Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (const char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (const char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401 Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410 }
1411
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1418
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429 const char *
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1431 {
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463 }
1464
1465 static char *
1466 ada_la_decode (const char *encoded, int options)
1467 {
1468 return xstrdup (ada_decode (encoded));
1469 }
1470
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1472
1473 static int
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1475 {
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 \f
1511
1512 /* Arrays */
1513
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537 void
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1539 {
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567 }
1568
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574 };
1575
1576 /* Maximum number of array dimensions we are prepared to handle. */
1577
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581 /* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587 static struct type *
1588 desc_base_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602 }
1603
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1605
1606 static int
1607 is_thin_pntr (struct type *type)
1608 {
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612 }
1613
1614 /* The descriptor type for thin pointer type TYPE. */
1615
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1618 {
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634 }
1635
1636 /* A pointer to the array data for thin-pointer value VAL. */
1637
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1640 {
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650 }
1651
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1653
1654 static int
1655 is_thick_pntr (struct type *type)
1656 {
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660 }
1661
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1667 {
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695 static struct value *
1696 desc_bounds (struct value *arr)
1697 {
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768 }
1769
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1777 {
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798 static struct value *
1799 desc_data (struct value *arr)
1800 {
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810 }
1811
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitpos (struct type *type)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820 }
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitsize (struct type *type)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834 }
1835
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1842 {
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845 }
1846
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851 static int
1852 desc_bound_bitpos (struct type *type, int i, int which)
1853 {
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitsize (struct type *type, int i, int which)
1863 {
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870 }
1871
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1877 {
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884 }
1885
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889 static int
1890 desc_arity (struct type *type)
1891 {
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897 }
1898
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903 static int
1904 ada_is_direct_array_type (struct type *type)
1905 {
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911 }
1912
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916 static int
1917 ada_is_array_type (struct type *type)
1918 {
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924 }
1925
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928 int
1929 ada_is_simple_array_type (struct type *type)
1930 {
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938 }
1939
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942 int
1943 ada_is_array_descriptor_type (struct type *type)
1944 {
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953 }
1954
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960 int
1961 ada_is_bogus_array_descriptor (struct type *type)
1962 {
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969 }
1970
1971
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979 struct type *
1980 ada_type_of_array (struct value *arr, int bounds)
1981 {
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051 }
2052
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058 struct value *
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2060 {
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073 }
2074
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079 struct value *
2080 ada_coerce_to_simple_array (struct value *arr)
2081 {
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095 }
2096
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101 struct type *
2102 ada_coerce_to_simple_array_type (struct type *type)
2103 {
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111 }
2112
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115 static int
2116 ada_is_packed_array_type (struct type *type)
2117 {
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125 }
2126
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130 int
2131 ada_is_constrained_packed_array_type (struct type *type)
2132 {
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135 }
2136
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140 static int
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150 static long
2151 decode_packed_array_bitsize (struct type *type)
2152 {
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181 }
2182
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2202 {
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243 }
2244
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2250 {
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288 }
2289
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2298 {
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345 }
2346
2347
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353 {
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397 }
2398
2399 /* Non-zero iff TYPE includes negative integer values. */
2400
2401 static int
2402 has_negatives (struct type *type)
2403 {
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413 }
2414
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429 static void
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434 {
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541 }
2542
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552 struct value *
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556 {
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663 }
2664
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668 static void
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671 {
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729 }
2730
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2738 {
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789 }
2790
2791
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803 static void
2804 value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806 {
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830 }
2831
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836 struct value *
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838 {
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857 }
2858
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873 {
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899 }
2900
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908 {
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
2926
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2931 }
2932
2933
2934 static struct value *
2935 ada_value_slice (struct value *array, int low, int high)
2936 {
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (struct expression **expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3526 {
3527 struct block_symbol *candidates;
3528 int n_candidates;
3529
3530 n_candidates =
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3534 &candidates);
3535 make_cleanup (xfree, candidates);
3536
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = *expp;
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044 {
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 VALUE_LVAL (val) = lval_memory;
4481 set_value_address (val, addr);
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static symbol_name_match_type
4773 name_match_type_from_name (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
4778 }
4779
4780 /* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783 static struct symbol *
4784 standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786 {
4787 /* Initialize it just to avoid a GCC false warning. */
4788 struct block_symbol sym = {NULL, NULL};
4789
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4795 }
4796
4797
4798 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801 static int
4802 is_nonfunction (struct block_symbol syms[], int n)
4803 {
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4816 struct types. Otherwise, they may not. */
4817
4818 static int
4819 equiv_types (struct type *type0, struct type *type1)
4820 {
4821 if (type0 == type1)
4822 return 1;
4823 if (type0 == NULL || type1 == NULL
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4830 return 1;
4831
4832 return 0;
4833 }
4834
4835 /* True iff SYM0 represents the same entity as SYM1, or one that is
4836 no more defined than that of SYM1. */
4837
4838 static int
4839 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4840 {
4841 if (sym0 == sym1)
4842 return 1;
4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
4847 switch (SYMBOL_CLASS (sym0))
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4857 int len0 = strlen (name0);
4858
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4863 && startswith (name1 + len0, "___XV")));
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4868 default:
4869 return 0;
4870 }
4871 }
4872
4873 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4875
4876 static void
4877 add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
4879 const struct block *block)
4880 {
4881 int i;
4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4883
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4896 return;
4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4898 {
4899 prevDefns[i].symbol = sym;
4900 prevDefns[i].block = block;
4901 return;
4902 }
4903 }
4904
4905 {
4906 struct block_symbol info;
4907
4908 info.symbol = sym;
4909 info.block = block;
4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4911 }
4912 }
4913
4914 /* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4916
4917 static int
4918 num_defns_collected (struct obstack *obstackp)
4919 {
4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4921 }
4922
4923 /* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4925
4926 static struct block_symbol *
4927 defns_collected (struct obstack *obstackp, int finish)
4928 {
4929 if (finish)
4930 return (struct block_symbol *) obstack_finish (obstackp);
4931 else
4932 return (struct block_symbol *) obstack_base (obstackp);
4933 }
4934
4935 /* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4940
4941 struct bound_minimal_symbol
4942 ada_lookup_simple_minsym (const char *name)
4943 {
4944 struct bound_minimal_symbol result;
4945 struct objfile *objfile;
4946 struct minimal_symbol *msymbol;
4947
4948 memset (&result, 0, sizeof (result));
4949
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4955
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
4965 }
4966
4967 return result;
4968 }
4969
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4975
4976 static void
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
4980 {
4981 }
4982
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4985
4986 static int
4987 is_nondebugging_type (struct type *type)
4988 {
4989 const char *name = ada_type_name (type);
4990
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 }
4993
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001 static int
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 {
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035 }
5036
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057 static int
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 {
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5091 return 0;
5092
5093 return 1;
5094 }
5095
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5102
5103 static int
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 {
5106 int i, j;
5107
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 int remove_p = 0;
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5132 remove_p = 1;
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 remove_p = 1;
5154 }
5155 }
5156
5157 if (remove_p)
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
5164 i += 1;
5165 }
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
5182 return nsyms;
5183 }
5184
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5189
5190 static char *
5191 xget_renaming_scope (struct type *renaming_type)
5192 {
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5197
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
5201 int scope_len;
5202 char *scope;
5203
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5206
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
5210
5211 /* Make a copy of scope and return it. */
5212
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5218
5219 return scope;
5220 }
5221
5222 /* Return nonzero if NAME corresponds to a package name. */
5223
5224 static int
5225 is_package_name (const char *name)
5226 {
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5232
5233 char *fun_name;
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 fun_name = xstrprintf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 char *scope;
5260 struct cleanup *old_chain;
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5267
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
5274
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5277
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
5282 if (startswith (function_name, "_ada_"))
5283 function_name += 5;
5284
5285 {
5286 int is_invisible = !startswith (function_name, scope);
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
5291 }
5292
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5298
5299 Rationale:
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5312
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5329
5330 static int
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5333 {
5334 struct symbol *current_function;
5335 const char *current_function_name;
5336 int i;
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5359
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 name_len) == 0
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5384
5385 if (current_block == NULL)
5386 return nsyms;
5387
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 {
5407 int j;
5408
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418 }
5419
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430 static void
5431 ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
5434 {
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
5510
5511 static int
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
5516 {
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562 }
5563
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5566
5567 static int
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5570 {
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
5573 char c1, c2;
5574
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
5589 break;
5590
5591 string1 += 1;
5592 string2 += 1;
5593 }
5594
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
5602 if (is_name_suffix (string1))
5603 return 0;
5604 else
5605 return 1;
5606 }
5607 /* FALLTHROUGH */
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
5618 }
5619 }
5620
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632 static int
5633 compare_names (const char *string1, const char *string2)
5634 {
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647 }
5648
5649 /* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652 static const char *
5653 ada_lookup_name (const lookup_name_info &lookup_name)
5654 {
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656 }
5657
5658 /* Add to OBSTACKP all non-local symbols whose name and domain match
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
5662
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
5667 {
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5671
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5674
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
5677 ALL_OBJFILES (objfile)
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
5684 aux_add_nonlocal_symbols, &data,
5685 symbol_name_match_type::WILD,
5686 NULL);
5687 else
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
5690 aux_add_nonlocal_symbols, &data,
5691 symbol_name_match_type::FULL,
5692 compare_names);
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
5701 data.found_sym = 1;
5702 }
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
5710 ALL_OBJFILES (objfile)
5711 {
5712 data.objfile = objfile;
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
5715 aux_add_nonlocal_symbols,
5716 &data,
5717 symbol_name_match_type::FULL,
5718 compare_names);
5719 }
5720 }
5721 }
5722
5723 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
5726
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
5729 is the one match returned (no other matches in that or
5730 enclosing blocks is returned). If there are any matches in or
5731 surrounding BLOCK, then these alone are returned.
5732
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
5736
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740 static void
5741 ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
5743 const lookup_name_info &lookup_name,
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
5747 {
5748 struct symbol *sym;
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
5762
5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
5764
5765 if (block != NULL)
5766 {
5767 if (full_search)
5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5775 }
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
5778 }
5779
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
5786 {
5787 if (sym != NULL)
5788 add_defn_to_vec (obstackp, sym, block);
5789 return;
5790 }
5791
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
5794
5795 /* Search symbols from all global blocks. */
5796
5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5798
5799 /* Now add symbols from all per-file blocks if we've gotten no hits
5800 (not strictly correct, but perhaps better than an error). */
5801
5802 if (num_defns_collected (obstackp) == 0)
5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5804 }
5805
5806 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
5808 matches.
5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5810 indicating the symbols found and the blocks and symbol tables (if
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823 static int
5824 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829 {
5830 int syms_from_global_search;
5831 int ndefns;
5832 int results_size;
5833 auto_obstack obstack;
5834
5835 ada_add_all_symbols (&obstack, block, lookup_name,
5836 domain, full_search, &syms_from_global_search);
5837
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
5846 if (ndefns == 0 && full_search && syms_from_global_search)
5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5848
5849 if (ndefns == 1 && full_search && syms_from_global_search)
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
5852
5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5854
5855 return ndefns;
5856 }
5857
5858 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5859 in global scopes, returning the number of matches, and setting *RESULTS
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865 int
5866 ada_lookup_symbol_list (const char *name, const struct block *block,
5867 domain_enum domain, struct block_symbol **results)
5868 {
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5873 }
5874
5875 /* Implementation of the la_iterate_over_symbols method. */
5876
5877 static void
5878 ada_iterate_over_symbols
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
5881 gdb::function_view<symbol_found_callback_ftype> callback)
5882 {
5883 int ndefs, i;
5884 struct block_symbol *results;
5885 struct cleanup *old_chain;
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5888 old_chain = make_cleanup (xfree, results);
5889
5890 for (i = 0; i < ndefs; ++i)
5891 {
5892 if (!callback (results[i].symbol))
5893 break;
5894 }
5895
5896 do_cleanups (old_chain);
5897 }
5898
5899 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
5905
5906 void
5907 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5908 domain_enum domain,
5909 struct block_symbol *info)
5910 {
5911 struct block_symbol *candidates;
5912 int n_candidates;
5913 struct cleanup *old_chain;
5914
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5923 gdb_assert (info != NULL);
5924 memset (info, 0, sizeof (struct block_symbol));
5925
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
5928 old_chain = make_cleanup (xfree, candidates);
5929
5930 if (n_candidates == 0)
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
5935
5936 *info = candidates[0];
5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
5938
5939 do_cleanups (old_chain);
5940 }
5941
5942 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5945 choosing the first symbol if there are multiple choices.
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
5948 struct block_symbol
5949 ada_lookup_symbol (const char *name, const struct block *block0,
5950 domain_enum domain, int *is_a_field_of_this)
5951 {
5952 struct block_symbol info;
5953
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5958 block0, domain, &info);
5959 return info;
5960 }
5961
5962 static struct block_symbol
5963 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
5965 const struct block *block,
5966 const domain_enum domain)
5967 {
5968 struct block_symbol sym;
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5971 if (sym.symbol != NULL)
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
5996 return sym;
5997 }
5998
5999 return (struct block_symbol) {NULL, NULL};
6000 }
6001
6002
6003 /* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
6006 are given by any of the regular expressions:
6007
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6010 TKB [subprogram suffix for task bodies]
6011 _E[0-9]+[bs]$ [protected object entry suffixes]
6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
6017
6018 static int
6019 is_name_suffix (const char *str)
6020 {
6021 int k;
6022 const char *matching;
6023 const int len = strlen (str);
6024
6025 /* Skip optional leading __[0-9]+. */
6026
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
6032 }
6033
6034 /* [.$][0-9]+ */
6035
6036 if (str[0] == '.' || str[0] == '$')
6037 {
6038 matching = str + 1;
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
6046
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
6061 #if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
6065 all entity names that end with an "N" as a name suffix causes
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
6070 information is a bit risky. Perhaps we should change the encoding
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076 #endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
6097 while (str[0] != '_' && str[0] != '\0')
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
6103 }
6104
6105 if (str[0] == '\000')
6106 return 1;
6107
6108 if (str[0] == '_')
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
6111 return 0;
6112 if (str[2] == '_')
6113 {
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
6137 return 1;
6138 }
6139 if (str[0] == '$' && isdigit (str[1]))
6140 {
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
6144 return 1;
6145 }
6146 return 0;
6147 }
6148
6149 /* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
6151
6152 static int
6153 is_valid_name_for_wild_match (const char *name0)
6154 {
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169 }
6170
6171 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
6174
6175 static int
6176 advance_wild_match (const char **namep, const char *name0, int target0)
6177 {
6178 const char *name = *namep;
6179
6180 while (1)
6181 {
6182 int t0, t1;
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
6191 if (name == name0 + 5 && startswith (name0, "_ada"))
6192 break;
6193 else
6194 name += 1;
6195 }
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
6208 return 0;
6209 }
6210
6211 *namep = name;
6212 return 1;
6213 }
6214
6215 /* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
6219
6220 static bool
6221 wild_match (const char *name, const char *patn)
6222 {
6223 const char *p;
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
6236 return match == name0 || is_valid_name_for_wild_match (name0);
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
6242 return false;
6243 }
6244 }
6245
6246 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
6250
6251 static bool
6252 full_match (const char *sym_name, const char *search_name)
6253 {
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
6264
6265 return false;
6266 }
6267
6268 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
6271
6272 static void
6273 ada_add_block_symbols (struct obstack *obstackp,
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
6277 {
6278 struct block_iterator iter;
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
6290 {
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
6307 }
6308
6309 /* Handle renamings. */
6310
6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6312 found_sym = 1;
6313
6314 if (!found_sym && arg_sym != NULL)
6315 {
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
6318 block);
6319 }
6320
6321 if (!lookup_name.ada ().wild_match_p ())
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6330 {
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6370 block);
6371 }
6372 }
6373 }
6374 \f
6375
6376 /* Symbol Completion */
6377
6378 /* See symtab.h. */
6379
6380 bool
6381 ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
6384 completion_match_result *comp_match_res) const
6385 {
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
6393 match = true;
6394
6395 if (match && !m_encoded_p)
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
6402 bool has_angle_bracket;
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
6406 match = (has_angle_bracket == m_verbatim_p);
6407 sym_name = sym_name_copy;
6408 }
6409
6410 if (match && !m_verbatim_p)
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
6421 match = false;
6422 }
6423
6424 /* Second: Try wild matching... */
6425
6426 if (!match && m_wild_match_p)
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
6434 match = true;
6435 }
6436
6437 /* Finally: If we found a match, prepare the result to return. */
6438
6439 if (!match)
6440 return false;
6441
6442 if (comp_match_res != NULL)
6443 {
6444 std::string &match_str = comp_match_res->match.storage ();
6445
6446 if (!m_encoded_p)
6447 match_str = ada_decode (sym_name);
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
6454
6455 }
6456
6457 comp_match_res->set_match (match_str.c_str ());
6458 }
6459
6460 return true;
6461 }
6462
6463 /* Add the list of possible symbol names completing TEXT to TRACKER.
6464 WORD is the entire command on which completion is made. */
6465
6466 static void
6467 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6468 complete_symbol_mode mode,
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
6471 enum type_code code)
6472 {
6473 struct symbol *sym;
6474 struct compunit_symtab *s;
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
6477 const struct block *b, *surrounding_static_block = 0;
6478 struct block_iterator iter;
6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6480
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
6483 lookup_name_info lookup_name (text, name_match_type, true);
6484
6485 /* First, look at the partial symtab symbols. */
6486 expand_symtabs_matching (NULL,
6487 lookup_name,
6488 NULL,
6489 NULL,
6490 ALL_DOMAIN);
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
6500
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
6507 lookup_name, text, word);
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
6531 symbols which match. */
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
6545 lookup_name, text, word);
6546 }
6547 }
6548
6549 ALL_COMPUNITS (objfile, s)
6550 {
6551 QUIT;
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
6564 lookup_name, text, word);
6565 }
6566 }
6567
6568 do_cleanups (old_chain);
6569 }
6570
6571 /* Field Access */
6572
6573 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576 static int
6577 ada_is_dispatch_table_ptr_type (struct type *type)
6578 {
6579 const char *name;
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589 }
6590
6591 /* Return non-zero if TYPE is an interface tag. */
6592
6593 static int
6594 ada_is_interface_tag (struct type *type)
6595 {
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602 }
6603
6604 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
6606
6607 int
6608 ada_is_ignored_field (struct type *type, int field_num)
6609 {
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
6612
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
6630 if (name[0] == '_' && !startswith (name, "_parent"))
6631 return 1;
6632 }
6633
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
6636 if (ada_is_tagged_type (type, 1)
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
6643 }
6644
6645 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6646 pointer or reference type whose ultimate target has a tag field. */
6647
6648 int
6649 ada_is_tagged_type (struct type *type, int refok)
6650 {
6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6652 }
6653
6654 /* True iff TYPE represents the type of X'Tag */
6655
6656 int
6657 ada_is_tag_type (struct type *type)
6658 {
6659 type = ada_check_typedef (type);
6660
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
6664 {
6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6666
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
6669 }
6670 }
6671
6672 /* The type of the tag on VAL. */
6673
6674 struct type *
6675 ada_tag_type (struct value *val)
6676 {
6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6678 }
6679
6680 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683 static int
6684 is_ada95_tag (struct value *tag)
6685 {
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687 }
6688
6689 /* The value of the tag on VAL. */
6690
6691 struct value *
6692 ada_value_tag (struct value *val)
6693 {
6694 return ada_value_struct_elt (val, "_tag", 0);
6695 }
6696
6697 /* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
6699 ADDRESS. */
6700
6701 static struct value *
6702 value_tag_from_contents_and_address (struct type *type,
6703 const gdb_byte *valaddr,
6704 CORE_ADDR address)
6705 {
6706 int tag_byte_offset;
6707 struct type *tag_type;
6708
6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6710 NULL, NULL, NULL))
6711 {
6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
6713 ? NULL
6714 : valaddr + tag_byte_offset);
6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6716
6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
6718 }
6719 return NULL;
6720 }
6721
6722 static struct type *
6723 type_from_tag (struct value *tag)
6724 {
6725 const char *type_name = ada_tag_name (tag);
6726
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730 }
6731
6732 /* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738 struct value *
6739 ada_tag_value_at_base_address (struct value *obj)
6740 {
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6768 if (!val)
6769 return obj;
6770
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6775
6776 TRY
6777 {
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6779 }
6780
6781 CATCH (e, RETURN_MASK_ERROR)
6782 {
6783 return obj;
6784 }
6785 END_CATCH
6786
6787 /* If offset is null, nothing to do. */
6788
6789 if (offset_to_top == 0)
6790 return obj;
6791
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6794 now. */
6795
6796 if (offset_to_top == -1)
6797 return obj;
6798
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6806
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6809
6810 base_address = value_address (obj) + offset_to_top;
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6812
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6816
6817 if (!tag)
6818 return obj;
6819
6820 obj_type = type_from_tag (tag);
6821
6822 if (!obj_type)
6823 return obj;
6824
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6826 }
6827
6828 /* Return the "ada__tags__type_specific_data" type. */
6829
6830 static struct type *
6831 ada_get_tsd_type (struct inferior *inf)
6832 {
6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6834
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6838 }
6839
6840 /* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
6842
6843 May return NULL if we are unable to get the TSD. */
6844
6845 static struct value *
6846 ada_get_tsd_from_tag (struct value *tag)
6847 {
6848 struct value *val;
6849 struct type *type;
6850
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
6855
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6857 if (val)
6858 return val;
6859
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6863 table. */
6864
6865 type = ada_get_tsd_type (current_inferior());
6866 if (type == NULL)
6867 return NULL;
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6870 if (val == NULL)
6871 return NULL;
6872 return value_ind (value_ptradd (val, -1));
6873 }
6874
6875 /* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6877
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6880
6881 static char *
6882 ada_tag_name_from_tsd (struct value *tsd)
6883 {
6884 static char name[1024];
6885 char *p;
6886 struct value *val;
6887
6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6889 if (val == NULL)
6890 return NULL;
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6893 if (isalpha (*p))
6894 *p = tolower (*p);
6895 return name;
6896 }
6897
6898 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6899 a C string.
6900
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6903 call. */
6904
6905 const char *
6906 ada_tag_name (struct value *tag)
6907 {
6908 char *name = NULL;
6909
6910 if (!ada_is_tag_type (value_type (tag)))
6911 return NULL;
6912
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6918
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
6922 TRY
6923 {
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6925
6926 if (tsd != NULL)
6927 name = ada_tag_name_from_tsd (tsd);
6928 }
6929 CATCH (e, RETURN_MASK_ERROR)
6930 {
6931 }
6932 END_CATCH
6933
6934 return name;
6935 }
6936
6937 /* The parent type of TYPE, or NULL if none. */
6938
6939 struct type *
6940 ada_parent_type (struct type *type)
6941 {
6942 int i;
6943
6944 type = ada_check_typedef (type);
6945
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6947 return NULL;
6948
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
6951 {
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6953
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6959
6960 return ada_check_typedef (parent_type);
6961 }
6962
6963 return NULL;
6964 }
6965
6966 /* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
6969
6970 int
6971 ada_is_parent_field (struct type *type, int field_num)
6972 {
6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6974
6975 return (name != NULL
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
6978 }
6979
6980 /* True iff field number FIELD_NUM of structure type TYPE is a
6981 transparent wrapper field (which should be silently traversed when doing
6982 field selection and flattened when printing). Assumes TYPE is a
6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
6984 structures. */
6985
6986 int
6987 ada_is_wrapper_field (struct type *type, int field_num)
6988 {
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6990
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6992 {
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
6998 a wrapper. */
6999 return 0;
7000 }
7001
7002 return (name != NULL
7003 && (startswith (name, "PARENT")
7004 || strcmp (name, "REP") == 0
7005 || startswith (name, "_parent")
7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7007 }
7008
7009 /* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
7012
7013 int
7014 ada_is_variant_part (struct type *type, int field_num)
7015 {
7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7017
7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7019 || (is_dynamic_field (type, field_num)
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
7022 }
7023
7024 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7025 whose discriminants are contained in the record type OUTER_TYPE,
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
7028
7029 struct type *
7030 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7031 {
7032 const char *name = ada_variant_discrim_name (var_type);
7033
7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7035 }
7036
7037 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7039 represents a 'when others' clause; otherwise 0. */
7040
7041 int
7042 ada_is_others_clause (struct type *type, int field_num)
7043 {
7044 const char *name = TYPE_FIELD_NAME (type, field_num);
7045
7046 return (name != NULL && name[0] == 'O');
7047 }
7048
7049 /* Assuming that TYPE0 is the type of the variant part of a record,
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
7052
7053 const char *
7054 ada_variant_discrim_name (struct type *type0)
7055 {
7056 static char *result = NULL;
7057 static size_t result_len = 0;
7058 struct type *type;
7059 const char *name;
7060 const char *discrim_end;
7061 const char *discrim_start;
7062
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7065 else
7066 type = type0;
7067
7068 name = ada_type_name (type);
7069
7070 if (name == NULL || name[0] == '\000')
7071 return "";
7072
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7074 discrim_end -= 1)
7075 {
7076 if (startswith (discrim_end, "___XVN"))
7077 break;
7078 }
7079 if (discrim_end == name)
7080 return "";
7081
7082 for (discrim_start = discrim_end; discrim_start != name + 3;
7083 discrim_start -= 1)
7084 {
7085 if (discrim_start == name + 1)
7086 return "";
7087 if ((discrim_start > name + 3
7088 && startswith (discrim_start - 3, "___"))
7089 || discrim_start[-1] == '.')
7090 break;
7091 }
7092
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
7095 result[discrim_end - discrim_start] = '\0';
7096 return result;
7097 }
7098
7099 /* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
7106
7107 int
7108 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7109 {
7110 ULONGEST RU;
7111
7112 if (!isdigit (str[k]))
7113 return 0;
7114
7115 /* Do it the hard way so as not to make any assumption about
7116 the relationship of unsigned long (%lu scan format code) and
7117 LONGEST. */
7118 RU = 0;
7119 while (isdigit (str[k]))
7120 {
7121 RU = RU * 10 + (str[k] - '0');
7122 k += 1;
7123 }
7124
7125 if (str[k] == 'm')
7126 {
7127 if (R != NULL)
7128 *R = (-(LONGEST) (RU - 1)) - 1;
7129 k += 1;
7130 }
7131 else if (R != NULL)
7132 *R = (LONGEST) RU;
7133
7134 /* NOTE on the above: Technically, C does not say what the results of
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
7138 above is always equivalent to the negative of RU. */
7139
7140 if (new_k != NULL)
7141 *new_k = k;
7142 return 1;
7143 }
7144
7145 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7148
7149 int
7150 ada_in_variant (LONGEST val, struct type *type, int field_num)
7151 {
7152 const char *name = TYPE_FIELD_NAME (type, field_num);
7153 int p;
7154
7155 p = 0;
7156 while (1)
7157 {
7158 switch (name[p])
7159 {
7160 case '\0':
7161 return 0;
7162 case 'S':
7163 {
7164 LONGEST W;
7165
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7167 return 0;
7168 if (val == W)
7169 return 1;
7170 break;
7171 }
7172 case 'R':
7173 {
7174 LONGEST L, U;
7175
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7178 return 0;
7179 if (val >= L && val <= U)
7180 return 1;
7181 break;
7182 }
7183 case 'O':
7184 return 1;
7185 default:
7186 return 0;
7187 }
7188 }
7189 }
7190
7191 /* FIXME: Lots of redundancy below. Try to consolidate. */
7192
7193 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
7197
7198 static struct value *
7199 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7200 struct type *arg_type)
7201 {
7202 struct type *type;
7203
7204 arg_type = ada_check_typedef (arg_type);
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7206
7207 /* Handle packed fields. */
7208
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7210 {
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7213
7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
7217 }
7218 else
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7220 }
7221
7222 /* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7229 0 otherwise;
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7234
7235 Notice that we need to handle when a tagged record hierarchy
7236 has some components with the same name, like in this scenario:
7237
7238 type Top_T is tagged record
7239 N : Integer := 1;
7240 U : Integer := 974;
7241 A : Integer := 48;
7242 end record;
7243
7244 type Middle_T is new Top.Top_T with record
7245 N : Character := 'a';
7246 C : Integer := 3;
7247 end record;
7248
7249 type Bottom_T is new Middle.Middle_T with record
7250 N : Float := 4.0;
7251 C : Character := '5';
7252 X : Integer := 6;
7253 A : Character := 'J';
7254 end record;
7255
7256 Let's say we now have a variable declared and initialized as follow:
7257
7258 TC : Top_A := new Bottom_T;
7259
7260 And then we use this variable to call this function
7261
7262 procedure Assign (Obj: in out Top_T; TV : Integer);
7263
7264 as follow:
7265
7266 Assign (Top_T (B), 12);
7267
7268 Now, we're in the debugger, and we're inside that procedure
7269 then and we want to print the value of obj.c:
7270
7271 Usually, the tagged record or one of the parent type owns the
7272 component to print and there's no issue but in this particular
7273 case, what does it mean to ask for Obj.C? Since the actual
7274 type for object is type Bottom_T, it could mean two things: type
7275 component C from the Middle_T view, but also component C from
7276 Bottom_T. So in that "undefined" case, when the component is
7277 not found in the non-resolved type (which includes all the
7278 components of the parent type), then resolve it and see if we
7279 get better luck once expanded.
7280
7281 In the case of homonyms in the derived tagged type, we don't
7282 guaranty anything, and pick the one that's easiest for us
7283 to program.
