
8435 TYPE_NFIELDS (type) = nfields;
8436 TYPE_FIELDS (type) = (struct field *)
8437 TYPE_ALLOC (type, nfields * sizeof (struct field));
8438 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8439 sizeof (struct field) * nfields);
8440 TYPE_NAME (type) = ada_type_name (type0);
8441 TYPE_FIXED_INSTANCE (type) = 1;
8442 TYPE_LENGTH (type) = 0;
8443 }
8444 TYPE_FIELD_TYPE (type, f) = new_type;
8445 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8446 }
8447 }
8448
8449 return type;
8450 }
8451
8452 /* Given an object of type TYPE whose contents are at VALADDR and
8453 whose address in memory is ADDRESS, returns a revision of TYPE,
8454 which should be a non-dynamic-sized record, in which the variant
8455 part, if any, is replaced with the appropriate branch. Looks
8456 for discriminant values in DVAL0, which can be NULL if the record
8457 contains the necessary discriminant values. */
8458
8459 static struct type *
8460 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8461 CORE_ADDR address, struct value *dval0)
8462 {
8463 struct value *mark = value_mark ();
8464 struct value *dval;
8465 struct type *rtype;
8466 struct type *branch_type;
8467 int nfields = TYPE_NFIELDS (type);
8468 int variant_field = variant_field_index (type);
8469
8470 if (variant_field == -1)
8471 return type;
8472
8473 if (dval0 == NULL)
8474 {
8475 dval = value_from_contents_and_address (type, valaddr, address);
8476 type = value_type (dval);
8477 }
8478 else
8479 dval = dval0;
8480
8481 rtype = alloc_type_copy (type);
8482 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8483 INIT_NONE_SPECIFIC (rtype);
8484 TYPE_NFIELDS (rtype) = nfields;
8485 TYPE_FIELDS (rtype) =
8486 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8487 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8488 sizeof (struct field) * nfields);
8489 TYPE_NAME (rtype) = ada_type_name (type);
8490 TYPE_FIXED_INSTANCE (rtype) = 1;
8491 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8492
8493 branch_type = to_fixed_variant_branch_type
8494 (TYPE_FIELD_TYPE (type, variant_field),
8495 cond_offset_host (valaddr,
8496 TYPE_FIELD_BITPOS (type, variant_field)
8497 / TARGET_CHAR_BIT),
8498 cond_offset_target (address,
8499 TYPE_FIELD_BITPOS (type, variant_field)
8500 / TARGET_CHAR_BIT), dval);
8501 if (branch_type == NULL)
8502 {
8503 int f;
8504
8505 for (f = variant_field + 1; f < nfields; f += 1)
8506 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8507 TYPE_NFIELDS (rtype) -= 1;
8508 }
8509 else
8510 {
8511 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8512 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8513 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8514 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8515 }
8516 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8517
8518 value_free_to_mark (mark);
8519 return rtype;
8520 }
8521
8522 /* An ordinary record type (with fixed-length fields) that describes
8523 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8524 beginning of this section]. Any necessary discriminants' values
8525 should be in DVAL, a record value; it may be NULL if the object
8526 at ADDR itself contains any necessary discriminant values.
8527 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8528 values from the record are needed. Except in the case that DVAL,
8529 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8530 unchecked) is replaced by a particular branch of the variant.
8531
8532 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8533 is questionable and may be removed. It can arise during the
8534 processing of an unconstrained-array-of-record type where all the
8535 variant branches have exactly the same size. This is because in
8536 such cases, the compiler does not bother to use the XVS convention
8537 when encoding the record. I am currently dubious of this
8538 shortcut and suspect the compiler should be altered. FIXME. */
8539
8540 static struct type *
8541 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8542 CORE_ADDR address, struct value *dval)
8543 {
8544 struct type *templ_type;
8545
8546 if (TYPE_FIXED_INSTANCE (type0))
8547 return type0;
8548
8549 templ_type = dynamic_template_type (type0);
8550
8551 if (templ_type != NULL)
8552 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8553 else if (variant_field_index (type0) >= 0)
8554 {
8555 if (dval == NULL && valaddr == NULL && address == 0)
8556 return type0;
8557 return to_record_with_fixed_variant_part (type0, valaddr, address,
8558 dval);
8559 }
8560 else
8561 {
8562 TYPE_FIXED_INSTANCE (type0) = 1;
8563 return type0;
8564 }
8565
8566 }
8567
8568 /* An ordinary record type (with fixed-length fields) that describes
8569 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8570 union type. Any necessary discriminants' values should be in DVAL,
8571 a record value. That is, this routine selects the appropriate
8572 branch of the union at ADDR according to the discriminant value
8573 indicated in the union's type name. Returns VAR_TYPE0 itself if
8574 it represents a variant subject to a pragma Unchecked_Union. */
8575
8576 static struct type *
8577 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8578 CORE_ADDR address, struct value *dval)
8579 {
8580 int which;
8581 struct type *templ_type;
8582 struct type *var_type;
8583
8584 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8585 var_type = TYPE_TARGET_TYPE (var_type0);
8586 else
8587 var_type = var_type0;
8588
8589 templ_type = ada_find_parallel_type (var_type, "___XVU");
8590
8591 if (templ_type != NULL)
8592 var_type = templ_type;
8593
8594 if (is_unchecked_variant (var_type, value_type (dval)))
8595 return var_type0;
8596 which =
8597 ada_which_variant_applies (var_type,
8598 value_type (dval), value_contents (dval));
8599
8600 if (which < 0)
8601 return empty_record (var_type);
8602 else if (is_dynamic_field (var_type, which))
8603 return to_fixed_record_type
8604 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8605 valaddr, address, dval);
8606 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8607 return
8608 to_fixed_record_type
8609 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8610 else
8611 return TYPE_FIELD_TYPE (var_type, which);
8612 }
8613
8614 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8615 ENCODING_TYPE, a type following the GNAT conventions for discrete
8616 type encodings, only carries redundant information. */
8617
8618 static int
8619 ada_is_redundant_range_encoding (struct type *range_type,
8620 struct type *encoding_type)
8621 {
8622 const char *bounds_str;
8623 int n;
8624 LONGEST lo, hi;
8625
8626 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8627
8628 if (TYPE_CODE (get_base_type (range_type))
8629 != TYPE_CODE (get_base_type (encoding_type)))
8630 {
8631 /* The compiler probably used a simple base type to describe
8632 the range type instead of the range's actual base type,
8633 expecting us to get the real base type from the encoding
8634 anyway. In this situation, the encoding cannot be ignored
8635 as redundant. */
8636 return 0;
8637 }
8638
8639 if (is_dynamic_type (range_type))
8640 return 0;
8641
8642 if (TYPE_NAME (encoding_type) == NULL)
8643 return 0;
8644
8645 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8646 if (bounds_str == NULL)
8647 return 0;
8648
8649 n = 8; /* Skip "___XDLU_". */
8650 if (!ada_scan_number (bounds_str, n, &lo, &n))
8651 return 0;
8652 if (TYPE_LOW_BOUND (range_type) != lo)
8653 return 0;
8654
8655 n += 2; /* Skip the "__" separator between the two bounds. */
8656 if (!ada_scan_number (bounds_str, n, &hi, &n))
8657 return 0;
8658 if (TYPE_HIGH_BOUND (range_type) != hi)
8659 return 0;
8660
8661 return 1;
8662 }
8663
8664 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8665 a type following the GNAT encoding for describing array type
8666 indices, only carries redundant information. */
8667
8668 static int
8669 ada_is_redundant_index_type_desc (struct type *array_type,
8670 struct type *desc_type)
8671 {
8672 struct type *this_layer = check_typedef (array_type);
8673 int i;
8674
8675 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8676 {
8677 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8678 TYPE_FIELD_TYPE (desc_type, i)))
8679 return 0;
8680 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8681 }
8682
8683 return 1;
8684 }
8685
8686 /* Assuming that TYPE0 is an array type describing the type of a value
8687 at ADDR, and that DVAL describes a record containing any
8688 discriminants used in TYPE0, returns a type for the value that
8689 contains no dynamic components (that is, no components whose sizes
8690 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8691 true, gives an error message if the resulting type's size is over
8692 varsize_limit. */
8693
8694 static struct type *
8695 to_fixed_array_type (struct type *type0, struct value *dval,
8696 int ignore_too_big)
8697 {
8698 struct type *index_type_desc;
8699 struct type *result;
8700 int constrained_packed_array_p;
8701 static const char *xa_suffix = "___XA";
8702
8703 type0 = ada_check_typedef (type0);
8704 if (TYPE_FIXED_INSTANCE (type0))
8705 return type0;
8706
8707 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8708 if (constrained_packed_array_p)
8709 type0 = decode_constrained_packed_array_type (type0);
8710
8711 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8712
8713 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8714 encoding suffixed with 'P' may still be generated. If so,
8715 it should be used to find the XA type. */
8716
8717 if (index_type_desc == NULL)
8718 {
8719 const char *type_name = ada_type_name (type0);
8720
8721 if (type_name != NULL)
8722 {
8723 const int len = strlen (type_name);
8724 char *name = (char *) alloca (len + strlen (xa_suffix));
8725
8726 if (type_name[len - 1] == 'P')
8727 {
8728 strcpy (name, type_name);
8729 strcpy (name + len - 1, xa_suffix);
8730 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8731 }
8732 }
8733 }
8734
8735 ada_fixup_array_indexes_type (index_type_desc);
8736 if (index_type_desc != NULL
8737 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8738 {
8739 /* Ignore this ___XA parallel type, as it does not bring any
8740 useful information. This allows us to avoid creating fixed
8741 versions of the array's index types, which would be identical
8742 to the original ones. This, in turn, can also help avoid
8743 the creation of fixed versions of the array itself. */
8744 index_type_desc = NULL;
8745 }
8746
8747 if (index_type_desc == NULL)
8748 {
8749 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8750
8751 /* NOTE: elt_type---the fixed version of elt_type0---should never
8752 depend on the contents of the array in properly constructed
8753 debugging data. */
8754 /* Create a fixed version of the array element type.
8755 We're not providing the address of an element here,
8756 and thus the actual object value cannot be inspected to do
8757 the conversion. This should not be a problem, since arrays of
8758 unconstrained objects are not allowed. In particular, all
8759 the elements of an array of a tagged type should all be of
8760 the same type specified in the debugging info. No need to
8761 consult the object tag. */
8762 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8763
8764 /* Make sure we always create a new array type when dealing with
8765 packed array types, since we're going to fix-up the array
8766 type length and element bitsize a little further down. */
8767 if (elt_type0 == elt_type && !constrained_packed_array_p)
8768 result = type0;
8769 else
8770 result = create_array_type (alloc_type_copy (type0),
8771 elt_type, TYPE_INDEX_TYPE (type0));
8772 }
8773 else
8774 {
8775 int i;
8776 struct type *elt_type0;
8777
8778 elt_type0 = type0;
8779 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8780 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8781
8782 /* NOTE: result---the fixed version of elt_type0---should never
8783 depend on the contents of the array in properly constructed
8784 debugging data. */
8785 /* Create a fixed version of the array element type.
8786 We're not providing the address of an element here,
8787 and thus the actual object value cannot be inspected to do
8788 the conversion. This should not be a problem, since arrays of
8789 unconstrained objects are not allowed. In particular, all
8790 the elements of an array of a tagged type should all be of
8791 the same type specified in the debugging info. No need to
8792 consult the object tag. */
8793 result =
8794 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8795
8796 elt_type0 = type0;
8797 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8798 {
8799 struct type *range_type =
8800 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8801
8802 result = create_array_type (alloc_type_copy (elt_type0),
8803 result, range_type);
8804 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8805 }
8806 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8807 error (_("array type with dynamic size is larger than varsize-limit"));
8808 }
8809
8810 /* We want to preserve the type name. This can be useful when
8811 trying to get the type name of a value that has already been
8812 printed (for instance, if the user did "print VAR; whatis $". */
8813 TYPE_NAME (result) = TYPE_NAME (type0);
8814
8815 if (constrained_packed_array_p)
8816 {
8817 /* So far, the resulting type has been created as if the original
8818 type was a regular (non-packed) array type. As a result, the
8819 bitsize of the array elements needs to be set again, and the array
8820 length needs to be recomputed based on that bitsize. */
8821 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8822 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8823
8824 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8825 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8826 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8827 TYPE_LENGTH (result)++;
8828 }
8829
8830 TYPE_FIXED_INSTANCE (result) = 1;
8831 return result;
8832 }
8833
8834
8835 /* A standard type (containing no dynamically sized components)
8836 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8837 DVAL describes a record containing any discriminants used in TYPE0,
8838 and may be NULL if there are none, or if the object of type TYPE at
8839 ADDRESS or in VALADDR contains these discriminants.
8840
8841 If CHECK_TAG is not null, in the case of tagged types, this function
8842 attempts to locate the object's tag and use it to compute the actual
8843 type. However, when ADDRESS is null, we cannot use it to determine the
8844 location of the tag, and therefore compute the tagged type's actual type.
8845 So we return the tagged type without consulting the tag. */
8846
8847 static struct type *
8848 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8849 CORE_ADDR address, struct value *dval, int check_tag)
8850 {
8851 type = ada_check_typedef (type);
8852
8853 /* Only un-fixed types need to be handled here. */
8854 if (!HAVE_GNAT_AUX_INFO (type))
8855 return type;
8856
8857 switch (TYPE_CODE (type))
8858 {
8859 default:
8860 return type;
8861 case TYPE_CODE_STRUCT:
8862 {
8863 struct type *static_type = to_static_fixed_type (type);
8864 struct type *fixed_record_type =
8865 to_fixed_record_type (type, valaddr, address, NULL);
8866
8867 /* If STATIC_TYPE is a tagged type and we know the object's address,
8868 then we can determine its tag, and compute the object's actual
8869 type from there. Note that we have to use the fixed record
8870 type (the parent part of the record may have dynamic fields
8871 and the way the location of _tag is expressed may depend on
8872 them). */
8873
8874 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8875 {
8876 struct value *tag =
8877 value_tag_from_contents_and_address
8878 (fixed_record_type,
8879 valaddr,
8880 address);
8881 struct type *real_type = type_from_tag (tag);
8882 struct value *obj =
8883 value_from_contents_and_address (fixed_record_type,
8884 valaddr,
8885 address);
8886 fixed_record_type = value_type (obj);
8887 if (real_type != NULL)
8888 return to_fixed_record_type
8889 (real_type, NULL,
8890 value_address (ada_tag_value_at_base_address (obj)), NULL);
8891 }
8892
8893 /* Check to see if there is a parallel ___XVZ variable.
8894 If there is, then it provides the actual size of our type. */
8895 else if (ada_type_name (fixed_record_type) != NULL)
8896 {
8897 const char *name = ada_type_name (fixed_record_type);
8898 char *xvz_name
8899 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8900 bool xvz_found = false;
8901 LONGEST size;
8902
8903 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8904 try
8905 {
8906 xvz_found = get_int_var_value (xvz_name, size);
8907 }
8908 catch (const gdb_exception_error &except)
8909 {
8910 /* We found the variable, but somehow failed to read
8911 its value. Rethrow the same error, but with a little
8912 bit more information, to help the user understand
8913 what went wrong (Eg: the variable might have been
8914 optimized out). */
8915 throw_error (except.error,
8916 _("unable to read value of %s (%s)"),
8917 xvz_name, except.what ());
8918 }
8919
8920 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8921 {
8922 fixed_record_type = copy_type (fixed_record_type);
8923 TYPE_LENGTH (fixed_record_type) = size;
8924
8925 /* The FIXED_RECORD_TYPE may have be a stub. We have
8926 observed this when the debugging info is STABS, and
8927 apparently it is something that is hard to fix.
8928
8929 In practice, we don't need the actual type definition
8930 at all, because the presence of the XVZ variable allows us
8931 to assume that there must be a XVS type as well, which we
8932 should be able to use later, when we need the actual type
8933 definition.
8934
8935 In the meantime, pretend that the "fixed" type we are
8936 returning is NOT a stub, because this can cause trouble
8937 when using this type to create new types targeting it.
8938 Indeed, the associated creation routines often check
8939 whether the target type is a stub and will try to replace
8940 it, thus using a type with the wrong size. This, in turn,
8941 might cause the new type to have the wrong size too.
8942 Consider the case of an array, for instance, where the size
8943 of the array is computed from the number of elements in
8944 our array multiplied by the size of its element. */
8945 TYPE_STUB (fixed_record_type) = 0;
8946 }
8947 }
8948 return fixed_record_type;
8949 }
8950 case TYPE_CODE_ARRAY:
8951 return to_fixed_array_type (type, dval, 1);
8952 case TYPE_CODE_UNION:
8953 if (dval == NULL)
8954 return type;
8955 else
8956 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8957 }
8958 }
8959
8960 /* The same as ada_to_fixed_type_1, except that it preserves the type
8961 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8962
8963 The typedef layer needs be preserved in order to differentiate between
8964 arrays and array pointers when both types are implemented using the same
8965 fat pointer. In the array pointer case, the pointer is encoded as
8966 a typedef of the pointer type. For instance, considering:
8967
8968 type String_Access is access String;
8969 S1 : String_Access := null;
8970
8971 To the debugger, S1 is defined as a typedef of type String. But
8972 to the user, it is a pointer. So if the user tries to print S1,
8973 we should not dereference the array, but print the array address
8974 instead.
8975
8976 If we didn't preserve the typedef layer, we would lose the fact that
8977 the type is to be presented as a pointer (needs de-reference before
8978 being printed). And we would also use the source-level type name. */
8979
8980 struct type *
8981 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8982 CORE_ADDR address, struct value *dval, int check_tag)
8983
8984 {
8985 struct type *fixed_type =
8986 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8987
8988 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8989 then preserve the typedef layer.
8990
8991 Implementation note: We can only check the main-type portion of
8992 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8993 from TYPE now returns a type that has the same instance flags
8994 as TYPE. For instance, if TYPE is a "typedef const", and its
8995 target type is a "struct", then the typedef elimination will return
8996 a "const" version of the target type. See check_typedef for more
8997 details about how the typedef layer elimination is done.
8998
8999 brobecker/2010-11-19: It seems to me that the only case where it is
9000 useful to preserve the typedef layer is when dealing with fat pointers.
9001 Perhaps, we could add a check for that and preserve the typedef layer
9002 only in that situation. But this seems unecessary so far, probably
9003 because we call check_typedef/ada_check_typedef pretty much everywhere.
9004 */
9005 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9006 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9007 == TYPE_MAIN_TYPE (fixed_type)))
9008 return type;
9009
9010 return fixed_type;
9011 }
9012
9013 /* A standard (static-sized) type corresponding as well as possible to
9014 TYPE0, but based on no runtime data. */
9015
9016 static struct type *
9017 to_static_fixed_type (struct type *type0)
9018 {
9019 struct type *type;
9020
9021 if (type0 == NULL)
9022 return NULL;
9023
9024 if (TYPE_FIXED_INSTANCE (type0))
9025 return type0;
9026
9027 type0 = ada_check_typedef (type0);
9028
9029 switch (TYPE_CODE (type0))
9030 {
9031 default:
9032 return type0;
9033 case TYPE_CODE_STRUCT:
9034 type = dynamic_template_type (type0);
9035 if (type != NULL)
9036 return template_to_static_fixed_type (type);
9037 else
9038 return template_to_static_fixed_type (type0);
9039 case TYPE_CODE_UNION:
9040 type = ada_find_parallel_type (type0, "___XVU");
9041 if (type != NULL)
9042 return template_to_static_fixed_type (type);
9043 else
9044 return template_to_static_fixed_type (type0);
9045 }
9046 }
9047
9048 /* A static approximation of TYPE with all type wrappers removed. */
9049
9050 static struct type *
9051 static_unwrap_type (struct type *type)
9052 {
9053 if (ada_is_aligner_type (type))
9054 {
9055 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9056 if (ada_type_name (type1) == NULL)
9057 TYPE_NAME (type1) = ada_type_name (type);
9058
9059 return static_unwrap_type (type1);
9060 }
9061 else
9062 {
9063 struct type *raw_real_type = ada_get_base_type (type);
9064
9065 if (raw_real_type == type)
9066 return type;
9067 else
9068 return to_static_fixed_type (raw_real_type);
9069 }
9070 }
9071
9072 /* In some cases, incomplete and private types require
9073 cross-references that are not resolved as records (for example,
9074 type Foo;
9075 type FooP is access Foo;
9076 V: FooP;
9077 type Foo is array ...;
9078 ). In these cases, since there is no mechanism for producing
9079 cross-references to such types, we instead substitute for FooP a
9080 stub enumeration type that is nowhere resolved, and whose tag is
9081 the name of the actual type. Call these types "non-record stubs". */
9082
9083 /* A type equivalent to TYPE that is not a non-record stub, if one
9084 exists, otherwise TYPE. */
9085
9086 struct type *
9087 ada_check_typedef (struct type *type)
9088 {
9089 if (type == NULL)
9090 return NULL;
9091
9092 /* If our type is an access to an unconstrained array, which is encoded
9093 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9094 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9095 what allows us to distinguish between fat pointers that represent
9096 array types, and fat pointers that represent array access types
9097 (in both cases, the compiler implements them as fat pointers). */
9098 if (ada_is_access_to_unconstrained_array (type))
9099 return type;
9100
9101 type = check_typedef (type);
9102 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9103 || !TYPE_STUB (type)
9104 || TYPE_NAME (type) == NULL)
9105 return type;
9106 else
9107 {
9108 const char *name = TYPE_NAME (type);
9109 struct type *type1 = ada_find_any_type (name);
9110
9111 if (type1 == NULL)
9112 return type;
9113
9114 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9115 stubs pointing to arrays, as we don't create symbols for array
9116 types, only for the typedef-to-array types). If that's the case,
9117 strip the typedef layer. */
9118 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9119 type1 = ada_check_typedef (type1);
9120
9121 return type1;
9122 }
9123 }
9124
9125 /* A value representing the data at VALADDR/ADDRESS as described by
9126 type TYPE0, but with a standard (static-sized) type that correctly
9127 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9128 type, then return VAL0 [this feature is simply to avoid redundant
9129 creation of struct values]. */
9130
9131 static struct value *
9132 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9133 struct value *val0)
9134 {
9135 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9136
9137 if (type == type0 && val0 != NULL)
9138 return val0;
9139
9140 if (VALUE_LVAL (val0) != lval_memory)
9141 {
9142 /* Our value does not live in memory; it could be a convenience
9143 variable, for instance. Create a not_lval value using val0's
9144 contents. */
9145 return value_from_contents (type, value_contents (val0));
9146 }
9147
9148 return value_from_contents_and_address (type, 0, address);
9149 }
9150
9151 /* A value representing VAL, but with a standard (static-sized) type
9152 that correctly describes it. Does not necessarily create a new
9153 value. */
9154
9155 struct value *
9156 ada_to_fixed_value (struct value *val)
9157 {
9158 val = unwrap_value (val);
9159 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9160 return val;
9161 }
9162 \f
9163
9164 /* Attributes */
9165
9166 /* Table mapping attribute numbers to names.
