Internal error trying to print uninitialized string.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
1008 ;
1009 if (mapping->encoded == NULL)
1010 error (_("invalid Ada operator name: %s"), p);
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
1015 else
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
1020 }
1021
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
1024 }
1025
1026 /* Return NAME folded to lower case, or, if surrounded by single
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
1030 char *
1031 ada_fold_name (const char *name)
1032 {
1033 static char *fold_buffer = NULL;
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1038
1039 if (name[0] == '\'')
1040 {
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
1043 }
1044 else
1045 {
1046 int i;
1047
1048 for (i = 0; i <= len; i += 1)
1049 fold_buffer[i] = tolower (name[i]);
1050 }
1051
1052 return fold_buffer;
1053 }
1054
1055 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057 static int
1058 is_lower_alphanum (const char c)
1059 {
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061 }
1062
1063 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
1070
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075 static void
1076 ada_remove_trailing_digits (const char *encoded, int *len)
1077 {
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
1081
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093 }
1094
1095 /* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098 static void
1099 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100 {
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
1106 the 'P' suffix. The second calls the first one after handling
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115 }
1116
1117 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119 static void
1120 ada_remove_Xbn_suffix (const char *encoded, int *len)
1121 {
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135 }
1136
1137 /* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
1140
1141 The resulting string is valid until the next call of ada_decode.
1142 If the string is unchanged by decoding, the original string pointer
1143 is returned. */
1144
1145 const char *
1146 ada_decode (const char *encoded)
1147 {
1148 int i, j;
1149 int len0;
1150 const char *p;
1151 char *decoded;
1152 int at_start_name;
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
1155
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
1161
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
1165 if (encoded[0] == '_' || encoded[0] == '<')
1166 goto Suppress;
1167
1168 len0 = strlen (encoded);
1169
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
1172
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
1179 {
1180 if (p[3] == 'X')
1181 len0 = p - encoded;
1182 else
1183 goto Suppress;
1184 }
1185
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1191 len0 -= 3;
1192
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1204 len0 -= 1;
1205
1206 /* Make decoded big enough for possible expansion by operator name. */
1207
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
1210
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1214 {
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
1223 }
1224
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
1234 /* Is this a symbol function? */
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
1238
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
1256 at_start_name = 0;
1257
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
1263
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
1286 of subprograms created by the compiler for each entry. The first
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1351 {
1352 /* Replace '__' by '.'. */
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
1358 else
1359 {
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
1366 }
1367 decoded[j] = '\000';
1368
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
1374 goto Suppress;
1375
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
1380
1381 Suppress:
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
1386 else
1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1388 return decoded;
1389
1390 }
1391
1392 /* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397 static struct htab *decoded_names_store;
1398
1399 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
1404 GSYMBOL).
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
1407 when a decoded name is cached in it. */
1408
1409 const char *
1410 ada_decode_symbol (const struct general_symbol_info *arg)
1411 {
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
1415
1416 if (!gsymbol->ada_mangled)
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
1419 struct obstack *obstack = gsymbol->language_specific.obstack;
1420
1421 gsymbol->ada_mangled = 1;
1422
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
1426 {
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
1434
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
1439 }
1440
1441 return *resultp;
1442 }
1443
1444 static char *
1445 ada_la_decode (const char *encoded, int options)
1446 {
1447 return xstrdup (ada_decode (encoded));
1448 }
1449
1450 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
1456
1457 static int
1458 match_name (const char *sym_name, const char *name, int wild)
1459 {
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
1463 return wild_match (sym_name, name) == 0;
1464 else
1465 {
1466 int len_name = strlen (name);
1467
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
1473 }
1474 }
1475 \f
1476
1477 /* Arrays */
1478
1479 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502 void
1503 ada_fixup_array_indexes_type (struct type *index_desc_type)
1504 {
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532 }
1533
1534 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1535
1536 static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539 };
1540
1541 /* Maximum number of array dimensions we are prepared to handle. */
1542
1543 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1544
1545
1546 /* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
1548
1549 /* The descriptor or array type, if any, indicated by TYPE; removes
1550 level of indirection, if needed. */
1551
1552 static struct type *
1553 desc_base_type (struct type *type)
1554 {
1555 if (type == NULL)
1556 return NULL;
1557 type = ada_check_typedef (type);
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1565 else
1566 return type;
1567 }
1568
1569 /* True iff TYPE indicates a "thin" array pointer type. */
1570
1571 static int
1572 is_thin_pntr (struct type *type)
1573 {
1574 return
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577 }
1578
1579 /* The descriptor type for thin pointer type TYPE. */
1580
1581 static struct type *
1582 thin_descriptor_type (struct type *type)
1583 {
1584 struct type *base_type = desc_base_type (type);
1585
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
1590 else
1591 {
1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1593
1594 if (alt_type == NULL)
1595 return base_type;
1596 else
1597 return alt_type;
1598 }
1599 }
1600
1601 /* A pointer to the array data for thin-pointer value VAL. */
1602
1603 static struct value *
1604 thin_data_pntr (struct value *val)
1605 {
1606 struct type *type = ada_check_typedef (value_type (val));
1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1608
1609 data_type = lookup_pointer_type (data_type);
1610
1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1612 return value_cast (data_type, value_copy (val));
1613 else
1614 return value_from_longest (data_type, value_address (val));
1615 }
1616
1617 /* True iff TYPE indicates a "thick" array pointer type. */
1618
1619 static int
1620 is_thick_pntr (struct type *type)
1621 {
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1625 }
1626
1627 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
1629
1630 static struct type *
1631 desc_bounds_type (struct type *type)
1632 {
1633 struct type *r;
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
1643 return NULL;
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
1646 return ada_check_typedef (r);
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1653 }
1654 return NULL;
1655 }
1656
1657 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
1660 static struct value *
1661 desc_bounds (struct value *arr)
1662 {
1663 struct type *type = ada_check_typedef (value_type (arr));
1664
1665 if (is_thin_pntr (type))
1666 {
1667 struct type *bounds_type =
1668 desc_bounds_type (thin_descriptor_type (type));
1669 LONGEST addr;
1670
1671 if (bounds_type == NULL)
1672 error (_("Bad GNAT array descriptor"));
1673
1674 /* NOTE: The following calculation is not really kosher, but
1675 since desc_type is an XVE-encoded type (and shouldn't be),
1676 the correct calculation is a real pain. FIXME (and fix GCC). */
1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1678 addr = value_as_long (arr);
1679 else
1680 addr = value_address (arr);
1681
1682 return
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
1685 }
1686
1687 else if (is_thick_pntr (type))
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
1708 else
1709 return NULL;
1710 }
1711
1712 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
1715 static int
1716 fat_pntr_bounds_bitpos (struct type *type)
1717 {
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719 }
1720
1721 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1722 size of the field containing the address of the bounds data. */
1723
1724 static int
1725 fat_pntr_bounds_bitsize (struct type *type)
1726 {
1727 type = desc_base_type (type);
1728
1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1733 }
1734
1735 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
1739
1740 static struct type *
1741 desc_data_target_type (struct type *type)
1742 {
1743 type = desc_base_type (type);
1744
1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
1746 if (is_thin_pntr (type))
1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1748 else if (is_thick_pntr (type))
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1755 }
1756
1757 return NULL;
1758 }
1759
1760 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
1762
1763 static struct value *
1764 desc_data (struct value *arr)
1765 {
1766 struct type *type = value_type (arr);
1767
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1772 _("Bad GNAT array descriptor"));
1773 else
1774 return NULL;
1775 }
1776
1777
1778 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1779 position of the field containing the address of the data. */
1780
1781 static int
1782 fat_pntr_data_bitpos (struct type *type)
1783 {
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785 }
1786
1787 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1788 size of the field containing the address of the data. */
1789
1790 static int
1791 fat_pntr_data_bitsize (struct type *type)
1792 {
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
1797 else
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799 }
1800
1801 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
1805 static struct value *
1806 desc_one_bound (struct value *bounds, int i, int which)
1807 {
1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1809 _("Bad GNAT array descriptor bounds"));
1810 }
1811
1812 /* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
1816 static int
1817 desc_bound_bitpos (struct type *type, int i, int which)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1820 }
1821
1822 /* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
1826 static int
1827 desc_bound_bitsize (struct type *type, int i, int which)
1828 {
1829 type = desc_base_type (type);
1830
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1835 }
1836
1837 /* If TYPE is the type of an array-bounds structure, the type of its
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
1840 static struct type *
1841 desc_index_type (struct type *type, int i)
1842 {
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
1848 return NULL;
1849 }
1850
1851 /* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
1854 static int
1855 desc_arity (struct type *type)
1856 {
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862 }
1863
1864 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
1868 static int
1869 ada_is_direct_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || ada_is_array_descriptor_type (type));
1876 }
1877
1878 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1879 * to one. */
1880
1881 static int
1882 ada_is_array_type (struct type *type)
1883 {
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889 }
1890
1891 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1892
1893 int
1894 ada_is_simple_array_type (struct type *type)
1895 {
1896 if (type == NULL)
1897 return 0;
1898 type = ada_check_typedef (type);
1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
1903 }
1904
1905 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
1907 int
1908 ada_is_array_descriptor_type (struct type *type)
1909 {
1910 struct type *data_type = desc_data_target_type (type);
1911
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
1918 }
1919
1920 /* Non-zero iff type is a partially mal-formed GNAT array
1921 descriptor. FIXME: This is to compensate for some problems with
1922 debugging output from GNAT. Re-examine periodically to see if it
1923 is still needed. */
1924
1925 int
1926 ada_is_bogus_array_descriptor (struct type *type)
1927 {
1928 return
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
1934 }
1935
1936
1937 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1938 (fat pointer) returns the type of the array data described---specifically,
1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1940 in from the descriptor; otherwise, they are left unspecified. If
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
1943 a descriptor. */
1944 struct type *
1945 ada_type_of_array (struct value *arr, int bounds)
1946 {
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
1949
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
1952
1953 if (!bounds)
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
1964 else
1965 {
1966 struct type *elt_type;
1967 int arity;
1968 struct value *descriptor;
1969
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
1972
1973 if (elt_type == NULL || arity == 0)
1974 return ada_check_typedef (value_type (arr));
1975
1976 descriptor = desc_bounds (arr);
1977 if (value_as_long (descriptor) == 0)
1978 return NULL;
1979 while (arity > 0)
1980 {
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
1985
1986 arity -= 1;
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
1990 elt_type = create_array_type (array_type, elt_type, range_type);
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
2012 }
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016 }
2017
2018 /* If ARR does not represent an array, returns ARR unchanged.
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
2023 struct value *
2024 ada_coerce_to_simple_array_ptr (struct value *arr)
2025 {
2026 if (ada_is_array_descriptor_type (value_type (arr)))
2027 {
2028 struct type *arrType = ada_type_of_array (arr, 1);
2029
2030 if (arrType == NULL)
2031 return NULL;
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
2036 else
2037 return arr;
2038 }
2039
2040 /* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
2042 be ARR itself if it already is in the proper form). */
2043
2044 struct value *
2045 ada_coerce_to_simple_array (struct value *arr)
2046 {
2047 if (ada_is_array_descriptor_type (value_type (arr)))
2048 {
2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2050
2051 if (arrVal == NULL)
2052 error (_("Bounds unavailable for null array pointer."));
2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2054 return value_ind (arrVal);
2055 }
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
2058 else
2059 return arr;
2060 }
2061
2062 /* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
2064 packing). For other types, is the identity. */
2065
2066 struct type *
2067 ada_coerce_to_simple_array_type (struct type *type)
2068 {
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
2071
2072 if (ada_is_array_descriptor_type (type))
2073 return ada_check_typedef (desc_data_target_type (type));
2074
2075 return type;
2076 }
2077
2078 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
2080 static int
2081 ada_is_packed_array_type (struct type *type)
2082 {
2083 if (type == NULL)
2084 return 0;
2085 type = desc_base_type (type);
2086 type = ada_check_typedef (type);
2087 return
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090 }
2091
2092 /* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095 int
2096 ada_is_constrained_packed_array_type (struct type *type)
2097 {
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100 }
2101
2102 /* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105 static int
2106 ada_is_unconstrained_packed_array_type (struct type *type)
2107 {
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110 }
2111
2112 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115 static long
2116 decode_packed_array_bitsize (struct type *type)
2117 {
2118 const char *raw_name;
2119 const char *tail;
2120 long bits;
2121
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
2136 gdb_assert (tail != NULL);
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146 }
2147
2148 /* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
2164
2165 static struct type *
2166 constrained_packed_array_type (struct type *type, long *elt_bits)
2167 {
2168 struct type *new_elt_type;
2169 struct type *new_type;
2170 struct type *index_type_desc;
2171 struct type *index_type;
2172 LONGEST low_bound, high_bound;
2173
2174 type = ada_check_typedef (type);
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
2185 new_type = alloc_type_copy (type);
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
2189 create_array_type (new_type, new_elt_type, index_type);
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
2199 else
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
2202 TYPE_LENGTH (new_type) =
2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2204 }
2205
2206 TYPE_FIXED_INSTANCE (new_type) = 1;
2207 return new_type;
2208 }
2209
2210 /* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
2212
2213 static struct type *
2214 decode_constrained_packed_array_type (struct type *type)
2215 {
2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
2217 char *name;
2218 const char *tail;
2219 struct type *shadow_type;
2220 long bits;
2221
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
2230 type = desc_base_type (type);
2231
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
2238 {
2239 lim_warning (_("could not find bounds information on packed array"));
2240 return NULL;
2241 }
2242 CHECK_TYPEDEF (shadow_type);
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
2248 return NULL;
2249 }
2250
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
2253 }
2254
2255 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
2259 type length is set appropriately. */
2260
2261 static struct value *
2262 decode_constrained_packed_array (struct value *arr)
2263 {
2264 struct type *type;
2265
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2275 arr = value_ind (arr);
2276
2277 type = decode_constrained_packed_array_type (value_type (arr));
2278 if (type == NULL)
2279 {
2280 error (_("can't unpack array"));
2281 return NULL;
2282 }
2283
2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2285 && ada_is_modular_type (value_type (arr)))
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
2294 mod = ada_modulus (value_type (arr)) - 1;
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
2309 return coerce_unspec_val_to_type (arr, type);
2310 }
2311
2312
2313 /* The value of the element of packed array ARR at the ARITY indices
2314 given in IND. ARR must be a simple array. */
2315
2316 static struct value *
2317 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2318 {
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
2322 struct type *elt_type;
2323 struct value *v;
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
2327 elt_type = ada_check_typedef (value_type (arr));
2328 for (i = 0; i < arity; i += 1)
2329 {
2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
2335 else
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
2343 lim_warning (_("don't know bounds of array"));
2344 lowerbound = upperbound = 0;
2345 }
2346
2347 idx = pos_atr (ind[i]);
2348 if (idx < lowerbound || idx > upperbound)
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2354 }
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2360 bits, elt_type);
2361 return v;
2362 }
2363
2364 /* Non-zero iff TYPE includes negative integer values. */
2365
2366 static int
2367 has_negatives (struct type *type)
2368 {
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
2378 }
2379
2380
2381 /* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2384 assigning through the result will set the field fetched from.
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2389
2390 struct value *
2391 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2392 long offset, int bit_offset, int bit_size,
2393 struct type *type)
2394 {
2395 struct value *v;
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
2404 unsigned char *unpacked;
2405 unsigned long accum; /* Staging area for bits being transferred */
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2411
2412 type = ada_check_typedef (type);
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
2417 bytes = (unsigned char *) (valaddr + offset);
2418 }
2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2420 {
2421 v = value_at (type, value_address (obj));
2422 type = value_type (v);
2423 bytes = (unsigned char *) alloca (len);
2424 read_memory (value_address (v) + offset, bytes, len);
2425 }
2426 else
2427 {
2428 v = allocate_value (type);
2429 bytes = (unsigned char *) value_contents (obj) + offset;
2430 }
2431
2432 if (obj != NULL)
2433 {
2434 long new_offset = offset;
2435
2436 set_value_component_location (v, obj);
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
2440 {
2441 ++new_offset;
2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2443 }
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
2449 }
2450 else
2451 set_value_bitsize (v, bit_size);
2452 unpacked = (unsigned char *) value_contents (v);
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2464 {
2465 src = len - 1;
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 sign = ~0;
2469
2470 unusedLS =
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
2473
2474 switch (TYPE_CODE (type))
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2485 ntarg = targ + 1;
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
2492 }
2493 else
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2502 sign = ~0;
2503 }
2504
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
2509 part of the value. */
2510 unsigned int unusedMSMask =
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
2514 unsigned int signMask = sign & ~unusedMSMask;
2515
2516 accum |=
2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2518 accumSize += HOST_CHAR_BIT - unusedLS;
2519 if (accumSize >= HOST_CHAR_BIT)
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543 }
2544
2545 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2547 not overlap. */
2548 static void
2549 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2550 int src_offset, int n, int bits_big_endian_p)
2551 {
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
2559 if (bits_big_endian_p)
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
2565 while (n > 0)
2566 {
2567 int unused_right;
2568
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
2592 while (n > 0)
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
2608 }
2609 }
2610
2611 /* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
2614 floating-point or non-scalar types. */
2615
2616 static struct value *
2617 ada_value_assign (struct value *toval, struct value *fromval)
2618 {
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
2621
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
2630 if (!deprecated_value_modifiable (toval))
2631 error (_("Left operand of assignment is not a modifiable lvalue."));
2632
2633 if (VALUE_LVAL (toval) == lval_memory
2634 && bits > 0
2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2637 {
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2640 int from_size;
2641 gdb_byte *buffer = alloca (len);
2642 struct value *val;
2643 CORE_ADDR to_addr = value_address (toval);
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2646 fromval = value_cast (type, fromval);
2647
2648 read_memory (to_addr, buffer, len);
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
2653 move_bits (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_size - bits, bits, 1);
2655 else
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
2658 write_memory_with_notification (to_addr, buffer, len);
2659
2660 val = value_copy (toval);
2661 memcpy (value_contents_raw (val), value_contents (fromval),
2662 TYPE_LENGTH (type));
2663 deprecated_set_value_type (val, type);
2664
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669 }
2670
2671
2672 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677 static void
2678 value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680 {
2681 LONGEST offset_in_container =
2682 (LONGEST) (value_address (component) - value_address (container));
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2699 bits, 1);
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
2703 value_contents (val), 0, bits, 0);
2704 }
2705
2706 /* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
2708 thereto. */
2709
2710 struct value *
2711 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2712 {
2713 int k;
2714 struct value *elt;
2715 struct type *elt_type;
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
2719 elt_type = ada_check_typedef (value_type (elt));
2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2727 error (_("too many subscripts (%d expected)"), k);
2728 elt = value_subscript (elt, pos_atr (ind[k]));
2729 }
2730 return elt;
2731 }
2732
2733 /* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
2736
2737 static struct value *
2738 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2739 {
2740 int k;
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2751 value_copy (arr));
2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758 }
2759
2760 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
2763 per Ada rules. */
2764 static struct value *
2765 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
2767 {
2768 struct type *type0 = ada_check_typedef (type);
2769 CORE_ADDR base = value_as_address (array_ptr)
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
2776 struct type *slice_type =
2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2778
2779 return value_at_lazy (slice_type, base);
2780 }
2781
2782
2783 static struct value *
2784 ada_value_slice (struct value *array, int low, int high)
2785 {
2786 struct type *type = ada_check_typedef (value_type (array));
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2789 struct type *slice_type =
2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2791
2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2793 }
2794
2795 /* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
2798 type designation. Otherwise, returns 0. */
2799
2800 int
2801 ada_array_arity (struct type *type)
2802 {
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2812 return desc_arity (desc_bounds_type (type));
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2815 {
2816 arity += 1;
2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2818 }
2819
2820 return arity;
2821 }
2822
2823 /* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
2826 NINDICES is -1. Otherwise, returns NULL. */
2827
2828 struct type *
2829 ada_array_element_type (struct type *type, int nindices)
2830 {
2831 type = desc_base_type (type);
2832
2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2834 {
2835 int k;
2836 struct type *p_array_type;
2837
2838 p_array_type = desc_data_target_type (type);
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
2842 return NULL;
2843
2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2845 if (nindices >= 0 && k > nindices)
2846 k = nindices;
2847 while (k > 0 && p_array_type != NULL)
2848 {
2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2850 k -= 1;
2851 }
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
2861 return type;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* The type of nth index in arrays of given type (n numbering from 1).
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
2872
2873 static struct type *
2874 ada_index_type (struct type *type, int n, const char *name)
2875 {
2876 struct type *result_type;
2877
2878 type = desc_base_type (type);
2879
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
2882
2883 if (ada_is_simple_array_type (type))
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
2888 type = TYPE_TARGET_TYPE (type);
2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2892 perhaps stabsread.c would make more sense. */
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
2895 }
2896 else
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
2904 }
2905
2906 /* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
2911
2912 static LONGEST
2913 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2914 {
2915 struct type *type, *index_type_desc, *index_type;
2916 int i;
2917
2918 gdb_assert (which == 0 || which == 1);
2919
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
2922
2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2924 return (LONGEST) - which;
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
2931 index_type_desc = ada_find_parallel_type (type, "___XA");
2932 ada_fixup_array_indexes_type (index_type_desc);
2933 if (index_type_desc != NULL)
2934 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2935 NULL);
2936 else
2937 {
2938 struct type *elt_type = check_typedef (type);
2939
2940 for (i = 1; i < n; i++)
2941 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2942
2943 index_type = TYPE_INDEX_TYPE (elt_type);
2944 }
2945
2946 return
2947 (LONGEST) (which == 0
2948 ? ada_discrete_type_low_bound (index_type)
2949 : ada_discrete_type_high_bound (index_type));
2950 }
2951
2952 /* Given that arr is an array value, returns the lower bound of the
2953 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2954 WHICH is 1. This routine will also work for arrays with bounds
2955 supplied by run-time quantities other than discriminants. */
2956
2957 static LONGEST
2958 ada_array_bound (struct value *arr, int n, int which)
2959 {
2960 struct type *arr_type;
2961
2962 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2963 arr = value_ind (arr);
2964 arr_type = value_enclosing_type (arr);
2965
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2968 else if (ada_is_simple_array_type (arr_type))
2969 return ada_array_bound_from_type (arr_type, n, which);
2970 else
2971 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2972 }
2973
2974 /* Given that arr is an array value, returns the length of the
2975 nth index. This routine will also work for arrays with bounds
2976 supplied by run-time quantities other than discriminants.
2977 Does not work for arrays indexed by enumeration types with representation
2978 clauses at the moment. */
2979
2980 static LONGEST
2981 ada_array_length (struct value *arr, int n)
2982 {
2983 struct type *arr_type;
2984
2985 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2986 arr = value_ind (arr);
2987 arr_type = value_enclosing_type (arr);
2988
2989 if (ada_is_constrained_packed_array_type (arr_type))
2990 return ada_array_length (decode_constrained_packed_array (arr), n);
2991
2992 if (ada_is_simple_array_type (arr_type))
2993 return (ada_array_bound_from_type (arr_type, n, 1)
2994 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2995 else
2996 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2997 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2998 }
2999
3000 /* An empty array whose type is that of ARR_TYPE (an array type),
3001 with bounds LOW to LOW-1. */
3002
3003 static struct value *
3004 empty_array (struct type *arr_type, int low)
3005 {
3006 struct type *arr_type0 = ada_check_typedef (arr_type);
3007 struct type *index_type
3008 = create_static_range_type
3009 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3010 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3011
3012 return allocate_value (create_array_type (NULL, elt_type, index_type));
3013 }
3014 \f
3015
3016 /* Name resolution */
3017
3018 /* The "decoded" name for the user-definable Ada operator corresponding
3019 to OP. */
3020
3021 static const char *
3022 ada_decoded_op_name (enum exp_opcode op)
3023 {
3024 int i;
3025
3026 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3027 {
3028 if (ada_opname_table[i].op == op)
3029 return ada_opname_table[i].decoded;
3030 }
3031 error (_("Could not find operator name for opcode"));
3032 }
3033
3034
3035 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3036 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3037 undefined namespace) and converts operators that are
3038 user-defined into appropriate function calls. If CONTEXT_TYPE is
3039 non-null, it provides a preferred result type [at the moment, only
3040 type void has any effect---causing procedures to be preferred over
3041 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3042 return type is preferred. May change (expand) *EXP. */
3043
3044 static void
3045 resolve (struct expression **expp, int void_context_p)
3046 {
3047 struct type *context_type = NULL;
3048 int pc = 0;
3049
3050 if (void_context_p)
3051 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3052
3053 resolve_subexp (expp, &pc, 1, context_type);
3054 }
3055
3056 /* Resolve the operator of the subexpression beginning at
3057 position *POS of *EXPP. "Resolving" consists of replacing
3058 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3059 with their resolutions, replacing built-in operators with
3060 function calls to user-defined operators, where appropriate, and,
3061 when DEPROCEDURE_P is non-zero, converting function-valued variables
3062 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3063 are as in ada_resolve, above. */
3064
3065 static struct value *
3066 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3067 struct type *context_type)
3068 {
3069 int pc = *pos;
3070 int i;
3071 struct expression *exp; /* Convenience: == *expp. */
3072 enum exp_opcode op = (*expp)->elts[pc].opcode;
3073 struct value **argvec; /* Vector of operand types (alloca'ed). */
3074 int nargs; /* Number of operands. */
3075 int oplen;
3076
3077 argvec = NULL;
3078 nargs = 0;
3079 exp = *expp;
3080
3081 /* Pass one: resolve operands, saving their types and updating *pos,
3082 if needed. */
3083 switch (op)
3084 {
3085 case OP_FUNCALL:
3086 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3087 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3088 *pos += 7;
3089 else
3090 {
3091 *pos += 3;
3092 resolve_subexp (expp, pos, 0, NULL);
3093 }
3094 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3095 break;
3096
3097 case UNOP_ADDR:
3098 *pos += 1;
3099 resolve_subexp (expp, pos, 0, NULL);
3100 break;
3101
3102 case UNOP_QUAL:
3103 *pos += 3;
3104 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3105 break;
3106
3107 case OP_ATR_MODULUS:
3108 case OP_ATR_SIZE:
3109 case OP_ATR_TAG:
3110 case OP_ATR_FIRST:
3111 case OP_ATR_LAST:
3112 case OP_ATR_LENGTH:
3113 case OP_ATR_POS:
3114 case OP_ATR_VAL:
3115 case OP_ATR_MIN:
3116 case OP_ATR_MAX:
3117 case TERNOP_IN_RANGE:
3118 case BINOP_IN_BOUNDS:
3119 case UNOP_IN_RANGE:
3120 case OP_AGGREGATE:
3121 case OP_OTHERS:
3122 case OP_CHOICES:
3123 case OP_POSITIONAL:
3124 case OP_DISCRETE_RANGE:
3125 case OP_NAME:
3126 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3127 *pos += oplen;
3128 break;
3129
3130 case BINOP_ASSIGN:
3131 {
3132 struct value *arg1;
3133
3134 *pos += 1;
3135 arg1 = resolve_subexp (expp, pos, 0, NULL);
3136 if (arg1 == NULL)
3137 resolve_subexp (expp, pos, 1, NULL);
3138 else
3139 resolve_subexp (expp, pos, 1, value_type (arg1));
3140 break;
3141 }
3142
3143 case UNOP_CAST:
3144 *pos += 3;
3145 nargs = 1;
3146 break;
3147
3148 case BINOP_ADD:
3149 case BINOP_SUB:
3150 case BINOP_MUL:
3151 case BINOP_DIV:
3152 case BINOP_REM:
3153 case BINOP_MOD:
3154 case BINOP_EXP:
3155 case BINOP_CONCAT:
3156 case BINOP_LOGICAL_AND:
3157 case BINOP_LOGICAL_OR:
3158 case BINOP_BITWISE_AND:
3159 case BINOP_BITWISE_IOR:
3160 case BINOP_BITWISE_XOR:
3161
3162 case BINOP_EQUAL:
3163 case BINOP_NOTEQUAL:
3164 case BINOP_LESS:
3165 case BINOP_GTR:
3166 case BINOP_LEQ:
3167 case BINOP_GEQ:
3168
3169 case BINOP_REPEAT:
3170 case BINOP_SUBSCRIPT:
3171 case BINOP_COMMA:
3172 *pos += 1;
3173 nargs = 2;
3174 break;
3175
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 case UNOP_IND:
3181 *pos += 1;
3182 nargs = 1;
3183 break;
3184
3185 case OP_LONG:
3186 case OP_DOUBLE:
3187 case OP_VAR_VALUE:
3188 *pos += 4;
3189 break;
3190
3191 case OP_TYPE:
3192 case OP_BOOL:
3193 case OP_LAST:
3194 case OP_INTERNALVAR:
3195 *pos += 3;
3196 break;
3197
3198 case UNOP_MEMVAL:
3199 *pos += 3;
3200 nargs = 1;
3201 break;
3202
3203 case OP_REGISTER:
3204 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3205 break;
3206
3207 case STRUCTOP_STRUCT:
3208 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3209 nargs = 1;
3210 break;
3211
3212 case TERNOP_SLICE:
3213 *pos += 1;
3214 nargs = 3;
3215 break;
3216
3217 case OP_STRING:
3218 break;
3219
3220 default:
3221 error (_("Unexpected operator during name resolution"));
3222 }
3223
3224 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3225 for (i = 0; i < nargs; i += 1)
3226 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3227 argvec[i] = NULL;
3228 exp = *expp;
3229
3230 /* Pass two: perform any resolution on principal operator. */
3231 switch (op)
3232 {
3233 default:
3234 break;
3235
3236 case OP_VAR_VALUE:
3237 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3238 {
3239 struct ada_symbol_info *candidates;
3240 int n_candidates;
3241
3242 n_candidates =
3243 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3244 (exp->elts[pc + 2].symbol),
3245 exp->elts[pc + 1].block, VAR_DOMAIN,
3246 &candidates);
3247
3248 if (n_candidates > 1)
3249 {
3250 /* Types tend to get re-introduced locally, so if there
3251 are any local symbols that are not types, first filter
3252 out all types. */
3253 int j;
3254 for (j = 0; j < n_candidates; j += 1)
3255 switch (SYMBOL_CLASS (candidates[j].sym))
3256 {
3257 case LOC_REGISTER:
3258 case LOC_ARG:
3259 case LOC_REF_ARG:
3260 case LOC_REGPARM_ADDR:
3261 case LOC_LOCAL:
3262 case LOC_COMPUTED:
3263 goto FoundNonType;
3264 default:
3265 break;
3266 }
3267 FoundNonType:
3268 if (j < n_candidates)
3269 {
3270 j = 0;
3271 while (j < n_candidates)
3272 {
3273 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3274 {
3275 candidates[j] = candidates[n_candidates - 1];
3276 n_candidates -= 1;
3277 }
3278 else
3279 j += 1;
3280 }
3281 }
3282 }
3283
3284 if (n_candidates == 0)
3285 error (_("No definition found for %s"),
3286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3287 else if (n_candidates == 1)
3288 i = 0;
3289 else if (deprocedure_p
3290 && !is_nonfunction (candidates, n_candidates))
3291 {
3292 i = ada_resolve_function
3293 (candidates, n_candidates, NULL, 0,
3294 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3295 context_type);
3296 if (i < 0)
3297 error (_("Could not find a match for %s"),
3298 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3299 }
3300 else
3301 {
3302 printf_filtered (_("Multiple matches for %s\n"),
3303 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3304 user_select_syms (candidates, n_candidates, 1);
3305 i = 0;
3306 }
3307
3308 exp->elts[pc + 1].block = candidates[i].block;
3309 exp->elts[pc + 2].symbol = candidates[i].sym;
3310 if (innermost_block == NULL
3311 || contained_in (candidates[i].block, innermost_block))
3312 innermost_block = candidates[i].block;
3313 }
3314
3315 if (deprocedure_p
3316 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3317 == TYPE_CODE_FUNC))
3318 {
3319 replace_operator_with_call (expp, pc, 0, 0,
3320 exp->elts[pc + 2].symbol,
3321 exp->elts[pc + 1].block);
3322 exp = *expp;
3323 }
3324 break;
3325
3326 case OP_FUNCALL:
3327 {
3328 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3330 {
3331 struct ada_symbol_info *candidates;
3332 int n_candidates;
3333
3334 n_candidates =
3335 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3336 (exp->elts[pc + 5].symbol),
3337 exp->elts[pc + 4].block, VAR_DOMAIN,
3338 &candidates);
3339 if (n_candidates == 1)
3340 i = 0;
3341 else
3342 {
3343 i = ada_resolve_function
3344 (candidates, n_candidates,
3345 argvec, nargs,
3346 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3347 context_type);
3348 if (i < 0)
3349 error (_("Could not find a match for %s"),
3350 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3351 }
3352
3353 exp->elts[pc + 4].block = candidates[i].block;
3354 exp->elts[pc + 5].symbol = candidates[i].sym;
3355 if (innermost_block == NULL
3356 || contained_in (candidates[i].block, innermost_block))
3357 innermost_block = candidates[i].block;
3358 }
3359 }
3360 break;
3361 case BINOP_ADD:
3362 case BINOP_SUB:
3363 case BINOP_MUL:
3364 case BINOP_DIV:
3365 case BINOP_REM:
3366 case BINOP_MOD:
3367 case BINOP_CONCAT:
3368 case BINOP_BITWISE_AND:
3369 case BINOP_BITWISE_IOR:
3370 case BINOP_BITWISE_XOR:
3371 case BINOP_EQUAL:
3372 case BINOP_NOTEQUAL:
3373 case BINOP_LESS:
3374 case BINOP_GTR:
3375 case BINOP_LEQ:
3376 case BINOP_GEQ:
3377 case BINOP_EXP:
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 if (possible_user_operator_p (op, argvec))
3383 {
3384 struct ada_symbol_info *candidates;
3385 int n_candidates;
3386
3387 n_candidates =
3388 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3389 (struct block *) NULL, VAR_DOMAIN,
3390 &candidates);
3391 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3392 ada_decoded_op_name (op), NULL);
3393 if (i < 0)
3394 break;
3395
3396 replace_operator_with_call (expp, pc, nargs, 1,
3397 candidates[i].sym, candidates[i].block);
3398 exp = *expp;
3399 }
3400 break;
3401
3402 case OP_TYPE:
3403 case OP_REGISTER:
3404 return NULL;
3405 }
3406
3407 *pos = pc;
3408 return evaluate_subexp_type (exp, pos);
3409 }
3410
3411 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3412 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3413 a non-pointer. */
3414 /* The term "match" here is rather loose. The match is heuristic and
3415 liberal. */
3416
3417 static int
3418 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3419 {
3420 ftype = ada_check_typedef (ftype);
3421 atype = ada_check_typedef (atype);
3422
3423 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3424 ftype = TYPE_TARGET_TYPE (ftype);
3425 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3426 atype = TYPE_TARGET_TYPE (atype);
3427
3428 switch (TYPE_CODE (ftype))
3429 {
3430 default:
3431 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3432 case TYPE_CODE_PTR:
3433 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3434 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3435 TYPE_TARGET_TYPE (atype), 0);
3436 else
3437 return (may_deref
3438 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3439 case TYPE_CODE_INT:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_RANGE:
3442 switch (TYPE_CODE (atype))
3443 {
3444 case TYPE_CODE_INT:
3445 case TYPE_CODE_ENUM:
3446 case TYPE_CODE_RANGE:
3447 return 1;
3448 default:
3449 return 0;
3450 }
3451
3452 case TYPE_CODE_ARRAY:
3453 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3454 || ada_is_array_descriptor_type (atype));
3455
3456 case TYPE_CODE_STRUCT:
3457 if (ada_is_array_descriptor_type (ftype))
3458 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3459 || ada_is_array_descriptor_type (atype));
3460 else
3461 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3462 && !ada_is_array_descriptor_type (atype));
3463
3464 case TYPE_CODE_UNION:
3465 case TYPE_CODE_FLT:
3466 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3467 }
3468 }
3469
3470 /* Return non-zero if the formals of FUNC "sufficiently match" the
3471 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3472 may also be an enumeral, in which case it is treated as a 0-
3473 argument function. */
3474
3475 static int
3476 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3477 {
3478 int i;
3479 struct type *func_type = SYMBOL_TYPE (func);
3480
3481 if (SYMBOL_CLASS (func) == LOC_CONST
3482 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3483 return (n_actuals == 0);
3484 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3485 return 0;
3486
3487 if (TYPE_NFIELDS (func_type) != n_actuals)
3488 return 0;
3489
3490 for (i = 0; i < n_actuals; i += 1)
3491 {
3492 if (actuals[i] == NULL)
3493 return 0;
3494 else
3495 {
3496 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3497 i));
3498 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3499
3500 if (!ada_type_match (ftype, atype, 1))
3501 return 0;
3502 }
3503 }
3504 return 1;
3505 }
3506
3507 /* False iff function type FUNC_TYPE definitely does not produce a value
3508 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3509 FUNC_TYPE is not a valid function type with a non-null return type
3510 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3511
3512 static int
3513 return_match (struct type *func_type, struct type *context_type)
3514 {
3515 struct type *return_type;
3516
3517 if (func_type == NULL)
3518 return 1;
3519
3520 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3521 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3522 else
3523 return_type = get_base_type (func_type);
3524 if (return_type == NULL)
3525 return 1;
3526
3527 context_type = get_base_type (context_type);
3528
3529 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3530 return context_type == NULL || return_type == context_type;
3531 else if (context_type == NULL)
3532 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3533 else
3534 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3535 }
3536
3537
3538 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3539 function (if any) that matches the types of the NARGS arguments in
3540 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3541 that returns that type, then eliminate matches that don't. If
3542 CONTEXT_TYPE is void and there is at least one match that does not
3543 return void, eliminate all matches that do.
3544
3545 Asks the user if there is more than one match remaining. Returns -1
3546 if there is no such symbol or none is selected. NAME is used
3547 solely for messages. May re-arrange and modify SYMS in
3548 the process; the index returned is for the modified vector. */
3549
3550 static int
3551 ada_resolve_function (struct ada_symbol_info syms[],
3552 int nsyms, struct value **args, int nargs,
3553 const char *name, struct type *context_type)
3554 {
3555 int fallback;
3556 int k;
3557 int m; /* Number of hits */
3558
3559 m = 0;
3560 /* In the first pass of the loop, we only accept functions matching
3561 context_type. If none are found, we add a second pass of the loop
3562 where every function is accepted. */
3563 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3564 {
3565 for (k = 0; k < nsyms; k += 1)
3566 {
3567 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3568
3569 if (ada_args_match (syms[k].sym, args, nargs)
3570 && (fallback || return_match (type, context_type)))
3571 {
3572 syms[m] = syms[k];
3573 m += 1;
3574 }
3575 }
3576 }
3577
3578 if (m == 0)
3579 return -1;
3580 else if (m > 1)
3581 {
3582 printf_filtered (_("Multiple matches for %s\n"), name);
3583 user_select_syms (syms, m, 1);
3584 return 0;
3585 }
3586 return 0;
3587 }
3588
3589 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3590 in a listing of choices during disambiguation (see sort_choices, below).
3591 The idea is that overloadings of a subprogram name from the
3592 same package should sort in their source order. We settle for ordering
3593 such symbols by their trailing number (__N or $N). */
3594
3595 static int
3596 encoded_ordered_before (const char *N0, const char *N1)
3597 {
3598 if (N1 == NULL)
3599 return 0;
3600 else if (N0 == NULL)
3601 return 1;
3602 else
3603 {
3604 int k0, k1;
3605
3606 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3607 ;
3608 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3609 ;
3610 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3611 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3612 {
3613 int n0, n1;
3614
3615 n0 = k0;
3616 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3617 n0 -= 1;
3618 n1 = k1;
3619 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3620 n1 -= 1;
3621 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3622 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3623 }
3624 return (strcmp (N0, N1) < 0);
3625 }
3626 }
3627
3628 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3629 encoded names. */
3630
3631 static void
3632 sort_choices (struct ada_symbol_info syms[], int nsyms)
3633 {
3634 int i;
3635
3636 for (i = 1; i < nsyms; i += 1)
3637 {
3638 struct ada_symbol_info sym = syms[i];
3639 int j;
3640
3641 for (j = i - 1; j >= 0; j -= 1)
3642 {
3643 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3644 SYMBOL_LINKAGE_NAME (sym.sym)))
3645 break;
3646 syms[j + 1] = syms[j];
3647 }
3648 syms[j + 1] = sym;
3649 }
3650 }
3651
3652 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3653 by asking the user (if necessary), returning the number selected,
3654 and setting the first elements of SYMS items. Error if no symbols
3655 selected. */
3656
3657 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3658 to be re-integrated one of these days. */
3659
3660 int
3661 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3662 {
3663 int i;
3664 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3665 int n_chosen;
3666 int first_choice = (max_results == 1) ? 1 : 2;
3667 const char *select_mode = multiple_symbols_select_mode ();
3668
3669 if (max_results < 1)
3670 error (_("Request to select 0 symbols!"));
3671 if (nsyms <= 1)
3672 return nsyms;
3673
3674 if (select_mode == multiple_symbols_cancel)
3675 error (_("\
3676 canceled because the command is ambiguous\n\
3677 See set/show multiple-symbol."));
3678
3679 /* If select_mode is "all", then return all possible symbols.
3680 Only do that if more than one symbol can be selected, of course.
3681 Otherwise, display the menu as usual. */
3682 if (select_mode == multiple_symbols_all && max_results > 1)
3683 return nsyms;
3684
3685 printf_unfiltered (_("[0] cancel\n"));
3686 if (max_results > 1)
3687 printf_unfiltered (_("[1] all\n"));
3688
3689 sort_choices (syms, nsyms);
3690
3691 for (i = 0; i < nsyms; i += 1)
3692 {
3693 if (syms[i].sym == NULL)
3694 continue;
3695
3696 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3697 {
3698 struct symtab_and_line sal =
3699 find_function_start_sal (syms[i].sym, 1);
3700
3701 if (sal.symtab == NULL)
3702 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
3705 sal.line);
3706 else
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
3709 symtab_to_filename_for_display (sal.symtab),
3710 sal.line);
3711 continue;
3712 }
3713 else
3714 {
3715 int is_enumeral =
3716 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3717 && SYMBOL_TYPE (syms[i].sym) != NULL
3718 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3719 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3720
3721 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3722 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3723 i + first_choice,
3724 SYMBOL_PRINT_NAME (syms[i].sym),
3725 symtab_to_filename_for_display (symtab),
3726 SYMBOL_LINE (syms[i].sym));
3727 else if (is_enumeral
3728 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3729 {
3730 printf_unfiltered (("[%d] "), i + first_choice);
3731 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3732 gdb_stdout, -1, 0, &type_print_raw_options);
3733 printf_unfiltered (_("'(%s) (enumeral)\n"),
3734 SYMBOL_PRINT_NAME (syms[i].sym));
3735 }
3736 else if (symtab != NULL)
3737 printf_unfiltered (is_enumeral
3738 ? _("[%d] %s in %s (enumeral)\n")
3739 : _("[%d] %s at %s:?\n"),
3740 i + first_choice,
3741 SYMBOL_PRINT_NAME (syms[i].sym),
3742 symtab_to_filename_for_display (symtab));
3743 else
3744 printf_unfiltered (is_enumeral
3745 ? _("[%d] %s (enumeral)\n")
3746 : _("[%d] %s at ?\n"),
3747 i + first_choice,
3748 SYMBOL_PRINT_NAME (syms[i].sym));
3749 }
3750 }
3751
3752 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3753 "overload-choice");
3754
3755 for (i = 0; i < n_chosen; i += 1)
3756 syms[i] = syms[chosen[i]];
3757
3758 return n_chosen;
3759 }
3760
3761 /* Read and validate a set of numeric choices from the user in the
3762 range 0 .. N_CHOICES-1. Place the results in increasing
3763 order in CHOICES[0 .. N-1], and return N.