7284
7285 Returns 1 if found, 0 otherwise. */
7286
7287 static int
7288 find_struct_field (const char *name, struct type *type, int offset,
7289 struct type **field_type_p,
7290 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7291 int *index_p)
7292 {
7293 int i;
7294 int parent_offset = -1;
7295
7296 type = ada_check_typedef (type);
7297
7298 if (field_type_p != NULL)
7299 *field_type_p = NULL;
7300 if (byte_offset_p != NULL)
7301 *byte_offset_p = 0;
7302 if (bit_offset_p != NULL)
7303 *bit_offset_p = 0;
7304 if (bit_size_p != NULL)
7305 *bit_size_p = 0;
7306
7307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7308 {
7309 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7310 int fld_offset = offset + bit_pos / 8;
7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7312
7313 if (t_field_name == NULL)
7314 continue;
7315
7316 else if (ada_is_parent_field (type, i))
7317 {
7318 /* This is a field pointing us to the parent type of a tagged
7319 type. As hinted in this function's documentation, we give
7320 preference to fields in the current record first, so what
7321 we do here is just record the index of this field before
7322 we skip it. If it turns out we couldn't find our field
7323 in the current record, then we'll get back to it and search
7324 inside it whether the field might exist in the parent. */
7325
7326 parent_offset = i;
7327 continue;
7328 }
7329
7330 else if (name != NULL && field_name_match (t_field_name, name))
7331 {
7332 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7333
7334 if (field_type_p != NULL)
7335 *field_type_p = TYPE_FIELD_TYPE (type, i);
7336 if (byte_offset_p != NULL)
7337 *byte_offset_p = fld_offset;
7338 if (bit_offset_p != NULL)
7339 *bit_offset_p = bit_pos % 8;
7340 if (bit_size_p != NULL)
7341 *bit_size_p = bit_size;
7342 return 1;
7343 }
7344 else if (ada_is_wrapper_field (type, i))
7345 {
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7347 field_type_p, byte_offset_p, bit_offset_p,
7348 bit_size_p, index_p))
7349 return 1;
7350 }
7351 else if (ada_is_variant_part (type, i))
7352 {
7353 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7354 fixed type?? */
7355 int j;
7356 struct type *field_type
7357 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7358
7359 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7360 {
7361 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7362 fld_offset
7363 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7364 field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368 }
7369 else if (index_p != NULL)
7370 *index_p += 1;
7371 }
7372
7373 /* Field not found so far. If this is a tagged type which
7374 has a parent, try finding that field in the parent now. */
7375
7376 if (parent_offset != -1)
7377 {
7378 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7379 int fld_offset = offset + bit_pos / 8;
7380
7381 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7382 fld_offset, field_type_p, byte_offset_p,
7383 bit_offset_p, bit_size_p, index_p))
7384 return 1;
7385 }
7386
7387 return 0;
7388 }
7389
7390 /* Number of user-visible fields in record type TYPE. */
7391
7392 static int
7393 num_visible_fields (struct type *type)
7394 {
7395 int n;
7396
7397 n = 0;
7398 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7399 return n;
7400 }
7401
7402 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7403 and search in it assuming it has (class) type TYPE.
7404 If found, return value, else return NULL.
7405
7406 Searches recursively through wrapper fields (e.g., '_parent').
7407
7408 In the case of homonyms in the tagged types, please refer to the
7409 long explanation in find_struct_field's function documentation. */
7410
7411 static struct value *
7412 ada_search_struct_field (const char *name, struct value *arg, int offset,
7413 struct type *type)
7414 {
7415 int i;
7416 int parent_offset = -1;
7417
7418 type = ada_check_typedef (type);
7419 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7420 {
7421 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7422
7423 if (t_field_name == NULL)
7424 continue;
7425
7426 else if (ada_is_parent_field (type, i))
7427 {
7428 /* This is a field pointing us to the parent type of a tagged
7429 type. As hinted in this function's documentation, we give
7430 preference to fields in the current record first, so what
7431 we do here is just record the index of this field before
7432 we skip it. If it turns out we couldn't find our field
7433 in the current record, then we'll get back to it and search
7434 inside it whether the field might exist in the parent. */
7435
7436 parent_offset = i;
7437 continue;
7438 }
7439
7440 else if (field_name_match (t_field_name, name))
7441 return ada_value_primitive_field (arg, offset, i, type);
7442
7443 else if (ada_is_wrapper_field (type, i))
7444 {
7445 struct value *v = /* Do not let indent join lines here. */
7446 ada_search_struct_field (name, arg,
7447 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7448 TYPE_FIELD_TYPE (type, i));
7449
7450 if (v != NULL)
7451 return v;
7452 }
7453
7454 else if (ada_is_variant_part (type, i))
7455 {
7456 /* PNH: Do we ever get here? See find_struct_field. */
7457 int j;
7458 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7459 i));
7460 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7461
7462 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7463 {
7464 struct value *v = ada_search_struct_field /* Force line
7465 break. */
7466 (name, arg,
7467 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7468 TYPE_FIELD_TYPE (field_type, j));
7469
7470 if (v != NULL)
7471 return v;
7472 }
7473 }
7474 }
7475
7476 /* Field not found so far. If this is a tagged type which
7477 has a parent, try finding that field in the parent now. */
7478
7479 if (parent_offset != -1)
7480 {
7481 struct value *v = ada_search_struct_field (
7482 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7483 TYPE_FIELD_TYPE (type, parent_offset));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 return NULL;
7490 }
7491
7492 static struct value *ada_index_struct_field_1 (int *, struct value *,
7493 int, struct type *);
7494
7495
7496 /* Return field #INDEX in ARG, where the index is that returned by
7497 * find_struct_field through its INDEX_P argument. Adjust the address
7498 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7499 * If found, return value, else return NULL. */
7500
7501 static struct value *
7502 ada_index_struct_field (int index, struct value *arg, int offset,
7503 struct type *type)
7504 {
7505 return ada_index_struct_field_1 (&index, arg, offset, type);
7506 }
7507
7508
7509 /* Auxiliary function for ada_index_struct_field. Like
7510 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7511 * *INDEX_P. */
7512
7513 static struct value *
7514 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7515 struct type *type)
7516 {
7517 int i;
7518 type = ada_check_typedef (type);
7519
7520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7521 {
7522 if (TYPE_FIELD_NAME (type, i) == NULL)
7523 continue;
7524 else if (ada_is_wrapper_field (type, i))
7525 {
7526 struct value *v = /* Do not let indent join lines here. */
7527 ada_index_struct_field_1 (index_p, arg,
7528 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7529 TYPE_FIELD_TYPE (type, i));
7530
7531 if (v != NULL)
7532 return v;
7533 }
7534
7535 else if (ada_is_variant_part (type, i))
7536 {
7537 /* PNH: Do we ever get here? See ada_search_struct_field,
7538 find_struct_field. */
7539 error (_("Cannot assign this kind of variant record"));
7540 }
7541 else if (*index_p == 0)
7542 return ada_value_primitive_field (arg, offset, i, type);
7543 else
7544 *index_p -= 1;
7545 }
7546 return NULL;
7547 }
7548
7549 /* Given ARG, a value of type (pointer or reference to a)*
7550 structure/union, extract the component named NAME from the ultimate
7551 target structure/union and return it as a value with its
7552 appropriate type.
7553
7554 The routine searches for NAME among all members of the structure itself
7555 and (recursively) among all members of any wrapper members
7556 (e.g., '_parent').
7557
7558 If NO_ERR, then simply return NULL in case of error, rather than
7559 calling error. */
7560
7561 struct value *
7562 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7563 {
7564 struct type *t, *t1;
7565 struct value *v;
7566
7567 v = NULL;
7568 t1 = t = ada_check_typedef (value_type (arg));
7569 if (TYPE_CODE (t) == TYPE_CODE_REF)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
7573 goto BadValue;
7574 t1 = ada_check_typedef (t1);
7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7576 {
7577 arg = coerce_ref (arg);
7578 t = t1;
7579 }
7580 }
7581
7582 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7583 {
7584 t1 = TYPE_TARGET_TYPE (t);
7585 if (t1 == NULL)
7586 goto BadValue;
7587 t1 = ada_check_typedef (t1);
7588 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7589 {
7590 arg = value_ind (arg);
7591 t = t1;
7592 }
7593 else
7594 break;
7595 }
7596
7597 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7598 goto BadValue;
7599
7600 if (t1 == t)
7601 v = ada_search_struct_field (name, arg, 0, t);
7602 else
7603 {
7604 int bit_offset, bit_size, byte_offset;
7605 struct type *field_type;
7606 CORE_ADDR address;
7607
7608 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7609 address = value_address (ada_value_ind (arg));
7610 else
7611 address = value_address (ada_coerce_ref (arg));
7612
7613 /* Check to see if this is a tagged type. We also need to handle
7614 the case where the type is a reference to a tagged type, but
7615 we have to be careful to exclude pointers to tagged types.
7616 The latter should be shown as usual (as a pointer), whereas
7617 a reference should mostly be transparent to the user. */
7618
7619 if (ada_is_tagged_type (t1, 0)
7620 || (TYPE_CODE (t1) == TYPE_CODE_REF
7621 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7622 {
7623 /* We first try to find the searched field in the current type.
7624 If not found then let's look in the fixed type. */
7625
7626 if (!find_struct_field (name, t1, 0,
7627 &field_type, &byte_offset, &bit_offset,
7628 &bit_size, NULL))
7629 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7630 address, NULL, 1);
7631 }
7632 else
7633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7634 address, NULL, 1);
7635
7636 if (find_struct_field (name, t1, 0,
7637 &field_type, &byte_offset, &bit_offset,
7638 &bit_size, NULL))
7639 {
7640 if (bit_size != 0)
7641 {
7642 if (TYPE_CODE (t) == TYPE_CODE_REF)
7643 arg = ada_coerce_ref (arg);
7644 else
7645 arg = ada_value_ind (arg);
7646 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7647 bit_offset, bit_size,
7648 field_type);
7649 }
7650 else
7651 v = value_at_lazy (field_type, address + byte_offset);
7652 }
7653 }
7654
7655 if (v != NULL || no_err)
7656 return v;
7657 else
7658 error (_("There is no member named %s."), name);
7659
7660 BadValue:
7661 if (no_err)
7662 return NULL;
7663 else
7664 error (_("Attempt to extract a component of "
7665 "a value that is not a record."));
7666 }
7667
7668 /* Return a string representation of type TYPE. */
7669
7670 static std::string
7671 type_as_string (struct type *type)
7672 {
7673 string_file tmp_stream;
7674
7675 type_print (type, "", &tmp_stream, -1);
7676
7677 return std::move (tmp_stream.string ());
7678 }
7679
7680 /* Given a type TYPE, look up the type of the component of type named NAME.
7681 If DISPP is non-null, add its byte displacement from the beginning of a
7682 structure (pointed to by a value) of type TYPE to *DISPP (does not
7683 work for packed fields).
7684
7685 Matches any field whose name has NAME as a prefix, possibly
7686 followed by "___".
7687
7688 TYPE can be either a struct or union. If REFOK, TYPE may also
7689 be a (pointer or reference)+ to a struct or union, and the
7690 ultimate target type will be searched.
7691
7692 Looks recursively into variant clauses and parent types.
7693
7694 In the case of homonyms in the tagged types, please refer to the
7695 long explanation in find_struct_field's function documentation.
7696
7697 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7698 TYPE is not a type of the right kind. */
7699
7700 static struct type *
7701 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7702 int noerr)
7703 {
7704 int i;
7705 int parent_offset = -1;
7706
7707 if (name == NULL)
7708 goto BadName;
7709
7710 if (refok && type != NULL)
7711 while (1)
7712 {
7713 type = ada_check_typedef (type);
7714 if (TYPE_CODE (type) != TYPE_CODE_PTR
7715 && TYPE_CODE (type) != TYPE_CODE_REF)
7716 break;
7717 type = TYPE_TARGET_TYPE (type);
7718 }
7719
7720 if (type == NULL
7721 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7722 && TYPE_CODE (type) != TYPE_CODE_UNION))
7723 {
7724 if (noerr)
7725 return NULL;
7726
7727 error (_("Type %s is not a structure or union type"),
7728 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7729 }
7730
7731 type = to_static_fixed_type (type);
7732
7733 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7734 {
7735 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7736 struct type *t;
7737
7738 if (t_field_name == NULL)
7739 continue;
7740
7741 else if (ada_is_parent_field (type, i))
7742 {
7743 /* This is a field pointing us to the parent type of a tagged
7744 type. As hinted in this function's documentation, we give
7745 preference to fields in the current record first, so what
7746 we do here is just record the index of this field before
7747 we skip it. If it turns out we couldn't find our field
7748 in the current record, then we'll get back to it and search
7749 inside it whether the field might exist in the parent. */
7750
7751 parent_offset = i;
7752 continue;
7753 }
7754
7755 else if (field_name_match (t_field_name, name))
7756 return TYPE_FIELD_TYPE (type, i);
7757
7758 else if (ada_is_wrapper_field (type, i))
7759 {
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7761 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
7766 else if (ada_is_variant_part (type, i))
7767 {
7768 int j;
7769 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7770 i));
7771
7772 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7773 {
7774 /* FIXME pnh 2008/01/26: We check for a field that is
7775 NOT wrapped in a struct, since the compiler sometimes
7776 generates these for unchecked variant types. Revisit
7777 if the compiler changes this practice. */
7778 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7779
7780 if (v_field_name != NULL
7781 && field_name_match (v_field_name, name))
7782 t = TYPE_FIELD_TYPE (field_type, j);
7783 else
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7785 j),
7786 name, 0, 1);
7787
7788 if (t != NULL)
7789 return t;
7790 }
7791 }
7792
7793 }
7794
7795 /* Field not found so far. If this is a tagged type which
7796 has a parent, try finding that field in the parent now. */
7797
7798 if (parent_offset != -1)
7799 {
7800 struct type *t;
7801
7802 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7803 name, 0, 1);
7804 if (t != NULL)
7805 return t;
7806 }
7807
7808 BadName:
7809 if (!noerr)
7810 {
7811 const char *name_str = name != NULL ? name : _("<null>");
7812
7813 error (_("Type %s has no component named %s"),
7814 type_as_string (type).c_str (), name_str);
7815 }
7816
7817 return NULL;
7818 }
7819
7820 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7821 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7822 represents an unchecked union (that is, the variant part of a
7823 record that is named in an Unchecked_Union pragma). */
7824
7825 static int
7826 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7827 {
7828 const char *discrim_name = ada_variant_discrim_name (var_type);
7829
7830 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7831 }
7832
7833
7834 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7835 within a value of type OUTER_TYPE that is stored in GDB at
7836 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7837 numbering from 0) is applicable. Returns -1 if none are. */
7838
7839 int
7840 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7841 const gdb_byte *outer_valaddr)
7842 {
7843 int others_clause;
7844 int i;
7845 const char *discrim_name = ada_variant_discrim_name (var_type);
7846 struct value *outer;
7847 struct value *discrim;
7848 LONGEST discrim_val;
7849
7850 /* Using plain value_from_contents_and_address here causes problems
7851 because we will end up trying to resolve a type that is currently
7852 being constructed. */
7853 outer = value_from_contents_and_address_unresolved (outer_type,
7854 outer_valaddr, 0);
7855 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7856 if (discrim == NULL)
7857 return -1;
7858 discrim_val = value_as_long (discrim);
7859
7860 others_clause = -1;
7861 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7862 {
7863 if (ada_is_others_clause (var_type, i))
7864 others_clause = i;
7865 else if (ada_in_variant (discrim_val, var_type, i))
7866 return i;
7867 }
7868
7869 return others_clause;
7870 }
7871 \f
7872
7873
7874 /* Dynamic-Sized Records */
7875
7876 /* Strategy: The type ostensibly attached to a value with dynamic size
7877 (i.e., a size that is not statically recorded in the debugging
7878 data) does not accurately reflect the size or layout of the value.
7879 Our strategy is to convert these values to values with accurate,
7880 conventional types that are constructed on the fly. */
7881
7882 /* There is a subtle and tricky problem here. In general, we cannot
7883 determine the size of dynamic records without its data. However,
7884 the 'struct value' data structure, which GDB uses to represent
7885 quantities in the inferior process (the target), requires the size
7886 of the type at the time of its allocation in order to reserve space
7887 for GDB's internal copy of the data. That's why the
7888 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7889 rather than struct value*s.
7890
7891 However, GDB's internal history variables ($1, $2, etc.) are
7892 struct value*s containing internal copies of the data that are not, in
7893 general, the same as the data at their corresponding addresses in
7894 the target. Fortunately, the types we give to these values are all
7895 conventional, fixed-size types (as per the strategy described
7896 above), so that we don't usually have to perform the
7897 'to_fixed_xxx_type' conversions to look at their values.
7898 Unfortunately, there is one exception: if one of the internal
7899 history variables is an array whose elements are unconstrained
7900 records, then we will need to create distinct fixed types for each
7901 element selected. */
7902
7903 /* The upshot of all of this is that many routines take a (type, host
7904 address, target address) triple as arguments to represent a value.
7905 The host address, if non-null, is supposed to contain an internal
7906 copy of the relevant data; otherwise, the program is to consult the
7907 target at the target address. */
7908
7909 /* Assuming that VAL0 represents a pointer value, the result of
7910 dereferencing it. Differs from value_ind in its treatment of
7911 dynamic-sized types. */
7912
7913 struct value *
7914 ada_value_ind (struct value *val0)
7915 {
7916 struct value *val = value_ind (val0);
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
7921 return ada_to_fixed_value (val);
7922 }
7923
7924 /* The value resulting from dereferencing any "reference to"
7925 qualifiers on VAL0. */
7926
7927 static struct value *
7928 ada_coerce_ref (struct value *val0)
7929 {
7930 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7931 {
7932 struct value *val = val0;
7933
7934 val = coerce_ref (val);
7935
7936 if (ada_is_tagged_type (value_type (val), 0))
7937 val = ada_tag_value_at_base_address (val);
7938
7939 return ada_to_fixed_value (val);
7940 }
7941 else
7942 return val0;
7943 }
7944
7945 /* Return OFF rounded upward if necessary to a multiple of
7946 ALIGNMENT (a power of 2). */
7947
7948 static unsigned int
7949 align_value (unsigned int off, unsigned int alignment)
7950 {
7951 return (off + alignment - 1) & ~(alignment - 1);
7952 }
7953
7954 /* Return the bit alignment required for field #F of template type TYPE. */
7955
7956 static unsigned int
7957 field_alignment (struct type *type, int f)
7958 {
7959 const char *name = TYPE_FIELD_NAME (type, f);
7960 int len;
7961 int align_offset;
7962
7963 /* The field name should never be null, unless the debugging information
7964 is somehow malformed. In this case, we assume the field does not
7965 require any alignment. */
7966 if (name == NULL)
7967 return 1;
7968
7969 len = strlen (name);
7970
7971 if (!isdigit (name[len - 1]))
7972 return 1;
7973
7974 if (isdigit (name[len - 2]))
7975 align_offset = len - 2;
7976 else
7977 align_offset = len - 1;
7978
7979 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7980 return TARGET_CHAR_BIT;
7981
7982 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7983 }
7984
7985 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7986
7987 static struct symbol *
7988 ada_find_any_type_symbol (const char *name)
7989 {
7990 struct symbol *sym;
7991
7992 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7993 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7994 return sym;
7995
7996 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7997 return sym;
7998 }
7999
8000 /* Find a type named NAME. Ignores ambiguity. This routine will look
8001 solely for types defined by debug info, it will not search the GDB
8002 primitive types. */
8003
8004 static struct type *
8005 ada_find_any_type (const char *name)
8006 {
8007 struct symbol *sym = ada_find_any_type_symbol (name);
8008
8009 if (sym != NULL)
8010 return SYMBOL_TYPE (sym);
8011
8012 return NULL;
8013 }
8014
8015 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8016 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8017 symbol, in which case it is returned. Otherwise, this looks for
8018 symbols whose name is that of NAME_SYM suffixed with "___XR".
8019 Return symbol if found, and NULL otherwise. */
8020
8021 struct symbol *
8022 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8023 {
8024 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8025 struct symbol *sym;
8026
8027 if (strstr (name, "___XR") != NULL)
8028 return name_sym;
8029
8030 sym = find_old_style_renaming_symbol (name, block);
8031
8032 if (sym != NULL)
8033 return sym;
8034
8035 /* Not right yet. FIXME pnh 7/20/2007. */
8036 sym = ada_find_any_type_symbol (name);
8037 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8038 return sym;
8039 else
8040 return NULL;
8041 }
8042
8043 static struct symbol *
8044 find_old_style_renaming_symbol (const char *name, const struct block *block)
8045 {
8046 const struct symbol *function_sym = block_linkage_function (block);
8047 char *rename;
8048
8049 if (function_sym != NULL)
8050 {
8051 /* If the symbol is defined inside a function, NAME is not fully
8052 qualified. This means we need to prepend the function name
8053 as well as adding the ``___XR'' suffix to build the name of
8054 the associated renaming symbol. */
8055 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8056 /* Function names sometimes contain suffixes used
8057 for instance to qualify nested subprograms. When building
8058 the XR type name, we need to make sure that this suffix is
8059 not included. So do not include any suffix in the function
8060 name length below. */
8061 int function_name_len = ada_name_prefix_len (function_name);
8062 const int rename_len = function_name_len + 2 /* "__" */
8063 + strlen (name) + 6 /* "___XR\0" */ ;
8064
8065 /* Strip the suffix if necessary. */
8066 ada_remove_trailing_digits (function_name, &function_name_len);
8067 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8068 ada_remove_Xbn_suffix (function_name, &function_name_len);
8069
8070 /* Library-level functions are a special case, as GNAT adds
8071 a ``_ada_'' prefix to the function name to avoid namespace
8072 pollution. However, the renaming symbols themselves do not
8073 have this prefix, so we need to skip this prefix if present. */
8074 if (function_name_len > 5 /* "_ada_" */
8075 && strstr (function_name, "_ada_") == function_name)
8076 {
8077 function_name += 5;
8078 function_name_len -= 5;
8079 }
8080
8081 rename = (char *) alloca (rename_len * sizeof (char));
8082 strncpy (rename, function_name, function_name_len);
8083 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8084 "__%s___XR", name);
8085 }
8086 else
8087 {
8088 const int rename_len = strlen (name) + 6;
8089
8090 rename = (char *) alloca (rename_len * sizeof (char));
8091 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8092 }
8093
8094 return ada_find_any_type_symbol (rename);
8095 }
8096
8097 /* Because of GNAT encoding conventions, several GDB symbols may match a
8098 given type name. If the type denoted by TYPE0 is to be preferred to
8099 that of TYPE1 for purposes of type printing, return non-zero;
8100 otherwise return 0. */
8101
8102 int
8103 ada_prefer_type (struct type *type0, struct type *type1)
8104 {
8105 if (type1 == NULL)
8106 return 1;
8107 else if (type0 == NULL)
8108 return 0;
8109 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8110 return 1;
8111 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8112 return 0;
8113 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8114 return 1;
8115 else if (ada_is_constrained_packed_array_type (type0))
8116 return 1;
8117 else if (ada_is_array_descriptor_type (type0)
8118 && !ada_is_array_descriptor_type (type1))
8119 return 1;
8120 else
8121 {
8122 const char *type0_name = type_name_no_tag (type0);
8123 const char *type1_name = type_name_no_tag (type1);
8124
8125 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8126 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8127 return 1;
8128 }
8129 return 0;
8130 }
8131
8132 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8133 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8134
8135 const char *
8136 ada_type_name (struct type *type)
8137 {
8138 if (type == NULL)
8139 return NULL;
8140 else if (TYPE_NAME (type) != NULL)
8141 return TYPE_NAME (type);
8142 else
8143 return TYPE_TAG_NAME (type);
8144 }
8145
8146 /* Search the list of "descriptive" types associated to TYPE for a type
8147 whose name is NAME. */
8148
8149 static struct type *
8150 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8151 {
8152 struct type *result, *tmp;
8153
8154 if (ada_ignore_descriptive_types_p)
8155 return NULL;
8156
8157 /* If there no descriptive-type info, then there is no parallel type
8158 to be found. */
8159 if (!HAVE_GNAT_AUX_INFO (type))
8160 return NULL;
8161
8162 result = TYPE_DESCRIPTIVE_TYPE (type);
8163 while (result != NULL)
8164 {
8165 const char *result_name = ada_type_name (result);
8166
8167 if (result_name == NULL)
8168 {
8169 warning (_("unexpected null name on descriptive type"));
8170 return NULL;
8171 }
8172
8173 /* If the names match, stop. */
8174 if (strcmp (result_name, name) == 0)
8175 break;
8176
8177 /* Otherwise, look at the next item on the list, if any. */
8178 if (HAVE_GNAT_AUX_INFO (result))
8179 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 tmp = NULL;
8182
8183 /* If not found either, try after having resolved the typedef. */
8184 if (tmp != NULL)
8185 result = tmp;
8186 else
8187 {
8188 result = check_typedef (result);
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 result = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 result = NULL;
8193 }
8194 }
8195
8196 /* If we didn't find a match, see whether this is a packed array. With
8197 older compilers, the descriptive type information is either absent or
8198 irrelevant when it comes to packed arrays so the above lookup fails.
8199 Fall back to using a parallel lookup by name in this case. */
8200 if (result == NULL && ada_is_constrained_packed_array_type (type))
8201 return ada_find_any_type (name);
8202
8203 return result;
8204 }
8205
8206 /* Find a parallel type to TYPE with the specified NAME, using the
8207 descriptive type taken from the debugging information, if available,
8208 and otherwise using the (slower) name-based method. */
8209
8210 static struct type *
8211 ada_find_parallel_type_with_name (struct type *type, const char *name)
8212 {
8213 struct type *result = NULL;
8214
8215 if (HAVE_GNAT_AUX_INFO (type))
8216 result = find_parallel_type_by_descriptive_type (type, name);
8217 else
8218 result = ada_find_any_type (name);
8219
8220 return result;
8221 }
8222
8223 /* Same as above, but specify the name of the parallel type by appending
8224 SUFFIX to the name of TYPE. */
8225
8226 struct type *
8227 ada_find_parallel_type (struct type *type, const char *suffix)
8228 {
8229 char *name;
8230 const char *type_name = ada_type_name (type);
8231 int len;
8232
8233 if (type_name == NULL)
8234 return NULL;
8235
8236 len = strlen (type_name);
8237
8238 name = (char *) alloca (len + strlen (suffix) + 1);
8239
8240 strcpy (name, type_name);
8241 strcpy (name + len, suffix);
8242
8243 return ada_find_parallel_type_with_name (type, name);
8244 }
8245
8246 /* If TYPE is a variable-size record type, return the corresponding template
8247 type describing its fields. Otherwise, return NULL. */
8248
8249 static struct type *
8250 dynamic_template_type (struct type *type)
8251 {
8252 type = ada_check_typedef (type);
8253
8254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8255 || ada_type_name (type) == NULL)
8256 return NULL;
8257 else
8258 {
8259 int len = strlen (ada_type_name (type));
8260
8261 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8262 return type;
8263 else
8264 return ada_find_parallel_type (type, "___XVE");
8265 }
8266 }
8267
8268 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8269 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8270
8271 static int
8272 is_dynamic_field (struct type *templ_type, int field_num)
8273 {
8274 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8275
8276 return name != NULL
8277 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8278 && strstr (name, "___XVL") != NULL;
8279 }
8280
8281 /* The index of the variant field of TYPE, or -1 if TYPE does not
8282 represent a variant record type. */
8283
8284 static int
8285 variant_field_index (struct type *type)
8286 {
8287 int f;
8288
8289 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8290 return -1;
8291
8292 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8293 {
8294 if (ada_is_variant_part (type, f))
8295 return f;
8296 }
8297 return -1;
8298 }
8299
8300 /* A record type with no fields. */
8301
8302 static struct type *
8303 empty_record (struct type *templ)
8304 {
8305 struct type *type = alloc_type_copy (templ);
8306
8307 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8308 TYPE_NFIELDS (type) = 0;
8309 TYPE_FIELDS (type) = NULL;
8310 INIT_CPLUS_SPECIFIC (type);
8311 TYPE_NAME (type) = "<empty>";
8312 TYPE_TAG_NAME (type) = NULL;
8313 TYPE_LENGTH (type) = 0;
8314 return type;
8315 }
8316
8317 /* An ordinary record type (with fixed-length fields) that describes
8318 the value of type TYPE at VALADDR or ADDRESS (see comments at
8319 the beginning of this section) VAL according to GNAT conventions.
8320 DVAL0 should describe the (portion of a) record that contains any
8321 necessary discriminants. It should be NULL if value_type (VAL) is
8322 an outer-level type (i.e., as opposed to a branch of a variant.) A
8323 variant field (unless unchecked) is replaced by a particular branch
8324 of the variant.
8325
8326 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8327 length are not statically known are discarded. As a consequence,
8328 VALADDR, ADDRESS and DVAL0 are ignored.
8329
8330 NOTE: Limitations: For now, we assume that dynamic fields and
8331 variants occupy whole numbers of bytes. However, they need not be
8332 byte-aligned. */
8333
8334 struct type *
8335 ada_template_to_fixed_record_type_1 (struct type *type,
8336 const gdb_byte *valaddr,
8337 CORE_ADDR address, struct value *dval0,
8338 int keep_dynamic_fields)
8339 {
8340 struct value *mark = value_mark ();
8341 struct value *dval;
8342 struct type *rtype;
8343 int nfields, bit_len;
8344 int variant_field;
8345 long off;
8346 int fld_bit_len;
8347 int f;
8348
8349 /* Compute the number of fields in this record type that are going
8350 to be processed: unless keep_dynamic_fields, this includes only
8351 fields whose position and length are static will be processed. */
8352 if (keep_dynamic_fields)
8353 nfields = TYPE_NFIELDS (type);
8354 else
8355 {
8356 nfields = 0;
8357 while (nfields < TYPE_NFIELDS (type)
8358 && !ada_is_variant_part (type, nfields)
8359 && !is_dynamic_field (type, nfields))
8360 nfields++;
8361 }
8362
8363 rtype = alloc_type_copy (type);
8364 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8365 INIT_CPLUS_SPECIFIC (rtype);
8366 TYPE_NFIELDS (rtype) = nfields;
8367 TYPE_FIELDS (rtype) = (struct field *)
8368 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8369 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8370 TYPE_NAME (rtype) = ada_type_name (type);
8371 TYPE_TAG_NAME (rtype) = NULL;
8372 TYPE_FIXED_INSTANCE (rtype) = 1;
8373
8374 off = 0;
8375 bit_len = 0;
8376 variant_field = -1;
8377
8378 for (f = 0; f < nfields; f += 1)
8379 {
8380 off = align_value (off, field_alignment (type, f))
8381 + TYPE_FIELD_BITPOS (type, f);
8382 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8383 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8384
8385 if (ada_is_variant_part (type, f))
8386 {
8387 variant_field = f;
8388 fld_bit_len = 0;
8389 }
8390 else if (is_dynamic_field (type, f))
8391 {
8392 const gdb_byte *field_valaddr = valaddr;
8393 CORE_ADDR field_address = address;
8394 struct type *field_type =
8395 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8396
8397 if (dval0 == NULL)
8398 {
8399 /* rtype's length is computed based on the run-time
8400 value of discriminants. If the discriminants are not
8401 initialized, the type size may be completely bogus and
8402 GDB may fail to allocate a value for it. So check the
8403 size first before creating the value. */
8404 ada_ensure_varsize_limit (rtype);
8405 /* Using plain value_from_contents_and_address here
8406 causes problems because we will end up trying to
8407 resolve a type that is currently being
8408 constructed. */
8409 dval = value_from_contents_and_address_unresolved (rtype,
8410 valaddr,
8411 address);
8412 rtype = value_type (dval);
8413 }
8414 else
8415 dval = dval0;
8416
8417 /* If the type referenced by this field is an aligner type, we need
8418 to unwrap that aligner type, because its size might not be set.