9167 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9168
9169 static const char *attribute_names[] = {
9170 "<?>",
9171
9172 "first",
9173 "last",
9174 "length",
9175 "image",
9176 "max",
9177 "min",
9178 "modulus",
9179 "pos",
9180 "size",
9181 "tag",
9182 "val",
9183 0
9184 };
9185
9186 const char *
9187 ada_attribute_name (enum exp_opcode n)
9188 {
9189 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9190 return attribute_names[n - OP_ATR_FIRST + 1];
9191 else
9192 return attribute_names[0];
9193 }
9194
9195 /* Evaluate the 'POS attribute applied to ARG. */
9196
9197 static LONGEST
9198 pos_atr (struct value *arg)
9199 {
9200 struct value *val = coerce_ref (arg);
9201 struct type *type = value_type (val);
9202 LONGEST result;
9203
9204 if (!discrete_type_p (type))
9205 error (_("'POS only defined on discrete types"));
9206
9207 if (!discrete_position (type, value_as_long (val), &result))
9208 error (_("enumeration value is invalid: can't find 'POS"));
9209
9210 return result;
9211 }
9212
9213 static struct value *
9214 value_pos_atr (struct type *type, struct value *arg)
9215 {
9216 return value_from_longest (type, pos_atr (arg));
9217 }
9218
9219 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9220
9221 static struct value *
9222 value_val_atr (struct type *type, struct value *arg)
9223 {
9224 if (!discrete_type_p (type))
9225 error (_("'VAL only defined on discrete types"));
9226 if (!integer_type_p (value_type (arg)))
9227 error (_("'VAL requires integral argument"));
9228
9229 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9230 {
9231 long pos = value_as_long (arg);
9232
9233 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9234 error (_("argument to 'VAL out of range"));
9235 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9236 }
9237 else
9238 return value_from_longest (type, value_as_long (arg));
9239 }
9240 \f
9241
9242 /* Evaluation */
9243
9244 /* True if TYPE appears to be an Ada character type.
9245 [At the moment, this is true only for Character and Wide_Character;
9246 It is a heuristic test that could stand improvement]. */
9247
9248 bool
9249 ada_is_character_type (struct type *type)
9250 {
9251 const char *name;
9252
9253 /* If the type code says it's a character, then assume it really is,
9254 and don't check any further. */
9255 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9256 return true;
9257
9258 /* Otherwise, assume it's a character type iff it is a discrete type
9259 with a known character type name. */
9260 name = ada_type_name (type);
9261 return (name != NULL
9262 && (TYPE_CODE (type) == TYPE_CODE_INT
9263 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9264 && (strcmp (name, "character") == 0
9265 || strcmp (name, "wide_character") == 0
9266 || strcmp (name, "wide_wide_character") == 0
9267 || strcmp (name, "unsigned char") == 0));
9268 }
9269
9270 /* True if TYPE appears to be an Ada string type. */
9271
9272 bool
9273 ada_is_string_type (struct type *type)
9274 {
9275 type = ada_check_typedef (type);
9276 if (type != NULL
9277 && TYPE_CODE (type) != TYPE_CODE_PTR
9278 && (ada_is_simple_array_type (type)
9279 || ada_is_array_descriptor_type (type))
9280 && ada_array_arity (type) == 1)
9281 {
9282 struct type *elttype = ada_array_element_type (type, 1);
9283
9284 return ada_is_character_type (elttype);
9285 }
9286 else
9287 return false;
9288 }
9289
9290 /* The compiler sometimes provides a parallel XVS type for a given
9291 PAD type. Normally, it is safe to follow the PAD type directly,
9292 but older versions of the compiler have a bug that causes the offset
9293 of its "F" field to be wrong. Following that field in that case
9294 would lead to incorrect results, but this can be worked around
9295 by ignoring the PAD type and using the associated XVS type instead.
9296
9297 Set to True if the debugger should trust the contents of PAD types.
9298 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9299 static bool trust_pad_over_xvs = true;
9300
9301 /* True if TYPE is a struct type introduced by the compiler to force the
9302 alignment of a value. Such types have a single field with a
9303 distinctive name. */
9304
9305 int
9306 ada_is_aligner_type (struct type *type)
9307 {
9308 type = ada_check_typedef (type);
9309
9310 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9311 return 0;
9312
9313 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9314 && TYPE_NFIELDS (type) == 1
9315 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9316 }
9317
9318 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9319 the parallel type. */
9320
9321 struct type *
9322 ada_get_base_type (struct type *raw_type)
9323 {
9324 struct type *real_type_namer;
9325 struct type *raw_real_type;
9326
9327 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9328 return raw_type;
9329
9330 if (ada_is_aligner_type (raw_type))
9331 /* The encoding specifies that we should always use the aligner type.
9332 So, even if this aligner type has an associated XVS type, we should
9333 simply ignore it.
9334
9335 According to the compiler gurus, an XVS type parallel to an aligner
9336 type may exist because of a stabs limitation. In stabs, aligner
9337 types are empty because the field has a variable-sized type, and
9338 thus cannot actually be used as an aligner type. As a result,
9339 we need the associated parallel XVS type to decode the type.
9340 Since the policy in the compiler is to not change the internal
9341 representation based on the debugging info format, we sometimes
9342 end up having a redundant XVS type parallel to the aligner type. */
9343 return raw_type;
9344
9345 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9346 if (real_type_namer == NULL
9347 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9348 || TYPE_NFIELDS (real_type_namer) != 1)
9349 return raw_type;
9350
9351 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9352 {
9353 /* This is an older encoding form where the base type needs to be
9354 looked up by name. We prefer the newer enconding because it is
9355 more efficient. */
9356 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9357 if (raw_real_type == NULL)
9358 return raw_type;
9359 else
9360 return raw_real_type;
9361 }
9362
9363 /* The field in our XVS type is a reference to the base type. */
9364 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9365 }
9366
9367 /* The type of value designated by TYPE, with all aligners removed. */
9368
9369 struct type *
9370 ada_aligned_type (struct type *type)
9371 {
9372 if (ada_is_aligner_type (type))
9373 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9374 else
9375 return ada_get_base_type (type);
9376 }
9377
9378
9379 /* The address of the aligned value in an object at address VALADDR
9380 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9381
9382 const gdb_byte *
9383 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9384 {
9385 if (ada_is_aligner_type (type))
9386 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9387 valaddr +
9388 TYPE_FIELD_BITPOS (type,
9389 0) / TARGET_CHAR_BIT);
9390 else
9391 return valaddr;
9392 }
9393
9394
9395
9396 /* The printed representation of an enumeration literal with encoded
9397 name NAME. The value is good to the next call of ada_enum_name. */
9398 const char *
9399 ada_enum_name (const char *name)
9400 {
9401 static char *result;
9402 static size_t result_len = 0;
9403 const char *tmp;
9404
9405 /* First, unqualify the enumeration name:
9406 1. Search for the last '.' character. If we find one, then skip
9407 all the preceding characters, the unqualified name starts
9408 right after that dot.
9409 2. Otherwise, we may be debugging on a target where the compiler
9410 translates dots into "__". Search forward for double underscores,
9411 but stop searching when we hit an overloading suffix, which is
9412 of the form "__" followed by digits. */
9413
9414 tmp = strrchr (name, '.');
9415 if (tmp != NULL)
9416 name = tmp + 1;
9417 else
9418 {
9419 while ((tmp = strstr (name, "__")) != NULL)
9420 {
9421 if (isdigit (tmp[2]))
9422 break;
9423 else
9424 name = tmp + 2;
9425 }
9426 }
9427
9428 if (name[0] == 'Q')
9429 {
9430 int v;
9431
9432 if (name[1] == 'U' || name[1] == 'W')
9433 {
9434 if (sscanf (name + 2, "%x", &v) != 1)
9435 return name;
9436 }
9437 else if (((name[1] >= '0' && name[1] <= '9')
9438 || (name[1] >= 'a' && name[1] <= 'z'))
9439 && name[2] == '\0')
9440 {
9441 GROW_VECT (result, result_len, 4);
9442 xsnprintf (result, result_len, "'%c'", name[1]);
9443 return result;
9444 }
9445 else
9446 return name;
9447
9448 GROW_VECT (result, result_len, 16);
9449 if (isascii (v) && isprint (v))
9450 xsnprintf (result, result_len, "'%c'", v);
9451 else if (name[1] == 'U')
9452 xsnprintf (result, result_len, "[\"%02x\"]", v);
9453 else
9454 xsnprintf (result, result_len, "[\"%04x\"]", v);
9455
9456 return result;
9457 }
9458 else
9459 {
9460 tmp = strstr (name, "__");
9461 if (tmp == NULL)
9462 tmp = strstr (name, "$");
9463 if (tmp != NULL)
9464 {
9465 GROW_VECT (result, result_len, tmp - name + 1);
9466 strncpy (result, name, tmp - name);
9467 result[tmp - name] = '\0';
9468 return result;
9469 }
9470
9471 return name;
9472 }
9473 }
9474
9475 /* Evaluate the subexpression of EXP starting at *POS as for
9476 evaluate_type, updating *POS to point just past the evaluated
9477 expression. */
9478
9479 static struct value *
9480 evaluate_subexp_type (struct expression *exp, int *pos)
9481 {
9482 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9483 }
9484
9485 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9486 value it wraps. */
9487
9488 static struct value *
9489 unwrap_value (struct value *val)
9490 {
9491 struct type *type = ada_check_typedef (value_type (val));
9492
9493 if (ada_is_aligner_type (type))
9494 {
9495 struct value *v = ada_value_struct_elt (val, "F", 0);
9496 struct type *val_type = ada_check_typedef (value_type (v));
9497
9498 if (ada_type_name (val_type) == NULL)
9499 TYPE_NAME (val_type) = ada_type_name (type);
9500
9501 return unwrap_value (v);
9502 }
9503 else
9504 {
9505 struct type *raw_real_type =
9506 ada_check_typedef (ada_get_base_type (type));
9507
9508 /* If there is no parallel XVS or XVE type, then the value is
9509 already unwrapped. Return it without further modification. */
9510 if ((type == raw_real_type)
9511 && ada_find_parallel_type (type, "___XVE") == NULL)
9512 return val;
9513
9514 return
9515 coerce_unspec_val_to_type
9516 (val, ada_to_fixed_type (raw_real_type, 0,
9517 value_address (val),
9518 NULL, 1));
9519 }
9520 }
9521
9522 static struct value *
9523 cast_from_fixed (struct type *type, struct value *arg)
9524 {
9525 struct value *scale = ada_scaling_factor (value_type (arg));
9526 arg = value_cast (value_type (scale), arg);
9527
9528 arg = value_binop (arg, scale, BINOP_MUL);
9529 return value_cast (type, arg);
9530 }
9531
9532 static struct value *
9533 cast_to_fixed (struct type *type, struct value *arg)
9534 {
9535 if (type == value_type (arg))
9536 return arg;
9537
9538 struct value *scale = ada_scaling_factor (type);
9539 if (ada_is_fixed_point_type (value_type (arg)))
9540 arg = cast_from_fixed (value_type (scale), arg);
9541 else
9542 arg = value_cast (value_type (scale), arg);
9543
9544 arg = value_binop (arg, scale, BINOP_DIV);
9545 return value_cast (type, arg);
9546 }
9547
9548 /* Given two array types T1 and T2, return nonzero iff both arrays
9549 contain the same number of elements. */
9550
9551 static int
9552 ada_same_array_size_p (struct type *t1, struct type *t2)
9553 {
9554 LONGEST lo1, hi1, lo2, hi2;
9555
9556 /* Get the array bounds in order to verify that the size of
9557 the two arrays match. */
9558 if (!get_array_bounds (t1, &lo1, &hi1)
9559 || !get_array_bounds (t2, &lo2, &hi2))
9560 error (_("unable to determine array bounds"));
9561
9562 /* To make things easier for size comparison, normalize a bit
9563 the case of empty arrays by making sure that the difference
9564 between upper bound and lower bound is always -1. */
9565 if (lo1 > hi1)
9566 hi1 = lo1 - 1;
9567 if (lo2 > hi2)
9568 hi2 = lo2 - 1;
9569
9570 return (hi1 - lo1 == hi2 - lo2);
9571 }
9572
9573 /* Assuming that VAL is an array of integrals, and TYPE represents
9574 an array with the same number of elements, but with wider integral
9575 elements, return an array "casted" to TYPE. In practice, this
9576 means that the returned array is built by casting each element
9577 of the original array into TYPE's (wider) element type. */
9578
9579 static struct value *
9580 ada_promote_array_of_integrals (struct type *type, struct value *val)
9581 {
9582 struct type *elt_type = TYPE_TARGET_TYPE (type);
9583 LONGEST lo, hi;
9584 struct value *res;
9585 LONGEST i;
9586
9587 /* Verify that both val and type are arrays of scalars, and
9588 that the size of val's elements is smaller than the size
9589 of type's element. */
9590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9591 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9592 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9593 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9594 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9595 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9596
9597 if (!get_array_bounds (type, &lo, &hi))
9598 error (_("unable to determine array bounds"));
9599
9600 res = allocate_value (type);
9601
9602 /* Promote each array element. */
9603 for (i = 0; i < hi - lo + 1; i++)
9604 {
9605 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9606
9607 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9608 value_contents_all (elt), TYPE_LENGTH (elt_type));
9609 }
9610
9611 return res;
9612 }
9613
9614 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9615 return the converted value. */
9616
9617 static struct value *
9618 coerce_for_assign (struct type *type, struct value *val)
9619 {
9620 struct type *type2 = value_type (val);
9621
9622 if (type == type2)
9623 return val;
9624
9625 type2 = ada_check_typedef (type2);
9626 type = ada_check_typedef (type);
9627
9628 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9629 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9630 {
9631 val = ada_value_ind (val);
9632 type2 = value_type (val);
9633 }
9634
9635 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9636 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9637 {
9638 if (!ada_same_array_size_p (type, type2))
9639 error (_("cannot assign arrays of different length"));
9640
9641 if (is_integral_type (TYPE_TARGET_TYPE (type))
9642 && is_integral_type (TYPE_TARGET_TYPE (type2))
9643 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9644 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9645 {
9646 /* Allow implicit promotion of the array elements to
9647 a wider type. */
9648 return ada_promote_array_of_integrals (type, val);
9649 }
9650
9651 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9652 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9653 error (_("Incompatible types in assignment"));
9654 deprecated_set_value_type (val, type);
9655 }
9656 return val;
9657 }
9658
9659 static struct value *
9660 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9661 {
9662 struct value *val;
9663 struct type *type1, *type2;
9664 LONGEST v, v1, v2;
9665
9666 arg1 = coerce_ref (arg1);
9667 arg2 = coerce_ref (arg2);
9668 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9669 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9670
9671 if (TYPE_CODE (type1) != TYPE_CODE_INT
9672 || TYPE_CODE (type2) != TYPE_CODE_INT)
9673 return value_binop (arg1, arg2, op);
9674
9675 switch (op)
9676 {
9677 case BINOP_MOD:
9678 case BINOP_DIV:
9679 case BINOP_REM:
9680 break;
9681 default:
9682 return value_binop (arg1, arg2, op);
9683 }
9684
9685 v2 = value_as_long (arg2);
9686 if (v2 == 0)
9687 error (_("second operand of %s must not be zero."), op_string (op));
9688
9689 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9690 return value_binop (arg1, arg2, op);
9691
9692 v1 = value_as_long (arg1);
9693 switch (op)
9694 {
9695 case BINOP_DIV:
9696 v = v1 / v2;
9697 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9698 v += v > 0 ? -1 : 1;
9699 break;
9700 case BINOP_REM:
9701 v = v1 % v2;
9702 if (v * v1 < 0)
9703 v -= v2;
9704 break;
9705 default:
9706 /* Should not reach this point. */
9707 v = 0;
9708 }
9709
9710 val = allocate_value (type1);
9711 store_unsigned_integer (value_contents_raw (val),
9712 TYPE_LENGTH (value_type (val)),
9713 gdbarch_byte_order (get_type_arch (type1)), v);
9714 return val;
9715 }
9716
9717 static int
9718 ada_value_equal (struct value *arg1, struct value *arg2)
9719 {
9720 if (ada_is_direct_array_type (value_type (arg1))
9721 || ada_is_direct_array_type (value_type (arg2)))
9722 {
9723 struct type *arg1_type, *arg2_type;
9724
9725 /* Automatically dereference any array reference before
9726 we attempt to perform the comparison. */
9727 arg1 = ada_coerce_ref (arg1);
9728 arg2 = ada_coerce_ref (arg2);
9729
9730 arg1 = ada_coerce_to_simple_array (arg1);
9731 arg2 = ada_coerce_to_simple_array (arg2);
9732
9733 arg1_type = ada_check_typedef (value_type (arg1));
9734 arg2_type = ada_check_typedef (value_type (arg2));
9735
9736 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9737 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9738 error (_("Attempt to compare array with non-array"));
9739 /* FIXME: The following works only for types whose
9740 representations use all bits (no padding or undefined bits)
9741 and do not have user-defined equality. */
9742 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9743 && memcmp (value_contents (arg1), value_contents (arg2),
9744 TYPE_LENGTH (arg1_type)) == 0);
9745 }
9746 return value_equal (arg1, arg2);
9747 }
9748
9749 /* Total number of component associations in the aggregate starting at
9750 index PC in EXP. Assumes that index PC is the start of an
9751 OP_AGGREGATE. */
9752
9753 static int
9754 num_component_specs (struct expression *exp, int pc)
9755 {
9756 int n, m, i;
9757
9758 m = exp->elts[pc + 1].longconst;
9759 pc += 3;
9760 n = 0;
9761 for (i = 0; i < m; i += 1)
9762 {
9763 switch (exp->elts[pc].opcode)
9764 {
9765 default:
9766 n += 1;
9767 break;
9768 case OP_CHOICES:
9769 n += exp->elts[pc + 1].longconst;
9770 break;
9771 }
9772 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9773 }
9774 return n;
9775 }
9776
9777 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9778 component of LHS (a simple array or a record), updating *POS past
9779 the expression, assuming that LHS is contained in CONTAINER. Does
9780 not modify the inferior's memory, nor does it modify LHS (unless
9781 LHS == CONTAINER). */
9782
9783 static void
9784 assign_component (struct value *container, struct value *lhs, LONGEST index,
9785 struct expression *exp, int *pos)
9786 {
9787 struct value *mark = value_mark ();
9788 struct value *elt;
9789 struct type *lhs_type = check_typedef (value_type (lhs));
9790
9791 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9792 {
9793 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9794 struct value *index_val = value_from_longest (index_type, index);
9795
9796 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9797 }
9798 else
9799 {
9800 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9801 elt = ada_to_fixed_value (elt);
9802 }
9803
9804 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9805 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9806 else
9807 value_assign_to_component (container, elt,
9808 ada_evaluate_subexp (NULL, exp, pos,
9809 EVAL_NORMAL));
9810
9811 value_free_to_mark (mark);
9812 }
9813
9814 /* Assuming that LHS represents an lvalue having a record or array
9815 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9816 of that aggregate's value to LHS, advancing *POS past the
9817 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9818 lvalue containing LHS (possibly LHS itself). Does not modify
9819 the inferior's memory, nor does it modify the contents of
9820 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9821
9822 static struct value *
9823 assign_aggregate (struct value *container,
9824 struct value *lhs, struct expression *exp,
9825 int *pos, enum noside noside)
9826 {
9827 struct type *lhs_type;
9828 int n = exp->elts[*pos+1].longconst;
9829 LONGEST low_index, high_index;
9830 int num_specs;
9831 LONGEST *indices;
9832 int max_indices, num_indices;
9833 int i;
9834
9835 *pos += 3;
9836 if (noside != EVAL_NORMAL)
9837 {
9838 for (i = 0; i < n; i += 1)
9839 ada_evaluate_subexp (NULL, exp, pos, noside);
9840 return container;
9841 }
9842
9843 container = ada_coerce_ref (container);
9844 if (ada_is_direct_array_type (value_type (container)))
9845 container = ada_coerce_to_simple_array (container);
9846 lhs = ada_coerce_ref (lhs);
9847 if (!deprecated_value_modifiable (lhs))
9848 error (_("Left operand of assignment is not a modifiable lvalue."));
9849
9850 lhs_type = check_typedef (value_type (lhs));
9851 if (ada_is_direct_array_type (lhs_type))
9852 {
9853 lhs = ada_coerce_to_simple_array (lhs);
9854 lhs_type = check_typedef (value_type (lhs));
9855 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9856 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9857 }
9858 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9859 {
9860 low_index = 0;
9861 high_index = num_visible_fields (lhs_type) - 1;
9862 }
9863 else
9864 error (_("Left-hand side must be array or record."));
9865
9866 num_specs = num_component_specs (exp, *pos - 3);
9867 max_indices = 4 * num_specs + 4;
9868 indices = XALLOCAVEC (LONGEST, max_indices);
9869 indices[0] = indices[1] = low_index - 1;
9870 indices[2] = indices[3] = high_index + 1;
9871 num_indices = 4;
9872
9873 for (i = 0; i < n; i += 1)
9874 {
9875 switch (exp->elts[*pos].opcode)
9876 {
9877 case OP_CHOICES:
9878 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9879 &num_indices, max_indices,
9880 low_index, high_index);
9881 break;
9882 case OP_POSITIONAL:
9883 aggregate_assign_positional (container, lhs, exp, pos, indices,
9884 &num_indices, max_indices,
9885 low_index, high_index);
9886 break;
9887 case OP_OTHERS:
9888 if (i != n-1)
9889 error (_("Misplaced 'others' clause"));
9890 aggregate_assign_others (container, lhs, exp, pos, indices,
9891 num_indices, low_index, high_index);
9892 break;
9893 default:
9894 error (_("Internal error: bad aggregate clause"));
9895 }
9896 }
9897
9898 return container;
9899 }
9900
9901 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9902 construct at *POS, updating *POS past the construct, given that
9903 the positions are relative to lower bound LOW, where HIGH is the
9904 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9905 updating *NUM_INDICES as needed. CONTAINER is as for
9906 assign_aggregate. */
9907 static void
9908 aggregate_assign_positional (struct value *container,
9909 struct value *lhs, struct expression *exp,
9910 int *pos, LONGEST *indices, int *num_indices,
9911 int max_indices, LONGEST low, LONGEST high)
9912 {
9913 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9914
9915 if (ind - 1 == high)
9916 warning (_("Extra components in aggregate ignored."));
9917 if (ind <= high)
9918 {
9919 add_component_interval (ind, ind, indices, num_indices, max_indices);
9920 *pos += 3;
9921 assign_component (container, lhs, ind, exp, pos);
9922 }
9923 else
9924 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9925 }
9926
9927 /* Assign into the components of LHS indexed by the OP_CHOICES
9928 construct at *POS, updating *POS past the construct, given that
9929 the allowable indices are LOW..HIGH. Record the indices assigned
9930 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9931 needed. CONTAINER is as for assign_aggregate. */
9932 static void
9933 aggregate_assign_from_choices (struct value *container,
9934 struct value *lhs, struct expression *exp,
9935 int *pos, LONGEST *indices, int *num_indices,
9936 int max_indices, LONGEST low, LONGEST high)
9937 {
9938 int j;
9939 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9940 int choice_pos, expr_pc;
9941 int is_array = ada_is_direct_array_type (value_type (lhs));
9942
9943 choice_pos = *pos += 3;
9944
9945 for (j = 0; j < n_choices; j += 1)
9946 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9947 expr_pc = *pos;
9948 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9949
9950 for (j = 0; j < n_choices; j += 1)
9951 {
9952 LONGEST lower, upper;
9953 enum exp_opcode op = exp->elts[choice_pos].opcode;
9954
9955 if (op == OP_DISCRETE_RANGE)
9956 {
9957 choice_pos += 1;
9958 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9959 EVAL_NORMAL));
9960 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962 }
9963 else if (is_array)
9964 {
9965 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9966 EVAL_NORMAL));
9967 upper = lower;
9968 }
9969 else
9970 {
9971 int ind;
9972 const char *name;
9973
9974 switch (op)
9975 {
9976 case OP_NAME:
9977 name = &exp->elts[choice_pos + 2].string;
9978 break;
9979 case OP_VAR_VALUE:
9980 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9981 break;
9982 default:
9983 error (_("Invalid record component association."));
9984 }
9985 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9986 ind = 0;
9987 if (! find_struct_field (name, value_type (lhs), 0,
9988 NULL, NULL, NULL, NULL, &ind))
9989 error (_("Unknown component name: %s."), name);
9990 lower = upper = ind;
9991 }
9992
9993 if (lower <= upper && (lower < low || upper > high))
9994 error (_("Index in component association out of bounds."));
9995
9996 add_component_interval (lower, upper, indices, num_indices,
9997 max_indices);
9998 while (lower <= upper)
9999 {
10000 int pos1;
10001
10002 pos1 = expr_pc;
10003 assign_component (container, lhs, lower, exp, &pos1);
10004 lower += 1;
10005 }
10006 }
10007 }
10008
10009 /* Assign the value of the expression in the OP_OTHERS construct in
10010 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10011 have not been previously assigned. The index intervals already assigned
10012 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10013 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10014 static void
10015 aggregate_assign_others (struct value *container,
10016 struct value *lhs, struct expression *exp,
10017 int *pos, LONGEST *indices, int num_indices,
10018 LONGEST low, LONGEST high)
10019 {
10020 int i;
10021 int expr_pc = *pos + 1;
10022
10023 for (i = 0; i < num_indices - 2; i += 2)
10024 {
10025 LONGEST ind;
10026
10027 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10028 {
10029 int localpos;
10030
10031 localpos = expr_pc;
10032 assign_component (container, lhs, ind, exp, &localpos);
10033 }
10034 }
10035 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10036 }
10037
10038 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10039 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10040 modifying *SIZE as needed. It is an error if *SIZE exceeds
10041 MAX_SIZE. The resulting intervals do not overlap. */
10042 static void
10043 add_component_interval (LONGEST low, LONGEST high,
10044 LONGEST* indices, int *size, int max_size)
10045 {
10046 int i, j;
10047
10048 for (i = 0; i < *size; i += 2) {
10049 if (high >= indices[i] && low <= indices[i + 1])
10050 {
10051 int kh;
10052
10053 for (kh = i + 2; kh < *size; kh += 2)
10054 if (high < indices[kh])
10055 break;
10056 if (low < indices[i])
10057 indices[i] = low;
10058 indices[i + 1] = indices[kh - 1];
10059 if (high > indices[i + 1])
10060 indices[i + 1] = high;
10061 memcpy (indices + i + 2, indices + kh, *size - kh);
10062 *size -= kh - i - 2;
10063 return;
10064 }
10065 else if (high < indices[i])
10066 break;
10067 }
10068
10069 if (*size == max_size)
10070 error (_("Internal error: miscounted aggregate components."));
10071 *size += 2;
10072 for (j = *size-1; j >= i+2; j -= 1)
10073 indices[j] = indices[j - 2];
10074 indices[i] = low;
10075 indices[i + 1] = high;
10076 }
10077
10078 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10079 is different. */
10080
10081 static struct value *
10082 ada_value_cast (struct type *type, struct value *arg2)
10083 {
10084 if (type == ada_check_typedef (value_type (arg2)))
10085 return arg2;
10086
10087 if (ada_is_fixed_point_type (type))
10088 return cast_to_fixed (type, arg2);
10089
10090 if (ada_is_fixed_point_type (value_type (arg2)))
10091 return cast_from_fixed (type, arg2);
10092
10093 return value_cast (type, arg2);
10094 }
10095
10096 /* Evaluating Ada expressions, and printing their result.