3764
3765 The user types choices as a sequence of numbers on one line
3766 separated by blanks, encoding them as follows:
3767
3768 + A choice of 0 means to cancel the selection, throwing an error.
3769 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3770 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3771
3772 The user is not allowed to choose more than MAX_RESULTS values.
3773
3774 ANNOTATION_SUFFIX, if present, is used to annotate the input
3775 prompts (for use with the -f switch). */
3776
3777 int
3778 get_selections (int *choices, int n_choices, int max_results,
3779 int is_all_choice, char *annotation_suffix)
3780 {
3781 char *args;
3782 char *prompt;
3783 int n_chosen;
3784 int first_choice = is_all_choice ? 2 : 1;
3785
3786 prompt = getenv ("PS2");
3787 if (prompt == NULL)
3788 prompt = "> ";
3789
3790 args = command_line_input (prompt, 0, annotation_suffix);
3791
3792 if (args == NULL)
3793 error_no_arg (_("one or more choice numbers"));
3794
3795 n_chosen = 0;
3796
3797 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3798 order, as given in args. Choices are validated. */
3799 while (1)
3800 {
3801 char *args2;
3802 int choice, j;
3803
3804 args = skip_spaces (args);
3805 if (*args == '\0' && n_chosen == 0)
3806 error_no_arg (_("one or more choice numbers"));
3807 else if (*args == '\0')
3808 break;
3809
3810 choice = strtol (args, &args2, 10);
3811 if (args == args2 || choice < 0
3812 || choice > n_choices + first_choice - 1)
3813 error (_("Argument must be choice number"));
3814 args = args2;
3815
3816 if (choice == 0)
3817 error (_("cancelled"));
3818
3819 if (choice < first_choice)
3820 {
3821 n_chosen = n_choices;
3822 for (j = 0; j < n_choices; j += 1)
3823 choices[j] = j;
3824 break;
3825 }
3826 choice -= first_choice;
3827
3828 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3829 {
3830 }
3831
3832 if (j < 0 || choice != choices[j])
3833 {
3834 int k;
3835
3836 for (k = n_chosen - 1; k > j; k -= 1)
3837 choices[k + 1] = choices[k];
3838 choices[j + 1] = choice;
3839 n_chosen += 1;
3840 }
3841 }
3842
3843 if (n_chosen > max_results)
3844 error (_("Select no more than %d of the above"), max_results);
3845
3846 return n_chosen;
3847 }
3848
3849 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3850 on the function identified by SYM and BLOCK, and taking NARGS
3851 arguments. Update *EXPP as needed to hold more space. */
3852
3853 static void
3854 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3855 int oplen, struct symbol *sym,
3856 const struct block *block)
3857 {
3858 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3859 symbol, -oplen for operator being replaced). */
3860 struct expression *newexp = (struct expression *)
3861 xzalloc (sizeof (struct expression)
3862 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3863 struct expression *exp = *expp;
3864
3865 newexp->nelts = exp->nelts + 7 - oplen;
3866 newexp->language_defn = exp->language_defn;
3867 newexp->gdbarch = exp->gdbarch;
3868 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3869 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3870 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3871
3872 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3873 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3874
3875 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3876 newexp->elts[pc + 4].block = block;
3877 newexp->elts[pc + 5].symbol = sym;
3878
3879 *expp = newexp;
3880 xfree (exp);
3881 }
3882
3883 /* Type-class predicates */
3884
3885 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3886 or FLOAT). */
3887
3888 static int
3889 numeric_type_p (struct type *type)
3890 {
3891 if (type == NULL)
3892 return 0;
3893 else
3894 {
3895 switch (TYPE_CODE (type))
3896 {
3897 case TYPE_CODE_INT:
3898 case TYPE_CODE_FLT:
3899 return 1;
3900 case TYPE_CODE_RANGE:
3901 return (type == TYPE_TARGET_TYPE (type)
3902 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3903 default:
3904 return 0;
3905 }
3906 }
3907 }
3908
3909 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3910
3911 static int
3912 integer_type_p (struct type *type)
3913 {
3914 if (type == NULL)
3915 return 0;
3916 else
3917 {
3918 switch (TYPE_CODE (type))
3919 {
3920 case TYPE_CODE_INT:
3921 return 1;
3922 case TYPE_CODE_RANGE:
3923 return (type == TYPE_TARGET_TYPE (type)
3924 || integer_type_p (TYPE_TARGET_TYPE (type)));
3925 default:
3926 return 0;
3927 }
3928 }
3929 }
3930
3931 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3932
3933 static int
3934 scalar_type_p (struct type *type)
3935 {
3936 if (type == NULL)
3937 return 0;
3938 else
3939 {
3940 switch (TYPE_CODE (type))
3941 {
3942 case TYPE_CODE_INT:
3943 case TYPE_CODE_RANGE:
3944 case TYPE_CODE_ENUM:
3945 case TYPE_CODE_FLT:
3946 return 1;
3947 default:
3948 return 0;
3949 }
3950 }
3951 }
3952
3953 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3954
3955 static int
3956 discrete_type_p (struct type *type)
3957 {
3958 if (type == NULL)
3959 return 0;
3960 else
3961 {
3962 switch (TYPE_CODE (type))
3963 {
3964 case TYPE_CODE_INT:
3965 case TYPE_CODE_RANGE:
3966 case TYPE_CODE_ENUM:
3967 case TYPE_CODE_BOOL:
3968 return 1;
3969 default:
3970 return 0;
3971 }
3972 }
3973 }
3974
3975 /* Returns non-zero if OP with operands in the vector ARGS could be
3976 a user-defined function. Errs on the side of pre-defined operators
3977 (i.e., result 0). */
3978
3979 static int
3980 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3981 {
3982 struct type *type0 =
3983 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3984 struct type *type1 =
3985 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3986
3987 if (type0 == NULL)
3988 return 0;
3989
3990 switch (op)
3991 {
3992 default:
3993 return 0;
3994
3995 case BINOP_ADD:
3996 case BINOP_SUB:
3997 case BINOP_MUL:
3998 case BINOP_DIV:
3999 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4000
4001 case BINOP_REM:
4002 case BINOP_MOD:
4003 case BINOP_BITWISE_AND:
4004 case BINOP_BITWISE_IOR:
4005 case BINOP_BITWISE_XOR:
4006 return (!(integer_type_p (type0) && integer_type_p (type1)));
4007
4008 case BINOP_EQUAL:
4009 case BINOP_NOTEQUAL:
4010 case BINOP_LESS:
4011 case BINOP_GTR:
4012 case BINOP_LEQ:
4013 case BINOP_GEQ:
4014 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4015
4016 case BINOP_CONCAT:
4017 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4018
4019 case BINOP_EXP:
4020 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4021
4022 case UNOP_NEG:
4023 case UNOP_PLUS:
4024 case UNOP_LOGICAL_NOT:
4025 case UNOP_ABS:
4026 return (!numeric_type_p (type0));
4027
4028 }
4029 }
4030 \f
4031 /* Renaming */
4032
4033 /* NOTES:
4034
4035 1. In the following, we assume that a renaming type's name may
4036 have an ___XD suffix. It would be nice if this went away at some
4037 point.
4038 2. We handle both the (old) purely type-based representation of
4039 renamings and the (new) variable-based encoding. At some point,
4040 it is devoutly to be hoped that the former goes away
4041 (FIXME: hilfinger-2007-07-09).
4042 3. Subprogram renamings are not implemented, although the XRS
4043 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4044
4045 /* If SYM encodes a renaming,
4046
4047 <renaming> renames <renamed entity>,
4048
4049 sets *LEN to the length of the renamed entity's name,
4050 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4051 the string describing the subcomponent selected from the renamed
4052 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4053 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4054 are undefined). Otherwise, returns a value indicating the category
4055 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4056 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4057 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4058 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4059 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4060 may be NULL, in which case they are not assigned.
4061
4062 [Currently, however, GCC does not generate subprogram renamings.] */
4063
4064 enum ada_renaming_category
4065 ada_parse_renaming (struct symbol *sym,
4066 const char **renamed_entity, int *len,
4067 const char **renaming_expr)
4068 {
4069 enum ada_renaming_category kind;
4070 const char *info;
4071 const char *suffix;
4072
4073 if (sym == NULL)
4074 return ADA_NOT_RENAMING;
4075 switch (SYMBOL_CLASS (sym))
4076 {
4077 default:
4078 return ADA_NOT_RENAMING;
4079 case LOC_TYPEDEF:
4080 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4081 renamed_entity, len, renaming_expr);
4082 case LOC_LOCAL:
4083 case LOC_STATIC:
4084 case LOC_COMPUTED:
4085 case LOC_OPTIMIZED_OUT:
4086 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4087 if (info == NULL)
4088 return ADA_NOT_RENAMING;
4089 switch (info[5])
4090 {
4091 case '_':
4092 kind = ADA_OBJECT_RENAMING;
4093 info += 6;
4094 break;
4095 case 'E':
4096 kind = ADA_EXCEPTION_RENAMING;
4097 info += 7;
4098 break;
4099 case 'P':
4100 kind = ADA_PACKAGE_RENAMING;
4101 info += 7;
4102 break;
4103 case 'S':
4104 kind = ADA_SUBPROGRAM_RENAMING;
4105 info += 7;
4106 break;
4107 default:
4108 return ADA_NOT_RENAMING;
4109 }
4110 }
4111
4112 if (renamed_entity != NULL)
4113 *renamed_entity = info;
4114 suffix = strstr (info, "___XE");
4115 if (suffix == NULL || suffix == info)
4116 return ADA_NOT_RENAMING;
4117 if (len != NULL)
4118 *len = strlen (info) - strlen (suffix);
4119 suffix += 5;
4120 if (renaming_expr != NULL)
4121 *renaming_expr = suffix;
4122 return kind;
4123 }
4124
4125 /* Assuming TYPE encodes a renaming according to the old encoding in
4126 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4127 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4128 ADA_NOT_RENAMING otherwise. */
4129 static enum ada_renaming_category
4130 parse_old_style_renaming (struct type *type,
4131 const char **renamed_entity, int *len,
4132 const char **renaming_expr)
4133 {
4134 enum ada_renaming_category kind;
4135 const char *name;
4136 const char *info;
4137 const char *suffix;
4138
4139 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4140 || TYPE_NFIELDS (type) != 1)
4141 return ADA_NOT_RENAMING;
4142
4143 name = type_name_no_tag (type);
4144 if (name == NULL)
4145 return ADA_NOT_RENAMING;
4146
4147 name = strstr (name, "___XR");
4148 if (name == NULL)
4149 return ADA_NOT_RENAMING;
4150 switch (name[5])
4151 {
4152 case '\0':
4153 case '_':
4154 kind = ADA_OBJECT_RENAMING;
4155 break;
4156 case 'E':
4157 kind = ADA_EXCEPTION_RENAMING;
4158 break;
4159 case 'P':
4160 kind = ADA_PACKAGE_RENAMING;
4161 break;
4162 case 'S':
4163 kind = ADA_SUBPROGRAM_RENAMING;
4164 break;
4165 default:
4166 return ADA_NOT_RENAMING;
4167 }
4168
4169 info = TYPE_FIELD_NAME (type, 0);
4170 if (info == NULL)
4171 return ADA_NOT_RENAMING;
4172 if (renamed_entity != NULL)
4173 *renamed_entity = info;
4174 suffix = strstr (info, "___XE");
4175 if (renaming_expr != NULL)
4176 *renaming_expr = suffix + 5;
4177 if (suffix == NULL || suffix == info)
4178 return ADA_NOT_RENAMING;
4179 if (len != NULL)
4180 *len = suffix - info;
4181 return kind;
4182 }
4183
4184 /* Compute the value of the given RENAMING_SYM, which is expected to
4185 be a symbol encoding a renaming expression. BLOCK is the block
4186 used to evaluate the renaming. */
4187
4188 static struct value *
4189 ada_read_renaming_var_value (struct symbol *renaming_sym,
4190 const struct block *block)
4191 {
4192 const char *sym_name;
4193 struct expression *expr;
4194 struct value *value;
4195 struct cleanup *old_chain = NULL;
4196
4197 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4198 expr = parse_exp_1 (&sym_name, 0, block, 0);
4199 old_chain = make_cleanup (free_current_contents, &expr);
4200 value = evaluate_expression (expr);
4201
4202 do_cleanups (old_chain);
4203 return value;
4204 }
4205 \f
4206
4207 /* Evaluation: Function Calls */
4208
4209 /* Return an lvalue containing the value VAL. This is the identity on
4210 lvalues, and otherwise has the side-effect of allocating memory
4211 in the inferior where a copy of the value contents is copied. */
4212
4213 static struct value *
4214 ensure_lval (struct value *val)
4215 {
4216 if (VALUE_LVAL (val) == not_lval
4217 || VALUE_LVAL (val) == lval_internalvar)
4218 {
4219 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4220 const CORE_ADDR addr =
4221 value_as_long (value_allocate_space_in_inferior (len));
4222
4223 set_value_address (val, addr);
4224 VALUE_LVAL (val) = lval_memory;
4225 write_memory (addr, value_contents (val), len);
4226 }
4227
4228 return val;
4229 }
4230
4231 /* Return the value ACTUAL, converted to be an appropriate value for a
4232 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4233 allocating any necessary descriptors (fat pointers), or copies of
4234 values not residing in memory, updating it as needed. */
4235
4236 struct value *
4237 ada_convert_actual (struct value *actual, struct type *formal_type0)
4238 {
4239 struct type *actual_type = ada_check_typedef (value_type (actual));
4240 struct type *formal_type = ada_check_typedef (formal_type0);
4241 struct type *formal_target =
4242 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4243 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4244 struct type *actual_target =
4245 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4246 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4247
4248 if (ada_is_array_descriptor_type (formal_target)
4249 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4250 return make_array_descriptor (formal_type, actual);
4251 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4252 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4253 {
4254 struct value *result;
4255
4256 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4257 && ada_is_array_descriptor_type (actual_target))
4258 result = desc_data (actual);
4259 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4260 {
4261 if (VALUE_LVAL (actual) != lval_memory)
4262 {
4263 struct value *val;
4264
4265 actual_type = ada_check_typedef (value_type (actual));
4266 val = allocate_value (actual_type);
4267 memcpy ((char *) value_contents_raw (val),
4268 (char *) value_contents (actual),
4269 TYPE_LENGTH (actual_type));
4270 actual = ensure_lval (val);
4271 }
4272 result = value_addr (actual);
4273 }
4274 else
4275 return actual;
4276 return value_cast_pointers (formal_type, result, 0);
4277 }
4278 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4279 return ada_value_ind (actual);
4280
4281 return actual;
4282 }
4283
4284 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4285 type TYPE. This is usually an inefficient no-op except on some targets
4286 (such as AVR) where the representation of a pointer and an address
4287 differs. */
4288
4289 static CORE_ADDR
4290 value_pointer (struct value *value, struct type *type)
4291 {
4292 struct gdbarch *gdbarch = get_type_arch (type);
4293 unsigned len = TYPE_LENGTH (type);
4294 gdb_byte *buf = alloca (len);
4295 CORE_ADDR addr;
4296
4297 addr = value_address (value);
4298 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4299 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4300 return addr;
4301 }
4302
4303
4304 /* Push a descriptor of type TYPE for array value ARR on the stack at
4305 *SP, updating *SP to reflect the new descriptor. Return either
4306 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4307 to-descriptor type rather than a descriptor type), a struct value *
4308 representing a pointer to this descriptor. */
4309
4310 static struct value *
4311 make_array_descriptor (struct type *type, struct value *arr)
4312 {
4313 struct type *bounds_type = desc_bounds_type (type);
4314 struct type *desc_type = desc_base_type (type);
4315 struct value *descriptor = allocate_value (desc_type);
4316 struct value *bounds = allocate_value (bounds_type);
4317 int i;
4318
4319 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4320 i > 0; i -= 1)
4321 {
4322 modify_field (value_type (bounds), value_contents_writeable (bounds),
4323 ada_array_bound (arr, i, 0),
4324 desc_bound_bitpos (bounds_type, i, 0),
4325 desc_bound_bitsize (bounds_type, i, 0));
4326 modify_field (value_type (bounds), value_contents_writeable (bounds),
4327 ada_array_bound (arr, i, 1),
4328 desc_bound_bitpos (bounds_type, i, 1),
4329 desc_bound_bitsize (bounds_type, i, 1));
4330 }
4331
4332 bounds = ensure_lval (bounds);
4333
4334 modify_field (value_type (descriptor),
4335 value_contents_writeable (descriptor),
4336 value_pointer (ensure_lval (arr),
4337 TYPE_FIELD_TYPE (desc_type, 0)),
4338 fat_pntr_data_bitpos (desc_type),
4339 fat_pntr_data_bitsize (desc_type));
4340
4341 modify_field (value_type (descriptor),
4342 value_contents_writeable (descriptor),
4343 value_pointer (bounds,
4344 TYPE_FIELD_TYPE (desc_type, 1)),
4345 fat_pntr_bounds_bitpos (desc_type),
4346 fat_pntr_bounds_bitsize (desc_type));
4347
4348 descriptor = ensure_lval (descriptor);
4349
4350 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4351 return value_addr (descriptor);
4352 else
4353 return descriptor;
4354 }
4355 \f
4356 /* Symbol Cache Module */
4357
4358 /* Performance measurements made as of 2010-01-15 indicate that
4359 this cache does bring some noticeable improvements. Depending
4360 on the type of entity being printed, the cache can make it as much
4361 as an order of magnitude faster than without it.
4362
4363 The descriptive type DWARF extension has significantly reduced
4364 the need for this cache, at least when DWARF is being used. However,
4365 even in this case, some expensive name-based symbol searches are still
4366 sometimes necessary - to find an XVZ variable, mostly. */
4367
4368 /* Initialize the contents of SYM_CACHE. */
4369
4370 static void
4371 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4372 {
4373 obstack_init (&sym_cache->cache_space);
4374 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4375 }
4376
4377 /* Free the memory used by SYM_CACHE. */
4378
4379 static void
4380 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4381 {
4382 obstack_free (&sym_cache->cache_space, NULL);
4383 xfree (sym_cache);
4384 }
4385
4386 /* Return the symbol cache associated to the given program space PSPACE.
4387 If not allocated for this PSPACE yet, allocate and initialize one. */
4388
4389 static struct ada_symbol_cache *
4390 ada_get_symbol_cache (struct program_space *pspace)
4391 {
4392 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4393 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4394
4395 if (sym_cache == NULL)
4396 {
4397 sym_cache = XCNEW (struct ada_symbol_cache);
4398 ada_init_symbol_cache (sym_cache);
4399 }
4400
4401 return sym_cache;
4402 }
4403
4404 /* Clear all entries from the symbol cache. */
4405
4406 static void
4407 ada_clear_symbol_cache (void)
4408 {
4409 struct ada_symbol_cache *sym_cache
4410 = ada_get_symbol_cache (current_program_space);
4411
4412 obstack_free (&sym_cache->cache_space, NULL);
4413 ada_init_symbol_cache (sym_cache);
4414 }
4415
4416 /* Search our cache for an entry matching NAME and NAMESPACE.
4417 Return it if found, or NULL otherwise. */
4418
4419 static struct cache_entry **
4420 find_entry (const char *name, domain_enum namespace)
4421 {
4422 struct ada_symbol_cache *sym_cache
4423 = ada_get_symbol_cache (current_program_space);
4424 int h = msymbol_hash (name) % HASH_SIZE;
4425 struct cache_entry **e;
4426
4427 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4428 {
4429 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4430 return e;
4431 }
4432 return NULL;
4433 }
4434
4435 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4436 Return 1 if found, 0 otherwise.
4437
4438 If an entry was found and SYM is not NULL, set *SYM to the entry's
4439 SYM. Same principle for BLOCK if not NULL. */
4440
4441 static int
4442 lookup_cached_symbol (const char *name, domain_enum namespace,
4443 struct symbol **sym, const struct block **block)
4444 {
4445 struct cache_entry **e = find_entry (name, namespace);
4446
4447 if (e == NULL)
4448 return 0;
4449 if (sym != NULL)
4450 *sym = (*e)->sym;
4451 if (block != NULL)
4452 *block = (*e)->block;
4453 return 1;
4454 }
4455
4456 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4457 in domain NAMESPACE, save this result in our symbol cache. */
4458
4459 static void
4460 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4461 const struct block *block)
4462 {
4463 struct ada_symbol_cache *sym_cache
4464 = ada_get_symbol_cache (current_program_space);
4465 int h;
4466 char *copy;
4467 struct cache_entry *e;
4468
4469 /* If the symbol is a local symbol, then do not cache it, as a search
4470 for that symbol depends on the context. To determine whether
4471 the symbol is local or not, we check the block where we found it
4472 against the global and static blocks of its associated symtab. */
4473 if (sym
4474 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4475 GLOBAL_BLOCK) != block
4476 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4477 STATIC_BLOCK) != block)
4478 return;
4479
4480 h = msymbol_hash (name) % HASH_SIZE;
4481 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4482 sizeof (*e));
4483 e->next = sym_cache->root[h];
4484 sym_cache->root[h] = e;
4485 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4486 strcpy (copy, name);
4487 e->sym = sym;
4488 e->namespace = namespace;
4489 e->block = block;
4490 }
4491 \f
4492 /* Symbol Lookup */
4493
4494 /* Return nonzero if wild matching should be used when searching for
4495 all symbols matching LOOKUP_NAME.
4496
4497 LOOKUP_NAME is expected to be a symbol name after transformation
4498 for Ada lookups (see ada_name_for_lookup). */
4499
4500 static int
4501 should_use_wild_match (const char *lookup_name)
4502 {
4503 return (strstr (lookup_name, "__") == NULL);
4504 }
4505
4506 /* Return the result of a standard (literal, C-like) lookup of NAME in
4507 given DOMAIN, visible from lexical block BLOCK. */
4508
4509 static struct symbol *
4510 standard_lookup (const char *name, const struct block *block,
4511 domain_enum domain)
4512 {
4513 /* Initialize it just to avoid a GCC false warning. */
4514 struct symbol *sym = NULL;
4515
4516 if (lookup_cached_symbol (name, domain, &sym, NULL))
4517 return sym;
4518 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4519 cache_symbol (name, domain, sym, block_found);
4520 return sym;
4521 }
4522
4523
4524 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4525 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4526 since they contend in overloading in the same way. */
4527 static int
4528 is_nonfunction (struct ada_symbol_info syms[], int n)
4529 {
4530 int i;
4531
4532 for (i = 0; i < n; i += 1)
4533 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4534 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4535 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4536 return 1;
4537
4538 return 0;
4539 }
4540
4541 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4542 struct types. Otherwise, they may not. */
4543
4544 static int
4545 equiv_types (struct type *type0, struct type *type1)
4546 {
4547 if (type0 == type1)
4548 return 1;
4549 if (type0 == NULL || type1 == NULL
4550 || TYPE_CODE (type0) != TYPE_CODE (type1))
4551 return 0;
4552 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4553 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4554 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4555 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4556 return 1;
4557
4558 return 0;
4559 }
4560
4561 /* True iff SYM0 represents the same entity as SYM1, or one that is
4562 no more defined than that of SYM1. */
4563
4564 static int
4565 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4566 {
4567 if (sym0 == sym1)
4568 return 1;
4569 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4570 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4571 return 0;
4572
4573 switch (SYMBOL_CLASS (sym0))
4574 {
4575 case LOC_UNDEF:
4576 return 1;
4577 case LOC_TYPEDEF:
4578 {
4579 struct type *type0 = SYMBOL_TYPE (sym0);
4580 struct type *type1 = SYMBOL_TYPE (sym1);
4581 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4582 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4583 int len0 = strlen (name0);
4584
4585 return
4586 TYPE_CODE (type0) == TYPE_CODE (type1)
4587 && (equiv_types (type0, type1)
4588 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4589 && strncmp (name1 + len0, "___XV", 5) == 0));
4590 }
4591 case LOC_CONST:
4592 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4593 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4594 default:
4595 return 0;
4596 }
4597 }
4598
4599 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4600 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4601
4602 static void
4603 add_defn_to_vec (struct obstack *obstackp,
4604 struct symbol *sym,
4605 const struct block *block)
4606 {
4607 int i;
4608 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4609
4610 /* Do not try to complete stub types, as the debugger is probably
4611 already scanning all symbols matching a certain name at the
4612 time when this function is called. Trying to replace the stub
4613 type by its associated full type will cause us to restart a scan
4614 which may lead to an infinite recursion. Instead, the client
4615 collecting the matching symbols will end up collecting several
4616 matches, with at least one of them complete. It can then filter
4617 out the stub ones if needed. */
4618
4619 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4620 {
4621 if (lesseq_defined_than (sym, prevDefns[i].sym))
4622 return;
4623 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4624 {
4625 prevDefns[i].sym = sym;
4626 prevDefns[i].block = block;
4627 return;
4628 }
4629 }
4630
4631 {
4632 struct ada_symbol_info info;
4633
4634 info.sym = sym;
4635 info.block = block;
4636 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4637 }
4638 }
4639
4640 /* Number of ada_symbol_info structures currently collected in
4641 current vector in *OBSTACKP. */
4642
4643 static int
4644 num_defns_collected (struct obstack *obstackp)
4645 {
4646 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4647 }
4648
4649 /* Vector of ada_symbol_info structures currently collected in current
4650 vector in *OBSTACKP. If FINISH, close off the vector and return
4651 its final address. */
4652
4653 static struct ada_symbol_info *
4654 defns_collected (struct obstack *obstackp, int finish)
4655 {
4656 if (finish)
4657 return obstack_finish (obstackp);
4658 else
4659 return (struct ada_symbol_info *) obstack_base (obstackp);
4660 }
4661
4662 /* Return a bound minimal symbol matching NAME according to Ada
4663 decoding rules. Returns an invalid symbol if there is no such
4664 minimal symbol. Names prefixed with "standard__" are handled
4665 specially: "standard__" is first stripped off, and only static and
4666 global symbols are searched. */
4667
4668 struct bound_minimal_symbol
4669 ada_lookup_simple_minsym (const char *name)
4670 {
4671 struct bound_minimal_symbol result;
4672 struct objfile *objfile;
4673 struct minimal_symbol *msymbol;
4674 const int wild_match_p = should_use_wild_match (name);
4675
4676 memset (&result, 0, sizeof (result));
4677
4678 /* Special case: If the user specifies a symbol name inside package
4679 Standard, do a non-wild matching of the symbol name without
4680 the "standard__" prefix. This was primarily introduced in order
4681 to allow the user to specifically access the standard exceptions
4682 using, for instance, Standard.Constraint_Error when Constraint_Error
4683 is ambiguous (due to the user defining its own Constraint_Error
4684 entity inside its program). */
4685 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4686 name += sizeof ("standard__") - 1;
4687
4688 ALL_MSYMBOLS (objfile, msymbol)
4689 {
4690 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4691 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4692 {
4693 result.minsym = msymbol;
4694 result.objfile = objfile;
4695 break;
4696 }
4697 }
4698
4699 return result;
4700 }
4701
4702 /* For all subprograms that statically enclose the subprogram of the
4703 selected frame, add symbols matching identifier NAME in DOMAIN
4704 and their blocks to the list of data in OBSTACKP, as for
4705 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4706 with a wildcard prefix. */
4707
4708 static void
4709 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4710 const char *name, domain_enum namespace,
4711 int wild_match_p)
4712 {
4713 }
4714
4715 /* True if TYPE is definitely an artificial type supplied to a symbol
4716 for which no debugging information was given in the symbol file. */
4717
4718 static int
4719 is_nondebugging_type (struct type *type)
4720 {
4721 const char *name = ada_type_name (type);
4722
4723 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4724 }
4725
4726 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4727 that are deemed "identical" for practical purposes.
4728
4729 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4730 types and that their number of enumerals is identical (in other
4731 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4732
4733 static int
4734 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4735 {
4736 int i;
4737
4738 /* The heuristic we use here is fairly conservative. We consider
4739 that 2 enumerate types are identical if they have the same
4740 number of enumerals and that all enumerals have the same
4741 underlying value and name. */
4742
4743 /* All enums in the type should have an identical underlying value. */
4744 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4745 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4746 return 0;
4747
4748 /* All enumerals should also have the same name (modulo any numerical
4749 suffix). */
4750 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4751 {
4752 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4753 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4754 int len_1 = strlen (name_1);
4755 int len_2 = strlen (name_2);
4756
4757 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4758 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4759 if (len_1 != len_2
4760 || strncmp (TYPE_FIELD_NAME (type1, i),
4761 TYPE_FIELD_NAME (type2, i),
4762 len_1) != 0)
4763 return 0;
4764 }
4765
4766 return 1;
4767 }
4768
4769 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4770 that are deemed "identical" for practical purposes. Sometimes,
4771 enumerals are not strictly identical, but their types are so similar
4772 that they can be considered identical.
4773
4774 For instance, consider the following code:
4775
4776 type Color is (Black, Red, Green, Blue, White);
4777 type RGB_Color is new Color range Red .. Blue;
4778
4779 Type RGB_Color is a subrange of an implicit type which is a copy
4780 of type Color. If we call that implicit type RGB_ColorB ("B" is
4781 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4782 As a result, when an expression references any of the enumeral
4783 by name (Eg. "print green"), the expression is technically
4784 ambiguous and the user should be asked to disambiguate. But
4785 doing so would only hinder the user, since it wouldn't matter
4786 what choice he makes, the outcome would always be the same.
4787 So, for practical purposes, we consider them as the same. */
4788
4789 static int
4790 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4791 {
4792 int i;
4793
4794 /* Before performing a thorough comparison check of each type,
4795 we perform a series of inexpensive checks. We expect that these
4796 checks will quickly fail in the vast majority of cases, and thus
4797 help prevent the unnecessary use of a more expensive comparison.
4798 Said comparison also expects us to make some of these checks
4799 (see ada_identical_enum_types_p). */
4800
4801 /* Quick check: All symbols should have an enum type. */
4802 for (i = 0; i < nsyms; i++)
4803 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4804 return 0;
4805
4806 /* Quick check: They should all have the same value. */
4807 for (i = 1; i < nsyms; i++)
4808 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4809 return 0;
4810
4811 /* Quick check: They should all have the same number of enumerals. */
4812 for (i = 1; i < nsyms; i++)
4813 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4814 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4815 return 0;
4816
4817 /* All the sanity checks passed, so we might have a set of
4818 identical enumeration types. Perform a more complete
4819 comparison of the type of each symbol. */
4820 for (i = 1; i < nsyms; i++)
4821 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4822 SYMBOL_TYPE (syms[0].sym)))
4823 return 0;
4824
4825 return 1;
4826 }
4827
4828 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4829 duplicate other symbols in the list (The only case I know of where
4830 this happens is when object files containing stabs-in-ecoff are
4831 linked with files containing ordinary ecoff debugging symbols (or no
4832 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4833 Returns the number of items in the modified list. */
4834
4835 static int
4836 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4837 {
4838 int i, j;
4839
4840 /* We should never be called with less than 2 symbols, as there
4841 cannot be any extra symbol in that case. But it's easy to
4842 handle, since we have nothing to do in that case. */
4843 if (nsyms < 2)
4844 return nsyms;
4845
4846 i = 0;
4847 while (i < nsyms)
4848 {
4849 int remove_p = 0;
4850
4851 /* If two symbols have the same name and one of them is a stub type,
4852 the get rid of the stub. */
4853
4854 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4855 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4856 {
4857 for (j = 0; j < nsyms; j++)
4858 {
4859 if (j != i
4860 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4861 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4862 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4863 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4864 remove_p = 1;
4865 }
4866 }
4867
4868 /* Two symbols with the same name, same class and same address
4869 should be identical. */
4870
4871 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4872 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4873 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4874 {
4875 for (j = 0; j < nsyms; j += 1)
4876 {
4877 if (i != j
4878 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4879 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4880 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4881 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4882 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4883 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4884 remove_p = 1;
4885 }
4886 }
4887
4888 if (remove_p)
4889 {
4890 for (j = i + 1; j < nsyms; j += 1)
4891 syms[j - 1] = syms[j];
4892 nsyms -= 1;
4893 }
4894
4895 i += 1;
4896 }
4897
4898 /* If all the remaining symbols are identical enumerals, then
4899 just keep the first one and discard the rest.
4900
4901 Unlike what we did previously, we do not discard any entry
4902 unless they are ALL identical. This is because the symbol
4903 comparison is not a strict comparison, but rather a practical
4904 comparison. If all symbols are considered identical, then
4905 we can just go ahead and use the first one and discard the rest.
4906 But if we cannot reduce the list to a single element, we have
4907 to ask the user to disambiguate anyways. And if we have to
4908 present a multiple-choice menu, it's less confusing if the list
4909 isn't missing some choices that were identical and yet distinct. */
4910 if (symbols_are_identical_enums (syms, nsyms))
4911 nsyms = 1;
4912
4913 return nsyms;
4914 }
4915
4916 /* Given a type that corresponds to a renaming entity, use the type name
4917 to extract the scope (package name or function name, fully qualified,
4918 and following the GNAT encoding convention) where this renaming has been
4919 defined. The string returned needs to be deallocated after use. */
4920
4921 static char *
4922 xget_renaming_scope (struct type *renaming_type)
4923 {
4924 /* The renaming types adhere to the following convention:
4925 <scope>__<rename>___<XR extension>.
4926 So, to extract the scope, we search for the "___XR" extension,
4927 and then backtrack until we find the first "__". */
4928
4929 const char *name = type_name_no_tag (renaming_type);
4930 char *suffix = strstr (name, "___XR");
4931 char *last;
4932 int scope_len;
4933 char *scope;
4934
4935 /* Now, backtrack a bit until we find the first "__". Start looking
4936 at suffix - 3, as the <rename> part is at least one character long. */
4937
4938 for (last = suffix - 3; last > name; last--)
4939 if (last[0] == '_' && last[1] == '_')
4940 break;
4941
4942 /* Make a copy of scope and return it. */
4943
4944 scope_len = last - name;
4945 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4946
4947 strncpy (scope, name, scope_len);
4948 scope[scope_len] = '\0';
4949
4950 return scope;
4951 }
4952
4953 /* Return nonzero if NAME corresponds to a package name. */
4954
4955 static int
4956 is_package_name (const char *name)
4957 {
4958 /* Here, We take advantage of the fact that no symbols are generated
4959 for packages, while symbols are generated for each function.
4960 So the condition for NAME represent a package becomes equivalent
4961 to NAME not existing in our list of symbols. There is only one
4962 small complication with library-level functions (see below). */
4963
4964 char *fun_name;
4965
4966 /* If it is a function that has not been defined at library level,
4967 then we should be able to look it up in the symbols. */
4968 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4969 return 0;
4970
4971 /* Library-level function names start with "_ada_". See if function
4972 "_ada_" followed by NAME can be found. */
4973
4974 /* Do a quick check that NAME does not contain "__", since library-level
4975 functions names cannot contain "__" in them. */
4976 if (strstr (name, "__") != NULL)
4977 return 0;
4978
4979 fun_name = xstrprintf ("_ada_%s", name);
4980
4981 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4982 }
4983
4984 /* Return nonzero if SYM corresponds to a renaming entity that is
4985 not visible from FUNCTION_NAME. */
4986
4987 static int
4988 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4989 {
4990 char *scope;
4991 struct cleanup *old_chain;
4992
4993 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4994 return 0;
4995
4996 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4997 old_chain = make_cleanup (xfree, scope);
4998
4999 /* If the rename has been defined in a package, then it is visible. */
5000 if (is_package_name (scope))
5001 {
5002 do_cleanups (old_chain);
5003 return 0;
5004 }
5005
5006 /* Check that the rename is in the current function scope by checking
5007 that its name starts with SCOPE. */
5008
5009 /* If the function name starts with "_ada_", it means that it is
5010 a library-level function. Strip this prefix before doing the
5011 comparison, as the encoding for the renaming does not contain
5012 this prefix. */
5013 if (strncmp (function_name, "_ada_", 5) == 0)
5014 function_name += 5;
5015
5016 {
5017 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5018
5019 do_cleanups (old_chain);
5020 return is_invisible;
5021 }
5022 }
5023
5024 /* Remove entries from SYMS that corresponds to a renaming entity that
5025 is not visible from the function associated with CURRENT_BLOCK or
5026 that is superfluous due to the presence of more specific renaming
5027 information. Places surviving symbols in the initial entries of
5028 SYMS and returns the number of surviving symbols.
5029
5030 Rationale:
5031 First, in cases where an object renaming is implemented as a
5032 reference variable, GNAT may produce both the actual reference
5033 variable and the renaming encoding. In this case, we discard the
5034 latter.
5035
5036 Second, GNAT emits a type following a specified encoding for each renaming
5037 entity. Unfortunately, STABS currently does not support the definition
5038 of types that are local to a given lexical block, so all renamings types
5039 are emitted at library level. As a consequence, if an application
5040 contains two renaming entities using the same name, and a user tries to
5041 print the value of one of these entities, the result of the ada symbol
5042 lookup will also contain the wrong renaming type.
5043
5044 This function partially covers for this limitation by attempting to
5045 remove from the SYMS list renaming symbols that should be visible
5046 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5047 method with the current information available. The implementation
5048 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5049
5050 - When the user tries to print a rename in a function while there
5051 is another rename entity defined in a package: Normally, the
5052 rename in the function has precedence over the rename in the
5053 package, so the latter should be removed from the list. This is
5054 currently not the case.
5055
5056 - This function will incorrectly remove valid renames if
5057 the CURRENT_BLOCK corresponds to a function which symbol name
5058 has been changed by an "Export" pragma. As a consequence,
5059 the user will be unable to print such rename entities. */
5060
5061 static int
5062 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5063 int nsyms, const struct block *current_block)
5064 {
5065 struct symbol *current_function;
5066 const char *current_function_name;
5067 int i;
5068 int is_new_style_renaming;
5069
5070 /* If there is both a renaming foo___XR... encoded as a variable and
5071 a simple variable foo in the same block, discard the latter.
5072 First, zero out such symbols, then compress. */
5073 is_new_style_renaming = 0;
5074 for (i = 0; i < nsyms; i += 1)
5075 {
5076 struct symbol *sym = syms[i].sym;
5077 const struct block *block = syms[i].block;
5078 const char *name;
5079 const char *suffix;
5080
5081 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5082 continue;
5083 name = SYMBOL_LINKAGE_NAME (sym);
5084 suffix = strstr (name, "___XR");
5085
5086 if (suffix != NULL)
5087 {
5088 int name_len = suffix - name;
5089 int j;
5090
5091 is_new_style_renaming = 1;
5092 for (j = 0; j < nsyms; j += 1)
5093 if (i != j && syms[j].sym != NULL
5094 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5095 name_len) == 0
5096 && block == syms[j].block)
5097 syms[j].sym = NULL;
5098 }
5099 }
5100 if (is_new_style_renaming)
5101 {
5102 int j, k;
5103
5104 for (j = k = 0; j < nsyms; j += 1)
5105 if (syms[j].sym != NULL)
5106 {
5107 syms[k] = syms[j];
5108 k += 1;
5109 }
5110 return k;
5111 }
5112
5113 /* Extract the function name associated to CURRENT_BLOCK.
5114 Abort if unable to do so. */
5115
5116 if (current_block == NULL)
5117 return nsyms;
5118
5119 current_function = block_linkage_function (current_block);
5120 if (current_function == NULL)
5121 return nsyms;
5122
5123 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5124 if (current_function_name == NULL)
5125 return nsyms;
5126
5127 /* Check each of the symbols, and remove it from the list if it is
5128 a type corresponding to a renaming that is out of the scope of
5129 the current block. */
5130
5131 i = 0;
5132 while (i < nsyms)
5133 {
5134 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5135 == ADA_OBJECT_RENAMING
5136 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5137 {
5138 int j;
5139
5140 for (j = i + 1; j < nsyms; j += 1)
5141 syms[j - 1] = syms[j];
5142 nsyms -= 1;
5143 }
5144 else
5145 i += 1;
5146 }
5147
5148 return nsyms;
5149 }
5150
5151 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5152 whose name and domain match NAME and DOMAIN respectively.
5153 If no match was found, then extend the search to "enclosing"
5154 routines (in other words, if we're inside a nested function,
5155 search the symbols defined inside the enclosing functions).
5156 If WILD_MATCH_P is nonzero, perform the naming matching in
5157 "wild" mode (see function "wild_match" for more info).
