Reject slicing a packed array
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_unconstrained_packed_array_type (struct type *);
174
175 static struct value *value_subscript_packed (struct value *, int,
176 struct value **);
177
178 static struct value *coerce_unspec_val_to_type (struct value *,
179 struct type *);
180
181 static int lesseq_defined_than (struct symbol *, struct symbol *);
182
183 static int equiv_types (struct type *, struct type *);
184
185 static int is_name_suffix (const char *);
186
187 static int advance_wild_match (const char **, const char *, char);
188
189 static bool wild_match (const char *name, const char *patn);
190
191 static struct value *ada_coerce_ref (struct value *);
192
193 static LONGEST pos_atr (struct value *);
194
195 static struct value *value_pos_atr (struct type *, struct value *);
196
197 static struct value *val_atr (struct type *, LONGEST);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static int find_struct_field (const char *, struct type *, int,
208 struct type **, int *, int *, int *, int *);
209
210 static int ada_resolve_function (struct block_symbol *, int,
211 struct value **, int, const char *,
212 struct type *, int);
213
214 static int ada_is_direct_array_type (struct type *);
215
216 static struct value *ada_index_struct_field (int, struct value *, int,
217 struct type *);
218
219 static struct value *assign_aggregate (struct value *, struct value *,
220 struct expression *,
221 int *, enum noside);
222
223 static void aggregate_assign_from_choices (struct value *, struct value *,
224 struct expression *,
225 int *, LONGEST *, int *,
226 int, LONGEST, LONGEST);
227
228 static void aggregate_assign_positional (struct value *, struct value *,
229 struct expression *,
230 int *, LONGEST *, int *, int,
231 LONGEST, LONGEST);
232
233
234 static void aggregate_assign_others (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int, LONGEST, LONGEST);
237
238
239 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
240
241
242 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
243 int *, enum noside);
244
245 static void ada_forward_operator_length (struct expression *, int, int *,
246 int *);
247
248 static struct type *ada_find_any_type (const char *name);
249
250 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
251 (const lookup_name_info &lookup_name);
252
253 \f
254
255 /* The result of a symbol lookup to be stored in our symbol cache. */
256
257 struct cache_entry
258 {
259 /* The name used to perform the lookup. */
260 const char *name;
261 /* The namespace used during the lookup. */
262 domain_enum domain;
263 /* The symbol returned by the lookup, or NULL if no matching symbol
264 was found. */
265 struct symbol *sym;
266 /* The block where the symbol was found, or NULL if no matching
267 symbol was found. */
268 const struct block *block;
269 /* A pointer to the next entry with the same hash. */
270 struct cache_entry *next;
271 };
272
273 /* The Ada symbol cache, used to store the result of Ada-mode symbol
274 lookups in the course of executing the user's commands.
275
276 The cache is implemented using a simple, fixed-sized hash.
277 The size is fixed on the grounds that there are not likely to be
278 all that many symbols looked up during any given session, regardless
279 of the size of the symbol table. If we decide to go to a resizable
280 table, let's just use the stuff from libiberty instead. */
281
282 #define HASH_SIZE 1009
283
284 struct ada_symbol_cache
285 {
286 /* An obstack used to store the entries in our cache. */
287 struct obstack cache_space;
288
289 /* The root of the hash table used to implement our symbol cache. */
290 struct cache_entry *root[HASH_SIZE];
291 };
292
293 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
294
295 /* Maximum-sized dynamic type. */
296 static unsigned int varsize_limit;
297
298 static const char ada_completer_word_break_characters[] =
299 #ifdef VMS
300 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
301 #else
302 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
303 #endif
304
305 /* The name of the symbol to use to get the name of the main subprogram. */
306 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
307 = "__gnat_ada_main_program_name";
308
309 /* Limit on the number of warnings to raise per expression evaluation. */
310 static int warning_limit = 2;
311
312 /* Number of warning messages issued; reset to 0 by cleanups after
313 expression evaluation. */
314 static int warnings_issued = 0;
315
316 static const char * const known_runtime_file_name_patterns[] = {
317 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318 };
319
320 static const char * const known_auxiliary_function_name_patterns[] = {
321 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322 };
323
324 /* Maintenance-related settings for this module. */
325
326 static struct cmd_list_element *maint_set_ada_cmdlist;
327 static struct cmd_list_element *maint_show_ada_cmdlist;
328
329 /* The "maintenance ada set/show ignore-descriptive-type" value. */
330
331 static bool ada_ignore_descriptive_types_p = false;
332
333 /* Inferior-specific data. */
334
335 /* Per-inferior data for this module. */
336
337 struct ada_inferior_data
338 {
339 /* The ada__tags__type_specific_data type, which is used when decoding
340 tagged types. With older versions of GNAT, this type was directly
341 accessible through a component ("tsd") in the object tag. But this
342 is no longer the case, so we cache it for each inferior. */
343 struct type *tsd_type = nullptr;
344
345 /* The exception_support_info data. This data is used to determine
346 how to implement support for Ada exception catchpoints in a given
347 inferior. */
348 const struct exception_support_info *exception_info = nullptr;
349 };
350
351 /* Our key to this module's inferior data. */
352 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
353
354 /* Return our inferior data for the given inferior (INF).
355
356 This function always returns a valid pointer to an allocated
357 ada_inferior_data structure. If INF's inferior data has not
358 been previously set, this functions creates a new one with all
359 fields set to zero, sets INF's inferior to it, and then returns
360 a pointer to that newly allocated ada_inferior_data. */
361
362 static struct ada_inferior_data *
363 get_ada_inferior_data (struct inferior *inf)
364 {
365 struct ada_inferior_data *data;
366
367 data = ada_inferior_data.get (inf);
368 if (data == NULL)
369 data = ada_inferior_data.emplace (inf);
370
371 return data;
372 }
373
374 /* Perform all necessary cleanups regarding our module's inferior data
375 that is required after the inferior INF just exited. */
376
377 static void
378 ada_inferior_exit (struct inferior *inf)
379 {
380 ada_inferior_data.clear (inf);
381 }
382
383
384 /* program-space-specific data. */
385
386 /* This module's per-program-space data. */
387 struct ada_pspace_data
388 {
389 ~ada_pspace_data ()
390 {
391 if (sym_cache != NULL)
392 ada_free_symbol_cache (sym_cache);
393 }
394
395 /* The Ada symbol cache. */
396 struct ada_symbol_cache *sym_cache = nullptr;
397 };
398
399 /* Key to our per-program-space data. */
400 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
401
402 /* Return this module's data for the given program space (PSPACE).
403 If not is found, add a zero'ed one now.
404
405 This function always returns a valid object. */
406
407 static struct ada_pspace_data *
408 get_ada_pspace_data (struct program_space *pspace)
409 {
410 struct ada_pspace_data *data;
411
412 data = ada_pspace_data_handle.get (pspace);
413 if (data == NULL)
414 data = ada_pspace_data_handle.emplace (pspace);
415
416 return data;
417 }
418
419 /* Utilities */
420
421 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
422 all typedef layers have been peeled. Otherwise, return TYPE.
423
424 Normally, we really expect a typedef type to only have 1 typedef layer.
425 In other words, we really expect the target type of a typedef type to be
426 a non-typedef type. This is particularly true for Ada units, because
427 the language does not have a typedef vs not-typedef distinction.
428 In that respect, the Ada compiler has been trying to eliminate as many
429 typedef definitions in the debugging information, since they generally
430 do not bring any extra information (we still use typedef under certain
431 circumstances related mostly to the GNAT encoding).
432
433 Unfortunately, we have seen situations where the debugging information
434 generated by the compiler leads to such multiple typedef layers. For
435 instance, consider the following example with stabs:
436
437 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
438 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
439
440 This is an error in the debugging information which causes type
441 pck__float_array___XUP to be defined twice, and the second time,
442 it is defined as a typedef of a typedef.
443
444 This is on the fringe of legality as far as debugging information is
445 concerned, and certainly unexpected. But it is easy to handle these
446 situations correctly, so we can afford to be lenient in this case. */
447
448 static struct type *
449 ada_typedef_target_type (struct type *type)
450 {
451 while (type->code () == TYPE_CODE_TYPEDEF)
452 type = TYPE_TARGET_TYPE (type);
453 return type;
454 }
455
456 /* Given DECODED_NAME a string holding a symbol name in its
457 decoded form (ie using the Ada dotted notation), returns
458 its unqualified name. */
459
460 static const char *
461 ada_unqualified_name (const char *decoded_name)
462 {
463 const char *result;
464
465 /* If the decoded name starts with '<', it means that the encoded
466 name does not follow standard naming conventions, and thus that
467 it is not your typical Ada symbol name. Trying to unqualify it
468 is therefore pointless and possibly erroneous. */
469 if (decoded_name[0] == '<')
470 return decoded_name;
471
472 result = strrchr (decoded_name, '.');
473 if (result != NULL)
474 result++; /* Skip the dot... */
475 else
476 result = decoded_name;
477
478 return result;
479 }
480
481 /* Return a string starting with '<', followed by STR, and '>'. */
482
483 static std::string
484 add_angle_brackets (const char *str)
485 {
486 return string_printf ("<%s>", str);
487 }
488
489 /* Assuming V points to an array of S objects, make sure that it contains at
490 least M objects, updating V and S as necessary. */
491
492 #define GROW_VECT(v, s, m) \
493 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
494
495 /* Assuming VECT points to an array of *SIZE objects of size
496 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
497 updating *SIZE as necessary and returning the (new) array. */
498
499 static void *
500 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
501 {
502 if (*size < min_size)
503 {
504 *size *= 2;
505 if (*size < min_size)
506 *size = min_size;
507 vect = xrealloc (vect, *size * element_size);
508 }
509 return vect;
510 }
511
512 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
513 suffix of FIELD_NAME beginning "___". */
514
515 static int
516 field_name_match (const char *field_name, const char *target)
517 {
518 int len = strlen (target);
519
520 return
521 (strncmp (field_name, target, len) == 0
522 && (field_name[len] == '\0'
523 || (startswith (field_name + len, "___")
524 && strcmp (field_name + strlen (field_name) - 6,
525 "___XVN") != 0)));
526 }
527
528
529 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
530 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
531 and return its index. This function also handles fields whose name
532 have ___ suffixes because the compiler sometimes alters their name
533 by adding such a suffix to represent fields with certain constraints.
534 If the field could not be found, return a negative number if
535 MAYBE_MISSING is set. Otherwise raise an error. */
536
537 int
538 ada_get_field_index (const struct type *type, const char *field_name,
539 int maybe_missing)
540 {
541 int fieldno;
542 struct type *struct_type = check_typedef ((struct type *) type);
543
544 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
545 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
546 return fieldno;
547
548 if (!maybe_missing)
549 error (_("Unable to find field %s in struct %s. Aborting"),
550 field_name, struct_type->name ());
551
552 return -1;
553 }
554
555 /* The length of the prefix of NAME prior to any "___" suffix. */
556
557 int
558 ada_name_prefix_len (const char *name)
559 {
560 if (name == NULL)
561 return 0;
562 else
563 {
564 const char *p = strstr (name, "___");
565
566 if (p == NULL)
567 return strlen (name);
568 else
569 return p - name;
570 }
571 }
572
573 /* Return non-zero if SUFFIX is a suffix of STR.
574 Return zero if STR is null. */
575
576 static int
577 is_suffix (const char *str, const char *suffix)
578 {
579 int len1, len2;
580
581 if (str == NULL)
582 return 0;
583 len1 = strlen (str);
584 len2 = strlen (suffix);
585 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
586 }
587
588 /* The contents of value VAL, treated as a value of type TYPE. The
589 result is an lval in memory if VAL is. */
590
591 static struct value *
592 coerce_unspec_val_to_type (struct value *val, struct type *type)
593 {
594 type = ada_check_typedef (type);
595 if (value_type (val) == type)
596 return val;
597 else
598 {
599 struct value *result;
600
601 /* Make sure that the object size is not unreasonable before
602 trying to allocate some memory for it. */
603 ada_ensure_varsize_limit (type);
604
605 if (value_lazy (val)
606 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
607 result = allocate_value_lazy (type);
608 else
609 {
610 result = allocate_value (type);
611 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
612 }
613 set_value_component_location (result, val);
614 set_value_bitsize (result, value_bitsize (val));
615 set_value_bitpos (result, value_bitpos (val));
616 if (VALUE_LVAL (result) == lval_memory)
617 set_value_address (result, value_address (val));
618 return result;
619 }
620 }
621
622 static const gdb_byte *
623 cond_offset_host (const gdb_byte *valaddr, long offset)
624 {
625 if (valaddr == NULL)
626 return NULL;
627 else
628 return valaddr + offset;
629 }
630
631 static CORE_ADDR
632 cond_offset_target (CORE_ADDR address, long offset)
633 {
634 if (address == 0)
635 return 0;
636 else
637 return address + offset;
638 }
639
640 /* Issue a warning (as for the definition of warning in utils.c, but
641 with exactly one argument rather than ...), unless the limit on the
642 number of warnings has passed during the evaluation of the current
643 expression. */
644
645 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
646 provided by "complaint". */
647 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
648
649 static void
650 lim_warning (const char *format, ...)