10097 ------------------------------------------------------
10098
10099 1. Introduction:
10100 ----------------
10101
10102 We usually evaluate an Ada expression in order to print its value.
10103 We also evaluate an expression in order to print its type, which
10104 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10105 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10106 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10107 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10108 similar.
10109
10110 Evaluating expressions is a little more complicated for Ada entities
10111 than it is for entities in languages such as C. The main reason for
10112 this is that Ada provides types whose definition might be dynamic.
10113 One example of such types is variant records. Or another example
10114 would be an array whose bounds can only be known at run time.
10115
10116 The following description is a general guide as to what should be
10117 done (and what should NOT be done) in order to evaluate an expression
10118 involving such types, and when. This does not cover how the semantic
10119 information is encoded by GNAT as this is covered separatly. For the
10120 document used as the reference for the GNAT encoding, see exp_dbug.ads
10121 in the GNAT sources.
10122
10123 Ideally, we should embed each part of this description next to its
10124 associated code. Unfortunately, the amount of code is so vast right
10125 now that it's hard to see whether the code handling a particular
10126 situation might be duplicated or not. One day, when the code is
10127 cleaned up, this guide might become redundant with the comments
10128 inserted in the code, and we might want to remove it.
10129
10130 2. ``Fixing'' an Entity, the Simple Case:
10131 -----------------------------------------
10132
10133 When evaluating Ada expressions, the tricky issue is that they may
10134 reference entities whose type contents and size are not statically
10135 known. Consider for instance a variant record:
10136
10137 type Rec (Empty : Boolean := True) is record
10138 case Empty is
10139 when True => null;
10140 when False => Value : Integer;
10141 end case;
10142 end record;
10143 Yes : Rec := (Empty => False, Value => 1);
10144 No : Rec := (empty => True);
10145
10146 The size and contents of that record depends on the value of the
10147 descriminant (Rec.Empty). At this point, neither the debugging
10148 information nor the associated type structure in GDB are able to
10149 express such dynamic types. So what the debugger does is to create
10150 "fixed" versions of the type that applies to the specific object.
10151 We also informally refer to this opperation as "fixing" an object,
10152 which means creating its associated fixed type.
10153
10154 Example: when printing the value of variable "Yes" above, its fixed
10155 type would look like this:
10156
10157 type Rec is record
10158 Empty : Boolean;
10159 Value : Integer;
10160 end record;
10161
10162 On the other hand, if we printed the value of "No", its fixed type
10163 would become:
10164
10165 type Rec is record
10166 Empty : Boolean;
10167 end record;
10168
10169 Things become a little more complicated when trying to fix an entity
10170 with a dynamic type that directly contains another dynamic type,
10171 such as an array of variant records, for instance. There are
10172 two possible cases: Arrays, and records.
10173
10174 3. ``Fixing'' Arrays:
10175 ---------------------
10176
10177 The type structure in GDB describes an array in terms of its bounds,
10178 and the type of its elements. By design, all elements in the array
10179 have the same type and we cannot represent an array of variant elements
10180 using the current type structure in GDB. When fixing an array,
10181 we cannot fix the array element, as we would potentially need one
10182 fixed type per element of the array. As a result, the best we can do
10183 when fixing an array is to produce an array whose bounds and size
10184 are correct (allowing us to read it from memory), but without having
10185 touched its element type. Fixing each element will be done later,
10186 when (if) necessary.
10187
10188 Arrays are a little simpler to handle than records, because the same
10189 amount of memory is allocated for each element of the array, even if
10190 the amount of space actually used by each element differs from element
10191 to element. Consider for instance the following array of type Rec:
10192
10193 type Rec_Array is array (1 .. 2) of Rec;
10194
10195 The actual amount of memory occupied by each element might be different
10196 from element to element, depending on the value of their discriminant.
10197 But the amount of space reserved for each element in the array remains
10198 fixed regardless. So we simply need to compute that size using
10199 the debugging information available, from which we can then determine
10200 the array size (we multiply the number of elements of the array by
10201 the size of each element).
10202
10203 The simplest case is when we have an array of a constrained element
10204 type. For instance, consider the following type declarations:
10205
10206 type Bounded_String (Max_Size : Integer) is
10207 Length : Integer;
10208 Buffer : String (1 .. Max_Size);
10209 end record;
10210 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10211
10212 In this case, the compiler describes the array as an array of
10213 variable-size elements (identified by its XVS suffix) for which
10214 the size can be read in the parallel XVZ variable.
10215
10216 In the case of an array of an unconstrained element type, the compiler
10217 wraps the array element inside a private PAD type. This type should not
10218 be shown to the user, and must be "unwrap"'ed before printing. Note
10219 that we also use the adjective "aligner" in our code to designate
10220 these wrapper types.
10221
10222 In some cases, the size allocated for each element is statically
10223 known. In that case, the PAD type already has the correct size,
10224 and the array element should remain unfixed.
10225
10226 But there are cases when this size is not statically known.
10227 For instance, assuming that "Five" is an integer variable:
10228
10229 type Dynamic is array (1 .. Five) of Integer;
10230 type Wrapper (Has_Length : Boolean := False) is record
10231 Data : Dynamic;
10232 case Has_Length is
10233 when True => Length : Integer;
10234 when False => null;
10235 end case;
10236 end record;
10237 type Wrapper_Array is array (1 .. 2) of Wrapper;
10238
10239 Hello : Wrapper_Array := (others => (Has_Length => True,
10240 Data => (others => 17),
10241 Length => 1));
10242
10243
10244 The debugging info would describe variable Hello as being an
10245 array of a PAD type. The size of that PAD type is not statically
10246 known, but can be determined using a parallel XVZ variable.
10247 In that case, a copy of the PAD type with the correct size should
10248 be used for the fixed array.
10249
10250 3. ``Fixing'' record type objects:
10251 ----------------------------------
10252
10253 Things are slightly different from arrays in the case of dynamic
10254 record types. In this case, in order to compute the associated
10255 fixed type, we need to determine the size and offset of each of
10256 its components. This, in turn, requires us to compute the fixed
10257 type of each of these components.
10258
10259 Consider for instance the example:
10260
10261 type Bounded_String (Max_Size : Natural) is record
10262 Str : String (1 .. Max_Size);
10263 Length : Natural;
10264 end record;
10265 My_String : Bounded_String (Max_Size => 10);
10266
10267 In that case, the position of field "Length" depends on the size
10268 of field Str, which itself depends on the value of the Max_Size
10269 discriminant. In order to fix the type of variable My_String,
10270 we need to fix the type of field Str. Therefore, fixing a variant
10271 record requires us to fix each of its components.
10272
10273 However, if a component does not have a dynamic size, the component
10274 should not be fixed. In particular, fields that use a PAD type
10275 should not fixed. Here is an example where this might happen
10276 (assuming type Rec above):
10277
10278 type Container (Big : Boolean) is record
10279 First : Rec;
10280 After : Integer;
10281 case Big is
10282 when True => Another : Integer;
10283 when False => null;
10284 end case;
10285 end record;
10286 My_Container : Container := (Big => False,
10287 First => (Empty => True),
10288 After => 42);
10289
10290 In that example, the compiler creates a PAD type for component First,
10291 whose size is constant, and then positions the component After just
10292 right after it. The offset of component After is therefore constant
10293 in this case.
10294
10295 The debugger computes the position of each field based on an algorithm
10296 that uses, among other things, the actual position and size of the field
10297 preceding it. Let's now imagine that the user is trying to print
10298 the value of My_Container. If the type fixing was recursive, we would
10299 end up computing the offset of field After based on the size of the
10300 fixed version of field First. And since in our example First has
10301 only one actual field, the size of the fixed type is actually smaller
10302 than the amount of space allocated to that field, and thus we would
10303 compute the wrong offset of field After.
10304
10305 To make things more complicated, we need to watch out for dynamic
10306 components of variant records (identified by the ___XVL suffix in
10307 the component name). Even if the target type is a PAD type, the size
10308 of that type might not be statically known. So the PAD type needs
10309 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10310 we might end up with the wrong size for our component. This can be
10311 observed with the following type declarations:
10312
10313 type Octal is new Integer range 0 .. 7;
10314 type Octal_Array is array (Positive range <>) of Octal;
10315 pragma Pack (Octal_Array);
10316
10317 type Octal_Buffer (Size : Positive) is record
10318 Buffer : Octal_Array (1 .. Size);
10319 Length : Integer;
10320 end record;
10321
10322 In that case, Buffer is a PAD type whose size is unset and needs
10323 to be computed by fixing the unwrapped type.
10324
10325 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10326 ----------------------------------------------------------
10327
10328 Lastly, when should the sub-elements of an entity that remained unfixed
10329 thus far, be actually fixed?
10330
10331 The answer is: Only when referencing that element. For instance
10332 when selecting one component of a record, this specific component
10333 should be fixed at that point in time. Or when printing the value
10334 of a record, each component should be fixed before its value gets
10335 printed. Similarly for arrays, the element of the array should be
10336 fixed when printing each element of the array, or when extracting
10337 one element out of that array. On the other hand, fixing should
10338 not be performed on the elements when taking a slice of an array!
10339
10340 Note that one of the side effects of miscomputing the offset and
10341 size of each field is that we end up also miscomputing the size
10342 of the containing type. This can have adverse results when computing
10343 the value of an entity. GDB fetches the value of an entity based
10344 on the size of its type, and thus a wrong size causes GDB to fetch
10345 the wrong amount of memory. In the case where the computed size is
10346 too small, GDB fetches too little data to print the value of our
10347 entity. Results in this case are unpredictable, as we usually read
10348 past the buffer containing the data =:-o. */
10349
10350 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10351 for that subexpression cast to TO_TYPE. Advance *POS over the
10352 subexpression. */
10353
10354 static value *
10355 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10356 enum noside noside, struct type *to_type)
10357 {
10358 int pc = *pos;
10359
10360 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10361 || exp->elts[pc].opcode == OP_VAR_VALUE)
10362 {
10363 (*pos) += 4;
10364
10365 value *val;
10366 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10367 {
10368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 return value_zero (to_type, not_lval);
10370
10371 val = evaluate_var_msym_value (noside,
10372 exp->elts[pc + 1].objfile,
10373 exp->elts[pc + 2].msymbol);
10374 }
10375 else
10376 val = evaluate_var_value (noside,
10377 exp->elts[pc + 1].block,
10378 exp->elts[pc + 2].symbol);
10379
10380 if (noside == EVAL_SKIP)
10381 return eval_skip_value (exp);
10382
10383 val = ada_value_cast (to_type, val);
10384
10385 /* Follow the Ada language semantics that do not allow taking
10386 an address of the result of a cast (view conversion in Ada). */
10387 if (VALUE_LVAL (val) == lval_memory)
10388 {
10389 if (value_lazy (val))
10390 value_fetch_lazy (val);
10391 VALUE_LVAL (val) = not_lval;
10392 }
10393 return val;
10394 }
10395
10396 value *val = evaluate_subexp (to_type, exp, pos, noside);
10397 if (noside == EVAL_SKIP)
10398 return eval_skip_value (exp);
10399 return ada_value_cast (to_type, val);
10400 }
10401
10402 /* Implement the evaluate_exp routine in the exp_descriptor structure
10403 for the Ada language. */
10404
10405 static struct value *
10406 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10407 int *pos, enum noside noside)
10408 {
10409 enum exp_opcode op;
10410 int tem;
10411 int pc;
10412 int preeval_pos;
10413 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10414 struct type *type;
10415 int nargs, oplen;
10416 struct value **argvec;
10417
10418 pc = *pos;
10419 *pos += 1;
10420 op = exp->elts[pc].opcode;
10421
10422 switch (op)
10423 {
10424 default:
10425 *pos -= 1;
10426 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10427
10428 if (noside == EVAL_NORMAL)
10429 arg1 = unwrap_value (arg1);
10430
10431 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10432 then we need to perform the conversion manually, because
10433 evaluate_subexp_standard doesn't do it. This conversion is
10434 necessary in Ada because the different kinds of float/fixed
10435 types in Ada have different representations.
10436
10437 Similarly, we need to perform the conversion from OP_LONG
10438 ourselves. */
10439 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10440 arg1 = ada_value_cast (expect_type, arg1);
10441
10442 return arg1;
10443
10444 case OP_STRING:
10445 {
10446 struct value *result;
10447
10448 *pos -= 1;
10449 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10450 /* The result type will have code OP_STRING, bashed there from
10451 OP_ARRAY. Bash it back. */
10452 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10453 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10454 return result;
10455 }
10456
10457 case UNOP_CAST:
10458 (*pos) += 2;
10459 type = exp->elts[pc + 1].type;
10460 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10461
10462 case UNOP_QUAL:
10463 (*pos) += 2;
10464 type = exp->elts[pc + 1].type;
10465 return ada_evaluate_subexp (type, exp, pos, noside);
10466
10467 case BINOP_ASSIGN:
10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10470 {
10471 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10473 return arg1;
10474 return ada_value_assign (arg1, arg1);
10475 }
10476 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10477 except if the lhs of our assignment is a convenience variable.
10478 In the case of assigning to a convenience variable, the lhs
10479 should be exactly the result of the evaluation of the rhs. */
10480 type = value_type (arg1);
10481 if (VALUE_LVAL (arg1) == lval_internalvar)
10482 type = NULL;
10483 arg2 = evaluate_subexp (type, exp, pos, noside);
10484 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10485 return arg1;
10486 if (VALUE_LVAL (arg1) == lval_internalvar)
10487 {
10488 /* Nothing. */
10489 }
10490 else if (ada_is_fixed_point_type (value_type (arg1)))
10491 arg2 = cast_to_fixed (value_type (arg1), arg2);
10492 else if (ada_is_fixed_point_type (value_type (arg2)))
10493 error
10494 (_("Fixed-point values must be assigned to fixed-point variables"));
10495 else
10496 arg2 = coerce_for_assign (value_type (arg1), arg2);
10497 return ada_value_assign (arg1, arg2);
10498
10499 case BINOP_ADD:
10500 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10501 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10502 if (noside == EVAL_SKIP)
10503 goto nosideret;
10504 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10505 return (value_from_longest
10506 (value_type (arg1),
10507 value_as_long (arg1) + value_as_long (arg2)));
10508 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10509 return (value_from_longest
10510 (value_type (arg2),
10511 value_as_long (arg1) + value_as_long (arg2)));
10512 if ((ada_is_fixed_point_type (value_type (arg1))
10513 || ada_is_fixed_point_type (value_type (arg2)))
10514 && value_type (arg1) != value_type (arg2))
10515 error (_("Operands of fixed-point addition must have the same type"));
10516 /* Do the addition, and cast the result to the type of the first
10517 argument. We cannot cast the result to a reference type, so if
10518 ARG1 is a reference type, find its underlying type. */
10519 type = value_type (arg1);
10520 while (TYPE_CODE (type) == TYPE_CODE_REF)
10521 type = TYPE_TARGET_TYPE (type);
10522 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10523 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10524
10525 case BINOP_SUB:
10526 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10527 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10528 if (noside == EVAL_SKIP)
10529 goto nosideret;
10530 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10531 return (value_from_longest
10532 (value_type (arg1),
10533 value_as_long (arg1) - value_as_long (arg2)));
10534 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10535 return (value_from_longest
10536 (value_type (arg2),
10537 value_as_long (arg1) - value_as_long (arg2)));
10538 if ((ada_is_fixed_point_type (value_type (arg1))
10539 || ada_is_fixed_point_type (value_type (arg2)))
10540 && value_type (arg1) != value_type (arg2))
10541 error (_("Operands of fixed-point subtraction "
10542 "must have the same type"));
10543 /* Do the substraction, and cast the result to the type of the first
10544 argument. We cannot cast the result to a reference type, so if
10545 ARG1 is a reference type, find its underlying type. */
10546 type = value_type (arg1);
10547 while (TYPE_CODE (type) == TYPE_CODE_REF)
10548 type = TYPE_TARGET_TYPE (type);
10549 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10550 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10551
10552 case BINOP_MUL:
10553 case BINOP_DIV:
10554 case BINOP_REM:
10555 case BINOP_MOD:
10556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10557 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
10559 goto nosideret;
10560 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10561 {
10562 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10563 return value_zero (value_type (arg1), not_lval);
10564 }
10565 else
10566 {
10567 type = builtin_type (exp->gdbarch)->builtin_double;
10568 if (ada_is_fixed_point_type (value_type (arg1)))
10569 arg1 = cast_from_fixed (type, arg1);
10570 if (ada_is_fixed_point_type (value_type (arg2)))
10571 arg2 = cast_from_fixed (type, arg2);
10572 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10573 return ada_value_binop (arg1, arg2, op);
10574 }
10575
10576 case BINOP_EQUAL:
10577 case BINOP_NOTEQUAL:
10578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10579 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10580 if (noside == EVAL_SKIP)
10581 goto nosideret;
10582 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10583 tem = 0;
10584 else
10585 {
10586 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10587 tem = ada_value_equal (arg1, arg2);
10588 }
10589 if (op == BINOP_NOTEQUAL)
10590 tem = !tem;
10591 type = language_bool_type (exp->language_defn, exp->gdbarch);
10592 return value_from_longest (type, (LONGEST) tem);
10593
10594 case UNOP_NEG:
10595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10596 if (noside == EVAL_SKIP)
10597 goto nosideret;
10598 else if (ada_is_fixed_point_type (value_type (arg1)))
10599 return value_cast (value_type (arg1), value_neg (arg1));
10600 else
10601 {
10602 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10603 return value_neg (arg1);
10604 }
10605
10606 case BINOP_LOGICAL_AND:
10607 case BINOP_LOGICAL_OR:
10608 case UNOP_LOGICAL_NOT:
10609 {
10610 struct value *val;
10611
10612 *pos -= 1;
10613 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10614 type = language_bool_type (exp->language_defn, exp->gdbarch);
10615 return value_cast (type, val);
10616 }
10617
10618 case BINOP_BITWISE_AND:
10619 case BINOP_BITWISE_IOR:
10620 case BINOP_BITWISE_XOR:
10621 {
10622 struct value *val;
10623
10624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10625 *pos = pc;
10626 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10627
10628 return value_cast (value_type (arg1), val);
10629 }
10630
10631 case OP_VAR_VALUE:
10632 *pos -= 1;
10633
10634 if (noside == EVAL_SKIP)
10635 {
10636 *pos += 4;
10637 goto nosideret;
10638 }
10639
10640 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10641 /* Only encountered when an unresolved symbol occurs in a
10642 context other than a function call, in which case, it is
10643 invalid. */
10644 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10645 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10646
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 {
10649 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10650 /* Check to see if this is a tagged type. We also need to handle
10651 the case where the type is a reference to a tagged type, but
10652 we have to be careful to exclude pointers to tagged types.
10653 The latter should be shown as usual (as a pointer), whereas
10654 a reference should mostly be transparent to the user. */
10655 if (ada_is_tagged_type (type, 0)
10656 || (TYPE_CODE (type) == TYPE_CODE_REF
10657 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10658 {
10659 /* Tagged types are a little special in the fact that the real
10660 type is dynamic and can only be determined by inspecting the
10661 object's tag. This means that we need to get the object's
10662 value first (EVAL_NORMAL) and then extract the actual object
10663 type from its tag.