5158
5159 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5160
5161 static void
5162 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5163 const struct block *block, domain_enum domain,
5164 int wild_match_p)
5165 {
5166 int block_depth = 0;
5167
5168 while (block != NULL)
5169 {
5170 block_depth += 1;
5171 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5172 wild_match_p);
5173
5174 /* If we found a non-function match, assume that's the one. */
5175 if (is_nonfunction (defns_collected (obstackp, 0),
5176 num_defns_collected (obstackp)))
5177 return;
5178
5179 block = BLOCK_SUPERBLOCK (block);
5180 }
5181
5182 /* If no luck so far, try to find NAME as a local symbol in some lexically
5183 enclosing subprogram. */
5184 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5185 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5186 }
5187
5188 /* An object of this type is used as the user_data argument when
5189 calling the map_matching_symbols method. */
5190
5191 struct match_data
5192 {
5193 struct objfile *objfile;
5194 struct obstack *obstackp;
5195 struct symbol *arg_sym;
5196 int found_sym;
5197 };
5198
5199 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5200 to a list of symbols. DATA0 is a pointer to a struct match_data *
5201 containing the obstack that collects the symbol list, the file that SYM
5202 must come from, a flag indicating whether a non-argument symbol has
5203 been found in the current block, and the last argument symbol
5204 passed in SYM within the current block (if any). When SYM is null,
5205 marking the end of a block, the argument symbol is added if no
5206 other has been found. */
5207
5208 static int
5209 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5210 {
5211 struct match_data *data = (struct match_data *) data0;
5212
5213 if (sym == NULL)
5214 {
5215 if (!data->found_sym && data->arg_sym != NULL)
5216 add_defn_to_vec (data->obstackp,
5217 fixup_symbol_section (data->arg_sym, data->objfile),
5218 block);
5219 data->found_sym = 0;
5220 data->arg_sym = NULL;
5221 }
5222 else
5223 {
5224 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5225 return 0;
5226 else if (SYMBOL_IS_ARGUMENT (sym))
5227 data->arg_sym = sym;
5228 else
5229 {
5230 data->found_sym = 1;
5231 add_defn_to_vec (data->obstackp,
5232 fixup_symbol_section (sym, data->objfile),
5233 block);
5234 }
5235 }
5236 return 0;
5237 }
5238
5239 /* Implements compare_names, but only applying the comparision using
5240 the given CASING. */
5241
5242 static int
5243 compare_names_with_case (const char *string1, const char *string2,
5244 enum case_sensitivity casing)
5245 {
5246 while (*string1 != '\0' && *string2 != '\0')
5247 {
5248 char c1, c2;
5249
5250 if (isspace (*string1) || isspace (*string2))
5251 return strcmp_iw_ordered (string1, string2);
5252
5253 if (casing == case_sensitive_off)
5254 {
5255 c1 = tolower (*string1);
5256 c2 = tolower (*string2);
5257 }
5258 else
5259 {
5260 c1 = *string1;
5261 c2 = *string2;
5262 }
5263 if (c1 != c2)
5264 break;
5265
5266 string1 += 1;
5267 string2 += 1;
5268 }
5269
5270 switch (*string1)
5271 {
5272 case '(':
5273 return strcmp_iw_ordered (string1, string2);
5274 case '_':
5275 if (*string2 == '\0')
5276 {
5277 if (is_name_suffix (string1))
5278 return 0;
5279 else
5280 return 1;
5281 }
5282 /* FALLTHROUGH */
5283 default:
5284 if (*string2 == '(')
5285 return strcmp_iw_ordered (string1, string2);
5286 else
5287 {
5288 if (casing == case_sensitive_off)
5289 return tolower (*string1) - tolower (*string2);
5290 else
5291 return *string1 - *string2;
5292 }
5293 }
5294 }
5295
5296 /* Compare STRING1 to STRING2, with results as for strcmp.
5297 Compatible with strcmp_iw_ordered in that...
5298
5299 strcmp_iw_ordered (STRING1, STRING2) <= 0
5300
5301 ... implies...
5302
5303 compare_names (STRING1, STRING2) <= 0
5304
5305 (they may differ as to what symbols compare equal). */
5306
5307 static int
5308 compare_names (const char *string1, const char *string2)
5309 {
5310 int result;
5311
5312 /* Similar to what strcmp_iw_ordered does, we need to perform
5313 a case-insensitive comparison first, and only resort to
5314 a second, case-sensitive, comparison if the first one was
5315 not sufficient to differentiate the two strings. */
5316
5317 result = compare_names_with_case (string1, string2, case_sensitive_off);
5318 if (result == 0)
5319 result = compare_names_with_case (string1, string2, case_sensitive_on);
5320
5321 return result;
5322 }
5323
5324 /* Add to OBSTACKP all non-local symbols whose name and domain match
5325 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5326 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5327
5328 static void
5329 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5330 domain_enum domain, int global,
5331 int is_wild_match)
5332 {
5333 struct objfile *objfile;
5334 struct match_data data;
5335
5336 memset (&data, 0, sizeof data);
5337 data.obstackp = obstackp;
5338
5339 ALL_OBJFILES (objfile)
5340 {
5341 data.objfile = objfile;
5342
5343 if (is_wild_match)
5344 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5345 aux_add_nonlocal_symbols, &data,
5346 wild_match, NULL);
5347 else
5348 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5349 aux_add_nonlocal_symbols, &data,
5350 full_match, compare_names);
5351 }
5352
5353 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5354 {
5355 ALL_OBJFILES (objfile)
5356 {
5357 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5358 strcpy (name1, "_ada_");
5359 strcpy (name1 + sizeof ("_ada_") - 1, name);
5360 data.objfile = objfile;
5361 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5362 global,
5363 aux_add_nonlocal_symbols,
5364 &data,
5365 full_match, compare_names);
5366 }
5367 }
5368 }
5369
5370 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5371 non-zero, enclosing scope and in global scopes, returning the number of
5372 matches.
5373 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5374 indicating the symbols found and the blocks and symbol tables (if
5375 any) in which they were found. This vector is transient---good only to
5376 the next call of ada_lookup_symbol_list.
5377
5378 When full_search is non-zero, any non-function/non-enumeral
5379 symbol match within the nest of blocks whose innermost member is BLOCK0,
5380 is the one match returned (no other matches in that or
5381 enclosing blocks is returned). If there are any matches in or
5382 surrounding BLOCK0, then these alone are returned.
5383
5384 Names prefixed with "standard__" are handled specially: "standard__"
5385 is first stripped off, and only static and global symbols are searched. */
5386
5387 static int
5388 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5389 domain_enum namespace,
5390 struct ada_symbol_info **results,
5391 int full_search)
5392 {
5393 struct symbol *sym;
5394 const struct block *block;
5395 const char *name;
5396 const int wild_match_p = should_use_wild_match (name0);
5397 int cacheIfUnique;
5398 int ndefns;
5399
5400 obstack_free (&symbol_list_obstack, NULL);
5401 obstack_init (&symbol_list_obstack);
5402
5403 cacheIfUnique = 0;
5404
5405 /* Search specified block and its superiors. */
5406
5407 name = name0;
5408 block = block0;
5409
5410 /* Special case: If the user specifies a symbol name inside package
5411 Standard, do a non-wild matching of the symbol name without
5412 the "standard__" prefix. This was primarily introduced in order
5413 to allow the user to specifically access the standard exceptions
5414 using, for instance, Standard.Constraint_Error when Constraint_Error
5415 is ambiguous (due to the user defining its own Constraint_Error
5416 entity inside its program). */
5417 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5418 {
5419 block = NULL;
5420 name = name0 + sizeof ("standard__") - 1;
5421 }
5422
5423 /* Check the non-global symbols. If we have ANY match, then we're done. */
5424
5425 if (block != NULL)
5426 {
5427 if (full_search)
5428 {
5429 ada_add_local_symbols (&symbol_list_obstack, name, block,
5430 namespace, wild_match_p);
5431 }
5432 else
5433 {
5434 /* In the !full_search case we're are being called by
5435 ada_iterate_over_symbols, and we don't want to search
5436 superblocks. */
5437 ada_add_block_symbols (&symbol_list_obstack, block, name,
5438 namespace, NULL, wild_match_p);
5439 }
5440 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5441 goto done;
5442 }
5443
5444 /* No non-global symbols found. Check our cache to see if we have
5445 already performed this search before. If we have, then return
5446 the same result. */
5447
5448 cacheIfUnique = 1;
5449 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5450 {
5451 if (sym != NULL)
5452 add_defn_to_vec (&symbol_list_obstack, sym, block);
5453 goto done;
5454 }
5455
5456 /* Search symbols from all global blocks. */
5457
5458 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5459 wild_match_p);
5460
5461 /* Now add symbols from all per-file blocks if we've gotten no hits
5462 (not strictly correct, but perhaps better than an error). */
5463
5464 if (num_defns_collected (&symbol_list_obstack) == 0)
5465 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5466 wild_match_p);
5467
5468 done:
5469 ndefns = num_defns_collected (&symbol_list_obstack);
5470 *results = defns_collected (&symbol_list_obstack, 1);
5471
5472 ndefns = remove_extra_symbols (*results, ndefns);
5473
5474 if (ndefns == 0 && full_search)
5475 cache_symbol (name0, namespace, NULL, NULL);
5476
5477 if (ndefns == 1 && full_search && cacheIfUnique)
5478 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5479
5480 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5481
5482 return ndefns;
5483 }
5484
5485 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5486 in global scopes, returning the number of matches, and setting *RESULTS
5487 to a vector of (SYM,BLOCK) tuples.
5488 See ada_lookup_symbol_list_worker for further details. */
5489
5490 int
5491 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5492 domain_enum domain, struct ada_symbol_info **results)
5493 {
5494 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5495 }
5496
5497 /* Implementation of the la_iterate_over_symbols method. */
5498
5499 static void
5500 ada_iterate_over_symbols (const struct block *block,
5501 const char *name, domain_enum domain,
5502 symbol_found_callback_ftype *callback,
5503 void *data)
5504 {
5505 int ndefs, i;
5506 struct ada_symbol_info *results;
5507
5508 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5509 for (i = 0; i < ndefs; ++i)
5510 {
5511 if (! (*callback) (results[i].sym, data))
5512 break;
5513 }
5514 }
5515
5516 /* If NAME is the name of an entity, return a string that should
5517 be used to look that entity up in Ada units. This string should
5518 be deallocated after use using xfree.
5519
5520 NAME can have any form that the "break" or "print" commands might
5521 recognize. In other words, it does not have to be the "natural"
5522 name, or the "encoded" name. */
5523
5524 char *
5525 ada_name_for_lookup (const char *name)
5526 {
5527 char *canon;
5528 int nlen = strlen (name);
5529
5530 if (name[0] == '<' && name[nlen - 1] == '>')
5531 {
5532 canon = xmalloc (nlen - 1);
5533 memcpy (canon, name + 1, nlen - 2);
5534 canon[nlen - 2] = '\0';
5535 }
5536 else
5537 canon = xstrdup (ada_encode (ada_fold_name (name)));
5538 return canon;
5539 }
5540
5541 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5542 to 1, but choosing the first symbol found if there are multiple
5543 choices.
5544
5545 The result is stored in *INFO, which must be non-NULL.
5546 If no match is found, INFO->SYM is set to NULL. */
5547
5548 void
5549 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5550 domain_enum namespace,
5551 struct ada_symbol_info *info)
5552 {
5553 struct ada_symbol_info *candidates;
5554 int n_candidates;
5555
5556 gdb_assert (info != NULL);
5557 memset (info, 0, sizeof (struct ada_symbol_info));
5558
5559 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5560 if (n_candidates == 0)
5561 return;
5562
5563 *info = candidates[0];
5564 info->sym = fixup_symbol_section (info->sym, NULL);
5565 }
5566
5567 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5568 scope and in global scopes, or NULL if none. NAME is folded and
5569 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5570 choosing the first symbol if there are multiple choices.
5571 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5572
5573 struct symbol *
5574 ada_lookup_symbol (const char *name, const struct block *block0,
5575 domain_enum namespace, int *is_a_field_of_this)
5576 {
5577 struct ada_symbol_info info;
5578
5579 if (is_a_field_of_this != NULL)
5580 *is_a_field_of_this = 0;
5581
5582 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5583 block0, namespace, &info);
5584 return info.sym;
5585 }
5586
5587 static struct symbol *
5588 ada_lookup_symbol_nonlocal (const char *name,
5589 const struct block *block,
5590 const domain_enum domain)
5591 {
5592 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5593 }
5594
5595
5596 /* True iff STR is a possible encoded suffix of a normal Ada name
5597 that is to be ignored for matching purposes. Suffixes of parallel
5598 names (e.g., XVE) are not included here. Currently, the possible suffixes
5599 are given by any of the regular expressions:
5600
5601 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5602 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5603 TKB [subprogram suffix for task bodies]
5604 _E[0-9]+[bs]$ [protected object entry suffixes]
5605 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5606
5607 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5608 match is performed. This sequence is used to differentiate homonyms,
5609 is an optional part of a valid name suffix. */
5610
5611 static int
5612 is_name_suffix (const char *str)
5613 {
5614 int k;
5615 const char *matching;
5616 const int len = strlen (str);
5617
5618 /* Skip optional leading __[0-9]+. */
5619
5620 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5621 {
5622 str += 3;
5623 while (isdigit (str[0]))
5624 str += 1;
5625 }
5626
5627 /* [.$][0-9]+ */
5628
5629 if (str[0] == '.' || str[0] == '$')
5630 {
5631 matching = str + 1;
5632 while (isdigit (matching[0]))
5633 matching += 1;
5634 if (matching[0] == '\0')
5635 return 1;
5636 }
5637
5638 /* ___[0-9]+ */
5639
5640 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5641 {
5642 matching = str + 3;
5643 while (isdigit (matching[0]))
5644 matching += 1;
5645 if (matching[0] == '\0')
5646 return 1;
5647 }
5648
5649 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5650
5651 if (strcmp (str, "TKB") == 0)
5652 return 1;
5653
5654 #if 0
5655 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5656 with a N at the end. Unfortunately, the compiler uses the same
5657 convention for other internal types it creates. So treating
5658 all entity names that end with an "N" as a name suffix causes
5659 some regressions. For instance, consider the case of an enumerated
5660 type. To support the 'Image attribute, it creates an array whose
5661 name ends with N.
5662 Having a single character like this as a suffix carrying some
5663 information is a bit risky. Perhaps we should change the encoding
5664 to be something like "_N" instead. In the meantime, do not do
5665 the following check. */
5666 /* Protected Object Subprograms */
5667 if (len == 1 && str [0] == 'N')
5668 return 1;
5669 #endif
5670
5671 /* _E[0-9]+[bs]$ */
5672 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5673 {
5674 matching = str + 3;
5675 while (isdigit (matching[0]))
5676 matching += 1;
5677 if ((matching[0] == 'b' || matching[0] == 's')
5678 && matching [1] == '\0')
5679 return 1;
5680 }
5681
5682 /* ??? We should not modify STR directly, as we are doing below. This
5683 is fine in this case, but may become problematic later if we find
5684 that this alternative did not work, and want to try matching
5685 another one from the begining of STR. Since we modified it, we
5686 won't be able to find the begining of the string anymore! */
5687 if (str[0] == 'X')
5688 {
5689 str += 1;
5690 while (str[0] != '_' && str[0] != '\0')
5691 {
5692 if (str[0] != 'n' && str[0] != 'b')
5693 return 0;
5694 str += 1;
5695 }
5696 }
5697
5698 if (str[0] == '\000')
5699 return 1;
5700
5701 if (str[0] == '_')
5702 {
5703 if (str[1] != '_' || str[2] == '\000')
5704 return 0;
5705 if (str[2] == '_')
5706 {
5707 if (strcmp (str + 3, "JM") == 0)
5708 return 1;
5709 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5710 the LJM suffix in favor of the JM one. But we will
5711 still accept LJM as a valid suffix for a reasonable
5712 amount of time, just to allow ourselves to debug programs
5713 compiled using an older version of GNAT. */
5714 if (strcmp (str + 3, "LJM") == 0)
5715 return 1;
5716 if (str[3] != 'X')
5717 return 0;
5718 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5719 || str[4] == 'U' || str[4] == 'P')
5720 return 1;
5721 if (str[4] == 'R' && str[5] != 'T')
5722 return 1;
5723 return 0;
5724 }
5725 if (!isdigit (str[2]))
5726 return 0;
5727 for (k = 3; str[k] != '\0'; k += 1)
5728 if (!isdigit (str[k]) && str[k] != '_')
5729 return 0;
5730 return 1;
5731 }
5732 if (str[0] == '$' && isdigit (str[1]))
5733 {
5734 for (k = 2; str[k] != '\0'; k += 1)
5735 if (!isdigit (str[k]) && str[k] != '_')
5736 return 0;
5737 return 1;
5738 }
5739 return 0;
5740 }
5741
5742 /* Return non-zero if the string starting at NAME and ending before
5743 NAME_END contains no capital letters. */
5744
5745 static int
5746 is_valid_name_for_wild_match (const char *name0)
5747 {
5748 const char *decoded_name = ada_decode (name0);
5749 int i;
5750
5751 /* If the decoded name starts with an angle bracket, it means that
5752 NAME0 does not follow the GNAT encoding format. It should then
5753 not be allowed as a possible wild match. */
5754 if (decoded_name[0] == '<')
5755 return 0;
5756
5757 for (i=0; decoded_name[i] != '\0'; i++)
5758 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5759 return 0;
5760
5761 return 1;
5762 }
5763
5764 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5765 that could start a simple name. Assumes that *NAMEP points into
5766 the string beginning at NAME0. */
5767
5768 static int
5769 advance_wild_match (const char **namep, const char *name0, int target0)
5770 {
5771 const char *name = *namep;
5772
5773 while (1)
5774 {
5775 int t0, t1;
5776
5777 t0 = *name;
5778 if (t0 == '_')
5779 {
5780 t1 = name[1];
5781 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5782 {
5783 name += 1;
5784 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5785 break;
5786 else
5787 name += 1;
5788 }
5789 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5790 || name[2] == target0))
5791 {
5792 name += 2;
5793 break;
5794 }
5795 else
5796 return 0;
5797 }
5798 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5799 name += 1;
5800 else
5801 return 0;
5802 }
5803
5804 *namep = name;
5805 return 1;
5806 }
5807
5808 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5809 informational suffixes of NAME (i.e., for which is_name_suffix is
5810 true). Assumes that PATN is a lower-cased Ada simple name. */
5811
5812 static int
5813 wild_match (const char *name, const char *patn)
5814 {
5815 const char *p;
5816 const char *name0 = name;
5817
5818 while (1)
5819 {
5820 const char *match = name;
5821
5822 if (*name == *patn)
5823 {
5824 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5825 if (*p != *name)
5826 break;
5827 if (*p == '\0' && is_name_suffix (name))
5828 return match != name0 && !is_valid_name_for_wild_match (name0);
5829
5830 if (name[-1] == '_')
5831 name -= 1;
5832 }
5833 if (!advance_wild_match (&name, name0, *patn))
5834 return 1;
5835 }
5836 }
5837
5838 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5839 informational suffix. */
5840
5841 static int
5842 full_match (const char *sym_name, const char *search_name)
5843 {
5844 return !match_name (sym_name, search_name, 0);
5845 }
5846
5847
5848 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5849 vector *defn_symbols, updating the list of symbols in OBSTACKP
5850 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5851 OBJFILE is the section containing BLOCK. */
5852
5853 static void
5854 ada_add_block_symbols (struct obstack *obstackp,
5855 const struct block *block, const char *name,
5856 domain_enum domain, struct objfile *objfile,
5857 int wild)
5858 {
5859 struct block_iterator iter;
5860 int name_len = strlen (name);
5861 /* A matching argument symbol, if any. */
5862 struct symbol *arg_sym;
5863 /* Set true when we find a matching non-argument symbol. */
5864 int found_sym;
5865 struct symbol *sym;
5866
5867 arg_sym = NULL;
5868 found_sym = 0;
5869 if (wild)
5870 {
5871 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5872 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5873 {
5874 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5875 SYMBOL_DOMAIN (sym), domain)
5876 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5877 {
5878 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5879 continue;
5880 else if (SYMBOL_IS_ARGUMENT (sym))
5881 arg_sym = sym;
5882 else
5883 {
5884 found_sym = 1;
5885 add_defn_to_vec (obstackp,
5886 fixup_symbol_section (sym, objfile),
5887 block);
5888 }
5889 }
5890 }
5891 }
5892 else
5893 {
5894 for (sym = block_iter_match_first (block, name, full_match, &iter);
5895 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5896 {
5897 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5898 SYMBOL_DOMAIN (sym), domain))
5899 {
5900 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5901 {
5902 if (SYMBOL_IS_ARGUMENT (sym))
5903 arg_sym = sym;
5904 else
5905 {
5906 found_sym = 1;
5907 add_defn_to_vec (obstackp,
5908 fixup_symbol_section (sym, objfile),
5909 block);
5910 }
5911 }
5912 }
5913 }
5914 }
5915
5916 if (!found_sym && arg_sym != NULL)
5917 {
5918 add_defn_to_vec (obstackp,
5919 fixup_symbol_section (arg_sym, objfile),
5920 block);
5921 }
5922
5923 if (!wild)
5924 {
5925 arg_sym = NULL;
5926 found_sym = 0;
5927
5928 ALL_BLOCK_SYMBOLS (block, iter, sym)
5929 {
5930 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5931 SYMBOL_DOMAIN (sym), domain))
5932 {
5933 int cmp;
5934
5935 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5936 if (cmp == 0)
5937 {
5938 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5939 if (cmp == 0)
5940 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5941 name_len);
5942 }
5943
5944 if (cmp == 0
5945 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5946 {
5947 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5948 {
5949 if (SYMBOL_IS_ARGUMENT (sym))
5950 arg_sym = sym;
5951 else
5952 {
5953 found_sym = 1;
5954 add_defn_to_vec (obstackp,
5955 fixup_symbol_section (sym, objfile),
5956 block);
5957 }
5958 }
5959 }
5960 }
5961 }
5962
5963 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5964 They aren't parameters, right? */
5965 if (!found_sym && arg_sym != NULL)
5966 {
5967 add_defn_to_vec (obstackp,
5968 fixup_symbol_section (arg_sym, objfile),
5969 block);
5970 }
5971 }
5972 }
5973 \f
5974
5975 /* Symbol Completion */
5976
5977 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5978 name in a form that's appropriate for the completion. The result
5979 does not need to be deallocated, but is only good until the next call.
5980
5981 TEXT_LEN is equal to the length of TEXT.
5982 Perform a wild match if WILD_MATCH_P is set.
5983 ENCODED_P should be set if TEXT represents the start of a symbol name
5984 in its encoded form. */
5985
5986 static const char *
5987 symbol_completion_match (const char *sym_name,
5988 const char *text, int text_len,
5989 int wild_match_p, int encoded_p)
5990 {
5991 const int verbatim_match = (text[0] == '<');
5992 int match = 0;
5993
5994 if (verbatim_match)
5995 {
5996 /* Strip the leading angle bracket. */
5997 text = text + 1;
5998 text_len--;
5999 }
6000
6001 /* First, test against the fully qualified name of the symbol. */
6002
6003 if (strncmp (sym_name, text, text_len) == 0)
6004 match = 1;
6005
6006 if (match && !encoded_p)
6007 {
6008 /* One needed check before declaring a positive match is to verify
6009 that iff we are doing a verbatim match, the decoded version
6010 of the symbol name starts with '<'. Otherwise, this symbol name
6011 is not a suitable completion. */
6012 const char *sym_name_copy = sym_name;
6013 int has_angle_bracket;
6014
6015 sym_name = ada_decode (sym_name);
6016 has_angle_bracket = (sym_name[0] == '<');
6017 match = (has_angle_bracket == verbatim_match);
6018 sym_name = sym_name_copy;
6019 }
6020
6021 if (match && !verbatim_match)
6022 {
6023 /* When doing non-verbatim match, another check that needs to
6024 be done is to verify that the potentially matching symbol name
6025 does not include capital letters, because the ada-mode would
6026 not be able to understand these symbol names without the
6027 angle bracket notation. */
6028 const char *tmp;
6029
6030 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6031 if (*tmp != '\0')
6032 match = 0;
6033 }
6034
6035 /* Second: Try wild matching... */
6036
6037 if (!match && wild_match_p)
6038 {
6039 /* Since we are doing wild matching, this means that TEXT
6040 may represent an unqualified symbol name. We therefore must
6041 also compare TEXT against the unqualified name of the symbol. */
6042 sym_name = ada_unqualified_name (ada_decode (sym_name));
6043
6044 if (strncmp (sym_name, text, text_len) == 0)
6045 match = 1;
6046 }
6047
6048 /* Finally: If we found a mach, prepare the result to return. */
6049
6050 if (!match)
6051 return NULL;
6052
6053 if (verbatim_match)
6054 sym_name = add_angle_brackets (sym_name);
6055
6056 if (!encoded_p)
6057 sym_name = ada_decode (sym_name);
6058
6059 return sym_name;
6060 }
6061
6062 /* A companion function to ada_make_symbol_completion_list().
6063 Check if SYM_NAME represents a symbol which name would be suitable
6064 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6065 it is appended at the end of the given string vector SV.
6066
6067 ORIG_TEXT is the string original string from the user command
6068 that needs to be completed. WORD is the entire command on which
6069 completion should be performed. These two parameters are used to
6070 determine which part of the symbol name should be added to the
6071 completion vector.
6072 if WILD_MATCH_P is set, then wild matching is performed.
6073 ENCODED_P should be set if TEXT represents a symbol name in its
6074 encoded formed (in which case the completion should also be
6075 encoded). */
6076
6077 static void
6078 symbol_completion_add (VEC(char_ptr) **sv,
6079 const char *sym_name,
6080 const char *text, int text_len,
6081 const char *orig_text, const char *word,
6082 int wild_match_p, int encoded_p)
6083 {
6084 const char *match = symbol_completion_match (sym_name, text, text_len,
6085 wild_match_p, encoded_p);
6086 char *completion;
6087
6088 if (match == NULL)
6089 return;
6090
6091 /* We found a match, so add the appropriate completion to the given
6092 string vector. */
6093
6094 if (word == orig_text)
6095 {
6096 completion = xmalloc (strlen (match) + 5);
6097 strcpy (completion, match);
6098 }
6099 else if (word > orig_text)
6100 {
6101 /* Return some portion of sym_name. */
6102 completion = xmalloc (strlen (match) + 5);
6103 strcpy (completion, match + (word - orig_text));
6104 }
6105 else
6106 {
6107 /* Return some of ORIG_TEXT plus sym_name. */
6108 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6109 strncpy (completion, word, orig_text - word);
6110 completion[orig_text - word] = '\0';
6111 strcat (completion, match);
6112 }
6113
6114 VEC_safe_push (char_ptr, *sv, completion);
6115 }
6116
6117 /* An object of this type is passed as the user_data argument to the
6118 expand_symtabs_matching method. */
6119 struct add_partial_datum
6120 {
6121 VEC(char_ptr) **completions;
6122 const char *text;
6123 int text_len;
6124 const char *text0;
6125 const char *word;
6126 int wild_match;
6127 int encoded;
6128 };
6129
6130 /* A callback for expand_symtabs_matching. */
6131
6132 static int
6133 ada_complete_symbol_matcher (const char *name, void *user_data)
6134 {
6135 struct add_partial_datum *data = user_data;
6136
6137 return symbol_completion_match (name, data->text, data->text_len,
6138 data->wild_match, data->encoded) != NULL;
6139 }
6140
6141 /* Return a list of possible symbol names completing TEXT0. WORD is
6142 the entire command on which completion is made. */
6143
6144 static VEC (char_ptr) *
6145 ada_make_symbol_completion_list (const char *text0, const char *word,
6146 enum type_code code)
6147 {
6148 char *text;
6149 int text_len;
6150 int wild_match_p;
6151 int encoded_p;
6152 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6153 struct symbol *sym;
6154 struct compunit_symtab *s;
6155 struct minimal_symbol *msymbol;
6156 struct objfile *objfile;
6157 const struct block *b, *surrounding_static_block = 0;
6158 int i;
6159 struct block_iterator iter;
6160 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6161
6162 gdb_assert (code == TYPE_CODE_UNDEF);
6163
6164 if (text0[0] == '<')
6165 {
6166 text = xstrdup (text0);
6167 make_cleanup (xfree, text);
6168 text_len = strlen (text);
6169 wild_match_p = 0;
6170 encoded_p = 1;
6171 }
6172 else
6173 {
6174 text = xstrdup (ada_encode (text0));
6175 make_cleanup (xfree, text);
6176 text_len = strlen (text);
6177 for (i = 0; i < text_len; i++)
6178 text[i] = tolower (text[i]);
6179
6180 encoded_p = (strstr (text0, "__") != NULL);
6181 /* If the name contains a ".", then the user is entering a fully
6182 qualified entity name, and the match must not be done in wild
6183 mode. Similarly, if the user wants to complete what looks like
6184 an encoded name, the match must not be done in wild mode. */
6185 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6186 }
6187
6188 /* First, look at the partial symtab symbols. */
6189 {
6190 struct add_partial_datum data;
6191
6192 data.completions = &completions;
6193 data.text = text;
6194 data.text_len = text_len;
6195 data.text0 = text0;
6196 data.word = word;
6197 data.wild_match = wild_match_p;
6198 data.encoded = encoded_p;
6199 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6200 &data);
6201 }
6202
6203 /* At this point scan through the misc symbol vectors and add each
6204 symbol you find to the list. Eventually we want to ignore
6205 anything that isn't a text symbol (everything else will be
6206 handled by the psymtab code above). */
6207
6208 ALL_MSYMBOLS (objfile, msymbol)
6209 {
6210 QUIT;
6211 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6212 text, text_len, text0, word, wild_match_p,
6213 encoded_p);
6214 }
6215
6216 /* Search upwards from currently selected frame (so that we can
6217 complete on local vars. */
6218
6219 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6220 {
6221 if (!BLOCK_SUPERBLOCK (b))
6222 surrounding_static_block = b; /* For elmin of dups */
6223
6224 ALL_BLOCK_SYMBOLS (b, iter, sym)
6225 {
6226 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6227 text, text_len, text0, word,
6228 wild_match_p, encoded_p);
6229 }
6230 }
6231
6232 /* Go through the symtabs and check the externs and statics for
6233 symbols which match. */
6234
6235 ALL_COMPUNITS (objfile, s)
6236 {
6237 QUIT;
6238 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6239 ALL_BLOCK_SYMBOLS (b, iter, sym)
6240 {
6241 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6242 text, text_len, text0, word,
6243 wild_match_p, encoded_p);
6244 }
6245 }
6246
6247 ALL_COMPUNITS (objfile, s)
6248 {
6249 QUIT;
6250 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6251 /* Don't do this block twice. */
6252 if (b == surrounding_static_block)
6253 continue;
6254 ALL_BLOCK_SYMBOLS (b, iter, sym)
6255 {
6256 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6257 text, text_len, text0, word,
6258 wild_match_p, encoded_p);
6259 }
6260 }
6261
6262 do_cleanups (old_chain);
6263 return completions;
6264 }
6265
6266 /* Field Access */
6267
6268 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6269 for tagged types. */
6270
6271 static int
6272 ada_is_dispatch_table_ptr_type (struct type *type)
6273 {
6274 const char *name;
6275
6276 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6277 return 0;
6278
6279 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6280 if (name == NULL)
6281 return 0;
6282
6283 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6284 }
6285
6286 /* Return non-zero if TYPE is an interface tag. */
6287
6288 static int
6289 ada_is_interface_tag (struct type *type)
6290 {
6291 const char *name = TYPE_NAME (type);
6292
6293 if (name == NULL)
6294 return 0;
6295
6296 return (strcmp (name, "ada__tags__interface_tag") == 0);
6297 }
6298
6299 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6300 to be invisible to users. */
6301
6302 int
6303 ada_is_ignored_field (struct type *type, int field_num)
6304 {
6305 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6306 return 1;
6307
6308 /* Check the name of that field. */
6309 {
6310 const char *name = TYPE_FIELD_NAME (type, field_num);
6311
6312 /* Anonymous field names should not be printed.
6313 brobecker/2007-02-20: I don't think this can actually happen
6314 but we don't want to print the value of annonymous fields anyway. */
6315 if (name == NULL)
6316 return 1;
6317
6318 /* Normally, fields whose name start with an underscore ("_")
6319 are fields that have been internally generated by the compiler,
6320 and thus should not be printed. The "_parent" field is special,
6321 however: This is a field internally generated by the compiler
6322 for tagged types, and it contains the components inherited from
6323 the parent type. This field should not be printed as is, but
6324 should not be ignored either. */
6325 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6326 return 1;
6327 }
6328
6329 /* If this is the dispatch table of a tagged type or an interface tag,
6330 then ignore. */
6331 if (ada_is_tagged_type (type, 1)
6332 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6333 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6334 return 1;
6335
6336 /* Not a special field, so it should not be ignored. */
6337 return 0;
6338 }
6339
6340 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6341 pointer or reference type whose ultimate target has a tag field. */
6342
6343 int
6344 ada_is_tagged_type (struct type *type, int refok)
6345 {
6346 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6347 }
6348
6349 /* True iff TYPE represents the type of X'Tag */
6350
6351 int
6352 ada_is_tag_type (struct type *type)
6353 {
6354 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6355 return 0;
6356 else
6357 {
6358 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6359
6360 return (name != NULL
6361 && strcmp (name, "ada__tags__dispatch_table") == 0);
6362 }
6363 }
6364
6365 /* The type of the tag on VAL. */
6366
6367 struct type *
6368 ada_tag_type (struct value *val)
6369 {
6370 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6371 }
6372
6373 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6374 retired at Ada 05). */
6375
6376 static int
6377 is_ada95_tag (struct value *tag)
6378 {
6379 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6380 }
6381
6382 /* The value of the tag on VAL. */
6383
6384 struct value *
6385 ada_value_tag (struct value *val)
6386 {
6387 return ada_value_struct_elt (val, "_tag", 0);
6388 }
6389
6390 /* The value of the tag on the object of type TYPE whose contents are
6391 saved at VALADDR, if it is non-null, or is at memory address
6392 ADDRESS. */
6393
6394 static struct value *
6395 value_tag_from_contents_and_address (struct type *type,
6396 const gdb_byte *valaddr,
6397 CORE_ADDR address)
6398 {
6399 int tag_byte_offset;
6400 struct type *tag_type;
6401
6402 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6403 NULL, NULL, NULL))
6404 {
6405 const gdb_byte *valaddr1 = ((valaddr == NULL)
6406 ? NULL
6407 : valaddr + tag_byte_offset);
6408 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6409
6410 return value_from_contents_and_address (tag_type, valaddr1, address1);
6411 }
6412 return NULL;
6413 }
6414
6415 static struct type *
6416 type_from_tag (struct value *tag)
6417 {
6418 const char *type_name = ada_tag_name (tag);
6419
6420 if (type_name != NULL)
6421 return ada_find_any_type (ada_encode (type_name));
6422 return NULL;
6423 }
6424
6425 /* Given a value OBJ of a tagged type, return a value of this
6426 type at the base address of the object. The base address, as
6427 defined in Ada.Tags, it is the address of the primary tag of
6428 the object, and therefore where the field values of its full
6429 view can be fetched. */
6430
6431 struct value *
6432 ada_tag_value_at_base_address (struct value *obj)
6433 {
6434 volatile struct gdb_exception e;
6435 struct value *val;
6436 LONGEST offset_to_top = 0;
6437 struct type *ptr_type, *obj_type;
6438 struct value *tag;
6439 CORE_ADDR base_address;
6440
6441 obj_type = value_type (obj);
6442
6443 /* It is the responsability of the caller to deref pointers. */
6444
6445 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6446 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6447 return obj;
6448
6449 tag = ada_value_tag (obj);
6450 if (!tag)
6451 return obj;
6452
6453 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6454
6455 if (is_ada95_tag (tag))
6456 return obj;
6457
6458 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6459 ptr_type = lookup_pointer_type (ptr_type);
6460 val = value_cast (ptr_type, tag);
6461 if (!val)
6462 return obj;
6463
6464 /* It is perfectly possible that an exception be raised while
6465 trying to determine the base address, just like for the tag;
6466 see ada_tag_name for more details. We do not print the error
6467 message for the same reason. */
6468
6469 TRY_CATCH (e, RETURN_MASK_ERROR)
6470 {
6471 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6472 }
6473
6474 if (e.reason < 0)
6475 return obj;
6476
6477 /* If offset is null, nothing to do. */
6478
6479 if (offset_to_top == 0)
6480 return obj;
6481
6482 /* -1 is a special case in Ada.Tags; however, what should be done
6483 is not quite clear from the documentation. So do nothing for
6484 now. */
6485
6486 if (offset_to_top == -1)
6487 return obj;
6488
6489 base_address = value_address (obj) - offset_to_top;
6490 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6491
6492 /* Make sure that we have a proper tag at the new address.
6493 Otherwise, offset_to_top is bogus (which can happen when
6494 the object is not initialized yet). */
6495
6496 if (!tag)
6497 return obj;
6498
6499 obj_type = type_from_tag (tag);
6500
6501 if (!obj_type)
6502 return obj;
6503
6504 return value_from_contents_and_address (obj_type, NULL, base_address);
6505 }
6506
6507 /* Return the "ada__tags__type_specific_data" type. */
6508
6509 static struct type *
6510 ada_get_tsd_type (struct inferior *inf)
6511 {
6512 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6513
6514 if (data->tsd_type == 0)
6515 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6516 return data->tsd_type;
6517 }
6518
6519 /* Return the TSD (type-specific data) associated to the given TAG.
6520 TAG is assumed to be the tag of a tagged-type entity.
6521
6522 May return NULL if we are unable to get the TSD. */
6523
6524 static struct value *
6525 ada_get_tsd_from_tag (struct value *tag)
6526 {
6527 struct value *val;
6528 struct type *type;
6529
6530 /* First option: The TSD is simply stored as a field of our TAG.
6531 Only older versions of GNAT would use this format, but we have
6532 to test it first, because there are no visible markers for
6533 the current approach except the absence of that field. */
6534
6535 val = ada_value_struct_elt (tag, "tsd", 1);
6536 if (val)
6537 return val;
6538
6539 /* Try the second representation for the dispatch table (in which
6540 there is no explicit 'tsd' field in the referent of the tag pointer,
6541 and instead the tsd pointer is stored just before the dispatch
6542 table. */
6543
6544 type = ada_get_tsd_type (current_inferior());
6545 if (type == NULL)
6546 return NULL;
6547 type = lookup_pointer_type (lookup_pointer_type (type));
6548 val = value_cast (type, tag);
6549 if (val == NULL)
6550 return NULL;
6551 return value_ind (value_ptradd (val, -1));
6552 }
6553
6554 /* Given the TSD of a tag (type-specific data), return a string
6555 containing the name of the associated type.
6556
6557 The returned value is good until the next call. May return NULL
6558 if we are unable to determine the tag name. */
6559
6560 static char *
6561 ada_tag_name_from_tsd (struct value *tsd)
6562 {
6563 static char name[1024];
6564 char *p;
6565 struct value *val;
6566
6567 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6568 if (val == NULL)
6569 return NULL;
6570 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6571 for (p = name; *p != '\0'; p += 1)
6572 if (isalpha (*p))
6573 *p = tolower (*p);
6574 return name;
6575 }
6576
6577 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6578 a C string.
6579
6580 Return NULL if the TAG is not an Ada tag, or if we were unable to
6581 determine the name of that tag. The result is good until the next
6582 call. */
6583
6584 const char *
6585 ada_tag_name (struct value *tag)
6586 {
6587 volatile struct gdb_exception e;
6588 char *name = NULL;
6589
6590 if (!ada_is_tag_type (value_type (tag)))
6591 return NULL;
6592
6593 /* It is perfectly possible that an exception be raised while trying
6594 to determine the TAG's name, even under normal circumstances:
6595 The associated variable may be uninitialized or corrupted, for
6596 instance. We do not let any exception propagate past this point.
6597 instead we return NULL.
6598
6599 We also do not print the error message either (which often is very
6600 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6601 the caller print a more meaningful message if necessary. */
6602 TRY_CATCH (e, RETURN_MASK_ERROR)
6603 {
6604 struct value *tsd = ada_get_tsd_from_tag (tag);
6605
6606 if (tsd != NULL)
6607 name = ada_tag_name_from_tsd (tsd);
6608 }
6609
6610 return name;
6611 }
6612
6613 /* The parent type of TYPE, or NULL if none. */
6614
6615 struct type *
6616 ada_parent_type (struct type *type)
6617 {
6618 int i;
6619
6620 type = ada_check_typedef (type);
6621
6622 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6623 return NULL;
6624
6625 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6626 if (ada_is_parent_field (type, i))
6627 {
6628 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6629
6630 /* If the _parent field is a pointer, then dereference it. */
6631 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6632 parent_type = TYPE_TARGET_TYPE (parent_type);
6633 /* If there is a parallel XVS type, get the actual base type. */
6634 parent_type = ada_get_base_type (parent_type);
6635
6636 return ada_check_typedef (parent_type);
6637 }
6638
6639 return NULL;
6640 }
6641
6642 /* True iff field number FIELD_NUM of structure type TYPE contains the
6643 parent-type (inherited) fields of a derived type. Assumes TYPE is
6644 a structure type with at least FIELD_NUM+1 fields. */
6645
6646 int
6647 ada_is_parent_field (struct type *type, int field_num)
6648 {
6649 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6650
6651 return (name != NULL
6652 && (strncmp (name, "PARENT", 6) == 0
6653 || strncmp (name, "_parent", 7) == 0));
6654 }
6655
6656 /* True iff field number FIELD_NUM of structure type TYPE is a
6657 transparent wrapper field (which should be silently traversed when doing
6658 field selection and flattened when printing). Assumes TYPE is a
6659 structure type with at least FIELD_NUM+1 fields. Such fields are always
6660 structures. */
6661
6662 int
6663 ada_is_wrapper_field (struct type *type, int field_num)
6664 {
6665 const char *name = TYPE_FIELD_NAME (type, field_num);
6666
6667 return (name != NULL
6668 && (strncmp (name, "PARENT", 6) == 0
6669 || strcmp (name, "REP") == 0
6670 || strncmp (name, "_parent", 7) == 0
6671 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6672 }
6673
6674 /* True iff field number FIELD_NUM of structure or union type TYPE
6675 is a variant wrapper. Assumes TYPE is a structure type with at least
6676 FIELD_NUM+1 fields. */
6677
6678 int
6679 ada_is_variant_part (struct type *type, int field_num)
6680 {
6681 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6682
6683 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6684 || (is_dynamic_field (type, field_num)
6685 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6686 == TYPE_CODE_UNION)));
6687 }
6688
6689 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6690 whose discriminants are contained in the record type OUTER_TYPE,
6691 returns the type of the controlling discriminant for the variant.
6692 May return NULL if the type could not be found. */
6693
6694 struct type *
6695 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6696 {
6697 char *name = ada_variant_discrim_name (var_type);
6698
6699 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6700 }
6701
6702 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6703 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6704 represents a 'when others' clause; otherwise 0. */
6705
6706 int
6707 ada_is_others_clause (struct type *type, int field_num)
6708 {
6709 const char *name = TYPE_FIELD_NAME (type, field_num);
6710
6711 return (name != NULL && name[0] == 'O');
6712 }
6713
6714 /* Assuming that TYPE0 is the type of the variant part of a record,
6715 returns the name of the discriminant controlling the variant.