651 {
652 va_list args;
653
654 va_start (args, format);
655 warnings_issued += 1;
656 if (warnings_issued <= warning_limit)
657 vwarning (format, args);
658
659 va_end (args);
660 }
661
662 /* Issue an error if the size of an object of type T is unreasonable,
663 i.e. if it would be a bad idea to allocate a value of this type in
664 GDB. */
665
666 void
667 ada_ensure_varsize_limit (const struct type *type)
668 {
669 if (TYPE_LENGTH (type) > varsize_limit)
670 error (_("object size is larger than varsize-limit"));
671 }
672
673 /* Maximum value of a SIZE-byte signed integer type. */
674 static LONGEST
675 max_of_size (int size)
676 {
677 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
678
679 return top_bit | (top_bit - 1);
680 }
681
682 /* Minimum value of a SIZE-byte signed integer type. */
683 static LONGEST
684 min_of_size (int size)
685 {
686 return -max_of_size (size) - 1;
687 }
688
689 /* Maximum value of a SIZE-byte unsigned integer type. */
690 static ULONGEST
691 umax_of_size (int size)
692 {
693 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
694
695 return top_bit | (top_bit - 1);
696 }
697
698 /* Maximum value of integral type T, as a signed quantity. */
699 static LONGEST
700 max_of_type (struct type *t)
701 {
702 if (t->is_unsigned ())
703 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
704 else
705 return max_of_size (TYPE_LENGTH (t));
706 }
707
708 /* Minimum value of integral type T, as a signed quantity. */
709 static LONGEST
710 min_of_type (struct type *t)
711 {
712 if (t->is_unsigned ())
713 return 0;
714 else
715 return min_of_size (TYPE_LENGTH (t));
716 }
717
718 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
719 LONGEST
720 ada_discrete_type_high_bound (struct type *type)
721 {
722 type = resolve_dynamic_type (type, {}, 0);
723 switch (type->code ())
724 {
725 case TYPE_CODE_RANGE:
726 {
727 const dynamic_prop &high = type->bounds ()->high;
728
729 if (high.kind () == PROP_CONST)
730 return high.const_val ();
731 else
732 {
733 gdb_assert (high.kind () == PROP_UNDEFINED);
734
735 /* This happens when trying to evaluate a type's dynamic bound
736 without a live target. There is nothing relevant for us to
737 return here, so return 0. */
738 return 0;
739 }
740 }
741 case TYPE_CODE_ENUM:
742 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
743 case TYPE_CODE_BOOL:
744 return 1;
745 case TYPE_CODE_CHAR:
746 case TYPE_CODE_INT:
747 return max_of_type (type);
748 default:
749 error (_("Unexpected type in ada_discrete_type_high_bound."));
750 }
751 }
752
753 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
754 LONGEST
755 ada_discrete_type_low_bound (struct type *type)
756 {
757 type = resolve_dynamic_type (type, {}, 0);
758 switch (type->code ())
759 {
760 case TYPE_CODE_RANGE:
761 {
762 const dynamic_prop &low = type->bounds ()->low;
763
764 if (low.kind () == PROP_CONST)
765 return low.const_val ();
766 else
767 {
768 gdb_assert (low.kind () == PROP_UNDEFINED);
769
770 /* This happens when trying to evaluate a type's dynamic bound
771 without a live target. There is nothing relevant for us to
772 return here, so return 0. */
773 return 0;
774 }
775 }
776 case TYPE_CODE_ENUM:
777 return TYPE_FIELD_ENUMVAL (type, 0);
778 case TYPE_CODE_BOOL:
779 return 0;
780 case TYPE_CODE_CHAR:
781 case TYPE_CODE_INT:
782 return min_of_type (type);
783 default:
784 error (_("Unexpected type in ada_discrete_type_low_bound."));
785 }
786 }
787
788 /* The identity on non-range types. For range types, the underlying
789 non-range scalar type. */
790
791 static struct type *
792 get_base_type (struct type *type)
793 {
794 while (type != NULL && type->code () == TYPE_CODE_RANGE)
795 {
796 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
797 return type;
798 type = TYPE_TARGET_TYPE (type);
799 }
800 return type;
801 }
802
803 /* Return a decoded version of the given VALUE. This means returning
804 a value whose type is obtained by applying all the GNAT-specific
805 encodings, making the resulting type a static but standard description
806 of the initial type. */
807
808 struct value *
809 ada_get_decoded_value (struct value *value)
810 {
811 struct type *type = ada_check_typedef (value_type (value));
812
813 if (ada_is_array_descriptor_type (type)
814 || (ada_is_constrained_packed_array_type (type)
815 && type->code () != TYPE_CODE_PTR))
816 {
817 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
818 value = ada_coerce_to_simple_array_ptr (value);
819 else
820 value = ada_coerce_to_simple_array (value);
821 }
822 else
823 value = ada_to_fixed_value (value);
824
825 return value;
826 }
827
828 /* Same as ada_get_decoded_value, but with the given TYPE.
829 Because there is no associated actual value for this type,
830 the resulting type might be a best-effort approximation in
831 the case of dynamic types. */
832
833 struct type *
834 ada_get_decoded_type (struct type *type)
835 {
836 type = to_static_fixed_type (type);
837 if (ada_is_constrained_packed_array_type (type))
838 type = ada_coerce_to_simple_array_type (type);
839 return type;
840 }
841
842 \f
843
844 /* Language Selection */
845
846 /* If the main program is in Ada, return language_ada, otherwise return LANG
847 (the main program is in Ada iif the adainit symbol is found). */
848
849 static enum language
850 ada_update_initial_language (enum language lang)
851 {
852 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
853 return language_ada;
854
855 return lang;
856 }
857
858 /* If the main procedure is written in Ada, then return its name.
859 The result is good until the next call. Return NULL if the main
860 procedure doesn't appear to be in Ada. */
861
862 char *
863 ada_main_name (void)
864 {
865 struct bound_minimal_symbol msym;
866 static gdb::unique_xmalloc_ptr<char> main_program_name;
867
868 /* For Ada, the name of the main procedure is stored in a specific
869 string constant, generated by the binder. Look for that symbol,
870 extract its address, and then read that string. If we didn't find
871 that string, then most probably the main procedure is not written
872 in Ada. */
873 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
874
875 if (msym.minsym != NULL)
876 {
877 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
878 if (main_program_name_addr == 0)
879 error (_("Invalid address for Ada main program name."));
880
881 main_program_name = target_read_string (main_program_name_addr, 1024);
882 return main_program_name.get ();
883 }
884
885 /* The main procedure doesn't seem to be in Ada. */
886 return NULL;
887 }
888 \f
889 /* Symbols */
890
891 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
892 of NULLs. */
893
894 const struct ada_opname_map ada_opname_table[] = {
895 {"Oadd", "\"+\"", BINOP_ADD},
896 {"Osubtract", "\"-\"", BINOP_SUB},
897 {"Omultiply", "\"*\"", BINOP_MUL},
898 {"Odivide", "\"/\"", BINOP_DIV},
899 {"Omod", "\"mod\"", BINOP_MOD},
900 {"Orem", "\"rem\"", BINOP_REM},
901 {"Oexpon", "\"**\"", BINOP_EXP},
902 {"Olt", "\"<\"", BINOP_LESS},
903 {"Ole", "\"<=\"", BINOP_LEQ},
904 {"Ogt", "\">\"", BINOP_GTR},
905 {"Oge", "\">=\"", BINOP_GEQ},
906 {"Oeq", "\"=\"", BINOP_EQUAL},
907 {"One", "\"/=\"", BINOP_NOTEQUAL},
908 {"Oand", "\"and\"", BINOP_BITWISE_AND},
909 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
910 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
911 {"Oconcat", "\"&\"", BINOP_CONCAT},
912 {"Oabs", "\"abs\"", UNOP_ABS},
913 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
914 {"Oadd", "\"+\"", UNOP_PLUS},
915 {"Osubtract", "\"-\"", UNOP_NEG},
916 {NULL, NULL}
917 };
918
919 /* The "encoded" form of DECODED, according to GNAT conventions. If
920 THROW_ERRORS, throw an error if invalid operator name is found.
921 Otherwise, return the empty string in that case. */
922
923 static std::string
924 ada_encode_1 (const char *decoded, bool throw_errors)
925 {
926 if (decoded == NULL)
927 return {};
928
929 std::string encoding_buffer;
930 for (const char *p = decoded; *p != '\0'; p += 1)
931 {
932 if (*p == '.')
933 encoding_buffer.append ("__");
934 else if (*p == '"')
935 {
936 const struct ada_opname_map *mapping;
937
938 for (mapping = ada_opname_table;
939 mapping->encoded != NULL
940 && !startswith (p, mapping->decoded); mapping += 1)
941 ;
942 if (mapping->encoded == NULL)
943 {
944 if (throw_errors)
945 error (_("invalid Ada operator name: %s"), p);
946 else
947 return {};
948 }
949 encoding_buffer.append (mapping->encoded);
950 break;
951 }
952 else
953 encoding_buffer.push_back (*p);
954 }
955
956 return encoding_buffer;
957 }
958
959 /* The "encoded" form of DECODED, according to GNAT conventions. */
960
961 std::string
962 ada_encode (const char *decoded)
963 {
964 return ada_encode_1 (decoded, true);
965 }
966
967 /* Return NAME folded to lower case, or, if surrounded by single
968 quotes, unfolded, but with the quotes stripped away. Result good
969 to next call. */
970
971 static char *
972 ada_fold_name (gdb::string_view name)
973 {
974 static char *fold_buffer = NULL;
975 static size_t fold_buffer_size = 0;
976
977 int len = name.size ();
978 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
979
980 if (name[0] == '\'')
981 {
982 strncpy (fold_buffer, name.data () + 1, len - 2);
983 fold_buffer[len - 2] = '\000';
984 }
985 else
986 {
987 int i;
988
989 for (i = 0; i <= len; i += 1)
990 fold_buffer[i] = tolower (name[i]);
991 }
992
993 return fold_buffer;
994 }
995
996 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998 static int
999 is_lower_alphanum (const char c)
1000 {
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002 }
1003
1004 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
1011
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016 static void
1017 ada_remove_trailing_digits (const char *encoded, int *len)
1018 {
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
1022
1023 while (i > 0 && isdigit (encoded[i]))
1024 i--;
1025 if (i >= 0 && encoded[i] == '.')
1026 *len = i;
1027 else if (i >= 0 && encoded[i] == '$')
1028 *len = i;
1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1030 *len = i - 2;
1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1032 *len = i - 1;
1033 }
1034 }
1035
1036 /* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039 static void
1040 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041 {
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
1047 the 'P' suffix. The second calls the first one after handling
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056 }
1057
1058 /* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1060 replaced by ENCODED. */
1061
1062 std::string
1063 ada_decode (const char *encoded)
1064 {
1065 int i, j;
1066 int len0;
1067 const char *p;
1068 int at_start_name;
1069 std::string decoded;
1070
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
1079 if (startswith (encoded, "_ada_"))
1080 encoded += 5;
1081
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
1085 if (encoded[0] == '_' || encoded[0] == '<')
1086 goto Suppress;
1087
1088 len0 = strlen (encoded);
1089
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
1092
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
1099 {
1100 if (p[3] == 'X')
1101 len0 = p - encoded;
1102 else
1103 goto Suppress;
1104 }
1105
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1111 len0 -= 3;
1112
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1118 len0 -= 2;
1119
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1124 len0 -= 1;
1125
1126 /* Make decoded big enough for possible expansion by operator name. */
1127
1128 decoded.resize (2 * len0 + 1, 'X');
1129
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1133 {
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1139 len0 = i - 1;
1140 else if (encoded[i] == '$')
1141 len0 = i;
1142 }
1143
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
1153 /* Is this a symbol function? */
1154 if (at_start_name && encoded[i] == 'O')
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
1175 at_start_name = 0;
1176
1177 /* Replace "TK__" with "__", which will eventually be translated
1178 into "." (just below). */
1179
1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1181 i += 2;
1182
1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
1201
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
1210
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1237 the GNAT front-end in protected object subprograms. */
1238
1239 if (i < len0 + 3
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
1253
1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
1277 else
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
1285 }
1286 decoded.resize (j);
1287
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
1291 for (i = 0; i < decoded.length(); ++i)
1292 if (isupper (decoded[i]) || decoded[i] == ' ')
1293 goto Suppress;
1294
1295 return decoded;
1296
1297 Suppress:
1298 if (encoded[0] == '<')
1299 decoded = encoded;
1300 else
1301 decoded = '<' + std::string(encoded) + '>';
1302 return decoded;
1303
1304 }
1305
1306 /* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311 static struct htab *decoded_names_store;