10664
10665 Note that we cannot skip the final step where we extract
10666 the object type from its tag, because the EVAL_NORMAL phase
10667 results in dynamic components being resolved into fixed ones.
10668 This can cause problems when trying to print the type
10669 description of tagged types whose parent has a dynamic size:
10670 We use the type name of the "_parent" component in order
10671 to print the name of the ancestor type in the type description.
10672 If that component had a dynamic size, the resolution into
10673 a fixed type would result in the loss of that type name,
10674 thus preventing us from printing the name of the ancestor
10675 type in the type description. */
10676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10677
10678 if (TYPE_CODE (type) != TYPE_CODE_REF)
10679 {
10680 struct type *actual_type;
10681
10682 actual_type = type_from_tag (ada_value_tag (arg1));
10683 if (actual_type == NULL)
10684 /* If, for some reason, we were unable to determine
10685 the actual type from the tag, then use the static
10686 approximation that we just computed as a fallback.
10687 This can happen if the debugging information is
10688 incomplete, for instance. */
10689 actual_type = type;
10690 return value_zero (actual_type, not_lval);
10691 }
10692 else
10693 {
10694 /* In the case of a ref, ada_coerce_ref takes care
10695 of determining the actual type. But the evaluation
10696 should return a ref as it should be valid to ask
10697 for its address; so rebuild a ref after coerce. */
10698 arg1 = ada_coerce_ref (arg1);
10699 return value_ref (arg1, TYPE_CODE_REF);
10700 }
10701 }
10702
10703 /* Records and unions for which GNAT encodings have been
10704 generated need to be statically fixed as well.
10705 Otherwise, non-static fixing produces a type where
10706 all dynamic properties are removed, which prevents "ptype"
10707 from being able to completely describe the type.
10708 For instance, a case statement in a variant record would be
10709 replaced by the relevant components based on the actual
10710 value of the discriminants. */
10711 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10712 && dynamic_template_type (type) != NULL)
10713 || (TYPE_CODE (type) == TYPE_CODE_UNION
10714 && ada_find_parallel_type (type, "___XVU") != NULL))
10715 {
10716 *pos += 4;
10717 return value_zero (to_static_fixed_type (type), not_lval);
10718 }
10719 }
10720
10721 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10722 return ada_to_fixed_value (arg1);
10723
10724 case OP_FUNCALL:
10725 (*pos) += 2;
10726
10727 /* Allocate arg vector, including space for the function to be
10728 called in argvec[0] and a terminating NULL. */
10729 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10730 argvec = XALLOCAVEC (struct value *, nargs + 2);
10731
10732 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10733 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10734 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10735 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10736 else
10737 {
10738 for (tem = 0; tem <= nargs; tem += 1)
10739 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 argvec[tem] = 0;
10741
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
10744 }
10745
10746 if (ada_is_constrained_packed_array_type
10747 (desc_base_type (value_type (argvec[0]))))
10748 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10749 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10750 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10751 /* This is a packed array that has already been fixed, and
10752 therefore already coerced to a simple array. Nothing further
10753 to do. */
10754 ;
10755 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10756 {
10757 /* Make sure we dereference references so that all the code below
10758 feels like it's really handling the referenced value. Wrapping
10759 types (for alignment) may be there, so make sure we strip them as
10760 well. */
10761 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10762 }
10763 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10764 && VALUE_LVAL (argvec[0]) == lval_memory)
10765 argvec[0] = value_addr (argvec[0]);
10766
10767 type = ada_check_typedef (value_type (argvec[0]));
10768
10769 /* Ada allows us to implicitly dereference arrays when subscripting
10770 them. So, if this is an array typedef (encoding use for array
10771 access types encoded as fat pointers), strip it now. */
10772 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10773 type = ada_typedef_target_type (type);
10774
10775 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10776 {
10777 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10778 {
10779 case TYPE_CODE_FUNC:
10780 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10781 break;
10782 case TYPE_CODE_ARRAY:
10783 break;
10784 case TYPE_CODE_STRUCT:
10785 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10786 argvec[0] = ada_value_ind (argvec[0]);
10787 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10788 break;
10789 default:
10790 error (_("cannot subscript or call something of type `%s'"),
10791 ada_type_name (value_type (argvec[0])));
10792 break;
10793 }
10794 }
10795
10796 switch (TYPE_CODE (type))
10797 {
10798 case TYPE_CODE_FUNC:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 {
10801 if (TYPE_TARGET_TYPE (type) == NULL)
10802 error_call_unknown_return_type (NULL);
10803 return allocate_value (TYPE_TARGET_TYPE (type));
10804 }
10805 return call_function_by_hand (argvec[0], NULL,
10806 gdb::make_array_view (argvec + 1,
10807 nargs));
10808 case TYPE_CODE_INTERNAL_FUNCTION:
10809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10810 /* We don't know anything about what the internal
10811 function might return, but we have to return
10812 something. */
10813 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10814 not_lval);
10815 else
10816 return call_internal_function (exp->gdbarch, exp->language_defn,
10817 argvec[0], nargs, argvec + 1);
10818
10819 case TYPE_CODE_STRUCT:
10820 {
10821 int arity;
10822
10823 arity = ada_array_arity (type);
10824 type = ada_array_element_type (type, nargs);
10825 if (type == NULL)
10826 error (_("cannot subscript or call a record"));
10827 if (arity != nargs)
10828 error (_("wrong number of subscripts; expecting %d"), arity);
10829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10830 return value_zero (ada_aligned_type (type), lval_memory);
10831 return
10832 unwrap_value (ada_value_subscript
10833 (argvec[0], nargs, argvec + 1));
10834 }
10835 case TYPE_CODE_ARRAY:
10836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10837 {
10838 type = ada_array_element_type (type, nargs);
10839 if (type == NULL)
10840 error (_("element type of array unknown"));
10841 else
10842 return value_zero (ada_aligned_type (type), lval_memory);
10843 }
10844 return
10845 unwrap_value (ada_value_subscript
10846 (ada_coerce_to_simple_array (argvec[0]),
10847 nargs, argvec + 1));
10848 case TYPE_CODE_PTR: /* Pointer to array */
10849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 {
10851 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10852 type = ada_array_element_type (type, nargs);
10853 if (type == NULL)
10854 error (_("element type of array unknown"));
10855 else
10856 return value_zero (ada_aligned_type (type), lval_memory);
10857 }
10858 return
10859 unwrap_value (ada_value_ptr_subscript (argvec[0],
10860 nargs, argvec + 1));
10861
10862 default:
10863 error (_("Attempt to index or call something other than an "
10864 "array or function"));
10865 }
10866
10867 case TERNOP_SLICE:
10868 {
10869 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 struct value *low_bound_val =
10871 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 struct value *high_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 LONGEST low_bound;
10875 LONGEST high_bound;
10876
10877 low_bound_val = coerce_ref (low_bound_val);
10878 high_bound_val = coerce_ref (high_bound_val);
10879 low_bound = value_as_long (low_bound_val);
10880 high_bound = value_as_long (high_bound_val);
10881
10882 if (noside == EVAL_SKIP)
10883 goto nosideret;
10884
10885 /* If this is a reference to an aligner type, then remove all
10886 the aligners. */
10887 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10888 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10889 TYPE_TARGET_TYPE (value_type (array)) =
10890 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10891
10892 if (ada_is_constrained_packed_array_type (value_type (array)))
10893 error (_("cannot slice a packed array"));
10894
10895 /* If this is a reference to an array or an array lvalue,
10896 convert to a pointer. */
10897 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10898 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10899 && VALUE_LVAL (array) == lval_memory))
10900 array = value_addr (array);
10901
10902 if (noside == EVAL_AVOID_SIDE_EFFECTS
10903 && ada_is_array_descriptor_type (ada_check_typedef
10904 (value_type (array))))
10905 return empty_array (ada_type_of_array (array, 0), low_bound,
10906 high_bound);
10907
10908 array = ada_coerce_to_simple_array_ptr (array);
10909
10910 /* If we have more than one level of pointer indirection,
10911 dereference the value until we get only one level. */
10912 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10913 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10914 == TYPE_CODE_PTR))
10915 array = value_ind (array);
10916
10917 /* Make sure we really do have an array type before going further,
10918 to avoid a SEGV when trying to get the index type or the target
10919 type later down the road if the debug info generated by
10920 the compiler is incorrect or incomplete. */
10921 if (!ada_is_simple_array_type (value_type (array)))
10922 error (_("cannot take slice of non-array"));
10923
10924 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10925 == TYPE_CODE_PTR)
10926 {
10927 struct type *type0 = ada_check_typedef (value_type (array));
10928
10929 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10930 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10931 else
10932 {
10933 struct type *arr_type0 =
10934 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10935
10936 return ada_value_slice_from_ptr (array, arr_type0,
10937 longest_to_int (low_bound),
10938 longest_to_int (high_bound));
10939 }
10940 }
10941 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10942 return array;
10943 else if (high_bound < low_bound)
10944 return empty_array (value_type (array), low_bound, high_bound);
10945 else
10946 return ada_value_slice (array, longest_to_int (low_bound),
10947 longest_to_int (high_bound));
10948 }
10949
10950 case UNOP_IN_RANGE:
10951 (*pos) += 2;
10952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953 type = check_typedef (exp->elts[pc + 1].type);
10954
10955 if (noside == EVAL_SKIP)
10956 goto nosideret;
10957
10958 switch (TYPE_CODE (type))
10959 {
10960 default:
10961 lim_warning (_("Membership test incompletely implemented; "
10962 "always returns true"));
10963 type = language_bool_type (exp->language_defn, exp->gdbarch);
10964 return value_from_longest (type, (LONGEST) 1);
10965
10966 case TYPE_CODE_RANGE:
10967 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10968 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
10972 return
10973 value_from_longest (type,
10974 (value_less (arg1, arg3)
10975 || value_equal (arg1, arg3))
10976 && (value_less (arg2, arg1)
10977 || value_equal (arg2, arg1)));
10978 }
10979
10980 case BINOP_IN_BOUNDS:
10981 (*pos) += 2;
10982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984
10985 if (noside == EVAL_SKIP)
10986 goto nosideret;
10987
10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 {
10990 type = language_bool_type (exp->language_defn, exp->gdbarch);
10991 return value_zero (type, not_lval);
10992 }
10993
10994 tem = longest_to_int (exp->elts[pc + 1].longconst);
10995
10996 type = ada_index_type (value_type (arg2), tem, "range");
10997 if (!type)
10998 type = value_type (arg1);
10999
11000 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11001 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11002
11003 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11005 type = language_bool_type (exp->language_defn, exp->gdbarch);
11006 return
11007 value_from_longest (type,
11008 (value_less (arg1, arg3)
11009 || value_equal (arg1, arg3))
11010 && (value_less (arg2, arg1)
11011 || value_equal (arg2, arg1)));
11012
11013 case TERNOP_IN_RANGE:
11014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11015 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020
11021 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11023 type = language_bool_type (exp->language_defn, exp->gdbarch);
11024 return
11025 value_from_longest (type,
11026 (value_less (arg1, arg3)
11027 || value_equal (arg1, arg3))
11028 && (value_less (arg2, arg1)
11029 || value_equal (arg2, arg1)));
11030
11031 case OP_ATR_FIRST:
11032 case OP_ATR_LAST:
11033 case OP_ATR_LENGTH:
11034 {
11035 struct type *type_arg;
11036
11037 if (exp->elts[*pos].opcode == OP_TYPE)
11038 {
11039 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11040 arg1 = NULL;
11041 type_arg = check_typedef (exp->elts[pc + 2].type);
11042 }
11043 else
11044 {
11045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11046 type_arg = NULL;
11047 }
11048
11049 if (exp->elts[*pos].opcode != OP_LONG)
11050 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11051 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11052 *pos += 4;
11053
11054 if (noside == EVAL_SKIP)
11055 goto nosideret;
11056 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11057 {
11058 if (type_arg == NULL)
11059 type_arg = value_type (arg1);
11060
11061 if (ada_is_constrained_packed_array_type (type_arg))
11062 type_arg = decode_constrained_packed_array_type (type_arg);
11063
11064 if (!discrete_type_p (type_arg))
11065 {
11066 switch (op)
11067 {
11068 default: /* Should never happen. */
11069 error (_("unexpected attribute encountered"));
11070 case OP_ATR_FIRST:
11071 case OP_ATR_LAST:
11072 type_arg = ada_index_type (type_arg, tem,
11073 ada_attribute_name (op));
11074 break;
11075 case OP_ATR_LENGTH:
11076 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11077 break;
11078 }
11079 }
11080
11081 return value_zero (type_arg, not_lval);
11082 }
11083 else if (type_arg == NULL)
11084 {
11085 arg1 = ada_coerce_ref (arg1);
11086
11087 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11088 arg1 = ada_coerce_to_simple_array (arg1);
11089
11090 if (op == OP_ATR_LENGTH)
11091 type = builtin_type (exp->gdbarch)->builtin_int;
11092 else
11093 {
11094 type = ada_index_type (value_type (arg1), tem,
11095 ada_attribute_name (op));
11096 if (type == NULL)
11097 type = builtin_type (exp->gdbarch)->builtin_int;
11098 }
11099
11100 switch (op)
11101 {
11102 default: /* Should never happen. */
11103 error (_("unexpected attribute encountered"));
11104 case OP_ATR_FIRST:
11105 return value_from_longest
11106 (type, ada_array_bound (arg1, tem, 0));
11107 case OP_ATR_LAST:
11108 return value_from_longest
11109 (type, ada_array_bound (arg1, tem, 1));
11110 case OP_ATR_LENGTH:
11111 return value_from_longest
11112 (type, ada_array_length (arg1, tem));
11113 }
11114 }
11115 else if (discrete_type_p (type_arg))
11116 {
11117 struct type *range_type;
11118 const char *name = ada_type_name (type_arg);
11119
11120 range_type = NULL;
11121 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11122 range_type = to_fixed_range_type (type_arg, NULL);
11123 if (range_type == NULL)
11124 range_type = type_arg;
11125 switch (op)
11126 {
11127 default:
11128 error (_("unexpected attribute encountered"));
11129 case OP_ATR_FIRST:
11130 return value_from_longest
11131 (range_type, ada_discrete_type_low_bound (range_type));
11132 case OP_ATR_LAST:
11133 return value_from_longest
11134 (range_type, ada_discrete_type_high_bound (range_type));
11135 case OP_ATR_LENGTH:
11136 error (_("the 'length attribute applies only to array types"));
11137 }
11138 }
11139 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11140 error (_("unimplemented type attribute"));
11141 else
11142 {
11143 LONGEST low, high;
11144
11145 if (ada_is_constrained_packed_array_type (type_arg))
11146 type_arg = decode_constrained_packed_array_type (type_arg);
11147
11148 if (op == OP_ATR_LENGTH)
11149 type = builtin_type (exp->gdbarch)->builtin_int;
11150 else
11151 {
11152 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11153 if (type == NULL)
11154 type = builtin_type (exp->gdbarch)->builtin_int;
11155 }
11156
11157 switch (op)
11158 {
11159 default:
11160 error (_("unexpected attribute encountered"));
11161 case OP_ATR_FIRST:
11162 low = ada_array_bound_from_type (type_arg, tem, 0);
11163 return value_from_longest (type, low);
11164 case OP_ATR_LAST:
11165 high = ada_array_bound_from_type (type_arg, tem, 1);
11166 return value_from_longest (type, high);
11167 case OP_ATR_LENGTH:
11168 low = ada_array_bound_from_type (type_arg, tem, 0);
11169 high = ada_array_bound_from_type (type_arg, tem, 1);
11170 return value_from_longest (type, high - low + 1);
11171 }
11172 }
11173 }
11174
11175 case OP_ATR_TAG:
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 if (noside == EVAL_SKIP)
11178 goto nosideret;
11179
11180 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181 return value_zero (ada_tag_type (arg1), not_lval);
11182
11183 return ada_value_tag (arg1);
11184
11185 case OP_ATR_MIN:
11186 case OP_ATR_MAX:
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
11191 goto nosideret;
11192 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11193 return value_zero (value_type (arg1), not_lval);
11194 else
11195 {
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11197 return value_binop (arg1, arg2,
11198 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11199 }
11200
11201 case OP_ATR_MODULUS:
11202 {
11203 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11204
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11206 if (noside == EVAL_SKIP)
11207 goto nosideret;
11208
11209 if (!ada_is_modular_type (type_arg))
11210 error (_("'modulus must be applied to modular type"));
11211
11212 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11213 ada_modulus (type_arg));
11214 }
11215
11216
11217 case OP_ATR_POS:
11218 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 type = builtin_type (exp->gdbarch)->builtin_int;
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 return value_zero (type, not_lval);
11225 else
11226 return value_pos_atr (type, arg1);
11227
11228 case OP_ATR_SIZE:
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 type = value_type (arg1);
11231
11232 /* If the argument is a reference, then dereference its type, since
11233 the user is really asking for the size of the actual object,
11234 not the size of the pointer. */
11235 if (TYPE_CODE (type) == TYPE_CODE_REF)
11236 type = TYPE_TARGET_TYPE (type);
11237
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11242 else
11243 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11244 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11245
11246 case OP_ATR_VAL:
11247 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 type = exp->elts[pc + 2].type;
11250 if (noside == EVAL_SKIP)
11251 goto nosideret;
11252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253 return value_zero (type, not_lval);
11254 else
11255 return value_val_atr (type, arg1);
11256
11257 case BINOP_EXP:
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11260 if (noside == EVAL_SKIP)
11261 goto nosideret;
11262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11263 return value_zero (value_type (arg1), not_lval);
11264 else
11265 {
11266 /* For integer exponentiation operations,
11267 only promote the first argument. */
11268 if (is_integral_type (value_type (arg2)))
11269 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11270 else
11271 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11272
11273 return value_binop (arg1, arg2, op);
11274 }
11275
11276 case UNOP_PLUS:
11277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11278 if (noside == EVAL_SKIP)
11279 goto nosideret;
11280 else
11281 return arg1;
11282
11283 case UNOP_ABS:
11284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11285 if (noside == EVAL_SKIP)
11286 goto nosideret;
11287 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11288 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11289 return value_neg (arg1);
11290 else
11291 return arg1;
11292
11293 case UNOP_IND:
11294 preeval_pos = *pos;
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
11297 goto nosideret;
11298 type = ada_check_typedef (value_type (arg1));
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 {
11301 if (ada_is_array_descriptor_type (type))
11302 /* GDB allows dereferencing GNAT array descriptors. */
11303 {
11304 struct type *arrType = ada_type_of_array (arg1, 0);
11305
11306 if (arrType == NULL)
11307 error (_("Attempt to dereference null array pointer."));
11308 return value_at_lazy (arrType, 0);
11309 }
11310 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11311 || TYPE_CODE (type) == TYPE_CODE_REF
11312 /* In C you can dereference an array to get the 1st elt. */
11313 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11314 {
11315 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11316 only be determined by inspecting the object's tag.
11317 This means that we need to evaluate completely the
11318 expression in order to get its type. */
11319
11320 if ((TYPE_CODE (type) == TYPE_CODE_REF
11321 || TYPE_CODE (type) == TYPE_CODE_PTR)
11322 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11323 {
11324 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11325 EVAL_NORMAL);
11326 type = value_type (ada_value_ind (arg1));
11327 }
11328 else
11329 {
11330 type = to_static_fixed_type
11331 (ada_aligned_type
11332 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11333 }
11334 ada_ensure_varsize_limit (type);
11335 return value_zero (type, lval_memory);
11336 }
11337 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11338 {
11339 /* GDB allows dereferencing an int. */
11340 if (expect_type == NULL)
11341 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11342 lval_memory);
11343 else
11344 {
11345 expect_type =
11346 to_static_fixed_type (ada_aligned_type (expect_type));
11347 return value_zero (expect_type, lval_memory);
11348 }
11349 }
11350 else
11351 error (_("Attempt to take contents of a non-pointer value."));
11352 }
11353 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11354 type = ada_check_typedef (value_type (arg1));
11355
11356 if (TYPE_CODE (type) == TYPE_CODE_INT)
11357 /* GDB allows dereferencing an int. If we were given
11358 the expect_type, then use that as the target type.
11359 Otherwise, assume that the target type is an int. */
11360 {
11361 if (expect_type != NULL)
11362 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11363 arg1));
11364 else
11365 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11366 (CORE_ADDR) value_as_address (arg1));
11367 }
11368
11369 if (ada_is_array_descriptor_type (type))
11370 /* GDB allows dereferencing GNAT array descriptors. */
11371 return ada_coerce_to_simple_array (arg1);
11372 else
11373 return ada_value_ind (arg1);
11374
11375 case STRUCTOP_STRUCT:
11376 tem = longest_to_int (exp->elts[pc + 1].longconst);
11377 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11378 preeval_pos = *pos;
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11380 if (noside == EVAL_SKIP)
11381 goto nosideret;
11382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11383 {
11384 struct type *type1 = value_type (arg1);
11385
11386 if (ada_is_tagged_type (type1, 1))
11387 {
11388 type = ada_lookup_struct_elt_type (type1,
11389 &exp->elts[pc + 2].string,
11390 1, 1);
11391
11392 /* If the field is not found, check if it exists in the
11393 extension of this object's type. This means that we
11394 need to evaluate completely the expression. */
11395
11396 if (type == NULL)
11397 {
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11399 EVAL_NORMAL);
11400 arg1 = ada_value_struct_elt (arg1,
11401 &exp->elts[pc + 2].string,
11402 0);
11403 arg1 = unwrap_value (arg1);
11404 type = value_type (ada_to_fixed_value (arg1));
11405 }
11406 }
11407 else
11408 type =
11409 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11410 0);
11411
11412 return value_zero (ada_aligned_type (type), lval_memory);
11413 }
11414 else
11415 {
11416 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11417 arg1 = unwrap_value (arg1);
11418 return ada_to_fixed_value (arg1);
11419 }
11420
11421 case OP_TYPE:
11422 /* The value is not supposed to be used. This is here to make it
11423 easier to accommodate expressions that contain types. */
11424 (*pos) += 2;
11425 if (noside == EVAL_SKIP)
11426 goto nosideret;
11427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11428 return allocate_value (exp->elts[pc + 1].type);
11429 else
11430 error (_("Attempt to use a type name as an expression"));
11431
11432 case OP_AGGREGATE:
11433 case OP_CHOICES:
11434 case OP_OTHERS:
11435 case OP_DISCRETE_RANGE:
11436 case OP_POSITIONAL:
11437 case OP_NAME:
11438 if (noside == EVAL_NORMAL)
11439 switch (op)
11440 {
11441 case OP_NAME:
11442 error (_("Undefined name, ambiguous name, or renaming used in "
11443 "component association: %s."), &exp->elts[pc+2].string);
11444 case OP_AGGREGATE:
11445 error (_("Aggregates only allowed on the right of an assignment"));
11446 default:
11447 internal_error (__FILE__, __LINE__,
11448 _("aggregate apparently mangled"));
11449 }
11450
11451 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11452 *pos += oplen - 1;
11453 for (tem = 0; tem < nargs; tem += 1)
11454 ada_evaluate_subexp (NULL, exp, pos, noside);
11455 goto nosideret;
11456 }
11457
11458 nosideret:
11459 return eval_skip_value (exp);
11460 }
11461 \f
11462
11463 /* Fixed point */
11464
11465 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11466 type name that encodes the 'small and 'delta information.