6716 The value is valid until the next call to ada_variant_discrim_name. */
6717
6718 char *
6719 ada_variant_discrim_name (struct type *type0)
6720 {
6721 static char *result = NULL;
6722 static size_t result_len = 0;
6723 struct type *type;
6724 const char *name;
6725 const char *discrim_end;
6726 const char *discrim_start;
6727
6728 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6729 type = TYPE_TARGET_TYPE (type0);
6730 else
6731 type = type0;
6732
6733 name = ada_type_name (type);
6734
6735 if (name == NULL || name[0] == '\000')
6736 return "";
6737
6738 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6739 discrim_end -= 1)
6740 {
6741 if (strncmp (discrim_end, "___XVN", 6) == 0)
6742 break;
6743 }
6744 if (discrim_end == name)
6745 return "";
6746
6747 for (discrim_start = discrim_end; discrim_start != name + 3;
6748 discrim_start -= 1)
6749 {
6750 if (discrim_start == name + 1)
6751 return "";
6752 if ((discrim_start > name + 3
6753 && strncmp (discrim_start - 3, "___", 3) == 0)
6754 || discrim_start[-1] == '.')
6755 break;
6756 }
6757
6758 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6759 strncpy (result, discrim_start, discrim_end - discrim_start);
6760 result[discrim_end - discrim_start] = '\0';
6761 return result;
6762 }
6763
6764 /* Scan STR for a subtype-encoded number, beginning at position K.
6765 Put the position of the character just past the number scanned in
6766 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6767 Return 1 if there was a valid number at the given position, and 0
6768 otherwise. A "subtype-encoded" number consists of the absolute value
6769 in decimal, followed by the letter 'm' to indicate a negative number.
6770 Assumes 0m does not occur. */
6771
6772 int
6773 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6774 {
6775 ULONGEST RU;
6776
6777 if (!isdigit (str[k]))
6778 return 0;
6779
6780 /* Do it the hard way so as not to make any assumption about
6781 the relationship of unsigned long (%lu scan format code) and
6782 LONGEST. */
6783 RU = 0;
6784 while (isdigit (str[k]))
6785 {
6786 RU = RU * 10 + (str[k] - '0');
6787 k += 1;
6788 }
6789
6790 if (str[k] == 'm')
6791 {
6792 if (R != NULL)
6793 *R = (-(LONGEST) (RU - 1)) - 1;
6794 k += 1;
6795 }
6796 else if (R != NULL)
6797 *R = (LONGEST) RU;
6798
6799 /* NOTE on the above: Technically, C does not say what the results of
6800 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6801 number representable as a LONGEST (although either would probably work
6802 in most implementations). When RU>0, the locution in the then branch
6803 above is always equivalent to the negative of RU. */
6804
6805 if (new_k != NULL)
6806 *new_k = k;
6807 return 1;
6808 }
6809
6810 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6811 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6812 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6813
6814 int
6815 ada_in_variant (LONGEST val, struct type *type, int field_num)
6816 {
6817 const char *name = TYPE_FIELD_NAME (type, field_num);
6818 int p;
6819
6820 p = 0;
6821 while (1)
6822 {
6823 switch (name[p])
6824 {
6825 case '\0':
6826 return 0;
6827 case 'S':
6828 {
6829 LONGEST W;
6830
6831 if (!ada_scan_number (name, p + 1, &W, &p))
6832 return 0;
6833 if (val == W)
6834 return 1;
6835 break;
6836 }
6837 case 'R':
6838 {
6839 LONGEST L, U;
6840
6841 if (!ada_scan_number (name, p + 1, &L, &p)
6842 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6843 return 0;
6844 if (val >= L && val <= U)
6845 return 1;
6846 break;
6847 }
6848 case 'O':
6849 return 1;
6850 default:
6851 return 0;
6852 }
6853 }
6854 }
6855
6856 /* FIXME: Lots of redundancy below. Try to consolidate. */
6857
6858 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6859 ARG_TYPE, extract and return the value of one of its (non-static)
6860 fields. FIELDNO says which field. Differs from value_primitive_field
6861 only in that it can handle packed values of arbitrary type. */
6862
6863 static struct value *
6864 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6865 struct type *arg_type)
6866 {
6867 struct type *type;
6868
6869 arg_type = ada_check_typedef (arg_type);
6870 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6871
6872 /* Handle packed fields. */
6873
6874 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6875 {
6876 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6877 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6878
6879 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6880 offset + bit_pos / 8,
6881 bit_pos % 8, bit_size, type);
6882 }
6883 else
6884 return value_primitive_field (arg1, offset, fieldno, arg_type);
6885 }
6886
6887 /* Find field with name NAME in object of type TYPE. If found,
6888 set the following for each argument that is non-null:
6889 - *FIELD_TYPE_P to the field's type;
6890 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6891 an object of that type;
6892 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6893 - *BIT_SIZE_P to its size in bits if the field is packed, and
6894 0 otherwise;
6895 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6896 fields up to but not including the desired field, or by the total
6897 number of fields if not found. A NULL value of NAME never
6898 matches; the function just counts visible fields in this case.
6899
6900 Returns 1 if found, 0 otherwise. */
6901
6902 static int
6903 find_struct_field (const char *name, struct type *type, int offset,
6904 struct type **field_type_p,
6905 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6906 int *index_p)
6907 {
6908 int i;
6909
6910 type = ada_check_typedef (type);
6911
6912 if (field_type_p != NULL)
6913 *field_type_p = NULL;
6914 if (byte_offset_p != NULL)
6915 *byte_offset_p = 0;
6916 if (bit_offset_p != NULL)
6917 *bit_offset_p = 0;
6918 if (bit_size_p != NULL)
6919 *bit_size_p = 0;
6920
6921 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6922 {
6923 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6924 int fld_offset = offset + bit_pos / 8;
6925 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6926
6927 if (t_field_name == NULL)
6928 continue;
6929
6930 else if (name != NULL && field_name_match (t_field_name, name))
6931 {
6932 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6933
6934 if (field_type_p != NULL)
6935 *field_type_p = TYPE_FIELD_TYPE (type, i);
6936 if (byte_offset_p != NULL)
6937 *byte_offset_p = fld_offset;
6938 if (bit_offset_p != NULL)
6939 *bit_offset_p = bit_pos % 8;
6940 if (bit_size_p != NULL)
6941 *bit_size_p = bit_size;
6942 return 1;
6943 }
6944 else if (ada_is_wrapper_field (type, i))
6945 {
6946 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6947 field_type_p, byte_offset_p, bit_offset_p,
6948 bit_size_p, index_p))
6949 return 1;
6950 }
6951 else if (ada_is_variant_part (type, i))
6952 {
6953 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6954 fixed type?? */
6955 int j;
6956 struct type *field_type
6957 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6958
6959 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6960 {
6961 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6962 fld_offset
6963 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6964 field_type_p, byte_offset_p,
6965 bit_offset_p, bit_size_p, index_p))
6966 return 1;
6967 }
6968 }
6969 else if (index_p != NULL)
6970 *index_p += 1;
6971 }
6972 return 0;
6973 }
6974
6975 /* Number of user-visible fields in record type TYPE. */
6976
6977 static int
6978 num_visible_fields (struct type *type)
6979 {
6980 int n;
6981
6982 n = 0;
6983 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6984 return n;
6985 }
6986
6987 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6988 and search in it assuming it has (class) type TYPE.
6989 If found, return value, else return NULL.
6990
6991 Searches recursively through wrapper fields (e.g., '_parent'). */
6992
6993 static struct value *
6994 ada_search_struct_field (char *name, struct value *arg, int offset,
6995 struct type *type)
6996 {
6997 int i;
6998
6999 type = ada_check_typedef (type);
7000 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7001 {
7002 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7003
7004 if (t_field_name == NULL)
7005 continue;
7006
7007 else if (field_name_match (t_field_name, name))
7008 return ada_value_primitive_field (arg, offset, i, type);
7009
7010 else if (ada_is_wrapper_field (type, i))
7011 {
7012 struct value *v = /* Do not let indent join lines here. */
7013 ada_search_struct_field (name, arg,
7014 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7015 TYPE_FIELD_TYPE (type, i));
7016
7017 if (v != NULL)
7018 return v;
7019 }
7020
7021 else if (ada_is_variant_part (type, i))
7022 {
7023 /* PNH: Do we ever get here? See find_struct_field. */
7024 int j;
7025 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7026 i));
7027 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7028
7029 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7030 {
7031 struct value *v = ada_search_struct_field /* Force line
7032 break. */
7033 (name, arg,
7034 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7035 TYPE_FIELD_TYPE (field_type, j));
7036
7037 if (v != NULL)
7038 return v;
7039 }
7040 }
7041 }
7042 return NULL;
7043 }
7044
7045 static struct value *ada_index_struct_field_1 (int *, struct value *,
7046 int, struct type *);
7047
7048
7049 /* Return field #INDEX in ARG, where the index is that returned by
7050 * find_struct_field through its INDEX_P argument. Adjust the address
7051 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7052 * If found, return value, else return NULL. */
7053
7054 static struct value *
7055 ada_index_struct_field (int index, struct value *arg, int offset,
7056 struct type *type)
7057 {
7058 return ada_index_struct_field_1 (&index, arg, offset, type);
7059 }
7060
7061
7062 /* Auxiliary function for ada_index_struct_field. Like
7063 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7064 * *INDEX_P. */
7065
7066 static struct value *
7067 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7068 struct type *type)
7069 {
7070 int i;
7071 type = ada_check_typedef (type);
7072
7073 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7074 {
7075 if (TYPE_FIELD_NAME (type, i) == NULL)
7076 continue;
7077 else if (ada_is_wrapper_field (type, i))
7078 {
7079 struct value *v = /* Do not let indent join lines here. */
7080 ada_index_struct_field_1 (index_p, arg,
7081 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7082 TYPE_FIELD_TYPE (type, i));
7083
7084 if (v != NULL)
7085 return v;
7086 }
7087
7088 else if (ada_is_variant_part (type, i))
7089 {
7090 /* PNH: Do we ever get here? See ada_search_struct_field,
7091 find_struct_field. */
7092 error (_("Cannot assign this kind of variant record"));
7093 }
7094 else if (*index_p == 0)
7095 return ada_value_primitive_field (arg, offset, i, type);
7096 else
7097 *index_p -= 1;
7098 }
7099 return NULL;
7100 }
7101
7102 /* Given ARG, a value of type (pointer or reference to a)*
7103 structure/union, extract the component named NAME from the ultimate
7104 target structure/union and return it as a value with its
7105 appropriate type.
7106
7107 The routine searches for NAME among all members of the structure itself
7108 and (recursively) among all members of any wrapper members
7109 (e.g., '_parent').
7110
7111 If NO_ERR, then simply return NULL in case of error, rather than
7112 calling error. */
7113
7114 struct value *
7115 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7116 {
7117 struct type *t, *t1;
7118 struct value *v;
7119
7120 v = NULL;
7121 t1 = t = ada_check_typedef (value_type (arg));
7122 if (TYPE_CODE (t) == TYPE_CODE_REF)
7123 {
7124 t1 = TYPE_TARGET_TYPE (t);
7125 if (t1 == NULL)
7126 goto BadValue;
7127 t1 = ada_check_typedef (t1);
7128 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7129 {
7130 arg = coerce_ref (arg);
7131 t = t1;
7132 }
7133 }
7134
7135 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7136 {
7137 t1 = TYPE_TARGET_TYPE (t);
7138 if (t1 == NULL)
7139 goto BadValue;
7140 t1 = ada_check_typedef (t1);
7141 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7142 {
7143 arg = value_ind (arg);
7144 t = t1;
7145 }
7146 else
7147 break;
7148 }
7149
7150 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7151 goto BadValue;
7152
7153 if (t1 == t)
7154 v = ada_search_struct_field (name, arg, 0, t);
7155 else
7156 {
7157 int bit_offset, bit_size, byte_offset;
7158 struct type *field_type;
7159 CORE_ADDR address;
7160
7161 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7162 address = value_address (ada_value_ind (arg));
7163 else
7164 address = value_address (ada_coerce_ref (arg));
7165
7166 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7167 if (find_struct_field (name, t1, 0,
7168 &field_type, &byte_offset, &bit_offset,
7169 &bit_size, NULL))
7170 {
7171 if (bit_size != 0)
7172 {
7173 if (TYPE_CODE (t) == TYPE_CODE_REF)
7174 arg = ada_coerce_ref (arg);
7175 else
7176 arg = ada_value_ind (arg);
7177 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7178 bit_offset, bit_size,
7179 field_type);
7180 }
7181 else
7182 v = value_at_lazy (field_type, address + byte_offset);
7183 }
7184 }
7185
7186 if (v != NULL || no_err)
7187 return v;
7188 else
7189 error (_("There is no member named %s."), name);
7190
7191 BadValue:
7192 if (no_err)
7193 return NULL;
7194 else
7195 error (_("Attempt to extract a component of "
7196 "a value that is not a record."));
7197 }
7198
7199 /* Given a type TYPE, look up the type of the component of type named NAME.
7200 If DISPP is non-null, add its byte displacement from the beginning of a
7201 structure (pointed to by a value) of type TYPE to *DISPP (does not
7202 work for packed fields).
7203
7204 Matches any field whose name has NAME as a prefix, possibly
7205 followed by "___".
7206
7207 TYPE can be either a struct or union. If REFOK, TYPE may also
7208 be a (pointer or reference)+ to a struct or union, and the
7209 ultimate target type will be searched.
7210
7211 Looks recursively into variant clauses and parent types.
7212
7213 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7214 TYPE is not a type of the right kind. */
7215
7216 static struct type *
7217 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7218 int noerr, int *dispp)
7219 {
7220 int i;
7221
7222 if (name == NULL)
7223 goto BadName;
7224
7225 if (refok && type != NULL)
7226 while (1)
7227 {
7228 type = ada_check_typedef (type);
7229 if (TYPE_CODE (type) != TYPE_CODE_PTR
7230 && TYPE_CODE (type) != TYPE_CODE_REF)
7231 break;
7232 type = TYPE_TARGET_TYPE (type);
7233 }
7234
7235 if (type == NULL
7236 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7237 && TYPE_CODE (type) != TYPE_CODE_UNION))
7238 {
7239 if (noerr)
7240 return NULL;
7241 else
7242 {
7243 target_terminal_ours ();
7244 gdb_flush (gdb_stdout);
7245 if (type == NULL)
7246 error (_("Type (null) is not a structure or union type"));
7247 else
7248 {
7249 /* XXX: type_sprint */
7250 fprintf_unfiltered (gdb_stderr, _("Type "));
7251 type_print (type, "", gdb_stderr, -1);
7252 error (_(" is not a structure or union type"));
7253 }
7254 }
7255 }
7256
7257 type = to_static_fixed_type (type);
7258
7259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7260 {
7261 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7262 struct type *t;
7263 int disp;
7264
7265 if (t_field_name == NULL)
7266 continue;
7267
7268 else if (field_name_match (t_field_name, name))
7269 {
7270 if (dispp != NULL)
7271 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7272 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7273 }
7274
7275 else if (ada_is_wrapper_field (type, i))
7276 {
7277 disp = 0;
7278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7279 0, 1, &disp);
7280 if (t != NULL)
7281 {
7282 if (dispp != NULL)
7283 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7284 return t;
7285 }
7286 }
7287
7288 else if (ada_is_variant_part (type, i))
7289 {
7290 int j;
7291 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7292 i));
7293
7294 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7295 {
7296 /* FIXME pnh 2008/01/26: We check for a field that is
7297 NOT wrapped in a struct, since the compiler sometimes
7298 generates these for unchecked variant types. Revisit
7299 if the compiler changes this practice. */
7300 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7301 disp = 0;
7302 if (v_field_name != NULL
7303 && field_name_match (v_field_name, name))
7304 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7305 else
7306 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7307 j),
7308 name, 0, 1, &disp);
7309
7310 if (t != NULL)
7311 {
7312 if (dispp != NULL)
7313 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7314 return t;
7315 }
7316 }
7317 }
7318
7319 }
7320
7321 BadName:
7322 if (!noerr)
7323 {
7324 target_terminal_ours ();
7325 gdb_flush (gdb_stdout);
7326 if (name == NULL)
7327 {
7328 /* XXX: type_sprint */
7329 fprintf_unfiltered (gdb_stderr, _("Type "));
7330 type_print (type, "", gdb_stderr, -1);
7331 error (_(" has no component named <null>"));
7332 }
7333 else
7334 {
7335 /* XXX: type_sprint */
7336 fprintf_unfiltered (gdb_stderr, _("Type "));
7337 type_print (type, "", gdb_stderr, -1);
7338 error (_(" has no component named %s"), name);
7339 }
7340 }
7341
7342 return NULL;
7343 }
7344
7345 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7346 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7347 represents an unchecked union (that is, the variant part of a
7348 record that is named in an Unchecked_Union pragma). */
7349
7350 static int
7351 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7352 {
7353 char *discrim_name = ada_variant_discrim_name (var_type);
7354
7355 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7356 == NULL);
7357 }
7358
7359
7360 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7361 within a value of type OUTER_TYPE that is stored in GDB at
7362 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7363 numbering from 0) is applicable. Returns -1 if none are. */
7364
7365 int
7366 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7367 const gdb_byte *outer_valaddr)
7368 {
7369 int others_clause;
7370 int i;
7371 char *discrim_name = ada_variant_discrim_name (var_type);
7372 struct value *outer;
7373 struct value *discrim;
7374 LONGEST discrim_val;
7375
7376 /* Using plain value_from_contents_and_address here causes problems
7377 because we will end up trying to resolve a type that is currently
7378 being constructed. */
7379 outer = value_from_contents_and_address_unresolved (outer_type,
7380 outer_valaddr, 0);
7381 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7382 if (discrim == NULL)
7383 return -1;
7384 discrim_val = value_as_long (discrim);
7385
7386 others_clause = -1;
7387 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7388 {
7389 if (ada_is_others_clause (var_type, i))
7390 others_clause = i;
7391 else if (ada_in_variant (discrim_val, var_type, i))
7392 return i;
7393 }
7394
7395 return others_clause;
7396 }
7397 \f
7398
7399
7400 /* Dynamic-Sized Records */
7401
7402 /* Strategy: The type ostensibly attached to a value with dynamic size
7403 (i.e., a size that is not statically recorded in the debugging
7404 data) does not accurately reflect the size or layout of the value.
7405 Our strategy is to convert these values to values with accurate,
7406 conventional types that are constructed on the fly. */
7407
7408 /* There is a subtle and tricky problem here. In general, we cannot
7409 determine the size of dynamic records without its data. However,
7410 the 'struct value' data structure, which GDB uses to represent
7411 quantities in the inferior process (the target), requires the size
7412 of the type at the time of its allocation in order to reserve space
7413 for GDB's internal copy of the data. That's why the
7414 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7415 rather than struct value*s.
7416
7417 However, GDB's internal history variables ($1, $2, etc.) are
7418 struct value*s containing internal copies of the data that are not, in
7419 general, the same as the data at their corresponding addresses in
7420 the target. Fortunately, the types we give to these values are all
7421 conventional, fixed-size types (as per the strategy described
7422 above), so that we don't usually have to perform the
7423 'to_fixed_xxx_type' conversions to look at their values.
7424 Unfortunately, there is one exception: if one of the internal
7425 history variables is an array whose elements are unconstrained
7426 records, then we will need to create distinct fixed types for each
7427 element selected. */
7428
7429 /* The upshot of all of this is that many routines take a (type, host
7430 address, target address) triple as arguments to represent a value.
7431 The host address, if non-null, is supposed to contain an internal
7432 copy of the relevant data; otherwise, the program is to consult the
7433 target at the target address. */
7434
7435 /* Assuming that VAL0 represents a pointer value, the result of
7436 dereferencing it. Differs from value_ind in its treatment of
7437 dynamic-sized types. */
7438
7439 struct value *
7440 ada_value_ind (struct value *val0)
7441 {
7442 struct value *val = value_ind (val0);
7443
7444 if (ada_is_tagged_type (value_type (val), 0))
7445 val = ada_tag_value_at_base_address (val);
7446
7447 return ada_to_fixed_value (val);
7448 }
7449
7450 /* The value resulting from dereferencing any "reference to"
7451 qualifiers on VAL0. */
7452
7453 static struct value *
7454 ada_coerce_ref (struct value *val0)
7455 {
7456 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7457 {
7458 struct value *val = val0;
7459
7460 val = coerce_ref (val);
7461
7462 if (ada_is_tagged_type (value_type (val), 0))
7463 val = ada_tag_value_at_base_address (val);
7464
7465 return ada_to_fixed_value (val);
7466 }
7467 else
7468 return val0;
7469 }
7470
7471 /* Return OFF rounded upward if necessary to a multiple of
7472 ALIGNMENT (a power of 2). */
7473
7474 static unsigned int
7475 align_value (unsigned int off, unsigned int alignment)
7476 {
7477 return (off + alignment - 1) & ~(alignment - 1);
7478 }
7479
7480 /* Return the bit alignment required for field #F of template type TYPE. */
7481
7482 static unsigned int
7483 field_alignment (struct type *type, int f)
7484 {
7485 const char *name = TYPE_FIELD_NAME (type, f);
7486 int len;
7487 int align_offset;
7488
7489 /* The field name should never be null, unless the debugging information
7490 is somehow malformed. In this case, we assume the field does not
7491 require any alignment. */
7492 if (name == NULL)
7493 return 1;
7494
7495 len = strlen (name);
7496
7497 if (!isdigit (name[len - 1]))
7498 return 1;
7499
7500 if (isdigit (name[len - 2]))
7501 align_offset = len - 2;
7502 else
7503 align_offset = len - 1;
7504
7505 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7506 return TARGET_CHAR_BIT;
7507
7508 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7509 }
7510
7511 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7512
7513 static struct symbol *
7514 ada_find_any_type_symbol (const char *name)
7515 {
7516 struct symbol *sym;
7517
7518 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7519 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7520 return sym;
7521
7522 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7523 return sym;
7524 }
7525
7526 /* Find a type named NAME. Ignores ambiguity. This routine will look
7527 solely for types defined by debug info, it will not search the GDB
7528 primitive types. */
7529
7530 static struct type *
7531 ada_find_any_type (const char *name)
7532 {
7533 struct symbol *sym = ada_find_any_type_symbol (name);
7534
7535 if (sym != NULL)
7536 return SYMBOL_TYPE (sym);
7537
7538 return NULL;
7539 }
7540
7541 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7542 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7543 symbol, in which case it is returned. Otherwise, this looks for
7544 symbols whose name is that of NAME_SYM suffixed with "___XR".
7545 Return symbol if found, and NULL otherwise. */
7546
7547 struct symbol *
7548 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7549 {
7550 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7551 struct symbol *sym;
7552
7553 if (strstr (name, "___XR") != NULL)
7554 return name_sym;
7555
7556 sym = find_old_style_renaming_symbol (name, block);
7557
7558 if (sym != NULL)
7559 return sym;
7560
7561 /* Not right yet. FIXME pnh 7/20/2007. */
7562 sym = ada_find_any_type_symbol (name);
7563 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7564 return sym;
7565 else
7566 return NULL;
7567 }
7568
7569 static struct symbol *
7570 find_old_style_renaming_symbol (const char *name, const struct block *block)
7571 {
7572 const struct symbol *function_sym = block_linkage_function (block);
7573 char *rename;
7574
7575 if (function_sym != NULL)
7576 {
7577 /* If the symbol is defined inside a function, NAME is not fully
7578 qualified. This means we need to prepend the function name
7579 as well as adding the ``___XR'' suffix to build the name of
7580 the associated renaming symbol. */
7581 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7582 /* Function names sometimes contain suffixes used
7583 for instance to qualify nested subprograms. When building
7584 the XR type name, we need to make sure that this suffix is
7585 not included. So do not include any suffix in the function
7586 name length below. */
7587 int function_name_len = ada_name_prefix_len (function_name);
7588 const int rename_len = function_name_len + 2 /* "__" */
7589 + strlen (name) + 6 /* "___XR\0" */ ;
7590
7591 /* Strip the suffix if necessary. */
7592 ada_remove_trailing_digits (function_name, &function_name_len);
7593 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7594 ada_remove_Xbn_suffix (function_name, &function_name_len);
7595
7596 /* Library-level functions are a special case, as GNAT adds
7597 a ``_ada_'' prefix to the function name to avoid namespace
7598 pollution. However, the renaming symbols themselves do not
7599 have this prefix, so we need to skip this prefix if present. */
7600 if (function_name_len > 5 /* "_ada_" */
7601 && strstr (function_name, "_ada_") == function_name)
7602 {
7603 function_name += 5;
7604 function_name_len -= 5;
7605 }
7606
7607 rename = (char *) alloca (rename_len * sizeof (char));
7608 strncpy (rename, function_name, function_name_len);
7609 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7610 "__%s___XR", name);
7611 }
7612 else
7613 {
7614 const int rename_len = strlen (name) + 6;
7615
7616 rename = (char *) alloca (rename_len * sizeof (char));
7617 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7618 }
7619
7620 return ada_find_any_type_symbol (rename);
7621 }
7622
7623 /* Because of GNAT encoding conventions, several GDB symbols may match a
7624 given type name. If the type denoted by TYPE0 is to be preferred to
7625 that of TYPE1 for purposes of type printing, return non-zero;
7626 otherwise return 0. */
7627
7628 int
7629 ada_prefer_type (struct type *type0, struct type *type1)
7630 {
7631 if (type1 == NULL)
7632 return 1;
7633 else if (type0 == NULL)
7634 return 0;
7635 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7636 return 1;
7637 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7638 return 0;
7639 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7640 return 1;
7641 else if (ada_is_constrained_packed_array_type (type0))
7642 return 1;
7643 else if (ada_is_array_descriptor_type (type0)
7644 && !ada_is_array_descriptor_type (type1))
7645 return 1;
7646 else
7647 {
7648 const char *type0_name = type_name_no_tag (type0);
7649 const char *type1_name = type_name_no_tag (type1);
7650
7651 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7652 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7653 return 1;
7654 }
7655 return 0;
7656 }
7657
7658 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7659 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7660
7661 const char *
7662 ada_type_name (struct type *type)
7663 {
7664 if (type == NULL)
7665 return NULL;
7666 else if (TYPE_NAME (type) != NULL)
7667 return TYPE_NAME (type);
7668 else
7669 return TYPE_TAG_NAME (type);
7670 }
7671
7672 /* Search the list of "descriptive" types associated to TYPE for a type
7673 whose name is NAME. */
7674
7675 static struct type *
7676 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7677 {
7678 struct type *result;
7679
7680 if (ada_ignore_descriptive_types_p)
7681 return NULL;
7682
7683 /* If there no descriptive-type info, then there is no parallel type
7684 to be found. */
7685 if (!HAVE_GNAT_AUX_INFO (type))
7686 return NULL;
7687
7688 result = TYPE_DESCRIPTIVE_TYPE (type);
7689 while (result != NULL)
7690 {
7691 const char *result_name = ada_type_name (result);
7692
7693 if (result_name == NULL)
7694 {
7695 warning (_("unexpected null name on descriptive type"));
7696 return NULL;
7697 }
7698
7699 /* If the names match, stop. */
7700 if (strcmp (result_name, name) == 0)
7701 break;
7702
7703 /* Otherwise, look at the next item on the list, if any. */
7704 if (HAVE_GNAT_AUX_INFO (result))
7705 result = TYPE_DESCRIPTIVE_TYPE (result);
7706 else
7707 result = NULL;
7708 }
7709
7710 /* If we didn't find a match, see whether this is a packed array. With
7711 older compilers, the descriptive type information is either absent or
7712 irrelevant when it comes to packed arrays so the above lookup fails.
7713 Fall back to using a parallel lookup by name in this case. */
7714 if (result == NULL && ada_is_constrained_packed_array_type (type))
7715 return ada_find_any_type (name);
7716
7717 return result;
7718 }
7719
7720 /* Find a parallel type to TYPE with the specified NAME, using the
7721 descriptive type taken from the debugging information, if available,
7722 and otherwise using the (slower) name-based method. */
7723
7724 static struct type *
7725 ada_find_parallel_type_with_name (struct type *type, const char *name)
7726 {
7727 struct type *result = NULL;
7728
7729 if (HAVE_GNAT_AUX_INFO (type))
7730 result = find_parallel_type_by_descriptive_type (type, name);
7731 else
7732 result = ada_find_any_type (name);
7733
7734 return result;
7735 }
7736
7737 /* Same as above, but specify the name of the parallel type by appending
7738 SUFFIX to the name of TYPE. */
7739
7740 struct type *
7741 ada_find_parallel_type (struct type *type, const char *suffix)
7742 {
7743 char *name;
7744 const char *typename = ada_type_name (type);
7745 int len;
7746
7747 if (typename == NULL)
7748 return NULL;
7749
7750 len = strlen (typename);
7751
7752 name = (char *) alloca (len + strlen (suffix) + 1);
7753
7754 strcpy (name, typename);
7755 strcpy (name + len, suffix);
7756
7757 return ada_find_parallel_type_with_name (type, name);
7758 }
7759
7760 /* If TYPE is a variable-size record type, return the corresponding template
7761 type describing its fields. Otherwise, return NULL. */
7762
7763 static struct type *
7764 dynamic_template_type (struct type *type)
7765 {
7766 type = ada_check_typedef (type);
7767
7768 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7769 || ada_type_name (type) == NULL)
7770 return NULL;
7771 else
7772 {
7773 int len = strlen (ada_type_name (type));
7774
7775 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7776 return type;
7777 else
7778 return ada_find_parallel_type (type, "___XVE");
7779 }
7780 }
7781
7782 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7783 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7784
7785 static int
7786 is_dynamic_field (struct type *templ_type, int field_num)
7787 {
7788 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7789
7790 return name != NULL
7791 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7792 && strstr (name, "___XVL") != NULL;
7793 }
7794
7795 /* The index of the variant field of TYPE, or -1 if TYPE does not
7796 represent a variant record type. */
7797
7798 static int
7799 variant_field_index (struct type *type)
7800 {
7801 int f;
7802
7803 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7804 return -1;
7805
7806 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7807 {
7808 if (ada_is_variant_part (type, f))
7809 return f;
7810 }
7811 return -1;
7812 }
7813
7814 /* A record type with no fields. */
7815
7816 static struct type *
7817 empty_record (struct type *template)
7818 {
7819 struct type *type = alloc_type_copy (template);
7820
7821 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7822 TYPE_NFIELDS (type) = 0;
7823 TYPE_FIELDS (type) = NULL;
7824 INIT_CPLUS_SPECIFIC (type);
7825 TYPE_NAME (type) = "<empty>";
7826 TYPE_TAG_NAME (type) = NULL;
7827 TYPE_LENGTH (type) = 0;
7828 return type;
7829 }
7830
7831 /* An ordinary record type (with fixed-length fields) that describes
7832 the value of type TYPE at VALADDR or ADDRESS (see comments at
7833 the beginning of this section) VAL according to GNAT conventions.
7834 DVAL0 should describe the (portion of a) record that contains any
7835 necessary discriminants. It should be NULL if value_type (VAL) is
7836 an outer-level type (i.e., as opposed to a branch of a variant.) A
7837 variant field (unless unchecked) is replaced by a particular branch
7838 of the variant.
7839
7840 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7841 length are not statically known are discarded. As a consequence,
7842 VALADDR, ADDRESS and DVAL0 are ignored.
7843
7844 NOTE: Limitations: For now, we assume that dynamic fields and
7845 variants occupy whole numbers of bytes. However, they need not be
7846 byte-aligned. */
7847
7848 struct type *
7849 ada_template_to_fixed_record_type_1 (struct type *type,
7850 const gdb_byte *valaddr,
7851 CORE_ADDR address, struct value *dval0,
7852 int keep_dynamic_fields)
7853 {
7854 struct value *mark = value_mark ();
7855 struct value *dval;
7856 struct type *rtype;
7857 int nfields, bit_len;
7858 int variant_field;
7859 long off;
7860 int fld_bit_len;
7861 int f;
7862
7863 /* Compute the number of fields in this record type that are going
7864 to be processed: unless keep_dynamic_fields, this includes only
7865 fields whose position and length are static will be processed. */
7866 if (keep_dynamic_fields)
7867 nfields = TYPE_NFIELDS (type);
7868 else
7869 {
7870 nfields = 0;
7871 while (nfields < TYPE_NFIELDS (type)
7872 && !ada_is_variant_part (type, nfields)
7873 && !is_dynamic_field (type, nfields))
7874 nfields++;
7875 }
7876
7877 rtype = alloc_type_copy (type);
7878 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7879 INIT_CPLUS_SPECIFIC (rtype);
7880 TYPE_NFIELDS (rtype) = nfields;
7881 TYPE_FIELDS (rtype) = (struct field *)
7882 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7883 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7884 TYPE_NAME (rtype) = ada_type_name (type);
7885 TYPE_TAG_NAME (rtype) = NULL;
7886 TYPE_FIXED_INSTANCE (rtype) = 1;
7887
7888 off = 0;
7889 bit_len = 0;
7890 variant_field = -1;
7891
7892 for (f = 0; f < nfields; f += 1)
7893 {
7894 off = align_value (off, field_alignment (type, f))
7895 + TYPE_FIELD_BITPOS (type, f);
7896 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7897 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7898
7899 if (ada_is_variant_part (type, f))
7900 {
7901 variant_field = f;
7902 fld_bit_len = 0;
7903 }
7904 else if (is_dynamic_field (type, f))
7905 {
7906 const gdb_byte *field_valaddr = valaddr;
7907 CORE_ADDR field_address = address;
7908 struct type *field_type =
7909 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7910
7911 if (dval0 == NULL)
7912 {
7913 /* rtype's length is computed based on the run-time
7914 value of discriminants. If the discriminants are not
7915 initialized, the type size may be completely bogus and
7916 GDB may fail to allocate a value for it. So check the
7917 size first before creating the value. */
7918 ada_ensure_varsize_limit (rtype);
7919 /* Using plain value_from_contents_and_address here
7920 causes problems because we will end up trying to
7921 resolve a type that is currently being
7922 constructed. */
7923 dval = value_from_contents_and_address_unresolved (rtype,
7924 valaddr,
7925 address);
7926 rtype = value_type (dval);
7927 }
7928 else
7929 dval = dval0;
7930
7931 /* If the type referenced by this field is an aligner type, we need
7932 to unwrap that aligner type, because its size might not be set.
7933 Keeping the aligner type would cause us to compute the wrong
7934 size for this field, impacting the offset of the all the fields
7935 that follow this one. */
7936 if (ada_is_aligner_type (field_type))
7937 {
7938 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7939
7940 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7941 field_address = cond_offset_target (field_address, field_offset);
7942 field_type = ada_aligned_type (field_type);
7943 }
7944
7945 field_valaddr = cond_offset_host (field_valaddr,
7946 off / TARGET_CHAR_BIT);
7947 field_address = cond_offset_target (field_address,
7948 off / TARGET_CHAR_BIT);
7949
7950 /* Get the fixed type of the field. Note that, in this case,
7951 we do not want to get the real type out of the tag: if
7952 the current field is the parent part of a tagged record,
7953 we will get the tag of the object. Clearly wrong: the real
7954 type of the parent is not the real type of the child. We
7955 would end up in an infinite loop. */
7956 field_type = ada_get_base_type (field_type);
7957 field_type = ada_to_fixed_type (field_type, field_valaddr,
7958 field_address, dval, 0);
7959 /* If the field size is already larger than the maximum
7960 object size, then the record itself will necessarily
7961 be larger than the maximum object size. We need to make
7962 this check now, because the size might be so ridiculously
7963 large (due to an uninitialized variable in the inferior)
7964 that it would cause an overflow when adding it to the
7965 record size. */
7966 ada_ensure_varsize_limit (field_type);
7967
7968 TYPE_FIELD_TYPE (rtype, f) = field_type;
7969 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7970 /* The multiplication can potentially overflow. But because
7971 the field length has been size-checked just above, and
7972 assuming that the maximum size is a reasonable value,
7973 an overflow should not happen in practice. So rather than
7974 adding overflow recovery code to this already complex code,
7975 we just assume that it's not going to happen. */
7976 fld_bit_len =
7977 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7978 }
7979 else
7980 {
7981 /* Note: If this field's type is a typedef, it is important
7982 to preserve the typedef layer.
7983
7984 Otherwise, we might be transforming a typedef to a fat
7985 pointer (encoding a pointer to an unconstrained array),
7986 into a basic fat pointer (encoding an unconstrained
7987 array). As both types are implemented using the same
7988 structure, the typedef is the only clue which allows us
7989 to distinguish between the two options. Stripping it
7990 would prevent us from printing this field appropriately. */
7991 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7992 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7993 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7994 fld_bit_len =
7995 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7996 else
7997 {
7998 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7999
8000 /* We need to be careful of typedefs when computing
8001 the length of our field. If this is a typedef,
8002 get the length of the target type, not the length
8003 of the typedef. */
8004 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8005 field_type = ada_typedef_target_type (field_type);
8006
8007 fld_bit_len =
8008 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8009 }
8010 }
8011 if (off + fld_bit_len > bit_len)
8012 bit_len = off + fld_bit_len;
8013 off += fld_bit_len;
8014 TYPE_LENGTH (rtype) =
8015 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8016 }
8017
8018 /* We handle the variant part, if any, at the end because of certain
8019 odd cases in which it is re-ordered so as NOT to be the last field of
8020 the record. This can happen in the presence of representation
8021 clauses. */
8022 if (variant_field >= 0)
8023 {
8024 struct type *branch_type;
8025
8026 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8027
8028 if (dval0 == NULL)
8029 {
8030 /* Using plain value_from_contents_and_address here causes
8031 problems because we will end up trying to resolve a type
8032 that is currently being constructed. */
8033 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8034 address);
8035 rtype = value_type (dval);
8036 }
8037 else
8038 dval = dval0;
8039
8040 branch_type =
8041 to_fixed_variant_branch_type
8042 (TYPE_FIELD_TYPE (type, variant_field),
8043 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8044 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8045 if (branch_type == NULL)
8046 {
8047 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8048 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8049 TYPE_NFIELDS (rtype) -= 1;
8050 }
8051 else
8052 {
8053 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8054 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8055 fld_bit_len =
8056 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8057 TARGET_CHAR_BIT;
8058 if (off + fld_bit_len > bit_len)
8059 bit_len = off + fld_bit_len;
8060 TYPE_LENGTH (rtype) =
8061 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8062 }
8063 }
8064
8065 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8066 should contain the alignment of that record, which should be a strictly
8067 positive value. If null or negative, then something is wrong, most
8068 probably in the debug info. In that case, we don't round up the size
8069 of the resulting type. If this record is not part of another structure,
8070 the current RTYPE length might be good enough for our purposes. */
8071 if (TYPE_LENGTH (type) <= 0)
8072 {
8073 if (TYPE_NAME (rtype))
8074 warning (_("Invalid type size for `%s' detected: %d."),
8075 TYPE_NAME (rtype), TYPE_LENGTH (type));
8076 else
8077 warning (_("Invalid type size for <unnamed> detected: %d."),
8078 TYPE_LENGTH (type));
8079 }
8080 else
8081 {
8082 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8083 TYPE_LENGTH (type));
8084 }
8085
8086 value_free_to_mark (mark);
8087 if (TYPE_LENGTH (rtype) > varsize_limit)
8088 error (_("record type with dynamic size is larger than varsize-limit"));
8089 return rtype;
8090 }
8091
8092 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8093 of 1. */
8094
8095 static struct type *
8096 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8097 CORE_ADDR address, struct value *dval0)
8098 {
8099 return ada_template_to_fixed_record_type_1 (type, valaddr,
8100 address, dval0, 1);
8101 }
8102
8103 /* An ordinary record type in which ___XVL-convention fields and
8104 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8105 static approximations, containing all possible fields. Uses
8106 no runtime values. Useless for use in values, but that's OK,
8107 since the results are used only for type determinations. Works on both
8108 structs and unions. Representation note: to save space, we memorize
8109 the result of this function in the TYPE_TARGET_TYPE of the
8110 template type. */
8111
8112 static struct type *
8113 template_to_static_fixed_type (struct type *type0)
8114 {
8115 struct type *type;
8116 int nfields;
8117 int f;
8118
8119 if (TYPE_TARGET_TYPE (type0) != NULL)
8120 return TYPE_TARGET_TYPE (type0);
8121
8122 nfields = TYPE_NFIELDS (type0);
8123 type = type0;
8124
8125 for (f = 0; f < nfields; f += 1)
8126 {
8127 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8128 struct type *new_type;
8129
8130 if (is_dynamic_field (type0, f))
8131 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8132 else
8133 new_type = static_unwrap_type (field_type);
8134 if (type == type0 && new_type != field_type)
8135 {
8136 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8137 TYPE_CODE (type) = TYPE_CODE (type0);
8138 INIT_CPLUS_SPECIFIC (type);
8139 TYPE_NFIELDS (type) = nfields;
8140 TYPE_FIELDS (type) = (struct field *)
8141 TYPE_ALLOC (type, nfields * sizeof (struct field));
8142 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8143 sizeof (struct field) * nfields);
8144 TYPE_NAME (type) = ada_type_name (type0);
8145 TYPE_TAG_NAME (type) = NULL;
8146 TYPE_FIXED_INSTANCE (type) = 1;
8147 TYPE_LENGTH (type) = 0;
8148 }
8149 TYPE_FIELD_TYPE (type, f) = new_type;
8150 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8151 }
8152 return type;
8153 }
8154
8155 /* Given an object of type TYPE whose contents are at VALADDR and
8156 whose address in memory is ADDRESS, returns a revision of TYPE,
8157 which should be a non-dynamic-sized record, in which the variant
8158 part, if any, is replaced with the appropriate branch. Looks
8159 for discriminant values in DVAL0, which can be NULL if the record
8160 contains the necessary discriminant values. */
8161
8162 static struct type *
8163 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8164 CORE_ADDR address, struct value *dval0)
8165 {
8166 struct value *mark = value_mark ();
8167 struct value *dval;
8168 struct type *rtype;
8169 struct type *branch_type;
8170 int nfields = TYPE_NFIELDS (type);
8171 int variant_field = variant_field_index (type);
8172
8173 if (variant_field == -1)
8174 return type;
8175
8176 if (dval0 == NULL)
8177 {
8178 dval = value_from_contents_and_address (type, valaddr, address);
8179 type = value_type (dval);
8180 }
8181 else
8182 dval = dval0;
8183
8184 rtype = alloc_type_copy (type);
8185 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8186 INIT_CPLUS_SPECIFIC (rtype);
8187 TYPE_NFIELDS (rtype) = nfields;
8188 TYPE_FIELDS (rtype) =
8189 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8190 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8191 sizeof (struct field) * nfields);
8192 TYPE_NAME (rtype) = ada_type_name (type);
8193 TYPE_TAG_NAME (rtype) = NULL;
8194 TYPE_FIXED_INSTANCE (rtype) = 1;
8195 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8196
8197 branch_type = to_fixed_variant_branch_type
8198 (TYPE_FIELD_TYPE (type, variant_field),
8199 cond_offset_host (valaddr,
8200 TYPE_FIELD_BITPOS (type, variant_field)
8201 / TARGET_CHAR_BIT),
8202 cond_offset_target (address,
8203 TYPE_FIELD_BITPOS (type, variant_field)
8204 / TARGET_CHAR_BIT), dval);
8205 if (branch_type == NULL)
8206 {
8207 int f;
8208
8209 for (f = variant_field + 1; f < nfields; f += 1)
8210 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8211 TYPE_NFIELDS (rtype) -= 1;
8212 }
8213 else
8214 {
8215 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8216 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8217 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8218 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8219 }
8220 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8221
8222 value_free_to_mark (mark);
8223 return rtype;
8224 }
8225
8226 /* An ordinary record type (with fixed-length fields) that describes
8227 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8228 beginning of this section]. Any necessary discriminants' values
8229 should be in DVAL, a record value; it may be NULL if the object
8230 at ADDR itself contains any necessary discriminant values.