8419 Keeping the aligner type would cause us to compute the wrong
8420 size for this field, impacting the offset of the all the fields
8421 that follow this one. */
8422 if (ada_is_aligner_type (field_type))
8423 {
8424 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8425
8426 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8427 field_address = cond_offset_target (field_address, field_offset);
8428 field_type = ada_aligned_type (field_type);
8429 }
8430
8431 field_valaddr = cond_offset_host (field_valaddr,
8432 off / TARGET_CHAR_BIT);
8433 field_address = cond_offset_target (field_address,
8434 off / TARGET_CHAR_BIT);
8435
8436 /* Get the fixed type of the field. Note that, in this case,
8437 we do not want to get the real type out of the tag: if
8438 the current field is the parent part of a tagged record,
8439 we will get the tag of the object. Clearly wrong: the real
8440 type of the parent is not the real type of the child. We
8441 would end up in an infinite loop. */
8442 field_type = ada_get_base_type (field_type);
8443 field_type = ada_to_fixed_type (field_type, field_valaddr,
8444 field_address, dval, 0);
8445 /* If the field size is already larger than the maximum
8446 object size, then the record itself will necessarily
8447 be larger than the maximum object size. We need to make
8448 this check now, because the size might be so ridiculously
8449 large (due to an uninitialized variable in the inferior)
8450 that it would cause an overflow when adding it to the
8451 record size. */
8452 ada_ensure_varsize_limit (field_type);
8453
8454 TYPE_FIELD_TYPE (rtype, f) = field_type;
8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8456 /* The multiplication can potentially overflow. But because
8457 the field length has been size-checked just above, and
8458 assuming that the maximum size is a reasonable value,
8459 an overflow should not happen in practice. So rather than
8460 adding overflow recovery code to this already complex code,
8461 we just assume that it's not going to happen. */
8462 fld_bit_len =
8463 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8464 }
8465 else
8466 {
8467 /* Note: If this field's type is a typedef, it is important
8468 to preserve the typedef layer.
8469
8470 Otherwise, we might be transforming a typedef to a fat
8471 pointer (encoding a pointer to an unconstrained array),
8472 into a basic fat pointer (encoding an unconstrained
8473 array). As both types are implemented using the same
8474 structure, the typedef is the only clue which allows us
8475 to distinguish between the two options. Stripping it
8476 would prevent us from printing this field appropriately. */
8477 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8478 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8479 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8480 fld_bit_len =
8481 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8482 else
8483 {
8484 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8485
8486 /* We need to be careful of typedefs when computing
8487 the length of our field. If this is a typedef,
8488 get the length of the target type, not the length
8489 of the typedef. */
8490 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8491 field_type = ada_typedef_target_type (field_type);
8492
8493 fld_bit_len =
8494 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8495 }
8496 }
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 off += fld_bit_len;
8500 TYPE_LENGTH (rtype) =
8501 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8502 }
8503
8504 /* We handle the variant part, if any, at the end because of certain
8505 odd cases in which it is re-ordered so as NOT to be the last field of
8506 the record. This can happen in the presence of representation
8507 clauses. */
8508 if (variant_field >= 0)
8509 {
8510 struct type *branch_type;
8511
8512 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8513
8514 if (dval0 == NULL)
8515 {
8516 /* Using plain value_from_contents_and_address here causes
8517 problems because we will end up trying to resolve a type
8518 that is currently being constructed. */
8519 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8520 address);
8521 rtype = value_type (dval);
8522 }
8523 else
8524 dval = dval0;
8525
8526 branch_type =
8527 to_fixed_variant_branch_type
8528 (TYPE_FIELD_TYPE (type, variant_field),
8529 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8530 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8531 if (branch_type == NULL)
8532 {
8533 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8534 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8535 TYPE_NFIELDS (rtype) -= 1;
8536 }
8537 else
8538 {
8539 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8540 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8541 fld_bit_len =
8542 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8543 TARGET_CHAR_BIT;
8544 if (off + fld_bit_len > bit_len)
8545 bit_len = off + fld_bit_len;
8546 TYPE_LENGTH (rtype) =
8547 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8548 }
8549 }
8550
8551 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8552 should contain the alignment of that record, which should be a strictly
8553 positive value. If null or negative, then something is wrong, most
8554 probably in the debug info. In that case, we don't round up the size
8555 of the resulting type. If this record is not part of another structure,
8556 the current RTYPE length might be good enough for our purposes. */
8557 if (TYPE_LENGTH (type) <= 0)
8558 {
8559 if (TYPE_NAME (rtype))
8560 warning (_("Invalid type size for `%s' detected: %d."),
8561 TYPE_NAME (rtype), TYPE_LENGTH (type));
8562 else
8563 warning (_("Invalid type size for <unnamed> detected: %d."),
8564 TYPE_LENGTH (type));
8565 }
8566 else
8567 {
8568 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8569 TYPE_LENGTH (type));
8570 }
8571
8572 value_free_to_mark (mark);
8573 if (TYPE_LENGTH (rtype) > varsize_limit)
8574 error (_("record type with dynamic size is larger than varsize-limit"));
8575 return rtype;
8576 }
8577
8578 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8579 of 1. */
8580
8581 static struct type *
8582 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval0)
8584 {
8585 return ada_template_to_fixed_record_type_1 (type, valaddr,
8586 address, dval0, 1);
8587 }
8588
8589 /* An ordinary record type in which ___XVL-convention fields and
8590 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8591 static approximations, containing all possible fields. Uses
8592 no runtime values. Useless for use in values, but that's OK,
8593 since the results are used only for type determinations. Works on both
8594 structs and unions. Representation note: to save space, we memorize
8595 the result of this function in the TYPE_TARGET_TYPE of the
8596 template type. */
8597
8598 static struct type *
8599 template_to_static_fixed_type (struct type *type0)
8600 {
8601 struct type *type;
8602 int nfields;
8603 int f;
8604
8605 /* No need no do anything if the input type is already fixed. */
8606 if (TYPE_FIXED_INSTANCE (type0))
8607 return type0;
8608
8609 /* Likewise if we already have computed the static approximation. */
8610 if (TYPE_TARGET_TYPE (type0) != NULL)
8611 return TYPE_TARGET_TYPE (type0);
8612
8613 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8614 type = type0;
8615 nfields = TYPE_NFIELDS (type0);
8616
8617 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8618 recompute all over next time. */
8619 TYPE_TARGET_TYPE (type0) = type;
8620
8621 for (f = 0; f < nfields; f += 1)
8622 {
8623 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8624 struct type *new_type;
8625
8626 if (is_dynamic_field (type0, f))
8627 {
8628 field_type = ada_check_typedef (field_type);
8629 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8630 }
8631 else
8632 new_type = static_unwrap_type (field_type);
8633
8634 if (new_type != field_type)
8635 {
8636 /* Clone TYPE0 only the first time we get a new field type. */
8637 if (type == type0)
8638 {
8639 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8640 TYPE_CODE (type) = TYPE_CODE (type0);
8641 INIT_CPLUS_SPECIFIC (type);
8642 TYPE_NFIELDS (type) = nfields;
8643 TYPE_FIELDS (type) = (struct field *)
8644 TYPE_ALLOC (type, nfields * sizeof (struct field));
8645 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8646 sizeof (struct field) * nfields);
8647 TYPE_NAME (type) = ada_type_name (type0);
8648 TYPE_TAG_NAME (type) = NULL;
8649 TYPE_FIXED_INSTANCE (type) = 1;
8650 TYPE_LENGTH (type) = 0;
8651 }
8652 TYPE_FIELD_TYPE (type, f) = new_type;
8653 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8654 }
8655 }
8656
8657 return type;
8658 }
8659
8660 /* Given an object of type TYPE whose contents are at VALADDR and
8661 whose address in memory is ADDRESS, returns a revision of TYPE,
8662 which should be a non-dynamic-sized record, in which the variant
8663 part, if any, is replaced with the appropriate branch. Looks
8664 for discriminant values in DVAL0, which can be NULL if the record
8665 contains the necessary discriminant values. */
8666
8667 static struct type *
8668 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8669 CORE_ADDR address, struct value *dval0)
8670 {
8671 struct value *mark = value_mark ();
8672 struct value *dval;
8673 struct type *rtype;
8674 struct type *branch_type;
8675 int nfields = TYPE_NFIELDS (type);
8676 int variant_field = variant_field_index (type);
8677
8678 if (variant_field == -1)
8679 return type;
8680
8681 if (dval0 == NULL)
8682 {
8683 dval = value_from_contents_and_address (type, valaddr, address);
8684 type = value_type (dval);
8685 }
8686 else
8687 dval = dval0;
8688
8689 rtype = alloc_type_copy (type);
8690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8691 INIT_CPLUS_SPECIFIC (rtype);
8692 TYPE_NFIELDS (rtype) = nfields;
8693 TYPE_FIELDS (rtype) =
8694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8696 sizeof (struct field) * nfields);
8697 TYPE_NAME (rtype) = ada_type_name (type);
8698 TYPE_TAG_NAME (rtype) = NULL;
8699 TYPE_FIXED_INSTANCE (rtype) = 1;
8700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8701
8702 branch_type = to_fixed_variant_branch_type
8703 (TYPE_FIELD_TYPE (type, variant_field),
8704 cond_offset_host (valaddr,
8705 TYPE_FIELD_BITPOS (type, variant_field)
8706 / TARGET_CHAR_BIT),
8707 cond_offset_target (address,
8708 TYPE_FIELD_BITPOS (type, variant_field)
8709 / TARGET_CHAR_BIT), dval);
8710 if (branch_type == NULL)
8711 {
8712 int f;
8713
8714 for (f = variant_field + 1; f < nfields; f += 1)
8715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8716 TYPE_NFIELDS (rtype) -= 1;
8717 }
8718 else
8719 {
8720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8724 }
8725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8726
8727 value_free_to_mark (mark);
8728 return rtype;
8729 }
8730
8731 /* An ordinary record type (with fixed-length fields) that describes
8732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8733 beginning of this section]. Any necessary discriminants' values
8734 should be in DVAL, a record value; it may be NULL if the object
8735 at ADDR itself contains any necessary discriminant values.
8736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8737 values from the record are needed. Except in the case that DVAL,
8738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8739 unchecked) is replaced by a particular branch of the variant.
8740
8741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8742 is questionable and may be removed. It can arise during the
8743 processing of an unconstrained-array-of-record type where all the
8744 variant branches have exactly the same size. This is because in
8745 such cases, the compiler does not bother to use the XVS convention
8746 when encoding the record. I am currently dubious of this
8747 shortcut and suspect the compiler should be altered. FIXME. */
8748
8749 static struct type *
8750 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8751 CORE_ADDR address, struct value *dval)
8752 {
8753 struct type *templ_type;
8754
8755 if (TYPE_FIXED_INSTANCE (type0))
8756 return type0;
8757
8758 templ_type = dynamic_template_type (type0);
8759
8760 if (templ_type != NULL)
8761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8762 else if (variant_field_index (type0) >= 0)
8763 {
8764 if (dval == NULL && valaddr == NULL && address == 0)
8765 return type0;
8766 return to_record_with_fixed_variant_part (type0, valaddr, address,
8767 dval);
8768 }
8769 else
8770 {
8771 TYPE_FIXED_INSTANCE (type0) = 1;
8772 return type0;
8773 }
8774
8775 }
8776
8777 /* An ordinary record type (with fixed-length fields) that describes
8778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8779 union type. Any necessary discriminants' values should be in DVAL,
8780 a record value. That is, this routine selects the appropriate
8781 branch of the union at ADDR according to the discriminant value
8782 indicated in the union's type name. Returns VAR_TYPE0 itself if
8783 it represents a variant subject to a pragma Unchecked_Union. */
8784
8785 static struct type *
8786 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8787 CORE_ADDR address, struct value *dval)
8788 {
8789 int which;
8790 struct type *templ_type;
8791 struct type *var_type;
8792
8793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8794 var_type = TYPE_TARGET_TYPE (var_type0);
8795 else
8796 var_type = var_type0;
8797
8798 templ_type = ada_find_parallel_type (var_type, "___XVU");
8799
8800 if (templ_type != NULL)
8801 var_type = templ_type;
8802
8803 if (is_unchecked_variant (var_type, value_type (dval)))
8804 return var_type0;
8805 which =
8806 ada_which_variant_applies (var_type,
8807 value_type (dval), value_contents (dval));
8808
8809 if (which < 0)
8810 return empty_record (var_type);
8811 else if (is_dynamic_field (var_type, which))
8812 return to_fixed_record_type
8813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8814 valaddr, address, dval);
8815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8816 return
8817 to_fixed_record_type
8818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8819 else
8820 return TYPE_FIELD_TYPE (var_type, which);
8821 }
8822
8823 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8824 ENCODING_TYPE, a type following the GNAT conventions for discrete
8825 type encodings, only carries redundant information. */
8826
8827 static int
8828 ada_is_redundant_range_encoding (struct type *range_type,
8829 struct type *encoding_type)
8830 {
8831 const char *bounds_str;
8832 int n;
8833 LONGEST lo, hi;
8834
8835 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8836
8837 if (TYPE_CODE (get_base_type (range_type))
8838 != TYPE_CODE (get_base_type (encoding_type)))
8839 {
8840 /* The compiler probably used a simple base type to describe
8841 the range type instead of the range's actual base type,
8842 expecting us to get the real base type from the encoding
8843 anyway. In this situation, the encoding cannot be ignored
8844 as redundant. */
8845 return 0;
8846 }
8847
8848 if (is_dynamic_type (range_type))
8849 return 0;
8850
8851 if (TYPE_NAME (encoding_type) == NULL)
8852 return 0;
8853
8854 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8855 if (bounds_str == NULL)
8856 return 0;
8857
8858 n = 8; /* Skip "___XDLU_". */
8859 if (!ada_scan_number (bounds_str, n, &lo, &n))
8860 return 0;
8861 if (TYPE_LOW_BOUND (range_type) != lo)
8862 return 0;
8863
8864 n += 2; /* Skip the "__" separator between the two bounds. */
8865 if (!ada_scan_number (bounds_str, n, &hi, &n))
8866 return 0;
8867 if (TYPE_HIGH_BOUND (range_type) != hi)
8868 return 0;
8869
8870 return 1;
8871 }
8872
8873 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8874 a type following the GNAT encoding for describing array type
8875 indices, only carries redundant information. */
8876
8877 static int
8878 ada_is_redundant_index_type_desc (struct type *array_type,
8879 struct type *desc_type)
8880 {
8881 struct type *this_layer = check_typedef (array_type);
8882 int i;
8883
8884 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8885 {
8886 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8887 TYPE_FIELD_TYPE (desc_type, i)))
8888 return 0;
8889 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8890 }
8891
8892 return 1;
8893 }
8894
8895 /* Assuming that TYPE0 is an array type describing the type of a value
8896 at ADDR, and that DVAL describes a record containing any
8897 discriminants used in TYPE0, returns a type for the value that
8898 contains no dynamic components (that is, no components whose sizes
8899 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8900 true, gives an error message if the resulting type's size is over
8901 varsize_limit. */
8902
8903 static struct type *
8904 to_fixed_array_type (struct type *type0, struct value *dval,
8905 int ignore_too_big)
8906 {
8907 struct type *index_type_desc;
8908 struct type *result;
8909 int constrained_packed_array_p;
8910 static const char *xa_suffix = "___XA";
8911
8912 type0 = ada_check_typedef (type0);
8913 if (TYPE_FIXED_INSTANCE (type0))
8914 return type0;
8915
8916 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8917 if (constrained_packed_array_p)
8918 type0 = decode_constrained_packed_array_type (type0);
8919
8920 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8921
8922 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8923 encoding suffixed with 'P' may still be generated. If so,
8924 it should be used to find the XA type. */
8925
8926 if (index_type_desc == NULL)
8927 {
8928 const char *type_name = ada_type_name (type0);
8929
8930 if (type_name != NULL)
8931 {
8932 const int len = strlen (type_name);
8933 char *name = (char *) alloca (len + strlen (xa_suffix));
8934
8935 if (type_name[len - 1] == 'P')
8936 {
8937 strcpy (name, type_name);
8938 strcpy (name + len - 1, xa_suffix);
8939 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8940 }
8941 }
8942 }
8943
8944 ada_fixup_array_indexes_type (index_type_desc);
8945 if (index_type_desc != NULL
8946 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8947 {
8948 /* Ignore this ___XA parallel type, as it does not bring any
8949 useful information. This allows us to avoid creating fixed
8950 versions of the array's index types, which would be identical
8951 to the original ones. This, in turn, can also help avoid
8952 the creation of fixed versions of the array itself. */
8953 index_type_desc = NULL;
8954 }
8955
8956 if (index_type_desc == NULL)
8957 {
8958 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8959
8960 /* NOTE: elt_type---the fixed version of elt_type0---should never
8961 depend on the contents of the array in properly constructed
8962 debugging data. */
8963 /* Create a fixed version of the array element type.
8964 We're not providing the address of an element here,
8965 and thus the actual object value cannot be inspected to do
8966 the conversion. This should not be a problem, since arrays of
8967 unconstrained objects are not allowed. In particular, all
8968 the elements of an array of a tagged type should all be of
8969 the same type specified in the debugging info. No need to
8970 consult the object tag. */
8971 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8972
8973 /* Make sure we always create a new array type when dealing with
8974 packed array types, since we're going to fix-up the array
8975 type length and element bitsize a little further down. */
8976 if (elt_type0 == elt_type && !constrained_packed_array_p)
8977 result = type0;
8978 else
8979 result = create_array_type (alloc_type_copy (type0),
8980 elt_type, TYPE_INDEX_TYPE (type0));
8981 }
8982 else
8983 {
8984 int i;
8985 struct type *elt_type0;
8986
8987 elt_type0 = type0;
8988 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8989 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8990
8991 /* NOTE: result---the fixed version of elt_type0---should never
8992 depend on the contents of the array in properly constructed
8993 debugging data. */
8994 /* Create a fixed version of the array element type.
8995 We're not providing the address of an element here,
8996 and thus the actual object value cannot be inspected to do
8997 the conversion. This should not be a problem, since arrays of
8998 unconstrained objects are not allowed. In particular, all
8999 the elements of an array of a tagged type should all be of
9000 the same type specified in the debugging info. No need to
9001 consult the object tag. */
9002 result =
9003 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9004
9005 elt_type0 = type0;
9006 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9007 {
9008 struct type *range_type =
9009 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9010
9011 result = create_array_type (alloc_type_copy (elt_type0),
9012 result, range_type);
9013 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9014 }
9015 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9016 error (_("array type with dynamic size is larger than varsize-limit"));
9017 }
9018
9019 /* We want to preserve the type name. This can be useful when
9020 trying to get the type name of a value that has already been
9021 printed (for instance, if the user did "print VAR; whatis $". */
9022 TYPE_NAME (result) = TYPE_NAME (type0);
9023
9024 if (constrained_packed_array_p)
9025 {
9026 /* So far, the resulting type has been created as if the original
9027 type was a regular (non-packed) array type. As a result, the
9028 bitsize of the array elements needs to be set again, and the array
9029 length needs to be recomputed based on that bitsize. */
9030 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9031 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9032
9033 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9034 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9035 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9036 TYPE_LENGTH (result)++;
9037 }
9038
9039 TYPE_FIXED_INSTANCE (result) = 1;
9040 return result;
9041 }
9042
9043
9044 /* A standard type (containing no dynamically sized components)
9045 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9046 DVAL describes a record containing any discriminants used in TYPE0,
9047 and may be NULL if there are none, or if the object of type TYPE at
9048 ADDRESS or in VALADDR contains these discriminants.
9049
9050 If CHECK_TAG is not null, in the case of tagged types, this function
9051 attempts to locate the object's tag and use it to compute the actual
9052 type. However, when ADDRESS is null, we cannot use it to determine the
9053 location of the tag, and therefore compute the tagged type's actual type.
9054 So we return the tagged type without consulting the tag. */
9055
9056 static struct type *
9057 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9058 CORE_ADDR address, struct value *dval, int check_tag)
9059 {
9060 type = ada_check_typedef (type);
9061 switch (TYPE_CODE (type))
9062 {
9063 default:
9064 return type;
9065 case TYPE_CODE_STRUCT:
9066 {
9067 struct type *static_type = to_static_fixed_type (type);
9068 struct type *fixed_record_type =
9069 to_fixed_record_type (type, valaddr, address, NULL);
9070
9071 /* If STATIC_TYPE is a tagged type and we know the object's address,
9072 then we can determine its tag, and compute the object's actual
9073 type from there. Note that we have to use the fixed record
9074 type (the parent part of the record may have dynamic fields
9075 and the way the location of _tag is expressed may depend on
9076 them). */
9077
9078 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9079 {
9080 struct value *tag =
9081 value_tag_from_contents_and_address
9082 (fixed_record_type,
9083 valaddr,
9084 address);
9085 struct type *real_type = type_from_tag (tag);
9086 struct value *obj =
9087 value_from_contents_and_address (fixed_record_type,
9088 valaddr,
9089 address);
9090 fixed_record_type = value_type (obj);
9091 if (real_type != NULL)
9092 return to_fixed_record_type
9093 (real_type, NULL,
9094 value_address (ada_tag_value_at_base_address (obj)), NULL);
9095 }
9096
9097 /* Check to see if there is a parallel ___XVZ variable.
9098 If there is, then it provides the actual size of our type. */
9099 else if (ada_type_name (fixed_record_type) != NULL)
9100 {
9101 const char *name = ada_type_name (fixed_record_type);
9102 char *xvz_name
9103 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9104 LONGEST size;
9105
9106 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9107 if (get_int_var_value (xvz_name, size)
9108 && TYPE_LENGTH (fixed_record_type) != size)
9109 {
9110 fixed_record_type = copy_type (fixed_record_type);
9111 TYPE_LENGTH (fixed_record_type) = size;
9112
9113 /* The FIXED_RECORD_TYPE may have be a stub. We have
9114 observed this when the debugging info is STABS, and
9115 apparently it is something that is hard to fix.
9116
9117 In practice, we don't need the actual type definition
9118 at all, because the presence of the XVZ variable allows us
9119 to assume that there must be a XVS type as well, which we
9120 should be able to use later, when we need the actual type
9121 definition.
9122
9123 In the meantime, pretend that the "fixed" type we are
9124 returning is NOT a stub, because this can cause trouble
9125 when using this type to create new types targeting it.
9126 Indeed, the associated creation routines often check
9127 whether the target type is a stub and will try to replace
9128 it, thus using a type with the wrong size. This, in turn,
9129 might cause the new type to have the wrong size too.
9130 Consider the case of an array, for instance, where the size
9131 of the array is computed from the number of elements in
9132 our array multiplied by the size of its element. */
9133 TYPE_STUB (fixed_record_type) = 0;
9134 }
9135 }
9136 return fixed_record_type;
9137 }
9138 case TYPE_CODE_ARRAY:
9139 return to_fixed_array_type (type, dval, 1);
9140 case TYPE_CODE_UNION:
9141 if (dval == NULL)
9142 return type;
9143 else
9144 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9145 }
9146 }
9147
9148 /* The same as ada_to_fixed_type_1, except that it preserves the type
9149 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9150
9151 The typedef layer needs be preserved in order to differentiate between
9152 arrays and array pointers when both types are implemented using the same
9153 fat pointer. In the array pointer case, the pointer is encoded as
9154 a typedef of the pointer type. For instance, considering:
9155
9156 type String_Access is access String;
9157 S1 : String_Access := null;
9158
9159 To the debugger, S1 is defined as a typedef of type String. But
9160 to the user, it is a pointer. So if the user tries to print S1,
9161 we should not dereference the array, but print the array address
9162 instead.
9163
9164 If we didn't preserve the typedef layer, we would lose the fact that
9165 the type is to be presented as a pointer (needs de-reference before
9166 being printed). And we would also use the source-level type name. */
9167
9168 struct type *
9169 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9170 CORE_ADDR address, struct value *dval, int check_tag)
9171
9172 {
9173 struct type *fixed_type =
9174 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9175
9176 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9177 then preserve the typedef layer.
9178
9179 Implementation note: We can only check the main-type portion of
9180 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9181 from TYPE now returns a type that has the same instance flags
9182 as TYPE. For instance, if TYPE is a "typedef const", and its
9183 target type is a "struct", then the typedef elimination will return
9184 a "const" version of the target type. See check_typedef for more
9185 details about how the typedef layer elimination is done.
9186
9187 brobecker/2010-11-19: It seems to me that the only case where it is
9188 useful to preserve the typedef layer is when dealing with fat pointers.
9189 Perhaps, we could add a check for that and preserve the typedef layer
9190 only in that situation. But this seems unecessary so far, probably
9191 because we call check_typedef/ada_check_typedef pretty much everywhere.
9192 */
9193 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9194 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9195 == TYPE_MAIN_TYPE (fixed_type)))
9196 return type;
9197
9198 return fixed_type;
9199 }
9200
9201 /* A standard (static-sized) type corresponding as well as possible to
9202 TYPE0, but based on no runtime data. */
9203
9204 static struct type *
9205 to_static_fixed_type (struct type *type0)
9206 {
9207 struct type *type;
9208
9209 if (type0 == NULL)
9210 return NULL;
9211
9212 if (TYPE_FIXED_INSTANCE (type0))
9213 return type0;
9214
9215 type0 = ada_check_typedef (type0);
9216
9217 switch (TYPE_CODE (type0))
9218 {
9219 default:
9220 return type0;
9221 case TYPE_CODE_STRUCT:
9222 type = dynamic_template_type (type0);
9223 if (type != NULL)
9224 return template_to_static_fixed_type (type);
9225 else
9226 return template_to_static_fixed_type (type0);
9227 case TYPE_CODE_UNION:
9228 type = ada_find_parallel_type (type0, "___XVU");
9229 if (type != NULL)
9230 return template_to_static_fixed_type (type);
9231 else
9232 return template_to_static_fixed_type (type0);
9233 }
9234 }
9235
9236 /* A static approximation of TYPE with all type wrappers removed. */
9237
9238 static struct type *
9239 static_unwrap_type (struct type *type)
9240 {
9241 if (ada_is_aligner_type (type))
9242 {
9243 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9244 if (ada_type_name (type1) == NULL)
9245 TYPE_NAME (type1) = ada_type_name (type);
9246
9247 return static_unwrap_type (type1);
9248 }
9249 else
9250 {
9251 struct type *raw_real_type = ada_get_base_type (type);
9252
9253 if (raw_real_type == type)
9254 return type;
9255 else
9256 return to_static_fixed_type (raw_real_type);
9257 }
9258 }
9259
9260 /* In some cases, incomplete and private types require
9261 cross-references that are not resolved as records (for example,
9262 type Foo;
9263 type FooP is access Foo;
9264 V: FooP;
9265 type Foo is array ...;
9266 ). In these cases, since there is no mechanism for producing
9267 cross-references to such types, we instead substitute for FooP a
9268 stub enumeration type that is nowhere resolved, and whose tag is
9269 the name of the actual type. Call these types "non-record stubs". */
9270
9271 /* A type equivalent to TYPE that is not a non-record stub, if one
9272 exists, otherwise TYPE. */
9273
9274 struct type *
9275 ada_check_typedef (struct type *type)
9276 {
9277 if (type == NULL)
9278 return NULL;
9279
9280 /* If our type is a typedef type of a fat pointer, then we're done.
9281 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9282 what allows us to distinguish between fat pointers that represent
9283 array types, and fat pointers that represent array access types
9284 (in both cases, the compiler implements them as fat pointers). */
9285 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9286 && is_thick_pntr (ada_typedef_target_type (type)))
9287 return type;
9288
9289 type = check_typedef (type);
9290 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9291 || !TYPE_STUB (type)
9292 || TYPE_TAG_NAME (type) == NULL)
9293 return type;
9294 else
9295 {
9296 const char *name = TYPE_TAG_NAME (type);
9297 struct type *type1 = ada_find_any_type (name);
9298
9299 if (type1 == NULL)
9300 return type;
9301
9302 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9303 stubs pointing to arrays, as we don't create symbols for array
9304 types, only for the typedef-to-array types). If that's the case,
9305 strip the typedef layer. */
9306 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9307 type1 = ada_check_typedef (type1);
9308
9309 return type1;
9310 }
9311 }
9312
9313 /* A value representing the data at VALADDR/ADDRESS as described by
9314 type TYPE0, but with a standard (static-sized) type that correctly
9315 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9316 type, then return VAL0 [this feature is simply to avoid redundant
9317 creation of struct values]. */
9318
9319 static struct value *
9320 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9321 struct value *val0)
9322 {
9323 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9324
9325 if (type == type0 && val0 != NULL)
9326 return val0;
9327 else
9328 return value_from_contents_and_address (type, 0, address);
9329 }
9330
9331 /* A value representing VAL, but with a standard (static-sized) type
9332 that correctly describes it. Does not necessarily create a new
9333 value. */
9334
9335 struct value *
9336 ada_to_fixed_value (struct value *val)
9337 {
9338 val = unwrap_value (val);
9339 val = ada_to_fixed_value_create (value_type (val),
9340 value_address (val),
9341 val);
9342 return val;
9343 }
9344 \f
9345
9346 /* Attributes */
9347
9348 /* Table mapping attribute numbers to names.
9349 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9350
9351 static const char *attribute_names[] = {
9352 "<?>",
9353
9354 "first",
9355 "last",
9356 "length",
9357 "image",
9358 "max",
9359 "min",
9360 "modulus",
9361 "pos",
9362 "size",
9363 "tag",
9364 "val",
9365 0
9366 };
9367
9368 const char *
9369 ada_attribute_name (enum exp_opcode n)
9370 {
9371 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9372 return attribute_names[n - OP_ATR_FIRST + 1];
9373 else
9374 return attribute_names[0];
9375 }
9376
9377 /* Evaluate the 'POS attribute applied to ARG. */
9378
9379 static LONGEST
9380 pos_atr (struct value *arg)
9381 {
9382 struct value *val = coerce_ref (arg);
9383 struct type *type = value_type (val);
9384 LONGEST result;
9385
9386 if (!discrete_type_p (type))
9387 error (_("'POS only defined on discrete types"));
9388
9389 if (!discrete_position (type, value_as_long (val), &result))
9390 error (_("enumeration value is invalid: can't find 'POS"));
9391
9392 return result;
9393 }
9394
9395 static struct value *
9396 value_pos_atr (struct type *type, struct value *arg)
9397 {
9398 return value_from_longest (type, pos_atr (arg));
9399 }
9400
9401 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9402
9403 static struct value *
9404 value_val_atr (struct type *type, struct value *arg)
9405 {
9406 if (!discrete_type_p (type))
9407 error (_("'VAL only defined on discrete types"));
9408 if (!integer_type_p (value_type (arg)))
9409 error (_("'VAL requires integral argument"));
9410
9411 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9412 {
9413 long pos = value_as_long (arg);
9414
9415 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9416 error (_("argument to 'VAL out of range"));
9417 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9418 }
9419 else
9420 return value_from_longest (type, value_as_long (arg));
9421 }
9422 \f
9423
9424 /* Evaluation */
9425
9426 /* True if TYPE appears to be an Ada character type.