11467 Otherwise, return NULL. */
11468
11469 static const char *
11470 fixed_type_info (struct type *type)
11471 {
11472 const char *name = ada_type_name (type);
11473 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11474
11475 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11476 {
11477 const char *tail = strstr (name, "___XF_");
11478
11479 if (tail == NULL)
11480 return NULL;
11481 else
11482 return tail + 5;
11483 }
11484 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11485 return fixed_type_info (TYPE_TARGET_TYPE (type));
11486 else
11487 return NULL;
11488 }
11489
11490 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11491
11492 int
11493 ada_is_fixed_point_type (struct type *type)
11494 {
11495 return fixed_type_info (type) != NULL;
11496 }
11497
11498 /* Return non-zero iff TYPE represents a System.Address type. */
11499
11500 int
11501 ada_is_system_address_type (struct type *type)
11502 {
11503 return (TYPE_NAME (type)
11504 && strcmp (TYPE_NAME (type), "system__address") == 0);
11505 }
11506
11507 /* Assuming that TYPE is the representation of an Ada fixed-point
11508 type, return the target floating-point type to be used to represent
11509 of this type during internal computation. */
11510
11511 static struct type *
11512 ada_scaling_type (struct type *type)
11513 {
11514 return builtin_type (get_type_arch (type))->builtin_long_double;
11515 }
11516
11517 /* Assuming that TYPE is the representation of an Ada fixed-point
11518 type, return its delta, or NULL if the type is malformed and the
11519 delta cannot be determined. */
11520
11521 struct value *
11522 ada_delta (struct type *type)
11523 {
11524 const char *encoding = fixed_type_info (type);
11525 struct type *scale_type = ada_scaling_type (type);
11526
11527 long long num, den;
11528
11529 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11530 return nullptr;
11531 else
11532 return value_binop (value_from_longest (scale_type, num),
11533 value_from_longest (scale_type, den), BINOP_DIV);
11534 }
11535
11536 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11537 factor ('SMALL value) associated with the type. */
11538
11539 struct value *
11540 ada_scaling_factor (struct type *type)
11541 {
11542 const char *encoding = fixed_type_info (type);
11543 struct type *scale_type = ada_scaling_type (type);
11544
11545 long long num0, den0, num1, den1;
11546 int n;
11547
11548 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11549 &num0, &den0, &num1, &den1);
11550
11551 if (n < 2)
11552 return value_from_longest (scale_type, 1);
11553 else if (n == 4)
11554 return value_binop (value_from_longest (scale_type, num1),
11555 value_from_longest (scale_type, den1), BINOP_DIV);
11556 else
11557 return value_binop (value_from_longest (scale_type, num0),
11558 value_from_longest (scale_type, den0), BINOP_DIV);
11559 }
11560
11561 \f
11562
11563 /* Range types */
11564
11565 /* Scan STR beginning at position K for a discriminant name, and
11566 return the value of that discriminant field of DVAL in *PX. If
11567 PNEW_K is not null, put the position of the character beyond the
11568 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11569 not alter *PX and *PNEW_K if unsuccessful. */
11570
11571 static int
11572 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11573 int *pnew_k)
11574 {
11575 static char *bound_buffer = NULL;
11576 static size_t bound_buffer_len = 0;
11577 const char *pstart, *pend, *bound;
11578 struct value *bound_val;
11579
11580 if (dval == NULL || str == NULL || str[k] == '\0')
11581 return 0;
11582
11583 pstart = str + k;
11584 pend = strstr (pstart, "__");
11585 if (pend == NULL)
11586 {
11587 bound = pstart;
11588 k += strlen (bound);
11589 }
11590 else
11591 {
11592 int len = pend - pstart;
11593
11594 /* Strip __ and beyond. */
11595 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11596 strncpy (bound_buffer, pstart, len);
11597 bound_buffer[len] = '\0';
11598
11599 bound = bound_buffer;
11600 k = pend - str;
11601 }
11602
11603 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11604 if (bound_val == NULL)
11605 return 0;
11606
11607 *px = value_as_long (bound_val);
11608 if (pnew_k != NULL)
11609 *pnew_k = k;
11610 return 1;
11611 }
11612
11613 /* Value of variable named NAME in the current environment. If
11614 no such variable found, then if ERR_MSG is null, returns 0, and
11615 otherwise causes an error with message ERR_MSG. */
11616
11617 static struct value *
11618 get_var_value (const char *name, const char *err_msg)
11619 {
11620 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11621
11622 std::vector<struct block_symbol> syms;
11623 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11624 get_selected_block (0),
11625 VAR_DOMAIN, &syms, 1);
11626
11627 if (nsyms != 1)
11628 {
11629 if (err_msg == NULL)
11630 return 0;
11631 else
11632 error (("%s"), err_msg);
11633 }
11634
11635 return value_of_variable (syms[0].symbol, syms[0].block);
11636 }
11637
11638 /* Value of integer variable named NAME in the current environment.
11639 If no such variable is found, returns false. Otherwise, sets VALUE
11640 to the variable's value and returns true. */
11641
11642 bool
11643 get_int_var_value (const char *name, LONGEST &value)
11644 {
11645 struct value *var_val = get_var_value (name, 0);
11646
11647 if (var_val == 0)
11648 return false;
11649
11650 value = value_as_long (var_val);
11651 return true;
11652 }
11653
11654
11655 /* Return a range type whose base type is that of the range type named
11656 NAME in the current environment, and whose bounds are calculated
11657 from NAME according to the GNAT range encoding conventions.
11658 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11659 corresponding range type from debug information; fall back to using it
11660 if symbol lookup fails. If a new type must be created, allocate it
11661 like ORIG_TYPE was. The bounds information, in general, is encoded
11662 in NAME, the base type given in the named range type. */
11663
11664 static struct type *
11665 to_fixed_range_type (struct type *raw_type, struct value *dval)
11666 {
11667 const char *name;
11668 struct type *base_type;
11669 const char *subtype_info;
11670
11671 gdb_assert (raw_type != NULL);
11672 gdb_assert (TYPE_NAME (raw_type) != NULL);
11673
11674 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11675 base_type = TYPE_TARGET_TYPE (raw_type);
11676 else
11677 base_type = raw_type;
11678
11679 name = TYPE_NAME (raw_type);
11680 subtype_info = strstr (name, "___XD");
11681 if (subtype_info == NULL)
11682 {
11683 LONGEST L = ada_discrete_type_low_bound (raw_type);
11684 LONGEST U = ada_discrete_type_high_bound (raw_type);
11685
11686 if (L < INT_MIN || U > INT_MAX)
11687 return raw_type;
11688 else
11689 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11690 L, U);
11691 }
11692 else
11693 {
11694 static char *name_buf = NULL;
11695 static size_t name_len = 0;
11696 int prefix_len = subtype_info - name;
11697 LONGEST L, U;
11698 struct type *type;
11699 const char *bounds_str;
11700 int n;
11701
11702 GROW_VECT (name_buf, name_len, prefix_len + 5);
11703 strncpy (name_buf, name, prefix_len);
11704 name_buf[prefix_len] = '\0';
11705
11706 subtype_info += 5;
11707 bounds_str = strchr (subtype_info, '_');
11708 n = 1;
11709
11710 if (*subtype_info == 'L')
11711 {
11712 if (!ada_scan_number (bounds_str, n, &L, &n)
11713 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11714 return raw_type;
11715 if (bounds_str[n] == '_')
11716 n += 2;
11717 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11718 n += 1;
11719 subtype_info += 1;
11720 }
11721 else
11722 {
11723 strcpy (name_buf + prefix_len, "___L");
11724 if (!get_int_var_value (name_buf, L))
11725 {
11726 lim_warning (_("Unknown lower bound, using 1."));
11727 L = 1;
11728 }
11729 }
11730
11731 if (*subtype_info == 'U')
11732 {
11733 if (!ada_scan_number (bounds_str, n, &U, &n)
11734 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11735 return raw_type;
11736 }
11737 else
11738 {
11739 strcpy (name_buf + prefix_len, "___U");
11740 if (!get_int_var_value (name_buf, U))
11741 {
11742 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11743 U = L;
11744 }
11745 }
11746
11747 type = create_static_range_type (alloc_type_copy (raw_type),
11748 base_type, L, U);
11749 /* create_static_range_type alters the resulting type's length
11750 to match the size of the base_type, which is not what we want.
11751 Set it back to the original range type's length. */
11752 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11753 TYPE_NAME (type) = name;
11754 return type;
11755 }
11756 }
11757
11758 /* True iff NAME is the name of a range type. */
11759
11760 int
11761 ada_is_range_type_name (const char *name)
11762 {
11763 return (name != NULL && strstr (name, "___XD"));
11764 }
11765 \f
11766
11767 /* Modular types */
11768
11769 /* True iff TYPE is an Ada modular type. */
11770
11771 int
11772 ada_is_modular_type (struct type *type)
11773 {
11774 struct type *subranged_type = get_base_type (type);
11775
11776 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11777 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11778 && TYPE_UNSIGNED (subranged_type));
11779 }
11780
11781 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11782
11783 ULONGEST
11784 ada_modulus (struct type *type)
11785 {
11786 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11787 }
11788 \f
11789
11790 /* Ada exception catchpoint support:
11791 ---------------------------------
11792
11793 We support 3 kinds of exception catchpoints:
11794 . catchpoints on Ada exceptions
11795 . catchpoints on unhandled Ada exceptions
11796 . catchpoints on failed assertions
11797
11798 Exceptions raised during failed assertions, or unhandled exceptions
11799 could perfectly be caught with the general catchpoint on Ada exceptions.
11800 However, we can easily differentiate these two special cases, and having
11801 the option to distinguish these two cases from the rest can be useful
11802 to zero-in on certain situations.
11803
11804 Exception catchpoints are a specialized form of breakpoint,
11805 since they rely on inserting breakpoints inside known routines
11806 of the GNAT runtime. The implementation therefore uses a standard
11807 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11808 of breakpoint_ops.
11809
11810 Support in the runtime for exception catchpoints have been changed
11811 a few times already, and these changes affect the implementation
11812 of these catchpoints. In order to be able to support several
11813 variants of the runtime, we use a sniffer that will determine
11814 the runtime variant used by the program being debugged. */
11815
11816 /* Ada's standard exceptions.
11817
11818 The Ada 83 standard also defined Numeric_Error. But there so many
11819 situations where it was unclear from the Ada 83 Reference Manual
11820 (RM) whether Constraint_Error or Numeric_Error should be raised,
11821 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11822 Interpretation saying that anytime the RM says that Numeric_Error
11823 should be raised, the implementation may raise Constraint_Error.
11824 Ada 95 went one step further and pretty much removed Numeric_Error
11825 from the list of standard exceptions (it made it a renaming of
11826 Constraint_Error, to help preserve compatibility when compiling
11827 an Ada83 compiler). As such, we do not include Numeric_Error from
11828 this list of standard exceptions. */
11829
11830 static const char *standard_exc[] = {
11831 "constraint_error",
11832 "program_error",
11833 "storage_error",
11834 "tasking_error"
11835 };
11836
11837 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11838
11839 /* A structure that describes how to support exception catchpoints
11840 for a given executable. */
11841
11842 struct exception_support_info
11843 {
11844 /* The name of the symbol to break on in order to insert
11845 a catchpoint on exceptions. */
11846 const char *catch_exception_sym;
11847
11848 /* The name of the symbol to break on in order to insert
11849 a catchpoint on unhandled exceptions. */
11850 const char *catch_exception_unhandled_sym;
11851
11852 /* The name of the symbol to break on in order to insert
11853 a catchpoint on failed assertions. */
11854 const char *catch_assert_sym;
11855
11856 /* The name of the symbol to break on in order to insert
11857 a catchpoint on exception handling. */
11858 const char *catch_handlers_sym;
11859
11860 /* Assuming that the inferior just triggered an unhandled exception
11861 catchpoint, this function is responsible for returning the address
11862 in inferior memory where the name of that exception is stored.
11863 Return zero if the address could not be computed. */
11864 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11865 };
11866
11867 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11868 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11869
11870 /* The following exception support info structure describes how to
11871 implement exception catchpoints with the latest version of the
11872 Ada runtime (as of 2019-08-??). */
11873
11874 static const struct exception_support_info default_exception_support_info =
11875 {
11876 "__gnat_debug_raise_exception", /* catch_exception_sym */
11877 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11878 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11879 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11880 ada_unhandled_exception_name_addr
11881 };
11882
11883 /* The following exception support info structure describes how to
11884 implement exception catchpoints with an earlier version of the
11885 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11886
11887 static const struct exception_support_info exception_support_info_v0 =
11888 {
11889 "__gnat_debug_raise_exception", /* catch_exception_sym */
11890 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11891 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11892 "__gnat_begin_handler", /* catch_handlers_sym */
11893 ada_unhandled_exception_name_addr
11894 };
11895
11896 /* The following exception support info structure describes how to
11897 implement exception catchpoints with a slightly older version
11898 of the Ada runtime. */
11899
11900 static const struct exception_support_info exception_support_info_fallback =
11901 {
11902 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11903 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11904 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11905 "__gnat_begin_handler", /* catch_handlers_sym */
11906 ada_unhandled_exception_name_addr_from_raise
11907 };
11908
11909 /* Return nonzero if we can detect the exception support routines
11910 described in EINFO.
11911
11912 This function errors out if an abnormal situation is detected
11913 (for instance, if we find the exception support routines, but
11914 that support is found to be incomplete). */
11915
11916 static int
11917 ada_has_this_exception_support (const struct exception_support_info *einfo)
11918 {
11919 struct symbol *sym;
11920
11921 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11922 that should be compiled with debugging information. As a result, we
11923 expect to find that symbol in the symtabs. */
11924
11925 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11926 if (sym == NULL)
11927 {
11928 /* Perhaps we did not find our symbol because the Ada runtime was
11929 compiled without debugging info, or simply stripped of it.
11930 It happens on some GNU/Linux distributions for instance, where
11931 users have to install a separate debug package in order to get
11932 the runtime's debugging info. In that situation, let the user
11933 know why we cannot insert an Ada exception catchpoint.
11934
11935 Note: Just for the purpose of inserting our Ada exception
11936 catchpoint, we could rely purely on the associated minimal symbol.
11937 But we would be operating in degraded mode anyway, since we are
11938 still lacking the debugging info needed later on to extract
11939 the name of the exception being raised (this name is printed in
11940 the catchpoint message, and is also used when trying to catch
11941 a specific exception). We do not handle this case for now. */
11942 struct bound_minimal_symbol msym
11943 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11944
11945 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11946 error (_("Your Ada runtime appears to be missing some debugging "
11947 "information.\nCannot insert Ada exception catchpoint "
11948 "in this configuration."));
11949
11950 return 0;
11951 }
11952
11953 /* Make sure that the symbol we found corresponds to a function. */
11954
11955 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11956 {
11957 error (_("Symbol \"%s\" is not a function (class = %d)"),
11958 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11959 return 0;
11960 }
11961
11962 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11963 if (sym == NULL)
11964 {
11965 struct bound_minimal_symbol msym
11966 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11967
11968 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11969 error (_("Your Ada runtime appears to be missing some debugging "
11970 "information.\nCannot insert Ada exception catchpoint "
11971 "in this configuration."));
11972
11973 return 0;
11974 }
11975
11976 /* Make sure that the symbol we found corresponds to a function. */
11977
11978 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11979 {
11980 error (_("Symbol \"%s\" is not a function (class = %d)"),
11981 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11982 return 0;
11983 }
11984
11985 return 1;
11986 }
11987
11988 /* Inspect the Ada runtime and determine which exception info structure
11989 should be used to provide support for exception catchpoints.
11990
11991 This function will always set the per-inferior exception_info,
11992 or raise an error. */
11993
11994 static void
11995 ada_exception_support_info_sniffer (void)
11996 {
11997 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11998
11999 /* If the exception info is already known, then no need to recompute it. */
12000 if (data->exception_info != NULL)
12001 return;
12002
12003 /* Check the latest (default) exception support info. */
12004 if (ada_has_this_exception_support (&default_exception_support_info))
12005 {
12006 data->exception_info = &default_exception_support_info;
12007 return;
12008 }
12009
12010 /* Try the v0 exception suport info. */
12011 if (ada_has_this_exception_support (&exception_support_info_v0))
12012 {
12013 data->exception_info = &exception_support_info_v0;
12014 return;
12015 }
12016
12017 /* Try our fallback exception suport info. */
12018 if (ada_has_this_exception_support (&exception_support_info_fallback))
12019 {
12020 data->exception_info = &exception_support_info_fallback;
12021 return;
12022 }
12023
12024 /* Sometimes, it is normal for us to not be able to find the routine
12025 we are looking for. This happens when the program is linked with
12026 the shared version of the GNAT runtime, and the program has not been
12027 started yet. Inform the user of these two possible causes if
12028 applicable. */
12029
12030 if (ada_update_initial_language (language_unknown) != language_ada)
12031 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12032
12033 /* If the symbol does not exist, then check that the program is
12034 already started, to make sure that shared libraries have been
12035 loaded. If it is not started, this may mean that the symbol is
12036 in a shared library. */
12037
12038 if (inferior_ptid.pid () == 0)
12039 error (_("Unable to insert catchpoint. Try to start the program first."));
12040
12041 /* At this point, we know that we are debugging an Ada program and
12042 that the inferior has been started, but we still are not able to
12043 find the run-time symbols. That can mean that we are in
12044 configurable run time mode, or that a-except as been optimized
12045 out by the linker... In any case, at this point it is not worth
12046 supporting this feature. */
12047
12048 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12049 }
12050
12051 /* True iff FRAME is very likely to be that of a function that is
12052 part of the runtime system. This is all very heuristic, but is
12053 intended to be used as advice as to what frames are uninteresting
12054 to most users. */
12055
12056 static int
12057 is_known_support_routine (struct frame_info *frame)
12058 {
12059 enum language func_lang;
12060 int i;
12061 const char *fullname;
12062
12063 /* If this code does not have any debugging information (no symtab),
12064 This cannot be any user code. */
12065
12066 symtab_and_line sal = find_frame_sal (frame);
12067 if (sal.symtab == NULL)
12068 return 1;
12069
12070 /* If there is a symtab, but the associated source file cannot be
12071 located, then assume this is not user code: Selecting a frame
12072 for which we cannot display the code would not be very helpful
12073 for the user. This should also take care of case such as VxWorks
12074 where the kernel has some debugging info provided for a few units. */
12075
12076 fullname = symtab_to_fullname (sal.symtab);
12077 if (access (fullname, R_OK) != 0)
12078 return 1;
12079
12080 /* Check the unit filename againt the Ada runtime file naming.
12081 We also check the name of the objfile against the name of some
12082 known system libraries that sometimes come with debugging info
12083 too. */
12084
12085 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12086 {
12087 re_comp (known_runtime_file_name_patterns[i]);
12088 if (re_exec (lbasename (sal.symtab->filename)))
12089 return 1;
12090 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12091 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12092 return 1;
12093 }
12094
12095 /* Check whether the function is a GNAT-generated entity. */
12096
12097 gdb::unique_xmalloc_ptr<char> func_name
12098 = find_frame_funname (frame, &func_lang, NULL);
12099 if (func_name == NULL)
12100 return 1;
12101
12102 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12103 {
12104 re_comp (known_auxiliary_function_name_patterns[i]);
12105 if (re_exec (func_name.get ()))
12106 return 1;
12107 }
12108
12109 return 0;
12110 }
12111
12112 /* Find the first frame that contains debugging information and that is not
12113 part of the Ada run-time, starting from FI and moving upward. */
12114
12115 void
12116 ada_find_printable_frame (struct frame_info *fi)
12117 {
12118 for (; fi != NULL; fi = get_prev_frame (fi))
12119 {
12120 if (!is_known_support_routine (fi))
12121 {
12122 select_frame (fi);
12123 break;
12124 }
12125 }
12126
12127 }
12128
12129 /* Assuming that the inferior just triggered an unhandled exception
12130 catchpoint, return the address in inferior memory where the name
12131 of the exception is stored.
12132
12133 Return zero if the address could not be computed. */
12134
12135 static CORE_ADDR
12136 ada_unhandled_exception_name_addr (void)
12137 {
12138 return parse_and_eval_address ("e.full_name");
12139 }
12140
12141 /* Same as ada_unhandled_exception_name_addr, except that this function
12142 should be used when the inferior uses an older version of the runtime,
12143 where the exception name needs to be extracted from a specific frame
12144 several frames up in the callstack. */
12145
12146 static CORE_ADDR
12147 ada_unhandled_exception_name_addr_from_raise (void)
12148 {
12149 int frame_level;
12150 struct frame_info *fi;
12151 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12152
12153 /* To determine the name of this exception, we need to select
12154 the frame corresponding to RAISE_SYM_NAME. This frame is
12155 at least 3 levels up, so we simply skip the first 3 frames
12156 without checking the name of their associated function. */
12157 fi = get_current_frame ();
12158 for (frame_level = 0; frame_level < 3; frame_level += 1)
12159 if (fi != NULL)
12160 fi = get_prev_frame (fi);
12161
12162 while (fi != NULL)
12163 {
12164 enum language func_lang;
12165
12166 gdb::unique_xmalloc_ptr<char> func_name
12167 = find_frame_funname (fi, &func_lang, NULL);
12168 if (func_name != NULL)
12169 {
12170 if (strcmp (func_name.get (),
12171 data->exception_info->catch_exception_sym) == 0)
12172 break; /* We found the frame we were looking for... */
12173 }
12174 fi = get_prev_frame (fi);
12175 }
12176
12177 if (fi == NULL)
12178 return 0;
12179
12180 select_frame (fi);
12181 return parse_and_eval_address ("id.full_name");
12182 }
12183
12184 /* Assuming the inferior just triggered an Ada exception catchpoint
12185 (of any type), return the address in inferior memory where the name
12186 of the exception is stored, if applicable.
12187
12188 Assumes the selected frame is the current frame.
12189
12190 Return zero if the address could not be computed, or if not relevant. */
12191
12192 static CORE_ADDR
12193 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12194 struct breakpoint *b)
12195 {
12196 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12197
12198 switch (ex)
12199 {
12200 case ada_catch_exception:
12201 return (parse_and_eval_address ("e.full_name"));
12202 break;
12203
12204 case ada_catch_exception_unhandled:
12205 return data->exception_info->unhandled_exception_name_addr ();
12206 break;
12207
12208 case ada_catch_handlers:
12209 return 0; /* The runtimes does not provide access to the exception
12210 name. */
12211 break;
12212
12213 case ada_catch_assert:
12214 return 0; /* Exception name is not relevant in this case. */
12215 break;
12216
12217 default:
12218 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12219 break;
12220 }
12221
12222 return 0; /* Should never be reached. */
12223 }
12224
12225 /* Assuming the inferior is stopped at an exception catchpoint,
12226 return the message which was associated to the exception, if
12227 available. Return NULL if the message could not be retrieved.