8231 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8232 values from the record are needed. Except in the case that DVAL,
8233 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8234 unchecked) is replaced by a particular branch of the variant.
8235
8236 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8237 is questionable and may be removed. It can arise during the
8238 processing of an unconstrained-array-of-record type where all the
8239 variant branches have exactly the same size. This is because in
8240 such cases, the compiler does not bother to use the XVS convention
8241 when encoding the record. I am currently dubious of this
8242 shortcut and suspect the compiler should be altered. FIXME. */
8243
8244 static struct type *
8245 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8246 CORE_ADDR address, struct value *dval)
8247 {
8248 struct type *templ_type;
8249
8250 if (TYPE_FIXED_INSTANCE (type0))
8251 return type0;
8252
8253 templ_type = dynamic_template_type (type0);
8254
8255 if (templ_type != NULL)
8256 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8257 else if (variant_field_index (type0) >= 0)
8258 {
8259 if (dval == NULL && valaddr == NULL && address == 0)
8260 return type0;
8261 return to_record_with_fixed_variant_part (type0, valaddr, address,
8262 dval);
8263 }
8264 else
8265 {
8266 TYPE_FIXED_INSTANCE (type0) = 1;
8267 return type0;
8268 }
8269
8270 }
8271
8272 /* An ordinary record type (with fixed-length fields) that describes
8273 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8274 union type. Any necessary discriminants' values should be in DVAL,
8275 a record value. That is, this routine selects the appropriate
8276 branch of the union at ADDR according to the discriminant value
8277 indicated in the union's type name. Returns VAR_TYPE0 itself if
8278 it represents a variant subject to a pragma Unchecked_Union. */
8279
8280 static struct type *
8281 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8282 CORE_ADDR address, struct value *dval)
8283 {
8284 int which;
8285 struct type *templ_type;
8286 struct type *var_type;
8287
8288 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8289 var_type = TYPE_TARGET_TYPE (var_type0);
8290 else
8291 var_type = var_type0;
8292
8293 templ_type = ada_find_parallel_type (var_type, "___XVU");
8294
8295 if (templ_type != NULL)
8296 var_type = templ_type;
8297
8298 if (is_unchecked_variant (var_type, value_type (dval)))
8299 return var_type0;
8300 which =
8301 ada_which_variant_applies (var_type,
8302 value_type (dval), value_contents (dval));
8303
8304 if (which < 0)
8305 return empty_record (var_type);
8306 else if (is_dynamic_field (var_type, which))
8307 return to_fixed_record_type
8308 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8309 valaddr, address, dval);
8310 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8311 return
8312 to_fixed_record_type
8313 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8314 else
8315 return TYPE_FIELD_TYPE (var_type, which);
8316 }
8317
8318 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8319 ENCODING_TYPE, a type following the GNAT conventions for discrete
8320 type encodings, only carries redundant information. */
8321
8322 static int
8323 ada_is_redundant_range_encoding (struct type *range_type,
8324 struct type *encoding_type)
8325 {
8326 struct type *fixed_range_type;
8327 char *bounds_str;
8328 int n;
8329 LONGEST lo, hi;
8330
8331 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8332
8333 if (TYPE_CODE (get_base_type (range_type))
8334 != TYPE_CODE (get_base_type (encoding_type)))
8335 {
8336 /* The compiler probably used a simple base type to describe
8337 the range type instead of the range's actual base type,
8338 expecting us to get the real base type from the encoding
8339 anyway. In this situation, the encoding cannot be ignored
8340 as redundant. */
8341 return 0;
8342 }
8343
8344 if (is_dynamic_type (range_type))
8345 return 0;
8346
8347 if (TYPE_NAME (encoding_type) == NULL)
8348 return 0;
8349
8350 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8351 if (bounds_str == NULL)
8352 return 0;
8353
8354 n = 8; /* Skip "___XDLU_". */
8355 if (!ada_scan_number (bounds_str, n, &lo, &n))
8356 return 0;
8357 if (TYPE_LOW_BOUND (range_type) != lo)
8358 return 0;
8359
8360 n += 2; /* Skip the "__" separator between the two bounds. */
8361 if (!ada_scan_number (bounds_str, n, &hi, &n))
8362 return 0;
8363 if (TYPE_HIGH_BOUND (range_type) != hi)
8364 return 0;
8365
8366 return 1;
8367 }
8368
8369 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8370 a type following the GNAT encoding for describing array type
8371 indices, only carries redundant information. */
8372
8373 static int
8374 ada_is_redundant_index_type_desc (struct type *array_type,
8375 struct type *desc_type)
8376 {
8377 struct type *this_layer = check_typedef (array_type);
8378 int i;
8379
8380 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8381 {
8382 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8383 TYPE_FIELD_TYPE (desc_type, i)))
8384 return 0;
8385 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8386 }
8387
8388 return 1;
8389 }
8390
8391 /* Assuming that TYPE0 is an array type describing the type of a value
8392 at ADDR, and that DVAL describes a record containing any
8393 discriminants used in TYPE0, returns a type for the value that
8394 contains no dynamic components (that is, no components whose sizes
8395 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8396 true, gives an error message if the resulting type's size is over
8397 varsize_limit. */
8398
8399 static struct type *
8400 to_fixed_array_type (struct type *type0, struct value *dval,
8401 int ignore_too_big)
8402 {
8403 struct type *index_type_desc;
8404 struct type *result;
8405 int constrained_packed_array_p;
8406
8407 type0 = ada_check_typedef (type0);
8408 if (TYPE_FIXED_INSTANCE (type0))
8409 return type0;
8410
8411 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8412 if (constrained_packed_array_p)
8413 type0 = decode_constrained_packed_array_type (type0);
8414
8415 index_type_desc = ada_find_parallel_type (type0, "___XA");
8416 ada_fixup_array_indexes_type (index_type_desc);
8417 if (index_type_desc != NULL
8418 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8419 {
8420 /* Ignore this ___XA parallel type, as it does not bring any
8421 useful information. This allows us to avoid creating fixed
8422 versions of the array's index types, which would be identical
8423 to the original ones. This, in turn, can also help avoid
8424 the creation of fixed versions of the array itself. */
8425 index_type_desc = NULL;
8426 }
8427
8428 if (index_type_desc == NULL)
8429 {
8430 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8431
8432 /* NOTE: elt_type---the fixed version of elt_type0---should never
8433 depend on the contents of the array in properly constructed
8434 debugging data. */
8435 /* Create a fixed version of the array element type.
8436 We're not providing the address of an element here,
8437 and thus the actual object value cannot be inspected to do
8438 the conversion. This should not be a problem, since arrays of
8439 unconstrained objects are not allowed. In particular, all
8440 the elements of an array of a tagged type should all be of
8441 the same type specified in the debugging info. No need to
8442 consult the object tag. */
8443 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8444
8445 /* Make sure we always create a new array type when dealing with
8446 packed array types, since we're going to fix-up the array
8447 type length and element bitsize a little further down. */
8448 if (elt_type0 == elt_type && !constrained_packed_array_p)
8449 result = type0;
8450 else
8451 result = create_array_type (alloc_type_copy (type0),
8452 elt_type, TYPE_INDEX_TYPE (type0));
8453 }
8454 else
8455 {
8456 int i;
8457 struct type *elt_type0;
8458
8459 elt_type0 = type0;
8460 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8461 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8462
8463 /* NOTE: result---the fixed version of elt_type0---should never
8464 depend on the contents of the array in properly constructed
8465 debugging data. */
8466 /* Create a fixed version of the array element type.
8467 We're not providing the address of an element here,
8468 and thus the actual object value cannot be inspected to do
8469 the conversion. This should not be a problem, since arrays of
8470 unconstrained objects are not allowed. In particular, all
8471 the elements of an array of a tagged type should all be of
8472 the same type specified in the debugging info. No need to
8473 consult the object tag. */
8474 result =
8475 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8476
8477 elt_type0 = type0;
8478 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8479 {
8480 struct type *range_type =
8481 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8482
8483 result = create_array_type (alloc_type_copy (elt_type0),
8484 result, range_type);
8485 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8486 }
8487 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8488 error (_("array type with dynamic size is larger than varsize-limit"));
8489 }
8490
8491 /* We want to preserve the type name. This can be useful when
8492 trying to get the type name of a value that has already been
8493 printed (for instance, if the user did "print VAR; whatis $". */
8494 TYPE_NAME (result) = TYPE_NAME (type0);
8495
8496 if (constrained_packed_array_p)
8497 {
8498 /* So far, the resulting type has been created as if the original
8499 type was a regular (non-packed) array type. As a result, the
8500 bitsize of the array elements needs to be set again, and the array
8501 length needs to be recomputed based on that bitsize. */
8502 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8503 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8504
8505 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8506 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8507 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8508 TYPE_LENGTH (result)++;
8509 }
8510
8511 TYPE_FIXED_INSTANCE (result) = 1;
8512 return result;
8513 }
8514
8515
8516 /* A standard type (containing no dynamically sized components)
8517 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8518 DVAL describes a record containing any discriminants used in TYPE0,
8519 and may be NULL if there are none, or if the object of type TYPE at
8520 ADDRESS or in VALADDR contains these discriminants.
8521
8522 If CHECK_TAG is not null, in the case of tagged types, this function
8523 attempts to locate the object's tag and use it to compute the actual
8524 type. However, when ADDRESS is null, we cannot use it to determine the
8525 location of the tag, and therefore compute the tagged type's actual type.
8526 So we return the tagged type without consulting the tag. */
8527
8528 static struct type *
8529 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8530 CORE_ADDR address, struct value *dval, int check_tag)
8531 {
8532 type = ada_check_typedef (type);
8533 switch (TYPE_CODE (type))
8534 {
8535 default:
8536 return type;
8537 case TYPE_CODE_STRUCT:
8538 {
8539 struct type *static_type = to_static_fixed_type (type);
8540 struct type *fixed_record_type =
8541 to_fixed_record_type (type, valaddr, address, NULL);
8542
8543 /* If STATIC_TYPE is a tagged type and we know the object's address,
8544 then we can determine its tag, and compute the object's actual
8545 type from there. Note that we have to use the fixed record
8546 type (the parent part of the record may have dynamic fields
8547 and the way the location of _tag is expressed may depend on
8548 them). */
8549
8550 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8551 {
8552 struct value *tag =
8553 value_tag_from_contents_and_address
8554 (fixed_record_type,
8555 valaddr,
8556 address);
8557 struct type *real_type = type_from_tag (tag);
8558 struct value *obj =
8559 value_from_contents_and_address (fixed_record_type,
8560 valaddr,
8561 address);
8562 fixed_record_type = value_type (obj);
8563 if (real_type != NULL)
8564 return to_fixed_record_type
8565 (real_type, NULL,
8566 value_address (ada_tag_value_at_base_address (obj)), NULL);
8567 }
8568
8569 /* Check to see if there is a parallel ___XVZ variable.
8570 If there is, then it provides the actual size of our type. */
8571 else if (ada_type_name (fixed_record_type) != NULL)
8572 {
8573 const char *name = ada_type_name (fixed_record_type);
8574 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8575 int xvz_found = 0;
8576 LONGEST size;
8577
8578 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8579 size = get_int_var_value (xvz_name, &xvz_found);
8580 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8581 {
8582 fixed_record_type = copy_type (fixed_record_type);
8583 TYPE_LENGTH (fixed_record_type) = size;
8584
8585 /* The FIXED_RECORD_TYPE may have be a stub. We have
8586 observed this when the debugging info is STABS, and
8587 apparently it is something that is hard to fix.
8588
8589 In practice, we don't need the actual type definition
8590 at all, because the presence of the XVZ variable allows us
8591 to assume that there must be a XVS type as well, which we
8592 should be able to use later, when we need the actual type
8593 definition.
8594
8595 In the meantime, pretend that the "fixed" type we are
8596 returning is NOT a stub, because this can cause trouble
8597 when using this type to create new types targeting it.
8598 Indeed, the associated creation routines often check
8599 whether the target type is a stub and will try to replace
8600 it, thus using a type with the wrong size. This, in turn,
8601 might cause the new type to have the wrong size too.
8602 Consider the case of an array, for instance, where the size
8603 of the array is computed from the number of elements in
8604 our array multiplied by the size of its element. */
8605 TYPE_STUB (fixed_record_type) = 0;
8606 }
8607 }
8608 return fixed_record_type;
8609 }
8610 case TYPE_CODE_ARRAY:
8611 return to_fixed_array_type (type, dval, 1);
8612 case TYPE_CODE_UNION:
8613 if (dval == NULL)
8614 return type;
8615 else
8616 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8617 }
8618 }
8619
8620 /* The same as ada_to_fixed_type_1, except that it preserves the type
8621 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8622
8623 The typedef layer needs be preserved in order to differentiate between
8624 arrays and array pointers when both types are implemented using the same
8625 fat pointer. In the array pointer case, the pointer is encoded as
8626 a typedef of the pointer type. For instance, considering:
8627
8628 type String_Access is access String;
8629 S1 : String_Access := null;
8630
8631 To the debugger, S1 is defined as a typedef of type String. But
8632 to the user, it is a pointer. So if the user tries to print S1,
8633 we should not dereference the array, but print the array address
8634 instead.
8635
8636 If we didn't preserve the typedef layer, we would lose the fact that
8637 the type is to be presented as a pointer (needs de-reference before
8638 being printed). And we would also use the source-level type name. */
8639
8640 struct type *
8641 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8642 CORE_ADDR address, struct value *dval, int check_tag)
8643
8644 {
8645 struct type *fixed_type =
8646 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8647
8648 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8649 then preserve the typedef layer.
8650
8651 Implementation note: We can only check the main-type portion of
8652 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8653 from TYPE now returns a type that has the same instance flags
8654 as TYPE. For instance, if TYPE is a "typedef const", and its
8655 target type is a "struct", then the typedef elimination will return
8656 a "const" version of the target type. See check_typedef for more
8657 details about how the typedef layer elimination is done.
8658
8659 brobecker/2010-11-19: It seems to me that the only case where it is
8660 useful to preserve the typedef layer is when dealing with fat pointers.
8661 Perhaps, we could add a check for that and preserve the typedef layer
8662 only in that situation. But this seems unecessary so far, probably
8663 because we call check_typedef/ada_check_typedef pretty much everywhere.
8664 */
8665 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8666 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8667 == TYPE_MAIN_TYPE (fixed_type)))
8668 return type;
8669
8670 return fixed_type;
8671 }
8672
8673 /* A standard (static-sized) type corresponding as well as possible to
8674 TYPE0, but based on no runtime data. */
8675
8676 static struct type *
8677 to_static_fixed_type (struct type *type0)
8678 {
8679 struct type *type;
8680
8681 if (type0 == NULL)
8682 return NULL;
8683
8684 if (TYPE_FIXED_INSTANCE (type0))
8685 return type0;
8686
8687 type0 = ada_check_typedef (type0);
8688
8689 switch (TYPE_CODE (type0))
8690 {
8691 default:
8692 return type0;
8693 case TYPE_CODE_STRUCT:
8694 type = dynamic_template_type (type0);
8695 if (type != NULL)
8696 return template_to_static_fixed_type (type);
8697 else
8698 return template_to_static_fixed_type (type0);
8699 case TYPE_CODE_UNION:
8700 type = ada_find_parallel_type (type0, "___XVU");
8701 if (type != NULL)
8702 return template_to_static_fixed_type (type);
8703 else
8704 return template_to_static_fixed_type (type0);
8705 }
8706 }
8707
8708 /* A static approximation of TYPE with all type wrappers removed. */
8709
8710 static struct type *
8711 static_unwrap_type (struct type *type)
8712 {
8713 if (ada_is_aligner_type (type))
8714 {
8715 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8716 if (ada_type_name (type1) == NULL)
8717 TYPE_NAME (type1) = ada_type_name (type);
8718
8719 return static_unwrap_type (type1);
8720 }
8721 else
8722 {
8723 struct type *raw_real_type = ada_get_base_type (type);
8724
8725 if (raw_real_type == type)
8726 return type;
8727 else
8728 return to_static_fixed_type (raw_real_type);
8729 }
8730 }
8731
8732 /* In some cases, incomplete and private types require
8733 cross-references that are not resolved as records (for example,
8734 type Foo;
8735 type FooP is access Foo;
8736 V: FooP;
8737 type Foo is array ...;
8738 ). In these cases, since there is no mechanism for producing
8739 cross-references to such types, we instead substitute for FooP a
8740 stub enumeration type that is nowhere resolved, and whose tag is
8741 the name of the actual type. Call these types "non-record stubs". */
8742
8743 /* A type equivalent to TYPE that is not a non-record stub, if one
8744 exists, otherwise TYPE. */
8745
8746 struct type *
8747 ada_check_typedef (struct type *type)
8748 {
8749 if (type == NULL)
8750 return NULL;
8751
8752 /* If our type is a typedef type of a fat pointer, then we're done.
8753 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8754 what allows us to distinguish between fat pointers that represent
8755 array types, and fat pointers that represent array access types
8756 (in both cases, the compiler implements them as fat pointers). */
8757 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8758 && is_thick_pntr (ada_typedef_target_type (type)))
8759 return type;
8760
8761 CHECK_TYPEDEF (type);
8762 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8763 || !TYPE_STUB (type)
8764 || TYPE_TAG_NAME (type) == NULL)
8765 return type;
8766 else
8767 {
8768 const char *name = TYPE_TAG_NAME (type);
8769 struct type *type1 = ada_find_any_type (name);
8770
8771 if (type1 == NULL)
8772 return type;
8773
8774 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8775 stubs pointing to arrays, as we don't create symbols for array
8776 types, only for the typedef-to-array types). If that's the case,
8777 strip the typedef layer. */
8778 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8779 type1 = ada_check_typedef (type1);
8780
8781 return type1;
8782 }
8783 }
8784
8785 /* A value representing the data at VALADDR/ADDRESS as described by
8786 type TYPE0, but with a standard (static-sized) type that correctly
8787 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8788 type, then return VAL0 [this feature is simply to avoid redundant
8789 creation of struct values]. */
8790
8791 static struct value *
8792 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8793 struct value *val0)
8794 {
8795 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8796
8797 if (type == type0 && val0 != NULL)
8798 return val0;
8799 else
8800 return value_from_contents_and_address (type, 0, address);
8801 }
8802
8803 /* A value representing VAL, but with a standard (static-sized) type
8804 that correctly describes it. Does not necessarily create a new
8805 value. */
8806
8807 struct value *
8808 ada_to_fixed_value (struct value *val)
8809 {
8810 val = unwrap_value (val);
8811 val = ada_to_fixed_value_create (value_type (val),
8812 value_address (val),
8813 val);
8814 return val;
8815 }
8816 \f
8817
8818 /* Attributes */
8819
8820 /* Table mapping attribute numbers to names.
8821 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8822
8823 static const char *attribute_names[] = {
8824 "<?>",
8825
8826 "first",
8827 "last",
8828 "length",
8829 "image",
8830 "max",
8831 "min",
8832 "modulus",
8833 "pos",
8834 "size",
8835 "tag",
8836 "val",
8837 0
8838 };
8839
8840 const char *
8841 ada_attribute_name (enum exp_opcode n)
8842 {
8843 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8844 return attribute_names[n - OP_ATR_FIRST + 1];
8845 else
8846 return attribute_names[0];
8847 }
8848
8849 /* Evaluate the 'POS attribute applied to ARG. */
8850
8851 static LONGEST
8852 pos_atr (struct value *arg)
8853 {
8854 struct value *val = coerce_ref (arg);
8855 struct type *type = value_type (val);
8856
8857 if (!discrete_type_p (type))
8858 error (_("'POS only defined on discrete types"));
8859
8860 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8861 {
8862 int i;
8863 LONGEST v = value_as_long (val);
8864
8865 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8866 {
8867 if (v == TYPE_FIELD_ENUMVAL (type, i))
8868 return i;
8869 }
8870 error (_("enumeration value is invalid: can't find 'POS"));
8871 }
8872 else
8873 return value_as_long (val);
8874 }
8875
8876 static struct value *
8877 value_pos_atr (struct type *type, struct value *arg)
8878 {
8879 return value_from_longest (type, pos_atr (arg));
8880 }
8881
8882 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8883
8884 static struct value *
8885 value_val_atr (struct type *type, struct value *arg)
8886 {
8887 if (!discrete_type_p (type))
8888 error (_("'VAL only defined on discrete types"));
8889 if (!integer_type_p (value_type (arg)))
8890 error (_("'VAL requires integral argument"));
8891
8892 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8893 {
8894 long pos = value_as_long (arg);
8895
8896 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8897 error (_("argument to 'VAL out of range"));
8898 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8899 }
8900 else
8901 return value_from_longest (type, value_as_long (arg));
8902 }
8903 \f
8904
8905 /* Evaluation */
8906
8907 /* True if TYPE appears to be an Ada character type.
8908 [At the moment, this is true only for Character and Wide_Character;
8909 It is a heuristic test that could stand improvement]. */
8910
8911 int
8912 ada_is_character_type (struct type *type)
8913 {
8914 const char *name;
8915
8916 /* If the type code says it's a character, then assume it really is,
8917 and don't check any further. */
8918 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8919 return 1;
8920
8921 /* Otherwise, assume it's a character type iff it is a discrete type
8922 with a known character type name. */
8923 name = ada_type_name (type);
8924 return (name != NULL
8925 && (TYPE_CODE (type) == TYPE_CODE_INT
8926 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8927 && (strcmp (name, "character") == 0
8928 || strcmp (name, "wide_character") == 0
8929 || strcmp (name, "wide_wide_character") == 0
8930 || strcmp (name, "unsigned char") == 0));
8931 }
8932
8933 /* True if TYPE appears to be an Ada string type. */
8934
8935 int
8936 ada_is_string_type (struct type *type)
8937 {
8938 type = ada_check_typedef (type);
8939 if (type != NULL
8940 && TYPE_CODE (type) != TYPE_CODE_PTR
8941 && (ada_is_simple_array_type (type)
8942 || ada_is_array_descriptor_type (type))
8943 && ada_array_arity (type) == 1)
8944 {
8945 struct type *elttype = ada_array_element_type (type, 1);
8946
8947 return ada_is_character_type (elttype);
8948 }
8949 else
8950 return 0;
8951 }
8952
8953 /* The compiler sometimes provides a parallel XVS type for a given
8954 PAD type. Normally, it is safe to follow the PAD type directly,
8955 but older versions of the compiler have a bug that causes the offset
8956 of its "F" field to be wrong. Following that field in that case
8957 would lead to incorrect results, but this can be worked around
8958 by ignoring the PAD type and using the associated XVS type instead.
8959
8960 Set to True if the debugger should trust the contents of PAD types.
8961 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8962 static int trust_pad_over_xvs = 1;
8963
8964 /* True if TYPE is a struct type introduced by the compiler to force the
8965 alignment of a value. Such types have a single field with a
8966 distinctive name. */
8967
8968 int
8969 ada_is_aligner_type (struct type *type)
8970 {
8971 type = ada_check_typedef (type);
8972
8973 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8974 return 0;
8975
8976 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8977 && TYPE_NFIELDS (type) == 1
8978 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8979 }
8980
8981 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8982 the parallel type. */
8983
8984 struct type *
8985 ada_get_base_type (struct type *raw_type)
8986 {
8987 struct type *real_type_namer;
8988 struct type *raw_real_type;
8989
8990 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8991 return raw_type;
8992
8993 if (ada_is_aligner_type (raw_type))
8994 /* The encoding specifies that we should always use the aligner type.
8995 So, even if this aligner type has an associated XVS type, we should
8996 simply ignore it.
8997
8998 According to the compiler gurus, an XVS type parallel to an aligner
8999 type may exist because of a stabs limitation. In stabs, aligner
9000 types are empty because the field has a variable-sized type, and
9001 thus cannot actually be used as an aligner type. As a result,
9002 we need the associated parallel XVS type to decode the type.
9003 Since the policy in the compiler is to not change the internal
9004 representation based on the debugging info format, we sometimes
9005 end up having a redundant XVS type parallel to the aligner type. */
9006 return raw_type;
9007
9008 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9009 if (real_type_namer == NULL
9010 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9011 || TYPE_NFIELDS (real_type_namer) != 1)
9012 return raw_type;
9013
9014 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9015 {
9016 /* This is an older encoding form where the base type needs to be
9017 looked up by name. We prefer the newer enconding because it is
9018 more efficient. */
9019 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9020 if (raw_real_type == NULL)
9021 return raw_type;
9022 else
9023 return raw_real_type;
9024 }
9025
9026 /* The field in our XVS type is a reference to the base type. */
9027 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9028 }
9029
9030 /* The type of value designated by TYPE, with all aligners removed. */
9031
9032 struct type *
9033 ada_aligned_type (struct type *type)
9034 {
9035 if (ada_is_aligner_type (type))
9036 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9037 else
9038 return ada_get_base_type (type);
9039 }
9040
9041
9042 /* The address of the aligned value in an object at address VALADDR
9043 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9044
9045 const gdb_byte *
9046 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9047 {
9048 if (ada_is_aligner_type (type))
9049 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9050 valaddr +
9051 TYPE_FIELD_BITPOS (type,
9052 0) / TARGET_CHAR_BIT);
9053 else
9054 return valaddr;
9055 }
9056
9057
9058
9059 /* The printed representation of an enumeration literal with encoded
9060 name NAME. The value is good to the next call of ada_enum_name. */
9061 const char *
9062 ada_enum_name (const char *name)
9063 {
9064 static char *result;
9065 static size_t result_len = 0;
9066 char *tmp;
9067
9068 /* First, unqualify the enumeration name:
9069 1. Search for the last '.' character. If we find one, then skip
9070 all the preceding characters, the unqualified name starts
9071 right after that dot.
9072 2. Otherwise, we may be debugging on a target where the compiler
9073 translates dots into "__". Search forward for double underscores,
9074 but stop searching when we hit an overloading suffix, which is
9075 of the form "__" followed by digits. */
9076
9077 tmp = strrchr (name, '.');
9078 if (tmp != NULL)
9079 name = tmp + 1;
9080 else
9081 {
9082 while ((tmp = strstr (name, "__")) != NULL)
9083 {
9084 if (isdigit (tmp[2]))
9085 break;
9086 else
9087 name = tmp + 2;
9088 }
9089 }
9090
9091 if (name[0] == 'Q')
9092 {
9093 int v;
9094
9095 if (name[1] == 'U' || name[1] == 'W')
9096 {
9097 if (sscanf (name + 2, "%x", &v) != 1)
9098 return name;
9099 }
9100 else
9101 return name;
9102
9103 GROW_VECT (result, result_len, 16);
9104 if (isascii (v) && isprint (v))
9105 xsnprintf (result, result_len, "'%c'", v);
9106 else if (name[1] == 'U')
9107 xsnprintf (result, result_len, "[\"%02x\"]", v);
9108 else
9109 xsnprintf (result, result_len, "[\"%04x\"]", v);
9110
9111 return result;
9112 }
9113 else
9114 {
9115 tmp = strstr (name, "__");
9116 if (tmp == NULL)
9117 tmp = strstr (name, "$");
9118 if (tmp != NULL)
9119 {
9120 GROW_VECT (result, result_len, tmp - name + 1);
9121 strncpy (result, name, tmp - name);
9122 result[tmp - name] = '\0';
9123 return result;
9124 }
9125
9126 return name;
9127 }
9128 }
9129
9130 /* Evaluate the subexpression of EXP starting at *POS as for
9131 evaluate_type, updating *POS to point just past the evaluated
9132 expression. */
9133
9134 static struct value *
9135 evaluate_subexp_type (struct expression *exp, int *pos)
9136 {
9137 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9138 }
9139
9140 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9141 value it wraps. */
9142
9143 static struct value *
9144 unwrap_value (struct value *val)
9145 {
9146 struct type *type = ada_check_typedef (value_type (val));
9147
9148 if (ada_is_aligner_type (type))
9149 {
9150 struct value *v = ada_value_struct_elt (val, "F", 0);
9151 struct type *val_type = ada_check_typedef (value_type (v));
9152
9153 if (ada_type_name (val_type) == NULL)
9154 TYPE_NAME (val_type) = ada_type_name (type);
9155
9156 return unwrap_value (v);
9157 }
9158 else
9159 {
9160 struct type *raw_real_type =
9161 ada_check_typedef (ada_get_base_type (type));
9162
9163 /* If there is no parallel XVS or XVE type, then the value is
9164 already unwrapped. Return it without further modification. */
9165 if ((type == raw_real_type)
9166 && ada_find_parallel_type (type, "___XVE") == NULL)
9167 return val;
9168
9169 return
9170 coerce_unspec_val_to_type
9171 (val, ada_to_fixed_type (raw_real_type, 0,
9172 value_address (val),
9173 NULL, 1));
9174 }
9175 }
9176
9177 static struct value *
9178 cast_to_fixed (struct type *type, struct value *arg)
9179 {
9180 LONGEST val;
9181
9182 if (type == value_type (arg))
9183 return arg;
9184 else if (ada_is_fixed_point_type (value_type (arg)))
9185 val = ada_float_to_fixed (type,
9186 ada_fixed_to_float (value_type (arg),
9187 value_as_long (arg)));
9188 else
9189 {
9190 DOUBLEST argd = value_as_double (arg);
9191
9192 val = ada_float_to_fixed (type, argd);
9193 }
9194
9195 return value_from_longest (type, val);
9196 }
9197
9198 static struct value *
9199 cast_from_fixed (struct type *type, struct value *arg)
9200 {
9201 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9202 value_as_long (arg));
9203
9204 return value_from_double (type, val);
9205 }
9206
9207 /* Given two array types T1 and T2, return nonzero iff both arrays
9208 contain the same number of elements. */
9209
9210 static int
9211 ada_same_array_size_p (struct type *t1, struct type *t2)
9212 {
9213 LONGEST lo1, hi1, lo2, hi2;
9214
9215 /* Get the array bounds in order to verify that the size of
9216 the two arrays match. */
9217 if (!get_array_bounds (t1, &lo1, &hi1)
9218 || !get_array_bounds (t2, &lo2, &hi2))
9219 error (_("unable to determine array bounds"));
9220
9221 /* To make things easier for size comparison, normalize a bit
9222 the case of empty arrays by making sure that the difference
9223 between upper bound and lower bound is always -1. */
9224 if (lo1 > hi1)
9225 hi1 = lo1 - 1;
9226 if (lo2 > hi2)
9227 hi2 = lo2 - 1;
9228
9229 return (hi1 - lo1 == hi2 - lo2);
9230 }
9231
9232 /* Assuming that VAL is an array of integrals, and TYPE represents
9233 an array with the same number of elements, but with wider integral
9234 elements, return an array "casted" to TYPE. In practice, this
9235 means that the returned array is built by casting each element
9236 of the original array into TYPE's (wider) element type. */
9237
9238 static struct value *
9239 ada_promote_array_of_integrals (struct type *type, struct value *val)
9240 {
9241 struct type *elt_type = TYPE_TARGET_TYPE (type);
9242 LONGEST lo, hi;
9243 struct value *res;
9244 LONGEST i;
9245
9246 /* Verify that both val and type are arrays of scalars, and
9247 that the size of val's elements is smaller than the size
9248 of type's element. */
9249 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9250 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9251 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9252 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9253 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9254 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9255
9256 if (!get_array_bounds (type, &lo, &hi))
9257 error (_("unable to determine array bounds"));
9258
9259 res = allocate_value (type);
9260
9261 /* Promote each array element. */
9262 for (i = 0; i < hi - lo + 1; i++)
9263 {
9264 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9265
9266 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9267 value_contents_all (elt), TYPE_LENGTH (elt_type));
9268 }
9269
9270 return res;
9271 }
9272
9273 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9274 return the converted value. */
9275
9276 static struct value *
9277 coerce_for_assign (struct type *type, struct value *val)
9278 {
9279 struct type *type2 = value_type (val);
9280
9281 if (type == type2)
9282 return val;
9283
9284 type2 = ada_check_typedef (type2);
9285 type = ada_check_typedef (type);
9286
9287 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9288 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9289 {
9290 val = ada_value_ind (val);
9291 type2 = value_type (val);
9292 }
9293
9294 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9295 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9296 {
9297 if (!ada_same_array_size_p (type, type2))
9298 error (_("cannot assign arrays of different length"));
9299
9300 if (is_integral_type (TYPE_TARGET_TYPE (type))
9301 && is_integral_type (TYPE_TARGET_TYPE (type2))
9302 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9303 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9304 {
9305 /* Allow implicit promotion of the array elements to
9306 a wider type. */
9307 return ada_promote_array_of_integrals (type, val);
9308 }
9309
9310 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9311 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9312 error (_("Incompatible types in assignment"));
9313 deprecated_set_value_type (val, type);
9314 }
9315 return val;
9316 }
9317
9318 static struct value *
9319 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9320 {
9321 struct value *val;
9322 struct type *type1, *type2;
9323 LONGEST v, v1, v2;
9324
9325 arg1 = coerce_ref (arg1);
9326 arg2 = coerce_ref (arg2);
9327 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9328 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9329
9330 if (TYPE_CODE (type1) != TYPE_CODE_INT
9331 || TYPE_CODE (type2) != TYPE_CODE_INT)
9332 return value_binop (arg1, arg2, op);
9333
9334 switch (op)
9335 {
9336 case BINOP_MOD:
9337 case BINOP_DIV:
9338 case BINOP_REM:
9339 break;
9340 default:
9341 return value_binop (arg1, arg2, op);
9342 }
9343
9344 v2 = value_as_long (arg2);
9345 if (v2 == 0)
9346 error (_("second operand of %s must not be zero."), op_string (op));
9347
9348 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9349 return value_binop (arg1, arg2, op);
9350
9351 v1 = value_as_long (arg1);
9352 switch (op)
9353 {
9354 case BINOP_DIV:
9355 v = v1 / v2;
9356 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9357 v += v > 0 ? -1 : 1;
9358 break;
9359 case BINOP_REM:
9360 v = v1 % v2;
9361 if (v * v1 < 0)
9362 v -= v2;
9363 break;
9364 default:
9365 /* Should not reach this point. */
9366 v = 0;
9367 }
9368
9369 val = allocate_value (type1);
9370 store_unsigned_integer (value_contents_raw (val),
9371 TYPE_LENGTH (value_type (val)),
9372 gdbarch_byte_order (get_type_arch (type1)), v);
9373 return val;
9374 }
9375
9376 static int
9377 ada_value_equal (struct value *arg1, struct value *arg2)
9378 {
9379 if (ada_is_direct_array_type (value_type (arg1))
9380 || ada_is_direct_array_type (value_type (arg2)))
9381 {
9382 /* Automatically dereference any array reference before
9383 we attempt to perform the comparison. */
9384 arg1 = ada_coerce_ref (arg1);
9385 arg2 = ada_coerce_ref (arg2);
9386
9387 arg1 = ada_coerce_to_simple_array (arg1);
9388 arg2 = ada_coerce_to_simple_array (arg2);
9389 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9390 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9391 error (_("Attempt to compare array with non-array"));
9392 /* FIXME: The following works only for types whose
9393 representations use all bits (no padding or undefined bits)
9394 and do not have user-defined equality. */
9395 return
9396 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9397 && memcmp (value_contents (arg1), value_contents (arg2),
9398 TYPE_LENGTH (value_type (arg1))) == 0;
9399 }
9400 return value_equal (arg1, arg2);
9401 }
9402
9403 /* Total number of component associations in the aggregate starting at
9404 index PC in EXP. Assumes that index PC is the start of an
9405 OP_AGGREGATE. */
9406
9407 static int
9408 num_component_specs (struct expression *exp, int pc)
9409 {
9410 int n, m, i;
9411
9412 m = exp->elts[pc + 1].longconst;
9413 pc += 3;
9414 n = 0;
9415 for (i = 0; i < m; i += 1)
9416 {
9417 switch (exp->elts[pc].opcode)
9418 {
9419 default:
9420 n += 1;
9421 break;
9422 case OP_CHOICES:
9423 n += exp->elts[pc + 1].longconst;
9424 break;
9425 }
9426 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9427 }
9428 return n;
9429 }
9430
9431 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9432 component of LHS (a simple array or a record), updating *POS past
9433 the expression, assuming that LHS is contained in CONTAINER. Does
9434 not modify the inferior's memory, nor does it modify LHS (unless
9435 LHS == CONTAINER). */
9436
9437 static void
9438 assign_component (struct value *container, struct value *lhs, LONGEST index,
9439 struct expression *exp, int *pos)
9440 {
9441 struct value *mark = value_mark ();
9442 struct value *elt;
9443
9444 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9445 {
9446 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9447 struct value *index_val = value_from_longest (index_type, index);
9448
9449 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9450 }
9451 else
9452 {
9453 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9454 elt = ada_to_fixed_value (elt);
9455 }
9456
9457 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9458 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9459 else
9460 value_assign_to_component (container, elt,
9461 ada_evaluate_subexp (NULL, exp, pos,
9462 EVAL_NORMAL));
9463
9464 value_free_to_mark (mark);
9465 }
9466
9467 /* Assuming that LHS represents an lvalue having a record or array
9468 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9469 of that aggregate's value to LHS, advancing *POS past the
9470 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9471 lvalue containing LHS (possibly LHS itself). Does not modify
9472 the inferior's memory, nor does it modify the contents of
9473 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9474
9475 static struct value *
9476 assign_aggregate (struct value *container,
9477 struct value *lhs, struct expression *exp,
9478 int *pos, enum noside noside)
9479 {
9480 struct type *lhs_type;
9481 int n = exp->elts[*pos+1].longconst;
9482 LONGEST low_index, high_index;
9483 int num_specs;
9484 LONGEST *indices;
9485 int max_indices, num_indices;
9486 int i;
9487
9488 *pos += 3;
9489 if (noside != EVAL_NORMAL)
9490 {
9491 for (i = 0; i < n; i += 1)
9492 ada_evaluate_subexp (NULL, exp, pos, noside);
9493 return container;
9494 }
9495
9496 container = ada_coerce_ref (container);
9497 if (ada_is_direct_array_type (value_type (container)))
9498 container = ada_coerce_to_simple_array (container);
9499 lhs = ada_coerce_ref (lhs);
9500 if (!deprecated_value_modifiable (lhs))
9501 error (_("Left operand of assignment is not a modifiable lvalue."));
9502
9503 lhs_type = value_type (lhs);
9504 if (ada_is_direct_array_type (lhs_type))
9505 {
9506 lhs = ada_coerce_to_simple_array (lhs);
9507 lhs_type = value_type (lhs);
9508 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9509 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9510 }
9511 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9512 {
9513 low_index = 0;
9514 high_index = num_visible_fields (lhs_type) - 1;
9515 }
9516 else
9517 error (_("Left-hand side must be array or record."));
9518
9519 num_specs = num_component_specs (exp, *pos - 3);
9520 max_indices = 4 * num_specs + 4;
9521 indices = alloca (max_indices * sizeof (indices[0]));
9522 indices[0] = indices[1] = low_index - 1;
9523 indices[2] = indices[3] = high_index + 1;
9524 num_indices = 4;
9525
9526 for (i = 0; i < n; i += 1)
9527 {
9528 switch (exp->elts[*pos].opcode)
9529 {
9530 case OP_CHOICES:
9531 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9532 &num_indices, max_indices,
9533 low_index, high_index);
9534 break;
9535 case OP_POSITIONAL:
9536 aggregate_assign_positional (container, lhs, exp, pos, indices,
9537 &num_indices, max_indices,
9538 low_index, high_index);
9539 break;
9540 case OP_OTHERS:
9541 if (i != n-1)
9542 error (_("Misplaced 'others' clause"));
9543 aggregate_assign_others (container, lhs, exp, pos, indices,
9544 num_indices, low_index, high_index);
9545 break;
9546 default:
9547 error (_("Internal error: bad aggregate clause"));
9548 }
9549 }
9550
9551 return container;
9552 }
9553
9554 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9555 construct at *POS, updating *POS past the construct, given that
9556 the positions are relative to lower bound LOW, where HIGH is the
9557 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9558 updating *NUM_INDICES as needed. CONTAINER is as for
9559 assign_aggregate. */
9560 static void
9561 aggregate_assign_positional (struct value *container,
9562 struct value *lhs, struct expression *exp,
9563 int *pos, LONGEST *indices, int *num_indices,
9564 int max_indices, LONGEST low, LONGEST high)
9565 {
9566 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9567
9568 if (ind - 1 == high)
9569 warning (_("Extra components in aggregate ignored."));
9570 if (ind <= high)
9571 {
9572 add_component_interval (ind, ind, indices, num_indices, max_indices);
9573 *pos += 3;
9574 assign_component (container, lhs, ind, exp, pos);
9575 }
9576 else
9577 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9578 }
9579
9580 /* Assign into the components of LHS indexed by the OP_CHOICES
9581 construct at *POS, updating *POS past the construct, given that
9582 the allowable indices are LOW..HIGH. Record the indices assigned
9583 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9584 needed. CONTAINER is as for assign_aggregate. */
9585 static void
9586 aggregate_assign_from_choices (struct value *container,
9587 struct value *lhs, struct expression *exp,
9588 int *pos, LONGEST *indices, int *num_indices,
9589 int max_indices, LONGEST low, LONGEST high)
9590 {
9591 int j;
9592 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9593 int choice_pos, expr_pc;
9594 int is_array = ada_is_direct_array_type (value_type (lhs));
9595
9596 choice_pos = *pos += 3;
9597
9598 for (j = 0; j < n_choices; j += 1)
9599 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9600 expr_pc = *pos;
9601 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9602
9603 for (j = 0; j < n_choices; j += 1)
9604 {
9605 LONGEST lower, upper;
9606 enum exp_opcode op = exp->elts[choice_pos].opcode;
9607
9608 if (op == OP_DISCRETE_RANGE)
9609 {
9610 choice_pos += 1;
9611 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9612 EVAL_NORMAL));
9613 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9614 EVAL_NORMAL));
9615 }
9616 else if (is_array)
9617 {
9618 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9619 EVAL_NORMAL));
9620 upper = lower;
9621 }
9622 else
9623 {
9624 int ind;
9625 const char *name;
9626
9627 switch (op)
9628 {
9629 case OP_NAME:
9630 name = &exp->elts[choice_pos + 2].string;
9631 break;
9632 case OP_VAR_VALUE:
9633 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9634 break;
9635 default:
9636 error (_("Invalid record component association."));
9637 }
9638 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9639 ind = 0;
9640 if (! find_struct_field (name, value_type (lhs), 0,
9641 NULL, NULL, NULL, NULL, &ind))
9642 error (_("Unknown component name: %s."), name);
9643 lower = upper = ind;
9644 }
9645
9646 if (lower <= upper && (lower < low || upper > high))
9647 error (_("Index in component association out of bounds."));
9648
9649 add_component_interval (lower, upper, indices, num_indices,
9650 max_indices);
9651 while (lower <= upper)
9652 {
9653 int pos1;
9654
9655 pos1 = expr_pc;
9656 assign_component (container, lhs, lower, exp, &pos1);
9657 lower += 1;
9658 }
9659 }
9660 }
9661
9662 /* Assign the value of the expression in the OP_OTHERS construct in
9663 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9664 have not been previously assigned. The index intervals already assigned
9665 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9666 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9667 static void
9668 aggregate_assign_others (struct value *container,
9669 struct value *lhs, struct expression *exp,
9670 int *pos, LONGEST *indices, int num_indices,
9671 LONGEST low, LONGEST high)
9672 {
9673 int i;
9674 int expr_pc = *pos + 1;
9675
9676 for (i = 0; i < num_indices - 2; i += 2)
9677 {
9678 LONGEST ind;
9679
9680 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9681 {
9682 int localpos;
9683
9684 localpos = expr_pc;
9685 assign_component (container, lhs, ind, exp, &localpos);
9686 }
9687 }
9688 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9689 }
9690
9691 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9692 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9693 modifying *SIZE as needed. It is an error if *SIZE exceeds
9694 MAX_SIZE. The resulting intervals do not overlap. */
9695 static void
9696 add_component_interval (LONGEST low, LONGEST high,
9697 LONGEST* indices, int *size, int max_size)
9698 {
9699 int i, j;
9700
9701 for (i = 0; i < *size; i += 2) {
9702 if (high >= indices[i] && low <= indices[i + 1])
9703 {
9704 int kh;
9705
9706 for (kh = i + 2; kh < *size; kh += 2)
9707 if (high < indices[kh])
9708 break;
9709 if (low < indices[i])
9710 indices[i] = low;
9711 indices[i + 1] = indices[kh - 1];
9712 if (high > indices[i + 1])
9713 indices[i + 1] = high;
9714 memcpy (indices + i + 2, indices + kh, *size - kh);
9715 *size -= kh - i - 2;
9716 return;
9717 }
9718 else if (high < indices[i])
9719 break;
9720 }
9721
9722 if (*size == max_size)
9723 error (_("Internal error: miscounted aggregate components."));
9724 *size += 2;
9725 for (j = *size-1; j >= i+2; j -= 1)
9726 indices[j] = indices[j - 2];
9727 indices[i] = low;
9728 indices[i + 1] = high;
9729 }
9730
9731 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9732 is different. */
9733
9734 static struct value *
9735 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9736 {
9737 if (type == ada_check_typedef (value_type (arg2)))
9738 return arg2;
9739
9740 if (ada_is_fixed_point_type (type))
9741 return (cast_to_fixed (type, arg2));
9742
9743 if (ada_is_fixed_point_type (value_type (arg2)))
9744 return cast_from_fixed (type, arg2);
9745
9746 return value_cast (type, arg2);
9747 }
9748
9749 /* Evaluating Ada expressions, and printing their result.