9427 [At the moment, this is true only for Character and Wide_Character;
9428 It is a heuristic test that could stand improvement]. */
9429
9430 int
9431 ada_is_character_type (struct type *type)
9432 {
9433 const char *name;
9434
9435 /* If the type code says it's a character, then assume it really is,
9436 and don't check any further. */
9437 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9438 return 1;
9439
9440 /* Otherwise, assume it's a character type iff it is a discrete type
9441 with a known character type name. */
9442 name = ada_type_name (type);
9443 return (name != NULL
9444 && (TYPE_CODE (type) == TYPE_CODE_INT
9445 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9446 && (strcmp (name, "character") == 0
9447 || strcmp (name, "wide_character") == 0
9448 || strcmp (name, "wide_wide_character") == 0
9449 || strcmp (name, "unsigned char") == 0));
9450 }
9451
9452 /* True if TYPE appears to be an Ada string type. */
9453
9454 int
9455 ada_is_string_type (struct type *type)
9456 {
9457 type = ada_check_typedef (type);
9458 if (type != NULL
9459 && TYPE_CODE (type) != TYPE_CODE_PTR
9460 && (ada_is_simple_array_type (type)
9461 || ada_is_array_descriptor_type (type))
9462 && ada_array_arity (type) == 1)
9463 {
9464 struct type *elttype = ada_array_element_type (type, 1);
9465
9466 return ada_is_character_type (elttype);
9467 }
9468 else
9469 return 0;
9470 }
9471
9472 /* The compiler sometimes provides a parallel XVS type for a given
9473 PAD type. Normally, it is safe to follow the PAD type directly,
9474 but older versions of the compiler have a bug that causes the offset
9475 of its "F" field to be wrong. Following that field in that case
9476 would lead to incorrect results, but this can be worked around
9477 by ignoring the PAD type and using the associated XVS type instead.
9478
9479 Set to True if the debugger should trust the contents of PAD types.
9480 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9481 static int trust_pad_over_xvs = 1;
9482
9483 /* True if TYPE is a struct type introduced by the compiler to force the
9484 alignment of a value. Such types have a single field with a
9485 distinctive name. */
9486
9487 int
9488 ada_is_aligner_type (struct type *type)
9489 {
9490 type = ada_check_typedef (type);
9491
9492 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9493 return 0;
9494
9495 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9496 && TYPE_NFIELDS (type) == 1
9497 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9498 }
9499
9500 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9501 the parallel type. */
9502
9503 struct type *
9504 ada_get_base_type (struct type *raw_type)
9505 {
9506 struct type *real_type_namer;
9507 struct type *raw_real_type;
9508
9509 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9510 return raw_type;
9511
9512 if (ada_is_aligner_type (raw_type))
9513 /* The encoding specifies that we should always use the aligner type.
9514 So, even if this aligner type has an associated XVS type, we should
9515 simply ignore it.
9516
9517 According to the compiler gurus, an XVS type parallel to an aligner
9518 type may exist because of a stabs limitation. In stabs, aligner
9519 types are empty because the field has a variable-sized type, and
9520 thus cannot actually be used as an aligner type. As a result,
9521 we need the associated parallel XVS type to decode the type.
9522 Since the policy in the compiler is to not change the internal
9523 representation based on the debugging info format, we sometimes
9524 end up having a redundant XVS type parallel to the aligner type. */
9525 return raw_type;
9526
9527 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9528 if (real_type_namer == NULL
9529 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9530 || TYPE_NFIELDS (real_type_namer) != 1)
9531 return raw_type;
9532
9533 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9534 {
9535 /* This is an older encoding form where the base type needs to be
9536 looked up by name. We prefer the newer enconding because it is
9537 more efficient. */
9538 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9539 if (raw_real_type == NULL)
9540 return raw_type;
9541 else
9542 return raw_real_type;
9543 }
9544
9545 /* The field in our XVS type is a reference to the base type. */
9546 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9547 }
9548
9549 /* The type of value designated by TYPE, with all aligners removed. */
9550
9551 struct type *
9552 ada_aligned_type (struct type *type)
9553 {
9554 if (ada_is_aligner_type (type))
9555 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9556 else
9557 return ada_get_base_type (type);
9558 }
9559
9560
9561 /* The address of the aligned value in an object at address VALADDR
9562 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9563
9564 const gdb_byte *
9565 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9566 {
9567 if (ada_is_aligner_type (type))
9568 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9569 valaddr +
9570 TYPE_FIELD_BITPOS (type,
9571 0) / TARGET_CHAR_BIT);
9572 else
9573 return valaddr;
9574 }
9575
9576
9577
9578 /* The printed representation of an enumeration literal with encoded
9579 name NAME. The value is good to the next call of ada_enum_name. */
9580 const char *
9581 ada_enum_name (const char *name)
9582 {
9583 static char *result;
9584 static size_t result_len = 0;
9585 const char *tmp;
9586
9587 /* First, unqualify the enumeration name:
9588 1. Search for the last '.' character. If we find one, then skip
9589 all the preceding characters, the unqualified name starts
9590 right after that dot.
9591 2. Otherwise, we may be debugging on a target where the compiler
9592 translates dots into "__". Search forward for double underscores,
9593 but stop searching when we hit an overloading suffix, which is
9594 of the form "__" followed by digits. */
9595
9596 tmp = strrchr (name, '.');
9597 if (tmp != NULL)
9598 name = tmp + 1;
9599 else
9600 {
9601 while ((tmp = strstr (name, "__")) != NULL)
9602 {
9603 if (isdigit (tmp[2]))
9604 break;
9605 else
9606 name = tmp + 2;
9607 }
9608 }
9609
9610 if (name[0] == 'Q')
9611 {
9612 int v;
9613
9614 if (name[1] == 'U' || name[1] == 'W')
9615 {
9616 if (sscanf (name + 2, "%x", &v) != 1)
9617 return name;
9618 }
9619 else
9620 return name;
9621
9622 GROW_VECT (result, result_len, 16);
9623 if (isascii (v) && isprint (v))
9624 xsnprintf (result, result_len, "'%c'", v);
9625 else if (name[1] == 'U')
9626 xsnprintf (result, result_len, "[\"%02x\"]", v);
9627 else
9628 xsnprintf (result, result_len, "[\"%04x\"]", v);
9629
9630 return result;
9631 }
9632 else
9633 {
9634 tmp = strstr (name, "__");
9635 if (tmp == NULL)
9636 tmp = strstr (name, "$");
9637 if (tmp != NULL)
9638 {
9639 GROW_VECT (result, result_len, tmp - name + 1);
9640 strncpy (result, name, tmp - name);
9641 result[tmp - name] = '\0';
9642 return result;
9643 }
9644
9645 return name;
9646 }
9647 }
9648
9649 /* Evaluate the subexpression of EXP starting at *POS as for
9650 evaluate_type, updating *POS to point just past the evaluated
9651 expression. */
9652
9653 static struct value *
9654 evaluate_subexp_type (struct expression *exp, int *pos)
9655 {
9656 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9657 }
9658
9659 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9660 value it wraps. */
9661
9662 static struct value *
9663 unwrap_value (struct value *val)
9664 {
9665 struct type *type = ada_check_typedef (value_type (val));
9666
9667 if (ada_is_aligner_type (type))
9668 {
9669 struct value *v = ada_value_struct_elt (val, "F", 0);
9670 struct type *val_type = ada_check_typedef (value_type (v));
9671
9672 if (ada_type_name (val_type) == NULL)
9673 TYPE_NAME (val_type) = ada_type_name (type);
9674
9675 return unwrap_value (v);
9676 }
9677 else
9678 {
9679 struct type *raw_real_type =
9680 ada_check_typedef (ada_get_base_type (type));
9681
9682 /* If there is no parallel XVS or XVE type, then the value is
9683 already unwrapped. Return it without further modification. */
9684 if ((type == raw_real_type)
9685 && ada_find_parallel_type (type, "___XVE") == NULL)
9686 return val;
9687
9688 return
9689 coerce_unspec_val_to_type
9690 (val, ada_to_fixed_type (raw_real_type, 0,
9691 value_address (val),
9692 NULL, 1));
9693 }
9694 }
9695
9696 static struct value *
9697 cast_from_fixed (struct type *type, struct value *arg)
9698 {
9699 struct value *scale = ada_scaling_factor (value_type (arg));
9700 arg = value_cast (value_type (scale), arg);
9701
9702 arg = value_binop (arg, scale, BINOP_MUL);
9703 return value_cast (type, arg);
9704 }
9705
9706 static struct value *
9707 cast_to_fixed (struct type *type, struct value *arg)
9708 {
9709 if (type == value_type (arg))
9710 return arg;
9711
9712 struct value *scale = ada_scaling_factor (type);
9713 if (ada_is_fixed_point_type (value_type (arg)))
9714 arg = cast_from_fixed (value_type (scale), arg);
9715 else
9716 arg = value_cast (value_type (scale), arg);
9717
9718 arg = value_binop (arg, scale, BINOP_DIV);
9719 return value_cast (type, arg);
9720 }
9721
9722 /* Given two array types T1 and T2, return nonzero iff both arrays
9723 contain the same number of elements. */
9724
9725 static int
9726 ada_same_array_size_p (struct type *t1, struct type *t2)
9727 {
9728 LONGEST lo1, hi1, lo2, hi2;
9729
9730 /* Get the array bounds in order to verify that the size of
9731 the two arrays match. */
9732 if (!get_array_bounds (t1, &lo1, &hi1)
9733 || !get_array_bounds (t2, &lo2, &hi2))
9734 error (_("unable to determine array bounds"));
9735
9736 /* To make things easier for size comparison, normalize a bit
9737 the case of empty arrays by making sure that the difference
9738 between upper bound and lower bound is always -1. */
9739 if (lo1 > hi1)
9740 hi1 = lo1 - 1;
9741 if (lo2 > hi2)
9742 hi2 = lo2 - 1;
9743
9744 return (hi1 - lo1 == hi2 - lo2);
9745 }
9746
9747 /* Assuming that VAL is an array of integrals, and TYPE represents
9748 an array with the same number of elements, but with wider integral
9749 elements, return an array "casted" to TYPE. In practice, this
9750 means that the returned array is built by casting each element
9751 of the original array into TYPE's (wider) element type. */
9752
9753 static struct value *
9754 ada_promote_array_of_integrals (struct type *type, struct value *val)
9755 {
9756 struct type *elt_type = TYPE_TARGET_TYPE (type);
9757 LONGEST lo, hi;
9758 struct value *res;
9759 LONGEST i;
9760
9761 /* Verify that both val and type are arrays of scalars, and
9762 that the size of val's elements is smaller than the size
9763 of type's element. */
9764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9765 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9766 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9767 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9768 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9769 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9770
9771 if (!get_array_bounds (type, &lo, &hi))
9772 error (_("unable to determine array bounds"));
9773
9774 res = allocate_value (type);
9775
9776 /* Promote each array element. */
9777 for (i = 0; i < hi - lo + 1; i++)
9778 {
9779 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9780
9781 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9782 value_contents_all (elt), TYPE_LENGTH (elt_type));
9783 }
9784
9785 return res;
9786 }
9787
9788 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9789 return the converted value. */
9790
9791 static struct value *
9792 coerce_for_assign (struct type *type, struct value *val)
9793 {
9794 struct type *type2 = value_type (val);
9795
9796 if (type == type2)
9797 return val;
9798
9799 type2 = ada_check_typedef (type2);
9800 type = ada_check_typedef (type);
9801
9802 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9803 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9804 {
9805 val = ada_value_ind (val);
9806 type2 = value_type (val);
9807 }
9808
9809 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9811 {
9812 if (!ada_same_array_size_p (type, type2))
9813 error (_("cannot assign arrays of different length"));
9814
9815 if (is_integral_type (TYPE_TARGET_TYPE (type))
9816 && is_integral_type (TYPE_TARGET_TYPE (type2))
9817 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9818 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9819 {
9820 /* Allow implicit promotion of the array elements to
9821 a wider type. */
9822 return ada_promote_array_of_integrals (type, val);
9823 }
9824
9825 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9826 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9827 error (_("Incompatible types in assignment"));
9828 deprecated_set_value_type (val, type);
9829 }
9830 return val;
9831 }
9832
9833 static struct value *
9834 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9835 {
9836 struct value *val;
9837 struct type *type1, *type2;
9838 LONGEST v, v1, v2;
9839
9840 arg1 = coerce_ref (arg1);
9841 arg2 = coerce_ref (arg2);
9842 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9843 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9844
9845 if (TYPE_CODE (type1) != TYPE_CODE_INT
9846 || TYPE_CODE (type2) != TYPE_CODE_INT)
9847 return value_binop (arg1, arg2, op);
9848
9849 switch (op)
9850 {
9851 case BINOP_MOD:
9852 case BINOP_DIV:
9853 case BINOP_REM:
9854 break;
9855 default:
9856 return value_binop (arg1, arg2, op);
9857 }
9858
9859 v2 = value_as_long (arg2);
9860 if (v2 == 0)
9861 error (_("second operand of %s must not be zero."), op_string (op));
9862
9863 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9864 return value_binop (arg1, arg2, op);
9865
9866 v1 = value_as_long (arg1);
9867 switch (op)
9868 {
9869 case BINOP_DIV:
9870 v = v1 / v2;
9871 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9872 v += v > 0 ? -1 : 1;
9873 break;
9874 case BINOP_REM:
9875 v = v1 % v2;
9876 if (v * v1 < 0)
9877 v -= v2;
9878 break;
9879 default:
9880 /* Should not reach this point. */
9881 v = 0;
9882 }
9883
9884 val = allocate_value (type1);
9885 store_unsigned_integer (value_contents_raw (val),
9886 TYPE_LENGTH (value_type (val)),
9887 gdbarch_byte_order (get_type_arch (type1)), v);
9888 return val;
9889 }
9890
9891 static int
9892 ada_value_equal (struct value *arg1, struct value *arg2)
9893 {
9894 if (ada_is_direct_array_type (value_type (arg1))
9895 || ada_is_direct_array_type (value_type (arg2)))
9896 {
9897 struct type *arg1_type, *arg2_type;
9898
9899 /* Automatically dereference any array reference before
9900 we attempt to perform the comparison. */
9901 arg1 = ada_coerce_ref (arg1);
9902 arg2 = ada_coerce_ref (arg2);
9903
9904 arg1 = ada_coerce_to_simple_array (arg1);
9905 arg2 = ada_coerce_to_simple_array (arg2);
9906
9907 arg1_type = ada_check_typedef (value_type (arg1));
9908 arg2_type = ada_check_typedef (value_type (arg2));
9909
9910 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9911 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9912 error (_("Attempt to compare array with non-array"));
9913 /* FIXME: The following works only for types whose
9914 representations use all bits (no padding or undefined bits)
9915 and do not have user-defined equality. */
9916 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9917 && memcmp (value_contents (arg1), value_contents (arg2),
9918 TYPE_LENGTH (arg1_type)) == 0);
9919 }
9920 return value_equal (arg1, arg2);
9921 }
9922
9923 /* Total number of component associations in the aggregate starting at
9924 index PC in EXP. Assumes that index PC is the start of an
9925 OP_AGGREGATE. */
9926
9927 static int
9928 num_component_specs (struct expression *exp, int pc)
9929 {
9930 int n, m, i;
9931
9932 m = exp->elts[pc + 1].longconst;
9933 pc += 3;
9934 n = 0;
9935 for (i = 0; i < m; i += 1)
9936 {
9937 switch (exp->elts[pc].opcode)
9938 {
9939 default:
9940 n += 1;
9941 break;
9942 case OP_CHOICES:
9943 n += exp->elts[pc + 1].longconst;
9944 break;
9945 }
9946 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9947 }
9948 return n;
9949 }
9950
9951 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9952 component of LHS (a simple array or a record), updating *POS past
9953 the expression, assuming that LHS is contained in CONTAINER. Does
9954 not modify the inferior's memory, nor does it modify LHS (unless
9955 LHS == CONTAINER). */
9956
9957 static void
9958 assign_component (struct value *container, struct value *lhs, LONGEST index,
9959 struct expression *exp, int *pos)
9960 {
9961 struct value *mark = value_mark ();
9962 struct value *elt;
9963
9964 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9965 {
9966 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9967 struct value *index_val = value_from_longest (index_type, index);
9968
9969 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9970 }
9971 else
9972 {
9973 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9974 elt = ada_to_fixed_value (elt);
9975 }
9976
9977 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9978 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9979 else
9980 value_assign_to_component (container, elt,
9981 ada_evaluate_subexp (NULL, exp, pos,
9982 EVAL_NORMAL));
9983
9984 value_free_to_mark (mark);
9985 }
9986
9987 /* Assuming that LHS represents an lvalue having a record or array
9988 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9989 of that aggregate's value to LHS, advancing *POS past the
9990 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9991 lvalue containing LHS (possibly LHS itself). Does not modify
9992 the inferior's memory, nor does it modify the contents of
9993 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9994
9995 static struct value *
9996 assign_aggregate (struct value *container,
9997 struct value *lhs, struct expression *exp,
9998 int *pos, enum noside noside)
9999 {
10000 struct type *lhs_type;
10001 int n = exp->elts[*pos+1].longconst;
10002 LONGEST low_index, high_index;
10003 int num_specs;
10004 LONGEST *indices;
10005 int max_indices, num_indices;
10006 int i;
10007
10008 *pos += 3;
10009 if (noside != EVAL_NORMAL)
10010 {
10011 for (i = 0; i < n; i += 1)
10012 ada_evaluate_subexp (NULL, exp, pos, noside);
10013 return container;
10014 }
10015
10016 container = ada_coerce_ref (container);
10017 if (ada_is_direct_array_type (value_type (container)))
10018 container = ada_coerce_to_simple_array (container);
10019 lhs = ada_coerce_ref (lhs);
10020 if (!deprecated_value_modifiable (lhs))
10021 error (_("Left operand of assignment is not a modifiable lvalue."));
10022
10023 lhs_type = value_type (lhs);
10024 if (ada_is_direct_array_type (lhs_type))
10025 {
10026 lhs = ada_coerce_to_simple_array (lhs);
10027 lhs_type = value_type (lhs);
10028 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10029 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10030 }
10031 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10032 {
10033 low_index = 0;
10034 high_index = num_visible_fields (lhs_type) - 1;
10035 }
10036 else
10037 error (_("Left-hand side must be array or record."));
10038
10039 num_specs = num_component_specs (exp, *pos - 3);
10040 max_indices = 4 * num_specs + 4;
10041 indices = XALLOCAVEC (LONGEST, max_indices);
10042 indices[0] = indices[1] = low_index - 1;
10043 indices[2] = indices[3] = high_index + 1;
10044 num_indices = 4;
10045
10046 for (i = 0; i < n; i += 1)
10047 {
10048 switch (exp->elts[*pos].opcode)
10049 {
10050 case OP_CHOICES:
10051 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10052 &num_indices, max_indices,
10053 low_index, high_index);
10054 break;
10055 case OP_POSITIONAL:
10056 aggregate_assign_positional (container, lhs, exp, pos, indices,
10057 &num_indices, max_indices,
10058 low_index, high_index);
10059 break;
10060 case OP_OTHERS:
10061 if (i != n-1)
10062 error (_("Misplaced 'others' clause"));
10063 aggregate_assign_others (container, lhs, exp, pos, indices,
10064 num_indices, low_index, high_index);
10065 break;
10066 default:
10067 error (_("Internal error: bad aggregate clause"));
10068 }
10069 }
10070
10071 return container;
10072 }
10073
10074 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10075 construct at *POS, updating *POS past the construct, given that
10076 the positions are relative to lower bound LOW, where HIGH is the
10077 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10078 updating *NUM_INDICES as needed. CONTAINER is as for
10079 assign_aggregate. */
10080 static void
10081 aggregate_assign_positional (struct value *container,
10082 struct value *lhs, struct expression *exp,
10083 int *pos, LONGEST *indices, int *num_indices,
10084 int max_indices, LONGEST low, LONGEST high)
10085 {
10086 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10087
10088 if (ind - 1 == high)
10089 warning (_("Extra components in aggregate ignored."));
10090 if (ind <= high)
10091 {
10092 add_component_interval (ind, ind, indices, num_indices, max_indices);
10093 *pos += 3;
10094 assign_component (container, lhs, ind, exp, pos);
10095 }
10096 else
10097 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10098 }
10099
10100 /* Assign into the components of LHS indexed by the OP_CHOICES
10101 construct at *POS, updating *POS past the construct, given that
10102 the allowable indices are LOW..HIGH. Record the indices assigned
10103 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10104 needed. CONTAINER is as for assign_aggregate. */
10105 static void
10106 aggregate_assign_from_choices (struct value *container,
10107 struct value *lhs, struct expression *exp,
10108 int *pos, LONGEST *indices, int *num_indices,
10109 int max_indices, LONGEST low, LONGEST high)
10110 {
10111 int j;
10112 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10113 int choice_pos, expr_pc;
10114 int is_array = ada_is_direct_array_type (value_type (lhs));
10115
10116 choice_pos = *pos += 3;
10117
10118 for (j = 0; j < n_choices; j += 1)
10119 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10120 expr_pc = *pos;
10121 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10122
10123 for (j = 0; j < n_choices; j += 1)
10124 {
10125 LONGEST lower, upper;
10126 enum exp_opcode op = exp->elts[choice_pos].opcode;
10127
10128 if (op == OP_DISCRETE_RANGE)
10129 {
10130 choice_pos += 1;
10131 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10132 EVAL_NORMAL));
10133 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10134 EVAL_NORMAL));
10135 }
10136 else if (is_array)
10137 {
10138 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10139 EVAL_NORMAL));
10140 upper = lower;
10141 }
10142 else
10143 {
10144 int ind;
10145 const char *name;
10146
10147 switch (op)
10148 {
10149 case OP_NAME:
10150 name = &exp->elts[choice_pos + 2].string;
10151 break;
10152 case OP_VAR_VALUE:
10153 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10154 break;
10155 default:
10156 error (_("Invalid record component association."));
10157 }
10158 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10159 ind = 0;
10160 if (! find_struct_field (name, value_type (lhs), 0,
10161 NULL, NULL, NULL, NULL, &ind))
10162 error (_("Unknown component name: %s."), name);
10163 lower = upper = ind;
10164 }
10165
10166 if (lower <= upper && (lower < low || upper > high))
10167 error (_("Index in component association out of bounds."));
10168
10169 add_component_interval (lower, upper, indices, num_indices,
10170 max_indices);
10171 while (lower <= upper)
10172 {
10173 int pos1;
10174
10175 pos1 = expr_pc;
10176 assign_component (container, lhs, lower, exp, &pos1);
10177 lower += 1;
10178 }
10179 }
10180 }
10181
10182 /* Assign the value of the expression in the OP_OTHERS construct in
10183 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10184 have not been previously assigned. The index intervals already assigned
10185 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10186 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10187 static void
10188 aggregate_assign_others (struct value *container,
10189 struct value *lhs, struct expression *exp,
10190 int *pos, LONGEST *indices, int num_indices,
10191 LONGEST low, LONGEST high)
10192 {
10193 int i;
10194 int expr_pc = *pos + 1;
10195
10196 for (i = 0; i < num_indices - 2; i += 2)
10197 {
10198 LONGEST ind;
10199
10200 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10201 {
10202 int localpos;
10203
10204 localpos = expr_pc;
10205 assign_component (container, lhs, ind, exp, &localpos);
10206 }
10207 }
10208 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10209 }
10210
10211 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10212 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10213 modifying *SIZE as needed. It is an error if *SIZE exceeds
10214 MAX_SIZE. The resulting intervals do not overlap. */
10215 static void
10216 add_component_interval (LONGEST low, LONGEST high,
10217 LONGEST* indices, int *size, int max_size)
10218 {
10219 int i, j;
10220
10221 for (i = 0; i < *size; i += 2) {
10222 if (high >= indices[i] && low <= indices[i + 1])
10223 {
10224 int kh;
10225
10226 for (kh = i + 2; kh < *size; kh += 2)
10227 if (high < indices[kh])
10228 break;
10229 if (low < indices[i])
10230 indices[i] = low;
10231 indices[i + 1] = indices[kh - 1];
10232 if (high > indices[i + 1])
10233 indices[i + 1] = high;
10234 memcpy (indices + i + 2, indices + kh, *size - kh);
10235 *size -= kh - i - 2;
10236 return;
10237 }
10238 else if (high < indices[i])
10239 break;
10240 }
10241
10242 if (*size == max_size)
10243 error (_("Internal error: miscounted aggregate components."));
10244 *size += 2;
10245 for (j = *size-1; j >= i+2; j -= 1)
10246 indices[j] = indices[j - 2];
10247 indices[i] = low;
10248 indices[i + 1] = high;
10249 }
10250
10251 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10252 is different. */
10253
10254 static struct value *
10255 ada_value_cast (struct type *type, struct value *arg2)
10256 {
10257 if (type == ada_check_typedef (value_type (arg2)))
10258 return arg2;
10259
10260 if (ada_is_fixed_point_type (type))
10261 return (cast_to_fixed (type, arg2));
10262
10263 if (ada_is_fixed_point_type (value_type (arg2)))
10264 return cast_from_fixed (type, arg2);
10265
10266 return value_cast (type, arg2);
10267 }
10268
10269 /* Evaluating Ada expressions, and printing their result.
10270 ------------------------------------------------------
10271
10272 1. Introduction:
10273 ----------------
10274
10275 We usually evaluate an Ada expression in order to print its value.
10276 We also evaluate an expression in order to print its type, which
10277 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10278 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10279 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10280 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10281 similar.
10282
10283 Evaluating expressions is a little more complicated for Ada entities
10284 than it is for entities in languages such as C. The main reason for
10285 this is that Ada provides types whose definition might be dynamic.
10286 One example of such types is variant records. Or another example
10287 would be an array whose bounds can only be known at run time.
10288
10289 The following description is a general guide as to what should be
10290 done (and what should NOT be done) in order to evaluate an expression
10291 involving such types, and when. This does not cover how the semantic
10292 information is encoded by GNAT as this is covered separatly. For the
10293 document used as the reference for the GNAT encoding, see exp_dbug.ads
10294 in the GNAT sources.
10295
10296 Ideally, we should embed each part of this description next to its
10297 associated code. Unfortunately, the amount of code is so vast right
10298 now that it's hard to see whether the code handling a particular
10299 situation might be duplicated or not. One day, when the code is
10300 cleaned up, this guide might become redundant with the comments
10301 inserted in the code, and we might want to remove it.
10302
10303 2. ``Fixing'' an Entity, the Simple Case:
10304 -----------------------------------------
10305
10306 When evaluating Ada expressions, the tricky issue is that they may
10307 reference entities whose type contents and size are not statically
10308 known. Consider for instance a variant record:
10309
10310 type Rec (Empty : Boolean := True) is record
10311 case Empty is
10312 when True => null;
10313 when False => Value : Integer;
10314 end case;
10315 end record;
10316 Yes : Rec := (Empty => False, Value => 1);
10317 No : Rec := (empty => True);
10318
10319 The size and contents of that record depends on the value of the
10320 descriminant (Rec.Empty). At this point, neither the debugging
10321 information nor the associated type structure in GDB are able to
10322 express such dynamic types. So what the debugger does is to create
10323 "fixed" versions of the type that applies to the specific object.
10324 We also informally refer to this opperation as "fixing" an object,
10325 which means creating its associated fixed type.
10326
10327 Example: when printing the value of variable "Yes" above, its fixed
10328 type would look like this:
10329
10330 type Rec is record
10331 Empty : Boolean;
10332 Value : Integer;
10333 end record;
10334
10335 On the other hand, if we printed the value of "No", its fixed type
10336 would become:
10337
10338 type Rec is record
10339 Empty : Boolean;
10340 end record;
10341
10342 Things become a little more complicated when trying to fix an entity
10343 with a dynamic type that directly contains another dynamic type,
10344 such as an array of variant records, for instance. There are
10345 two possible cases: Arrays, and records.
10346
10347 3. ``Fixing'' Arrays:
10348 ---------------------
10349
10350 The type structure in GDB describes an array in terms of its bounds,
10351 and the type of its elements. By design, all elements in the array
10352 have the same type and we cannot represent an array of variant elements
10353 using the current type structure in GDB. When fixing an array,
10354 we cannot fix the array element, as we would potentially need one
10355 fixed type per element of the array. As a result, the best we can do
10356 when fixing an array is to produce an array whose bounds and size
10357 are correct (allowing us to read it from memory), but without having
10358 touched its element type. Fixing each element will be done later,
10359 when (if) necessary.
10360
10361 Arrays are a little simpler to handle than records, because the same
10362 amount of memory is allocated for each element of the array, even if
10363 the amount of space actually used by each element differs from element
10364 to element. Consider for instance the following array of type Rec:
10365
10366 type Rec_Array is array (1 .. 2) of Rec;
10367
10368 The actual amount of memory occupied by each element might be different
10369 from element to element, depending on the value of their discriminant.
10370 But the amount of space reserved for each element in the array remains
10371 fixed regardless. So we simply need to compute that size using
10372 the debugging information available, from which we can then determine
10373 the array size (we multiply the number of elements of the array by
10374 the size of each element).
10375
10376 The simplest case is when we have an array of a constrained element
10377 type. For instance, consider the following type declarations:
10378
10379 type Bounded_String (Max_Size : Integer) is
10380 Length : Integer;
10381 Buffer : String (1 .. Max_Size);
10382 end record;
10383 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10384
10385 In this case, the compiler describes the array as an array of
10386 variable-size elements (identified by its XVS suffix) for which
10387 the size can be read in the parallel XVZ variable.
10388
10389 In the case of an array of an unconstrained element type, the compiler
10390 wraps the array element inside a private PAD type. This type should not
10391 be shown to the user, and must be "unwrap"'ed before printing. Note
10392 that we also use the adjective "aligner" in our code to designate
10393 these wrapper types.
10394
10395 In some cases, the size allocated for each element is statically
10396 known. In that case, the PAD type already has the correct size,
10397 and the array element should remain unfixed.