12228
12229 Note: The exception message can be associated to an exception
12230 either through the use of the Raise_Exception function, or
12231 more simply (Ada 2005 and later), via:
12232
12233 raise Exception_Name with "exception message";
12234
12235 */
12236
12237 static gdb::unique_xmalloc_ptr<char>
12238 ada_exception_message_1 (void)
12239 {
12240 struct value *e_msg_val;
12241 int e_msg_len;
12242
12243 /* For runtimes that support this feature, the exception message
12244 is passed as an unbounded string argument called "message". */
12245 e_msg_val = parse_and_eval ("message");
12246 if (e_msg_val == NULL)
12247 return NULL; /* Exception message not supported. */
12248
12249 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12250 gdb_assert (e_msg_val != NULL);
12251 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12252
12253 /* If the message string is empty, then treat it as if there was
12254 no exception message. */
12255 if (e_msg_len <= 0)
12256 return NULL;
12257
12258 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12259 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12260 e_msg.get ()[e_msg_len] = '\0';
12261
12262 return e_msg;
12263 }
12264
12265 /* Same as ada_exception_message_1, except that all exceptions are
12266 contained here (returning NULL instead). */
12267
12268 static gdb::unique_xmalloc_ptr<char>
12269 ada_exception_message (void)
12270 {
12271 gdb::unique_xmalloc_ptr<char> e_msg;
12272
12273 try
12274 {
12275 e_msg = ada_exception_message_1 ();
12276 }
12277 catch (const gdb_exception_error &e)
12278 {
12279 e_msg.reset (nullptr);
12280 }
12281
12282 return e_msg;
12283 }
12284
12285 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12286 any error that ada_exception_name_addr_1 might cause to be thrown.
12287 When an error is intercepted, a warning with the error message is printed,
12288 and zero is returned. */
12289
12290 static CORE_ADDR
12291 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12292 struct breakpoint *b)
12293 {
12294 CORE_ADDR result = 0;
12295
12296 try
12297 {
12298 result = ada_exception_name_addr_1 (ex, b);
12299 }
12300
12301 catch (const gdb_exception_error &e)
12302 {
12303 warning (_("failed to get exception name: %s"), e.what ());
12304 return 0;
12305 }
12306
12307 return result;
12308 }
12309
12310 static std::string ada_exception_catchpoint_cond_string
12311 (const char *excep_string,
12312 enum ada_exception_catchpoint_kind ex);
12313
12314 /* Ada catchpoints.
12315
12316 In the case of catchpoints on Ada exceptions, the catchpoint will
12317 stop the target on every exception the program throws. When a user
12318 specifies the name of a specific exception, we translate this
12319 request into a condition expression (in text form), and then parse
12320 it into an expression stored in each of the catchpoint's locations.
12321 We then use this condition to check whether the exception that was
12322 raised is the one the user is interested in. If not, then the
12323 target is resumed again. We store the name of the requested
12324 exception, in order to be able to re-set the condition expression
12325 when symbols change. */
12326
12327 /* An instance of this type is used to represent an Ada catchpoint
12328 breakpoint location. */
12329
12330 class ada_catchpoint_location : public bp_location
12331 {
12332 public:
12333 ada_catchpoint_location (breakpoint *owner)
12334 : bp_location (owner, bp_loc_software_breakpoint)
12335 {}
12336
12337 /* The condition that checks whether the exception that was raised
12338 is the specific exception the user specified on catchpoint
12339 creation. */
12340 expression_up excep_cond_expr;
12341 };
12342
12343 /* An instance of this type is used to represent an Ada catchpoint. */
12344
12345 struct ada_catchpoint : public breakpoint
12346 {
12347 /* The name of the specific exception the user specified. */
12348 std::string excep_string;
12349 };
12350
12351 /* Parse the exception condition string in the context of each of the
12352 catchpoint's locations, and store them for later evaluation. */
12353
12354 static void
12355 create_excep_cond_exprs (struct ada_catchpoint *c,
12356 enum ada_exception_catchpoint_kind ex)
12357 {
12358 /* Nothing to do if there's no specific exception to catch. */
12359 if (c->excep_string.empty ())
12360 return;
12361
12362 /* Same if there are no locations... */
12363 if (c->loc == NULL)
12364 return;
12365
12366 /* We have to compute the expression once for each program space,
12367 because the expression may hold the addresses of multiple symbols
12368 in some cases. */
12369 std::multimap<program_space *, struct bp_location *> loc_map;
12370 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12371 loc_map.emplace (bl->pspace, bl);
12372
12373 scoped_restore_current_program_space save_pspace;
12374
12375 std::string cond_string;
12376 program_space *last_ps = nullptr;
12377 for (auto iter : loc_map)
12378 {
12379 struct ada_catchpoint_location *ada_loc
12380 = (struct ada_catchpoint_location *) iter.second;
12381
12382 if (ada_loc->pspace != last_ps)
12383 {
12384 last_ps = ada_loc->pspace;
12385 set_current_program_space (last_ps);
12386
12387 /* Compute the condition expression in text form, from the
12388 specific expection we want to catch. */
12389 cond_string
12390 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12391 ex);
12392 }
12393
12394 expression_up exp;
12395
12396 if (!ada_loc->shlib_disabled)
12397 {
12398 const char *s;
12399
12400 s = cond_string.c_str ();
12401 try
12402 {
12403 exp = parse_exp_1 (&s, ada_loc->address,
12404 block_for_pc (ada_loc->address),
12405 0);
12406 }
12407 catch (const gdb_exception_error &e)
12408 {
12409 warning (_("failed to reevaluate internal exception condition "
12410 "for catchpoint %d: %s"),
12411 c->number, e.what ());
12412 }
12413 }
12414
12415 ada_loc->excep_cond_expr = std::move (exp);
12416 }
12417 }
12418
12419 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12420 structure for all exception catchpoint kinds. */
12421
12422 static struct bp_location *
12423 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12424 struct breakpoint *self)
12425 {
12426 return new ada_catchpoint_location (self);
12427 }
12428
12429 /* Implement the RE_SET method in the breakpoint_ops structure for all
12430 exception catchpoint kinds. */
12431
12432 static void
12433 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12434 {
12435 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12436
12437 /* Call the base class's method. This updates the catchpoint's
12438 locations. */
12439 bkpt_breakpoint_ops.re_set (b);
12440
12441 /* Reparse the exception conditional expressions. One for each
12442 location. */
12443 create_excep_cond_exprs (c, ex);
12444 }
12445
12446 /* Returns true if we should stop for this breakpoint hit. If the
12447 user specified a specific exception, we only want to cause a stop
12448 if the program thrown that exception. */
12449
12450 static int
12451 should_stop_exception (const struct bp_location *bl)
12452 {
12453 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12454 const struct ada_catchpoint_location *ada_loc
12455 = (const struct ada_catchpoint_location *) bl;
12456 int stop;
12457
12458 /* With no specific exception, should always stop. */
12459 if (c->excep_string.empty ())
12460 return 1;
12461
12462 if (ada_loc->excep_cond_expr == NULL)
12463 {
12464 /* We will have a NULL expression if back when we were creating
12465 the expressions, this location's had failed to parse. */
12466 return 1;
12467 }
12468
12469 stop = 1;
12470 try
12471 {
12472 struct value *mark;
12473
12474 mark = value_mark ();
12475 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12476 value_free_to_mark (mark);
12477 }
12478 catch (const gdb_exception &ex)
12479 {
12480 exception_fprintf (gdb_stderr, ex,
12481 _("Error in testing exception condition:\n"));
12482 }
12483
12484 return stop;
12485 }
12486
12487 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12488 for all exception catchpoint kinds. */
12489
12490 static void
12491 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12492 {
12493 bs->stop = should_stop_exception (bs->bp_location_at);
12494 }
12495
12496 /* Implement the PRINT_IT method in the breakpoint_ops structure
12497 for all exception catchpoint kinds. */
12498
12499 static enum print_stop_action
12500 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12501 {
12502 struct ui_out *uiout = current_uiout;
12503 struct breakpoint *b = bs->breakpoint_at;
12504
12505 annotate_catchpoint (b->number);
12506
12507 if (uiout->is_mi_like_p ())
12508 {
12509 uiout->field_string ("reason",
12510 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12511 uiout->field_string ("disp", bpdisp_text (b->disposition));
12512 }
12513
12514 uiout->text (b->disposition == disp_del
12515 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12516 uiout->field_signed ("bkptno", b->number);
12517 uiout->text (", ");
12518
12519 /* ada_exception_name_addr relies on the selected frame being the
12520 current frame. Need to do this here because this function may be
12521 called more than once when printing a stop, and below, we'll
12522 select the first frame past the Ada run-time (see
12523 ada_find_printable_frame). */
12524 select_frame (get_current_frame ());
12525
12526 switch (ex)
12527 {
12528 case ada_catch_exception:
12529 case ada_catch_exception_unhandled:
12530 case ada_catch_handlers:
12531 {
12532 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12533 char exception_name[256];
12534
12535 if (addr != 0)
12536 {
12537 read_memory (addr, (gdb_byte *) exception_name,
12538 sizeof (exception_name) - 1);
12539 exception_name [sizeof (exception_name) - 1] = '\0';
12540 }
12541 else
12542 {
12543 /* For some reason, we were unable to read the exception
12544 name. This could happen if the Runtime was compiled
12545 without debugging info, for instance. In that case,
12546 just replace the exception name by the generic string
12547 "exception" - it will read as "an exception" in the
12548 notification we are about to print. */
12549 memcpy (exception_name, "exception", sizeof ("exception"));
12550 }
12551 /* In the case of unhandled exception breakpoints, we print
12552 the exception name as "unhandled EXCEPTION_NAME", to make
12553 it clearer to the user which kind of catchpoint just got
12554 hit. We used ui_out_text to make sure that this extra
12555 info does not pollute the exception name in the MI case. */
12556 if (ex == ada_catch_exception_unhandled)
12557 uiout->text ("unhandled ");
12558 uiout->field_string ("exception-name", exception_name);
12559 }
12560 break;
12561 case ada_catch_assert:
12562 /* In this case, the name of the exception is not really
12563 important. Just print "failed assertion" to make it clearer
12564 that his program just hit an assertion-failure catchpoint.
12565 We used ui_out_text because this info does not belong in
12566 the MI output. */
12567 uiout->text ("failed assertion");
12568 break;
12569 }
12570
12571 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12572 if (exception_message != NULL)
12573 {
12574 uiout->text (" (");
12575 uiout->field_string ("exception-message", exception_message.get ());
12576 uiout->text (")");
12577 }
12578
12579 uiout->text (" at ");
12580 ada_find_printable_frame (get_current_frame ());
12581
12582 return PRINT_SRC_AND_LOC;
12583 }
12584
12585 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12586 for all exception catchpoint kinds. */
12587
12588 static void
12589 print_one_exception (enum ada_exception_catchpoint_kind ex,
12590 struct breakpoint *b, struct bp_location **last_loc)
12591 {
12592 struct ui_out *uiout = current_uiout;
12593 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12594 struct value_print_options opts;
12595
12596 get_user_print_options (&opts);
12597
12598 if (opts.addressprint)
12599 uiout->field_skip ("addr");
12600
12601 annotate_field (5);
12602 switch (ex)
12603 {
12604 case ada_catch_exception:
12605 if (!c->excep_string.empty ())
12606 {
12607 std::string msg = string_printf (_("`%s' Ada exception"),
12608 c->excep_string.c_str ());
12609
12610 uiout->field_string ("what", msg);
12611 }
12612 else
12613 uiout->field_string ("what", "all Ada exceptions");
12614
12615 break;
12616
12617 case ada_catch_exception_unhandled:
12618 uiout->field_string ("what", "unhandled Ada exceptions");
12619 break;
12620
12621 case ada_catch_handlers:
12622 if (!c->excep_string.empty ())
12623 {
12624 uiout->field_fmt ("what",
12625 _("`%s' Ada exception handlers"),
12626 c->excep_string.c_str ());
12627 }
12628 else
12629 uiout->field_string ("what", "all Ada exceptions handlers");
12630 break;
12631
12632 case ada_catch_assert:
12633 uiout->field_string ("what", "failed Ada assertions");
12634 break;
12635
12636 default:
12637 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12638 break;
12639 }
12640 }
12641
12642 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12643 for all exception catchpoint kinds. */
12644
12645 static void
12646 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12647 struct breakpoint *b)
12648 {
12649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12650 struct ui_out *uiout = current_uiout;
12651
12652 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12653 : _("Catchpoint "));
12654 uiout->field_signed ("bkptno", b->number);
12655 uiout->text (": ");
12656
12657 switch (ex)
12658 {
12659 case ada_catch_exception:
12660 if (!c->excep_string.empty ())
12661 {
12662 std::string info = string_printf (_("`%s' Ada exception"),
12663 c->excep_string.c_str ());
12664 uiout->text (info.c_str ());
12665 }
12666 else
12667 uiout->text (_("all Ada exceptions"));
12668 break;
12669
12670 case ada_catch_exception_unhandled:
12671 uiout->text (_("unhandled Ada exceptions"));
12672 break;
12673
12674 case ada_catch_handlers:
12675 if (!c->excep_string.empty ())
12676 {
12677 std::string info
12678 = string_printf (_("`%s' Ada exception handlers"),
12679 c->excep_string.c_str ());
12680 uiout->text (info.c_str ());
12681 }
12682 else
12683 uiout->text (_("all Ada exceptions handlers"));
12684 break;
12685
12686 case ada_catch_assert:
12687 uiout->text (_("failed Ada assertions"));
12688 break;
12689
12690 default:
12691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12692 break;
12693 }
12694 }
12695
12696 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12697 for all exception catchpoint kinds. */
12698
12699 static void
12700 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12701 struct breakpoint *b, struct ui_file *fp)
12702 {
12703 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12704
12705 switch (ex)
12706 {
12707 case ada_catch_exception:
12708 fprintf_filtered (fp, "catch exception");
12709 if (!c->excep_string.empty ())
12710 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12711 break;
12712
12713 case ada_catch_exception_unhandled:
12714 fprintf_filtered (fp, "catch exception unhandled");
12715 break;
12716
12717 case ada_catch_handlers:
12718 fprintf_filtered (fp, "catch handlers");
12719 break;
12720
12721 case ada_catch_assert:
12722 fprintf_filtered (fp, "catch assert");
12723 break;
12724
12725 default:
12726 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12727 }
12728 print_recreate_thread (b, fp);
12729 }
12730
12731 /* Virtual table for "catch exception" breakpoints. */
12732
12733 static struct bp_location *
12734 allocate_location_catch_exception (struct breakpoint *self)
12735 {
12736 return allocate_location_exception (ada_catch_exception, self);
12737 }
12738
12739 static void
12740 re_set_catch_exception (struct breakpoint *b)
12741 {
12742 re_set_exception (ada_catch_exception, b);
12743 }
12744
12745 static void
12746 check_status_catch_exception (bpstat bs)
12747 {
12748 check_status_exception (ada_catch_exception, bs);
12749 }
12750
12751 static enum print_stop_action
12752 print_it_catch_exception (bpstat bs)
12753 {
12754 return print_it_exception (ada_catch_exception, bs);
12755 }
12756
12757 static void
12758 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12759 {
12760 print_one_exception (ada_catch_exception, b, last_loc);
12761 }
12762
12763 static void
12764 print_mention_catch_exception (struct breakpoint *b)
12765 {
12766 print_mention_exception (ada_catch_exception, b);
12767 }
12768
12769 static void
12770 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12771 {
12772 print_recreate_exception (ada_catch_exception, b, fp);
12773 }
12774
12775 static struct breakpoint_ops catch_exception_breakpoint_ops;
12776
12777 /* Virtual table for "catch exception unhandled" breakpoints. */
12778
12779 static struct bp_location *
12780 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12781 {
12782 return allocate_location_exception (ada_catch_exception_unhandled, self);
12783 }
12784
12785 static void
12786 re_set_catch_exception_unhandled (struct breakpoint *b)
12787 {
12788 re_set_exception (ada_catch_exception_unhandled, b);
12789 }
12790
12791 static void
12792 check_status_catch_exception_unhandled (bpstat bs)
12793 {
12794 check_status_exception (ada_catch_exception_unhandled, bs);
12795 }
12796
12797 static enum print_stop_action
12798 print_it_catch_exception_unhandled (bpstat bs)
12799 {
12800 return print_it_exception (ada_catch_exception_unhandled, bs);
12801 }
12802
12803 static void
12804 print_one_catch_exception_unhandled (struct breakpoint *b,
12805 struct bp_location **last_loc)
12806 {
12807 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12808 }
12809
12810 static void
12811 print_mention_catch_exception_unhandled (struct breakpoint *b)
12812 {
12813 print_mention_exception (ada_catch_exception_unhandled, b);
12814 }
12815
12816 static void
12817 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12818 struct ui_file *fp)
12819 {
12820 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12821 }
12822
12823 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12824
12825 /* Virtual table for "catch assert" breakpoints. */
12826
12827 static struct bp_location *
12828 allocate_location_catch_assert (struct breakpoint *self)
12829 {
12830 return allocate_location_exception (ada_catch_assert, self);
12831 }
12832
12833 static void
12834 re_set_catch_assert (struct breakpoint *b)
12835 {
12836 re_set_exception (ada_catch_assert, b);
12837 }
12838
12839 static void
12840 check_status_catch_assert (bpstat bs)
12841 {
12842 check_status_exception (ada_catch_assert, bs);
12843 }
12844
12845 static enum print_stop_action
12846 print_it_catch_assert (bpstat bs)
12847 {
12848 return print_it_exception (ada_catch_assert, bs);
12849 }
12850
12851 static void
12852 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12853 {
12854 print_one_exception (ada_catch_assert, b, last_loc);
12855 }
12856
12857 static void
12858 print_mention_catch_assert (struct breakpoint *b)
12859 {
12860 print_mention_exception (ada_catch_assert, b);
12861 }
12862
12863 static void
12864 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12865 {
12866 print_recreate_exception (ada_catch_assert, b, fp);
12867 }
12868
12869 static struct breakpoint_ops catch_assert_breakpoint_ops;
12870
12871 /* Virtual table for "catch handlers" breakpoints. */
12872
12873 static struct bp_location *
12874 allocate_location_catch_handlers (struct breakpoint *self)
12875 {
12876 return allocate_location_exception (ada_catch_handlers, self);
12877 }
12878
12879 static void
12880 re_set_catch_handlers (struct breakpoint *b)
12881 {
12882 re_set_exception (ada_catch_handlers, b);
12883 }
12884
12885 static void
12886 check_status_catch_handlers (bpstat bs)
12887 {
12888 check_status_exception (ada_catch_handlers, bs);
12889 }
12890
12891 static enum print_stop_action
12892 print_it_catch_handlers (bpstat bs)
12893 {
12894 return print_it_exception (ada_catch_handlers, bs);
12895 }
12896
12897 static void
12898 print_one_catch_handlers (struct breakpoint *b,
12899 struct bp_location **last_loc)
12900 {
12901 print_one_exception (ada_catch_handlers, b, last_loc);
12902 }
12903
12904 static void
12905 print_mention_catch_handlers (struct breakpoint *b)
12906 {
12907 print_mention_exception (ada_catch_handlers, b);
12908 }
12909
12910 static void
12911 print_recreate_catch_handlers (struct breakpoint *b,
12912 struct ui_file *fp)
12913 {
12914 print_recreate_exception (ada_catch_handlers, b, fp);
12915 }
12916
12917 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12918
12919 /* See ada-lang.h. */
12920
12921 bool
12922 is_ada_exception_catchpoint (breakpoint *bp)
12923 {
12924 return (bp->ops == &catch_exception_breakpoint_ops
12925 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12926 || bp->ops == &catch_assert_breakpoint_ops
12927 || bp->ops == &catch_handlers_breakpoint_ops);
12928 }
12929
12930 /* Split the arguments specified in a "catch exception" command.
12931 Set EX to the appropriate catchpoint type.
12932 Set EXCEP_STRING to the name of the specific exception if
12933 specified by the user.
12934 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12935 "catch handlers" command. False otherwise.
12936 If a condition is found at the end of the arguments, the condition
12937 expression is stored in COND_STRING (memory must be deallocated
12938 after use). Otherwise COND_STRING is set to NULL. */
12939
12940 static void
12941 catch_ada_exception_command_split (const char *args,
12942 bool is_catch_handlers_cmd,
12943 enum ada_exception_catchpoint_kind *ex,
12944 std::string *excep_string,
12945 std::string *cond_string)
12946 {
12947 std::string exception_name;
12948
12949 exception_name = extract_arg (&args);
12950 if (exception_name == "if")
12951 {
12952 /* This is not an exception name; this is the start of a condition
12953 expression for a catchpoint on all exceptions. So, "un-get"
12954 this token, and set exception_name to NULL. */
12955 exception_name.clear ();
12956 args -= 2;
12957 }
12958
12959 /* Check to see if we have a condition. */
12960
12961 args = skip_spaces (args);
12962 if (startswith (args, "if")
12963 && (isspace (args[2]) || args[2] == '\0'))
12964 {
12965 args += 2;
12966 args = skip_spaces (args);
12967
12968 if (args[0] == '\0')
12969 error (_("Condition missing after `if' keyword"));
12970 *cond_string = args;
12971
12972 args += strlen (args);
12973 }
12974
12975 /* Check that we do not have any more arguments. Anything else
12976 is unexpected. */
12977
12978 if (args[0] != '\0')
12979 error (_("Junk at end of expression"));
12980
12981 if (is_catch_handlers_cmd)
12982 {
12983 /* Catch handling of exceptions. */
12984 *ex = ada_catch_handlers;
12985 *excep_string = exception_name;
12986 }
12987 else if (exception_name.empty ())
12988 {
12989 /* Catch all exceptions. */
12990 *ex = ada_catch_exception;
12991 excep_string->clear ();
12992 }
12993 else if (exception_name == "unhandled")
12994 {
12995 /* Catch unhandled exceptions. */
12996 *ex = ada_catch_exception_unhandled;
12997 excep_string->clear ();
12998 }
12999 else
13000 {
13001 /* Catch a specific exception. */
13002 *ex = ada_catch_exception;
13003 *excep_string = exception_name;
13004 }
13005 }
13006
13007 /* Return the name of the symbol on which we should break in order to
13008 implement a catchpoint of the EX kind. */
13009
13010 static const char *
13011 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13012 {
13013 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13014
13015 gdb_assert (data->exception_info != NULL);
13016
13017 switch (ex)
13018 {
13019 case ada_catch_exception:
13020 return (data->exception_info->catch_exception_sym);
13021 break;
13022 case ada_catch_exception_unhandled:
13023 return (data->exception_info->catch_exception_unhandled_sym);
13024 break;
13025 case ada_catch_assert:
13026 return (data->exception_info->catch_assert_sym);
13027 break;
13028 case ada_catch_handlers:
13029 return (data->exception_info->catch_handlers_sym);
13030 break;
13031 default:
13032 internal_error (__FILE__, __LINE__,
13033 _("unexpected catchpoint kind (%d)"), ex);
13034 }
13035 }
13036
13037 /* Return the breakpoint ops "virtual table" used for catchpoints
13038 of the EX kind. */
13039
13040 static const struct breakpoint_ops *
13041 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13042 {
13043 switch (ex)
13044 {
13045 case ada_catch_exception:
13046 return (&catch_exception_breakpoint_ops);
13047 break;
13048 case ada_catch_exception_unhandled:
13049 return (&catch_exception_unhandled_breakpoint_ops);
13050 break;
13051 case ada_catch_assert:
13052 return (&catch_assert_breakpoint_ops);
13053 break;
13054 case ada_catch_handlers:
13055 return (&catch_handlers_breakpoint_ops);
13056 break;
13057 default:
13058 internal_error (__FILE__, __LINE__,
13059 _("unexpected catchpoint kind (%d)"), ex);
13060 }
13061 }
13062
13063 /* Return the condition that will be used to match the current exception
13064 being raised with the exception that the user wants to catch. This
13065 assumes that this condition is used when the inferior just triggered
13066 an exception catchpoint.