9750 ------------------------------------------------------
9751
9752 1. Introduction:
9753 ----------------
9754
9755 We usually evaluate an Ada expression in order to print its value.
9756 We also evaluate an expression in order to print its type, which
9757 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9758 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9759 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9760 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9761 similar.
9762
9763 Evaluating expressions is a little more complicated for Ada entities
9764 than it is for entities in languages such as C. The main reason for
9765 this is that Ada provides types whose definition might be dynamic.
9766 One example of such types is variant records. Or another example
9767 would be an array whose bounds can only be known at run time.
9768
9769 The following description is a general guide as to what should be
9770 done (and what should NOT be done) in order to evaluate an expression
9771 involving such types, and when. This does not cover how the semantic
9772 information is encoded by GNAT as this is covered separatly. For the
9773 document used as the reference for the GNAT encoding, see exp_dbug.ads
9774 in the GNAT sources.
9775
9776 Ideally, we should embed each part of this description next to its
9777 associated code. Unfortunately, the amount of code is so vast right
9778 now that it's hard to see whether the code handling a particular
9779 situation might be duplicated or not. One day, when the code is
9780 cleaned up, this guide might become redundant with the comments
9781 inserted in the code, and we might want to remove it.
9782
9783 2. ``Fixing'' an Entity, the Simple Case:
9784 -----------------------------------------
9785
9786 When evaluating Ada expressions, the tricky issue is that they may
9787 reference entities whose type contents and size are not statically
9788 known. Consider for instance a variant record:
9789
9790 type Rec (Empty : Boolean := True) is record
9791 case Empty is
9792 when True => null;
9793 when False => Value : Integer;
9794 end case;
9795 end record;
9796 Yes : Rec := (Empty => False, Value => 1);
9797 No : Rec := (empty => True);
9798
9799 The size and contents of that record depends on the value of the
9800 descriminant (Rec.Empty). At this point, neither the debugging
9801 information nor the associated type structure in GDB are able to
9802 express such dynamic types. So what the debugger does is to create
9803 "fixed" versions of the type that applies to the specific object.
9804 We also informally refer to this opperation as "fixing" an object,
9805 which means creating its associated fixed type.
9806
9807 Example: when printing the value of variable "Yes" above, its fixed
9808 type would look like this:
9809
9810 type Rec is record
9811 Empty : Boolean;
9812 Value : Integer;
9813 end record;
9814
9815 On the other hand, if we printed the value of "No", its fixed type
9816 would become:
9817
9818 type Rec is record
9819 Empty : Boolean;
9820 end record;
9821
9822 Things become a little more complicated when trying to fix an entity
9823 with a dynamic type that directly contains another dynamic type,
9824 such as an array of variant records, for instance. There are
9825 two possible cases: Arrays, and records.
9826
9827 3. ``Fixing'' Arrays:
9828 ---------------------
9829
9830 The type structure in GDB describes an array in terms of its bounds,
9831 and the type of its elements. By design, all elements in the array
9832 have the same type and we cannot represent an array of variant elements
9833 using the current type structure in GDB. When fixing an array,
9834 we cannot fix the array element, as we would potentially need one
9835 fixed type per element of the array. As a result, the best we can do
9836 when fixing an array is to produce an array whose bounds and size
9837 are correct (allowing us to read it from memory), but without having
9838 touched its element type. Fixing each element will be done later,
9839 when (if) necessary.
9840
9841 Arrays are a little simpler to handle than records, because the same
9842 amount of memory is allocated for each element of the array, even if
9843 the amount of space actually used by each element differs from element
9844 to element. Consider for instance the following array of type Rec:
9845
9846 type Rec_Array is array (1 .. 2) of Rec;
9847
9848 The actual amount of memory occupied by each element might be different
9849 from element to element, depending on the value of their discriminant.
9850 But the amount of space reserved for each element in the array remains
9851 fixed regardless. So we simply need to compute that size using
9852 the debugging information available, from which we can then determine
9853 the array size (we multiply the number of elements of the array by
9854 the size of each element).
9855
9856 The simplest case is when we have an array of a constrained element
9857 type. For instance, consider the following type declarations:
9858
9859 type Bounded_String (Max_Size : Integer) is
9860 Length : Integer;
9861 Buffer : String (1 .. Max_Size);
9862 end record;
9863 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9864
9865 In this case, the compiler describes the array as an array of
9866 variable-size elements (identified by its XVS suffix) for which
9867 the size can be read in the parallel XVZ variable.
9868
9869 In the case of an array of an unconstrained element type, the compiler
9870 wraps the array element inside a private PAD type. This type should not
9871 be shown to the user, and must be "unwrap"'ed before printing. Note
9872 that we also use the adjective "aligner" in our code to designate
9873 these wrapper types.
9874
9875 In some cases, the size allocated for each element is statically
9876 known. In that case, the PAD type already has the correct size,
9877 and the array element should remain unfixed.
9878
9879 But there are cases when this size is not statically known.
9880 For instance, assuming that "Five" is an integer variable:
9881
9882 type Dynamic is array (1 .. Five) of Integer;
9883 type Wrapper (Has_Length : Boolean := False) is record
9884 Data : Dynamic;
9885 case Has_Length is
9886 when True => Length : Integer;
9887 when False => null;
9888 end case;
9889 end record;
9890 type Wrapper_Array is array (1 .. 2) of Wrapper;
9891
9892 Hello : Wrapper_Array := (others => (Has_Length => True,
9893 Data => (others => 17),
9894 Length => 1));
9895
9896
9897 The debugging info would describe variable Hello as being an
9898 array of a PAD type. The size of that PAD type is not statically
9899 known, but can be determined using a parallel XVZ variable.
9900 In that case, a copy of the PAD type with the correct size should
9901 be used for the fixed array.
9902
9903 3. ``Fixing'' record type objects:
9904 ----------------------------------
9905
9906 Things are slightly different from arrays in the case of dynamic
9907 record types. In this case, in order to compute the associated
9908 fixed type, we need to determine the size and offset of each of
9909 its components. This, in turn, requires us to compute the fixed
9910 type of each of these components.
9911
9912 Consider for instance the example:
9913
9914 type Bounded_String (Max_Size : Natural) is record
9915 Str : String (1 .. Max_Size);
9916 Length : Natural;
9917 end record;
9918 My_String : Bounded_String (Max_Size => 10);
9919
9920 In that case, the position of field "Length" depends on the size
9921 of field Str, which itself depends on the value of the Max_Size
9922 discriminant. In order to fix the type of variable My_String,
9923 we need to fix the type of field Str. Therefore, fixing a variant
9924 record requires us to fix each of its components.
9925
9926 However, if a component does not have a dynamic size, the component
9927 should not be fixed. In particular, fields that use a PAD type
9928 should not fixed. Here is an example where this might happen
9929 (assuming type Rec above):
9930
9931 type Container (Big : Boolean) is record
9932 First : Rec;
9933 After : Integer;
9934 case Big is
9935 when True => Another : Integer;
9936 when False => null;
9937 end case;
9938 end record;
9939 My_Container : Container := (Big => False,
9940 First => (Empty => True),
9941 After => 42);
9942
9943 In that example, the compiler creates a PAD type for component First,
9944 whose size is constant, and then positions the component After just
9945 right after it. The offset of component After is therefore constant
9946 in this case.
9947
9948 The debugger computes the position of each field based on an algorithm
9949 that uses, among other things, the actual position and size of the field
9950 preceding it. Let's now imagine that the user is trying to print
9951 the value of My_Container. If the type fixing was recursive, we would
9952 end up computing the offset of field After based on the size of the
9953 fixed version of field First. And since in our example First has
9954 only one actual field, the size of the fixed type is actually smaller
9955 than the amount of space allocated to that field, and thus we would
9956 compute the wrong offset of field After.
9957
9958 To make things more complicated, we need to watch out for dynamic
9959 components of variant records (identified by the ___XVL suffix in
9960 the component name). Even if the target type is a PAD type, the size
9961 of that type might not be statically known. So the PAD type needs
9962 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9963 we might end up with the wrong size for our component. This can be
9964 observed with the following type declarations:
9965
9966 type Octal is new Integer range 0 .. 7;
9967 type Octal_Array is array (Positive range <>) of Octal;
9968 pragma Pack (Octal_Array);
9969
9970 type Octal_Buffer (Size : Positive) is record
9971 Buffer : Octal_Array (1 .. Size);
9972 Length : Integer;
9973 end record;
9974
9975 In that case, Buffer is a PAD type whose size is unset and needs
9976 to be computed by fixing the unwrapped type.
9977
9978 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9979 ----------------------------------------------------------
9980
9981 Lastly, when should the sub-elements of an entity that remained unfixed
9982 thus far, be actually fixed?
9983
9984 The answer is: Only when referencing that element. For instance
9985 when selecting one component of a record, this specific component
9986 should be fixed at that point in time. Or when printing the value
9987 of a record, each component should be fixed before its value gets
9988 printed. Similarly for arrays, the element of the array should be
9989 fixed when printing each element of the array, or when extracting
9990 one element out of that array. On the other hand, fixing should
9991 not be performed on the elements when taking a slice of an array!
9992
9993 Note that one of the side-effects of miscomputing the offset and
9994 size of each field is that we end up also miscomputing the size
9995 of the containing type. This can have adverse results when computing
9996 the value of an entity. GDB fetches the value of an entity based
9997 on the size of its type, and thus a wrong size causes GDB to fetch
9998 the wrong amount of memory. In the case where the computed size is
9999 too small, GDB fetches too little data to print the value of our
10000 entiry. Results in this case as unpredicatble, as we usually read
10001 past the buffer containing the data =:-o. */
10002
10003 /* Implement the evaluate_exp routine in the exp_descriptor structure
10004 for the Ada language. */
10005
10006 static struct value *
10007 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10008 int *pos, enum noside noside)
10009 {
10010 enum exp_opcode op;
10011 int tem;
10012 int pc;
10013 int preeval_pos;
10014 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10015 struct type *type;
10016 int nargs, oplen;
10017 struct value **argvec;
10018
10019 pc = *pos;
10020 *pos += 1;
10021 op = exp->elts[pc].opcode;
10022
10023 switch (op)
10024 {
10025 default:
10026 *pos -= 1;
10027 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10028
10029 if (noside == EVAL_NORMAL)
10030 arg1 = unwrap_value (arg1);
10031
10032 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10033 then we need to perform the conversion manually, because
10034 evaluate_subexp_standard doesn't do it. This conversion is
10035 necessary in Ada because the different kinds of float/fixed
10036 types in Ada have different representations.
10037
10038 Similarly, we need to perform the conversion from OP_LONG
10039 ourselves. */
10040 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10041 arg1 = ada_value_cast (expect_type, arg1, noside);
10042
10043 return arg1;
10044
10045 case OP_STRING:
10046 {
10047 struct value *result;
10048
10049 *pos -= 1;
10050 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10051 /* The result type will have code OP_STRING, bashed there from
10052 OP_ARRAY. Bash it back. */
10053 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10054 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10055 return result;
10056 }
10057
10058 case UNOP_CAST:
10059 (*pos) += 2;
10060 type = exp->elts[pc + 1].type;
10061 arg1 = evaluate_subexp (type, exp, pos, noside);
10062 if (noside == EVAL_SKIP)
10063 goto nosideret;
10064 arg1 = ada_value_cast (type, arg1, noside);
10065 return arg1;
10066
10067 case UNOP_QUAL:
10068 (*pos) += 2;
10069 type = exp->elts[pc + 1].type;
10070 return ada_evaluate_subexp (type, exp, pos, noside);
10071
10072 case BINOP_ASSIGN:
10073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10074 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10075 {
10076 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10077 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10078 return arg1;
10079 return ada_value_assign (arg1, arg1);
10080 }
10081 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10082 except if the lhs of our assignment is a convenience variable.
10083 In the case of assigning to a convenience variable, the lhs
10084 should be exactly the result of the evaluation of the rhs. */
10085 type = value_type (arg1);
10086 if (VALUE_LVAL (arg1) == lval_internalvar)
10087 type = NULL;
10088 arg2 = evaluate_subexp (type, exp, pos, noside);
10089 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10090 return arg1;
10091 if (ada_is_fixed_point_type (value_type (arg1)))
10092 arg2 = cast_to_fixed (value_type (arg1), arg2);
10093 else if (ada_is_fixed_point_type (value_type (arg2)))
10094 error
10095 (_("Fixed-point values must be assigned to fixed-point variables"));
10096 else
10097 arg2 = coerce_for_assign (value_type (arg1), arg2);
10098 return ada_value_assign (arg1, arg2);
10099
10100 case BINOP_ADD:
10101 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10102 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10103 if (noside == EVAL_SKIP)
10104 goto nosideret;
10105 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10106 return (value_from_longest
10107 (value_type (arg1),
10108 value_as_long (arg1) + value_as_long (arg2)));
10109 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10110 return (value_from_longest
10111 (value_type (arg2),
10112 value_as_long (arg1) + value_as_long (arg2)));
10113 if ((ada_is_fixed_point_type (value_type (arg1))
10114 || ada_is_fixed_point_type (value_type (arg2)))
10115 && value_type (arg1) != value_type (arg2))
10116 error (_("Operands of fixed-point addition must have the same type"));
10117 /* Do the addition, and cast the result to the type of the first
10118 argument. We cannot cast the result to a reference type, so if
10119 ARG1 is a reference type, find its underlying type. */
10120 type = value_type (arg1);
10121 while (TYPE_CODE (type) == TYPE_CODE_REF)
10122 type = TYPE_TARGET_TYPE (type);
10123 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10124 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10125
10126 case BINOP_SUB:
10127 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10128 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10129 if (noside == EVAL_SKIP)
10130 goto nosideret;
10131 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10132 return (value_from_longest
10133 (value_type (arg1),
10134 value_as_long (arg1) - value_as_long (arg2)));
10135 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10136 return (value_from_longest
10137 (value_type (arg2),
10138 value_as_long (arg1) - value_as_long (arg2)));
10139 if ((ada_is_fixed_point_type (value_type (arg1))
10140 || ada_is_fixed_point_type (value_type (arg2)))
10141 && value_type (arg1) != value_type (arg2))
10142 error (_("Operands of fixed-point subtraction "
10143 "must have the same type"));
10144 /* Do the substraction, and cast the result to the type of the first
10145 argument. We cannot cast the result to a reference type, so if
10146 ARG1 is a reference type, find its underlying type. */
10147 type = value_type (arg1);
10148 while (TYPE_CODE (type) == TYPE_CODE_REF)
10149 type = TYPE_TARGET_TYPE (type);
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10151 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10152
10153 case BINOP_MUL:
10154 case BINOP_DIV:
10155 case BINOP_REM:
10156 case BINOP_MOD:
10157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10159 if (noside == EVAL_SKIP)
10160 goto nosideret;
10161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10162 {
10163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10164 return value_zero (value_type (arg1), not_lval);
10165 }
10166 else
10167 {
10168 type = builtin_type (exp->gdbarch)->builtin_double;
10169 if (ada_is_fixed_point_type (value_type (arg1)))
10170 arg1 = cast_from_fixed (type, arg1);
10171 if (ada_is_fixed_point_type (value_type (arg2)))
10172 arg2 = cast_from_fixed (type, arg2);
10173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10174 return ada_value_binop (arg1, arg2, op);
10175 }
10176
10177 case BINOP_EQUAL:
10178 case BINOP_NOTEQUAL:
10179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10180 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10181 if (noside == EVAL_SKIP)
10182 goto nosideret;
10183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10184 tem = 0;
10185 else
10186 {
10187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10188 tem = ada_value_equal (arg1, arg2);
10189 }
10190 if (op == BINOP_NOTEQUAL)
10191 tem = !tem;
10192 type = language_bool_type (exp->language_defn, exp->gdbarch);
10193 return value_from_longest (type, (LONGEST) tem);
10194
10195 case UNOP_NEG:
10196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197 if (noside == EVAL_SKIP)
10198 goto nosideret;
10199 else if (ada_is_fixed_point_type (value_type (arg1)))
10200 return value_cast (value_type (arg1), value_neg (arg1));
10201 else
10202 {
10203 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10204 return value_neg (arg1);
10205 }
10206
10207 case BINOP_LOGICAL_AND:
10208 case BINOP_LOGICAL_OR:
10209 case UNOP_LOGICAL_NOT:
10210 {
10211 struct value *val;
10212
10213 *pos -= 1;
10214 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10215 type = language_bool_type (exp->language_defn, exp->gdbarch);
10216 return value_cast (type, val);
10217 }
10218
10219 case BINOP_BITWISE_AND:
10220 case BINOP_BITWISE_IOR:
10221 case BINOP_BITWISE_XOR:
10222 {
10223 struct value *val;
10224
10225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10226 *pos = pc;
10227 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10228
10229 return value_cast (value_type (arg1), val);
10230 }
10231
10232 case OP_VAR_VALUE:
10233 *pos -= 1;
10234
10235 if (noside == EVAL_SKIP)
10236 {
10237 *pos += 4;
10238 goto nosideret;
10239 }
10240
10241 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10242 /* Only encountered when an unresolved symbol occurs in a
10243 context other than a function call, in which case, it is
10244 invalid. */
10245 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10246 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10247
10248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10249 {
10250 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10251 /* Check to see if this is a tagged type. We also need to handle
10252 the case where the type is a reference to a tagged type, but
10253 we have to be careful to exclude pointers to tagged types.
10254 The latter should be shown as usual (as a pointer), whereas
10255 a reference should mostly be transparent to the user. */
10256 if (ada_is_tagged_type (type, 0)
10257 || (TYPE_CODE (type) == TYPE_CODE_REF
10258 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10259 {
10260 /* Tagged types are a little special in the fact that the real
10261 type is dynamic and can only be determined by inspecting the
10262 object's tag. This means that we need to get the object's
10263 value first (EVAL_NORMAL) and then extract the actual object
10264 type from its tag.
10265
10266 Note that we cannot skip the final step where we extract
10267 the object type from its tag, because the EVAL_NORMAL phase
10268 results in dynamic components being resolved into fixed ones.
10269 This can cause problems when trying to print the type
10270 description of tagged types whose parent has a dynamic size:
10271 We use the type name of the "_parent" component in order
10272 to print the name of the ancestor type in the type description.
10273 If that component had a dynamic size, the resolution into
10274 a fixed type would result in the loss of that type name,
10275 thus preventing us from printing the name of the ancestor
10276 type in the type description. */
10277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10278
10279 if (TYPE_CODE (type) != TYPE_CODE_REF)
10280 {
10281 struct type *actual_type;
10282
10283 actual_type = type_from_tag (ada_value_tag (arg1));
10284 if (actual_type == NULL)
10285 /* If, for some reason, we were unable to determine
10286 the actual type from the tag, then use the static
10287 approximation that we just computed as a fallback.
10288 This can happen if the debugging information is
10289 incomplete, for instance. */
10290 actual_type = type;
10291 return value_zero (actual_type, not_lval);
10292 }
10293 else
10294 {
10295 /* In the case of a ref, ada_coerce_ref takes care
10296 of determining the actual type. But the evaluation
10297 should return a ref as it should be valid to ask
10298 for its address; so rebuild a ref after coerce. */
10299 arg1 = ada_coerce_ref (arg1);
10300 return value_ref (arg1);
10301 }
10302 }
10303
10304 /* Records and unions for which GNAT encodings have been
10305 generated need to be statically fixed as well.
10306 Otherwise, non-static fixing produces a type where
10307 all dynamic properties are removed, which prevents "ptype"
10308 from being able to completely describe the type.
10309 For instance, a case statement in a variant record would be
10310 replaced by the relevant components based on the actual
10311 value of the discriminants. */
10312 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10313 && dynamic_template_type (type) != NULL)
10314 || (TYPE_CODE (type) == TYPE_CODE_UNION
10315 && ada_find_parallel_type (type, "___XVU") != NULL))
10316 {
10317 *pos += 4;
10318 return value_zero (to_static_fixed_type (type), not_lval);
10319 }
10320 }
10321
10322 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10323 return ada_to_fixed_value (arg1);
10324
10325 case OP_FUNCALL:
10326 (*pos) += 2;
10327
10328 /* Allocate arg vector, including space for the function to be
10329 called in argvec[0] and a terminating NULL. */
10330 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10331 argvec =
10332 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10333
10334 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10335 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10336 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10337 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10338 else
10339 {
10340 for (tem = 0; tem <= nargs; tem += 1)
10341 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10342 argvec[tem] = 0;
10343
10344 if (noside == EVAL_SKIP)
10345 goto nosideret;
10346 }
10347
10348 if (ada_is_constrained_packed_array_type
10349 (desc_base_type (value_type (argvec[0]))))
10350 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10351 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10352 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10353 /* This is a packed array that has already been fixed, and
10354 therefore already coerced to a simple array. Nothing further
10355 to do. */
10356 ;
10357 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10358 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10359 && VALUE_LVAL (argvec[0]) == lval_memory))
10360 argvec[0] = value_addr (argvec[0]);
10361
10362 type = ada_check_typedef (value_type (argvec[0]));
10363
10364 /* Ada allows us to implicitly dereference arrays when subscripting
10365 them. So, if this is an array typedef (encoding use for array
10366 access types encoded as fat pointers), strip it now. */
10367 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10368 type = ada_typedef_target_type (type);
10369
10370 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10371 {
10372 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10373 {
10374 case TYPE_CODE_FUNC:
10375 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10376 break;
10377 case TYPE_CODE_ARRAY:
10378 break;
10379 case TYPE_CODE_STRUCT:
10380 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10381 argvec[0] = ada_value_ind (argvec[0]);
10382 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10383 break;
10384 default:
10385 error (_("cannot subscript or call something of type `%s'"),
10386 ada_type_name (value_type (argvec[0])));
10387 break;
10388 }
10389 }
10390
10391 switch (TYPE_CODE (type))
10392 {
10393 case TYPE_CODE_FUNC:
10394 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10395 {
10396 struct type *rtype = TYPE_TARGET_TYPE (type);
10397
10398 if (TYPE_GNU_IFUNC (type))
10399 return allocate_value (TYPE_TARGET_TYPE (rtype));
10400 return allocate_value (rtype);
10401 }
10402 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10403 case TYPE_CODE_INTERNAL_FUNCTION:
10404 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10405 /* We don't know anything about what the internal
10406 function might return, but we have to return
10407 something. */
10408 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10409 not_lval);
10410 else
10411 return call_internal_function (exp->gdbarch, exp->language_defn,
10412 argvec[0], nargs, argvec + 1);
10413
10414 case TYPE_CODE_STRUCT:
10415 {
10416 int arity;
10417
10418 arity = ada_array_arity (type);
10419 type = ada_array_element_type (type, nargs);
10420 if (type == NULL)
10421 error (_("cannot subscript or call a record"));
10422 if (arity != nargs)
10423 error (_("wrong number of subscripts; expecting %d"), arity);
10424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10425 return value_zero (ada_aligned_type (type), lval_memory);
10426 return
10427 unwrap_value (ada_value_subscript
10428 (argvec[0], nargs, argvec + 1));
10429 }
10430 case TYPE_CODE_ARRAY:
10431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10432 {
10433 type = ada_array_element_type (type, nargs);
10434 if (type == NULL)
10435 error (_("element type of array unknown"));
10436 else
10437 return value_zero (ada_aligned_type (type), lval_memory);
10438 }
10439 return
10440 unwrap_value (ada_value_subscript
10441 (ada_coerce_to_simple_array (argvec[0]),
10442 nargs, argvec + 1));
10443 case TYPE_CODE_PTR: /* Pointer to array */
10444 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10445 {
10446 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10447 type = ada_array_element_type (type, nargs);
10448 if (type == NULL)
10449 error (_("element type of array unknown"));
10450 else
10451 return value_zero (ada_aligned_type (type), lval_memory);
10452 }
10453 return
10454 unwrap_value (ada_value_ptr_subscript (argvec[0],
10455 nargs, argvec + 1));
10456
10457 default:
10458 error (_("Attempt to index or call something other than an "
10459 "array or function"));
10460 }
10461
10462 case TERNOP_SLICE:
10463 {
10464 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10465 struct value *low_bound_val =
10466 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 struct value *high_bound_val =
10468 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 LONGEST low_bound;
10470 LONGEST high_bound;
10471
10472 low_bound_val = coerce_ref (low_bound_val);
10473 high_bound_val = coerce_ref (high_bound_val);
10474 low_bound = pos_atr (low_bound_val);
10475 high_bound = pos_atr (high_bound_val);
10476
10477 if (noside == EVAL_SKIP)
10478 goto nosideret;
10479
10480 /* If this is a reference to an aligner type, then remove all
10481 the aligners. */
10482 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10483 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10484 TYPE_TARGET_TYPE (value_type (array)) =
10485 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10486
10487 if (ada_is_constrained_packed_array_type (value_type (array)))
10488 error (_("cannot slice a packed array"));
10489
10490 /* If this is a reference to an array or an array lvalue,
10491 convert to a pointer. */
10492 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10493 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10494 && VALUE_LVAL (array) == lval_memory))
10495 array = value_addr (array);
10496
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS
10498 && ada_is_array_descriptor_type (ada_check_typedef
10499 (value_type (array))))
10500 return empty_array (ada_type_of_array (array, 0), low_bound);
10501
10502 array = ada_coerce_to_simple_array_ptr (array);
10503
10504 /* If we have more than one level of pointer indirection,
10505 dereference the value until we get only one level. */
10506 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10507 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10508 == TYPE_CODE_PTR))
10509 array = value_ind (array);
10510
10511 /* Make sure we really do have an array type before going further,
10512 to avoid a SEGV when trying to get the index type or the target
10513 type later down the road if the debug info generated by
10514 the compiler is incorrect or incomplete. */
10515 if (!ada_is_simple_array_type (value_type (array)))
10516 error (_("cannot take slice of non-array"));
10517
10518 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10519 == TYPE_CODE_PTR)
10520 {
10521 struct type *type0 = ada_check_typedef (value_type (array));
10522
10523 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10524 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10525 else
10526 {
10527 struct type *arr_type0 =
10528 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10529
10530 return ada_value_slice_from_ptr (array, arr_type0,
10531 longest_to_int (low_bound),
10532 longest_to_int (high_bound));
10533 }
10534 }
10535 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10536 return array;
10537 else if (high_bound < low_bound)
10538 return empty_array (value_type (array), low_bound);
10539 else
10540 return ada_value_slice (array, longest_to_int (low_bound),
10541 longest_to_int (high_bound));
10542 }
10543
10544 case UNOP_IN_RANGE:
10545 (*pos) += 2;
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 type = check_typedef (exp->elts[pc + 1].type);
10548
10549 if (noside == EVAL_SKIP)
10550 goto nosideret;
10551
10552 switch (TYPE_CODE (type))
10553 {
10554 default:
10555 lim_warning (_("Membership test incompletely implemented; "
10556 "always returns true"));
10557 type = language_bool_type (exp->language_defn, exp->gdbarch);
10558 return value_from_longest (type, (LONGEST) 1);
10559
10560 case TYPE_CODE_RANGE:
10561 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10562 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10563 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10565 type = language_bool_type (exp->language_defn, exp->gdbarch);
10566 return
10567 value_from_longest (type,
10568 (value_less (arg1, arg3)
10569 || value_equal (arg1, arg3))
10570 && (value_less (arg2, arg1)
10571 || value_equal (arg2, arg1)));
10572 }
10573
10574 case BINOP_IN_BOUNDS:
10575 (*pos) += 2;
10576 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10577 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10578
10579 if (noside == EVAL_SKIP)
10580 goto nosideret;
10581
10582 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10583 {
10584 type = language_bool_type (exp->language_defn, exp->gdbarch);
10585 return value_zero (type, not_lval);
10586 }
10587
10588 tem = longest_to_int (exp->elts[pc + 1].longconst);
10589
10590 type = ada_index_type (value_type (arg2), tem, "range");
10591 if (!type)
10592 type = value_type (arg1);
10593
10594 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10595 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10596
10597 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10598 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10599 type = language_bool_type (exp->language_defn, exp->gdbarch);
10600 return
10601 value_from_longest (type,
10602 (value_less (arg1, arg3)
10603 || value_equal (arg1, arg3))
10604 && (value_less (arg2, arg1)
10605 || value_equal (arg2, arg1)));
10606
10607 case TERNOP_IN_RANGE:
10608 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10609 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10610 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10611
10612 if (noside == EVAL_SKIP)
10613 goto nosideret;
10614
10615 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10617 type = language_bool_type (exp->language_defn, exp->gdbarch);
10618 return
10619 value_from_longest (type,
10620 (value_less (arg1, arg3)
10621 || value_equal (arg1, arg3))
10622 && (value_less (arg2, arg1)
10623 || value_equal (arg2, arg1)));
10624
10625 case OP_ATR_FIRST:
10626 case OP_ATR_LAST:
10627 case OP_ATR_LENGTH:
10628 {
10629 struct type *type_arg;
10630
10631 if (exp->elts[*pos].opcode == OP_TYPE)
10632 {
10633 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10634 arg1 = NULL;
10635 type_arg = check_typedef (exp->elts[pc + 2].type);
10636 }
10637 else
10638 {
10639 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10640 type_arg = NULL;
10641 }
10642
10643 if (exp->elts[*pos].opcode != OP_LONG)
10644 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10645 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10646 *pos += 4;
10647
10648 if (noside == EVAL_SKIP)
10649 goto nosideret;
10650
10651 if (type_arg == NULL)
10652 {
10653 arg1 = ada_coerce_ref (arg1);
10654
10655 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10656 arg1 = ada_coerce_to_simple_array (arg1);
10657
10658 if (op == OP_ATR_LENGTH)
10659 type = builtin_type (exp->gdbarch)->builtin_int;
10660 else
10661 {
10662 type = ada_index_type (value_type (arg1), tem,
10663 ada_attribute_name (op));
10664 if (type == NULL)
10665 type = builtin_type (exp->gdbarch)->builtin_int;
10666 }
10667
10668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return allocate_value (type);
10670
10671 switch (op)
10672 {
10673 default: /* Should never happen. */
10674 error (_("unexpected attribute encountered"));
10675 case OP_ATR_FIRST:
10676 return value_from_longest
10677 (type, ada_array_bound (arg1, tem, 0));
10678 case OP_ATR_LAST:
10679 return value_from_longest
10680 (type, ada_array_bound (arg1, tem, 1));
10681 case OP_ATR_LENGTH:
10682 return value_from_longest
10683 (type, ada_array_length (arg1, tem));
10684 }
10685 }
10686 else if (discrete_type_p (type_arg))
10687 {
10688 struct type *range_type;
10689 const char *name = ada_type_name (type_arg);
10690
10691 range_type = NULL;
10692 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10693 range_type = to_fixed_range_type (type_arg, NULL);
10694 if (range_type == NULL)
10695 range_type = type_arg;
10696 switch (op)
10697 {
10698 default:
10699 error (_("unexpected attribute encountered"));
10700 case OP_ATR_FIRST:
10701 return value_from_longest
10702 (range_type, ada_discrete_type_low_bound (range_type));
10703 case OP_ATR_LAST:
10704 return value_from_longest
10705 (range_type, ada_discrete_type_high_bound (range_type));
10706 case OP_ATR_LENGTH:
10707 error (_("the 'length attribute applies only to array types"));
10708 }
10709 }
10710 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10711 error (_("unimplemented type attribute"));
10712 else
10713 {
10714 LONGEST low, high;
10715
10716 if (ada_is_constrained_packed_array_type (type_arg))
10717 type_arg = decode_constrained_packed_array_type (type_arg);
10718
10719 if (op == OP_ATR_LENGTH)
10720 type = builtin_type (exp->gdbarch)->builtin_int;
10721 else
10722 {
10723 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10724 if (type == NULL)
10725 type = builtin_type (exp->gdbarch)->builtin_int;
10726 }
10727
10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 return allocate_value (type);
10730
10731 switch (op)
10732 {
10733 default:
10734 error (_("unexpected attribute encountered"));
10735 case OP_ATR_FIRST:
10736 low = ada_array_bound_from_type (type_arg, tem, 0);
10737 return value_from_longest (type, low);
10738 case OP_ATR_LAST:
10739 high = ada_array_bound_from_type (type_arg, tem, 1);
10740 return value_from_longest (type, high);
10741 case OP_ATR_LENGTH:
10742 low = ada_array_bound_from_type (type_arg, tem, 0);
10743 high = ada_array_bound_from_type (type_arg, tem, 1);
10744 return value_from_longest (type, high - low + 1);
10745 }
10746 }
10747 }
10748
10749 case OP_ATR_TAG:
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10751 if (noside == EVAL_SKIP)
10752 goto nosideret;
10753
10754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10755 return value_zero (ada_tag_type (arg1), not_lval);
10756
10757 return ada_value_tag (arg1);
10758
10759 case OP_ATR_MIN:
10760 case OP_ATR_MAX:
10761 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10763 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10764 if (noside == EVAL_SKIP)
10765 goto nosideret;
10766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 return value_zero (value_type (arg1), not_lval);
10768 else
10769 {
10770 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10771 return value_binop (arg1, arg2,
10772 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10773 }
10774
10775 case OP_ATR_MODULUS:
10776 {
10777 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10778
10779 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10780 if (noside == EVAL_SKIP)
10781 goto nosideret;
10782
10783 if (!ada_is_modular_type (type_arg))
10784 error (_("'modulus must be applied to modular type"));
10785
10786 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10787 ada_modulus (type_arg));
10788 }
10789
10790
10791 case OP_ATR_POS:
10792 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10794 if (noside == EVAL_SKIP)
10795 goto nosideret;
10796 type = builtin_type (exp->gdbarch)->builtin_int;
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 return value_zero (type, not_lval);
10799 else
10800 return value_pos_atr (type, arg1);
10801
10802 case OP_ATR_SIZE:
10803 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10804 type = value_type (arg1);
10805
10806 /* If the argument is a reference, then dereference its type, since
10807 the user is really asking for the size of the actual object,
10808 not the size of the pointer. */
10809 if (TYPE_CODE (type) == TYPE_CODE_REF)
10810 type = TYPE_TARGET_TYPE (type);
10811
10812 if (noside == EVAL_SKIP)
10813 goto nosideret;
10814 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10816 else
10817 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10818 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10819
10820 case OP_ATR_VAL:
10821 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10823 type = exp->elts[pc + 2].type;
10824 if (noside == EVAL_SKIP)
10825 goto nosideret;
10826 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10827 return value_zero (type, not_lval);
10828 else
10829 return value_val_atr (type, arg1);
10830
10831 case BINOP_EXP:
10832 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10833 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10834 if (noside == EVAL_SKIP)
10835 goto nosideret;
10836 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10837 return value_zero (value_type (arg1), not_lval);
10838 else
10839 {
10840 /* For integer exponentiation operations,
10841 only promote the first argument. */
10842 if (is_integral_type (value_type (arg2)))
10843 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10844 else
10845 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10846
10847 return value_binop (arg1, arg2, op);
10848 }
10849
10850 case UNOP_PLUS:
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854 else
10855 return arg1;
10856
10857 case UNOP_ABS:
10858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10859 if (noside == EVAL_SKIP)
10860 goto nosideret;
10861 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10862 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10863 return value_neg (arg1);
10864 else
10865 return arg1;
10866
10867 case UNOP_IND:
10868 preeval_pos = *pos;
10869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872 type = ada_check_typedef (value_type (arg1));
10873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10874 {
10875 if (ada_is_array_descriptor_type (type))
10876 /* GDB allows dereferencing GNAT array descriptors. */
10877 {
10878 struct type *arrType = ada_type_of_array (arg1, 0);
10879
10880 if (arrType == NULL)
10881 error (_("Attempt to dereference null array pointer."));
10882 return value_at_lazy (arrType, 0);
10883 }
10884 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10885 || TYPE_CODE (type) == TYPE_CODE_REF
10886 /* In C you can dereference an array to get the 1st elt. */
10887 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10888 {
10889 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10890 only be determined by inspecting the object's tag.
10891 This means that we need to evaluate completely the
10892 expression in order to get its type. */
10893
10894 if ((TYPE_CODE (type) == TYPE_CODE_REF
10895 || TYPE_CODE (type) == TYPE_CODE_PTR)
10896 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10897 {
10898 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10899 EVAL_NORMAL);
10900 type = value_type (ada_value_ind (arg1));
10901 }
10902 else
10903 {
10904 type = to_static_fixed_type
10905 (ada_aligned_type
10906 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10907 }
10908 ada_ensure_varsize_limit (type);
10909 return value_zero (type, lval_memory);
10910 }
10911 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10912 {
10913 /* GDB allows dereferencing an int. */
10914 if (expect_type == NULL)
10915 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10916 lval_memory);
10917 else
10918 {
10919 expect_type =
10920 to_static_fixed_type (ada_aligned_type (expect_type));
10921 return value_zero (expect_type, lval_memory);
10922 }
10923 }
10924 else
10925 error (_("Attempt to take contents of a non-pointer value."));
10926 }
10927 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10928 type = ada_check_typedef (value_type (arg1));
10929
10930 if (TYPE_CODE (type) == TYPE_CODE_INT)
10931 /* GDB allows dereferencing an int. If we were given
10932 the expect_type, then use that as the target type.