10398
10399 But there are cases when this size is not statically known.
10400 For instance, assuming that "Five" is an integer variable:
10401
10402 type Dynamic is array (1 .. Five) of Integer;
10403 type Wrapper (Has_Length : Boolean := False) is record
10404 Data : Dynamic;
10405 case Has_Length is
10406 when True => Length : Integer;
10407 when False => null;
10408 end case;
10409 end record;
10410 type Wrapper_Array is array (1 .. 2) of Wrapper;
10411
10412 Hello : Wrapper_Array := (others => (Has_Length => True,
10413 Data => (others => 17),
10414 Length => 1));
10415
10416
10417 The debugging info would describe variable Hello as being an
10418 array of a PAD type. The size of that PAD type is not statically
10419 known, but can be determined using a parallel XVZ variable.
10420 In that case, a copy of the PAD type with the correct size should
10421 be used for the fixed array.
10422
10423 3. ``Fixing'' record type objects:
10424 ----------------------------------
10425
10426 Things are slightly different from arrays in the case of dynamic
10427 record types. In this case, in order to compute the associated
10428 fixed type, we need to determine the size and offset of each of
10429 its components. This, in turn, requires us to compute the fixed
10430 type of each of these components.
10431
10432 Consider for instance the example:
10433
10434 type Bounded_String (Max_Size : Natural) is record
10435 Str : String (1 .. Max_Size);
10436 Length : Natural;
10437 end record;
10438 My_String : Bounded_String (Max_Size => 10);
10439
10440 In that case, the position of field "Length" depends on the size
10441 of field Str, which itself depends on the value of the Max_Size
10442 discriminant. In order to fix the type of variable My_String,
10443 we need to fix the type of field Str. Therefore, fixing a variant
10444 record requires us to fix each of its components.
10445
10446 However, if a component does not have a dynamic size, the component
10447 should not be fixed. In particular, fields that use a PAD type
10448 should not fixed. Here is an example where this might happen
10449 (assuming type Rec above):
10450
10451 type Container (Big : Boolean) is record
10452 First : Rec;
10453 After : Integer;
10454 case Big is
10455 when True => Another : Integer;
10456 when False => null;
10457 end case;
10458 end record;
10459 My_Container : Container := (Big => False,
10460 First => (Empty => True),
10461 After => 42);
10462
10463 In that example, the compiler creates a PAD type for component First,
10464 whose size is constant, and then positions the component After just
10465 right after it. The offset of component After is therefore constant
10466 in this case.
10467
10468 The debugger computes the position of each field based on an algorithm
10469 that uses, among other things, the actual position and size of the field
10470 preceding it. Let's now imagine that the user is trying to print
10471 the value of My_Container. If the type fixing was recursive, we would
10472 end up computing the offset of field After based on the size of the
10473 fixed version of field First. And since in our example First has
10474 only one actual field, the size of the fixed type is actually smaller
10475 than the amount of space allocated to that field, and thus we would
10476 compute the wrong offset of field After.
10477
10478 To make things more complicated, we need to watch out for dynamic
10479 components of variant records (identified by the ___XVL suffix in
10480 the component name). Even if the target type is a PAD type, the size
10481 of that type might not be statically known. So the PAD type needs
10482 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10483 we might end up with the wrong size for our component. This can be
10484 observed with the following type declarations:
10485
10486 type Octal is new Integer range 0 .. 7;
10487 type Octal_Array is array (Positive range <>) of Octal;
10488 pragma Pack (Octal_Array);
10489
10490 type Octal_Buffer (Size : Positive) is record
10491 Buffer : Octal_Array (1 .. Size);
10492 Length : Integer;
10493 end record;
10494
10495 In that case, Buffer is a PAD type whose size is unset and needs
10496 to be computed by fixing the unwrapped type.
10497
10498 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10499 ----------------------------------------------------------
10500
10501 Lastly, when should the sub-elements of an entity that remained unfixed
10502 thus far, be actually fixed?
10503
10504 The answer is: Only when referencing that element. For instance
10505 when selecting one component of a record, this specific component
10506 should be fixed at that point in time. Or when printing the value
10507 of a record, each component should be fixed before its value gets
10508 printed. Similarly for arrays, the element of the array should be
10509 fixed when printing each element of the array, or when extracting
10510 one element out of that array. On the other hand, fixing should
10511 not be performed on the elements when taking a slice of an array!
10512
10513 Note that one of the side effects of miscomputing the offset and
10514 size of each field is that we end up also miscomputing the size
10515 of the containing type. This can have adverse results when computing
10516 the value of an entity. GDB fetches the value of an entity based
10517 on the size of its type, and thus a wrong size causes GDB to fetch
10518 the wrong amount of memory. In the case where the computed size is
10519 too small, GDB fetches too little data to print the value of our
10520 entity. Results in this case are unpredictable, as we usually read
10521 past the buffer containing the data =:-o. */
10522
10523 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10524 for that subexpression cast to TO_TYPE. Advance *POS over the
10525 subexpression. */
10526
10527 static value *
10528 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10529 enum noside noside, struct type *to_type)
10530 {
10531 int pc = *pos;
10532
10533 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10534 || exp->elts[pc].opcode == OP_VAR_VALUE)
10535 {
10536 (*pos) += 4;
10537
10538 value *val;
10539 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10540 {
10541 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10542 return value_zero (to_type, not_lval);
10543
10544 val = evaluate_var_msym_value (noside,
10545 exp->elts[pc + 1].objfile,
10546 exp->elts[pc + 2].msymbol);
10547 }
10548 else
10549 val = evaluate_var_value (noside,
10550 exp->elts[pc + 1].block,
10551 exp->elts[pc + 2].symbol);
10552
10553 if (noside == EVAL_SKIP)
10554 return eval_skip_value (exp);
10555
10556 val = ada_value_cast (to_type, val);
10557
10558 /* Follow the Ada language semantics that do not allow taking
10559 an address of the result of a cast (view conversion in Ada). */
10560 if (VALUE_LVAL (val) == lval_memory)
10561 {
10562 if (value_lazy (val))
10563 value_fetch_lazy (val);
10564 VALUE_LVAL (val) = not_lval;
10565 }
10566 return val;
10567 }
10568
10569 value *val = evaluate_subexp (to_type, exp, pos, noside);
10570 if (noside == EVAL_SKIP)
10571 return eval_skip_value (exp);
10572 return ada_value_cast (to_type, val);
10573 }
10574
10575 /* Implement the evaluate_exp routine in the exp_descriptor structure
10576 for the Ada language. */
10577
10578 static struct value *
10579 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10580 int *pos, enum noside noside)
10581 {
10582 enum exp_opcode op;
10583 int tem;
10584 int pc;
10585 int preeval_pos;
10586 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10587 struct type *type;
10588 int nargs, oplen;
10589 struct value **argvec;
10590
10591 pc = *pos;
10592 *pos += 1;
10593 op = exp->elts[pc].opcode;
10594
10595 switch (op)
10596 {
10597 default:
10598 *pos -= 1;
10599 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10600
10601 if (noside == EVAL_NORMAL)
10602 arg1 = unwrap_value (arg1);
10603
10604 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10605 then we need to perform the conversion manually, because
10606 evaluate_subexp_standard doesn't do it. This conversion is
10607 necessary in Ada because the different kinds of float/fixed
10608 types in Ada have different representations.
10609
10610 Similarly, we need to perform the conversion from OP_LONG
10611 ourselves. */
10612 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10613 arg1 = ada_value_cast (expect_type, arg1);
10614
10615 return arg1;
10616
10617 case OP_STRING:
10618 {
10619 struct value *result;
10620
10621 *pos -= 1;
10622 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10623 /* The result type will have code OP_STRING, bashed there from
10624 OP_ARRAY. Bash it back. */
10625 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10626 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10627 return result;
10628 }
10629
10630 case UNOP_CAST:
10631 (*pos) += 2;
10632 type = exp->elts[pc + 1].type;
10633 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10634
10635 case UNOP_QUAL:
10636 (*pos) += 2;
10637 type = exp->elts[pc + 1].type;
10638 return ada_evaluate_subexp (type, exp, pos, noside);
10639
10640 case BINOP_ASSIGN:
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10643 {
10644 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10645 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10646 return arg1;
10647 return ada_value_assign (arg1, arg1);
10648 }
10649 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10650 except if the lhs of our assignment is a convenience variable.
10651 In the case of assigning to a convenience variable, the lhs
10652 should be exactly the result of the evaluation of the rhs. */
10653 type = value_type (arg1);
10654 if (VALUE_LVAL (arg1) == lval_internalvar)
10655 type = NULL;
10656 arg2 = evaluate_subexp (type, exp, pos, noside);
10657 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return arg1;
10659 if (ada_is_fixed_point_type (value_type (arg1)))
10660 arg2 = cast_to_fixed (value_type (arg1), arg2);
10661 else if (ada_is_fixed_point_type (value_type (arg2)))
10662 error
10663 (_("Fixed-point values must be assigned to fixed-point variables"));
10664 else
10665 arg2 = coerce_for_assign (value_type (arg1), arg2);
10666 return ada_value_assign (arg1, arg2);
10667
10668 case BINOP_ADD:
10669 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10670 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10671 if (noside == EVAL_SKIP)
10672 goto nosideret;
10673 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10674 return (value_from_longest
10675 (value_type (arg1),
10676 value_as_long (arg1) + value_as_long (arg2)));
10677 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10678 return (value_from_longest
10679 (value_type (arg2),
10680 value_as_long (arg1) + value_as_long (arg2)));
10681 if ((ada_is_fixed_point_type (value_type (arg1))
10682 || ada_is_fixed_point_type (value_type (arg2)))
10683 && value_type (arg1) != value_type (arg2))
10684 error (_("Operands of fixed-point addition must have the same type"));
10685 /* Do the addition, and cast the result to the type of the first
10686 argument. We cannot cast the result to a reference type, so if
10687 ARG1 is a reference type, find its underlying type. */
10688 type = value_type (arg1);
10689 while (TYPE_CODE (type) == TYPE_CODE_REF)
10690 type = TYPE_TARGET_TYPE (type);
10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10692 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10693
10694 case BINOP_SUB:
10695 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10696 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10700 return (value_from_longest
10701 (value_type (arg1),
10702 value_as_long (arg1) - value_as_long (arg2)));
10703 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10704 return (value_from_longest
10705 (value_type (arg2),
10706 value_as_long (arg1) - value_as_long (arg2)));
10707 if ((ada_is_fixed_point_type (value_type (arg1))
10708 || ada_is_fixed_point_type (value_type (arg2)))
10709 && value_type (arg1) != value_type (arg2))
10710 error (_("Operands of fixed-point subtraction "
10711 "must have the same type"));
10712 /* Do the substraction, and cast the result to the type of the first
10713 argument. We cannot cast the result to a reference type, so if
10714 ARG1 is a reference type, find its underlying type. */
10715 type = value_type (arg1);
10716 while (TYPE_CODE (type) == TYPE_CODE_REF)
10717 type = TYPE_TARGET_TYPE (type);
10718 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10719 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10720
10721 case BINOP_MUL:
10722 case BINOP_DIV:
10723 case BINOP_REM:
10724 case BINOP_MOD:
10725 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10726 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 if (noside == EVAL_SKIP)
10728 goto nosideret;
10729 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10730 {
10731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10732 return value_zero (value_type (arg1), not_lval);
10733 }
10734 else
10735 {
10736 type = builtin_type (exp->gdbarch)->builtin_double;
10737 if (ada_is_fixed_point_type (value_type (arg1)))
10738 arg1 = cast_from_fixed (type, arg1);
10739 if (ada_is_fixed_point_type (value_type (arg2)))
10740 arg2 = cast_from_fixed (type, arg2);
10741 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10742 return ada_value_binop (arg1, arg2, op);
10743 }
10744
10745 case BINOP_EQUAL:
10746 case BINOP_NOTEQUAL:
10747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10748 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
10751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10752 tem = 0;
10753 else
10754 {
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10756 tem = ada_value_equal (arg1, arg2);
10757 }
10758 if (op == BINOP_NOTEQUAL)
10759 tem = !tem;
10760 type = language_bool_type (exp->language_defn, exp->gdbarch);
10761 return value_from_longest (type, (LONGEST) tem);
10762
10763 case UNOP_NEG:
10764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10765 if (noside == EVAL_SKIP)
10766 goto nosideret;
10767 else if (ada_is_fixed_point_type (value_type (arg1)))
10768 return value_cast (value_type (arg1), value_neg (arg1));
10769 else
10770 {
10771 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10772 return value_neg (arg1);
10773 }
10774
10775 case BINOP_LOGICAL_AND:
10776 case BINOP_LOGICAL_OR:
10777 case UNOP_LOGICAL_NOT:
10778 {
10779 struct value *val;
10780
10781 *pos -= 1;
10782 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10783 type = language_bool_type (exp->language_defn, exp->gdbarch);
10784 return value_cast (type, val);
10785 }
10786
10787 case BINOP_BITWISE_AND:
10788 case BINOP_BITWISE_IOR:
10789 case BINOP_BITWISE_XOR:
10790 {
10791 struct value *val;
10792
10793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10794 *pos = pc;
10795 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10796
10797 return value_cast (value_type (arg1), val);
10798 }
10799
10800 case OP_VAR_VALUE:
10801 *pos -= 1;
10802
10803 if (noside == EVAL_SKIP)
10804 {
10805 *pos += 4;
10806 goto nosideret;
10807 }
10808
10809 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10810 /* Only encountered when an unresolved symbol occurs in a
10811 context other than a function call, in which case, it is
10812 invalid. */
10813 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10814 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10815
10816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10817 {
10818 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10819 /* Check to see if this is a tagged type. We also need to handle
10820 the case where the type is a reference to a tagged type, but
10821 we have to be careful to exclude pointers to tagged types.
10822 The latter should be shown as usual (as a pointer), whereas
10823 a reference should mostly be transparent to the user. */
10824 if (ada_is_tagged_type (type, 0)
10825 || (TYPE_CODE (type) == TYPE_CODE_REF
10826 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10827 {
10828 /* Tagged types are a little special in the fact that the real
10829 type is dynamic and can only be determined by inspecting the
10830 object's tag. This means that we need to get the object's
10831 value first (EVAL_NORMAL) and then extract the actual object
10832 type from its tag.
10833
10834 Note that we cannot skip the final step where we extract
10835 the object type from its tag, because the EVAL_NORMAL phase
10836 results in dynamic components being resolved into fixed ones.
10837 This can cause problems when trying to print the type
10838 description of tagged types whose parent has a dynamic size:
10839 We use the type name of the "_parent" component in order
10840 to print the name of the ancestor type in the type description.
10841 If that component had a dynamic size, the resolution into
10842 a fixed type would result in the loss of that type name,
10843 thus preventing us from printing the name of the ancestor
10844 type in the type description. */
10845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10846
10847 if (TYPE_CODE (type) != TYPE_CODE_REF)
10848 {
10849 struct type *actual_type;
10850
10851 actual_type = type_from_tag (ada_value_tag (arg1));
10852 if (actual_type == NULL)
10853 /* If, for some reason, we were unable to determine
10854 the actual type from the tag, then use the static
10855 approximation that we just computed as a fallback.
10856 This can happen if the debugging information is
10857 incomplete, for instance. */
10858 actual_type = type;
10859 return value_zero (actual_type, not_lval);
10860 }
10861 else
10862 {
10863 /* In the case of a ref, ada_coerce_ref takes care
10864 of determining the actual type. But the evaluation
10865 should return a ref as it should be valid to ask
10866 for its address; so rebuild a ref after coerce. */
10867 arg1 = ada_coerce_ref (arg1);
10868 return value_ref (arg1, TYPE_CODE_REF);
10869 }
10870 }
10871
10872 /* Records and unions for which GNAT encodings have been
10873 generated need to be statically fixed as well.
10874 Otherwise, non-static fixing produces a type where
10875 all dynamic properties are removed, which prevents "ptype"
10876 from being able to completely describe the type.
10877 For instance, a case statement in a variant record would be
10878 replaced by the relevant components based on the actual
10879 value of the discriminants. */
10880 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10881 && dynamic_template_type (type) != NULL)
10882 || (TYPE_CODE (type) == TYPE_CODE_UNION
10883 && ada_find_parallel_type (type, "___XVU") != NULL))
10884 {
10885 *pos += 4;
10886 return value_zero (to_static_fixed_type (type), not_lval);
10887 }
10888 }
10889
10890 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10891 return ada_to_fixed_value (arg1);
10892
10893 case OP_FUNCALL:
10894 (*pos) += 2;
10895
10896 /* Allocate arg vector, including space for the function to be
10897 called in argvec[0] and a terminating NULL. */
10898 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10899 argvec = XALLOCAVEC (struct value *, nargs + 2);
10900
10901 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10902 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10903 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10904 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10905 else
10906 {
10907 for (tem = 0; tem <= nargs; tem += 1)
10908 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909 argvec[tem] = 0;
10910
10911 if (noside == EVAL_SKIP)
10912 goto nosideret;
10913 }
10914
10915 if (ada_is_constrained_packed_array_type
10916 (desc_base_type (value_type (argvec[0]))))
10917 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10918 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10919 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10920 /* This is a packed array that has already been fixed, and
10921 therefore already coerced to a simple array. Nothing further
10922 to do. */
10923 ;
10924 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10925 {
10926 /* Make sure we dereference references so that all the code below
10927 feels like it's really handling the referenced value. Wrapping
10928 types (for alignment) may be there, so make sure we strip them as
10929 well. */
10930 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10931 }
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10933 && VALUE_LVAL (argvec[0]) == lval_memory)
10934 argvec[0] = value_addr (argvec[0]);
10935
10936 type = ada_check_typedef (value_type (argvec[0]));
10937
10938 /* Ada allows us to implicitly dereference arrays when subscripting
10939 them. So, if this is an array typedef (encoding use for array
10940 access types encoded as fat pointers), strip it now. */
10941 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10942 type = ada_typedef_target_type (type);
10943
10944 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10945 {
10946 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10947 {
10948 case TYPE_CODE_FUNC:
10949 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10950 break;
10951 case TYPE_CODE_ARRAY:
10952 break;
10953 case TYPE_CODE_STRUCT:
10954 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10955 argvec[0] = ada_value_ind (argvec[0]);
10956 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10957 break;
10958 default:
10959 error (_("cannot subscript or call something of type `%s'"),
10960 ada_type_name (value_type (argvec[0])));
10961 break;
10962 }
10963 }
10964
10965 switch (TYPE_CODE (type))
10966 {
10967 case TYPE_CODE_FUNC:
10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10969 {
10970 if (TYPE_TARGET_TYPE (type) == NULL)
10971 error_call_unknown_return_type (NULL);
10972 return allocate_value (TYPE_TARGET_TYPE (type));
10973 }
10974 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10975 case TYPE_CODE_INTERNAL_FUNCTION:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 /* We don't know anything about what the internal
10978 function might return, but we have to return
10979 something. */
10980 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10981 not_lval);
10982 else
10983 return call_internal_function (exp->gdbarch, exp->language_defn,
10984 argvec[0], nargs, argvec + 1);
10985
10986 case TYPE_CODE_STRUCT:
10987 {
10988 int arity;
10989
10990 arity = ada_array_arity (type);
10991 type = ada_array_element_type (type, nargs);
10992 if (type == NULL)
10993 error (_("cannot subscript or call a record"));
10994 if (arity != nargs)
10995 error (_("wrong number of subscripts; expecting %d"), arity);
10996 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10997 return value_zero (ada_aligned_type (type), lval_memory);
10998 return
10999 unwrap_value (ada_value_subscript
11000 (argvec[0], nargs, argvec + 1));
11001 }
11002 case TYPE_CODE_ARRAY:
11003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 {
11005 type = ada_array_element_type (type, nargs);
11006 if (type == NULL)
11007 error (_("element type of array unknown"));
11008 else
11009 return value_zero (ada_aligned_type (type), lval_memory);
11010 }
11011 return
11012 unwrap_value (ada_value_subscript
11013 (ada_coerce_to_simple_array (argvec[0]),
11014 nargs, argvec + 1));
11015 case TYPE_CODE_PTR: /* Pointer to array */
11016 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11017 {
11018 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11019 type = ada_array_element_type (type, nargs);
11020 if (type == NULL)
11021 error (_("element type of array unknown"));
11022 else
11023 return value_zero (ada_aligned_type (type), lval_memory);
11024 }
11025 return
11026 unwrap_value (ada_value_ptr_subscript (argvec[0],
11027 nargs, argvec + 1));
11028
11029 default:
11030 error (_("Attempt to index or call something other than an "
11031 "array or function"));
11032 }
11033
11034 case TERNOP_SLICE:
11035 {
11036 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11037 struct value *low_bound_val =
11038 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 struct value *high_bound_val =
11040 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11041 LONGEST low_bound;
11042 LONGEST high_bound;
11043
11044 low_bound_val = coerce_ref (low_bound_val);
11045 high_bound_val = coerce_ref (high_bound_val);
11046 low_bound = value_as_long (low_bound_val);
11047 high_bound = value_as_long (high_bound_val);
11048
11049 if (noside == EVAL_SKIP)
11050 goto nosideret;
11051
11052 /* If this is a reference to an aligner type, then remove all
11053 the aligners. */
11054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11055 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11056 TYPE_TARGET_TYPE (value_type (array)) =
11057 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11058
11059 if (ada_is_constrained_packed_array_type (value_type (array)))
11060 error (_("cannot slice a packed array"));
11061
11062 /* If this is a reference to an array or an array lvalue,
11063 convert to a pointer. */
11064 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11065 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11066 && VALUE_LVAL (array) == lval_memory))
11067 array = value_addr (array);
11068
11069 if (noside == EVAL_AVOID_SIDE_EFFECTS
11070 && ada_is_array_descriptor_type (ada_check_typedef
11071 (value_type (array))))
11072 return empty_array (ada_type_of_array (array, 0), low_bound);
11073
11074 array = ada_coerce_to_simple_array_ptr (array);
11075
11076 /* If we have more than one level of pointer indirection,
11077 dereference the value until we get only one level. */
11078 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11079 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11080 == TYPE_CODE_PTR))
11081 array = value_ind (array);
11082
11083 /* Make sure we really do have an array type before going further,
11084 to avoid a SEGV when trying to get the index type or the target
11085 type later down the road if the debug info generated by
11086 the compiler is incorrect or incomplete. */
11087 if (!ada_is_simple_array_type (value_type (array)))
11088 error (_("cannot take slice of non-array"));
11089
11090 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11091 == TYPE_CODE_PTR)
11092 {
11093 struct type *type0 = ada_check_typedef (value_type (array));
11094
11095 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11096 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11097 else
11098 {
11099 struct type *arr_type0 =
11100 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11101
11102 return ada_value_slice_from_ptr (array, arr_type0,
11103 longest_to_int (low_bound),
11104 longest_to_int (high_bound));
11105 }
11106 }
11107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11108 return array;
11109 else if (high_bound < low_bound)
11110 return empty_array (value_type (array), low_bound);
11111 else
11112 return ada_value_slice (array, longest_to_int (low_bound),
11113 longest_to_int (high_bound));
11114 }
11115
11116 case UNOP_IN_RANGE:
11117 (*pos) += 2;
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 type = check_typedef (exp->elts[pc + 1].type);
11120
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
11123
11124 switch (TYPE_CODE (type))
11125 {
11126 default:
11127 lim_warning (_("Membership test incompletely implemented; "
11128 "always returns true"));
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_from_longest (type, (LONGEST) 1);
11131
11132 case TYPE_CODE_RANGE:
11133 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11134 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11135 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11137 type = language_bool_type (exp->language_defn, exp->gdbarch);
11138 return
11139 value_from_longest (type,
11140 (value_less (arg1, arg3)
11141 || value_equal (arg1, arg3))
11142 && (value_less (arg2, arg1)
11143 || value_equal (arg2, arg1)));
11144 }
11145
11146 case BINOP_IN_BOUNDS:
11147 (*pos) += 2;
11148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11149 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
11153
11154 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11155 {
11156 type = language_bool_type (exp->language_defn, exp->gdbarch);
11157 return value_zero (type, not_lval);
11158 }
11159
11160 tem = longest_to_int (exp->elts[pc + 1].longconst);
11161
11162 type = ada_index_type (value_type (arg2), tem, "range");
11163 if (!type)
11164 type = value_type (arg1);
11165
11166 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11167 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11168
11169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11171 type = language_bool_type (exp->language_defn, exp->gdbarch);
11172 return
11173 value_from_longest (type,
11174 (value_less (arg1, arg3)
11175 || value_equal (arg1, arg3))
11176 && (value_less (arg2, arg1)
11177 || value_equal (arg2, arg1)));
11178
11179 case TERNOP_IN_RANGE:
11180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11181 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11189 type = language_bool_type (exp->language_defn, exp->gdbarch);
11190 return
11191 value_from_longest (type,
11192 (value_less (arg1, arg3)
11193 || value_equal (arg1, arg3))
11194 && (value_less (arg2, arg1)
11195 || value_equal (arg2, arg1)));
11196
11197 case OP_ATR_FIRST:
11198 case OP_ATR_LAST:
11199 case OP_ATR_LENGTH:
11200 {
11201 struct type *type_arg;
11202
11203 if (exp->elts[*pos].opcode == OP_TYPE)
11204 {
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11206 arg1 = NULL;
11207 type_arg = check_typedef (exp->elts[pc + 2].type);
11208 }
11209 else
11210 {
11211 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11212 type_arg = NULL;
11213 }
11214
11215 if (exp->elts[*pos].opcode != OP_LONG)
11216 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11217 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11218 *pos += 4;
11219
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222
11223 if (type_arg == NULL)
11224 {
11225 arg1 = ada_coerce_ref (arg1);
11226
11227 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11228 arg1 = ada_coerce_to_simple_array (arg1);
11229
11230 if (op == OP_ATR_LENGTH)
11231 type = builtin_type (exp->gdbarch)->builtin_int;
11232 else
11233 {
11234 type = ada_index_type (value_type (arg1), tem,
11235 ada_attribute_name (op));
11236 if (type == NULL)
11237 type = builtin_type (exp->gdbarch)->builtin_int;
11238 }
11239
11240 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return allocate_value (type);
11242
11243 switch (op)
11244 {
11245 default: /* Should never happen. */
11246 error (_("unexpected attribute encountered"));
11247 case OP_ATR_FIRST:
11248 return value_from_longest
11249 (type, ada_array_bound (arg1, tem, 0));
11250 case OP_ATR_LAST:
11251 return value_from_longest
11252 (type, ada_array_bound (arg1, tem, 1));
11253 case OP_ATR_LENGTH:
11254 return value_from_longest
11255 (type, ada_array_length (arg1, tem));
11256 }
11257 }
11258 else if (discrete_type_p (type_arg))
11259 {
11260 struct type *range_type;
11261 const char *name = ada_type_name (type_arg);
11262
11263 range_type = NULL;
11264 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11265 range_type = to_fixed_range_type (type_arg, NULL);
11266 if (range_type == NULL)
11267 range_type = type_arg;
11268 switch (op)
11269 {
11270 default:
11271 error (_("unexpected attribute encountered"));
11272 case OP_ATR_FIRST:
11273 return value_from_longest
11274 (range_type, ada_discrete_type_low_bound (range_type));
11275 case OP_ATR_LAST:
11276 return value_from_longest
11277 (range_type, ada_discrete_type_high_bound (range_type));
11278 case OP_ATR_LENGTH:
11279 error (_("the 'length attribute applies only to array types"));
11280 }
11281 }
11282 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11283 error (_("unimplemented type attribute"));
11284 else
11285 {
11286 LONGEST low, high;
11287
11288 if (ada_is_constrained_packed_array_type (type_arg))
11289 type_arg = decode_constrained_packed_array_type (type_arg);
11290
11291 if (op == OP_ATR_LENGTH)
11292 type = builtin_type (exp->gdbarch)->builtin_int;
11293 else
11294 {
11295 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11296 if (type == NULL)
11297 type = builtin_type (exp->gdbarch)->builtin_int;
11298 }
11299
11300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11301 return allocate_value (type);
11302
11303 switch (op)
11304 {
11305 default:
11306 error (_("unexpected attribute encountered"));
11307 case OP_ATR_FIRST:
11308 low = ada_array_bound_from_type (type_arg, tem, 0);
11309 return value_from_longest (type, low);
11310 case OP_ATR_LAST:
11311 high = ada_array_bound_from_type (type_arg, tem, 1);
11312 return value_from_longest (type, high);
11313 case OP_ATR_LENGTH:
11314 low = ada_array_bound_from_type (type_arg, tem, 0);
11315 high = ada_array_bound_from_type (type_arg, tem, 1);
11316 return value_from_longest (type, high - low + 1);
11317 }
11318 }
11319 }
11320
11321 case OP_ATR_TAG:
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11323 if (noside == EVAL_SKIP)
11324 goto nosideret;
11325
11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11327 return value_zero (ada_tag_type (arg1), not_lval);
11328
11329 return ada_value_tag (arg1);
11330
11331 case OP_ATR_MIN:
11332 case OP_ATR_MAX:
11333 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11335 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 if (noside == EVAL_SKIP)
11337 goto nosideret;
11338 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11339 return value_zero (value_type (arg1), not_lval);
11340 else
11341 {
11342 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11343 return value_binop (arg1, arg2,
11344 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11345 }
11346
11347 case OP_ATR_MODULUS:
11348 {
11349 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11350
11351 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11352 if (noside == EVAL_SKIP)
11353 goto nosideret;
11354
11355 if (!ada_is_modular_type (type_arg))
11356 error (_("'modulus must be applied to modular type"));
11357
11358 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11359 ada_modulus (type_arg));
11360 }
11361
11362
11363 case OP_ATR_POS:
11364 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11365 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11366 if (noside == EVAL_SKIP)
11367 goto nosideret;
11368 type = builtin_type (exp->gdbarch)->builtin_int;
11369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11370 return value_zero (type, not_lval);
11371 else
11372 return value_pos_atr (type, arg1);
11373
11374 case OP_ATR_SIZE:
11375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11376 type = value_type (arg1);
11377
11378 /* If the argument is a reference, then dereference its type, since
11379 the user is really asking for the size of the actual object,
11380 not the size of the pointer. */
11381 if (TYPE_CODE (type) == TYPE_CODE_REF)
11382 type = TYPE_TARGET_TYPE (type);
11383
11384 if (noside == EVAL_SKIP)
11385 goto nosideret;
11386 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11387 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11388 else
11389 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11390 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11391
11392 case OP_ATR_VAL:
11393 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11395 type = exp->elts[pc + 2].type;
11396 if (noside == EVAL_SKIP)
11397 goto nosideret;
11398 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11399 return value_zero (type, not_lval);
11400 else
11401 return value_val_atr (type, arg1);
11402
11403 case BINOP_EXP:
11404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11405 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 if (noside == EVAL_SKIP)
11407 goto nosideret;
11408 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11409 return value_zero (value_type (arg1), not_lval);
11410 else
11411 {
11412 /* For integer exponentiation operations,
11413 only promote the first argument. */
11414 if (is_integral_type (value_type (arg2)))
11415 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11416 else
11417 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11418
11419 return value_binop (arg1, arg2, op);
11420 }
11421
11422 case UNOP_PLUS:
11423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11424 if (noside == EVAL_SKIP)
11425 goto nosideret;
11426 else
11427 return arg1;
11428
11429 case UNOP_ABS:
11430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11431 if (noside == EVAL_SKIP)
11432 goto nosideret;
11433 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11434 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11435 return value_neg (arg1);
11436 else
11437 return arg1;
11438
11439 case UNOP_IND:
11440 preeval_pos = *pos;
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 if (noside == EVAL_SKIP)
11443 goto nosideret;
11444 type = ada_check_typedef (value_type (arg1));
11445 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11446 {
11447 if (ada_is_array_descriptor_type (type))
11448 /* GDB allows dereferencing GNAT array descriptors. */
11449 {
11450 struct type *arrType = ada_type_of_array (arg1, 0);
11451
11452 if (arrType == NULL)
11453 error (_("Attempt to dereference null array pointer."));
11454 return value_at_lazy (arrType, 0);
11455 }
11456 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11457 || TYPE_CODE (type) == TYPE_CODE_REF
11458 /* In C you can dereference an array to get the 1st elt. */
11459 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11460 {
11461 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11462 only be determined by inspecting the object's tag.