1312
1313 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
1318 GSYMBOL).
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
1321 when a decoded name is cached in it. */
1322
1323 const char *
1324 ada_decode_symbol (const struct general_symbol_info *arg)
1325 {
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
1328 &gsymbol->language_specific.demangled_name;
1329
1330 if (!gsymbol->ada_mangled)
1331 {
1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
1333 struct obstack *obstack = gsymbol->language_specific.obstack;
1334
1335 gsymbol->ada_mangled = 1;
1336
1337 if (obstack != NULL)
1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
1339 else
1340 {
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
1348
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
1353 }
1354
1355 return *resultp;
1356 }
1357
1358 static char *
1359 ada_la_decode (const char *encoded, int options)
1360 {
1361 return xstrdup (ada_decode (encoded).c_str ());
1362 }
1363
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describe the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (index_desc_type->num_fields () > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < index_desc_type->num_fields (); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 index_desc_type->field (i).set_type (raw_type);
1420 }
1421 }
1422
1423 /* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
1425
1426 /* The descriptor or array type, if any, indicated by TYPE; removes
1427 level of indirection, if needed. */
1428
1429 static struct type *
1430 desc_base_type (struct type *type)
1431 {
1432 if (type == NULL)
1433 return NULL;
1434 type = ada_check_typedef (type);
1435 if (type->code () == TYPE_CODE_TYPEDEF)
1436 type = ada_typedef_target_type (type);
1437
1438 if (type != NULL
1439 && (type->code () == TYPE_CODE_PTR
1440 || type->code () == TYPE_CODE_REF))
1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1442 else
1443 return type;
1444 }
1445
1446 /* True iff TYPE indicates a "thin" array pointer type. */
1447
1448 static int
1449 is_thin_pntr (struct type *type)
1450 {
1451 return
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454 }
1455
1456 /* The descriptor type for thin pointer type TYPE. */
1457
1458 static struct type *
1459 thin_descriptor_type (struct type *type)
1460 {
1461 struct type *base_type = desc_base_type (type);
1462
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
1467 else
1468 {
1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1470
1471 if (alt_type == NULL)
1472 return base_type;
1473 else
1474 return alt_type;
1475 }
1476 }
1477
1478 /* A pointer to the array data for thin-pointer value VAL. */
1479
1480 static struct value *
1481 thin_data_pntr (struct value *val)
1482 {
1483 struct type *type = ada_check_typedef (value_type (val));
1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1485
1486 data_type = lookup_pointer_type (data_type);
1487
1488 if (type->code () == TYPE_CODE_PTR)
1489 return value_cast (data_type, value_copy (val));
1490 else
1491 return value_from_longest (data_type, value_address (val));
1492 }
1493
1494 /* True iff TYPE indicates a "thick" array pointer type. */
1495
1496 static int
1497 is_thick_pntr (struct type *type)
1498 {
1499 type = desc_base_type (type);
1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1502 }
1503
1504 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
1506
1507 static struct type *
1508 desc_bounds_type (struct type *type)
1509 {
1510 struct type *r;
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
1520 return NULL;
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
1523 return ada_check_typedef (r);
1524 }
1525 else if (type->code () == TYPE_CODE_STRUCT)
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1530 }
1531 return NULL;
1532 }
1533
1534 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
1537 static struct value *
1538 desc_bounds (struct value *arr)
1539 {
1540 struct type *type = ada_check_typedef (value_type (arr));
1541
1542 if (is_thin_pntr (type))
1543 {
1544 struct type *bounds_type =
1545 desc_bounds_type (thin_descriptor_type (type));
1546 LONGEST addr;
1547
1548 if (bounds_type == NULL)
1549 error (_("Bad GNAT array descriptor"));
1550
1551 /* NOTE: The following calculation is not really kosher, but
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
1554 if (type->code () == TYPE_CODE_PTR)
1555 addr = value_as_long (arr);
1556 else
1557 addr = value_address (arr);
1558
1559 return
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
1562 }
1563
1564 else if (is_thick_pntr (type))
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
1571 && p_bounds_type->code () == TYPE_CODE_PTR)
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
1575 if (target_type->is_stub ())
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
1585 else
1586 return NULL;
1587 }
1588
1589 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
1592 static int
1593 fat_pntr_bounds_bitpos (struct type *type)
1594 {
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596 }
1597
1598 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1599 size of the field containing the address of the bounds data. */
1600
1601 static int
1602 fat_pntr_bounds_bitsize (struct type *type)
1603 {
1604 type = desc_base_type (type);
1605
1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1610 }
1611
1612 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
1616
1617 static struct type *
1618 desc_data_target_type (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
1623 if (is_thin_pntr (type))
1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1625 else if (is_thick_pntr (type))
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
1639
1640 static struct value *
1641 desc_data (struct value *arr)
1642 {
1643 struct type *type = value_type (arr);
1644
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1649 _("Bad GNAT array descriptor"));
1650 else
1651 return NULL;
1652 }
1653
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the data. */
1657
1658 static int
1659 fat_pntr_data_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the data. */
1666
1667 static int
1668 fat_pntr_data_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
1674 else
1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1676 }
1677
1678 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
1682 static struct value *
1683 desc_one_bound (struct value *bounds, int i, int which)
1684 {
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1689 _("Bad GNAT array descriptor bounds"));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static int
1697 desc_bound_bitpos (struct type *type, int i, int which)
1698 {
1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitsize (struct type *type, int i, int which)
1708 {
1709 type = desc_base_type (type);
1710
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1715 }
1716
1717 /* If TYPE is the type of an array-bounds structure, the type of its
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
1720 static struct type *
1721 desc_index_type (struct type *type, int i)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (type->code () == TYPE_CODE_STRUCT)
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
1731 else
1732 return NULL;
1733 }
1734
1735 /* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
1738 static int
1739 desc_arity (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1744 return type->num_fields () / 2;
1745 return 0;
1746 }
1747
1748 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
1752 static int
1753 ada_is_direct_array_type (struct type *type)
1754 {
1755 if (type == NULL)
1756 return 0;
1757 type = ada_check_typedef (type);
1758 return (type->code () == TYPE_CODE_ARRAY
1759 || ada_is_array_descriptor_type (type));
1760 }
1761
1762 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1763 * to one. */
1764
1765 static int
1766 ada_is_array_type (struct type *type)
1767 {
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773 }
1774
1775 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1776
1777 int
1778 ada_is_simple_array_type (struct type *type)
1779 {
1780 if (type == NULL)
1781 return 0;
1782 type = ada_check_typedef (type);
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
1787 }
1788
1789 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
1791 int
1792 ada_is_array_descriptor_type (struct type *type)
1793 {
1794 struct type *data_type = desc_data_target_type (type);
1795
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (data_type != NULL
1800 && data_type->code () == TYPE_CODE_ARRAY
1801 && desc_arity (desc_bounds_type (type)) > 0);
1802 }
1803
1804 /* Non-zero iff type is a partially mal-formed GNAT array
1805 descriptor. FIXME: This is to compensate for some problems with
1806 debugging output from GNAT. Re-examine periodically to see if it
1807 is still needed. */
1808
1809 int
1810 ada_is_bogus_array_descriptor (struct type *type)
1811 {
1812 return
1813 type != NULL
1814 && type->code () == TYPE_CODE_STRUCT
1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1817 && !ada_is_array_descriptor_type (type);
1818 }
1819
1820
1821 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1822 (fat pointer) returns the type of the array data described---specifically,
1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1824 in from the descriptor; otherwise, they are left unspecified. If
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
1827 a descriptor. */
1828
1829 static struct type *
1830 ada_type_of_array (struct value *arr, int bounds)
1831 {
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
1834
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
1837
1838 if (!bounds)
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
1849 else
1850 {
1851 struct type *elt_type;
1852 int arity;
1853 struct value *descriptor;
1854
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
1857
1858 if (elt_type == NULL || arity == 0)
1859 return ada_check_typedef (value_type (arr));
1860
1861 descriptor = desc_bounds (arr);
1862 if (value_as_long (descriptor) == 0)
1863 return NULL;
1864 while (arity > 0)
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
1875 elt_type = create_array_type (array_type, elt_type, range_type);
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1878 {
1879 /* We need to store the element packed bitsize, as well as
1880 recompute the array size, because it was previously
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
1888 zero, and does not need to be recomputed. */
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
1897 }
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901 }
1902
1903 /* If ARR does not represent an array, returns ARR unchanged.
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
1908 struct value *
1909 ada_coerce_to_simple_array_ptr (struct value *arr)
1910 {
1911 if (ada_is_array_descriptor_type (value_type (arr)))
1912 {
1913 struct type *arrType = ada_type_of_array (arr, 1);
1914
1915 if (arrType == NULL)
1916 return NULL;
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
1921 else
1922 return arr;
1923 }
1924
1925 /* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
1927 be ARR itself if it already is in the proper form). */
1928
1929 struct value *
1930 ada_coerce_to_simple_array (struct value *arr)
1931 {
1932 if (ada_is_array_descriptor_type (value_type (arr)))
1933 {
1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1935
1936 if (arrVal == NULL)
1937 error (_("Bounds unavailable for null array pointer."));
1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1939 return value_ind (arrVal);
1940 }
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
1943 else
1944 return arr;
1945 }
1946
1947 /* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
1949 packing). For other types, is the identity. */
1950
1951 struct type *
1952 ada_coerce_to_simple_array_type (struct type *type)
1953 {
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
1956
1957 if (ada_is_array_descriptor_type (type))
1958 return ada_check_typedef (desc_data_target_type (type));
1959
1960 return type;
1961 }
1962
1963 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
1965 static int
1966 ada_is_gnat_encoded_packed_array_type (struct type *type)
1967 {
1968 if (type == NULL)
1969 return 0;
1970 type = desc_base_type (type);
1971 type = ada_check_typedef (type);
1972 return
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975 }
1976
1977 /* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980 int
1981 ada_is_constrained_packed_array_type (struct type *type)
1982 {
1983 return ada_is_gnat_encoded_packed_array_type (type)
1984 && !ada_is_array_descriptor_type (type);
1985 }
1986
1987 /* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990 static int
1991 ada_is_unconstrained_packed_array_type (struct type *type)
1992 {
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018 static bool
2019 ada_is_any_packed_array_type (struct type *type)
2020 {
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024 }
2025
2026 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029 static long
2030 decode_packed_array_bitsize (struct type *type)
2031 {
2032 const char *raw_name;
2033 const char *tail;
2034 long bits;
2035
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
2039 if (type->code () == TYPE_CODE_TYPEDEF)
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068 }
2069
2070 /* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
2086
2087 static struct type *
2088 constrained_packed_array_type (struct type *type, long *elt_bits)
2089 {
2090 struct type *new_elt_type;
2091 struct type *new_type;
2092 struct type *index_type_desc;
2093 struct type *index_type;
2094 LONGEST low_bound, high_bound;
2095
2096 type = ada_check_typedef (type);
2097 if (type->code () != TYPE_CODE_ARRAY)
2098 return type;
2099
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2103 NULL);
2104 else
2105 index_type = type->index_type ();
2106
2107 new_type = alloc_type_copy (type);
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
2111 create_array_type (new_type, new_elt_type, index_type);
2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2113 new_type->set_name (ada_type_name (type));
2114
2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
2121 else
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
2124 TYPE_LENGTH (new_type) =
2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2126 }
2127
2128 new_type->set_is_fixed_instance (true);
2129 return new_type;
2130 }
2131
2132 /* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
2134
2135 static struct type *
2136 decode_constrained_packed_array_type (struct type *type)
2137 {
2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
2139 char *name;
2140 const char *tail;
2141 struct type *shadow_type;
2142 long bits;
2143
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
2152 type = desc_base_type (type);
2153
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
2160 {
2161 lim_warning (_("could not find bounds information on packed array"));
2162 return NULL;
2163 }
2164 shadow_type = check_typedef (shadow_type);
2165
2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
2167 {
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
2170 return NULL;
2171 }
2172
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
2175 }
2176
2177 /* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181 static LONGEST
2182 recursively_update_array_bitsize (struct type *type)
2183 {
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2248 && ada_is_modular_type (value_type (arr)))
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
2257 mod = ada_modulus (value_type (arr)) - 1;
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
2272 return coerce_unspec_val_to_type (arr, type);
2273 }
2274
2275
2276 /* The value of the element of packed array ARR at the ARITY indices
2277 given in IND. ARR must be a simple array. */
2278
2279 static struct value *
2280 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2281 {
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
2285 struct type *elt_type;
2286 struct value *v;
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
2290 elt_type = ada_check_typedef (value_type (arr));
2291 for (i = 0; i < arity; i += 1)
2292 {
2293 if (elt_type->code () != TYPE_CODE_ARRAY
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
2297 "something other than a packed array"));
2298 else
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
2313 (long) idx);
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2323 bits, elt_type);
2324 return v;
2325 }
2326
2327 /* Non-zero iff TYPE includes negative integer values. */
2328
2329 static int
2330 has_negatives (struct type *type)
2331 {
2332 switch (type->code ())
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
2337 return !type->is_unsigned ();
2338 case TYPE_CODE_RANGE:
2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2340 }
2341 }
2342
2343 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2345 the unpacked buffer.