10933 Otherwise, assume that the target type is an int. */
10934 {
10935 if (expect_type != NULL)
10936 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10937 arg1));
10938 else
10939 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10940 (CORE_ADDR) value_as_address (arg1));
10941 }
10942
10943 if (ada_is_array_descriptor_type (type))
10944 /* GDB allows dereferencing GNAT array descriptors. */
10945 return ada_coerce_to_simple_array (arg1);
10946 else
10947 return ada_value_ind (arg1);
10948
10949 case STRUCTOP_STRUCT:
10950 tem = longest_to_int (exp->elts[pc + 1].longconst);
10951 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10952 preeval_pos = *pos;
10953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10954 if (noside == EVAL_SKIP)
10955 goto nosideret;
10956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10957 {
10958 struct type *type1 = value_type (arg1);
10959
10960 if (ada_is_tagged_type (type1, 1))
10961 {
10962 type = ada_lookup_struct_elt_type (type1,
10963 &exp->elts[pc + 2].string,
10964 1, 1, NULL);
10965
10966 /* If the field is not found, check if it exists in the
10967 extension of this object's type. This means that we
10968 need to evaluate completely the expression. */
10969
10970 if (type == NULL)
10971 {
10972 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10973 EVAL_NORMAL);
10974 arg1 = ada_value_struct_elt (arg1,
10975 &exp->elts[pc + 2].string,
10976 0);
10977 arg1 = unwrap_value (arg1);
10978 type = value_type (ada_to_fixed_value (arg1));
10979 }
10980 }
10981 else
10982 type =
10983 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10984 0, NULL);
10985
10986 return value_zero (ada_aligned_type (type), lval_memory);
10987 }
10988 else
10989 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10990 arg1 = unwrap_value (arg1);
10991 return ada_to_fixed_value (arg1);
10992
10993 case OP_TYPE:
10994 /* The value is not supposed to be used. This is here to make it
10995 easier to accommodate expressions that contain types. */
10996 (*pos) += 2;
10997 if (noside == EVAL_SKIP)
10998 goto nosideret;
10999 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11000 return allocate_value (exp->elts[pc + 1].type);
11001 else
11002 error (_("Attempt to use a type name as an expression"));
11003
11004 case OP_AGGREGATE:
11005 case OP_CHOICES:
11006 case OP_OTHERS:
11007 case OP_DISCRETE_RANGE:
11008 case OP_POSITIONAL:
11009 case OP_NAME:
11010 if (noside == EVAL_NORMAL)
11011 switch (op)
11012 {
11013 case OP_NAME:
11014 error (_("Undefined name, ambiguous name, or renaming used in "
11015 "component association: %s."), &exp->elts[pc+2].string);
11016 case OP_AGGREGATE:
11017 error (_("Aggregates only allowed on the right of an assignment"));
11018 default:
11019 internal_error (__FILE__, __LINE__,
11020 _("aggregate apparently mangled"));
11021 }
11022
11023 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11024 *pos += oplen - 1;
11025 for (tem = 0; tem < nargs; tem += 1)
11026 ada_evaluate_subexp (NULL, exp, pos, noside);
11027 goto nosideret;
11028 }
11029
11030 nosideret:
11031 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11032 }
11033 \f
11034
11035 /* Fixed point */
11036
11037 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11038 type name that encodes the 'small and 'delta information.
11039 Otherwise, return NULL. */
11040
11041 static const char *
11042 fixed_type_info (struct type *type)
11043 {
11044 const char *name = ada_type_name (type);
11045 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11046
11047 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11048 {
11049 const char *tail = strstr (name, "___XF_");
11050
11051 if (tail == NULL)
11052 return NULL;
11053 else
11054 return tail + 5;
11055 }
11056 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11057 return fixed_type_info (TYPE_TARGET_TYPE (type));
11058 else
11059 return NULL;
11060 }
11061
11062 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11063
11064 int
11065 ada_is_fixed_point_type (struct type *type)
11066 {
11067 return fixed_type_info (type) != NULL;
11068 }
11069
11070 /* Return non-zero iff TYPE represents a System.Address type. */
11071
11072 int
11073 ada_is_system_address_type (struct type *type)
11074 {
11075 return (TYPE_NAME (type)
11076 && strcmp (TYPE_NAME (type), "system__address") == 0);
11077 }
11078
11079 /* Assuming that TYPE is the representation of an Ada fixed-point
11080 type, return its delta, or -1 if the type is malformed and the
11081 delta cannot be determined. */
11082
11083 DOUBLEST
11084 ada_delta (struct type *type)
11085 {
11086 const char *encoding = fixed_type_info (type);
11087 DOUBLEST num, den;
11088
11089 /* Strictly speaking, num and den are encoded as integer. However,
11090 they may not fit into a long, and they will have to be converted
11091 to DOUBLEST anyway. So scan them as DOUBLEST. */
11092 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11093 &num, &den) < 2)
11094 return -1.0;
11095 else
11096 return num / den;
11097 }
11098
11099 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11100 factor ('SMALL value) associated with the type. */
11101
11102 static DOUBLEST
11103 scaling_factor (struct type *type)
11104 {
11105 const char *encoding = fixed_type_info (type);
11106 DOUBLEST num0, den0, num1, den1;
11107 int n;
11108
11109 /* Strictly speaking, num's and den's are encoded as integer. However,
11110 they may not fit into a long, and they will have to be converted
11111 to DOUBLEST anyway. So scan them as DOUBLEST. */
11112 n = sscanf (encoding,
11113 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11114 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11115 &num0, &den0, &num1, &den1);
11116
11117 if (n < 2)
11118 return 1.0;
11119 else if (n == 4)
11120 return num1 / den1;
11121 else
11122 return num0 / den0;
11123 }
11124
11125
11126 /* Assuming that X is the representation of a value of fixed-point
11127 type TYPE, return its floating-point equivalent. */
11128
11129 DOUBLEST
11130 ada_fixed_to_float (struct type *type, LONGEST x)
11131 {
11132 return (DOUBLEST) x *scaling_factor (type);
11133 }
11134
11135 /* The representation of a fixed-point value of type TYPE
11136 corresponding to the value X. */
11137
11138 LONGEST
11139 ada_float_to_fixed (struct type *type, DOUBLEST x)
11140 {
11141 return (LONGEST) (x / scaling_factor (type) + 0.5);
11142 }
11143
11144 \f
11145
11146 /* Range types */
11147
11148 /* Scan STR beginning at position K for a discriminant name, and
11149 return the value of that discriminant field of DVAL in *PX. If
11150 PNEW_K is not null, put the position of the character beyond the
11151 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11152 not alter *PX and *PNEW_K if unsuccessful. */
11153
11154 static int
11155 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11156 int *pnew_k)
11157 {
11158 static char *bound_buffer = NULL;
11159 static size_t bound_buffer_len = 0;
11160 char *bound;
11161 char *pend;
11162 struct value *bound_val;
11163
11164 if (dval == NULL || str == NULL || str[k] == '\0')
11165 return 0;
11166
11167 pend = strstr (str + k, "__");
11168 if (pend == NULL)
11169 {
11170 bound = str + k;
11171 k += strlen (bound);
11172 }
11173 else
11174 {
11175 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11176 bound = bound_buffer;
11177 strncpy (bound_buffer, str + k, pend - (str + k));
11178 bound[pend - (str + k)] = '\0';
11179 k = pend - str;
11180 }
11181
11182 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11183 if (bound_val == NULL)
11184 return 0;
11185
11186 *px = value_as_long (bound_val);
11187 if (pnew_k != NULL)
11188 *pnew_k = k;
11189 return 1;
11190 }
11191
11192 /* Value of variable named NAME in the current environment. If
11193 no such variable found, then if ERR_MSG is null, returns 0, and
11194 otherwise causes an error with message ERR_MSG. */
11195
11196 static struct value *
11197 get_var_value (char *name, char *err_msg)
11198 {
11199 struct ada_symbol_info *syms;
11200 int nsyms;
11201
11202 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11203 &syms);
11204
11205 if (nsyms != 1)
11206 {
11207 if (err_msg == NULL)
11208 return 0;
11209 else
11210 error (("%s"), err_msg);
11211 }
11212
11213 return value_of_variable (syms[0].sym, syms[0].block);
11214 }
11215
11216 /* Value of integer variable named NAME in the current environment. If
11217 no such variable found, returns 0, and sets *FLAG to 0. If
11218 successful, sets *FLAG to 1. */
11219
11220 LONGEST
11221 get_int_var_value (char *name, int *flag)
11222 {
11223 struct value *var_val = get_var_value (name, 0);
11224
11225 if (var_val == 0)
11226 {
11227 if (flag != NULL)
11228 *flag = 0;
11229 return 0;
11230 }
11231 else
11232 {
11233 if (flag != NULL)
11234 *flag = 1;
11235 return value_as_long (var_val);
11236 }
11237 }
11238
11239
11240 /* Return a range type whose base type is that of the range type named
11241 NAME in the current environment, and whose bounds are calculated
11242 from NAME according to the GNAT range encoding conventions.
11243 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11244 corresponding range type from debug information; fall back to using it
11245 if symbol lookup fails. If a new type must be created, allocate it
11246 like ORIG_TYPE was. The bounds information, in general, is encoded
11247 in NAME, the base type given in the named range type. */
11248
11249 static struct type *
11250 to_fixed_range_type (struct type *raw_type, struct value *dval)
11251 {
11252 const char *name;
11253 struct type *base_type;
11254 char *subtype_info;
11255
11256 gdb_assert (raw_type != NULL);
11257 gdb_assert (TYPE_NAME (raw_type) != NULL);
11258
11259 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11260 base_type = TYPE_TARGET_TYPE (raw_type);
11261 else
11262 base_type = raw_type;
11263
11264 name = TYPE_NAME (raw_type);
11265 subtype_info = strstr (name, "___XD");
11266 if (subtype_info == NULL)
11267 {
11268 LONGEST L = ada_discrete_type_low_bound (raw_type);
11269 LONGEST U = ada_discrete_type_high_bound (raw_type);
11270
11271 if (L < INT_MIN || U > INT_MAX)
11272 return raw_type;
11273 else
11274 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11275 L, U);
11276 }
11277 else
11278 {
11279 static char *name_buf = NULL;
11280 static size_t name_len = 0;
11281 int prefix_len = subtype_info - name;
11282 LONGEST L, U;
11283 struct type *type;
11284 char *bounds_str;
11285 int n;
11286
11287 GROW_VECT (name_buf, name_len, prefix_len + 5);
11288 strncpy (name_buf, name, prefix_len);
11289 name_buf[prefix_len] = '\0';
11290
11291 subtype_info += 5;
11292 bounds_str = strchr (subtype_info, '_');
11293 n = 1;
11294
11295 if (*subtype_info == 'L')
11296 {
11297 if (!ada_scan_number (bounds_str, n, &L, &n)
11298 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11299 return raw_type;
11300 if (bounds_str[n] == '_')
11301 n += 2;
11302 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11303 n += 1;
11304 subtype_info += 1;
11305 }
11306 else
11307 {
11308 int ok;
11309
11310 strcpy (name_buf + prefix_len, "___L");
11311 L = get_int_var_value (name_buf, &ok);
11312 if (!ok)
11313 {
11314 lim_warning (_("Unknown lower bound, using 1."));
11315 L = 1;
11316 }
11317 }
11318
11319 if (*subtype_info == 'U')
11320 {
11321 if (!ada_scan_number (bounds_str, n, &U, &n)
11322 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11323 return raw_type;
11324 }
11325 else
11326 {
11327 int ok;
11328
11329 strcpy (name_buf + prefix_len, "___U");
11330 U = get_int_var_value (name_buf, &ok);
11331 if (!ok)
11332 {
11333 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11334 U = L;
11335 }
11336 }
11337
11338 type = create_static_range_type (alloc_type_copy (raw_type),
11339 base_type, L, U);
11340 TYPE_NAME (type) = name;
11341 return type;
11342 }
11343 }
11344
11345 /* True iff NAME is the name of a range type. */
11346
11347 int
11348 ada_is_range_type_name (const char *name)
11349 {
11350 return (name != NULL && strstr (name, "___XD"));
11351 }
11352 \f
11353
11354 /* Modular types */
11355
11356 /* True iff TYPE is an Ada modular type. */
11357
11358 int
11359 ada_is_modular_type (struct type *type)
11360 {
11361 struct type *subranged_type = get_base_type (type);
11362
11363 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11364 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11365 && TYPE_UNSIGNED (subranged_type));
11366 }
11367
11368 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11369
11370 ULONGEST
11371 ada_modulus (struct type *type)
11372 {
11373 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11374 }
11375 \f
11376
11377 /* Ada exception catchpoint support:
11378 ---------------------------------
11379
11380 We support 3 kinds of exception catchpoints:
11381 . catchpoints on Ada exceptions
11382 . catchpoints on unhandled Ada exceptions
11383 . catchpoints on failed assertions
11384
11385 Exceptions raised during failed assertions, or unhandled exceptions
11386 could perfectly be caught with the general catchpoint on Ada exceptions.
11387 However, we can easily differentiate these two special cases, and having
11388 the option to distinguish these two cases from the rest can be useful
11389 to zero-in on certain situations.
11390
11391 Exception catchpoints are a specialized form of breakpoint,
11392 since they rely on inserting breakpoints inside known routines
11393 of the GNAT runtime. The implementation therefore uses a standard
11394 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11395 of breakpoint_ops.
11396
11397 Support in the runtime for exception catchpoints have been changed
11398 a few times already, and these changes affect the implementation
11399 of these catchpoints. In order to be able to support several
11400 variants of the runtime, we use a sniffer that will determine
11401 the runtime variant used by the program being debugged. */
11402
11403 /* Ada's standard exceptions.
11404
11405 The Ada 83 standard also defined Numeric_Error. But there so many
11406 situations where it was unclear from the Ada 83 Reference Manual
11407 (RM) whether Constraint_Error or Numeric_Error should be raised,
11408 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11409 Interpretation saying that anytime the RM says that Numeric_Error
11410 should be raised, the implementation may raise Constraint_Error.
11411 Ada 95 went one step further and pretty much removed Numeric_Error
11412 from the list of standard exceptions (it made it a renaming of
11413 Constraint_Error, to help preserve compatibility when compiling
11414 an Ada83 compiler). As such, we do not include Numeric_Error from
11415 this list of standard exceptions. */
11416
11417 static char *standard_exc[] = {
11418 "constraint_error",
11419 "program_error",
11420 "storage_error",
11421 "tasking_error"
11422 };
11423
11424 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11425
11426 /* A structure that describes how to support exception catchpoints
11427 for a given executable. */
11428
11429 struct exception_support_info
11430 {
11431 /* The name of the symbol to break on in order to insert
11432 a catchpoint on exceptions. */
11433 const char *catch_exception_sym;
11434
11435 /* The name of the symbol to break on in order to insert
11436 a catchpoint on unhandled exceptions. */
11437 const char *catch_exception_unhandled_sym;
11438
11439 /* The name of the symbol to break on in order to insert
11440 a catchpoint on failed assertions. */
11441 const char *catch_assert_sym;
11442
11443 /* Assuming that the inferior just triggered an unhandled exception
11444 catchpoint, this function is responsible for returning the address
11445 in inferior memory where the name of that exception is stored.
11446 Return zero if the address could not be computed. */
11447 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11448 };
11449
11450 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11451 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11452
11453 /* The following exception support info structure describes how to
11454 implement exception catchpoints with the latest version of the
11455 Ada runtime (as of 2007-03-06). */
11456
11457 static const struct exception_support_info default_exception_support_info =
11458 {
11459 "__gnat_debug_raise_exception", /* catch_exception_sym */
11460 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11461 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11462 ada_unhandled_exception_name_addr
11463 };
11464
11465 /* The following exception support info structure describes how to
11466 implement exception catchpoints with a slightly older version
11467 of the Ada runtime. */
11468
11469 static const struct exception_support_info exception_support_info_fallback =
11470 {
11471 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11472 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11473 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11474 ada_unhandled_exception_name_addr_from_raise
11475 };
11476
11477 /* Return nonzero if we can detect the exception support routines
11478 described in EINFO.
11479
11480 This function errors out if an abnormal situation is detected
11481 (for instance, if we find the exception support routines, but
11482 that support is found to be incomplete). */
11483
11484 static int
11485 ada_has_this_exception_support (const struct exception_support_info *einfo)
11486 {
11487 struct symbol *sym;
11488
11489 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11490 that should be compiled with debugging information. As a result, we
11491 expect to find that symbol in the symtabs. */
11492
11493 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11494 if (sym == NULL)
11495 {
11496 /* Perhaps we did not find our symbol because the Ada runtime was
11497 compiled without debugging info, or simply stripped of it.
11498 It happens on some GNU/Linux distributions for instance, where
11499 users have to install a separate debug package in order to get
11500 the runtime's debugging info. In that situation, let the user
11501 know why we cannot insert an Ada exception catchpoint.
11502
11503 Note: Just for the purpose of inserting our Ada exception
11504 catchpoint, we could rely purely on the associated minimal symbol.
11505 But we would be operating in degraded mode anyway, since we are
11506 still lacking the debugging info needed later on to extract
11507 the name of the exception being raised (this name is printed in
11508 the catchpoint message, and is also used when trying to catch
11509 a specific exception). We do not handle this case for now. */
11510 struct bound_minimal_symbol msym
11511 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11512
11513 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11514 error (_("Your Ada runtime appears to be missing some debugging "
11515 "information.\nCannot insert Ada exception catchpoint "
11516 "in this configuration."));
11517
11518 return 0;
11519 }
11520
11521 /* Make sure that the symbol we found corresponds to a function. */
11522
11523 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11524 error (_("Symbol \"%s\" is not a function (class = %d)"),
11525 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11526
11527 return 1;
11528 }
11529
11530 /* Inspect the Ada runtime and determine which exception info structure
11531 should be used to provide support for exception catchpoints.
11532
11533 This function will always set the per-inferior exception_info,
11534 or raise an error. */
11535
11536 static void
11537 ada_exception_support_info_sniffer (void)
11538 {
11539 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11540
11541 /* If the exception info is already known, then no need to recompute it. */
11542 if (data->exception_info != NULL)
11543 return;
11544
11545 /* Check the latest (default) exception support info. */
11546 if (ada_has_this_exception_support (&default_exception_support_info))
11547 {
11548 data->exception_info = &default_exception_support_info;
11549 return;
11550 }
11551
11552 /* Try our fallback exception suport info. */
11553 if (ada_has_this_exception_support (&exception_support_info_fallback))
11554 {
11555 data->exception_info = &exception_support_info_fallback;
11556 return;
11557 }
11558
11559 /* Sometimes, it is normal for us to not be able to find the routine
11560 we are looking for. This happens when the program is linked with
11561 the shared version of the GNAT runtime, and the program has not been
11562 started yet. Inform the user of these two possible causes if
11563 applicable. */
11564
11565 if (ada_update_initial_language (language_unknown) != language_ada)
11566 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11567
11568 /* If the symbol does not exist, then check that the program is
11569 already started, to make sure that shared libraries have been
11570 loaded. If it is not started, this may mean that the symbol is
11571 in a shared library. */
11572
11573 if (ptid_get_pid (inferior_ptid) == 0)
11574 error (_("Unable to insert catchpoint. Try to start the program first."));
11575
11576 /* At this point, we know that we are debugging an Ada program and
11577 that the inferior has been started, but we still are not able to
11578 find the run-time symbols. That can mean that we are in
11579 configurable run time mode, or that a-except as been optimized
11580 out by the linker... In any case, at this point it is not worth
11581 supporting this feature. */
11582
11583 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11584 }
11585
11586 /* True iff FRAME is very likely to be that of a function that is
11587 part of the runtime system. This is all very heuristic, but is
11588 intended to be used as advice as to what frames are uninteresting
11589 to most users. */
11590
11591 static int
11592 is_known_support_routine (struct frame_info *frame)
11593 {
11594 struct symtab_and_line sal;
11595 char *func_name;
11596 enum language func_lang;
11597 int i;
11598 const char *fullname;
11599
11600 /* If this code does not have any debugging information (no symtab),
11601 This cannot be any user code. */
11602
11603 find_frame_sal (frame, &sal);
11604 if (sal.symtab == NULL)
11605 return 1;
11606
11607 /* If there is a symtab, but the associated source file cannot be
11608 located, then assume this is not user code: Selecting a frame
11609 for which we cannot display the code would not be very helpful
11610 for the user. This should also take care of case such as VxWorks
11611 where the kernel has some debugging info provided for a few units. */
11612
11613 fullname = symtab_to_fullname (sal.symtab);
11614 if (access (fullname, R_OK) != 0)
11615 return 1;
11616
11617 /* Check the unit filename againt the Ada runtime file naming.
11618 We also check the name of the objfile against the name of some
11619 known system libraries that sometimes come with debugging info
11620 too. */
11621
11622 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11623 {
11624 re_comp (known_runtime_file_name_patterns[i]);
11625 if (re_exec (lbasename (sal.symtab->filename)))
11626 return 1;
11627 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11628 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11629 return 1;
11630 }
11631
11632 /* Check whether the function is a GNAT-generated entity. */
11633
11634 find_frame_funname (frame, &func_name, &func_lang, NULL);
11635 if (func_name == NULL)
11636 return 1;
11637
11638 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11639 {
11640 re_comp (known_auxiliary_function_name_patterns[i]);
11641 if (re_exec (func_name))
11642 {
11643 xfree (func_name);
11644 return 1;
11645 }
11646 }
11647
11648 xfree (func_name);
11649 return 0;
11650 }
11651
11652 /* Find the first frame that contains debugging information and that is not
11653 part of the Ada run-time, starting from FI and moving upward. */
11654
11655 void
11656 ada_find_printable_frame (struct frame_info *fi)
11657 {
11658 for (; fi != NULL; fi = get_prev_frame (fi))
11659 {
11660 if (!is_known_support_routine (fi))
11661 {
11662 select_frame (fi);
11663 break;
11664 }
11665 }
11666
11667 }
11668
11669 /* Assuming that the inferior just triggered an unhandled exception
11670 catchpoint, return the address in inferior memory where the name
11671 of the exception is stored.
11672
11673 Return zero if the address could not be computed. */
11674
11675 static CORE_ADDR
11676 ada_unhandled_exception_name_addr (void)
11677 {
11678 return parse_and_eval_address ("e.full_name");
11679 }
11680
11681 /* Same as ada_unhandled_exception_name_addr, except that this function
11682 should be used when the inferior uses an older version of the runtime,
11683 where the exception name needs to be extracted from a specific frame
11684 several frames up in the callstack. */
11685
11686 static CORE_ADDR
11687 ada_unhandled_exception_name_addr_from_raise (void)
11688 {
11689 int frame_level;
11690 struct frame_info *fi;
11691 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11692 struct cleanup *old_chain;
11693
11694 /* To determine the name of this exception, we need to select
11695 the frame corresponding to RAISE_SYM_NAME. This frame is
11696 at least 3 levels up, so we simply skip the first 3 frames
11697 without checking the name of their associated function. */
11698 fi = get_current_frame ();
11699 for (frame_level = 0; frame_level < 3; frame_level += 1)
11700 if (fi != NULL)
11701 fi = get_prev_frame (fi);
11702
11703 old_chain = make_cleanup (null_cleanup, NULL);
11704 while (fi != NULL)
11705 {
11706 char *func_name;
11707 enum language func_lang;
11708
11709 find_frame_funname (fi, &func_name, &func_lang, NULL);
11710 if (func_name != NULL)
11711 {
11712 make_cleanup (xfree, func_name);
11713
11714 if (strcmp (func_name,
11715 data->exception_info->catch_exception_sym) == 0)
11716 break; /* We found the frame we were looking for... */
11717 fi = get_prev_frame (fi);
11718 }
11719 }
11720 do_cleanups (old_chain);
11721
11722 if (fi == NULL)
11723 return 0;
11724
11725 select_frame (fi);
11726 return parse_and_eval_address ("id.full_name");
11727 }
11728
11729 /* Assuming the inferior just triggered an Ada exception catchpoint
11730 (of any type), return the address in inferior memory where the name
11731 of the exception is stored, if applicable.
11732
11733 Return zero if the address could not be computed, or if not relevant. */
11734
11735 static CORE_ADDR
11736 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11737 struct breakpoint *b)
11738 {
11739 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11740
11741 switch (ex)
11742 {
11743 case ada_catch_exception:
11744 return (parse_and_eval_address ("e.full_name"));
11745 break;
11746
11747 case ada_catch_exception_unhandled:
11748 return data->exception_info->unhandled_exception_name_addr ();
11749 break;
11750
11751 case ada_catch_assert:
11752 return 0; /* Exception name is not relevant in this case. */
11753 break;
11754
11755 default:
11756 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11757 break;
11758 }
11759
11760 return 0; /* Should never be reached. */
11761 }
11762
11763 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11764 any error that ada_exception_name_addr_1 might cause to be thrown.
11765 When an error is intercepted, a warning with the error message is printed,
11766 and zero is returned. */
11767
11768 static CORE_ADDR
11769 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11770 struct breakpoint *b)
11771 {
11772 volatile struct gdb_exception e;
11773 CORE_ADDR result = 0;
11774
11775 TRY_CATCH (e, RETURN_MASK_ERROR)
11776 {
11777 result = ada_exception_name_addr_1 (ex, b);
11778 }
11779
11780 if (e.reason < 0)
11781 {
11782 warning (_("failed to get exception name: %s"), e.message);
11783 return 0;
11784 }
11785
11786 return result;
11787 }
11788
11789 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11790
11791 /* Ada catchpoints.
11792
11793 In the case of catchpoints on Ada exceptions, the catchpoint will
11794 stop the target on every exception the program throws. When a user
11795 specifies the name of a specific exception, we translate this
11796 request into a condition expression (in text form), and then parse
11797 it into an expression stored in each of the catchpoint's locations.
11798 We then use this condition to check whether the exception that was
11799 raised is the one the user is interested in. If not, then the
11800 target is resumed again. We store the name of the requested
11801 exception, in order to be able to re-set the condition expression
11802 when symbols change. */
11803
11804 /* An instance of this type is used to represent an Ada catchpoint
11805 breakpoint location. It includes a "struct bp_location" as a kind
11806 of base class; users downcast to "struct bp_location *" when
11807 needed. */
11808
11809 struct ada_catchpoint_location
11810 {
11811 /* The base class. */
11812 struct bp_location base;
11813
11814 /* The condition that checks whether the exception that was raised
11815 is the specific exception the user specified on catchpoint
11816 creation. */
11817 struct expression *excep_cond_expr;
11818 };
11819
11820 /* Implement the DTOR method in the bp_location_ops structure for all
11821 Ada exception catchpoint kinds. */
11822
11823 static void
11824 ada_catchpoint_location_dtor (struct bp_location *bl)
11825 {
11826 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11827
11828 xfree (al->excep_cond_expr);
11829 }
11830
11831 /* The vtable to be used in Ada catchpoint locations. */
11832
11833 static const struct bp_location_ops ada_catchpoint_location_ops =
11834 {
11835 ada_catchpoint_location_dtor
11836 };
11837
11838 /* An instance of this type is used to represent an Ada catchpoint.
11839 It includes a "struct breakpoint" as a kind of base class; users
11840 downcast to "struct breakpoint *" when needed. */
11841
11842 struct ada_catchpoint
11843 {
11844 /* The base class. */
11845 struct breakpoint base;
11846
11847 /* The name of the specific exception the user specified. */
11848 char *excep_string;
11849 };
11850
11851 /* Parse the exception condition string in the context of each of the
11852 catchpoint's locations, and store them for later evaluation. */
11853
11854 static void
11855 create_excep_cond_exprs (struct ada_catchpoint *c)
11856 {
11857 struct cleanup *old_chain;
11858 struct bp_location *bl;
11859 char *cond_string;
11860
11861 /* Nothing to do if there's no specific exception to catch. */
11862 if (c->excep_string == NULL)
11863 return;
11864
11865 /* Same if there are no locations... */
11866 if (c->base.loc == NULL)
11867 return;
11868
11869 /* Compute the condition expression in text form, from the specific
11870 expection we want to catch. */
11871 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11872 old_chain = make_cleanup (xfree, cond_string);
11873
11874 /* Iterate over all the catchpoint's locations, and parse an
11875 expression for each. */
11876 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11877 {
11878 struct ada_catchpoint_location *ada_loc
11879 = (struct ada_catchpoint_location *) bl;
11880 struct expression *exp = NULL;
11881
11882 if (!bl->shlib_disabled)
11883 {
11884 volatile struct gdb_exception e;
11885 const char *s;
11886
11887 s = cond_string;
11888 TRY_CATCH (e, RETURN_MASK_ERROR)
11889 {
11890 exp = parse_exp_1 (&s, bl->address,
11891 block_for_pc (bl->address), 0);
11892 }
11893 if (e.reason < 0)
11894 {
11895 warning (_("failed to reevaluate internal exception condition "
11896 "for catchpoint %d: %s"),
11897 c->base.number, e.message);
11898 /* There is a bug in GCC on sparc-solaris when building with
11899 optimization which causes EXP to change unexpectedly
11900 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11901 The problem should be fixed starting with GCC 4.9.
11902 In the meantime, work around it by forcing EXP back
11903 to NULL. */
11904 exp = NULL;
11905 }
11906 }
11907
11908 ada_loc->excep_cond_expr = exp;
11909 }
11910
11911 do_cleanups (old_chain);
11912 }
11913
11914 /* Implement the DTOR method in the breakpoint_ops structure for all
11915 exception catchpoint kinds. */
11916
11917 static void
11918 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11919 {
11920 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11921
11922 xfree (c->excep_string);
11923
11924 bkpt_breakpoint_ops.dtor (b);
11925 }
11926
11927 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11928 structure for all exception catchpoint kinds. */
11929
11930 static struct bp_location *
11931 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11932 struct breakpoint *self)
11933 {
11934 struct ada_catchpoint_location *loc;
11935
11936 loc = XNEW (struct ada_catchpoint_location);
11937 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11938 loc->excep_cond_expr = NULL;
11939 return &loc->base;
11940 }
11941
11942 /* Implement the RE_SET method in the breakpoint_ops structure for all
11943 exception catchpoint kinds. */
11944
11945 static void
11946 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11947 {
11948 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11949
11950 /* Call the base class's method. This updates the catchpoint's
11951 locations. */
11952 bkpt_breakpoint_ops.re_set (b);
11953
11954 /* Reparse the exception conditional expressions. One for each
11955 location. */
11956 create_excep_cond_exprs (c);
11957 }
11958
11959 /* Returns true if we should stop for this breakpoint hit. If the
11960 user specified a specific exception, we only want to cause a stop
11961 if the program thrown that exception. */
11962
11963 static int
11964 should_stop_exception (const struct bp_location *bl)
11965 {
11966 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11967 const struct ada_catchpoint_location *ada_loc
11968 = (const struct ada_catchpoint_location *) bl;
11969 volatile struct gdb_exception ex;
11970 int stop;
11971
11972 /* With no specific exception, should always stop. */
11973 if (c->excep_string == NULL)
11974 return 1;
11975
11976 if (ada_loc->excep_cond_expr == NULL)
11977 {
11978 /* We will have a NULL expression if back when we were creating
11979 the expressions, this location's had failed to parse. */
11980 return 1;
11981 }
11982
11983 stop = 1;
11984 TRY_CATCH (ex, RETURN_MASK_ALL)
11985 {
11986 struct value *mark;
11987
11988 mark = value_mark ();
11989 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11990 value_free_to_mark (mark);
11991 }
11992 if (ex.reason < 0)
11993 exception_fprintf (gdb_stderr, ex,
11994 _("Error in testing exception condition:\n"));
11995 return stop;
11996 }
11997
11998 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11999 for all exception catchpoint kinds. */
12000
12001 static void
12002 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12003 {
12004 bs->stop = should_stop_exception (bs->bp_location_at);
12005 }
12006
12007 /* Implement the PRINT_IT method in the breakpoint_ops structure
12008 for all exception catchpoint kinds. */
12009
12010 static enum print_stop_action
12011 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12012 {
12013 struct ui_out *uiout = current_uiout;
12014 struct breakpoint *b = bs->breakpoint_at;
12015
12016 annotate_catchpoint (b->number);
12017
12018 if (ui_out_is_mi_like_p (uiout))
12019 {
12020 ui_out_field_string (uiout, "reason",
12021 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12022 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12023 }
12024
12025 ui_out_text (uiout,
12026 b->disposition == disp_del ? "\nTemporary catchpoint "
12027 : "\nCatchpoint ");
12028 ui_out_field_int (uiout, "bkptno", b->number);
12029 ui_out_text (uiout, ", ");
12030
12031 switch (ex)
12032 {
12033 case ada_catch_exception:
12034 case ada_catch_exception_unhandled:
12035 {
12036 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12037 char exception_name[256];
12038
12039 if (addr != 0)
12040 {
12041 read_memory (addr, (gdb_byte *) exception_name,
12042 sizeof (exception_name) - 1);
12043 exception_name [sizeof (exception_name) - 1] = '\0';
12044 }
12045 else
12046 {
12047 /* For some reason, we were unable to read the exception
12048 name. This could happen if the Runtime was compiled
12049 without debugging info, for instance. In that case,
12050 just replace the exception name by the generic string
12051 "exception" - it will read as "an exception" in the
12052 notification we are about to print. */
12053 memcpy (exception_name, "exception", sizeof ("exception"));
12054 }
12055 /* In the case of unhandled exception breakpoints, we print
12056 the exception name as "unhandled EXCEPTION_NAME", to make
12057 it clearer to the user which kind of catchpoint just got
12058 hit. We used ui_out_text to make sure that this extra
12059 info does not pollute the exception name in the MI case. */
12060 if (ex == ada_catch_exception_unhandled)
12061 ui_out_text (uiout, "unhandled ");
12062 ui_out_field_string (uiout, "exception-name", exception_name);
12063 }
12064 break;
12065 case ada_catch_assert:
12066 /* In this case, the name of the exception is not really
12067 important. Just print "failed assertion" to make it clearer
12068 that his program just hit an assertion-failure catchpoint.
12069 We used ui_out_text because this info does not belong in
12070 the MI output. */
12071 ui_out_text (uiout, "failed assertion");
12072 break;
12073 }
12074 ui_out_text (uiout, " at ");
12075 ada_find_printable_frame (get_current_frame ());
12076
12077 return PRINT_SRC_AND_LOC;
12078 }
12079
12080 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12081 for all exception catchpoint kinds. */
12082
12083 static void
12084 print_one_exception (enum ada_exception_catchpoint_kind ex,
12085 struct breakpoint *b, struct bp_location **last_loc)
12086 {
12087 struct ui_out *uiout = current_uiout;
12088 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12089 struct value_print_options opts;
12090
12091 get_user_print_options (&opts);
12092 if (opts.addressprint)
12093 {
12094 annotate_field (4);
12095 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12096 }
12097
12098 annotate_field (5);
12099 *last_loc = b->loc;
12100 switch (ex)
12101 {
12102 case ada_catch_exception:
12103 if (c->excep_string != NULL)
12104 {
12105 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12106
12107 ui_out_field_string (uiout, "what", msg);
12108 xfree (msg);
12109 }
12110 else
12111 ui_out_field_string (uiout, "what", "all Ada exceptions");
12112
12113 break;
12114
12115 case ada_catch_exception_unhandled:
12116 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12117 break;
12118
12119 case ada_catch_assert:
12120 ui_out_field_string (uiout, "what", "failed Ada assertions");
12121 break;
12122
12123 default:
12124 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12125 break;
12126 }
12127 }
12128
12129 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12130 for all exception catchpoint kinds. */
12131
12132 static void
12133 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12134 struct breakpoint *b)
12135 {
12136 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12137 struct ui_out *uiout = current_uiout;
12138
12139 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12140 : _("Catchpoint "));
12141 ui_out_field_int (uiout, "bkptno", b->number);
12142 ui_out_text (uiout, ": ");
12143
12144 switch (ex)
12145 {
12146 case ada_catch_exception:
12147 if (c->excep_string != NULL)
12148 {
12149 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12150 struct cleanup *old_chain = make_cleanup (xfree, info);
12151
12152 ui_out_text (uiout, info);
12153 do_cleanups (old_chain);
12154 }
12155 else
12156 ui_out_text (uiout, _("all Ada exceptions"));
12157 break;
12158
12159 case ada_catch_exception_unhandled:
12160 ui_out_text (uiout, _("unhandled Ada exceptions"));
12161 break;
12162
12163 case ada_catch_assert:
12164 ui_out_text (uiout, _("failed Ada assertions"));
12165 break;
12166
12167 default:
12168 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12169 break;
12170 }
12171 }
12172
12173 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12174 for all exception catchpoint kinds. */
12175
12176 static void
12177 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12178 struct breakpoint *b, struct ui_file *fp)
12179 {
12180 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12181
12182 switch (ex)
12183 {
12184 case ada_catch_exception:
12185 fprintf_filtered (fp, "catch exception");
12186 if (c->excep_string != NULL)
12187 fprintf_filtered (fp, " %s", c->excep_string);
12188 break;
12189
12190 case ada_catch_exception_unhandled:
12191 fprintf_filtered (fp, "catch exception unhandled");
12192 break;
12193
12194 case ada_catch_assert:
12195 fprintf_filtered (fp, "catch assert");
12196 break;
12197
12198 default:
12199 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12200 }
12201 print_recreate_thread (b, fp);
12202 }
12203
12204 /* Virtual table for "catch exception" breakpoints. */
12205
12206 static void
12207 dtor_catch_exception (struct breakpoint *b)
12208 {
12209 dtor_exception (ada_catch_exception, b);
12210 }
12211
12212 static struct bp_location *
12213 allocate_location_catch_exception (struct breakpoint *self)
12214 {
12215 return allocate_location_exception (ada_catch_exception, self);
12216 }
12217
12218 static void
12219 re_set_catch_exception (struct breakpoint *b)
12220 {
12221 re_set_exception (ada_catch_exception, b);
12222 }
12223
12224 static void
12225 check_status_catch_exception (bpstat bs)
12226 {
12227 check_status_exception (ada_catch_exception, bs);
12228 }
12229
12230 static enum print_stop_action
12231 print_it_catch_exception (bpstat bs)
12232 {
12233 return print_it_exception (ada_catch_exception, bs);
12234 }
12235
12236 static void
12237 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12238 {
12239 print_one_exception (ada_catch_exception, b, last_loc);
12240 }
12241
12242 static void
12243 print_mention_catch_exception (struct breakpoint *b)
12244 {
12245 print_mention_exception (ada_catch_exception, b);
12246 }
12247
12248 static void
12249 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12250 {
12251 print_recreate_exception (ada_catch_exception, b, fp);
12252 }
12253
12254 static struct breakpoint_ops catch_exception_breakpoint_ops;
12255
12256 /* Virtual table for "catch exception unhandled" breakpoints. */
12257
12258 static void
12259 dtor_catch_exception_unhandled (struct breakpoint *b)
12260 {
12261 dtor_exception (ada_catch_exception_unhandled, b);
12262 }
12263
12264 static struct bp_location *
12265 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12266 {
12267 return allocate_location_exception (ada_catch_exception_unhandled, self);
12268 }
12269
12270 static void
12271 re_set_catch_exception_unhandled (struct breakpoint *b)
12272 {
12273 re_set_exception (ada_catch_exception_unhandled, b);
12274 }
12275
12276 static void
12277 check_status_catch_exception_unhandled (bpstat bs)
12278 {
12279 check_status_exception (ada_catch_exception_unhandled, bs);
12280 }
12281
12282 static enum print_stop_action
12283 print_it_catch_exception_unhandled (bpstat bs)
12284 {
12285 return print_it_exception (ada_catch_exception_unhandled, bs);
12286 }
12287
12288 static void
12289 print_one_catch_exception_unhandled (struct breakpoint *b,
12290 struct bp_location **last_loc)
12291 {
12292 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12293 }
12294
12295 static void
12296 print_mention_catch_exception_unhandled (struct breakpoint *b)
12297 {
12298 print_mention_exception (ada_catch_exception_unhandled, b);
12299 }
12300
12301 static void
12302 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12303 struct ui_file *fp)
12304 {
12305 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12306 }
12307
12308 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12309
12310 /* Virtual table for "catch assert" breakpoints. */
12311
12312 static void
12313 dtor_catch_assert (struct breakpoint *b)
12314 {
12315 dtor_exception (ada_catch_assert, b);
12316 }
12317
12318 static struct bp_location *
12319 allocate_location_catch_assert (struct breakpoint *self)
12320 {
12321 return allocate_location_exception (ada_catch_assert, self);
12322 }
12323
12324 static void
12325 re_set_catch_assert (struct breakpoint *b)
12326 {
12327 re_set_exception (ada_catch_assert, b);
12328 }
12329
12330 static void
12331 check_status_catch_assert (bpstat bs)
12332 {
12333 check_status_exception (ada_catch_assert, bs);
12334 }
12335
12336 static enum print_stop_action
12337 print_it_catch_assert (bpstat bs)
12338 {
12339 return print_it_exception (ada_catch_assert, bs);
12340 }
12341
12342 static void
12343 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12344 {
12345 print_one_exception (ada_catch_assert, b, last_loc);
12346 }
12347
12348 static void
12349 print_mention_catch_assert (struct breakpoint *b)
12350 {
12351 print_mention_exception (ada_catch_assert, b);
12352 }
12353
12354 static void
12355 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12356 {
12357 print_recreate_exception (ada_catch_assert, b, fp);
12358 }
12359
12360 static struct breakpoint_ops catch_assert_breakpoint_ops;
12361
12362 /* Return a newly allocated copy of the first space-separated token
12363 in ARGSP, and then adjust ARGSP to point immediately after that
12364 token.
12365
12366 Return NULL if ARGPS does not contain any more tokens. */
12367
12368 static char *
12369 ada_get_next_arg (char **argsp)
12370 {
12371 char *args = *argsp;
12372 char *end;
12373 char *result;
12374
12375 args = skip_spaces (args);
12376 if (args[0] == '\0')
12377 return NULL; /* No more arguments. */
12378
12379 /* Find the end of the current argument. */
12380
12381 end = skip_to_space (args);
12382
12383 /* Adjust ARGSP to point to the start of the next argument. */
12384
12385 *argsp = end;
12386
12387 /* Make a copy of the current argument and return it. */
12388
12389 result = xmalloc (end - args + 1);
12390 strncpy (result, args, end - args);
12391 result[end - args] = '\0';
12392
12393 return result;
12394 }
12395
12396 /* Split the arguments specified in a "catch exception" command.
12397 Set EX to the appropriate catchpoint type.
12398 Set EXCEP_STRING to the name of the specific exception if
12399 specified by the user.