11463 This means that we need to evaluate completely the
11464 expression in order to get its type. */
11465
11466 if ((TYPE_CODE (type) == TYPE_CODE_REF
11467 || TYPE_CODE (type) == TYPE_CODE_PTR)
11468 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11469 {
11470 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11471 EVAL_NORMAL);
11472 type = value_type (ada_value_ind (arg1));
11473 }
11474 else
11475 {
11476 type = to_static_fixed_type
11477 (ada_aligned_type
11478 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11479 }
11480 ada_ensure_varsize_limit (type);
11481 return value_zero (type, lval_memory);
11482 }
11483 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11484 {
11485 /* GDB allows dereferencing an int. */
11486 if (expect_type == NULL)
11487 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11488 lval_memory);
11489 else
11490 {
11491 expect_type =
11492 to_static_fixed_type (ada_aligned_type (expect_type));
11493 return value_zero (expect_type, lval_memory);
11494 }
11495 }
11496 else
11497 error (_("Attempt to take contents of a non-pointer value."));
11498 }
11499 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11500 type = ada_check_typedef (value_type (arg1));
11501
11502 if (TYPE_CODE (type) == TYPE_CODE_INT)
11503 /* GDB allows dereferencing an int. If we were given
11504 the expect_type, then use that as the target type.
11505 Otherwise, assume that the target type is an int. */
11506 {
11507 if (expect_type != NULL)
11508 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11509 arg1));
11510 else
11511 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11512 (CORE_ADDR) value_as_address (arg1));
11513 }
11514
11515 if (ada_is_array_descriptor_type (type))
11516 /* GDB allows dereferencing GNAT array descriptors. */
11517 return ada_coerce_to_simple_array (arg1);
11518 else
11519 return ada_value_ind (arg1);
11520
11521 case STRUCTOP_STRUCT:
11522 tem = longest_to_int (exp->elts[pc + 1].longconst);
11523 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11524 preeval_pos = *pos;
11525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11526 if (noside == EVAL_SKIP)
11527 goto nosideret;
11528 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11529 {
11530 struct type *type1 = value_type (arg1);
11531
11532 if (ada_is_tagged_type (type1, 1))
11533 {
11534 type = ada_lookup_struct_elt_type (type1,
11535 &exp->elts[pc + 2].string,
11536 1, 1);
11537
11538 /* If the field is not found, check if it exists in the
11539 extension of this object's type. This means that we
11540 need to evaluate completely the expression. */
11541
11542 if (type == NULL)
11543 {
11544 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11545 EVAL_NORMAL);
11546 arg1 = ada_value_struct_elt (arg1,
11547 &exp->elts[pc + 2].string,
11548 0);
11549 arg1 = unwrap_value (arg1);
11550 type = value_type (ada_to_fixed_value (arg1));
11551 }
11552 }
11553 else
11554 type =
11555 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11556 0);
11557
11558 return value_zero (ada_aligned_type (type), lval_memory);
11559 }
11560 else
11561 {
11562 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11563 arg1 = unwrap_value (arg1);
11564 return ada_to_fixed_value (arg1);
11565 }
11566
11567 case OP_TYPE:
11568 /* The value is not supposed to be used. This is here to make it
11569 easier to accommodate expressions that contain types. */
11570 (*pos) += 2;
11571 if (noside == EVAL_SKIP)
11572 goto nosideret;
11573 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11574 return allocate_value (exp->elts[pc + 1].type);
11575 else
11576 error (_("Attempt to use a type name as an expression"));
11577
11578 case OP_AGGREGATE:
11579 case OP_CHOICES:
11580 case OP_OTHERS:
11581 case OP_DISCRETE_RANGE:
11582 case OP_POSITIONAL:
11583 case OP_NAME:
11584 if (noside == EVAL_NORMAL)
11585 switch (op)
11586 {
11587 case OP_NAME:
11588 error (_("Undefined name, ambiguous name, or renaming used in "
11589 "component association: %s."), &exp->elts[pc+2].string);
11590 case OP_AGGREGATE:
11591 error (_("Aggregates only allowed on the right of an assignment"));
11592 default:
11593 internal_error (__FILE__, __LINE__,
11594 _("aggregate apparently mangled"));
11595 }
11596
11597 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11598 *pos += oplen - 1;
11599 for (tem = 0; tem < nargs; tem += 1)
11600 ada_evaluate_subexp (NULL, exp, pos, noside);
11601 goto nosideret;
11602 }
11603
11604 nosideret:
11605 return eval_skip_value (exp);
11606 }
11607 \f
11608
11609 /* Fixed point */
11610
11611 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11612 type name that encodes the 'small and 'delta information.
11613 Otherwise, return NULL. */
11614
11615 static const char *
11616 fixed_type_info (struct type *type)
11617 {
11618 const char *name = ada_type_name (type);
11619 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11620
11621 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11622 {
11623 const char *tail = strstr (name, "___XF_");
11624
11625 if (tail == NULL)
11626 return NULL;
11627 else
11628 return tail + 5;
11629 }
11630 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11631 return fixed_type_info (TYPE_TARGET_TYPE (type));
11632 else
11633 return NULL;
11634 }
11635
11636 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11637
11638 int
11639 ada_is_fixed_point_type (struct type *type)
11640 {
11641 return fixed_type_info (type) != NULL;
11642 }
11643
11644 /* Return non-zero iff TYPE represents a System.Address type. */
11645
11646 int
11647 ada_is_system_address_type (struct type *type)
11648 {
11649 return (TYPE_NAME (type)
11650 && strcmp (TYPE_NAME (type), "system__address") == 0);
11651 }
11652
11653 /* Assuming that TYPE is the representation of an Ada fixed-point
11654 type, return the target floating-point type to be used to represent
11655 of this type during internal computation. */
11656
11657 static struct type *
11658 ada_scaling_type (struct type *type)
11659 {
11660 return builtin_type (get_type_arch (type))->builtin_long_double;
11661 }
11662
11663 /* Assuming that TYPE is the representation of an Ada fixed-point
11664 type, return its delta, or NULL if the type is malformed and the
11665 delta cannot be determined. */
11666
11667 struct value *
11668 ada_delta (struct type *type)
11669 {
11670 const char *encoding = fixed_type_info (type);
11671 struct type *scale_type = ada_scaling_type (type);
11672
11673 long long num, den;
11674
11675 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11676 return nullptr;
11677 else
11678 return value_binop (value_from_longest (scale_type, num),
11679 value_from_longest (scale_type, den), BINOP_DIV);
11680 }
11681
11682 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11683 factor ('SMALL value) associated with the type. */
11684
11685 struct value *
11686 ada_scaling_factor (struct type *type)
11687 {
11688 const char *encoding = fixed_type_info (type);
11689 struct type *scale_type = ada_scaling_type (type);
11690
11691 long long num0, den0, num1, den1;
11692 int n;
11693
11694 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11695 &num0, &den0, &num1, &den1);
11696
11697 if (n < 2)
11698 return value_from_longest (scale_type, 1);
11699 else if (n == 4)
11700 return value_binop (value_from_longest (scale_type, num1),
11701 value_from_longest (scale_type, den1), BINOP_DIV);
11702 else
11703 return value_binop (value_from_longest (scale_type, num0),
11704 value_from_longest (scale_type, den0), BINOP_DIV);
11705 }
11706
11707 \f
11708
11709 /* Range types */
11710
11711 /* Scan STR beginning at position K for a discriminant name, and
11712 return the value of that discriminant field of DVAL in *PX. If
11713 PNEW_K is not null, put the position of the character beyond the
11714 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11715 not alter *PX and *PNEW_K if unsuccessful. */
11716
11717 static int
11718 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11719 int *pnew_k)
11720 {
11721 static char *bound_buffer = NULL;
11722 static size_t bound_buffer_len = 0;
11723 const char *pstart, *pend, *bound;
11724 struct value *bound_val;
11725
11726 if (dval == NULL || str == NULL || str[k] == '\0')
11727 return 0;
11728
11729 pstart = str + k;
11730 pend = strstr (pstart, "__");
11731 if (pend == NULL)
11732 {
11733 bound = pstart;
11734 k += strlen (bound);
11735 }
11736 else
11737 {
11738 int len = pend - pstart;
11739
11740 /* Strip __ and beyond. */
11741 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11742 strncpy (bound_buffer, pstart, len);
11743 bound_buffer[len] = '\0';
11744
11745 bound = bound_buffer;
11746 k = pend - str;
11747 }
11748
11749 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11750 if (bound_val == NULL)
11751 return 0;
11752
11753 *px = value_as_long (bound_val);
11754 if (pnew_k != NULL)
11755 *pnew_k = k;
11756 return 1;
11757 }
11758
11759 /* Value of variable named NAME in the current environment. If
11760 no such variable found, then if ERR_MSG is null, returns 0, and
11761 otherwise causes an error with message ERR_MSG. */
11762
11763 static struct value *
11764 get_var_value (const char *name, const char *err_msg)
11765 {
11766 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11767
11768 struct block_symbol *syms;
11769 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11770 get_selected_block (0),
11771 VAR_DOMAIN, &syms, 1);
11772 struct cleanup *old_chain = make_cleanup (xfree, syms);
11773
11774 if (nsyms != 1)
11775 {
11776 do_cleanups (old_chain);
11777 if (err_msg == NULL)
11778 return 0;
11779 else
11780 error (("%s"), err_msg);
11781 }
11782
11783 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11784 do_cleanups (old_chain);
11785 return result;
11786 }
11787
11788 /* Value of integer variable named NAME in the current environment.
11789 If no such variable is found, returns false. Otherwise, sets VALUE
11790 to the variable's value and returns true. */
11791
11792 bool
11793 get_int_var_value (const char *name, LONGEST &value)
11794 {
11795 struct value *var_val = get_var_value (name, 0);
11796
11797 if (var_val == 0)
11798 return false;
11799
11800 value = value_as_long (var_val);
11801 return true;
11802 }
11803
11804
11805 /* Return a range type whose base type is that of the range type named
11806 NAME in the current environment, and whose bounds are calculated
11807 from NAME according to the GNAT range encoding conventions.
11808 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11809 corresponding range type from debug information; fall back to using it
11810 if symbol lookup fails. If a new type must be created, allocate it
11811 like ORIG_TYPE was. The bounds information, in general, is encoded
11812 in NAME, the base type given in the named range type. */
11813
11814 static struct type *
11815 to_fixed_range_type (struct type *raw_type, struct value *dval)
11816 {
11817 const char *name;
11818 struct type *base_type;
11819 const char *subtype_info;
11820
11821 gdb_assert (raw_type != NULL);
11822 gdb_assert (TYPE_NAME (raw_type) != NULL);
11823
11824 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11825 base_type = TYPE_TARGET_TYPE (raw_type);
11826 else
11827 base_type = raw_type;
11828
11829 name = TYPE_NAME (raw_type);
11830 subtype_info = strstr (name, "___XD");
11831 if (subtype_info == NULL)
11832 {
11833 LONGEST L = ada_discrete_type_low_bound (raw_type);
11834 LONGEST U = ada_discrete_type_high_bound (raw_type);
11835
11836 if (L < INT_MIN || U > INT_MAX)
11837 return raw_type;
11838 else
11839 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11840 L, U);
11841 }
11842 else
11843 {
11844 static char *name_buf = NULL;
11845 static size_t name_len = 0;
11846 int prefix_len = subtype_info - name;
11847 LONGEST L, U;
11848 struct type *type;
11849 const char *bounds_str;
11850 int n;
11851
11852 GROW_VECT (name_buf, name_len, prefix_len + 5);
11853 strncpy (name_buf, name, prefix_len);
11854 name_buf[prefix_len] = '\0';
11855
11856 subtype_info += 5;
11857 bounds_str = strchr (subtype_info, '_');
11858 n = 1;
11859
11860 if (*subtype_info == 'L')
11861 {
11862 if (!ada_scan_number (bounds_str, n, &L, &n)
11863 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11864 return raw_type;
11865 if (bounds_str[n] == '_')
11866 n += 2;
11867 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11868 n += 1;
11869 subtype_info += 1;
11870 }
11871 else
11872 {
11873 strcpy (name_buf + prefix_len, "___L");
11874 if (!get_int_var_value (name_buf, L))
11875 {
11876 lim_warning (_("Unknown lower bound, using 1."));
11877 L = 1;
11878 }
11879 }
11880
11881 if (*subtype_info == 'U')
11882 {
11883 if (!ada_scan_number (bounds_str, n, &U, &n)
11884 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11885 return raw_type;
11886 }
11887 else
11888 {
11889 strcpy (name_buf + prefix_len, "___U");
11890 if (!get_int_var_value (name_buf, U))
11891 {
11892 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11893 U = L;
11894 }
11895 }
11896
11897 type = create_static_range_type (alloc_type_copy (raw_type),
11898 base_type, L, U);
11899 /* create_static_range_type alters the resulting type's length
11900 to match the size of the base_type, which is not what we want.
11901 Set it back to the original range type's length. */
11902 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11903 TYPE_NAME (type) = name;
11904 return type;
11905 }
11906 }
11907
11908 /* True iff NAME is the name of a range type. */
11909
11910 int
11911 ada_is_range_type_name (const char *name)
11912 {
11913 return (name != NULL && strstr (name, "___XD"));
11914 }
11915 \f
11916
11917 /* Modular types */
11918
11919 /* True iff TYPE is an Ada modular type. */
11920
11921 int
11922 ada_is_modular_type (struct type *type)
11923 {
11924 struct type *subranged_type = get_base_type (type);
11925
11926 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11927 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11928 && TYPE_UNSIGNED (subranged_type));
11929 }
11930
11931 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11932
11933 ULONGEST
11934 ada_modulus (struct type *type)
11935 {
11936 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11937 }
11938 \f
11939
11940 /* Ada exception catchpoint support:
11941 ---------------------------------
11942
11943 We support 3 kinds of exception catchpoints:
11944 . catchpoints on Ada exceptions
11945 . catchpoints on unhandled Ada exceptions
11946 . catchpoints on failed assertions
11947
11948 Exceptions raised during failed assertions, or unhandled exceptions
11949 could perfectly be caught with the general catchpoint on Ada exceptions.
11950 However, we can easily differentiate these two special cases, and having
11951 the option to distinguish these two cases from the rest can be useful
11952 to zero-in on certain situations.
11953
11954 Exception catchpoints are a specialized form of breakpoint,
11955 since they rely on inserting breakpoints inside known routines
11956 of the GNAT runtime. The implementation therefore uses a standard
11957 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11958 of breakpoint_ops.
11959
11960 Support in the runtime for exception catchpoints have been changed
11961 a few times already, and these changes affect the implementation
11962 of these catchpoints. In order to be able to support several
11963 variants of the runtime, we use a sniffer that will determine
11964 the runtime variant used by the program being debugged. */
11965
11966 /* Ada's standard exceptions.
11967
11968 The Ada 83 standard also defined Numeric_Error. But there so many
11969 situations where it was unclear from the Ada 83 Reference Manual
11970 (RM) whether Constraint_Error or Numeric_Error should be raised,
11971 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11972 Interpretation saying that anytime the RM says that Numeric_Error
11973 should be raised, the implementation may raise Constraint_Error.
11974 Ada 95 went one step further and pretty much removed Numeric_Error
11975 from the list of standard exceptions (it made it a renaming of
11976 Constraint_Error, to help preserve compatibility when compiling
11977 an Ada83 compiler). As such, we do not include Numeric_Error from
11978 this list of standard exceptions. */
11979
11980 static const char *standard_exc[] = {
11981 "constraint_error",
11982 "program_error",
11983 "storage_error",
11984 "tasking_error"
11985 };
11986
11987 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11988
11989 /* A structure that describes how to support exception catchpoints
11990 for a given executable. */
11991
11992 struct exception_support_info
11993 {
11994 /* The name of the symbol to break on in order to insert
11995 a catchpoint on exceptions. */
11996 const char *catch_exception_sym;
11997
11998 /* The name of the symbol to break on in order to insert
11999 a catchpoint on unhandled exceptions. */
12000 const char *catch_exception_unhandled_sym;
12001
12002 /* The name of the symbol to break on in order to insert
12003 a catchpoint on failed assertions. */
12004 const char *catch_assert_sym;
12005
12006 /* Assuming that the inferior just triggered an unhandled exception
12007 catchpoint, this function is responsible for returning the address
12008 in inferior memory where the name of that exception is stored.
12009 Return zero if the address could not be computed. */
12010 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12011 };
12012
12013 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12014 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12015
12016 /* The following exception support info structure describes how to
12017 implement exception catchpoints with the latest version of the
12018 Ada runtime (as of 2007-03-06). */
12019
12020 static const struct exception_support_info default_exception_support_info =
12021 {
12022 "__gnat_debug_raise_exception", /* catch_exception_sym */
12023 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12024 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12025 ada_unhandled_exception_name_addr
12026 };
12027
12028 /* The following exception support info structure describes how to
12029 implement exception catchpoints with a slightly older version
12030 of the Ada runtime. */
12031
12032 static const struct exception_support_info exception_support_info_fallback =
12033 {
12034 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12035 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12036 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12037 ada_unhandled_exception_name_addr_from_raise
12038 };
12039
12040 /* Return nonzero if we can detect the exception support routines
12041 described in EINFO.
12042
12043 This function errors out if an abnormal situation is detected
12044 (for instance, if we find the exception support routines, but
12045 that support is found to be incomplete). */
12046
12047 static int
12048 ada_has_this_exception_support (const struct exception_support_info *einfo)
12049 {
12050 struct symbol *sym;
12051
12052 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12053 that should be compiled with debugging information. As a result, we
12054 expect to find that symbol in the symtabs. */
12055
12056 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12057 if (sym == NULL)
12058 {
12059 /* Perhaps we did not find our symbol because the Ada runtime was
12060 compiled without debugging info, or simply stripped of it.
12061 It happens on some GNU/Linux distributions for instance, where
12062 users have to install a separate debug package in order to get
12063 the runtime's debugging info. In that situation, let the user
12064 know why we cannot insert an Ada exception catchpoint.
12065
12066 Note: Just for the purpose of inserting our Ada exception
12067 catchpoint, we could rely purely on the associated minimal symbol.
12068 But we would be operating in degraded mode anyway, since we are
12069 still lacking the debugging info needed later on to extract
12070 the name of the exception being raised (this name is printed in
12071 the catchpoint message, and is also used when trying to catch
12072 a specific exception). We do not handle this case for now. */
12073 struct bound_minimal_symbol msym
12074 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12075
12076 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12077 error (_("Your Ada runtime appears to be missing some debugging "
12078 "information.\nCannot insert Ada exception catchpoint "
12079 "in this configuration."));
12080
12081 return 0;
12082 }
12083
12084 /* Make sure that the symbol we found corresponds to a function. */
12085
12086 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12087 error (_("Symbol \"%s\" is not a function (class = %d)"),
12088 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12089
12090 return 1;
12091 }
12092
12093 /* Inspect the Ada runtime and determine which exception info structure
12094 should be used to provide support for exception catchpoints.
12095
12096 This function will always set the per-inferior exception_info,
12097 or raise an error. */
12098
12099 static void
12100 ada_exception_support_info_sniffer (void)
12101 {
12102 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12103
12104 /* If the exception info is already known, then no need to recompute it. */
12105 if (data->exception_info != NULL)
12106 return;
12107
12108 /* Check the latest (default) exception support info. */
12109 if (ada_has_this_exception_support (&default_exception_support_info))
12110 {
12111 data->exception_info = &default_exception_support_info;
12112 return;
12113 }
12114
12115 /* Try our fallback exception suport info. */
12116 if (ada_has_this_exception_support (&exception_support_info_fallback))
12117 {
12118 data->exception_info = &exception_support_info_fallback;
12119 return;
12120 }
12121
12122 /* Sometimes, it is normal for us to not be able to find the routine
12123 we are looking for. This happens when the program is linked with
12124 the shared version of the GNAT runtime, and the program has not been
12125 started yet. Inform the user of these two possible causes if
12126 applicable. */
12127
12128 if (ada_update_initial_language (language_unknown) != language_ada)
12129 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12130
12131 /* If the symbol does not exist, then check that the program is
12132 already started, to make sure that shared libraries have been
12133 loaded. If it is not started, this may mean that the symbol is
12134 in a shared library. */
12135
12136 if (ptid_get_pid (inferior_ptid) == 0)
12137 error (_("Unable to insert catchpoint. Try to start the program first."));
12138
12139 /* At this point, we know that we are debugging an Ada program and
12140 that the inferior has been started, but we still are not able to
12141 find the run-time symbols. That can mean that we are in
12142 configurable run time mode, or that a-except as been optimized
12143 out by the linker... In any case, at this point it is not worth
12144 supporting this feature. */
12145
12146 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12147 }
12148
12149 /* True iff FRAME is very likely to be that of a function that is
12150 part of the runtime system. This is all very heuristic, but is
12151 intended to be used as advice as to what frames are uninteresting
12152 to most users. */
12153
12154 static int
12155 is_known_support_routine (struct frame_info *frame)
12156 {
12157 enum language func_lang;
12158 int i;
12159 const char *fullname;
12160
12161 /* If this code does not have any debugging information (no symtab),
12162 This cannot be any user code. */
12163
12164 symtab_and_line sal = find_frame_sal (frame);
12165 if (sal.symtab == NULL)
12166 return 1;
12167
12168 /* If there is a symtab, but the associated source file cannot be
12169 located, then assume this is not user code: Selecting a frame
12170 for which we cannot display the code would not be very helpful
12171 for the user. This should also take care of case such as VxWorks
12172 where the kernel has some debugging info provided for a few units. */
12173
12174 fullname = symtab_to_fullname (sal.symtab);
12175 if (access (fullname, R_OK) != 0)
12176 return 1;
12177
12178 /* Check the unit filename againt the Ada runtime file naming.
12179 We also check the name of the objfile against the name of some
12180 known system libraries that sometimes come with debugging info
12181 too. */
12182
12183 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12184 {
12185 re_comp (known_runtime_file_name_patterns[i]);
12186 if (re_exec (lbasename (sal.symtab->filename)))
12187 return 1;
12188 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12189 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12190 return 1;
12191 }
12192
12193 /* Check whether the function is a GNAT-generated entity. */
12194
12195 gdb::unique_xmalloc_ptr<char> func_name
12196 = find_frame_funname (frame, &func_lang, NULL);
12197 if (func_name == NULL)
12198 return 1;
12199
12200 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12201 {
12202 re_comp (known_auxiliary_function_name_patterns[i]);
12203 if (re_exec (func_name.get ()))
12204 return 1;
12205 }
12206
12207 return 0;
12208 }
12209
12210 /* Find the first frame that contains debugging information and that is not
12211 part of the Ada run-time, starting from FI and moving upward. */
12212
12213 void
12214 ada_find_printable_frame (struct frame_info *fi)
12215 {
12216 for (; fi != NULL; fi = get_prev_frame (fi))
12217 {
12218 if (!is_known_support_routine (fi))
12219 {
12220 select_frame (fi);
12221 break;
12222 }
12223 }
12224
12225 }
12226
12227 /* Assuming that the inferior just triggered an unhandled exception
12228 catchpoint, return the address in inferior memory where the name
12229 of the exception is stored.
12230
12231 Return zero if the address could not be computed. */
12232
12233 static CORE_ADDR
12234 ada_unhandled_exception_name_addr (void)
12235 {
12236 return parse_and_eval_address ("e.full_name");
12237 }
12238
12239 /* Same as ada_unhandled_exception_name_addr, except that this function
12240 should be used when the inferior uses an older version of the runtime,
12241 where the exception name needs to be extracted from a specific frame
12242 several frames up in the callstack. */
12243
12244 static CORE_ADDR
12245 ada_unhandled_exception_name_addr_from_raise (void)
12246 {
12247 int frame_level;
12248 struct frame_info *fi;
12249 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12250
12251 /* To determine the name of this exception, we need to select
12252 the frame corresponding to RAISE_SYM_NAME. This frame is
12253 at least 3 levels up, so we simply skip the first 3 frames
12254 without checking the name of their associated function. */
12255 fi = get_current_frame ();
12256 for (frame_level = 0; frame_level < 3; frame_level += 1)
12257 if (fi != NULL)
12258 fi = get_prev_frame (fi);
12259
12260 while (fi != NULL)
12261 {
12262 enum language func_lang;
12263
12264 gdb::unique_xmalloc_ptr<char> func_name
12265 = find_frame_funname (fi, &func_lang, NULL);
12266 if (func_name != NULL)
12267 {
12268 if (strcmp (func_name.get (),
12269 data->exception_info->catch_exception_sym) == 0)
12270 break; /* We found the frame we were looking for... */
12271 fi = get_prev_frame (fi);
12272 }
12273 }
12274
12275 if (fi == NULL)
12276 return 0;
12277
12278 select_frame (fi);
12279 return parse_and_eval_address ("id.full_name");
12280 }
12281
12282 /* Assuming the inferior just triggered an Ada exception catchpoint
12283 (of any type), return the address in inferior memory where the name
12284 of the exception is stored, if applicable.
12285
12286 Assumes the selected frame is the current frame.
12287
12288 Return zero if the address could not be computed, or if not relevant. */
12289
12290 static CORE_ADDR
12291 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12292 struct breakpoint *b)
12293 {
12294 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12295
12296 switch (ex)
12297 {
12298 case ada_catch_exception:
12299 return (parse_and_eval_address ("e.full_name"));
12300 break;
12301
12302 case ada_catch_exception_unhandled:
12303 return data->exception_info->unhandled_exception_name_addr ();
12304 break;
12305
12306 case ada_catch_assert:
12307 return 0; /* Exception name is not relevant in this case. */
12308 break;
12309
12310 default:
12311 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12312 break;
12313 }
12314
12315 return 0; /* Should never be reached. */
12316 }
12317
12318 /* Assuming the inferior is stopped at an exception catchpoint,
12319 return the message which was associated to the exception, if
12320 available. Return NULL if the message could not be retrieved.
12321
12322 The caller must xfree the string after use.
12323
12324 Note: The exception message can be associated to an exception
12325 either through the use of the Raise_Exception function, or
12326 more simply (Ada 2005 and later), via:
12327
12328 raise Exception_Name with "exception message";
12329
12330 */
12331
12332 static char *
12333 ada_exception_message_1 (void)
12334 {
12335 struct value *e_msg_val;
12336 char *e_msg = NULL;
12337 int e_msg_len;
12338 struct cleanup *cleanups;
12339
12340 /* For runtimes that support this feature, the exception message
12341 is passed as an unbounded string argument called "message". */
12342 e_msg_val = parse_and_eval ("message");
12343 if (e_msg_val == NULL)
12344 return NULL; /* Exception message not supported. */
12345
12346 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12347 gdb_assert (e_msg_val != NULL);
12348 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12349
12350 /* If the message string is empty, then treat it as if there was
12351 no exception message. */
12352 if (e_msg_len <= 0)
12353 return NULL;
12354
12355 e_msg = (char *) xmalloc (e_msg_len + 1);
12356 cleanups = make_cleanup (xfree, e_msg);
12357 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12358 e_msg[e_msg_len] = '\0';
12359
12360 discard_cleanups (cleanups);
12361 return e_msg;
12362 }
12363
12364 /* Same as ada_exception_message_1, except that all exceptions are
12365 contained here (returning NULL instead). */
12366
12367 static char *
12368 ada_exception_message (void)
12369 {
12370 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12371
12372 TRY
12373 {
12374 e_msg = ada_exception_message_1 ();
12375 }
12376 CATCH (e, RETURN_MASK_ERROR)
12377 {
12378 e_msg = NULL;
12379 }
12380 END_CATCH
12381
12382 return e_msg;
12383 }
12384
12385 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12386 any error that ada_exception_name_addr_1 might cause to be thrown.
12387 When an error is intercepted, a warning with the error message is printed,
12388 and zero is returned. */
12389
12390 static CORE_ADDR
12391 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12392 struct breakpoint *b)
12393 {
12394 CORE_ADDR result = 0;
12395
12396 TRY
12397 {
12398 result = ada_exception_name_addr_1 (ex, b);
12399 }
12400
12401 CATCH (e, RETURN_MASK_ERROR)
12402 {
12403 warning (_("failed to get exception name: %s"), e.message);
12404 return 0;
12405 }
12406 END_CATCH
12407
12408 return result;
12409 }
12410
12411 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12412
12413 /* Ada catchpoints.
12414
12415 In the case of catchpoints on Ada exceptions, the catchpoint will
12416 stop the target on every exception the program throws. When a user
12417 specifies the name of a specific exception, we translate this
12418 request into a condition expression (in text form), and then parse
12419 it into an expression stored in each of the catchpoint's locations.