13067 EX: the type of catchpoints used for catching Ada exceptions. */
13068
13069 static std::string
13070 ada_exception_catchpoint_cond_string (const char *excep_string,
13071 enum ada_exception_catchpoint_kind ex)
13072 {
13073 int i;
13074 std::string result;
13075 const char *name;
13076
13077 if (ex == ada_catch_handlers)
13078 {
13079 /* For exception handlers catchpoints, the condition string does
13080 not use the same parameter as for the other exceptions. */
13081 name = ("long_integer (GNAT_GCC_exception_Access"
13082 "(gcc_exception).all.occurrence.id)");
13083 }
13084 else
13085 name = "long_integer (e)";
13086
13087 /* The standard exceptions are a special case. They are defined in
13088 runtime units that have been compiled without debugging info; if
13089 EXCEP_STRING is the not-fully-qualified name of a standard
13090 exception (e.g. "constraint_error") then, during the evaluation
13091 of the condition expression, the symbol lookup on this name would
13092 *not* return this standard exception. The catchpoint condition
13093 may then be set only on user-defined exceptions which have the
13094 same not-fully-qualified name (e.g. my_package.constraint_error).
13095
13096 To avoid this unexcepted behavior, these standard exceptions are
13097 systematically prefixed by "standard". This means that "catch
13098 exception constraint_error" is rewritten into "catch exception
13099 standard.constraint_error".
13100
13101 If an exception named contraint_error is defined in another package of
13102 the inferior program, then the only way to specify this exception as a
13103 breakpoint condition is to use its fully-qualified named:
13104 e.g. my_package.constraint_error.
13105
13106 Furthermore, in some situations a standard exception's symbol may
13107 be present in more than one objfile, because the compiler may
13108 choose to emit copy relocations for them. So, we have to compare
13109 against all the possible addresses. */
13110
13111 /* Storage for a rewritten symbol name. */
13112 std::string std_name;
13113 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13114 {
13115 if (strcmp (standard_exc [i], excep_string) == 0)
13116 {
13117 std_name = std::string ("standard.") + excep_string;
13118 excep_string = std_name.c_str ();
13119 break;
13120 }
13121 }
13122
13123 excep_string = ada_encode (excep_string);
13124 std::vector<struct bound_minimal_symbol> symbols
13125 = ada_lookup_simple_minsyms (excep_string);
13126 for (const bound_minimal_symbol &msym : symbols)
13127 {
13128 if (!result.empty ())
13129 result += " or ";
13130 string_appendf (result, "%s = %s", name,
13131 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13132 }
13133
13134 return result;
13135 }
13136
13137 /* Return the symtab_and_line that should be used to insert an exception
13138 catchpoint of the TYPE kind.
13139
13140 ADDR_STRING returns the name of the function where the real
13141 breakpoint that implements the catchpoints is set, depending on the
13142 type of catchpoint we need to create. */
13143
13144 static struct symtab_and_line
13145 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13146 std::string *addr_string, const struct breakpoint_ops **ops)
13147 {
13148 const char *sym_name;
13149 struct symbol *sym;
13150
13151 /* First, find out which exception support info to use. */
13152 ada_exception_support_info_sniffer ();
13153
13154 /* Then lookup the function on which we will break in order to catch
13155 the Ada exceptions requested by the user. */
13156 sym_name = ada_exception_sym_name (ex);
13157 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13158
13159 if (sym == NULL)
13160 error (_("Catchpoint symbol not found: %s"), sym_name);
13161
13162 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13163 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13164
13165 /* Set ADDR_STRING. */
13166 *addr_string = sym_name;
13167
13168 /* Set OPS. */
13169 *ops = ada_exception_breakpoint_ops (ex);
13170
13171 return find_function_start_sal (sym, 1);
13172 }
13173
13174 /* Create an Ada exception catchpoint.
13175
13176 EX_KIND is the kind of exception catchpoint to be created.
13177
13178 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13179 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13180 of the exception to which this catchpoint applies.
13181
13182 COND_STRING, if not empty, is the catchpoint condition.
13183
13184 TEMPFLAG, if nonzero, means that the underlying breakpoint
13185 should be temporary.
13186
13187 FROM_TTY is the usual argument passed to all commands implementations. */
13188
13189 void
13190 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13191 enum ada_exception_catchpoint_kind ex_kind,
13192 const std::string &excep_string,
13193 const std::string &cond_string,
13194 int tempflag,
13195 int disabled,
13196 int from_tty)
13197 {
13198 std::string addr_string;
13199 const struct breakpoint_ops *ops = NULL;
13200 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13201
13202 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13203 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13204 ops, tempflag, disabled, from_tty);
13205 c->excep_string = excep_string;
13206 create_excep_cond_exprs (c.get (), ex_kind);
13207 if (!cond_string.empty ())
13208 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13209 install_breakpoint (0, std::move (c), 1);
13210 }
13211
13212 /* Implement the "catch exception" command. */
13213
13214 static void
13215 catch_ada_exception_command (const char *arg_entry, int from_tty,
13216 struct cmd_list_element *command)
13217 {
13218 const char *arg = arg_entry;
13219 struct gdbarch *gdbarch = get_current_arch ();
13220 int tempflag;
13221 enum ada_exception_catchpoint_kind ex_kind;
13222 std::string excep_string;
13223 std::string cond_string;
13224
13225 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13226
13227 if (!arg)
13228 arg = "";
13229 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13230 &cond_string);
13231 create_ada_exception_catchpoint (gdbarch, ex_kind,
13232 excep_string, cond_string,
13233 tempflag, 1 /* enabled */,
13234 from_tty);
13235 }
13236
13237 /* Implement the "catch handlers" command. */
13238
13239 static void
13240 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13241 struct cmd_list_element *command)
13242 {
13243 const char *arg = arg_entry;
13244 struct gdbarch *gdbarch = get_current_arch ();
13245 int tempflag;
13246 enum ada_exception_catchpoint_kind ex_kind;
13247 std::string excep_string;
13248 std::string cond_string;
13249
13250 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13251
13252 if (!arg)
13253 arg = "";
13254 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13255 &cond_string);
13256 create_ada_exception_catchpoint (gdbarch, ex_kind,
13257 excep_string, cond_string,
13258 tempflag, 1 /* enabled */,
13259 from_tty);
13260 }
13261
13262 /* Completion function for the Ada "catch" commands. */
13263
13264 static void
13265 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13266 const char *text, const char *word)
13267 {
13268 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13269
13270 for (const ada_exc_info &info : exceptions)
13271 {
13272 if (startswith (info.name, word))
13273 tracker.add_completion (make_unique_xstrdup (info.name));
13274 }
13275 }
13276
13277 /* Split the arguments specified in a "catch assert" command.
13278
13279 ARGS contains the command's arguments (or the empty string if
13280 no arguments were passed).
13281
13282 If ARGS contains a condition, set COND_STRING to that condition
13283 (the memory needs to be deallocated after use). */
13284
13285 static void
13286 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13287 {
13288 args = skip_spaces (args);
13289
13290 /* Check whether a condition was provided. */
13291 if (startswith (args, "if")
13292 && (isspace (args[2]) || args[2] == '\0'))
13293 {
13294 args += 2;
13295 args = skip_spaces (args);
13296 if (args[0] == '\0')
13297 error (_("condition missing after `if' keyword"));
13298 cond_string.assign (args);
13299 }
13300
13301 /* Otherwise, there should be no other argument at the end of
13302 the command. */
13303 else if (args[0] != '\0')
13304 error (_("Junk at end of arguments."));
13305 }
13306
13307 /* Implement the "catch assert" command. */
13308
13309 static void
13310 catch_assert_command (const char *arg_entry, int from_tty,
13311 struct cmd_list_element *command)
13312 {
13313 const char *arg = arg_entry;
13314 struct gdbarch *gdbarch = get_current_arch ();
13315 int tempflag;
13316 std::string cond_string;
13317
13318 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13319
13320 if (!arg)
13321 arg = "";
13322 catch_ada_assert_command_split (arg, cond_string);
13323 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13324 "", cond_string,
13325 tempflag, 1 /* enabled */,
13326 from_tty);
13327 }
13328
13329 /* Return non-zero if the symbol SYM is an Ada exception object. */
13330
13331 static int
13332 ada_is_exception_sym (struct symbol *sym)
13333 {
13334 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13335
13336 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13337 && SYMBOL_CLASS (sym) != LOC_BLOCK
13338 && SYMBOL_CLASS (sym) != LOC_CONST
13339 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13340 && type_name != NULL && strcmp (type_name, "exception") == 0);
13341 }
13342
13343 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13344 Ada exception object. This matches all exceptions except the ones
13345 defined by the Ada language. */
13346
13347 static int
13348 ada_is_non_standard_exception_sym (struct symbol *sym)
13349 {
13350 int i;
13351
13352 if (!ada_is_exception_sym (sym))
13353 return 0;
13354
13355 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13356 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13357 return 0; /* A standard exception. */
13358
13359 /* Numeric_Error is also a standard exception, so exclude it.
13360 See the STANDARD_EXC description for more details as to why
13361 this exception is not listed in that array. */
13362 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13363 return 0;
13364
13365 return 1;
13366 }
13367
13368 /* A helper function for std::sort, comparing two struct ada_exc_info
13369 objects.
13370
13371 The comparison is determined first by exception name, and then
13372 by exception address. */
13373
13374 bool
13375 ada_exc_info::operator< (const ada_exc_info &other) const
13376 {
13377 int result;
13378
13379 result = strcmp (name, other.name);
13380 if (result < 0)
13381 return true;
13382 if (result == 0 && addr < other.addr)
13383 return true;
13384 return false;
13385 }
13386
13387 bool
13388 ada_exc_info::operator== (const ada_exc_info &other) const
13389 {
13390 return addr == other.addr && strcmp (name, other.name) == 0;
13391 }
13392
13393 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13394 routine, but keeping the first SKIP elements untouched.
13395
13396 All duplicates are also removed. */
13397
13398 static void
13399 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13400 int skip)
13401 {
13402 std::sort (exceptions->begin () + skip, exceptions->end ());
13403 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13404 exceptions->end ());
13405 }
13406
13407 /* Add all exceptions defined by the Ada standard whose name match
13408 a regular expression.
13409
13410 If PREG is not NULL, then this regexp_t object is used to
13411 perform the symbol name matching. Otherwise, no name-based
13412 filtering is performed.
13413
13414 EXCEPTIONS is a vector of exceptions to which matching exceptions
13415 gets pushed. */
13416
13417 static void
13418 ada_add_standard_exceptions (compiled_regex *preg,
13419 std::vector<ada_exc_info> *exceptions)
13420 {
13421 int i;
13422
13423 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13424 {
13425 if (preg == NULL
13426 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13427 {
13428 struct bound_minimal_symbol msymbol
13429 = ada_lookup_simple_minsym (standard_exc[i]);
13430
13431 if (msymbol.minsym != NULL)
13432 {
13433 struct ada_exc_info info
13434 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13435
13436 exceptions->push_back (info);
13437 }
13438 }
13439 }
13440 }
13441
13442 /* Add all Ada exceptions defined locally and accessible from the given
13443 FRAME.
13444
13445 If PREG is not NULL, then this regexp_t object is used to
13446 perform the symbol name matching. Otherwise, no name-based
13447 filtering is performed.
13448
13449 EXCEPTIONS is a vector of exceptions to which matching exceptions
13450 gets pushed. */
13451
13452 static void
13453 ada_add_exceptions_from_frame (compiled_regex *preg,
13454 struct frame_info *frame,
13455 std::vector<ada_exc_info> *exceptions)
13456 {
13457 const struct block *block = get_frame_block (frame, 0);
13458
13459 while (block != 0)
13460 {
13461 struct block_iterator iter;
13462 struct symbol *sym;
13463
13464 ALL_BLOCK_SYMBOLS (block, iter, sym)
13465 {
13466 switch (SYMBOL_CLASS (sym))
13467 {
13468 case LOC_TYPEDEF:
13469 case LOC_BLOCK:
13470 case LOC_CONST:
13471 break;
13472 default:
13473 if (ada_is_exception_sym (sym))
13474 {
13475 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13476 SYMBOL_VALUE_ADDRESS (sym)};
13477
13478 exceptions->push_back (info);
13479 }
13480 }
13481 }
13482 if (BLOCK_FUNCTION (block) != NULL)
13483 break;
13484 block = BLOCK_SUPERBLOCK (block);
13485 }
13486 }
13487
13488 /* Return true if NAME matches PREG or if PREG is NULL. */
13489
13490 static bool
13491 name_matches_regex (const char *name, compiled_regex *preg)
13492 {
13493 return (preg == NULL
13494 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13495 }
13496
13497 /* Add all exceptions defined globally whose name name match
13498 a regular expression, excluding standard exceptions.
13499
13500 The reason we exclude standard exceptions is that they need
13501 to be handled separately: Standard exceptions are defined inside
13502 a runtime unit which is normally not compiled with debugging info,
13503 and thus usually do not show up in our symbol search. However,
13504 if the unit was in fact built with debugging info, we need to
13505 exclude them because they would duplicate the entry we found
13506 during the special loop that specifically searches for those
13507 standard exceptions.
13508
13509 If PREG is not NULL, then this regexp_t object is used to
13510 perform the symbol name matching. Otherwise, no name-based
13511 filtering is performed.
13512
13513 EXCEPTIONS is a vector of exceptions to which matching exceptions
13514 gets pushed. */
13515
13516 static void
13517 ada_add_global_exceptions (compiled_regex *preg,
13518 std::vector<ada_exc_info> *exceptions)
13519 {
13520 /* In Ada, the symbol "search name" is a linkage name, whereas the
13521 regular expression used to do the matching refers to the natural
13522 name. So match against the decoded name. */
13523 expand_symtabs_matching (NULL,
13524 lookup_name_info::match_any (),
13525 [&] (const char *search_name)
13526 {
13527 std::string decoded = ada_decode (search_name);
13528 return name_matches_regex (decoded.c_str (), preg);
13529 },
13530 NULL,
13531 VARIABLES_DOMAIN);
13532
13533 for (objfile *objfile : current_program_space->objfiles ())
13534 {
13535 for (compunit_symtab *s : objfile->compunits ())
13536 {
13537 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13538 int i;
13539
13540 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13541 {
13542 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13543 struct block_iterator iter;
13544 struct symbol *sym;
13545
13546 ALL_BLOCK_SYMBOLS (b, iter, sym)
13547 if (ada_is_non_standard_exception_sym (sym)
13548 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13549 {
13550 struct ada_exc_info info
13551 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13552
13553 exceptions->push_back (info);
13554 }
13555 }
13556 }
13557 }
13558 }
13559
13560 /* Implements ada_exceptions_list with the regular expression passed
13561 as a regex_t, rather than a string.
13562
13563 If not NULL, PREG is used to filter out exceptions whose names
13564 do not match. Otherwise, all exceptions are listed. */
13565
13566 static std::vector<ada_exc_info>
13567 ada_exceptions_list_1 (compiled_regex *preg)
13568 {
13569 std::vector<ada_exc_info> result;
13570 int prev_len;
13571
13572 /* First, list the known standard exceptions. These exceptions
13573 need to be handled separately, as they are usually defined in
13574 runtime units that have been compiled without debugging info. */
13575
13576 ada_add_standard_exceptions (preg, &result);
13577
13578 /* Next, find all exceptions whose scope is local and accessible
13579 from the currently selected frame. */
13580
13581 if (has_stack_frames ())
13582 {
13583 prev_len = result.size ();
13584 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13585 &result);
13586 if (result.size () > prev_len)
13587 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13588 }
13589
13590 /* Add all exceptions whose scope is global. */
13591
13592 prev_len = result.size ();
13593 ada_add_global_exceptions (preg, &result);
13594 if (result.size () > prev_len)
13595 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13596
13597 return result;
13598 }
13599
13600 /* Return a vector of ada_exc_info.
13601
13602 If REGEXP is NULL, all exceptions are included in the result.
13603 Otherwise, it should contain a valid regular expression,
13604 and only the exceptions whose names match that regular expression
13605 are included in the result.