12400 If a condition is found at the end of the arguments, the condition
12401 expression is stored in COND_STRING (memory must be deallocated
12402 after use). Otherwise COND_STRING is set to NULL. */
12403
12404 static void
12405 catch_ada_exception_command_split (char *args,
12406 enum ada_exception_catchpoint_kind *ex,
12407 char **excep_string,
12408 char **cond_string)
12409 {
12410 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12411 char *exception_name;
12412 char *cond = NULL;
12413
12414 exception_name = ada_get_next_arg (&args);
12415 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12416 {
12417 /* This is not an exception name; this is the start of a condition
12418 expression for a catchpoint on all exceptions. So, "un-get"
12419 this token, and set exception_name to NULL. */
12420 xfree (exception_name);
12421 exception_name = NULL;
12422 args -= 2;
12423 }
12424 make_cleanup (xfree, exception_name);
12425
12426 /* Check to see if we have a condition. */
12427
12428 args = skip_spaces (args);
12429 if (strncmp (args, "if", 2) == 0
12430 && (isspace (args[2]) || args[2] == '\0'))
12431 {
12432 args += 2;
12433 args = skip_spaces (args);
12434
12435 if (args[0] == '\0')
12436 error (_("Condition missing after `if' keyword"));
12437 cond = xstrdup (args);
12438 make_cleanup (xfree, cond);
12439
12440 args += strlen (args);
12441 }
12442
12443 /* Check that we do not have any more arguments. Anything else
12444 is unexpected. */
12445
12446 if (args[0] != '\0')
12447 error (_("Junk at end of expression"));
12448
12449 discard_cleanups (old_chain);
12450
12451 if (exception_name == NULL)
12452 {
12453 /* Catch all exceptions. */
12454 *ex = ada_catch_exception;
12455 *excep_string = NULL;
12456 }
12457 else if (strcmp (exception_name, "unhandled") == 0)
12458 {
12459 /* Catch unhandled exceptions. */
12460 *ex = ada_catch_exception_unhandled;
12461 *excep_string = NULL;
12462 }
12463 else
12464 {
12465 /* Catch a specific exception. */
12466 *ex = ada_catch_exception;
12467 *excep_string = exception_name;
12468 }
12469 *cond_string = cond;
12470 }
12471
12472 /* Return the name of the symbol on which we should break in order to
12473 implement a catchpoint of the EX kind. */
12474
12475 static const char *
12476 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12477 {
12478 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12479
12480 gdb_assert (data->exception_info != NULL);
12481
12482 switch (ex)
12483 {
12484 case ada_catch_exception:
12485 return (data->exception_info->catch_exception_sym);
12486 break;
12487 case ada_catch_exception_unhandled:
12488 return (data->exception_info->catch_exception_unhandled_sym);
12489 break;
12490 case ada_catch_assert:
12491 return (data->exception_info->catch_assert_sym);
12492 break;
12493 default:
12494 internal_error (__FILE__, __LINE__,
12495 _("unexpected catchpoint kind (%d)"), ex);
12496 }
12497 }
12498
12499 /* Return the breakpoint ops "virtual table" used for catchpoints
12500 of the EX kind. */
12501
12502 static const struct breakpoint_ops *
12503 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12504 {
12505 switch (ex)
12506 {
12507 case ada_catch_exception:
12508 return (&catch_exception_breakpoint_ops);
12509 break;
12510 case ada_catch_exception_unhandled:
12511 return (&catch_exception_unhandled_breakpoint_ops);
12512 break;
12513 case ada_catch_assert:
12514 return (&catch_assert_breakpoint_ops);
12515 break;
12516 default:
12517 internal_error (__FILE__, __LINE__,
12518 _("unexpected catchpoint kind (%d)"), ex);
12519 }
12520 }
12521
12522 /* Return the condition that will be used to match the current exception
12523 being raised with the exception that the user wants to catch. This
12524 assumes that this condition is used when the inferior just triggered
12525 an exception catchpoint.
12526
12527 The string returned is a newly allocated string that needs to be
12528 deallocated later. */
12529
12530 static char *
12531 ada_exception_catchpoint_cond_string (const char *excep_string)
12532 {
12533 int i;
12534
12535 /* The standard exceptions are a special case. They are defined in
12536 runtime units that have been compiled without debugging info; if
12537 EXCEP_STRING is the not-fully-qualified name of a standard
12538 exception (e.g. "constraint_error") then, during the evaluation
12539 of the condition expression, the symbol lookup on this name would
12540 *not* return this standard exception. The catchpoint condition
12541 may then be set only on user-defined exceptions which have the
12542 same not-fully-qualified name (e.g. my_package.constraint_error).
12543
12544 To avoid this unexcepted behavior, these standard exceptions are
12545 systematically prefixed by "standard". This means that "catch
12546 exception constraint_error" is rewritten into "catch exception
12547 standard.constraint_error".
12548
12549 If an exception named contraint_error is defined in another package of
12550 the inferior program, then the only way to specify this exception as a
12551 breakpoint condition is to use its fully-qualified named:
12552 e.g. my_package.constraint_error. */
12553
12554 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12555 {
12556 if (strcmp (standard_exc [i], excep_string) == 0)
12557 {
12558 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12559 excep_string);
12560 }
12561 }
12562 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12563 }
12564
12565 /* Return the symtab_and_line that should be used to insert an exception
12566 catchpoint of the TYPE kind.
12567
12568 EXCEP_STRING should contain the name of a specific exception that
12569 the catchpoint should catch, or NULL otherwise.
12570
12571 ADDR_STRING returns the name of the function where the real
12572 breakpoint that implements the catchpoints is set, depending on the
12573 type of catchpoint we need to create. */
12574
12575 static struct symtab_and_line
12576 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12577 char **addr_string, const struct breakpoint_ops **ops)
12578 {
12579 const char *sym_name;
12580 struct symbol *sym;
12581
12582 /* First, find out which exception support info to use. */
12583 ada_exception_support_info_sniffer ();
12584
12585 /* Then lookup the function on which we will break in order to catch
12586 the Ada exceptions requested by the user. */
12587 sym_name = ada_exception_sym_name (ex);
12588 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12589
12590 /* We can assume that SYM is not NULL at this stage. If the symbol
12591 did not exist, ada_exception_support_info_sniffer would have
12592 raised an exception.
12593
12594 Also, ada_exception_support_info_sniffer should have already
12595 verified that SYM is a function symbol. */
12596 gdb_assert (sym != NULL);
12597 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12598
12599 /* Set ADDR_STRING. */
12600 *addr_string = xstrdup (sym_name);
12601
12602 /* Set OPS. */
12603 *ops = ada_exception_breakpoint_ops (ex);
12604
12605 return find_function_start_sal (sym, 1);
12606 }
12607
12608 /* Create an Ada exception catchpoint.
12609
12610 EX_KIND is the kind of exception catchpoint to be created.
12611
12612 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12613 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12614 of the exception to which this catchpoint applies. When not NULL,
12615 the string must be allocated on the heap, and its deallocation
12616 is no longer the responsibility of the caller.
12617
12618 COND_STRING, if not NULL, is the catchpoint condition. This string
12619 must be allocated on the heap, and its deallocation is no longer
12620 the responsibility of the caller.
12621
12622 TEMPFLAG, if nonzero, means that the underlying breakpoint
12623 should be temporary.
12624
12625 FROM_TTY is the usual argument passed to all commands implementations. */
12626
12627 void
12628 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12629 enum ada_exception_catchpoint_kind ex_kind,
12630 char *excep_string,
12631 char *cond_string,
12632 int tempflag,
12633 int disabled,
12634 int from_tty)
12635 {
12636 struct ada_catchpoint *c;
12637 char *addr_string = NULL;
12638 const struct breakpoint_ops *ops = NULL;
12639 struct symtab_and_line sal
12640 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12641
12642 c = XNEW (struct ada_catchpoint);
12643 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12644 ops, tempflag, disabled, from_tty);
12645 c->excep_string = excep_string;
12646 create_excep_cond_exprs (c);
12647 if (cond_string != NULL)
12648 set_breakpoint_condition (&c->base, cond_string, from_tty);
12649 install_breakpoint (0, &c->base, 1);
12650 }
12651
12652 /* Implement the "catch exception" command. */
12653
12654 static void
12655 catch_ada_exception_command (char *arg, int from_tty,
12656 struct cmd_list_element *command)
12657 {
12658 struct gdbarch *gdbarch = get_current_arch ();
12659 int tempflag;
12660 enum ada_exception_catchpoint_kind ex_kind;
12661 char *excep_string = NULL;
12662 char *cond_string = NULL;
12663
12664 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12665
12666 if (!arg)
12667 arg = "";
12668 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12669 &cond_string);
12670 create_ada_exception_catchpoint (gdbarch, ex_kind,
12671 excep_string, cond_string,
12672 tempflag, 1 /* enabled */,
12673 from_tty);
12674 }
12675
12676 /* Split the arguments specified in a "catch assert" command.
12677
12678 ARGS contains the command's arguments (or the empty string if
12679 no arguments were passed).
12680
12681 If ARGS contains a condition, set COND_STRING to that condition
12682 (the memory needs to be deallocated after use). */
12683
12684 static void
12685 catch_ada_assert_command_split (char *args, char **cond_string)
12686 {
12687 args = skip_spaces (args);
12688
12689 /* Check whether a condition was provided. */
12690 if (strncmp (args, "if", 2) == 0
12691 && (isspace (args[2]) || args[2] == '\0'))
12692 {
12693 args += 2;
12694 args = skip_spaces (args);
12695 if (args[0] == '\0')
12696 error (_("condition missing after `if' keyword"));
12697 *cond_string = xstrdup (args);
12698 }
12699
12700 /* Otherwise, there should be no other argument at the end of
12701 the command. */
12702 else if (args[0] != '\0')
12703 error (_("Junk at end of arguments."));
12704 }
12705
12706 /* Implement the "catch assert" command. */
12707
12708 static void
12709 catch_assert_command (char *arg, int from_tty,
12710 struct cmd_list_element *command)
12711 {
12712 struct gdbarch *gdbarch = get_current_arch ();
12713 int tempflag;
12714 char *cond_string = NULL;
12715
12716 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12717
12718 if (!arg)
12719 arg = "";
12720 catch_ada_assert_command_split (arg, &cond_string);
12721 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12722 NULL, cond_string,
12723 tempflag, 1 /* enabled */,
12724 from_tty);
12725 }
12726
12727 /* Return non-zero if the symbol SYM is an Ada exception object. */
12728
12729 static int
12730 ada_is_exception_sym (struct symbol *sym)
12731 {
12732 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12733
12734 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12735 && SYMBOL_CLASS (sym) != LOC_BLOCK
12736 && SYMBOL_CLASS (sym) != LOC_CONST
12737 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12738 && type_name != NULL && strcmp (type_name, "exception") == 0);
12739 }
12740
12741 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12742 Ada exception object. This matches all exceptions except the ones
12743 defined by the Ada language. */
12744
12745 static int
12746 ada_is_non_standard_exception_sym (struct symbol *sym)
12747 {
12748 int i;
12749
12750 if (!ada_is_exception_sym (sym))
12751 return 0;
12752
12753 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12754 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12755 return 0; /* A standard exception. */
12756
12757 /* Numeric_Error is also a standard exception, so exclude it.
12758 See the STANDARD_EXC description for more details as to why
12759 this exception is not listed in that array. */
12760 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12761 return 0;
12762
12763 return 1;
12764 }
12765
12766 /* A helper function for qsort, comparing two struct ada_exc_info
12767 objects.
12768
12769 The comparison is determined first by exception name, and then
12770 by exception address. */
12771
12772 static int
12773 compare_ada_exception_info (const void *a, const void *b)
12774 {
12775 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12776 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12777 int result;
12778
12779 result = strcmp (exc_a->name, exc_b->name);
12780 if (result != 0)
12781 return result;
12782
12783 if (exc_a->addr < exc_b->addr)
12784 return -1;
12785 if (exc_a->addr > exc_b->addr)
12786 return 1;
12787
12788 return 0;
12789 }
12790
12791 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12792 routine, but keeping the first SKIP elements untouched.
12793
12794 All duplicates are also removed. */
12795
12796 static void
12797 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12798 int skip)
12799 {
12800 struct ada_exc_info *to_sort
12801 = VEC_address (ada_exc_info, *exceptions) + skip;
12802 int to_sort_len
12803 = VEC_length (ada_exc_info, *exceptions) - skip;
12804 int i, j;
12805
12806 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12807 compare_ada_exception_info);
12808
12809 for (i = 1, j = 1; i < to_sort_len; i++)
12810 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12811 to_sort[j++] = to_sort[i];
12812 to_sort_len = j;
12813 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12814 }
12815
12816 /* A function intended as the "name_matcher" callback in the struct
12817 quick_symbol_functions' expand_symtabs_matching method.
12818
12819 SEARCH_NAME is the symbol's search name.
12820
12821 If USER_DATA is not NULL, it is a pointer to a regext_t object
12822 used to match the symbol (by natural name). Otherwise, when USER_DATA
12823 is null, no filtering is performed, and all symbols are a positive
12824 match. */
12825
12826 static int
12827 ada_exc_search_name_matches (const char *search_name, void *user_data)
12828 {
12829 regex_t *preg = user_data;
12830
12831 if (preg == NULL)
12832 return 1;
12833
12834 /* In Ada, the symbol "search name" is a linkage name, whereas
12835 the regular expression used to do the matching refers to
12836 the natural name. So match against the decoded name. */
12837 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12838 }
12839
12840 /* Add all exceptions defined by the Ada standard whose name match
12841 a regular expression.
12842
12843 If PREG is not NULL, then this regexp_t object is used to
12844 perform the symbol name matching. Otherwise, no name-based
12845 filtering is performed.
12846
12847 EXCEPTIONS is a vector of exceptions to which matching exceptions
12848 gets pushed. */
12849
12850 static void
12851 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12852 {
12853 int i;
12854
12855 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12856 {
12857 if (preg == NULL
12858 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12859 {
12860 struct bound_minimal_symbol msymbol
12861 = ada_lookup_simple_minsym (standard_exc[i]);
12862
12863 if (msymbol.minsym != NULL)
12864 {
12865 struct ada_exc_info info
12866 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12867
12868 VEC_safe_push (ada_exc_info, *exceptions, &info);
12869 }
12870 }
12871 }
12872 }
12873
12874 /* Add all Ada exceptions defined locally and accessible from the given
12875 FRAME.
12876
12877 If PREG is not NULL, then this regexp_t object is used to
12878 perform the symbol name matching. Otherwise, no name-based
12879 filtering is performed.
12880
12881 EXCEPTIONS is a vector of exceptions to which matching exceptions
12882 gets pushed. */
12883
12884 static void
12885 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12886 VEC(ada_exc_info) **exceptions)
12887 {
12888 const struct block *block = get_frame_block (frame, 0);
12889
12890 while (block != 0)
12891 {
12892 struct block_iterator iter;
12893 struct symbol *sym;
12894
12895 ALL_BLOCK_SYMBOLS (block, iter, sym)
12896 {
12897 switch (SYMBOL_CLASS (sym))
12898 {
12899 case LOC_TYPEDEF:
12900 case LOC_BLOCK:
12901 case LOC_CONST:
12902 break;
12903 default:
12904 if (ada_is_exception_sym (sym))
12905 {
12906 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12907 SYMBOL_VALUE_ADDRESS (sym)};
12908
12909 VEC_safe_push (ada_exc_info, *exceptions, &info);
12910 }
12911 }
12912 }
12913 if (BLOCK_FUNCTION (block) != NULL)
12914 break;
12915 block = BLOCK_SUPERBLOCK (block);
12916 }
12917 }
12918
12919 /* Add all exceptions defined globally whose name name match
12920 a regular expression, excluding standard exceptions.
12921
12922 The reason we exclude standard exceptions is that they need
12923 to be handled separately: Standard exceptions are defined inside
12924 a runtime unit which is normally not compiled with debugging info,
12925 and thus usually do not show up in our symbol search. However,
12926 if the unit was in fact built with debugging info, we need to
12927 exclude them because they would duplicate the entry we found
12928 during the special loop that specifically searches for those
12929 standard exceptions.
12930
12931 If PREG is not NULL, then this regexp_t object is used to
12932 perform the symbol name matching. Otherwise, no name-based
12933 filtering is performed.
12934
12935 EXCEPTIONS is a vector of exceptions to which matching exceptions
12936 gets pushed. */
12937
12938 static void
12939 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12940 {
12941 struct objfile *objfile;
12942 struct compunit_symtab *s;
12943
12944 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12945 VARIABLES_DOMAIN, preg);
12946
12947 ALL_COMPUNITS (objfile, s)
12948 {
12949 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12950 int i;
12951
12952 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12953 {
12954 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12955 struct block_iterator iter;
12956 struct symbol *sym;
12957
12958 ALL_BLOCK_SYMBOLS (b, iter, sym)
12959 if (ada_is_non_standard_exception_sym (sym)
12960 && (preg == NULL
12961 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12962 0, NULL, 0) == 0))
12963 {
12964 struct ada_exc_info info
12965 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12966
12967 VEC_safe_push (ada_exc_info, *exceptions, &info);
12968 }
12969 }
12970 }
12971 }
12972
12973 /* Implements ada_exceptions_list with the regular expression passed
12974 as a regex_t, rather than a string.
12975
12976 If not NULL, PREG is used to filter out exceptions whose names
12977 do not match. Otherwise, all exceptions are listed. */
12978
12979 static VEC(ada_exc_info) *
12980 ada_exceptions_list_1 (regex_t *preg)
12981 {
12982 VEC(ada_exc_info) *result = NULL;
12983 struct cleanup *old_chain
12984 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12985 int prev_len;
12986
12987 /* First, list the known standard exceptions. These exceptions
12988 need to be handled separately, as they are usually defined in
12989 runtime units that have been compiled without debugging info. */
12990
12991 ada_add_standard_exceptions (preg, &result);
12992
12993 /* Next, find all exceptions whose scope is local and accessible
12994 from the currently selected frame. */
12995
12996 if (has_stack_frames ())
12997 {
12998 prev_len = VEC_length (ada_exc_info, result);
12999 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13000 &result);
13001 if (VEC_length (ada_exc_info, result) > prev_len)
13002 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13003 }
13004
13005 /* Add all exceptions whose scope is global. */
13006
13007 prev_len = VEC_length (ada_exc_info, result);
13008 ada_add_global_exceptions (preg, &result);
13009 if (VEC_length (ada_exc_info, result) > prev_len)
13010 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13011
13012 discard_cleanups (old_chain);
13013 return result;
13014 }
13015
13016 /* Return a vector of ada_exc_info.
13017
13018 If REGEXP is NULL, all exceptions are included in the result.
13019 Otherwise, it should contain a valid regular expression,
13020 and only the exceptions whose names match that regular expression
13021 are included in the result.
13022
13023 The exceptions are sorted in the following order:
13024 - Standard exceptions (defined by the Ada language), in
13025 alphabetical order;
13026 - Exceptions only visible from the current frame, in
13027 alphabetical order;
13028 - Exceptions whose scope is global, in alphabetical order. */
13029
13030 VEC(ada_exc_info) *
13031 ada_exceptions_list (const char *regexp)
13032 {
13033 VEC(ada_exc_info) *result = NULL;
13034 struct cleanup *old_chain = NULL;
13035 regex_t reg;
13036
13037 if (regexp != NULL)
13038 old_chain = compile_rx_or_error (&reg, regexp,
13039 _("invalid regular expression"));
13040
13041 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13042
13043 if (old_chain != NULL)
13044 do_cleanups (old_chain);
13045 return result;
13046 }
13047
13048 /* Implement the "info exceptions" command. */
13049
13050 static void
13051 info_exceptions_command (char *regexp, int from_tty)
13052 {
13053 VEC(ada_exc_info) *exceptions;
13054 struct cleanup *cleanup;
13055 struct gdbarch *gdbarch = get_current_arch ();
13056 int ix;
13057 struct ada_exc_info *info;
13058
13059 exceptions = ada_exceptions_list (regexp);
13060 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13061
13062 if (regexp != NULL)
13063 printf_filtered
13064 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13065 else
13066 printf_filtered (_("All defined Ada exceptions:\n"));
13067
13068 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13069 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13070
13071 do_cleanups (cleanup);
13072 }
13073
13074 /* Operators */
13075 /* Information about operators given special treatment in functions
13076 below. */
13077 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13078
13079 #define ADA_OPERATORS \
13080 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13081 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13082 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13083 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13084 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13085 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13086 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13087 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13088 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13089 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13090 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13091 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13092 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13093 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13094 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13095 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13096 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13097 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13098 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13099
13100 static void
13101 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13102 int *argsp)
13103 {
13104 switch (exp->elts[pc - 1].opcode)
13105 {
13106 default:
13107 operator_length_standard (exp, pc, oplenp, argsp);
13108 break;
13109
13110 #define OP_DEFN(op, len, args, binop) \
13111 case op: *oplenp = len; *argsp = args; break;
13112 ADA_OPERATORS;
13113 #undef OP_DEFN
13114
13115 case OP_AGGREGATE:
13116 *oplenp = 3;
13117 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13118 break;
13119
13120 case OP_CHOICES:
13121 *oplenp = 3;
13122 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13123 break;
13124 }
13125 }
13126
13127 /* Implementation of the exp_descriptor method operator_check. */
13128
13129 static int
13130 ada_operator_check (struct expression *exp, int pos,
13131 int (*objfile_func) (struct objfile *objfile, void *data),
13132 void *data)
13133 {
13134 const union exp_element *const elts = exp->elts;
13135 struct type *type = NULL;
13136
13137 switch (elts[pos].opcode)
13138 {
13139 case UNOP_IN_RANGE:
13140 case UNOP_QUAL:
13141 type = elts[pos + 1].type;
13142 break;
13143
13144 default:
13145 return operator_check_standard (exp, pos, objfile_func, data);
13146 }
13147
13148 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13149
13150 if (type && TYPE_OBJFILE (type)
13151 && (*objfile_func) (TYPE_OBJFILE (type), data))
13152 return 1;
13153
13154 return 0;
13155 }
13156
13157 static char *
13158 ada_op_name (enum exp_opcode opcode)
13159 {
13160 switch (opcode)
13161 {
13162 default:
13163 return op_name_standard (opcode);
13164
13165 #define OP_DEFN(op, len, args, binop) case op: return #op;
13166 ADA_OPERATORS;
13167 #undef OP_DEFN
13168
13169 case OP_AGGREGATE:
13170 return "OP_AGGREGATE";
13171 case OP_CHOICES:
13172 return "OP_CHOICES";
13173 case OP_NAME:
13174 return "OP_NAME";
13175 }
13176 }
13177
13178 /* As for operator_length, but assumes PC is pointing at the first
13179 element of the operator, and gives meaningful results only for the
13180 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13181
13182 static void
13183 ada_forward_operator_length (struct expression *exp, int pc,
13184 int *oplenp, int *argsp)
13185 {
13186 switch (exp->elts[pc].opcode)
13187 {
13188 default:
13189 *oplenp = *argsp = 0;
13190 break;
13191
13192 #define OP_DEFN(op, len, args, binop) \
13193 case op: *oplenp = len; *argsp = args; break;
13194 ADA_OPERATORS;
13195 #undef OP_DEFN
13196
13197 case OP_AGGREGATE:
13198 *oplenp = 3;
13199 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13200 break;
13201
13202 case OP_CHOICES:
13203 *oplenp = 3;
13204 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13205 break;
13206
13207 case OP_STRING:
13208 case OP_NAME:
13209 {
13210 int len = longest_to_int (exp->elts[pc + 1].longconst);
13211
13212 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13213 *argsp = 0;
13214 break;
13215 }
13216 }
13217 }
13218
13219 static int
13220 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13221 {
13222 enum exp_opcode op = exp->elts[elt].opcode;
13223 int oplen, nargs;
13224 int pc = elt;
13225 int i;
13226
13227 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13228
13229 switch (op)
13230 {
13231 /* Ada attributes ('Foo). */
13232 case OP_ATR_FIRST:
13233 case OP_ATR_LAST:
13234 case OP_ATR_LENGTH:
13235 case OP_ATR_IMAGE:
13236 case OP_ATR_MAX:
13237 case OP_ATR_MIN:
13238 case OP_ATR_MODULUS:
13239 case OP_ATR_POS:
13240 case OP_ATR_SIZE:
13241 case OP_ATR_TAG:
13242 case OP_ATR_VAL:
13243 break;
13244
13245 case UNOP_IN_RANGE:
13246 case UNOP_QUAL:
13247 /* XXX: gdb_sprint_host_address, type_sprint */
13248 fprintf_filtered (stream, _("Type @"));
13249 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13250 fprintf_filtered (stream, " (");
13251 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13252 fprintf_filtered (stream, ")");
13253 break;
13254 case BINOP_IN_BOUNDS:
13255 fprintf_filtered (stream, " (%d)",
13256 longest_to_int (exp->elts[pc + 2].longconst));
13257 break;
13258 case TERNOP_IN_RANGE:
13259 break;
13260
13261 case OP_AGGREGATE:
13262 case OP_OTHERS:
13263 case OP_DISCRETE_RANGE:
13264 case OP_POSITIONAL:
13265 case OP_CHOICES:
13266 break;
13267
13268 case OP_NAME:
13269 case OP_STRING:
13270 {
13271 char *name = &exp->elts[elt + 2].string;
13272 int len = longest_to_int (exp->elts[elt + 1].longconst);
13273
13274 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13275 break;
13276 }
13277
13278 default:
13279 return dump_subexp_body_standard (exp, stream, elt);
13280 }
13281
13282 elt += oplen;
13283 for (i = 0; i < nargs; i += 1)
13284 elt = dump_subexp (exp, stream, elt);
13285
13286 return elt;
13287 }
13288
13289 /* The Ada extension of print_subexp (q.v.). */
13290
13291 static void
13292 ada_print_subexp (struct expression *exp, int *pos,
13293 struct ui_file *stream, enum precedence prec)
13294 {
13295 int oplen, nargs, i;
13296 int pc = *pos;
13297 enum exp_opcode op = exp->elts[pc].opcode;
13298
13299 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13300
13301 *pos += oplen;
13302 switch (op)
13303 {
13304 default:
13305 *pos -= oplen;
13306 print_subexp_standard (exp, pos, stream, prec);
13307 return;
13308
13309 case OP_VAR_VALUE:
13310 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13311 return;
13312
13313 case BINOP_IN_BOUNDS:
13314 /* XXX: sprint_subexp */
13315 print_subexp (exp, pos, stream, PREC_SUFFIX);
13316 fputs_filtered (" in ", stream);
13317 print_subexp (exp, pos, stream, PREC_SUFFIX);
13318 fputs_filtered ("'range", stream);
13319 if (exp->elts[pc + 1].longconst > 1)
13320 fprintf_filtered (stream, "(%ld)",
13321 (long) exp->elts[pc + 1].longconst);
13322 return;
13323
13324 case TERNOP_IN_RANGE:
13325 if (prec >= PREC_EQUAL)
13326 fputs_filtered ("(", stream);
13327 /* XXX: sprint_subexp */
13328 print_subexp (exp, pos, stream, PREC_SUFFIX);
13329 fputs_filtered (" in ", stream);
13330 print_subexp (exp, pos, stream, PREC_EQUAL);
13331 fputs_filtered (" .. ", stream);
13332 print_subexp (exp, pos, stream, PREC_EQUAL);
13333 if (prec >= PREC_EQUAL)
13334 fputs_filtered (")", stream);
13335 return;
13336
13337 case OP_ATR_FIRST:
13338 case OP_ATR_LAST:
13339 case OP_ATR_LENGTH:
13340 case OP_ATR_IMAGE:
13341 case OP_ATR_MAX:
13342 case OP_ATR_MIN:
13343 case OP_ATR_MODULUS:
13344 case OP_ATR_POS:
13345 case OP_ATR_SIZE:
13346 case OP_ATR_TAG:
13347 case OP_ATR_VAL:
13348 if (exp->elts[*pos].opcode == OP_TYPE)
13349 {
13350 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13351 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13352 &type_print_raw_options);
13353 *pos += 3;
13354 }
13355 else
13356 print_subexp (exp, pos, stream, PREC_SUFFIX);
13357 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13358 if (nargs > 1)
13359 {
13360 int tem;
13361
13362 for (tem = 1; tem < nargs; tem += 1)
13363 {
13364 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13365 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13366 }
13367 fputs_filtered (")", stream);
13368 }
13369 return;
13370
13371 case UNOP_QUAL:
13372 type_print (exp->elts[pc + 1].type, "", stream, 0);
13373 fputs_filtered ("'(", stream);
13374 print_subexp (exp, pos, stream, PREC_PREFIX);
13375 fputs_filtered (")", stream);
13376 return;
13377
13378 case UNOP_IN_RANGE:
13379 /* XXX: sprint_subexp */
13380 print_subexp (exp, pos, stream, PREC_SUFFIX);
13381 fputs_filtered (" in ", stream);
13382 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13383 &type_print_raw_options);
13384 return;
13385
13386 case OP_DISCRETE_RANGE:
13387 print_subexp (exp, pos, stream, PREC_SUFFIX);
13388 fputs_filtered ("..", stream);
13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
13390 return;
13391
13392 case OP_OTHERS:
13393 fputs_filtered ("others => ", stream);
13394 print_subexp (exp, pos, stream, PREC_SUFFIX);
13395 return;
13396
13397 case OP_CHOICES:
13398 for (i = 0; i < nargs-1; i += 1)
13399 {
13400 if (i > 0)
13401 fputs_filtered ("|", stream);
13402 print_subexp (exp, pos, stream, PREC_SUFFIX);
13403 }
13404 fputs_filtered (" => ", stream);
13405 print_subexp (exp, pos, stream, PREC_SUFFIX);
13406 return;
13407
13408 case OP_POSITIONAL:
13409 print_subexp (exp, pos, stream, PREC_SUFFIX);
13410 return;
13411
13412 case OP_AGGREGATE:
13413 fputs_filtered ("(", stream);
13414 for (i = 0; i < nargs; i += 1)
13415 {
13416 if (i > 0)
13417 fputs_filtered (", ", stream);
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 }
13420 fputs_filtered (")", stream);
13421 return;
13422 }
13423 }
13424
13425 /* Table mapping opcodes into strings for printing operators
13426 and precedences of the operators. */
13427
13428 static const struct op_print ada_op_print_tab[] = {
13429 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13430 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13431 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13432 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13433 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13434 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13435 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13436 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13437 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13438 {">=", BINOP_GEQ, PREC_ORDER, 0},
13439 {">", BINOP_GTR, PREC_ORDER, 0},
13440 {"<", BINOP_LESS, PREC_ORDER, 0},
13441 {">>", BINOP_RSH, PREC_SHIFT, 0},
13442 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13443 {"+", BINOP_ADD, PREC_ADD, 0},
13444 {"-", BINOP_SUB, PREC_ADD, 0},
13445 {"&", BINOP_CONCAT, PREC_ADD, 0},
13446 {"*", BINOP_MUL, PREC_MUL, 0},
13447 {"/", BINOP_DIV, PREC_MUL, 0},
13448 {"rem", BINOP_REM, PREC_MUL, 0},
13449 {"mod", BINOP_MOD, PREC_MUL, 0},
13450 {"**", BINOP_EXP, PREC_REPEAT, 0},
13451 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13452 {"-", UNOP_NEG, PREC_PREFIX, 0},
13453 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13454 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13455 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13456 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13457 {".all", UNOP_IND, PREC_SUFFIX, 1},
13458 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13459 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13460 {NULL, 0, 0, 0}
13461 };
13462 \f
13463 enum ada_primitive_types {
13464 ada_primitive_type_int,
13465 ada_primitive_type_long,
13466 ada_primitive_type_short,
13467 ada_primitive_type_char,
13468 ada_primitive_type_float,
13469 ada_primitive_type_double,
13470 ada_primitive_type_void,
13471 ada_primitive_type_long_long,
13472 ada_primitive_type_long_double,
13473 ada_primitive_type_natural,
13474 ada_primitive_type_positive,
13475 ada_primitive_type_system_address,
13476 nr_ada_primitive_types
13477 };
13478
13479 static void
13480 ada_language_arch_info (struct gdbarch *gdbarch,
13481 struct language_arch_info *lai)
13482 {
13483 const struct builtin_type *builtin = builtin_type (gdbarch);
13484
13485 lai->primitive_type_vector
13486 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13487 struct type *);
13488
13489 lai->primitive_type_vector [ada_primitive_type_int]
13490 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13491 0, "integer");
13492 lai->primitive_type_vector [ada_primitive_type_long]
13493 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13494 0, "long_integer");
13495 lai->primitive_type_vector [ada_primitive_type_short]
13496 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13497 0, "short_integer");
13498 lai->string_char_type
13499 = lai->primitive_type_vector [ada_primitive_type_char]
13500 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13501 lai->primitive_type_vector [ada_primitive_type_float]
13502 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13503 "float", NULL);
13504 lai->primitive_type_vector [ada_primitive_type_double]
13505 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13506 "long_float", NULL);
13507 lai->primitive_type_vector [ada_primitive_type_long_long]
13508 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13509 0, "long_long_integer");
13510 lai->primitive_type_vector [ada_primitive_type_long_double]
13511 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13512 "long_long_float", NULL);
13513 lai->primitive_type_vector [ada_primitive_type_natural]
13514 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13515 0, "natural");
13516 lai->primitive_type_vector [ada_primitive_type_positive]
13517 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13518 0, "positive");
13519 lai->primitive_type_vector [ada_primitive_type_void]
13520 = builtin->builtin_void;
13521
13522 lai->primitive_type_vector [ada_primitive_type_system_address]
13523 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13524 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13525 = "system__address";
13526
13527 lai->bool_type_symbol = NULL;
13528 lai->bool_type_default = builtin->builtin_bool;
13529 }
13530 \f
13531 /* Language vector */
13532
13533 /* Not really used, but needed in the ada_language_defn. */
13534
13535 static void
13536 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13537 {
13538 ada_emit_char (c, type, stream, quoter, 1);
13539 }
13540
13541 static int
13542 parse (struct parser_state *ps)
13543 {
13544 warnings_issued = 0;
13545 return ada_parse (ps);
13546 }
13547
13548 static const struct exp_descriptor ada_exp_descriptor = {
13549 ada_print_subexp,
13550 ada_operator_length,
13551 ada_operator_check,
13552 ada_op_name,
13553 ada_dump_subexp_body,
13554 ada_evaluate_subexp
13555 };
13556
13557 /* Implement the "la_get_symbol_name_cmp" language_defn method
13558 for Ada. */
13559
13560 static symbol_name_cmp_ftype
13561 ada_get_symbol_name_cmp (const char *lookup_name)
13562 {
13563 if (should_use_wild_match (lookup_name))
13564 return wild_match;
13565 else
13566 return compare_names;
13567 }
13568
13569 /* Implement the "la_read_var_value" language_defn method for Ada. */
13570
13571 static struct value *
13572 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13573 {
13574 const struct block *frame_block = NULL;
13575 struct symbol *renaming_sym = NULL;
13576
13577 /* The only case where default_read_var_value is not sufficient
13578 is when VAR is a renaming... */
13579 if (frame)
13580 frame_block = get_frame_block (frame, NULL);
13581 if (frame_block)
13582 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13583 if (renaming_sym != NULL)
13584 return ada_read_renaming_var_value (renaming_sym, frame_block);
13585
13586 /* This is a typical case where we expect the default_read_var_value
13587 function to work. */
13588 return default_read_var_value (var, frame);
13589 }
13590
13591 const struct language_defn ada_language_defn = {
13592 "ada", /* Language name */
13593 "Ada",
13594 language_ada,
13595 range_check_off,
13596 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13597 that's not quite what this means. */
13598 array_row_major,
13599 macro_expansion_no,
13600 &ada_exp_descriptor,
13601 parse,
13602 ada_error,
13603 resolve,
13604 ada_printchar, /* Print a character constant */
13605 ada_printstr, /* Function to print string constant */
13606 emit_char, /* Function to print single char (not used) */
13607 ada_print_type, /* Print a type using appropriate syntax */
13608 ada_print_typedef, /* Print a typedef using appropriate syntax */
13609 ada_val_print, /* Print a value using appropriate syntax */
13610 ada_value_print, /* Print a top-level value */
13611 ada_read_var_value, /* la_read_var_value */
13612 NULL, /* Language specific skip_trampoline */
13613 NULL, /* name_of_this */
13614 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13615 basic_lookup_transparent_type, /* lookup_transparent_type */
13616 ada_la_decode, /* Language specific symbol demangler */
13617 NULL, /* Language specific
13618 class_name_from_physname */
13619 ada_op_print_tab, /* expression operators for printing */
13620 0, /* c-style arrays */
13621 1, /* String lower bound */
13622 ada_get_gdb_completer_word_break_characters,
13623 ada_make_symbol_completion_list,
13624 ada_language_arch_info,
13625 ada_print_array_index,
13626 default_pass_by_reference,
13627 c_get_string,
13628 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13629 ada_iterate_over_symbols,
13630 &ada_varobj_ops,
13631 NULL,
13632 NULL,
13633 LANG_MAGIC
13634 };
13635
13636 /* Provide a prototype to silence -Wmissing-prototypes. */
13637 extern initialize_file_ftype _initialize_ada_language;
13638
13639 /* Command-list for the "set/show ada" prefix command. */
13640 static struct cmd_list_element *set_ada_list;
13641 static struct cmd_list_element *show_ada_list;
13642
13643 /* Implement the "set ada" prefix command. */
13644
13645 static void
13646 set_ada_command (char *arg, int from_tty)
13647 {
13648 printf_unfiltered (_(\
13649 "\"set ada\" must be followed by the name of a setting.\n"));
13650 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13651 }
13652
13653 /* Implement the "show ada" prefix command. */
13654
13655 static void
13656 show_ada_command (char *args, int from_tty)
13657 {
13658 cmd_show_list (show_ada_list, from_tty, "");
13659 }
13660
13661 static void
13662 initialize_ada_catchpoint_ops (void)
13663 {
13664 struct breakpoint_ops *ops;
13665
13666 initialize_breakpoint_ops ();
13667
13668 ops = &catch_exception_breakpoint_ops;
13669 *ops = bkpt_breakpoint_ops;
13670 ops->dtor = dtor_catch_exception;
13671 ops->allocate_location = allocate_location_catch_exception;
13672 ops->re_set = re_set_catch_exception;
13673 ops->check_status = check_status_catch_exception;
13674 ops->print_it = print_it_catch_exception;
13675 ops->print_one = print_one_catch_exception;
13676 ops->print_mention = print_mention_catch_exception;
13677 ops->print_recreate = print_recreate_catch_exception;
13678
13679 ops = &catch_exception_unhandled_breakpoint_ops;
13680 *ops = bkpt_breakpoint_ops;
13681 ops->dtor = dtor_catch_exception_unhandled;
13682 ops->allocate_location = allocate_location_catch_exception_unhandled;
13683 ops->re_set = re_set_catch_exception_unhandled;
13684 ops->check_status = check_status_catch_exception_unhandled;
13685 ops->print_it = print_it_catch_exception_unhandled;
13686 ops->print_one = print_one_catch_exception_unhandled;
13687 ops->print_mention = print_mention_catch_exception_unhandled;
13688 ops->print_recreate = print_recreate_catch_exception_unhandled;
13689
13690 ops = &catch_assert_breakpoint_ops;
13691 *ops = bkpt_breakpoint_ops;
13692 ops->dtor = dtor_catch_assert;
13693 ops->allocate_location = allocate_location_catch_assert;
13694 ops->re_set = re_set_catch_assert;
13695 ops->check_status = check_status_catch_assert;
13696 ops->print_it = print_it_catch_assert;
13697 ops->print_one = print_one_catch_assert;
13698 ops->print_mention = print_mention_catch_assert;
13699 ops->print_recreate = print_recreate_catch_assert;
13700 }
13701
13702 /* This module's 'new_objfile' observer. */
13703
13704 static void
13705 ada_new_objfile_observer (struct objfile *objfile)
13706 {
13707 ada_clear_symbol_cache ();
13708 }
13709
13710 /* This module's 'free_objfile' observer. */
13711
13712 static void
13713 ada_free_objfile_observer (struct objfile *objfile)
13714 {
13715 ada_clear_symbol_cache ();
13716 }
13717
13718 void
13719 _initialize_ada_language (void)
13720 {
13721 add_language (&ada_language_defn);
13722
13723 initialize_ada_catchpoint_ops ();
13724
13725 add_prefix_cmd ("ada", no_class, set_ada_command,
13726 _("Prefix command for changing Ada-specfic settings"),
13727 &set_ada_list, "set ada ", 0, &setlist);
13728
13729 add_prefix_cmd ("ada", no_class, show_ada_command,
13730 _("Generic command for showing Ada-specific settings."),
13731 &show_ada_list, "show ada ", 0, &showlist);
13732
13733 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13734 &trust_pad_over_xvs, _("\
13735 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13736 Show whether an optimization trusting PAD types over XVS types is activated"),
13737 _("\
13738 This is related to the encoding used by the GNAT compiler. The debugger\n\
13739 should normally trust the contents of PAD types, but certain older versions\n\
13740 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13741 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13742 work around this bug. It is always safe to turn this option \"off\", but\n\
13743 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13744 this option to \"off\" unless necessary."),
13745 NULL, NULL, &set_ada_list, &show_ada_list);
13746
13747 add_catch_command ("exception", _("\
13748 Catch Ada exceptions, when raised.\n\
13749 With an argument, catch only exceptions with the given name."),
13750 catch_ada_exception_command,
13751 NULL,
13752 CATCH_PERMANENT,
13753 CATCH_TEMPORARY);
13754 add_catch_command ("assert", _("\
13755 Catch failed Ada assertions, when raised.\n\
13756 With an argument, catch only exceptions with the given name."),
13757 catch_assert_command,
13758 NULL,
13759 CATCH_PERMANENT,
13760 CATCH_TEMPORARY);
13761
13762 varsize_limit = 65536;
13763
13764 add_info ("exceptions", info_exceptions_command,
13765 _("\
13766 List all Ada exception names.\n\
13767 If a regular expression is passed as an argument, only those matching\n\
13768 the regular expression are listed."));
13769
13770 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13771 _("Set Ada maintenance-related variables."),
13772 &maint_set_ada_cmdlist, "maintenance set ada ",
13773 0/*allow-unknown*/, &maintenance_set_cmdlist);
13774
13775 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13776 _("Show Ada maintenance-related variables"),
13777 &maint_show_ada_cmdlist, "maintenance show ada ",
13778 0/*allow-unknown*/, &maintenance_show_cmdlist);
13779
13780 add_setshow_boolean_cmd
13781 ("ignore-descriptive-types", class_maintenance,
13782 &ada_ignore_descriptive_types_p,
13783 _("Set whether descriptive types generated by GNAT should be ignored."),
13784 _("Show whether descriptive types generated by GNAT should be ignored."),
13785 _("\
13786 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13787 DWARF attribute."),
13788 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13789
13790 obstack_init (&symbol_list_obstack);
13791
13792 decoded_names_store = htab_create_alloc
13793 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13794 NULL, xcalloc, xfree);
13795
13796 /* The ada-lang observers. */
13797 observer_attach_new_objfile (ada_new_objfile_observer);
13798 observer_attach_free_objfile (ada_free_objfile_observer);
13799 observer_attach_inferior_exit (ada_inferior_exit);
13800
13801 /* Setup various context-specific data. */
13802 ada_inferior_data
13803 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13804 ada_pspace_data_handle
13805 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13806 }
This page took 0.502544 seconds and 5 git commands to generate.