12420 We then use this condition to check whether the exception that was
12421 raised is the one the user is interested in. If not, then the
12422 target is resumed again. We store the name of the requested
12423 exception, in order to be able to re-set the condition expression
12424 when symbols change. */
12425
12426 /* An instance of this type is used to represent an Ada catchpoint
12427 breakpoint location. */
12428
12429 class ada_catchpoint_location : public bp_location
12430 {
12431 public:
12432 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12433 : bp_location (ops, owner)
12434 {}
12435
12436 /* The condition that checks whether the exception that was raised
12437 is the specific exception the user specified on catchpoint
12438 creation. */
12439 expression_up excep_cond_expr;
12440 };
12441
12442 /* Implement the DTOR method in the bp_location_ops structure for all
12443 Ada exception catchpoint kinds. */
12444
12445 static void
12446 ada_catchpoint_location_dtor (struct bp_location *bl)
12447 {
12448 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12449
12450 al->excep_cond_expr.reset ();
12451 }
12452
12453 /* The vtable to be used in Ada catchpoint locations. */
12454
12455 static const struct bp_location_ops ada_catchpoint_location_ops =
12456 {
12457 ada_catchpoint_location_dtor
12458 };
12459
12460 /* An instance of this type is used to represent an Ada catchpoint. */
12461
12462 struct ada_catchpoint : public breakpoint
12463 {
12464 ~ada_catchpoint () override;
12465
12466 /* The name of the specific exception the user specified. */
12467 char *excep_string;
12468 };
12469
12470 /* Parse the exception condition string in the context of each of the
12471 catchpoint's locations, and store them for later evaluation. */
12472
12473 static void
12474 create_excep_cond_exprs (struct ada_catchpoint *c)
12475 {
12476 struct cleanup *old_chain;
12477 struct bp_location *bl;
12478 char *cond_string;
12479
12480 /* Nothing to do if there's no specific exception to catch. */
12481 if (c->excep_string == NULL)
12482 return;
12483
12484 /* Same if there are no locations... */
12485 if (c->loc == NULL)
12486 return;
12487
12488 /* Compute the condition expression in text form, from the specific
12489 expection we want to catch. */
12490 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12491 old_chain = make_cleanup (xfree, cond_string);
12492
12493 /* Iterate over all the catchpoint's locations, and parse an
12494 expression for each. */
12495 for (bl = c->loc; bl != NULL; bl = bl->next)
12496 {
12497 struct ada_catchpoint_location *ada_loc
12498 = (struct ada_catchpoint_location *) bl;
12499 expression_up exp;
12500
12501 if (!bl->shlib_disabled)
12502 {
12503 const char *s;
12504
12505 s = cond_string;
12506 TRY
12507 {
12508 exp = parse_exp_1 (&s, bl->address,
12509 block_for_pc (bl->address),
12510 0);
12511 }
12512 CATCH (e, RETURN_MASK_ERROR)
12513 {
12514 warning (_("failed to reevaluate internal exception condition "
12515 "for catchpoint %d: %s"),
12516 c->number, e.message);
12517 }
12518 END_CATCH
12519 }
12520
12521 ada_loc->excep_cond_expr = std::move (exp);
12522 }
12523
12524 do_cleanups (old_chain);
12525 }
12526
12527 /* ada_catchpoint destructor. */
12528
12529 ada_catchpoint::~ada_catchpoint ()
12530 {
12531 xfree (this->excep_string);
12532 }
12533
12534 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12535 structure for all exception catchpoint kinds. */
12536
12537 static struct bp_location *
12538 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12539 struct breakpoint *self)
12540 {
12541 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12542 }
12543
12544 /* Implement the RE_SET method in the breakpoint_ops structure for all
12545 exception catchpoint kinds. */
12546
12547 static void
12548 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12549 {
12550 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12551
12552 /* Call the base class's method. This updates the catchpoint's
12553 locations. */
12554 bkpt_breakpoint_ops.re_set (b);
12555
12556 /* Reparse the exception conditional expressions. One for each
12557 location. */
12558 create_excep_cond_exprs (c);
12559 }
12560
12561 /* Returns true if we should stop for this breakpoint hit. If the
12562 user specified a specific exception, we only want to cause a stop
12563 if the program thrown that exception. */
12564
12565 static int
12566 should_stop_exception (const struct bp_location *bl)
12567 {
12568 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12569 const struct ada_catchpoint_location *ada_loc
12570 = (const struct ada_catchpoint_location *) bl;
12571 int stop;
12572
12573 /* With no specific exception, should always stop. */
12574 if (c->excep_string == NULL)
12575 return 1;
12576
12577 if (ada_loc->excep_cond_expr == NULL)
12578 {
12579 /* We will have a NULL expression if back when we were creating
12580 the expressions, this location's had failed to parse. */
12581 return 1;
12582 }
12583
12584 stop = 1;
12585 TRY
12586 {
12587 struct value *mark;
12588
12589 mark = value_mark ();
12590 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12591 value_free_to_mark (mark);
12592 }
12593 CATCH (ex, RETURN_MASK_ALL)
12594 {
12595 exception_fprintf (gdb_stderr, ex,
12596 _("Error in testing exception condition:\n"));
12597 }
12598 END_CATCH
12599
12600 return stop;
12601 }
12602
12603 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12604 for all exception catchpoint kinds. */
12605
12606 static void
12607 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12608 {
12609 bs->stop = should_stop_exception (bs->bp_location_at);
12610 }
12611
12612 /* Implement the PRINT_IT method in the breakpoint_ops structure
12613 for all exception catchpoint kinds. */
12614
12615 static enum print_stop_action
12616 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12617 {
12618 struct ui_out *uiout = current_uiout;
12619 struct breakpoint *b = bs->breakpoint_at;
12620 char *exception_message;
12621
12622 annotate_catchpoint (b->number);
12623
12624 if (uiout->is_mi_like_p ())
12625 {
12626 uiout->field_string ("reason",
12627 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12628 uiout->field_string ("disp", bpdisp_text (b->disposition));
12629 }
12630
12631 uiout->text (b->disposition == disp_del
12632 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12633 uiout->field_int ("bkptno", b->number);
12634 uiout->text (", ");
12635
12636 /* ada_exception_name_addr relies on the selected frame being the
12637 current frame. Need to do this here because this function may be
12638 called more than once when printing a stop, and below, we'll
12639 select the first frame past the Ada run-time (see
12640 ada_find_printable_frame). */
12641 select_frame (get_current_frame ());
12642
12643 switch (ex)
12644 {
12645 case ada_catch_exception:
12646 case ada_catch_exception_unhandled:
12647 {
12648 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12649 char exception_name[256];
12650
12651 if (addr != 0)
12652 {
12653 read_memory (addr, (gdb_byte *) exception_name,
12654 sizeof (exception_name) - 1);
12655 exception_name [sizeof (exception_name) - 1] = '\0';
12656 }
12657 else
12658 {
12659 /* For some reason, we were unable to read the exception
12660 name. This could happen if the Runtime was compiled
12661 without debugging info, for instance. In that case,
12662 just replace the exception name by the generic string
12663 "exception" - it will read as "an exception" in the
12664 notification we are about to print. */
12665 memcpy (exception_name, "exception", sizeof ("exception"));
12666 }
12667 /* In the case of unhandled exception breakpoints, we print
12668 the exception name as "unhandled EXCEPTION_NAME", to make
12669 it clearer to the user which kind of catchpoint just got
12670 hit. We used ui_out_text to make sure that this extra
12671 info does not pollute the exception name in the MI case. */
12672 if (ex == ada_catch_exception_unhandled)
12673 uiout->text ("unhandled ");
12674 uiout->field_string ("exception-name", exception_name);
12675 }
12676 break;
12677 case ada_catch_assert:
12678 /* In this case, the name of the exception is not really
12679 important. Just print "failed assertion" to make it clearer
12680 that his program just hit an assertion-failure catchpoint.
12681 We used ui_out_text because this info does not belong in
12682 the MI output. */
12683 uiout->text ("failed assertion");
12684 break;
12685 }
12686
12687 exception_message = ada_exception_message ();
12688 if (exception_message != NULL)
12689 {
12690 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12691
12692 uiout->text (" (");
12693 uiout->field_string ("exception-message", exception_message);
12694 uiout->text (")");
12695
12696 do_cleanups (cleanups);
12697 }
12698
12699 uiout->text (" at ");
12700 ada_find_printable_frame (get_current_frame ());
12701
12702 return PRINT_SRC_AND_LOC;
12703 }
12704
12705 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12706 for all exception catchpoint kinds. */
12707
12708 static void
12709 print_one_exception (enum ada_exception_catchpoint_kind ex,
12710 struct breakpoint *b, struct bp_location **last_loc)
12711 {
12712 struct ui_out *uiout = current_uiout;
12713 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12714 struct value_print_options opts;
12715
12716 get_user_print_options (&opts);
12717 if (opts.addressprint)
12718 {
12719 annotate_field (4);
12720 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12721 }
12722
12723 annotate_field (5);
12724 *last_loc = b->loc;
12725 switch (ex)
12726 {
12727 case ada_catch_exception:
12728 if (c->excep_string != NULL)
12729 {
12730 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12731
12732 uiout->field_string ("what", msg);
12733 xfree (msg);
12734 }
12735 else
12736 uiout->field_string ("what", "all Ada exceptions");
12737
12738 break;
12739
12740 case ada_catch_exception_unhandled:
12741 uiout->field_string ("what", "unhandled Ada exceptions");
12742 break;
12743
12744 case ada_catch_assert:
12745 uiout->field_string ("what", "failed Ada assertions");
12746 break;
12747
12748 default:
12749 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12750 break;
12751 }
12752 }
12753
12754 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12755 for all exception catchpoint kinds. */
12756
12757 static void
12758 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12759 struct breakpoint *b)
12760 {
12761 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12762 struct ui_out *uiout = current_uiout;
12763
12764 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12765 : _("Catchpoint "));
12766 uiout->field_int ("bkptno", b->number);
12767 uiout->text (": ");
12768
12769 switch (ex)
12770 {
12771 case ada_catch_exception:
12772 if (c->excep_string != NULL)
12773 {
12774 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12775 struct cleanup *old_chain = make_cleanup (xfree, info);
12776
12777 uiout->text (info);
12778 do_cleanups (old_chain);
12779 }
12780 else
12781 uiout->text (_("all Ada exceptions"));
12782 break;
12783
12784 case ada_catch_exception_unhandled:
12785 uiout->text (_("unhandled Ada exceptions"));
12786 break;
12787
12788 case ada_catch_assert:
12789 uiout->text (_("failed Ada assertions"));
12790 break;
12791
12792 default:
12793 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12794 break;
12795 }
12796 }
12797
12798 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12799 for all exception catchpoint kinds. */
12800
12801 static void
12802 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12803 struct breakpoint *b, struct ui_file *fp)
12804 {
12805 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12806
12807 switch (ex)
12808 {
12809 case ada_catch_exception:
12810 fprintf_filtered (fp, "catch exception");
12811 if (c->excep_string != NULL)
12812 fprintf_filtered (fp, " %s", c->excep_string);
12813 break;
12814
12815 case ada_catch_exception_unhandled:
12816 fprintf_filtered (fp, "catch exception unhandled");
12817 break;
12818
12819 case ada_catch_assert:
12820 fprintf_filtered (fp, "catch assert");
12821 break;
12822
12823 default:
12824 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12825 }
12826 print_recreate_thread (b, fp);
12827 }
12828
12829 /* Virtual table for "catch exception" breakpoints. */
12830
12831 static struct bp_location *
12832 allocate_location_catch_exception (struct breakpoint *self)
12833 {
12834 return allocate_location_exception (ada_catch_exception, self);
12835 }
12836
12837 static void
12838 re_set_catch_exception (struct breakpoint *b)
12839 {
12840 re_set_exception (ada_catch_exception, b);
12841 }
12842
12843 static void
12844 check_status_catch_exception (bpstat bs)
12845 {
12846 check_status_exception (ada_catch_exception, bs);
12847 }
12848
12849 static enum print_stop_action
12850 print_it_catch_exception (bpstat bs)
12851 {
12852 return print_it_exception (ada_catch_exception, bs);
12853 }
12854
12855 static void
12856 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12857 {
12858 print_one_exception (ada_catch_exception, b, last_loc);
12859 }
12860
12861 static void
12862 print_mention_catch_exception (struct breakpoint *b)
12863 {
12864 print_mention_exception (ada_catch_exception, b);
12865 }
12866
12867 static void
12868 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12869 {
12870 print_recreate_exception (ada_catch_exception, b, fp);
12871 }
12872
12873 static struct breakpoint_ops catch_exception_breakpoint_ops;
12874
12875 /* Virtual table for "catch exception unhandled" breakpoints. */
12876
12877 static struct bp_location *
12878 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12879 {
12880 return allocate_location_exception (ada_catch_exception_unhandled, self);
12881 }
12882
12883 static void
12884 re_set_catch_exception_unhandled (struct breakpoint *b)
12885 {
12886 re_set_exception (ada_catch_exception_unhandled, b);
12887 }
12888
12889 static void
12890 check_status_catch_exception_unhandled (bpstat bs)
12891 {
12892 check_status_exception (ada_catch_exception_unhandled, bs);
12893 }
12894
12895 static enum print_stop_action
12896 print_it_catch_exception_unhandled (bpstat bs)
12897 {
12898 return print_it_exception (ada_catch_exception_unhandled, bs);
12899 }
12900
12901 static void
12902 print_one_catch_exception_unhandled (struct breakpoint *b,
12903 struct bp_location **last_loc)
12904 {
12905 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12906 }
12907
12908 static void
12909 print_mention_catch_exception_unhandled (struct breakpoint *b)
12910 {
12911 print_mention_exception (ada_catch_exception_unhandled, b);
12912 }
12913
12914 static void
12915 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12916 struct ui_file *fp)
12917 {
12918 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12919 }
12920
12921 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12922
12923 /* Virtual table for "catch assert" breakpoints. */
12924
12925 static struct bp_location *
12926 allocate_location_catch_assert (struct breakpoint *self)
12927 {
12928 return allocate_location_exception (ada_catch_assert, self);
12929 }
12930
12931 static void
12932 re_set_catch_assert (struct breakpoint *b)
12933 {
12934 re_set_exception (ada_catch_assert, b);
12935 }
12936
12937 static void
12938 check_status_catch_assert (bpstat bs)
12939 {
12940 check_status_exception (ada_catch_assert, bs);
12941 }
12942
12943 static enum print_stop_action
12944 print_it_catch_assert (bpstat bs)
12945 {
12946 return print_it_exception (ada_catch_assert, bs);
12947 }
12948
12949 static void
12950 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12951 {
12952 print_one_exception (ada_catch_assert, b, last_loc);
12953 }
12954
12955 static void
12956 print_mention_catch_assert (struct breakpoint *b)
12957 {
12958 print_mention_exception (ada_catch_assert, b);
12959 }
12960
12961 static void
12962 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12963 {
12964 print_recreate_exception (ada_catch_assert, b, fp);
12965 }
12966
12967 static struct breakpoint_ops catch_assert_breakpoint_ops;
12968
12969 /* Return a newly allocated copy of the first space-separated token
12970 in ARGSP, and then adjust ARGSP to point immediately after that
12971 token.
12972
12973 Return NULL if ARGPS does not contain any more tokens. */
12974
12975 static char *
12976 ada_get_next_arg (const char **argsp)
12977 {
12978 const char *args = *argsp;
12979 const char *end;
12980 char *result;
12981
12982 args = skip_spaces (args);
12983 if (args[0] == '\0')
12984 return NULL; /* No more arguments. */
12985
12986 /* Find the end of the current argument. */
12987
12988 end = skip_to_space (args);
12989
12990 /* Adjust ARGSP to point to the start of the next argument. */
12991
12992 *argsp = end;
12993
12994 /* Make a copy of the current argument and return it. */
12995
12996 result = (char *) xmalloc (end - args + 1);
12997 strncpy (result, args, end - args);
12998 result[end - args] = '\0';
12999
13000 return result;
13001 }
13002
13003 /* Split the arguments specified in a "catch exception" command.
13004 Set EX to the appropriate catchpoint type.
13005 Set EXCEP_STRING to the name of the specific exception if
13006 specified by the user.
13007 If a condition is found at the end of the arguments, the condition
13008 expression is stored in COND_STRING (memory must be deallocated
13009 after use). Otherwise COND_STRING is set to NULL. */
13010
13011 static void
13012 catch_ada_exception_command_split (const char *args,
13013 enum ada_exception_catchpoint_kind *ex,
13014 char **excep_string,
13015 char **cond_string)
13016 {
13017 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13018 char *exception_name;
13019 char *cond = NULL;
13020
13021 exception_name = ada_get_next_arg (&args);
13022 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13023 {
13024 /* This is not an exception name; this is the start of a condition
13025 expression for a catchpoint on all exceptions. So, "un-get"
13026 this token, and set exception_name to NULL. */
13027 xfree (exception_name);
13028 exception_name = NULL;
13029 args -= 2;
13030 }
13031 make_cleanup (xfree, exception_name);
13032
13033 /* Check to see if we have a condition. */
13034
13035 args = skip_spaces (args);
13036 if (startswith (args, "if")
13037 && (isspace (args[2]) || args[2] == '\0'))
13038 {
13039 args += 2;
13040 args = skip_spaces (args);
13041
13042 if (args[0] == '\0')
13043 error (_("Condition missing after `if' keyword"));
13044 cond = xstrdup (args);
13045 make_cleanup (xfree, cond);
13046
13047 args += strlen (args);
13048 }
13049
13050 /* Check that we do not have any more arguments. Anything else
13051 is unexpected. */
13052
13053 if (args[0] != '\0')
13054 error (_("Junk at end of expression"));
13055
13056 discard_cleanups (old_chain);
13057
13058 if (exception_name == NULL)
13059 {
13060 /* Catch all exceptions. */
13061 *ex = ada_catch_exception;
13062 *excep_string = NULL;
13063 }
13064 else if (strcmp (exception_name, "unhandled") == 0)
13065 {
13066 /* Catch unhandled exceptions. */
13067 *ex = ada_catch_exception_unhandled;
13068 *excep_string = NULL;
13069 }
13070 else
13071 {
13072 /* Catch a specific exception. */
13073 *ex = ada_catch_exception;
13074 *excep_string = exception_name;
13075 }
13076 *cond_string = cond;
13077 }
13078
13079 /* Return the name of the symbol on which we should break in order to
13080 implement a catchpoint of the EX kind. */
13081
13082 static const char *
13083 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13084 {
13085 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13086
13087 gdb_assert (data->exception_info != NULL);
13088
13089 switch (ex)
13090 {
13091 case ada_catch_exception:
13092 return (data->exception_info->catch_exception_sym);
13093 break;
13094 case ada_catch_exception_unhandled:
13095 return (data->exception_info->catch_exception_unhandled_sym);
13096 break;
13097 case ada_catch_assert:
13098 return (data->exception_info->catch_assert_sym);
13099 break;
13100 default:
13101 internal_error (__FILE__, __LINE__,
13102 _("unexpected catchpoint kind (%d)"), ex);
13103 }
13104 }
13105
13106 /* Return the breakpoint ops "virtual table" used for catchpoints
13107 of the EX kind. */
13108
13109 static const struct breakpoint_ops *
13110 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13111 {
13112 switch (ex)
13113 {
13114 case ada_catch_exception:
13115 return (&catch_exception_breakpoint_ops);
13116 break;
13117 case ada_catch_exception_unhandled:
13118 return (&catch_exception_unhandled_breakpoint_ops);
13119 break;
13120 case ada_catch_assert:
13121 return (&catch_assert_breakpoint_ops);
13122 break;
13123 default:
13124 internal_error (__FILE__, __LINE__,
13125 _("unexpected catchpoint kind (%d)"), ex);
13126 }
13127 }
13128
13129 /* Return the condition that will be used to match the current exception
13130 being raised with the exception that the user wants to catch. This
13131 assumes that this condition is used when the inferior just triggered
13132 an exception catchpoint.
13133
13134 The string returned is a newly allocated string that needs to be
13135 deallocated later. */
13136
13137 static char *
13138 ada_exception_catchpoint_cond_string (const char *excep_string)
13139 {
13140 int i;
13141
13142 /* The standard exceptions are a special case. They are defined in
13143 runtime units that have been compiled without debugging info; if
13144 EXCEP_STRING is the not-fully-qualified name of a standard
13145 exception (e.g. "constraint_error") then, during the evaluation
13146 of the condition expression, the symbol lookup on this name would
13147 *not* return this standard exception. The catchpoint condition
13148 may then be set only on user-defined exceptions which have the
13149 same not-fully-qualified name (e.g. my_package.constraint_error).
13150
13151 To avoid this unexcepted behavior, these standard exceptions are
13152 systematically prefixed by "standard". This means that "catch
13153 exception constraint_error" is rewritten into "catch exception
13154 standard.constraint_error".
13155
13156 If an exception named contraint_error is defined in another package of
13157 the inferior program, then the only way to specify this exception as a
13158 breakpoint condition is to use its fully-qualified named:
13159 e.g. my_package.constraint_error. */
13160
13161 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13162 {
13163 if (strcmp (standard_exc [i], excep_string) == 0)
13164 {
13165 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13166 excep_string);
13167 }
13168 }
13169 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13170 }
13171
13172 /* Return the symtab_and_line that should be used to insert an exception
13173 catchpoint of the TYPE kind.
13174
13175 EXCEP_STRING should contain the name of a specific exception that
13176 the catchpoint should catch, or NULL otherwise.
13177
13178 ADDR_STRING returns the name of the function where the real
13179 breakpoint that implements the catchpoints is set, depending on the
13180 type of catchpoint we need to create. */
13181
13182 static struct symtab_and_line
13183 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13184 const char **addr_string, const struct breakpoint_ops **ops)
13185 {
13186 const char *sym_name;
13187 struct symbol *sym;
13188
13189 /* First, find out which exception support info to use. */
13190 ada_exception_support_info_sniffer ();
13191
13192 /* Then lookup the function on which we will break in order to catch
13193 the Ada exceptions requested by the user. */
13194 sym_name = ada_exception_sym_name (ex);
13195 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13196
13197 /* We can assume that SYM is not NULL at this stage. If the symbol
13198 did not exist, ada_exception_support_info_sniffer would have
13199 raised an exception.
13200
13201 Also, ada_exception_support_info_sniffer should have already
13202 verified that SYM is a function symbol. */
13203 gdb_assert (sym != NULL);
13204 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13205
13206 /* Set ADDR_STRING. */
13207 *addr_string = xstrdup (sym_name);
13208
13209 /* Set OPS. */
13210 *ops = ada_exception_breakpoint_ops (ex);
13211
13212 return find_function_start_sal (sym, 1);
13213 }
13214
13215 /* Create an Ada exception catchpoint.
13216
13217 EX_KIND is the kind of exception catchpoint to be created.
13218
13219 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13220 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13221 of the exception to which this catchpoint applies. When not NULL,
13222 the string must be allocated on the heap, and its deallocation
13223 is no longer the responsibility of the caller.
13224
13225 COND_STRING, if not NULL, is the catchpoint condition. This string
13226 must be allocated on the heap, and its deallocation is no longer
13227 the responsibility of the caller.
13228
13229 TEMPFLAG, if nonzero, means that the underlying breakpoint
13230 should be temporary.
13231
13232 FROM_TTY is the usual argument passed to all commands implementations. */
13233
13234 void
13235 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13236 enum ada_exception_catchpoint_kind ex_kind,
13237 char *excep_string,
13238 char *cond_string,
13239 int tempflag,
13240 int disabled,
13241 int from_tty)
13242 {
13243 const char *addr_string = NULL;
13244 const struct breakpoint_ops *ops = NULL;
13245 struct symtab_and_line sal
13246 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13247
13248 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13249 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13250 ops, tempflag, disabled, from_tty);
13251 c->excep_string = excep_string;
13252 create_excep_cond_exprs (c.get ());
13253 if (cond_string != NULL)
13254 set_breakpoint_condition (c.get (), cond_string, from_tty);
13255 install_breakpoint (0, std::move (c), 1);
13256 }
13257
13258 /* Implement the "catch exception" command. */
13259
13260 static void
13261 catch_ada_exception_command (const char *arg_entry, int from_tty,
13262 struct cmd_list_element *command)
13263 {
13264 const char *arg = arg_entry;
13265 struct gdbarch *gdbarch = get_current_arch ();
13266 int tempflag;
13267 enum ada_exception_catchpoint_kind ex_kind;
13268 char *excep_string = NULL;
13269 char *cond_string = NULL;
13270
13271 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13272
13273 if (!arg)
13274 arg = "";
13275 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13276 &cond_string);
13277 create_ada_exception_catchpoint (gdbarch, ex_kind,
13278 excep_string, cond_string,
13279 tempflag, 1 /* enabled */,
13280 from_tty);
13281 }
13282
13283 /* Split the arguments specified in a "catch assert" command.
13284
13285 ARGS contains the command's arguments (or the empty string if
13286 no arguments were passed).
13287
13288 If ARGS contains a condition, set COND_STRING to that condition
13289 (the memory needs to be deallocated after use). */
13290
13291 static void
13292 catch_ada_assert_command_split (const char *args, char **cond_string)
13293 {
13294 args = skip_spaces (args);
13295
13296 /* Check whether a condition was provided. */
13297 if (startswith (args, "if")
13298 && (isspace (args[2]) || args[2] == '\0'))
13299 {
13300 args += 2;
13301 args = skip_spaces (args);
13302 if (args[0] == '\0')
13303 error (_("condition missing after `if' keyword"));
13304 *cond_string = xstrdup (args);
13305 }
13306
13307 /* Otherwise, there should be no other argument at the end of
13308 the command. */
13309 else if (args[0] != '\0')
13310 error (_("Junk at end of arguments."));
13311 }
13312
13313 /* Implement the "catch assert" command. */
13314
13315 static void
13316 catch_assert_command (const char *arg_entry, int from_tty,
13317 struct cmd_list_element *command)
13318 {
13319 const char *arg = arg_entry;
13320 struct gdbarch *gdbarch = get_current_arch ();
13321 int tempflag;
13322 char *cond_string = NULL;
13323
13324 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13325
13326 if (!arg)
13327 arg = "";
13328 catch_ada_assert_command_split (arg, &cond_string);
13329 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13330 NULL, cond_string,
13331 tempflag, 1 /* enabled */,
13332 from_tty);
13333 }
13334
13335 /* Return non-zero if the symbol SYM is an Ada exception object. */
13336
13337 static int
13338 ada_is_exception_sym (struct symbol *sym)
13339 {
13340 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13341
13342 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13343 && SYMBOL_CLASS (sym) != LOC_BLOCK
13344 && SYMBOL_CLASS (sym) != LOC_CONST
13345 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13346 && type_name != NULL && strcmp (type_name, "exception") == 0);
13347 }
13348
13349 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13350 Ada exception object. This matches all exceptions except the ones
13351 defined by the Ada language. */
13352
13353 static int
13354 ada_is_non_standard_exception_sym (struct symbol *sym)
13355 {
13356 int i;
13357
13358 if (!ada_is_exception_sym (sym))
13359 return 0;
13360
13361 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13362 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13363 return 0; /* A standard exception. */
13364
13365 /* Numeric_Error is also a standard exception, so exclude it.
13366 See the STANDARD_EXC description for more details as to why
13367 this exception is not listed in that array. */
13368 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13369 return 0;
13370
13371 return 1;
13372 }
13373
13374 /* A helper function for std::sort, comparing two struct ada_exc_info
13375 objects.
13376
13377 The comparison is determined first by exception name, and then
13378 by exception address. */
13379
13380 bool
13381 ada_exc_info::operator< (const ada_exc_info &other) const
13382 {
13383 int result;
13384
13385 result = strcmp (name, other.name);
13386 if (result < 0)
13387 return true;
13388 if (result == 0 && addr < other.addr)
13389 return true;
13390 return false;
13391 }
13392
13393 bool
13394 ada_exc_info::operator== (const ada_exc_info &other) const
13395 {
13396 return addr == other.addr && strcmp (name, other.name) == 0;
13397 }
13398
13399 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13400 routine, but keeping the first SKIP elements untouched.
13401
13402 All duplicates are also removed. */
13403
13404 static void
13405 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13406 int skip)
13407 {
13408 std::sort (exceptions->begin () + skip, exceptions->end ());
13409 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13410 exceptions->end ());
13411 }
13412
13413 /* Add all exceptions defined by the Ada standard whose name match
13414 a regular expression.
13415
13416 If PREG is not NULL, then this regexp_t object is used to
13417 perform the symbol name matching. Otherwise, no name-based
13418 filtering is performed.
13419
13420 EXCEPTIONS is a vector of exceptions to which matching exceptions
13421 gets pushed. */
13422
13423 static void
13424 ada_add_standard_exceptions (compiled_regex *preg,
13425 std::vector<ada_exc_info> *exceptions)
13426 {
13427 int i;
13428
13429 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13430 {
13431 if (preg == NULL
13432 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13433 {
13434 struct bound_minimal_symbol msymbol
13435 = ada_lookup_simple_minsym (standard_exc[i]);
13436
13437 if (msymbol.minsym != NULL)
13438 {
13439 struct ada_exc_info info
13440 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13441
13442 exceptions->push_back (info);
13443 }
13444 }
13445 }
13446 }
13447
13448 /* Add all Ada exceptions defined locally and accessible from the given
13449 FRAME.
13450
13451 If PREG is not NULL, then this regexp_t object is used to
13452 perform the symbol name matching. Otherwise, no name-based
13453 filtering is performed.
13454
13455 EXCEPTIONS is a vector of exceptions to which matching exceptions
13456 gets pushed. */
13457
13458 static void
13459 ada_add_exceptions_from_frame (compiled_regex *preg,
13460 struct frame_info *frame,
13461 std::vector<ada_exc_info> *exceptions)
13462 {
13463 const struct block *block = get_frame_block (frame, 0);
13464
13465 while (block != 0)
13466 {
13467 struct block_iterator iter;
13468 struct symbol *sym;
13469
13470 ALL_BLOCK_SYMBOLS (block, iter, sym)
13471 {
13472 switch (SYMBOL_CLASS (sym))
13473 {
13474 case LOC_TYPEDEF:
13475 case LOC_BLOCK:
13476 case LOC_CONST:
13477 break;
13478 default:
13479 if (ada_is_exception_sym (sym))
13480 {
13481 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13482 SYMBOL_VALUE_ADDRESS (sym)};
13483
13484 exceptions->push_back (info);
13485 }
13486 }
13487 }
13488 if (BLOCK_FUNCTION (block) != NULL)
13489 break;
13490 block = BLOCK_SUPERBLOCK (block);
13491 }
13492 }
13493
13494 /* Return true if NAME matches PREG or if PREG is NULL. */
13495
13496 static bool
13497 name_matches_regex (const char *name, compiled_regex *preg)
13498 {
13499 return (preg == NULL
13500 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13501 }
13502
13503 /* Add all exceptions defined globally whose name name match
13504 a regular expression, excluding standard exceptions.
13505
13506 The reason we exclude standard exceptions is that they need
13507 to be handled separately: Standard exceptions are defined inside
13508 a runtime unit which is normally not compiled with debugging info,
13509 and thus usually do not show up in our symbol search. However,
13510 if the unit was in fact built with debugging info, we need to
13511 exclude them because they would duplicate the entry we found
13512 during the special loop that specifically searches for those
13513 standard exceptions.