13606
13607 The exceptions are sorted in the following order:
13608 - Standard exceptions (defined by the Ada language), in
13609 alphabetical order;
13610 - Exceptions only visible from the current frame, in
13611 alphabetical order;
13612 - Exceptions whose scope is global, in alphabetical order. */
13613
13614 std::vector<ada_exc_info>
13615 ada_exceptions_list (const char *regexp)
13616 {
13617 if (regexp == NULL)
13618 return ada_exceptions_list_1 (NULL);
13619
13620 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13621 return ada_exceptions_list_1 (&reg);
13622 }
13623
13624 /* Implement the "info exceptions" command. */
13625
13626 static void
13627 info_exceptions_command (const char *regexp, int from_tty)
13628 {
13629 struct gdbarch *gdbarch = get_current_arch ();
13630
13631 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13632
13633 if (regexp != NULL)
13634 printf_filtered
13635 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13636 else
13637 printf_filtered (_("All defined Ada exceptions:\n"));
13638
13639 for (const ada_exc_info &info : exceptions)
13640 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13641 }
13642
13643 /* Operators */
13644 /* Information about operators given special treatment in functions
13645 below. */
13646 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13647
13648 #define ADA_OPERATORS \
13649 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13650 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13651 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13652 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13653 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13654 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13655 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13656 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13657 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13658 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13659 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13661 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13662 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13663 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13664 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13665 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13666 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13667 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13668
13669 static void
13670 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13671 int *argsp)
13672 {
13673 switch (exp->elts[pc - 1].opcode)
13674 {
13675 default:
13676 operator_length_standard (exp, pc, oplenp, argsp);
13677 break;
13678
13679 #define OP_DEFN(op, len, args, binop) \
13680 case op: *oplenp = len; *argsp = args; break;
13681 ADA_OPERATORS;
13682 #undef OP_DEFN
13683
13684 case OP_AGGREGATE:
13685 *oplenp = 3;
13686 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13687 break;
13688
13689 case OP_CHOICES:
13690 *oplenp = 3;
13691 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13692 break;
13693 }
13694 }
13695
13696 /* Implementation of the exp_descriptor method operator_check. */
13697
13698 static int
13699 ada_operator_check (struct expression *exp, int pos,
13700 int (*objfile_func) (struct objfile *objfile, void *data),
13701 void *data)
13702 {
13703 const union exp_element *const elts = exp->elts;
13704 struct type *type = NULL;
13705
13706 switch (elts[pos].opcode)
13707 {
13708 case UNOP_IN_RANGE:
13709 case UNOP_QUAL:
13710 type = elts[pos + 1].type;
13711 break;
13712
13713 default:
13714 return operator_check_standard (exp, pos, objfile_func, data);
13715 }
13716
13717 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13718
13719 if (type && TYPE_OBJFILE (type)
13720 && (*objfile_func) (TYPE_OBJFILE (type), data))
13721 return 1;
13722
13723 return 0;
13724 }
13725
13726 static const char *
13727 ada_op_name (enum exp_opcode opcode)
13728 {
13729 switch (opcode)
13730 {
13731 default:
13732 return op_name_standard (opcode);
13733
13734 #define OP_DEFN(op, len, args, binop) case op: return #op;
13735 ADA_OPERATORS;
13736 #undef OP_DEFN
13737
13738 case OP_AGGREGATE:
13739 return "OP_AGGREGATE";
13740 case OP_CHOICES:
13741 return "OP_CHOICES";
13742 case OP_NAME:
13743 return "OP_NAME";
13744 }
13745 }
13746
13747 /* As for operator_length, but assumes PC is pointing at the first
13748 element of the operator, and gives meaningful results only for the
13749 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13750
13751 static void
13752 ada_forward_operator_length (struct expression *exp, int pc,
13753 int *oplenp, int *argsp)
13754 {
13755 switch (exp->elts[pc].opcode)
13756 {
13757 default:
13758 *oplenp = *argsp = 0;
13759 break;
13760
13761 #define OP_DEFN(op, len, args, binop) \
13762 case op: *oplenp = len; *argsp = args; break;
13763 ADA_OPERATORS;
13764 #undef OP_DEFN
13765
13766 case OP_AGGREGATE:
13767 *oplenp = 3;
13768 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13769 break;
13770
13771 case OP_CHOICES:
13772 *oplenp = 3;
13773 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13774 break;
13775
13776 case OP_STRING:
13777 case OP_NAME:
13778 {
13779 int len = longest_to_int (exp->elts[pc + 1].longconst);
13780
13781 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13782 *argsp = 0;
13783 break;
13784 }
13785 }
13786 }
13787
13788 static int
13789 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13790 {
13791 enum exp_opcode op = exp->elts[elt].opcode;
13792 int oplen, nargs;
13793 int pc = elt;
13794 int i;
13795
13796 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13797
13798 switch (op)
13799 {
13800 /* Ada attributes ('Foo). */
13801 case OP_ATR_FIRST:
13802 case OP_ATR_LAST:
13803 case OP_ATR_LENGTH:
13804 case OP_ATR_IMAGE:
13805 case OP_ATR_MAX:
13806 case OP_ATR_MIN:
13807 case OP_ATR_MODULUS:
13808 case OP_ATR_POS:
13809 case OP_ATR_SIZE:
13810 case OP_ATR_TAG:
13811 case OP_ATR_VAL:
13812 break;
13813
13814 case UNOP_IN_RANGE:
13815 case UNOP_QUAL:
13816 /* XXX: gdb_sprint_host_address, type_sprint */
13817 fprintf_filtered (stream, _("Type @"));
13818 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13819 fprintf_filtered (stream, " (");
13820 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13821 fprintf_filtered (stream, ")");
13822 break;
13823 case BINOP_IN_BOUNDS:
13824 fprintf_filtered (stream, " (%d)",
13825 longest_to_int (exp->elts[pc + 2].longconst));
13826 break;
13827 case TERNOP_IN_RANGE:
13828 break;
13829
13830 case OP_AGGREGATE:
13831 case OP_OTHERS:
13832 case OP_DISCRETE_RANGE:
13833 case OP_POSITIONAL:
13834 case OP_CHOICES:
13835 break;
13836
13837 case OP_NAME:
13838 case OP_STRING:
13839 {
13840 char *name = &exp->elts[elt + 2].string;
13841 int len = longest_to_int (exp->elts[elt + 1].longconst);
13842
13843 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13844 break;
13845 }
13846
13847 default:
13848 return dump_subexp_body_standard (exp, stream, elt);
13849 }
13850
13851 elt += oplen;
13852 for (i = 0; i < nargs; i += 1)
13853 elt = dump_subexp (exp, stream, elt);
13854
13855 return elt;
13856 }
13857
13858 /* The Ada extension of print_subexp (q.v.). */
13859
13860 static void
13861 ada_print_subexp (struct expression *exp, int *pos,
13862 struct ui_file *stream, enum precedence prec)
13863 {
13864 int oplen, nargs, i;
13865 int pc = *pos;
13866 enum exp_opcode op = exp->elts[pc].opcode;
13867
13868 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13869
13870 *pos += oplen;
13871 switch (op)
13872 {
13873 default:
13874 *pos -= oplen;
13875 print_subexp_standard (exp, pos, stream, prec);
13876 return;
13877
13878 case OP_VAR_VALUE:
13879 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13880 return;
13881
13882 case BINOP_IN_BOUNDS:
13883 /* XXX: sprint_subexp */
13884 print_subexp (exp, pos, stream, PREC_SUFFIX);
13885 fputs_filtered (" in ", stream);
13886 print_subexp (exp, pos, stream, PREC_SUFFIX);
13887 fputs_filtered ("'range", stream);
13888 if (exp->elts[pc + 1].longconst > 1)
13889 fprintf_filtered (stream, "(%ld)",
13890 (long) exp->elts[pc + 1].longconst);
13891 return;
13892
13893 case TERNOP_IN_RANGE:
13894 if (prec >= PREC_EQUAL)
13895 fputs_filtered ("(", stream);
13896 /* XXX: sprint_subexp */
13897 print_subexp (exp, pos, stream, PREC_SUFFIX);
13898 fputs_filtered (" in ", stream);
13899 print_subexp (exp, pos, stream, PREC_EQUAL);
13900 fputs_filtered (" .. ", stream);
13901 print_subexp (exp, pos, stream, PREC_EQUAL);
13902 if (prec >= PREC_EQUAL)
13903 fputs_filtered (")", stream);
13904 return;
13905
13906 case OP_ATR_FIRST:
13907 case OP_ATR_LAST:
13908 case OP_ATR_LENGTH:
13909 case OP_ATR_IMAGE:
13910 case OP_ATR_MAX:
13911 case OP_ATR_MIN:
13912 case OP_ATR_MODULUS:
13913 case OP_ATR_POS:
13914 case OP_ATR_SIZE:
13915 case OP_ATR_TAG:
13916 case OP_ATR_VAL:
13917 if (exp->elts[*pos].opcode == OP_TYPE)
13918 {
13919 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13920 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13921 &type_print_raw_options);
13922 *pos += 3;
13923 }
13924 else
13925 print_subexp (exp, pos, stream, PREC_SUFFIX);
13926 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13927 if (nargs > 1)
13928 {
13929 int tem;
13930
13931 for (tem = 1; tem < nargs; tem += 1)
13932 {
13933 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13934 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13935 }
13936 fputs_filtered (")", stream);
13937 }
13938 return;
13939
13940 case UNOP_QUAL:
13941 type_print (exp->elts[pc + 1].type, "", stream, 0);
13942 fputs_filtered ("'(", stream);
13943 print_subexp (exp, pos, stream, PREC_PREFIX);
13944 fputs_filtered (")", stream);
13945 return;
13946
13947 case UNOP_IN_RANGE:
13948 /* XXX: sprint_subexp */
13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
13950 fputs_filtered (" in ", stream);
13951 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13952 &type_print_raw_options);
13953 return;
13954
13955 case OP_DISCRETE_RANGE:
13956 print_subexp (exp, pos, stream, PREC_SUFFIX);
13957 fputs_filtered ("..", stream);
13958 print_subexp (exp, pos, stream, PREC_SUFFIX);
13959 return;
13960
13961 case OP_OTHERS:
13962 fputs_filtered ("others => ", stream);
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 return;
13965
13966 case OP_CHOICES:
13967 for (i = 0; i < nargs-1; i += 1)
13968 {
13969 if (i > 0)
13970 fputs_filtered ("|", stream);
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 }
13973 fputs_filtered (" => ", stream);
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 return;
13976
13977 case OP_POSITIONAL:
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 return;
13980
13981 case OP_AGGREGATE:
13982 fputs_filtered ("(", stream);
13983 for (i = 0; i < nargs; i += 1)
13984 {
13985 if (i > 0)
13986 fputs_filtered (", ", stream);
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 }
13989 fputs_filtered (")", stream);
13990 return;
13991 }
13992 }
13993
13994 /* Table mapping opcodes into strings for printing operators
13995 and precedences of the operators. */
13996
13997 static const struct op_print ada_op_print_tab[] = {
13998 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13999 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14000 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14001 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14002 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14003 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14004 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14005 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14006 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14007 {">=", BINOP_GEQ, PREC_ORDER, 0},
14008 {">", BINOP_GTR, PREC_ORDER, 0},
14009 {"<", BINOP_LESS, PREC_ORDER, 0},
14010 {">>", BINOP_RSH, PREC_SHIFT, 0},
14011 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14012 {"+", BINOP_ADD, PREC_ADD, 0},
14013 {"-", BINOP_SUB, PREC_ADD, 0},
14014 {"&", BINOP_CONCAT, PREC_ADD, 0},
14015 {"*", BINOP_MUL, PREC_MUL, 0},
14016 {"/", BINOP_DIV, PREC_MUL, 0},
14017 {"rem", BINOP_REM, PREC_MUL, 0},
14018 {"mod", BINOP_MOD, PREC_MUL, 0},
14019 {"**", BINOP_EXP, PREC_REPEAT, 0},
14020 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14021 {"-", UNOP_NEG, PREC_PREFIX, 0},
14022 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14023 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14024 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14025 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14026 {".all", UNOP_IND, PREC_SUFFIX, 1},
14027 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14028 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14029 {NULL, OP_NULL, PREC_SUFFIX, 0}
14030 };
14031 \f
14032 enum ada_primitive_types {
14033 ada_primitive_type_int,
14034 ada_primitive_type_long,
14035 ada_primitive_type_short,
14036 ada_primitive_type_char,
14037 ada_primitive_type_float,
14038 ada_primitive_type_double,
14039 ada_primitive_type_void,
14040 ada_primitive_type_long_long,
14041 ada_primitive_type_long_double,
14042 ada_primitive_type_natural,
14043 ada_primitive_type_positive,
14044 ada_primitive_type_system_address,
14045 ada_primitive_type_storage_offset,
14046 nr_ada_primitive_types
14047 };
14048
14049 static void
14050 ada_language_arch_info (struct gdbarch *gdbarch,
14051 struct language_arch_info *lai)
14052 {
14053 const struct builtin_type *builtin = builtin_type (gdbarch);
14054
14055 lai->primitive_type_vector
14056 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14057 struct type *);
14058
14059 lai->primitive_type_vector [ada_primitive_type_int]
14060 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14061 0, "integer");
14062 lai->primitive_type_vector [ada_primitive_type_long]
14063 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14064 0, "long_integer");
14065 lai->primitive_type_vector [ada_primitive_type_short]
14066 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14067 0, "short_integer");
14068 lai->string_char_type
14069 = lai->primitive_type_vector [ada_primitive_type_char]
14070 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14071 lai->primitive_type_vector [ada_primitive_type_float]
14072 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14073 "float", gdbarch_float_format (gdbarch));
14074 lai->primitive_type_vector [ada_primitive_type_double]
14075 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14076 "long_float", gdbarch_double_format (gdbarch));
14077 lai->primitive_type_vector [ada_primitive_type_long_long]
14078 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14079 0, "long_long_integer");
14080 lai->primitive_type_vector [ada_primitive_type_long_double]
14081 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14082 "long_long_float", gdbarch_long_double_format (gdbarch));
14083 lai->primitive_type_vector [ada_primitive_type_natural]
14084 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14085 0, "natural");
14086 lai->primitive_type_vector [ada_primitive_type_positive]
14087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14088 0, "positive");
14089 lai->primitive_type_vector [ada_primitive_type_void]
14090 = builtin->builtin_void;
14091
14092 lai->primitive_type_vector [ada_primitive_type_system_address]
14093 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14094 "void"));
14095 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14096 = "system__address";
14097
14098 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14099 type. This is a signed integral type whose size is the same as
14100 the size of addresses. */
14101 {
14102 unsigned int addr_length = TYPE_LENGTH
14103 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14104
14105 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14106 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14107 "storage_offset");
14108 }
14109
14110 lai->bool_type_symbol = NULL;
14111 lai->bool_type_default = builtin->builtin_bool;
14112 }
14113 \f
14114 /* Language vector */
14115
14116 /* Not really used, but needed in the ada_language_defn. */
14117
14118 static void
14119 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14120 {
14121 ada_emit_char (c, type, stream, quoter, 1);
14122 }
14123
14124 static int
14125 parse (struct parser_state *ps)
14126 {
14127 warnings_issued = 0;
14128 return ada_parse (ps);
14129 }
14130
14131 static const struct exp_descriptor ada_exp_descriptor = {
14132 ada_print_subexp,
14133 ada_operator_length,
14134 ada_operator_check,
14135 ada_op_name,
14136 ada_dump_subexp_body,
14137 ada_evaluate_subexp
14138 };
14139
14140 /* symbol_name_matcher_ftype adapter for wild_match. */
14141
14142 static bool
14143 do_wild_match (const char *symbol_search_name,
14144 const lookup_name_info &lookup_name,
14145 completion_match_result *comp_match_res)
14146 {
14147 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14148 }
14149
14150 /* symbol_name_matcher_ftype adapter for full_match. */
14151
14152 static bool
14153 do_full_match (const char *symbol_search_name,
14154 const lookup_name_info &lookup_name,
14155 completion_match_result *comp_match_res)
14156 {
14157 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14158 }
14159
14160 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14161
14162 static bool
14163 do_exact_match (const char *symbol_search_name,
14164 const lookup_name_info &lookup_name,
14165 completion_match_result *comp_match_res)
14166 {
14167 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14168 }
14169
14170 /* Build the Ada lookup name for LOOKUP_NAME. */
14171
14172 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14173 {
14174 const std::string &user_name = lookup_name.name ();
14175
14176 if (user_name[0] == '<')
14177 {
14178 if (user_name.back () == '>')
14179 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14180 else
14181 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14182 m_encoded_p = true;
14183 m_verbatim_p = true;
14184 m_wild_match_p = false;
14185 m_standard_p = false;
14186 }
14187 else
14188 {
14189 m_verbatim_p = false;
14190
14191 m_encoded_p = user_name.find ("__") != std::string::npos;
14192
14193 if (!m_encoded_p)
14194 {
14195 const char *folded = ada_fold_name (user_name.c_str ());
14196 const char *encoded = ada_encode_1 (folded, false);
14197 if (encoded != NULL)
14198 m_encoded_name = encoded;
14199 else
14200 m_encoded_name = user_name;
14201 }
14202 else
14203 m_encoded_name = user_name;
14204
14205 /* Handle the 'package Standard' special case. See description
14206 of m_standard_p. */
14207 if (startswith (m_encoded_name.c_str (), "standard__"))
14208 {
14209 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14210 m_standard_p = true;
14211 }
14212 else
14213 m_standard_p = false;
14214
14215 /* If the name contains a ".", then the user is entering a fully
14216 qualified entity name, and the match must not be done in wild
14217 mode. Similarly, if the user wants to complete what looks
14218 like an encoded name, the match must not be done in wild
14219 mode. Also, in the standard__ special case always do
14220 non-wild matching. */
14221 m_wild_match_p
14222 = (lookup_name.match_type () != symbol_name_match_type::FULL
14223 && !m_encoded_p
14224 && !m_standard_p
14225 && user_name.find ('.') == std::string::npos);
14226 }
14227 }
14228
14229 /* symbol_name_matcher_ftype method for Ada. This only handles
14230 completion mode. */
14231
14232 static bool
14233 ada_symbol_name_matches (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
14235 completion_match_result *comp_match_res)
14236 {
14237 return lookup_name.ada ().matches (symbol_search_name,
14238 lookup_name.match_type (),
14239 comp_match_res);
14240 }
14241
14242 /* A name matcher that matches the symbol name exactly, with
14243 strcmp. */
14244
14245 static bool
14246 literal_symbol_name_matcher (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
14248 completion_match_result *comp_match_res)
14249 {
14250 const std::string &name = lookup_name.name ();
14251
14252 int cmp = (lookup_name.completion_mode ()
14253 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14254 : strcmp (symbol_search_name, name.c_str ()));
14255 if (cmp == 0)
14256 {
14257 if (comp_match_res != NULL)
14258 comp_match_res->set_match (symbol_search_name);
14259 return true;
14260 }
14261 else
14262 return false;
14263 }
14264
14265 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14266 Ada. */
14267
14268 static symbol_name_matcher_ftype *
14269 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14270 {
14271 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14272 return literal_symbol_name_matcher;
14273
14274 if (lookup_name.completion_mode ())
14275 return ada_symbol_name_matches;
14276 else
14277 {
14278 if (lookup_name.ada ().wild_match_p ())
14279 return do_wild_match;
14280 else if (lookup_name.ada ().verbatim_p ())
14281 return do_exact_match;
14282 else
14283 return do_full_match;
14284 }
14285 }
14286
14287 /* Implement the "la_read_var_value" language_defn method for Ada. */
14288
14289 static struct value *
14290 ada_read_var_value (struct symbol *var, const struct block *var_block,
14291 struct frame_info *frame)
14292 {
14293 /* The only case where default_read_var_value is not sufficient
14294 is when VAR is a renaming... */
14295 if (frame != nullptr)
14296 {
14297 const struct block *frame_block = get_frame_block (frame, NULL);
14298 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14299 return ada_read_renaming_var_value (var, frame_block);
14300 }
14301
14302 /* This is a typical case where we expect the default_read_var_value
14303 function to work. */
14304 return default_read_var_value (var, var_block, frame);
14305 }
14306
14307 static const char *ada_extensions[] =
14308 {
14309 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14310 };
14311
14312 extern const struct language_defn ada_language_defn = {
14313 "ada", /* Language name */
14314 "Ada",
14315 language_ada,
14316 range_check_off,
14317 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14318 that's not quite what this means. */
14319 array_row_major,
14320 macro_expansion_no,
14321 ada_extensions,
14322 &ada_exp_descriptor,
14323 parse,
14324 resolve,
14325 ada_printchar, /* Print a character constant */
14326 ada_printstr, /* Function to print string constant */
14327 emit_char, /* Function to print single char (not used) */
14328 ada_print_type, /* Print a type using appropriate syntax */
14329 ada_print_typedef, /* Print a typedef using appropriate syntax */
14330 ada_val_print, /* Print a value using appropriate syntax */
14331 ada_value_print, /* Print a top-level value */
14332 ada_read_var_value, /* la_read_var_value */
14333 NULL, /* Language specific skip_trampoline */
14334 NULL, /* name_of_this */
14335 true, /* la_store_sym_names_in_linkage_form_p */
14336 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14337 basic_lookup_transparent_type, /* lookup_transparent_type */
14338 ada_la_decode, /* Language specific symbol demangler */
14339 ada_sniff_from_mangled_name,
14340 NULL, /* Language specific
14341 class_name_from_physname */
14342 ada_op_print_tab, /* expression operators for printing */
14343 0, /* c-style arrays */
14344 1, /* String lower bound */
14345 ada_get_gdb_completer_word_break_characters,
14346 ada_collect_symbol_completion_matches,
14347 ada_language_arch_info,
14348 ada_print_array_index,
14349 default_pass_by_reference,
14350 c_get_string,
14351 ada_watch_location_expression,
14352 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14353 ada_iterate_over_symbols,
14354 default_search_name_hash,
14355 &ada_varobj_ops,
14356 NULL,
14357 NULL,
14358 ada_is_string_type,
14359 "(...)" /* la_struct_too_deep_ellipsis */
14360 };
14361
14362 /* Command-list for the "set/show ada" prefix command. */
14363 static struct cmd_list_element *set_ada_list;
14364 static struct cmd_list_element *show_ada_list;
14365
14366 /* Implement the "set ada" prefix command. */
14367
14368 static void
14369 set_ada_command (const char *arg, int from_tty)
14370 {
14371 printf_unfiltered (_(\
14372 "\"set ada\" must be followed by the name of a setting.\n"));
14373 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14374 }
14375
14376 /* Implement the "show ada" prefix command. */
14377
14378 static void
14379 show_ada_command (const char *args, int from_tty)
14380 {
14381 cmd_show_list (show_ada_list, from_tty, "");
14382 }
14383
14384 static void
14385 initialize_ada_catchpoint_ops (void)
14386 {
14387 struct breakpoint_ops *ops;
14388
14389 initialize_breakpoint_ops ();
14390
14391 ops = &catch_exception_breakpoint_ops;
14392 *ops = bkpt_breakpoint_ops;
14393 ops->allocate_location = allocate_location_catch_exception;
14394 ops->re_set = re_set_catch_exception;
14395 ops->check_status = check_status_catch_exception;
14396 ops->print_it = print_it_catch_exception;
14397 ops->print_one = print_one_catch_exception;
14398 ops->print_mention = print_mention_catch_exception;
14399 ops->print_recreate = print_recreate_catch_exception;
14400
14401 ops = &catch_exception_unhandled_breakpoint_ops;
14402 *ops = bkpt_breakpoint_ops;
14403 ops->allocate_location = allocate_location_catch_exception_unhandled;
14404 ops->re_set = re_set_catch_exception_unhandled;
14405 ops->check_status = check_status_catch_exception_unhandled;
14406 ops->print_it = print_it_catch_exception_unhandled;
14407 ops->print_one = print_one_catch_exception_unhandled;
14408 ops->print_mention = print_mention_catch_exception_unhandled;
14409 ops->print_recreate = print_recreate_catch_exception_unhandled;
14410
14411 ops = &catch_assert_breakpoint_ops;
14412 *ops = bkpt_breakpoint_ops;
14413 ops->allocate_location = allocate_location_catch_assert;
14414 ops->re_set = re_set_catch_assert;
14415 ops->check_status = check_status_catch_assert;
14416 ops->print_it = print_it_catch_assert;
14417 ops->print_one = print_one_catch_assert;
14418 ops->print_mention = print_mention_catch_assert;
14419 ops->print_recreate = print_recreate_catch_assert;
14420
14421 ops = &catch_handlers_breakpoint_ops;
14422 *ops = bkpt_breakpoint_ops;
14423 ops->allocate_location = allocate_location_catch_handlers;
14424 ops->re_set = re_set_catch_handlers;
14425 ops->check_status = check_status_catch_handlers;
14426 ops->print_it = print_it_catch_handlers;
14427 ops->print_one = print_one_catch_handlers;
14428 ops->print_mention = print_mention_catch_handlers;
14429 ops->print_recreate = print_recreate_catch_handlers;
14430 }
14431
14432 /* This module's 'new_objfile' observer. */
14433
14434 static void
14435 ada_new_objfile_observer (struct objfile *objfile)
14436 {
14437 ada_clear_symbol_cache ();
14438 }
14439
14440 /* This module's 'free_objfile' observer. */
14441
14442 static void
14443 ada_free_objfile_observer (struct objfile *objfile)
14444 {
14445 ada_clear_symbol_cache ();
14446 }
14447
14448 void
14449 _initialize_ada_language (void)
14450 {
14451 initialize_ada_catchpoint_ops ();
14452
14453 add_prefix_cmd ("ada", no_class, set_ada_command,
14454 _("Prefix command for changing Ada-specific settings."),
14455 &set_ada_list, "set ada ", 0, &setlist);
14456
14457 add_prefix_cmd ("ada", no_class, show_ada_command,
14458 _("Generic command for showing Ada-specific settings."),
14459 &show_ada_list, "show ada ", 0, &showlist);
14460
14461 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14462 &trust_pad_over_xvs, _("\
14463 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14464 Show whether an optimization trusting PAD types over XVS types is activated."),
14465 _("\
14466 This is related to the encoding used by the GNAT compiler. The debugger\n\
14467 should normally trust the contents of PAD types, but certain older versions\n\
14468 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14469 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14470 work around this bug. It is always safe to turn this option \"off\", but\n\
14471 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14472 this option to \"off\" unless necessary."),
14473 NULL, NULL, &set_ada_list, &show_ada_list);
14474
14475 add_setshow_boolean_cmd ("print-signatures", class_vars,
14476 &print_signatures, _("\
14477 Enable or disable the output of formal and return types for functions in the \
14478 overloads selection menu."), _("\
14479 Show whether the output of formal and return types for functions in the \
14480 overloads selection menu is activated."),
14481 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14482
14483 add_catch_command ("exception", _("\
14484 Catch Ada exceptions, when raised.\n\
14485 Usage: catch exception [ARG] [if CONDITION]\n\
14486 Without any argument, stop when any Ada exception is raised.\n\
14487 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14488 being raised does not have a handler (and will therefore lead to the task's\n\
14489 termination).\n\
14490 Otherwise, the catchpoint only stops when the name of the exception being\n\
14491 raised is the same as ARG.\n\
14492 CONDITION is a boolean expression that is evaluated to see whether the\n\
14493 exception should cause a stop."),
14494 catch_ada_exception_command,
14495 catch_ada_completer,
14496 CATCH_PERMANENT,
14497 CATCH_TEMPORARY);
14498
14499 add_catch_command ("handlers", _("\
14500 Catch Ada exceptions, when handled.\n\
14501 Usage: catch handlers [ARG] [if CONDITION]\n\
14502 Without any argument, stop when any Ada exception is handled.\n\
14503 With an argument, catch only exceptions with the given name.\n\
14504 CONDITION is a boolean expression that is evaluated to see whether the\n\
14505 exception should cause a stop."),
14506 catch_ada_handlers_command,
14507 catch_ada_completer,
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
14510 add_catch_command ("assert", _("\
14511 Catch failed Ada assertions, when raised.\n\
14512 Usage: catch assert [if CONDITION]\n\
14513 CONDITION is a boolean expression that is evaluated to see whether the\n\
14514 exception should cause a stop."),
14515 catch_assert_command,
14516 NULL,
14517 CATCH_PERMANENT,
14518 CATCH_TEMPORARY);
14519
14520 varsize_limit = 65536;
14521 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14522 &varsize_limit, _("\
14523 Set the maximum number of bytes allowed in a variable-size object."), _("\
14524 Show the maximum number of bytes allowed in a variable-size object."), _("\
14525 Attempts to access an object whose size is not a compile-time constant\n\
14526 and exceeds this limit will cause an error."),
14527 NULL, NULL, &setlist, &showlist);
14528
14529 add_info ("exceptions", info_exceptions_command,
14530 _("\
14531 List all Ada exception names.\n\
14532 Usage: info exceptions [REGEXP]\n\
14533 If a regular expression is passed as an argument, only those matching\n\
14534 the regular expression are listed."));
14535
14536 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14537 _("Set Ada maintenance-related variables."),
14538 &maint_set_ada_cmdlist, "maintenance set ada ",
14539 0/*allow-unknown*/, &maintenance_set_cmdlist);
14540
14541 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14542 _("Show Ada maintenance-related variables."),
14543 &maint_show_ada_cmdlist, "maintenance show ada ",
14544 0/*allow-unknown*/, &maintenance_show_cmdlist);
14545
14546 add_setshow_boolean_cmd
14547 ("ignore-descriptive-types", class_maintenance,
14548 &ada_ignore_descriptive_types_p,
14549 _("Set whether descriptive types generated by GNAT should be ignored."),
14550 _("Show whether descriptive types generated by GNAT should be ignored."),
14551 _("\
14552 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14553 DWARF attribute."),
14554 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14555
14556 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14557 NULL, xcalloc, xfree);
14558
14559 /* The ada-lang observers. */
14560 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14561 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14562 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14563 }
This page took 0.542913 seconds and 5 git commands to generate.