2346
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
2352
2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2354
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357 static void
2358 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362 {
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
2368 byte of source that are unused */
2369
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
2373 unsigned long accum; /* Staging area for bits being transferred */
2374 int accumSize; /* Number of meaningful bits in accum */
2375 unsigned char sign;
2376
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
2379 int delta = is_big_endian ? -1 : 1;
2380
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
2387 srcBitsLeft = bit_size;
2388 src_bytes_left = src_len;
2389 unpacked_bytes_left = unpacked_len;
2390 sign = 0;
2391
2392 if (is_big_endian)
2393 {
2394 src_idx = src_len - 1;
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2397 sign = ~0;
2398
2399 unusedLS =
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
2402
2403 if (is_scalar)
2404 {
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
2407 }
2408 else
2409 {
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
2417 }
2418 }
2419 else
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
2423 src_idx = unpacked_idx = 0;
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2428 sign = ~0;
2429 }
2430
2431 accum = 0;
2432 while (src_bytes_left > 0)
2433 {
2434 /* Mask for removing bits of the next source byte that are not
2435 part of the value. */
2436 unsigned int unusedMSMask =
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
2439 /* Sign-extend bits for this byte. */
2440 unsigned int signMask = sign & ~unusedMSMask;
2441
2442 accum |=
2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2444 accumSize += HOST_CHAR_BIT - unusedLS;
2445 if (accumSize >= HOST_CHAR_BIT)
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
2455 src_bytes_left -= 1;
2456 src_idx += delta;
2457 }
2458 while (unpacked_bytes_left > 0)
2459 {
2460 accum |= sign << accumSize;
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 if (accumSize < 0)
2464 accumSize = 0;
2465 accum >>= HOST_CHAR_BIT;
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
2468 }
2469 }
2470
2471 /* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480 struct value *
2481 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
2483 struct type *type)
2484 {
2485 struct value *v;
2486 const gdb_byte *src; /* First byte containing data to unpack */
2487 gdb_byte *unpacked;
2488 const int is_scalar = is_scalar_type (type);
2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2490 gdb::byte_vector staging;
2491
2492 type = ada_check_typedef (type);
2493
2494 if (obj == NULL)
2495 src = valaddr + offset;
2496 else
2497 src = value_contents (obj) + offset;
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 staging.data (), staging.size (),
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
2515 type = resolve_dynamic_type (type, staging, 0);
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
2527 }
2528
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
2532 src = valaddr + offset;
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2537 gdb_byte *buf;
2538
2539 v = value_at (type, value_address (obj) + offset);
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
2547 src = value_contents (obj) + offset;
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
2558 {
2559 ++new_offset;
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
2570 unpacked = value_contents_writeable (v);
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
2578 if (staging.size () == TYPE_LENGTH (type))
2579 {
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
2583 memcpy (unpacked, staging.data (), staging.size ());
2584 }
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
2589
2590 return v;
2591 }
2592
2593 /* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
2596 floating-point or non-scalar types. */
2597
2598 static struct value *
2599 ada_value_assign (struct value *toval, struct value *fromval)
2600 {
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
2603
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
2612 if (!deprecated_value_modifiable (toval))
2613 error (_("Left operand of assignment is not a modifiable lvalue."));
2614
2615 if (VALUE_LVAL (toval) == lval_memory
2616 && bits > 0
2617 && (type->code () == TYPE_CODE_FLT
2618 || type->code () == TYPE_CODE_STRUCT))
2619 {
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2622 int from_size;
2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
2624 struct value *val;
2625 CORE_ADDR to_addr = value_address (toval);
2626
2627 if (type->code () == TYPE_CODE_FLT)
2628 fromval = value_cast (type, fromval);
2629
2630 read_memory (to_addr, buffer, len);
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2634
2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
2667 static void
2668 value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670 {
2671 LONGEST offset_in_container =
2672 (LONGEST) (value_address (component) - value_address (container));
2673 int bit_offset_in_container =
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
2676
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
2689 src_offset
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2696 }
2697 else
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
2701 }
2702
2703 /* Determine if TYPE is an access to an unconstrained array. */
2704
2705 bool
2706 ada_is_access_to_unconstrained_array (struct type *type)
2707 {
2708 return (type->code () == TYPE_CODE_TYPEDEF
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710 }
2711
2712 /* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
2714 thereto. */
2715
2716 struct value *
2717 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2718 {
2719 int k;
2720 struct value *elt;
2721 struct type *elt_type;
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
2725 elt_type = ada_check_typedef (value_type (elt));
2726 if (elt_type->code () == TYPE_CODE_ARRAY
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
2734 if (elt_type->code () != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736
2737 elt = value_subscript (elt, pos_atr (ind[k]));
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
2758 }
2759
2760 return elt;
2761 }
2762
2763 /* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
2774
2775 static struct value *
2776 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2777 {
2778 int k;
2779 struct value *array_ind = ada_value_ind (arr);
2780 struct type *type
2781 = check_typedef (value_enclosing_type (array_ind));
2782
2783 if (type->code () == TYPE_CODE_ARRAY
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
2790
2791 if (type->code () != TYPE_CODE_ARRAY)
2792 error (_("too many subscripts (%d expected)"), k);
2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2794 value_copy (arr));
2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2818 TYPE_FIELD_BITSIZE (type0, 0));
2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2820 LONGEST base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 if (!discrete_position (base_index_type, low, &low_pos)
2824 || !discrete_position (base_index_type, base_low, &base_low_pos))
2825 {
2826 warning (_("unable to get positions in slice, use bounds instead"));
2827 low_pos = low;
2828 base_low_pos = base_low;
2829 }
2830
2831 base = value_as_address (array_ptr)
2832 + ((low_pos - base_low_pos)
2833 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2834 return value_at_lazy (slice_type, base);
2835 }
2836
2837
2838 static struct value *
2839 ada_value_slice (struct value *array, int low, int high)
2840 {
2841 struct type *type = ada_check_typedef (value_type (array));
2842 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2843 struct type *index_type
2844 = create_static_range_type (NULL, type->index_type (), low, high);
2845 struct type *slice_type = create_array_type_with_stride
2846 (NULL, TYPE_TARGET_TYPE (type), index_type,
2847 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2848 TYPE_FIELD_BITSIZE (type, 0));
2849 LONGEST low_pos, high_pos;
2850
2851 if (!discrete_position (base_index_type, low, &low_pos)
2852 || !discrete_position (base_index_type, high, &high_pos))
2853 {
2854 warning (_("unable to get positions in slice, use bounds instead"));
2855 low_pos = low;
2856 high_pos = high;
2857 }
2858
2859 return value_cast (slice_type,
2860 value_slice (array, low, high_pos - low_pos + 1));
2861 }
2862
2863 /* If type is a record type in the form of a standard GNAT array
2864 descriptor, returns the number of dimensions for type. If arr is a
2865 simple array, returns the number of "array of"s that prefix its
2866 type designation. Otherwise, returns 0. */
2867
2868 int
2869 ada_array_arity (struct type *type)
2870 {
2871 int arity;
2872
2873 if (type == NULL)
2874 return 0;
2875
2876 type = desc_base_type (type);
2877
2878 arity = 0;
2879 if (type->code () == TYPE_CODE_STRUCT)
2880 return desc_arity (desc_bounds_type (type));
2881 else
2882 while (type->code () == TYPE_CODE_ARRAY)
2883 {
2884 arity += 1;
2885 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2886 }
2887
2888 return arity;
2889 }
2890
2891 /* If TYPE is a record type in the form of a standard GNAT array
2892 descriptor or a simple array type, returns the element type for
2893 TYPE after indexing by NINDICES indices, or by all indices if
2894 NINDICES is -1. Otherwise, returns NULL. */
2895
2896 struct type *
2897 ada_array_element_type (struct type *type, int nindices)
2898 {
2899 type = desc_base_type (type);
2900
2901 if (type->code () == TYPE_CODE_STRUCT)
2902 {
2903 int k;
2904 struct type *p_array_type;
2905
2906 p_array_type = desc_data_target_type (type);
2907
2908 k = ada_array_arity (type);
2909 if (k == 0)
2910 return NULL;
2911
2912 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2913 if (nindices >= 0 && k > nindices)
2914 k = nindices;
2915 while (k > 0 && p_array_type != NULL)
2916 {
2917 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2918 k -= 1;
2919 }
2920 return p_array_type;
2921 }
2922 else if (type->code () == TYPE_CODE_ARRAY)
2923 {
2924 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2925 {
2926 type = TYPE_TARGET_TYPE (type);
2927 nindices -= 1;
2928 }
2929 return type;
2930 }
2931
2932 return NULL;
2933 }
2934
2935 /* The type of nth index in arrays of given type (n numbering from 1).
2936 Does not examine memory. Throws an error if N is invalid or TYPE
2937 is not an array type. NAME is the name of the Ada attribute being
2938 evaluated ('range, 'first, 'last, or 'length); it is used in building
2939 the error message. */
2940
2941 static struct type *
2942 ada_index_type (struct type *type, int n, const char *name)
2943 {
2944 struct type *result_type;
2945
2946 type = desc_base_type (type);
2947
2948 if (n < 0 || n > ada_array_arity (type))
2949 error (_("invalid dimension number to '%s"), name);
2950
2951 if (ada_is_simple_array_type (type))
2952 {
2953 int i;
2954
2955 for (i = 1; i < n; i += 1)
2956 type = TYPE_TARGET_TYPE (type);
2957 result_type = TYPE_TARGET_TYPE (type->index_type ());
2958 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2959 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2960 perhaps stabsread.c would make more sense. */
2961 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2962 result_type = NULL;
2963 }
2964 else
2965 {
2966 result_type = desc_index_type (desc_bounds_type (type), n);
2967 if (result_type == NULL)
2968 error (_("attempt to take bound of something that is not an array"));
2969 }
2970
2971 return result_type;
2972 }
2973
2974 /* Given that arr is an array type, returns the lower bound of the
2975 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2976 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2977 array-descriptor type. It works for other arrays with bounds supplied
2978 by run-time quantities other than discriminants. */
2979
2980 static LONGEST
2981 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2982 {
2983 struct type *type, *index_type_desc, *index_type;
2984 int i;
2985
2986 gdb_assert (which == 0 || which == 1);
2987
2988 if (ada_is_constrained_packed_array_type (arr_type))
2989 arr_type = decode_constrained_packed_array_type (arr_type);
2990
2991 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2992 return (LONGEST) - which;
2993
2994 if (arr_type->code () == TYPE_CODE_PTR)
2995 type = TYPE_TARGET_TYPE (arr_type);
2996 else
2997 type = arr_type;
2998
2999 if (type->is_fixed_instance ())
3000 {
3001 /* The array has already been fixed, so we do not need to
3002 check the parallel ___XA type again. That encoding has
3003 already been applied, so ignore it now. */
3004 index_type_desc = NULL;
3005 }
3006 else
3007 {
3008 index_type_desc = ada_find_parallel_type (type, "___XA");
3009 ada_fixup_array_indexes_type (index_type_desc);
3010 }
3011
3012 if (index_type_desc != NULL)
3013 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3014 NULL);
3015 else
3016 {
3017 struct type *elt_type = check_typedef (type);
3018
3019 for (i = 1; i < n; i++)
3020 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3021
3022 index_type = elt_type->index_type ();
3023 }
3024
3025 return
3026 (LONGEST) (which == 0
3027 ? ada_discrete_type_low_bound (index_type)
3028 : ada_discrete_type_high_bound (index_type));
3029 }
3030
3031 /* Given that arr is an array value, returns the lower bound of the
3032 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3033 WHICH is 1. This routine will also work for arrays with bounds
3034 supplied by run-time quantities other than discriminants. */
3035
3036 static LONGEST
3037 ada_array_bound (struct value *arr, int n, int which)
3038 {
3039 struct type *arr_type;
3040
3041 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3042 arr = value_ind (arr);
3043 arr_type = value_enclosing_type (arr);
3044
3045 if (ada_is_constrained_packed_array_type (arr_type))
3046 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3047 else if (ada_is_simple_array_type (arr_type))
3048 return ada_array_bound_from_type (arr_type, n, which);
3049 else
3050 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3051 }
3052
3053 /* Given that arr is an array value, returns the length of the
3054 nth index. This routine will also work for arrays with bounds
3055 supplied by run-time quantities other than discriminants.