13514
13515 If PREG is not NULL, then this regexp_t object is used to
13516 perform the symbol name matching. Otherwise, no name-based
13517 filtering is performed.
13518
13519 EXCEPTIONS is a vector of exceptions to which matching exceptions
13520 gets pushed. */
13521
13522 static void
13523 ada_add_global_exceptions (compiled_regex *preg,
13524 std::vector<ada_exc_info> *exceptions)
13525 {
13526 struct objfile *objfile;
13527 struct compunit_symtab *s;
13528
13529 /* In Ada, the symbol "search name" is a linkage name, whereas the
13530 regular expression used to do the matching refers to the natural
13531 name. So match against the decoded name. */
13532 expand_symtabs_matching (NULL,
13533 lookup_name_info::match_any (),
13534 [&] (const char *search_name)
13535 {
13536 const char *decoded = ada_decode (search_name);
13537 return name_matches_regex (decoded, preg);
13538 },
13539 NULL,
13540 VARIABLES_DOMAIN);
13541
13542 ALL_COMPUNITS (objfile, s)
13543 {
13544 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13545 int i;
13546
13547 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13548 {
13549 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13550 struct block_iterator iter;
13551 struct symbol *sym;
13552
13553 ALL_BLOCK_SYMBOLS (b, iter, sym)
13554 if (ada_is_non_standard_exception_sym (sym)
13555 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13556 {
13557 struct ada_exc_info info
13558 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13559
13560 exceptions->push_back (info);
13561 }
13562 }
13563 }
13564 }
13565
13566 /* Implements ada_exceptions_list with the regular expression passed
13567 as a regex_t, rather than a string.
13568
13569 If not NULL, PREG is used to filter out exceptions whose names
13570 do not match. Otherwise, all exceptions are listed. */
13571
13572 static std::vector<ada_exc_info>
13573 ada_exceptions_list_1 (compiled_regex *preg)
13574 {
13575 std::vector<ada_exc_info> result;
13576 int prev_len;
13577
13578 /* First, list the known standard exceptions. These exceptions
13579 need to be handled separately, as they are usually defined in
13580 runtime units that have been compiled without debugging info. */
13581
13582 ada_add_standard_exceptions (preg, &result);
13583
13584 /* Next, find all exceptions whose scope is local and accessible
13585 from the currently selected frame. */
13586
13587 if (has_stack_frames ())
13588 {
13589 prev_len = result.size ();
13590 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13591 &result);
13592 if (result.size () > prev_len)
13593 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13594 }
13595
13596 /* Add all exceptions whose scope is global. */
13597
13598 prev_len = result.size ();
13599 ada_add_global_exceptions (preg, &result);
13600 if (result.size () > prev_len)
13601 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13602
13603 return result;
13604 }
13605
13606 /* Return a vector of ada_exc_info.
13607
13608 If REGEXP is NULL, all exceptions are included in the result.
13609 Otherwise, it should contain a valid regular expression,
13610 and only the exceptions whose names match that regular expression
13611 are included in the result.
13612
13613 The exceptions are sorted in the following order:
13614 - Standard exceptions (defined by the Ada language), in
13615 alphabetical order;
13616 - Exceptions only visible from the current frame, in
13617 alphabetical order;
13618 - Exceptions whose scope is global, in alphabetical order. */
13619
13620 std::vector<ada_exc_info>
13621 ada_exceptions_list (const char *regexp)
13622 {
13623 if (regexp == NULL)
13624 return ada_exceptions_list_1 (NULL);
13625
13626 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13627 return ada_exceptions_list_1 (&reg);
13628 }
13629
13630 /* Implement the "info exceptions" command. */
13631
13632 static void
13633 info_exceptions_command (const char *regexp, int from_tty)
13634 {
13635 struct gdbarch *gdbarch = get_current_arch ();
13636
13637 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13638
13639 if (regexp != NULL)
13640 printf_filtered
13641 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13642 else
13643 printf_filtered (_("All defined Ada exceptions:\n"));
13644
13645 for (const ada_exc_info &info : exceptions)
13646 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13647 }
13648
13649 /* Operators */
13650 /* Information about operators given special treatment in functions
13651 below. */
13652 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13653
13654 #define ADA_OPERATORS \
13655 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13656 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13657 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13658 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13659 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13661 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13662 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13663 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13664 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13665 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13666 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13667 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13668 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13669 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13670 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13671 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13672 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13673 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13674
13675 static void
13676 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13677 int *argsp)
13678 {
13679 switch (exp->elts[pc - 1].opcode)
13680 {
13681 default:
13682 operator_length_standard (exp, pc, oplenp, argsp);
13683 break;
13684
13685 #define OP_DEFN(op, len, args, binop) \
13686 case op: *oplenp = len; *argsp = args; break;
13687 ADA_OPERATORS;
13688 #undef OP_DEFN
13689
13690 case OP_AGGREGATE:
13691 *oplenp = 3;
13692 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13693 break;
13694
13695 case OP_CHOICES:
13696 *oplenp = 3;
13697 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13698 break;
13699 }
13700 }
13701
13702 /* Implementation of the exp_descriptor method operator_check. */
13703
13704 static int
13705 ada_operator_check (struct expression *exp, int pos,
13706 int (*objfile_func) (struct objfile *objfile, void *data),
13707 void *data)
13708 {
13709 const union exp_element *const elts = exp->elts;
13710 struct type *type = NULL;
13711
13712 switch (elts[pos].opcode)
13713 {
13714 case UNOP_IN_RANGE:
13715 case UNOP_QUAL:
13716 type = elts[pos + 1].type;
13717 break;
13718
13719 default:
13720 return operator_check_standard (exp, pos, objfile_func, data);
13721 }
13722
13723 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13724
13725 if (type && TYPE_OBJFILE (type)
13726 && (*objfile_func) (TYPE_OBJFILE (type), data))
13727 return 1;
13728
13729 return 0;
13730 }
13731
13732 static const char *
13733 ada_op_name (enum exp_opcode opcode)
13734 {
13735 switch (opcode)
13736 {
13737 default:
13738 return op_name_standard (opcode);
13739
13740 #define OP_DEFN(op, len, args, binop) case op: return #op;
13741 ADA_OPERATORS;
13742 #undef OP_DEFN
13743
13744 case OP_AGGREGATE:
13745 return "OP_AGGREGATE";
13746 case OP_CHOICES:
13747 return "OP_CHOICES";
13748 case OP_NAME:
13749 return "OP_NAME";
13750 }
13751 }
13752
13753 /* As for operator_length, but assumes PC is pointing at the first
13754 element of the operator, and gives meaningful results only for the
13755 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13756
13757 static void
13758 ada_forward_operator_length (struct expression *exp, int pc,
13759 int *oplenp, int *argsp)
13760 {
13761 switch (exp->elts[pc].opcode)
13762 {
13763 default:
13764 *oplenp = *argsp = 0;
13765 break;
13766
13767 #define OP_DEFN(op, len, args, binop) \
13768 case op: *oplenp = len; *argsp = args; break;
13769 ADA_OPERATORS;
13770 #undef OP_DEFN
13771
13772 case OP_AGGREGATE:
13773 *oplenp = 3;
13774 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13775 break;
13776
13777 case OP_CHOICES:
13778 *oplenp = 3;
13779 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13780 break;
13781
13782 case OP_STRING:
13783 case OP_NAME:
13784 {
13785 int len = longest_to_int (exp->elts[pc + 1].longconst);
13786
13787 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13788 *argsp = 0;
13789 break;
13790 }
13791 }
13792 }
13793
13794 static int
13795 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13796 {
13797 enum exp_opcode op = exp->elts[elt].opcode;
13798 int oplen, nargs;
13799 int pc = elt;
13800 int i;
13801
13802 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13803
13804 switch (op)
13805 {
13806 /* Ada attributes ('Foo). */
13807 case OP_ATR_FIRST:
13808 case OP_ATR_LAST:
13809 case OP_ATR_LENGTH:
13810 case OP_ATR_IMAGE:
13811 case OP_ATR_MAX:
13812 case OP_ATR_MIN:
13813 case OP_ATR_MODULUS:
13814 case OP_ATR_POS:
13815 case OP_ATR_SIZE:
13816 case OP_ATR_TAG:
13817 case OP_ATR_VAL:
13818 break;
13819
13820 case UNOP_IN_RANGE:
13821 case UNOP_QUAL:
13822 /* XXX: gdb_sprint_host_address, type_sprint */
13823 fprintf_filtered (stream, _("Type @"));
13824 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13825 fprintf_filtered (stream, " (");
13826 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13827 fprintf_filtered (stream, ")");
13828 break;
13829 case BINOP_IN_BOUNDS:
13830 fprintf_filtered (stream, " (%d)",
13831 longest_to_int (exp->elts[pc + 2].longconst));
13832 break;
13833 case TERNOP_IN_RANGE:
13834 break;
13835
13836 case OP_AGGREGATE:
13837 case OP_OTHERS:
13838 case OP_DISCRETE_RANGE:
13839 case OP_POSITIONAL:
13840 case OP_CHOICES:
13841 break;
13842
13843 case OP_NAME:
13844 case OP_STRING:
13845 {
13846 char *name = &exp->elts[elt + 2].string;
13847 int len = longest_to_int (exp->elts[elt + 1].longconst);
13848
13849 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13850 break;
13851 }
13852
13853 default:
13854 return dump_subexp_body_standard (exp, stream, elt);
13855 }
13856
13857 elt += oplen;
13858 for (i = 0; i < nargs; i += 1)
13859 elt = dump_subexp (exp, stream, elt);
13860
13861 return elt;
13862 }
13863
13864 /* The Ada extension of print_subexp (q.v.). */
13865
13866 static void
13867 ada_print_subexp (struct expression *exp, int *pos,
13868 struct ui_file *stream, enum precedence prec)
13869 {
13870 int oplen, nargs, i;
13871 int pc = *pos;
13872 enum exp_opcode op = exp->elts[pc].opcode;
13873
13874 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13875
13876 *pos += oplen;
13877 switch (op)
13878 {
13879 default:
13880 *pos -= oplen;
13881 print_subexp_standard (exp, pos, stream, prec);
13882 return;
13883
13884 case OP_VAR_VALUE:
13885 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13886 return;
13887
13888 case BINOP_IN_BOUNDS:
13889 /* XXX: sprint_subexp */
13890 print_subexp (exp, pos, stream, PREC_SUFFIX);
13891 fputs_filtered (" in ", stream);
13892 print_subexp (exp, pos, stream, PREC_SUFFIX);
13893 fputs_filtered ("'range", stream);
13894 if (exp->elts[pc + 1].longconst > 1)
13895 fprintf_filtered (stream, "(%ld)",
13896 (long) exp->elts[pc + 1].longconst);
13897 return;
13898
13899 case TERNOP_IN_RANGE:
13900 if (prec >= PREC_EQUAL)
13901 fputs_filtered ("(", stream);
13902 /* XXX: sprint_subexp */
13903 print_subexp (exp, pos, stream, PREC_SUFFIX);
13904 fputs_filtered (" in ", stream);
13905 print_subexp (exp, pos, stream, PREC_EQUAL);
13906 fputs_filtered (" .. ", stream);
13907 print_subexp (exp, pos, stream, PREC_EQUAL);
13908 if (prec >= PREC_EQUAL)
13909 fputs_filtered (")", stream);
13910 return;
13911
13912 case OP_ATR_FIRST:
13913 case OP_ATR_LAST:
13914 case OP_ATR_LENGTH:
13915 case OP_ATR_IMAGE:
13916 case OP_ATR_MAX:
13917 case OP_ATR_MIN:
13918 case OP_ATR_MODULUS:
13919 case OP_ATR_POS:
13920 case OP_ATR_SIZE:
13921 case OP_ATR_TAG:
13922 case OP_ATR_VAL:
13923 if (exp->elts[*pos].opcode == OP_TYPE)
13924 {
13925 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13926 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13927 &type_print_raw_options);
13928 *pos += 3;
13929 }
13930 else
13931 print_subexp (exp, pos, stream, PREC_SUFFIX);
13932 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13933 if (nargs > 1)
13934 {
13935 int tem;
13936
13937 for (tem = 1; tem < nargs; tem += 1)
13938 {
13939 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13940 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13941 }
13942 fputs_filtered (")", stream);
13943 }
13944 return;
13945
13946 case UNOP_QUAL:
13947 type_print (exp->elts[pc + 1].type, "", stream, 0);
13948 fputs_filtered ("'(", stream);
13949 print_subexp (exp, pos, stream, PREC_PREFIX);
13950 fputs_filtered (")", stream);
13951 return;
13952
13953 case UNOP_IN_RANGE:
13954 /* XXX: sprint_subexp */
13955 print_subexp (exp, pos, stream, PREC_SUFFIX);
13956 fputs_filtered (" in ", stream);
13957 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13958 &type_print_raw_options);
13959 return;
13960
13961 case OP_DISCRETE_RANGE:
13962 print_subexp (exp, pos, stream, PREC_SUFFIX);
13963 fputs_filtered ("..", stream);
13964 print_subexp (exp, pos, stream, PREC_SUFFIX);
13965 return;
13966
13967 case OP_OTHERS:
13968 fputs_filtered ("others => ", stream);
13969 print_subexp (exp, pos, stream, PREC_SUFFIX);
13970 return;
13971
13972 case OP_CHOICES:
13973 for (i = 0; i < nargs-1; i += 1)
13974 {
13975 if (i > 0)
13976 fputs_filtered ("|", stream);
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 }
13979 fputs_filtered (" => ", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 return;
13982
13983 case OP_POSITIONAL:
13984 print_subexp (exp, pos, stream, PREC_SUFFIX);
13985 return;
13986
13987 case OP_AGGREGATE:
13988 fputs_filtered ("(", stream);
13989 for (i = 0; i < nargs; i += 1)
13990 {
13991 if (i > 0)
13992 fputs_filtered (", ", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 }
13995 fputs_filtered (")", stream);
13996 return;
13997 }
13998 }
13999
14000 /* Table mapping opcodes into strings for printing operators
14001 and precedences of the operators. */
14002
14003 static const struct op_print ada_op_print_tab[] = {
14004 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14005 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14006 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14007 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14008 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14009 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14010 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14011 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14012 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14013 {">=", BINOP_GEQ, PREC_ORDER, 0},
14014 {">", BINOP_GTR, PREC_ORDER, 0},
14015 {"<", BINOP_LESS, PREC_ORDER, 0},
14016 {">>", BINOP_RSH, PREC_SHIFT, 0},
14017 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14018 {"+", BINOP_ADD, PREC_ADD, 0},
14019 {"-", BINOP_SUB, PREC_ADD, 0},
14020 {"&", BINOP_CONCAT, PREC_ADD, 0},
14021 {"*", BINOP_MUL, PREC_MUL, 0},
14022 {"/", BINOP_DIV, PREC_MUL, 0},
14023 {"rem", BINOP_REM, PREC_MUL, 0},
14024 {"mod", BINOP_MOD, PREC_MUL, 0},
14025 {"**", BINOP_EXP, PREC_REPEAT, 0},
14026 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14027 {"-", UNOP_NEG, PREC_PREFIX, 0},
14028 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14029 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14030 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14031 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14032 {".all", UNOP_IND, PREC_SUFFIX, 1},
14033 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14034 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14035 {NULL, OP_NULL, PREC_SUFFIX, 0}
14036 };
14037 \f
14038 enum ada_primitive_types {
14039 ada_primitive_type_int,
14040 ada_primitive_type_long,
14041 ada_primitive_type_short,
14042 ada_primitive_type_char,
14043 ada_primitive_type_float,
14044 ada_primitive_type_double,
14045 ada_primitive_type_void,
14046 ada_primitive_type_long_long,
14047 ada_primitive_type_long_double,
14048 ada_primitive_type_natural,
14049 ada_primitive_type_positive,
14050 ada_primitive_type_system_address,
14051 ada_primitive_type_storage_offset,
14052 nr_ada_primitive_types
14053 };
14054
14055 static void
14056 ada_language_arch_info (struct gdbarch *gdbarch,
14057 struct language_arch_info *lai)
14058 {
14059 const struct builtin_type *builtin = builtin_type (gdbarch);
14060
14061 lai->primitive_type_vector
14062 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14063 struct type *);
14064
14065 lai->primitive_type_vector [ada_primitive_type_int]
14066 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14067 0, "integer");
14068 lai->primitive_type_vector [ada_primitive_type_long]
14069 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14070 0, "long_integer");
14071 lai->primitive_type_vector [ada_primitive_type_short]
14072 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14073 0, "short_integer");
14074 lai->string_char_type
14075 = lai->primitive_type_vector [ada_primitive_type_char]
14076 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14077 lai->primitive_type_vector [ada_primitive_type_float]
14078 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14079 "float", gdbarch_float_format (gdbarch));
14080 lai->primitive_type_vector [ada_primitive_type_double]
14081 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14082 "long_float", gdbarch_double_format (gdbarch));
14083 lai->primitive_type_vector [ada_primitive_type_long_long]
14084 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14085 0, "long_long_integer");
14086 lai->primitive_type_vector [ada_primitive_type_long_double]
14087 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14088 "long_long_float", gdbarch_long_double_format (gdbarch));
14089 lai->primitive_type_vector [ada_primitive_type_natural]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "natural");
14092 lai->primitive_type_vector [ada_primitive_type_positive]
14093 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14094 0, "positive");
14095 lai->primitive_type_vector [ada_primitive_type_void]
14096 = builtin->builtin_void;
14097
14098 lai->primitive_type_vector [ada_primitive_type_system_address]
14099 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14100 "void"));
14101 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14102 = "system__address";
14103
14104 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14105 type. This is a signed integral type whose size is the same as
14106 the size of addresses. */
14107 {
14108 unsigned int addr_length = TYPE_LENGTH
14109 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14110
14111 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14112 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14113 "storage_offset");
14114 }
14115
14116 lai->bool_type_symbol = NULL;
14117 lai->bool_type_default = builtin->builtin_bool;
14118 }
14119 \f
14120 /* Language vector */
14121
14122 /* Not really used, but needed in the ada_language_defn. */
14123
14124 static void
14125 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14126 {
14127 ada_emit_char (c, type, stream, quoter, 1);
14128 }
14129
14130 static int
14131 parse (struct parser_state *ps)
14132 {
14133 warnings_issued = 0;
14134 return ada_parse (ps);
14135 }
14136
14137 static const struct exp_descriptor ada_exp_descriptor = {
14138 ada_print_subexp,
14139 ada_operator_length,
14140 ada_operator_check,
14141 ada_op_name,
14142 ada_dump_subexp_body,
14143 ada_evaluate_subexp
14144 };
14145
14146 /* symbol_name_matcher_ftype adapter for wild_match. */
14147
14148 static bool
14149 do_wild_match (const char *symbol_search_name,
14150 const lookup_name_info &lookup_name,
14151 completion_match_result *comp_match_res)
14152 {
14153 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14154 }
14155
14156 /* symbol_name_matcher_ftype adapter for full_match. */
14157
14158 static bool
14159 do_full_match (const char *symbol_search_name,
14160 const lookup_name_info &lookup_name,
14161 completion_match_result *comp_match_res)
14162 {
14163 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14164 }
14165
14166 /* Build the Ada lookup name for LOOKUP_NAME. */
14167
14168 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14169 {
14170 const std::string &user_name = lookup_name.name ();
14171
14172 if (user_name[0] == '<')
14173 {
14174 if (user_name.back () == '>')
14175 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14176 else
14177 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14178 m_encoded_p = true;
14179 m_verbatim_p = true;
14180 m_wild_match_p = false;
14181 m_standard_p = false;
14182 }
14183 else
14184 {
14185 m_verbatim_p = false;
14186
14187 m_encoded_p = user_name.find ("__") != std::string::npos;
14188
14189 if (!m_encoded_p)
14190 {
14191 const char *folded = ada_fold_name (user_name.c_str ());
14192 const char *encoded = ada_encode_1 (folded, false);
14193 if (encoded != NULL)
14194 m_encoded_name = encoded;
14195 else
14196 m_encoded_name = user_name;
14197 }
14198 else
14199 m_encoded_name = user_name;
14200
14201 /* Handle the 'package Standard' special case. See description
14202 of m_standard_p. */
14203 if (startswith (m_encoded_name.c_str (), "standard__"))
14204 {
14205 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14206 m_standard_p = true;
14207 }
14208 else
14209 m_standard_p = false;
14210
14211 /* If the name contains a ".", then the user is entering a fully
14212 qualified entity name, and the match must not be done in wild
14213 mode. Similarly, if the user wants to complete what looks
14214 like an encoded name, the match must not be done in wild
14215 mode. Also, in the standard__ special case always do
14216 non-wild matching. */
14217 m_wild_match_p
14218 = (lookup_name.match_type () != symbol_name_match_type::FULL
14219 && !m_encoded_p
14220 && !m_standard_p
14221 && user_name.find ('.') == std::string::npos);
14222 }
14223 }
14224
14225 /* symbol_name_matcher_ftype method for Ada. This only handles
14226 completion mode. */
14227
14228 static bool
14229 ada_symbol_name_matches (const char *symbol_search_name,
14230 const lookup_name_info &lookup_name,
14231 completion_match_result *comp_match_res)
14232 {
14233 return lookup_name.ada ().matches (symbol_search_name,
14234 lookup_name.match_type (),
14235 comp_match_res);
14236 }
14237
14238 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14239 Ada. */
14240
14241 static symbol_name_matcher_ftype *
14242 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14243 {
14244 if (lookup_name.completion_mode ())
14245 return ada_symbol_name_matches;
14246 else
14247 {
14248 if (lookup_name.ada ().wild_match_p ())
14249 return do_wild_match;
14250 else
14251 return do_full_match;
14252 }
14253 }
14254
14255 /* Implement the "la_read_var_value" language_defn method for Ada. */
14256
14257 static struct value *
14258 ada_read_var_value (struct symbol *var, const struct block *var_block,
14259 struct frame_info *frame)
14260 {
14261 const struct block *frame_block = NULL;
14262 struct symbol *renaming_sym = NULL;
14263
14264 /* The only case where default_read_var_value is not sufficient
14265 is when VAR is a renaming... */
14266 if (frame)
14267 frame_block = get_frame_block (frame, NULL);
14268 if (frame_block)
14269 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14270 if (renaming_sym != NULL)
14271 return ada_read_renaming_var_value (renaming_sym, frame_block);
14272
14273 /* This is a typical case where we expect the default_read_var_value
14274 function to work. */
14275 return default_read_var_value (var, var_block, frame);
14276 }
14277
14278 static const char *ada_extensions[] =
14279 {
14280 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14281 };
14282
14283 extern const struct language_defn ada_language_defn = {
14284 "ada", /* Language name */
14285 "Ada",
14286 language_ada,
14287 range_check_off,
14288 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14289 that's not quite what this means. */
14290 array_row_major,
14291 macro_expansion_no,
14292 ada_extensions,
14293 &ada_exp_descriptor,
14294 parse,
14295 ada_yyerror,
14296 resolve,
14297 ada_printchar, /* Print a character constant */
14298 ada_printstr, /* Function to print string constant */
14299 emit_char, /* Function to print single char (not used) */
14300 ada_print_type, /* Print a type using appropriate syntax */
14301 ada_print_typedef, /* Print a typedef using appropriate syntax */
14302 ada_val_print, /* Print a value using appropriate syntax */
14303 ada_value_print, /* Print a top-level value */
14304 ada_read_var_value, /* la_read_var_value */
14305 NULL, /* Language specific skip_trampoline */
14306 NULL, /* name_of_this */
14307 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14308 basic_lookup_transparent_type, /* lookup_transparent_type */
14309 ada_la_decode, /* Language specific symbol demangler */
14310 ada_sniff_from_mangled_name,
14311 NULL, /* Language specific
14312 class_name_from_physname */
14313 ada_op_print_tab, /* expression operators for printing */
14314 0, /* c-style arrays */
14315 1, /* String lower bound */
14316 ada_get_gdb_completer_word_break_characters,
14317 ada_collect_symbol_completion_matches,
14318 ada_language_arch_info,
14319 ada_print_array_index,
14320 default_pass_by_reference,
14321 c_get_string,
14322 c_watch_location_expression,
14323 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14324 ada_iterate_over_symbols,
14325 default_search_name_hash,
14326 &ada_varobj_ops,
14327 NULL,
14328 NULL,
14329 LANG_MAGIC
14330 };
14331
14332 /* Command-list for the "set/show ada" prefix command. */
14333 static struct cmd_list_element *set_ada_list;
14334 static struct cmd_list_element *show_ada_list;
14335
14336 /* Implement the "set ada" prefix command. */
14337
14338 static void
14339 set_ada_command (const char *arg, int from_tty)
14340 {
14341 printf_unfiltered (_(\
14342 "\"set ada\" must be followed by the name of a setting.\n"));
14343 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14344 }
14345
14346 /* Implement the "show ada" prefix command. */
14347
14348 static void
14349 show_ada_command (const char *args, int from_tty)
14350 {
14351 cmd_show_list (show_ada_list, from_tty, "");
14352 }
14353
14354 static void
14355 initialize_ada_catchpoint_ops (void)
14356 {
14357 struct breakpoint_ops *ops;
14358
14359 initialize_breakpoint_ops ();
14360
14361 ops = &catch_exception_breakpoint_ops;
14362 *ops = bkpt_breakpoint_ops;
14363 ops->allocate_location = allocate_location_catch_exception;
14364 ops->re_set = re_set_catch_exception;
14365 ops->check_status = check_status_catch_exception;
14366 ops->print_it = print_it_catch_exception;
14367 ops->print_one = print_one_catch_exception;
14368 ops->print_mention = print_mention_catch_exception;
14369 ops->print_recreate = print_recreate_catch_exception;
14370
14371 ops = &catch_exception_unhandled_breakpoint_ops;
14372 *ops = bkpt_breakpoint_ops;
14373 ops->allocate_location = allocate_location_catch_exception_unhandled;
14374 ops->re_set = re_set_catch_exception_unhandled;
14375 ops->check_status = check_status_catch_exception_unhandled;
14376 ops->print_it = print_it_catch_exception_unhandled;
14377 ops->print_one = print_one_catch_exception_unhandled;
14378 ops->print_mention = print_mention_catch_exception_unhandled;
14379 ops->print_recreate = print_recreate_catch_exception_unhandled;
14380
14381 ops = &catch_assert_breakpoint_ops;
14382 *ops = bkpt_breakpoint_ops;
14383 ops->allocate_location = allocate_location_catch_assert;
14384 ops->re_set = re_set_catch_assert;
14385 ops->check_status = check_status_catch_assert;
14386 ops->print_it = print_it_catch_assert;
14387 ops->print_one = print_one_catch_assert;
14388 ops->print_mention = print_mention_catch_assert;
14389 ops->print_recreate = print_recreate_catch_assert;
14390 }
14391
14392 /* This module's 'new_objfile' observer. */
14393
14394 static void
14395 ada_new_objfile_observer (struct objfile *objfile)
14396 {
14397 ada_clear_symbol_cache ();
14398 }
14399
14400 /* This module's 'free_objfile' observer. */
14401
14402 static void
14403 ada_free_objfile_observer (struct objfile *objfile)
14404 {
14405 ada_clear_symbol_cache ();
14406 }
14407
14408 void
14409 _initialize_ada_language (void)
14410 {
14411 initialize_ada_catchpoint_ops ();
14412
14413 add_prefix_cmd ("ada", no_class, set_ada_command,
14414 _("Prefix command for changing Ada-specfic settings"),
14415 &set_ada_list, "set ada ", 0, &setlist);
14416
14417 add_prefix_cmd ("ada", no_class, show_ada_command,
14418 _("Generic command for showing Ada-specific settings."),
14419 &show_ada_list, "show ada ", 0, &showlist);
14420
14421 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14422 &trust_pad_over_xvs, _("\
14423 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14424 Show whether an optimization trusting PAD types over XVS types is activated"),
14425 _("\
14426 This is related to the encoding used by the GNAT compiler. The debugger\n\
14427 should normally trust the contents of PAD types, but certain older versions\n\
14428 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14429 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14430 work around this bug. It is always safe to turn this option \"off\", but\n\
14431 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14432 this option to \"off\" unless necessary."),
14433 NULL, NULL, &set_ada_list, &show_ada_list);
14434
14435 add_setshow_boolean_cmd ("print-signatures", class_vars,
14436 &print_signatures, _("\
14437 Enable or disable the output of formal and return types for functions in the \
14438 overloads selection menu"), _("\
14439 Show whether the output of formal and return types for functions in the \
14440 overloads selection menu is activated"),
14441 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14442
14443 add_catch_command ("exception", _("\
14444 Catch Ada exceptions, when raised.\n\
14445 With an argument, catch only exceptions with the given name."),
14446 catch_ada_exception_command,
14447 NULL,
14448 CATCH_PERMANENT,
14449 CATCH_TEMPORARY);
14450 add_catch_command ("assert", _("\
14451 Catch failed Ada assertions, when raised.\n\
14452 With an argument, catch only exceptions with the given name."),
14453 catch_assert_command,
14454 NULL,
14455 CATCH_PERMANENT,
14456 CATCH_TEMPORARY);
14457
14458 varsize_limit = 65536;
14459
14460 add_info ("exceptions", info_exceptions_command,
14461 _("\
14462 List all Ada exception names.\n\
14463 If a regular expression is passed as an argument, only those matching\n\
14464 the regular expression are listed."));
14465
14466 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14467 _("Set Ada maintenance-related variables."),
14468 &maint_set_ada_cmdlist, "maintenance set ada ",
14469 0/*allow-unknown*/, &maintenance_set_cmdlist);
14470
14471 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14472 _("Show Ada maintenance-related variables"),
14473 &maint_show_ada_cmdlist, "maintenance show ada ",
14474 0/*allow-unknown*/, &maintenance_show_cmdlist);
14475
14476 add_setshow_boolean_cmd
14477 ("ignore-descriptive-types", class_maintenance,
14478 &ada_ignore_descriptive_types_p,
14479 _("Set whether descriptive types generated by GNAT should be ignored."),
14480 _("Show whether descriptive types generated by GNAT should be ignored."),
14481 _("\
14482 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14483 DWARF attribute."),
14484 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14485
14486 decoded_names_store = htab_create_alloc
14487 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14488 NULL, xcalloc, xfree);
14489
14490 /* The ada-lang observers. */
14491 observer_attach_new_objfile (ada_new_objfile_observer);
14492 observer_attach_free_objfile (ada_free_objfile_observer);
14493 observer_attach_inferior_exit (ada_inferior_exit);
14494
14495 /* Setup various context-specific data. */
14496 ada_inferior_data
14497 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14498 ada_pspace_data_handle
14499 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14500 }
This page took 0.307182 seconds and 5 git commands to generate.