3056 Does not work for arrays indexed by enumeration types with representation
3057 clauses at the moment. */
3058
3059 static LONGEST
3060 ada_array_length (struct value *arr, int n)
3061 {
3062 struct type *arr_type, *index_type;
3063 int low, high;
3064
3065 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3066 arr = value_ind (arr);
3067 arr_type = value_enclosing_type (arr);
3068
3069 if (ada_is_constrained_packed_array_type (arr_type))
3070 return ada_array_length (decode_constrained_packed_array (arr), n);
3071
3072 if (ada_is_simple_array_type (arr_type))
3073 {
3074 low = ada_array_bound_from_type (arr_type, n, 0);
3075 high = ada_array_bound_from_type (arr_type, n, 1);
3076 }
3077 else
3078 {
3079 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3080 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3081 }
3082
3083 arr_type = check_typedef (arr_type);
3084 index_type = ada_index_type (arr_type, n, "length");
3085 if (index_type != NULL)
3086 {
3087 struct type *base_type;
3088 if (index_type->code () == TYPE_CODE_RANGE)
3089 base_type = TYPE_TARGET_TYPE (index_type);
3090 else
3091 base_type = index_type;
3092
3093 low = pos_atr (value_from_longest (base_type, low));
3094 high = pos_atr (value_from_longest (base_type, high));
3095 }
3096 return high - low + 1;
3097 }
3098
3099 /* An array whose type is that of ARR_TYPE (an array type), with
3100 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3101 less than LOW, then LOW-1 is used. */
3102
3103 static struct value *
3104 empty_array (struct type *arr_type, int low, int high)
3105 {
3106 struct type *arr_type0 = ada_check_typedef (arr_type);
3107 struct type *index_type
3108 = create_static_range_type
3109 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3110 high < low ? low - 1 : high);
3111 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3112
3113 return allocate_value (create_array_type (NULL, elt_type, index_type));
3114 }
3115 \f
3116
3117 /* Name resolution */
3118
3119 /* The "decoded" name for the user-definable Ada operator corresponding
3120 to OP. */
3121
3122 static const char *
3123 ada_decoded_op_name (enum exp_opcode op)
3124 {
3125 int i;
3126
3127 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3128 {
3129 if (ada_opname_table[i].op == op)
3130 return ada_opname_table[i].decoded;
3131 }
3132 error (_("Could not find operator name for opcode"));
3133 }
3134
3135 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3136 in a listing of choices during disambiguation (see sort_choices, below).
3137 The idea is that overloadings of a subprogram name from the
3138 same package should sort in their source order. We settle for ordering
3139 such symbols by their trailing number (__N or $N). */
3140
3141 static int
3142 encoded_ordered_before (const char *N0, const char *N1)
3143 {
3144 if (N1 == NULL)
3145 return 0;
3146 else if (N0 == NULL)
3147 return 1;
3148 else
3149 {
3150 int k0, k1;
3151
3152 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3153 ;
3154 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3155 ;
3156 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3157 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3158 {
3159 int n0, n1;
3160
3161 n0 = k0;
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3163 n0 -= 1;
3164 n1 = k1;
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3166 n1 -= 1;
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3169 }
3170 return (strcmp (N0, N1) < 0);
3171 }
3172 }
3173
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3175 encoded names. */
3176
3177 static void
3178 sort_choices (struct block_symbol syms[], int nsyms)
3179 {
3180 int i;
3181
3182 for (i = 1; i < nsyms; i += 1)
3183 {
3184 struct block_symbol sym = syms[i];
3185 int j;
3186
3187 for (j = i - 1; j >= 0; j -= 1)
3188 {
3189 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3190 sym.symbol->linkage_name ()))
3191 break;
3192 syms[j + 1] = syms[j];
3193 }
3194 syms[j + 1] = sym;
3195 }
3196 }
3197
3198 /* Whether GDB should display formals and return types for functions in the
3199 overloads selection menu. */
3200 static bool print_signatures = true;
3201
3202 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3203 all but functions, the signature is just the name of the symbol. For
3204 functions, this is the name of the function, the list of types for formals
3205 and the return type (if any). */
3206
3207 static void
3208 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3209 const struct type_print_options *flags)
3210 {
3211 struct type *type = SYMBOL_TYPE (sym);
3212
3213 fprintf_filtered (stream, "%s", sym->print_name ());
3214 if (!print_signatures
3215 || type == NULL
3216 || type->code () != TYPE_CODE_FUNC)
3217 return;
3218
3219 if (type->num_fields () > 0)
3220 {
3221 int i;
3222
3223 fprintf_filtered (stream, " (");
3224 for (i = 0; i < type->num_fields (); ++i)
3225 {
3226 if (i > 0)
3227 fprintf_filtered (stream, "; ");
3228 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3229 flags);
3230 }
3231 fprintf_filtered (stream, ")");
3232 }
3233 if (TYPE_TARGET_TYPE (type) != NULL
3234 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3235 {
3236 fprintf_filtered (stream, " return ");
3237 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3238 }
3239 }
3240
3241 /* Read and validate a set of numeric choices from the user in the
3242 range 0 .. N_CHOICES-1. Place the results in increasing
3243 order in CHOICES[0 .. N-1], and return N.
3244
3245 The user types choices as a sequence of numbers on one line
3246 separated by blanks, encoding them as follows:
3247
3248 + A choice of 0 means to cancel the selection, throwing an error.
3249 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3250 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3251
3252 The user is not allowed to choose more than MAX_RESULTS values.
3253
3254 ANNOTATION_SUFFIX, if present, is used to annotate the input
3255 prompts (for use with the -f switch). */
3256
3257 static int
3258 get_selections (int *choices, int n_choices, int max_results,
3259 int is_all_choice, const char *annotation_suffix)
3260 {
3261 const char *args;
3262 const char *prompt;
3263 int n_chosen;
3264 int first_choice = is_all_choice ? 2 : 1;
3265
3266 prompt = getenv ("PS2");
3267 if (prompt == NULL)
3268 prompt = "> ";
3269
3270 args = command_line_input (prompt, annotation_suffix);
3271
3272 if (args == NULL)
3273 error_no_arg (_("one or more choice numbers"));
3274
3275 n_chosen = 0;
3276
3277 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3278 order, as given in args. Choices are validated. */
3279 while (1)
3280 {
3281 char *args2;
3282 int choice, j;
3283
3284 args = skip_spaces (args);
3285 if (*args == '\0' && n_chosen == 0)
3286 error_no_arg (_("one or more choice numbers"));
3287 else if (*args == '\0')
3288 break;
3289
3290 choice = strtol (args, &args2, 10);
3291 if (args == args2 || choice < 0
3292 || choice > n_choices + first_choice - 1)
3293 error (_("Argument must be choice number"));
3294 args = args2;
3295
3296 if (choice == 0)
3297 error (_("cancelled"));
3298
3299 if (choice < first_choice)
3300 {
3301 n_chosen = n_choices;
3302 for (j = 0; j < n_choices; j += 1)
3303 choices[j] = j;
3304 break;
3305 }
3306 choice -= first_choice;
3307
3308 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3309 {
3310 }
3311
3312 if (j < 0 || choice != choices[j])
3313 {
3314 int k;
3315
3316 for (k = n_chosen - 1; k > j; k -= 1)
3317 choices[k + 1] = choices[k];
3318 choices[j + 1] = choice;
3319 n_chosen += 1;
3320 }
3321 }
3322
3323 if (n_chosen > max_results)
3324 error (_("Select no more than %d of the above"), max_results);
3325
3326 return n_chosen;
3327 }
3328
3329 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3330 by asking the user (if necessary), returning the number selected,
3331 and setting the first elements of SYMS items. Error if no symbols
3332 selected. */
3333
3334 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3335 to be re-integrated one of these days. */
3336
3337 static int
3338 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3339 {
3340 int i;
3341 int *chosen = XALLOCAVEC (int , nsyms);
3342 int n_chosen;
3343 int first_choice = (max_results == 1) ? 1 : 2;
3344 const char *select_mode = multiple_symbols_select_mode ();
3345
3346 if (max_results < 1)
3347 error (_("Request to select 0 symbols!"));
3348 if (nsyms <= 1)
3349 return nsyms;
3350
3351 if (select_mode == multiple_symbols_cancel)
3352 error (_("\
3353 canceled because the command is ambiguous\n\
3354 See set/show multiple-symbol."));
3355
3356 /* If select_mode is "all", then return all possible symbols.
3357 Only do that if more than one symbol can be selected, of course.
3358 Otherwise, display the menu as usual. */
3359 if (select_mode == multiple_symbols_all && max_results > 1)
3360 return nsyms;
3361
3362 printf_filtered (_("[0] cancel\n"));
3363 if (max_results > 1)
3364 printf_filtered (_("[1] all\n"));
3365
3366 sort_choices (syms, nsyms);
3367
3368 for (i = 0; i < nsyms; i += 1)
3369 {
3370 if (syms[i].symbol == NULL)
3371 continue;
3372
3373 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3374 {
3375 struct symtab_and_line sal =
3376 find_function_start_sal (syms[i].symbol, 1);
3377
3378 printf_filtered ("[%d] ", i + first_choice);
3379 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3380 &type_print_raw_options);
3381 if (sal.symtab == NULL)
3382 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3383 metadata_style.style ().ptr (), nullptr, sal.line);
3384 else
3385 printf_filtered
3386 (_(" at %ps:%d\n"),
3387 styled_string (file_name_style.style (),
3388 symtab_to_filename_for_display (sal.symtab)),
3389 sal.line);
3390 continue;
3391 }
3392 else
3393 {
3394 int is_enumeral =
3395 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3396 && SYMBOL_TYPE (syms[i].symbol) != NULL
3397 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3398 struct symtab *symtab = NULL;
3399
3400 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3401 symtab = symbol_symtab (syms[i].symbol);
3402
3403 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3404 {
3405 printf_filtered ("[%d] ", i + first_choice);
3406 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3407 &type_print_raw_options);
3408 printf_filtered (_(" at %s:%d\n"),
3409 symtab_to_filename_for_display (symtab),
3410 SYMBOL_LINE (syms[i].symbol));
3411 }
3412 else if (is_enumeral
3413 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3414 {
3415 printf_filtered (("[%d] "), i + first_choice);
3416 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3417 gdb_stdout, -1, 0, &type_print_raw_options);
3418 printf_filtered (_("'(%s) (enumeral)\n"),
3419 syms[i].symbol->print_name ());
3420 }
3421 else
3422 {
3423 printf_filtered ("[%d] ", i + first_choice);
3424 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3425 &type_print_raw_options);
3426
3427 if (symtab != NULL)
3428 printf_filtered (is_enumeral
3429 ? _(" in %s (enumeral)\n")
3430 : _(" at %s:?\n"),
3431 symtab_to_filename_for_display (symtab));
3432 else
3433 printf_filtered (is_enumeral
3434 ? _(" (enumeral)\n")
3435 : _(" at ?\n"));
3436 }
3437 }
3438 }
3439
3440 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3441 "overload-choice");
3442
3443 for (i = 0; i < n_chosen; i += 1)
3444 syms[i] = syms[chosen[i]];
3445
3446 return n_chosen;
3447 }
3448
3449 /* Resolve the operator of the subexpression beginning at
3450 position *POS of *EXPP. "Resolving" consists of replacing
3451 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3452 with their resolutions, replacing built-in operators with
3453 function calls to user-defined operators, where appropriate, and,
3454 when DEPROCEDURE_P is non-zero, converting function-valued variables
3455 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3456 are as in ada_resolve, above. */
3457
3458 static struct value *
3459 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3460 struct type *context_type, int parse_completion,
3461 innermost_block_tracker *tracker)
3462 {
3463 int pc = *pos;
3464 int i;
3465 struct expression *exp; /* Convenience: == *expp. */
3466 enum exp_opcode op = (*expp)->elts[pc].opcode;
3467 struct value **argvec; /* Vector of operand types (alloca'ed). */
3468 int nargs; /* Number of operands. */
3469 int oplen;
3470
3471 argvec = NULL;
3472 nargs = 0;
3473 exp = expp->get ();
3474
3475 /* Pass one: resolve operands, saving their types and updating *pos,
3476 if needed. */
3477 switch (op)
3478 {
3479 case OP_FUNCALL:
3480 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3481 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3482 *pos += 7;
3483 else
3484 {
3485 *pos += 3;
3486 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3487 }
3488 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3489 break;
3490
3491 case UNOP_ADDR:
3492 *pos += 1;
3493 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3494 break;
3495
3496 case UNOP_QUAL:
3497 *pos += 3;
3498 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3499 parse_completion, tracker);
3500 break;
3501
3502 case OP_ATR_MODULUS:
3503 case OP_ATR_SIZE:
3504 case OP_ATR_TAG:
3505 case OP_ATR_FIRST:
3506 case OP_ATR_LAST:
3507 case OP_ATR_LENGTH:
3508 case OP_ATR_POS:
3509 case OP_ATR_VAL:
3510 case OP_ATR_MIN:
3511 case OP_ATR_MAX:
3512 case TERNOP_IN_RANGE:
3513 case BINOP_IN_BOUNDS:
3514 case UNOP_IN_RANGE:
3515 case OP_AGGREGATE:
3516 case OP_OTHERS:
3517 case OP_CHOICES:
3518 case OP_POSITIONAL:
3519 case OP_DISCRETE_RANGE:
3520 case OP_NAME:
3521 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3522 *pos += oplen;
3523 break;
3524
3525 case BINOP_ASSIGN:
3526 {
3527 struct value *arg1;
3528
3529 *pos += 1;
3530 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 if (arg1 == NULL)
3532 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3533 else
3534 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3535 tracker);
3536 break;
3537 }
3538
3539 case UNOP_CAST:
3540 *pos += 3;
3541 nargs = 1;
3542 break;
3543
3544 case BINOP_ADD:
3545 case BINOP_SUB:
3546 case BINOP_MUL:
3547 case BINOP_DIV:
3548 case BINOP_REM:
3549 case BINOP_MOD:
3550 case BINOP_EXP:
3551 case BINOP_CONCAT:
3552 case BINOP_LOGICAL_AND:
3553 case BINOP_LOGICAL_OR:
3554 case BINOP_BITWISE_AND:
3555 case BINOP_BITWISE_IOR:
3556 case BINOP_BITWISE_XOR:
3557
3558 case BINOP_EQUAL:
3559 case BINOP_NOTEQUAL:
3560 case BINOP_LESS:
3561 case BINOP_GTR:
3562 case BINOP_LEQ:
3563 case BINOP_GEQ:
3564
3565 case BINOP_REPEAT:
3566 case BINOP_SUBSCRIPT:
3567 case BINOP_COMMA:
3568 *pos += 1;
3569 nargs = 2;
3570 break;
3571
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 case UNOP_IND:
3577 *pos += 1;
3578 nargs = 1;
3579 break;
3580
3581 case OP_LONG:
3582 case OP_FLOAT:
3583 case OP_VAR_VALUE:
3584 case OP_VAR_MSYM_VALUE:
3585 *pos += 4;
3586 break;
3587
3588 case OP_TYPE:
3589 case OP_BOOL:
3590 case OP_LAST:
3591 case OP_INTERNALVAR:
3592 *pos += 3;
3593 break;
3594
3595 case UNOP_MEMVAL:
3596 *pos += 3;
3597 nargs = 1;
3598 break;
3599
3600 case OP_REGISTER:
3601 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3602 break;
3603
3604 case STRUCTOP_STRUCT:
3605 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3606 nargs = 1;
3607 break;
3608
3609 case TERNOP_SLICE:
3610 *pos += 1;
3611 nargs = 3;
3612 break;
3613
3614 case OP_STRING:
3615 break;
3616
3617 default:
3618 error (_("Unexpected operator during name resolution"));
3619 }
3620
3621 argvec = XALLOCAVEC (struct value *, nargs + 1);
3622 for (i = 0; i < nargs; i += 1)
3623 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3624 tracker);
3625 argvec[i] = NULL;
3626 exp = expp->get ();
3627
3628 /* Pass two: perform any resolution on principal operator. */
3629 switch (op)
3630 {
3631 default:
3632 break;
3633
3634 case OP_VAR_VALUE:
3635 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3636 {
3637 std::vector<struct block_symbol> candidates;
3638 int n_candidates;
3639
3640 n_candidates =
3641 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3642 exp->elts[pc + 1].block, VAR_DOMAIN,
3643 &candidates);
3644
3645 if (n_candidates > 1)
3646 {
3647 /* Types tend to get re-introduced locally, so if there
3648 are any local symbols that are not types, first filter
3649 out all types. */
3650 int j;
3651 for (j = 0; j < n_candidates; j += 1)
3652 switch (SYMBOL_CLASS (candidates[j].symbol))
3653 {
3654 case LOC_REGISTER:
3655 case LOC_ARG:
3656 case LOC_REF_ARG:
3657 case LOC_REGPARM_ADDR:
3658 case LOC_LOCAL:
3659 case LOC_COMPUTED:
3660 goto FoundNonType;
3661 default:
3662 break;
3663 }
3664 FoundNonType:
3665 if (j < n_candidates)
3666 {
3667 j = 0;
3668 while (j < n_candidates)
3669 {
3670 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3671 {
3672 candidates[j] = candidates[n_candidates - 1];
3673 n_candidates -= 1;
3674 }
3675 else
3676 j += 1;
3677 }
3678 }
3679 }
3680
3681 if (n_candidates == 0)
3682 error (_("No definition found for %s"),
3683 exp->elts[pc + 2].symbol->print_name ());
3684 else if (n_candidates == 1)
3685 i = 0;
3686 else if (deprocedure_p
3687 && !is_nonfunction (candidates.data (), n_candidates))
3688 {
3689 i = ada_resolve_function
3690 (candidates.data (), n_candidates, NULL, 0,
3691 exp->elts[pc + 2].symbol->linkage_name (),
3692 context_type, parse_completion);
3693 if (i < 0)
3694 error (_("Could not find a match for %s"),
3695 exp->elts[pc + 2].symbol->print_name ());
3696 }
3697 else
3698 {
3699 printf_filtered (_("Multiple matches for %s\n"),
3700 exp->elts[pc + 2].symbol->print_name ());
3701 user_select_syms (candidates.data (), n_candidates, 1);
3702 i = 0;
3703 }
3704
3705 exp->elts[pc + 1].block = candidates[i].block;
3706 exp->elts[pc + 2].symbol = candidates[i].symbol;
3707 tracker->update (candidates[i]);
3708 }
3709
3710 if (deprocedure_p
3711 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3712 == TYPE_CODE_FUNC))
3713 {
3714 replace_operator_with_call (expp, pc, 0, 4,
3715 exp->elts[pc + 2].symbol,
3716 exp->elts[pc + 1].block);
3717 exp = expp->get ();
3718 }
3719 break;
3720
3721 case OP_FUNCALL:
3722 {
3723 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3724 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3725 {
3726 std::vector<struct block_symbol> candidates;
3727 int n_candidates;
3728
3729 n_candidates =
3730 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3731 exp->elts[pc + 4].block, VAR_DOMAIN,
3732 &candidates);
3733
3734 if (n_candidates == 1)
3735 i = 0;
3736 else
3737 {
3738 i = ada_resolve_function
3739 (candidates.data (), n_candidates,
3740 argvec, nargs,
3741 exp->elts[pc + 5].symbol->linkage_name (),
3742 context_type, parse_completion);
3743 if (i < 0)
3744 error (_("Could not find a match for %s"),
3745 exp->elts[pc + 5].symbol->print_name ());
3746 }
3747
3748 exp->elts[pc + 4].block = candidates[i].block;
3749 exp->elts[pc + 5].symbol = candidates[i].symbol;
3750 tracker->update (candidates[i]);
3751 }
3752 }
3753 break;
3754 case BINOP_ADD:
3755 case BINOP_SUB:
3756 case BINOP_MUL:
3757 case BINOP_DIV:
3758 case BINOP_REM:
3759 case BINOP_MOD:
3760 case BINOP_CONCAT:
3761 case BINOP_BITWISE_AND:
3762 case BINOP_BITWISE_IOR:
3763 case BINOP_BITWISE_XOR:
3764 case BINOP_EQUAL:
3765 case BINOP_NOTEQUAL:
3766 case BINOP_LESS:
3767 case BINOP_GTR:
3768 case BINOP_LEQ:
3769 case BINOP_GEQ:
3770 case BINOP_EXP:
3771 case UNOP_NEG:
3772 case UNOP_PLUS:
3773 case UNOP_LOGICAL_NOT:
3774 case UNOP_ABS:
3775 if (possible_user_operator_p (op, argvec))
3776 {
3777 std::vector<struct block_symbol> candidates;
3778 int n_candidates;
3779
3780 n_candidates =
3781 ada_lookup_symbol_list (ada_decoded_op_name (op),
3782 NULL, VAR_DOMAIN,
3783 &candidates);
3784
3785 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3786 nargs, ada_decoded_op_name (op), NULL,
3787 parse_completion);
3788 if (i < 0)
3789 break;
3790
3791 replace_operator_with_call (expp, pc, nargs, 1,
3792 candidates[i].symbol,
3793 candidates[i].block);
3794 exp = expp->get ();
3795 }
3796 break;
3797
3798 case OP_TYPE:
3799 case OP_REGISTER:
3800 return NULL;
3801 }
3802
3803 *pos = pc;
3804 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3805 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3806 exp->elts[pc + 1].objfile,
3807 exp->elts[pc + 2].msymbol);
3808 else
3809 return evaluate_subexp_type (exp, pos);
3810 }
3811
3812 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3813 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3814 a non-pointer. */
3815 /* The term "match" here is rather loose. The match is heuristic and
3816 liberal. */
3817
3818 static int
3819 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3820 {
3821 ftype = ada_check_typedef (ftype);
3822 atype = ada_check_typedef (atype);
3823
3824 if (ftype->code () == TYPE_CODE_REF)
3825 ftype = TYPE_TARGET_TYPE (ftype);
3826 if (atype->code () == TYPE_CODE_REF)
3827 atype = TYPE_TARGET_TYPE (atype);
3828
3829 switch (ftype->code ())
3830 {
3831 default:
3832 return ftype->code () == atype->code ();
3833 case TYPE_CODE_PTR:
3834 if (atype->code () == TYPE_CODE_PTR)
3835 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3836 TYPE_TARGET_TYPE (atype), 0);
3837 else
3838 return (may_deref
3839 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3840 case TYPE_CODE_INT:
3841 case TYPE_CODE_ENUM:
3842 case TYPE_CODE_RANGE:
3843 switch (atype->code ())
3844 {
3845 case TYPE_CODE_INT:
3846 case TYPE_CODE_ENUM:
3847 case TYPE_CODE_RANGE:
3848 return 1;
3849 default:
3850 return 0;
3851 }
3852
3853 case TYPE_CODE_ARRAY:
3854 return (atype->code () == TYPE_CODE_ARRAY
3855 || ada_is_array_descriptor_type (atype));
3856
3857 case TYPE_CODE_STRUCT:
3858 if (ada_is_array_descriptor_type (ftype))
3859 return (atype->code () == TYPE_CODE_ARRAY
3860 || ada_is_array_descriptor_type (atype));
3861 else
3862 return (atype->code () == TYPE_CODE_STRUCT
3863 && !ada_is_array_descriptor_type (atype));
3864
3865 case TYPE_CODE_UNION:
3866 case TYPE_CODE_FLT:
3867 return (atype->code () == ftype->code ());
3868 }
3869 }
3870
3871 /* Return non-zero if the formals of FUNC "sufficiently match" the
3872 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3873 may also be an enumeral, in which case it is treated as a 0-
3874 argument function. */
3875
3876 static int
3877 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3878 {
3879 int i;
3880 struct type *func_type = SYMBOL_TYPE (func);
3881
3882 if (SYMBOL_CLASS (func) == LOC_CONST
3883 && func_type->code () == TYPE_CODE_ENUM)
3884 return (n_actuals == 0);
3885 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3886 return 0;
3887
3888 if (func_type->num_fields () != n_actuals)
3889 return 0;
3890
3891 for (i = 0; i < n_actuals; i += 1)
3892 {
3893 if (actuals[i] == NULL)
3894 return 0;
3895 else
3896 {
3897 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3898 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3899
3900 if (!ada_type_match (ftype, atype, 1))
3901 return 0;
3902 }
3903 }
3904 return 1;
3905 }
3906
3907 /* False iff function type FUNC_TYPE definitely does not produce a value
3908 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3909 FUNC_TYPE is not a valid function type with a non-null return type
3910 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3911
3912 static int
3913 return_match (struct type *func_type, struct type *context_type)
3914 {
3915 struct type *return_type;
3916
3917 if (func_type == NULL)
3918 return 1;
3919
3920 if (func_type->code () == TYPE_CODE_FUNC)
3921 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3922 else
3923 return_type = get_base_type (func_type);
3924 if (return_type == NULL)
3925 return 1;
3926
3927 context_type = get_base_type (context_type);
3928
3929 if (return_type->code () == TYPE_CODE_ENUM)
3930 return context_type == NULL || return_type == context_type;
3931 else if (context_type == NULL)
3932 return return_type->code () != TYPE_CODE_VOID;
3933 else
3934 return return_type->code () == context_type->code ();
3935 }
3936
3937
3938 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3939 function (if any) that matches the types of the NARGS arguments in
3940 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3941 that returns that type, then eliminate matches that don't. If
3942 CONTEXT_TYPE is void and there is at least one match that does not
3943 return void, eliminate all matches that do.
3944
3945 Asks the user if there is more than one match remaining. Returns -1
3946 if there is no such symbol or none is selected. NAME is used
3947 solely for messages. May re-arrange and modify SYMS in
3948 the process; the index returned is for the modified vector. */
3949
3950 static int
3951 ada_resolve_function (struct block_symbol syms[],
3952 int nsyms, struct value **args, int nargs,
3953 const char *name, struct type *context_type,
3954 int parse_completion)
3955 {
3956 int fallback;
3957 int k;
3958 int m; /* Number of hits */
3959
3960 m = 0;
3961 /* In the first pass of the loop, we only accept functions matching
3962 context_type. If none are found, we add a second pass of the loop
3963 where every function is accepted. */
3964 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3965 {
3966 for (k = 0; k < nsyms; k += 1)
3967 {
3968 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3969
3970 if (ada_args_match (syms[k].symbol, args, nargs)
3971 && (fallback || return_match (type, context_type)))
3972 {
3973 syms[m] = syms[k];
3974 m += 1;
3975 }
3976 }
3977 }
3978
3979 /* If we got multiple matches, ask the user which one to use. Don't do this
3980 interactive thing during completion, though, as the purpose of the
3981 completion is providing a list of all possible matches. Prompting the
3982 user to filter it down would be completely unexpected in this case. */
3983 if (m == 0)
3984 return -1;
3985 else if (m > 1 && !parse_completion)
3986 {
3987 printf_filtered (_("Multiple matches for %s\n"), name);
3988 user_select_syms (syms, m, 1);
3989 return 0;
3990 }
3991 return 0;
3992 }
3993
3994 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3995 on the function identified by SYM and BLOCK, and taking NARGS
3996 arguments. Update *EXPP as needed to hold more space. */
3997
3998 static void
3999 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4000 int oplen, struct symbol *sym,
4001 const struct block *block)
4002 {
4003 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4004 symbol, -oplen for operator being replaced). */
4005 struct expression *newexp = (struct expression *)
4006 xzalloc (sizeof (struct expression)
4007 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4008 struct expression *exp = expp->get ();
4009
4010 newexp->nelts = exp->nelts + 7 - oplen;
4011 newexp->language_defn = exp->language_defn;
4012 newexp->gdbarch = exp->gdbarch;
4013 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4014 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4015 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4016
4017 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4018 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4019
4020 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4021 newexp->elts[pc + 4].block = block;
4022 newexp->elts[pc + 5].symbol = sym;
4023
4024 expp->reset (newexp);
4025 }
4026
4027 /* Type-class predicates */
4028
4029 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4030 or FLOAT). */
4031
4032 static int
4033 numeric_type_p (struct type *type)
4034 {
4035 if (type == NULL)
4036 return 0;
4037 else
4038 {
4039 switch (type->code ())
4040 {
4041 case TYPE_CODE_INT:
4042 case TYPE_CODE_FLT:
4043 return 1;
4044 case TYPE_CODE_RANGE:
4045 return (type == TYPE_TARGET_TYPE (type)
4046 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4047 default:
4048 return 0;
4049 }
4050 }
4051 }
4052
4053 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4054
4055 static int
4056 integer_type_p (struct type *type)
4057 {
4058 if (type == NULL)
4059 return 0;
4060 else
4061 {
4062 switch (type->code ())
4063 {
4064 case TYPE_CODE_INT:
4065 return 1;
4066 case TYPE_CODE_RANGE:
4067 return (type == TYPE_TARGET_TYPE (type)
4068 || integer_type_p (TYPE_TARGET_TYPE (type)));
4069 default:
4070 return 0;
4071 }
4072 }
4073 }
4074
4075 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4076
4077 static int
4078 scalar_type_p (struct type *type)
4079 {
4080 if (type == NULL)
4081 return 0;
4082 else
4083 {
4084 switch (type->code ())
4085 {
4086 case TYPE_CODE_INT:
4087 case TYPE_CODE_RANGE:
4088 case TYPE_CODE_ENUM:
4089 case TYPE_CODE_FLT:
4090 return 1;
4091 default:
4092 return 0;
4093 }
4094 }
4095 }
4096
4097 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4098
4099 static int
4100 discrete_type_p (struct type *type)
4101 {
4102 if (type == NULL)
4103 return 0;
4104 else
4105 {
4106 switch (type->code ())
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_ENUM:
4111 case TYPE_CODE_BOOL:
4112 return 1;
4113 default:
4114 return 0;
4115 }
4116 }
4117 }
4118
4119 /* Returns non-zero if OP with operands in the vector ARGS could be
4120 a user-defined function. Errs on the side of pre-defined operators
4121 (i.e., result 0). */
4122
4123 static int
4124 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4125 {
4126 struct type *type0 =
4127 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4128 struct type *type1 =
4129 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4130
4131 if (type0 == NULL)
4132 return 0;
4133
4134 switch (op)
4135 {
4136 default:
4137 return 0;
4138
4139 case BINOP_ADD:
4140 case BINOP_SUB:
4141 case BINOP_MUL:
4142 case BINOP_DIV:
4143 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4144
4145 case BINOP_REM:
4146 case BINOP_MOD:
4147 case BINOP_BITWISE_AND:
4148 case BINOP_BITWISE_IOR:
4149 case BINOP_BITWISE_XOR:
4150 return (!(integer_type_p (type0) && integer_type_p (type1)));
4151
4152 case BINOP_EQUAL:
4153 case BINOP_NOTEQUAL:
4154 case BINOP_LESS:
4155 case BINOP_GTR:
4156 case BINOP_LEQ:
4157 case BINOP_GEQ:
4158 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4159
4160 case BINOP_CONCAT:
4161 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4162
4163 case BINOP_EXP:
4164 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4165
4166 case UNOP_NEG:
4167 case UNOP_PLUS:
4168 case UNOP_LOGICAL_NOT:
4169 case UNOP_ABS:
4170 return (!numeric_type_p (type0));
4171
4172 }
4173 }
4174 \f
4175 /* Renaming */
4176
4177 /* NOTES:
4178
4179 1. In the following, we assume that a renaming type's name may
4180 have an ___XD suffix. It would be nice if this went away at some
4181 point.
4182 2. We handle both the (old) purely type-based representation of
4183 renamings and the (new) variable-based encoding. At some point,
4184 it is devoutly to be hoped that the former goes away
4185 (FIXME: hilfinger-2007-07-09).
4186 3. Subprogram renamings are not implemented, although the XRS
4187 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4188
4189 /* If SYM encodes a renaming,
4190
4191 <renaming> renames <renamed entity>,
4192
4193 sets *LEN to the length of the renamed entity's name,
4194 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4195 the string describing the subcomponent selected from the renamed
4196 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4197 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4198 are undefined). Otherwise, returns a value indicating the category
4199 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4200 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4201 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4202 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4203 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4204 may be NULL, in which case they are not assigned.
4205
4206 [Currently, however, GCC does not generate subprogram renamings.] */
4207
4208 enum ada_renaming_category
4209 ada_parse_renaming (struct symbol *sym,
4210 const char **renamed_entity, int *len,
4211 const char **renaming_expr)
4212 {
4213 enum ada_renaming_category kind;
4214 const char *info;
4215 const char *suffix;
4216
4217 if (sym == NULL)
4218 return ADA_NOT_RENAMING;
4219 switch (SYMBOL_CLASS (sym))
4220 {
4221 default:
4222 return ADA_NOT_RENAMING;
4223 case LOC_LOCAL:
4224 case LOC_STATIC:
4225 case LOC_COMPUTED:
4226 case LOC_OPTIMIZED_OUT:
4227 info = strstr (sym->linkage_name (), "___XR");
4228 if (info == NULL)
4229 return ADA_NOT_RENAMING;
4230 switch (info[5])
4231 {
4232 case '_':
4233 kind = ADA_OBJECT_RENAMING;
4234 info += 6;
4235 break;
4236 case 'E':
4237 kind = ADA_EXCEPTION_RENAMING;
4238 info += 7;
4239 break;
4240 case 'P':
4241 kind = ADA_PACKAGE_RENAMING;
4242 info += 7;
4243 break;
4244 case 'S':
4245 kind = ADA_SUBPROGRAM_RENAMING;
4246 info += 7;
4247 break;
4248 default:
4249 return ADA_NOT_RENAMING;
4250 }
4251 }
4252
4253 if (renamed_entity != NULL)
4254 *renamed_entity = info;
4255 suffix = strstr (info, "___XE");
4256 if (suffix == NULL || suffix == info)
4257 return ADA_NOT_RENAMING;
4258 if (len != NULL)
4259 *len = strlen (info) - strlen (suffix);
4260 suffix += 5;
4261 if (renaming_expr != NULL)
4262 *renaming_expr = suffix;
4263 return kind;
4264 }
4265
4266 /* Compute the value of the given RENAMING_SYM, which is expected to
4267 be a symbol encoding a renaming expression. BLOCK is the block
4268 used to evaluate the renaming. */
4269
4270 static struct value *
4271 ada_read_renaming_var_value (struct symbol *renaming_sym,
4272 const struct block *block)
4273 {
4274 const char *sym_name;
4275
4276 sym_name = renaming_sym->linkage_name ();
4277 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4278 return evaluate_expression (expr.get ());
4279 }
4280 \f
4281
4282 /* Evaluation: Function Calls */
4283
4284 /* Return an lvalue containing the value VAL. This is the identity on
4285 lvalues, and otherwise has the side-effect of allocating memory
4286 in the inferior where a copy of the value contents is copied. */
4287
4288 static struct value *
4289 ensure_lval (struct value *val)
4290 {
4291 if (VALUE_LVAL (val) == not_lval
4292 || VALUE_LVAL (val) == lval_internalvar)
4293 {
4294 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4295 const CORE_ADDR addr =
4296 value_as_long (value_allocate_space_in_inferior (len));
4297
4298 VALUE_LVAL (val) = lval_memory;
4299 set_value_address (val, addr);
4300 write_memory (addr, value_contents (val), len);
4301 }
4302
4303 return val;
4304 }
4305
4306 /* Given ARG, a value of type (pointer or reference to a)*
4307 structure/union, extract the component named NAME from the ultimate
4308 target structure/union and return it as a value with its
4309 appropriate type.
4310
4311 The routine searches for NAME among all members of the structure itself
4312 and (recursively) among all members of any wrapper members
4313 (e.g., '_parent').
4314
4315 If NO_ERR, then simply return NULL in case of error, rather than
4316 calling error. */
4317
4318 static struct value *
4319 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4320 {
4321 struct type *t, *t1;
4322 struct value *v;
4323 int check_tag;
4324
4325 v = NULL;
4326 t1 = t = ada_check_typedef (value_type (arg));
4327 if (t->code () == TYPE_CODE_REF)
4328 {
4329 t1 = TYPE_TARGET_TYPE (t);
4330 if (t1 == NULL)
4331 goto BadValue;
4332 t1 = ada_check_typedef (t1);
4333 if (t1->code () == TYPE_CODE_PTR)
4334 {
4335 arg = coerce_ref (arg);
4336 t = t1;
4337 }
4338 }
4339
4340 while (t->code () == TYPE_CODE_PTR)
4341 {
4342 t1 = TYPE_TARGET_TYPE (t);
4343 if (t1 == NULL)
4344 goto BadValue;
4345 t1 = ada_check_typedef (t1);
4346 if (t1->code () == TYPE_CODE_PTR)
4347 {
4348 arg = value_ind (arg);
4349 t = t1;
4350 }
4351 else
4352 break;
4353 }
4354
4355 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4356 goto BadValue;
4357
4358 if (t1 == t)
4359 v = ada_search_struct_field (name, arg, 0, t);
4360 else
4361 {
4362 int bit_offset, bit_size, byte_offset;
4363 struct type *field_type;
4364 CORE_ADDR address;
4365
4366 if (t->code () == TYPE_CODE_PTR)
4367 address = value_address (ada_value_ind (arg));
4368 else
4369 address = value_address (ada_coerce_ref (arg));
4370
4371 /* Check to see if this is a tagged type. We also need to handle
4372 the case where the type is a reference to a tagged type, but
4373 we have to be careful to exclude pointers to tagged types.
4374 The latter should be shown as usual (as a pointer), whereas
4375 a reference should mostly be transparent to the user. */
4376
4377 if (ada_is_tagged_type (t1, 0)
4378 || (t1->code () == TYPE_CODE_REF
4379 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4380 {
4381 /* We first try to find the searched field in the current type.
4382 If not found then let's look in the fixed type. */
4383
4384 if (!find_struct_field (name, t1, 0,
4385 &field_type, &byte_offset, &bit_offset,
4386 &bit_size, NULL))
4387 check_tag = 1;
4388 else
4389 check_tag = 0;
4390 }
4391 else
4392 check_tag = 0;
4393
4394 /* Convert to fixed type in all cases, so that we have proper
4395 offsets to each field in unconstrained record types. */
4396 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4397 address, NULL, check_tag);
4398
4399 if (find_struct_field (name, t1, 0,
4400 &field_type, &byte_offset, &bit_offset,
4401 &bit_size, NULL))
4402 {
4403 if (bit_size != 0)
4404 {
4405 if (t->code () == TYPE_CODE_REF)
4406 arg = ada_coerce_ref (arg);
4407 else
4408 arg = ada_value_ind (arg);
4409 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4410 bit_offset, bit_size,
4411 field_type);
4412 }
4413 else
4414 v = value_at_lazy (field_type, address + byte_offset);
4415 }
4416 }
4417
4418 if (v != NULL || no_err)
4419 return v;
4420 else
4421 error (_("There is no member named %s."), name);
4422
4423 BadValue:
4424 if (no_err)
4425 return NULL;
4426 else
4427 error (_("Attempt to extract a component of "
4428 "a value that is not a record."));
4429 }
4430
4431 /* Return the value ACTUAL, converted to be an appropriate value for a
4432 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4433 allocating any necessary descriptors (fat pointers), or copies of
4434 values not residing in memory, updating it as needed. */
4435
4436 struct value *
4437 ada_convert_actual (struct value *actual, struct type *formal_type0)
4438 {
4439 struct type *actual_type = ada_check_typedef (value_type (actual));
4440 struct type *formal_type = ada_check_typedef (formal_type0);
4441 struct type *formal_target =
4442 formal_type->code () == TYPE_CODE_PTR
4443 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4444 struct type *actual_target =
4445 actual_type->code () == TYPE_CODE_PTR
4446 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4447
4448 if (ada_is_array_descriptor_type (formal_target)
4449 && actual_target->code () == TYPE_CODE_ARRAY)
4450 return make_array_descriptor (formal_type, actual);
4451 else if (formal_type->code () == TYPE_CODE_PTR
4452 || formal_type->code () == TYPE_CODE_REF)
4453 {
4454 struct value *result;
4455
4456 if (formal_target->code () == TYPE_CODE_ARRAY
4457 && ada_is_array_descriptor_type (actual_target))
4458 result = desc_data (actual);
4459 else if (formal_type->code () != TYPE_CODE_PTR)
4460 {
4461 if (VALUE_LVAL (actual) != lval_memory)
4462 {
4463 struct value *val;
4464
4465 actual_type = ada_check_typedef (value_type (actual));
4466 val = allocate_value (actual_type);
4467 memcpy ((char *) value_contents_raw (val),
4468 (char *) value_contents (actual),
4469 TYPE_LENGTH (actual_type));
4470 actual = ensure_lval (val);
4471 }
4472 result = value_addr (actual);
4473 }
4474 else
4475 return actual;
4476 return value_cast_pointers (formal_type, result, 0);
4477 }
4478 else if (actual_type->code () == TYPE_CODE_PTR)
4479 return ada_value_ind (actual);
4480 else if (ada_is_aligner_type (formal_type))
4481 {
4482 /* We need to turn this parameter into an aligner type
4483 as well. */
4484 struct value *aligner = allocate_value (formal_type);
4485 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4486
4487 value_assign_to_component (aligner, component, actual);
4488 return aligner;
4489 }
4490
4491 return actual;
4492 }
4493
4494 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4495 type TYPE. This is usually an inefficient no-op except on some targets
4496 (such as AVR) where the representation of a pointer and an address
4497 differs. */
4498
4499 static CORE_ADDR
4500 value_pointer (struct value *value, struct type *type)
4501 {
4502 struct gdbarch *gdbarch = get_type_arch (type);
4503 unsigned len = TYPE_LENGTH (type);
4504 gdb_byte *buf = (gdb_byte *) alloca (len);
4505 CORE_ADDR addr;
4506
4507 addr = value_address (value);
4508 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4509 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4510 return addr;
4511 }
4512
4513
4514 /* Push a descriptor of type TYPE for array value ARR on the stack at
4515 *SP, updating *SP to reflect the new descriptor. Return either
4516 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4517 to-descriptor type rather than a descriptor type), a struct value *
4518 representing a pointer to this descriptor. */
4519
4520 static struct value *
4521 make_array_descriptor (struct type *type, struct value *arr)
4522 {
4523 struct type *bounds_type = desc_bounds_type (type);
4524 struct type *desc_type = desc_base_type (type);
4525 struct value *descriptor = allocate_value (desc_type);
4526 struct value *bounds = allocate_value (bounds_type);
4527 int i;
4528
4529 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4530 i > 0; i -= 1)
4531 {
4532 modify_field (value_type (bounds), value_contents_writeable (bounds),
4533 ada_array_bound (arr, i, 0),
4534 desc_bound_bitpos (bounds_type, i, 0),
4535 desc_bound_bitsize (bounds_type, i, 0));
4536 modify_field (value_type (bounds), value_contents_writeable (bounds),
4537 ada_array_bound (arr, i, 1),
4538 desc_bound_bitpos (bounds_type, i, 1),
4539 desc_bound_bitsize (bounds_type, i, 1));
4540 }
4541
4542 bounds = ensure_lval (bounds);
4543
4544 modify_field (value_type (descriptor),
4545 value_contents_writeable (descriptor),
4546 value_pointer (ensure_lval (arr),
4547 desc_type->field (0).type ()),
4548 fat_pntr_data_bitpos (desc_type),
4549 fat_pntr_data_bitsize (desc_type));
4550
4551 modify_field (value_type (descriptor),
4552 value_contents_writeable (descriptor),
4553 value_pointer (bounds,
4554 desc_type->field (1).type ()),
4555 fat_pntr_bounds_bitpos (desc_type),
4556 fat_pntr_bounds_bitsize (desc_type));
4557
4558 descriptor = ensure_lval (descriptor);
4559
4560 if (type->code () == TYPE_CODE_PTR)
4561 return value_addr (descriptor);
4562 else
4563 return descriptor;
4564 }
4565 \f
4566 /* Symbol Cache Module */
4567
4568 /* Performance measurements made as of 2010-01-15 indicate that
4569 this cache does bring some noticeable improvements. Depending
4570 on the type of entity being printed, the cache can make it as much
4571 as an order of magnitude faster than without it.
4572
4573 The descriptive type DWARF extension has significantly reduced
4574 the need for this cache, at least when DWARF is being used. However,
4575 even in this case, some expensive name-based symbol searches are still
4576 sometimes necessary - to find an XVZ variable, mostly. */
4577
4578 /* Initialize the contents of SYM_CACHE. */
4579
4580 static void
4581 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4582 {
4583 obstack_init (&sym_cache->cache_space);
4584 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4585 }
4586
4587 /* Free the memory used by SYM_CACHE. */
4588
4589 static void
4590 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4591 {
4592 obstack_free (&sym_cache->cache_space, NULL);
4593 xfree (sym_cache);
4594 }
4595
4596 /* Return the symbol cache associated to the given program space PSPACE.
4597 If not allocated for this PSPACE yet, allocate and initialize one. */
4598
4599 static struct ada_symbol_cache *
4600 ada_get_symbol_cache (struct program_space *pspace)
4601 {
4602 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4603
4604 if (pspace_data->sym_cache == NULL)
4605 {
4606 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4607 ada_init_symbol_cache (pspace_data->sym_cache);
4608 }
4609
4610 return pspace_data->sym_cache;
4611 }
4612
4613 /* Clear all entries from the symbol cache. */
4614
4615 static void
4616 ada_clear_symbol_cache (void)
4617 {
4618 struct ada_symbol_cache *sym_cache
4619 = ada_get_symbol_cache (current_program_space);
4620
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 ada_init_symbol_cache (sym_cache);
4623 }
4624
4625 /* Search our cache for an entry matching NAME and DOMAIN.
4626 Return it if found, or NULL otherwise. */
4627
4628 static struct cache_entry **
4629 find_entry (const char *name, domain_enum domain)
4630 {
4631 struct ada_symbol_cache *sym_cache
4632 = ada_get_symbol_cache (current_program_space);
4633 int h = msymbol_hash (name) % HASH_SIZE;
4634 struct cache_entry **e;
4635
4636 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4637 {
4638 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4639 return e;
4640 }
4641 return NULL;
4642 }
4643
4644 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4645 Return 1 if found, 0 otherwise.
4646
4647 If an entry was found and SYM is not NULL, set *SYM to the entry's
4648 SYM. Same principle for BLOCK if not NULL. */
4649
4650 static int
4651 lookup_cached_symbol (const char *name, domain_enum domain,
4652 struct symbol **sym, const struct block **block)
4653 {
4654 struct cache_entry **e = find_entry (name, domain);
4655
4656 if (e == NULL)
4657 return 0;
4658 if (sym != NULL)
4659 *sym = (*e)->sym;
4660 if (block != NULL)
4661 *block = (*e)->block;
4662 return 1;
4663 }
4664
4665 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4666 in domain DOMAIN, save this result in our symbol cache. */
4667
4668 static void
4669 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4670 const struct block *block)
4671 {
4672 struct ada_symbol_cache *sym_cache
4673 = ada_get_symbol_cache (current_program_space);
4674 int h;
4675 struct cache_entry *e;
4676
4677 /* Symbols for builtin types don't have a block.
4678 For now don't cache such symbols. */
4679 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4680 return;
4681
4682 /* If the symbol is a local symbol, then do not cache it, as a search
4683 for that symbol depends on the context. To determine whether
4684 the symbol is local or not, we check the block where we found it
4685 against the global and static blocks of its associated symtab. */
4686 if (sym
4687 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4688 GLOBAL_BLOCK) != block
4689 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4690 STATIC_BLOCK) != block)
4691 return;
4692
4693 h = msymbol_hash (name) % HASH_SIZE;
4694 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4695 e->next = sym_cache->root[h];
4696 sym_cache->root[h] = e;
4697 e->name = obstack_strdup (&sym_cache->cache_space, name);
4698 e->sym = sym;
4699 e->domain = domain;
4700 e->block = block;
4701 }
4702 \f
4703 /* Symbol Lookup */
4704
4705 /* Return the symbol name match type that should be used used when
4706 searching for all symbols matching LOOKUP_NAME.
4707
4708 LOOKUP_NAME is expected to be a symbol name after transformation
4709 for Ada lookups. */
4710
4711 static symbol_name_match_type
4712 name_match_type_from_name (const char *lookup_name)
4713 {
4714 return (strstr (lookup_name, "__") == NULL
4715 ? symbol_name_match_type::WILD
4716 : symbol_name_match_type::FULL);
4717 }
4718
4719 /* Return the result of a standard (literal, C-like) lookup of NAME in
4720 given DOMAIN, visible from lexical block BLOCK. */
4721
4722 static struct symbol *
4723 standard_lookup (const char *name, const struct block *block,
4724 domain_enum domain)
4725 {
4726 /* Initialize it just to avoid a GCC false warning. */
4727 struct block_symbol sym = {};
4728
4729 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4730 return sym.symbol;
4731 ada_lookup_encoded_symbol (name, block, domain, &sym);
4732 cache_symbol (name, domain, sym.symbol, sym.block);
4733 return sym.symbol;
4734 }
4735
4736
4737 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4738 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4739 since they contend in overloading in the same way. */
4740 static int
4741 is_nonfunction (struct block_symbol syms[], int n)
4742 {
4743 int i;
4744
4745 for (i = 0; i < n; i += 1)
4746 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4747 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4748 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4749 return 1;
4750
4751 return 0;
4752 }
4753
4754 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4755 struct types. Otherwise, they may not. */
4756
4757 static int
4758 equiv_types (struct type *type0, struct type *type1)
4759 {
4760 if (type0 == type1)
4761 return 1;
4762 if (type0 == NULL || type1 == NULL
4763 || type0->code () != type1->code ())
4764 return 0;
4765 if ((type0->code () == TYPE_CODE_STRUCT
4766 || type0->code () == TYPE_CODE_ENUM)
4767 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4768 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4769 return 1;
4770
4771 return 0;
4772 }
4773
4774 /* True iff SYM0 represents the same entity as SYM1, or one that is
4775 no more defined than that of SYM1. */
4776
4777 static int
4778 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4779 {
4780 if (sym0 == sym1)
4781 return 1;
4782 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4783 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4784 return 0;
4785
4786 switch (SYMBOL_CLASS (sym0))
4787 {
4788 case LOC_UNDEF:
4789 return 1;
4790 case LOC_TYPEDEF:
4791 {
4792 struct type *type0 = SYMBOL_TYPE (sym0);
4793 struct type *type1 = SYMBOL_TYPE (sym1);
4794 const char *name0 = sym0->linkage_name ();
4795 const char *name1 = sym1->linkage_name ();
4796 int len0 = strlen (name0);
4797
4798 return
4799 type0->code () == type1->code ()
4800 && (equiv_types (type0, type1)
4801 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4802 && startswith (name1 + len0, "___XV")));
4803 }
4804 case LOC_CONST:
4805 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4806 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4807
4808 case LOC_STATIC:
4809 {
4810 const char *name0 = sym0->linkage_name ();
4811 const char *name1 = sym1->linkage_name ();
4812 return (strcmp (name0, name1) == 0
4813 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4814 }
4815
4816 default:
4817 return 0;
4818 }
4819 }
4820
4821 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4822 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4823
4824 static void
4825 add_defn_to_vec (struct obstack *obstackp,
4826 struct symbol *sym,
4827 const struct block *block)
4828 {
4829 int i;
4830 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4831
4832 /* Do not try to complete stub types, as the debugger is probably
4833 already scanning all symbols matching a certain name at the
4834 time when this function is called. Trying to replace the stub
4835 type by its associated full type will cause us to restart a scan
4836 which may lead to an infinite recursion. Instead, the client
4837 collecting the matching symbols will end up collecting several
4838 matches, with at least one of them complete. It can then filter
4839 out the stub ones if needed. */
4840
4841 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4842 {
4843 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4844 return;
4845 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4846 {
4847 prevDefns[i].symbol = sym;
4848 prevDefns[i].block = block;
4849 return;
4850 }
4851 }
4852
4853 {
4854 struct block_symbol info;
4855
4856 info.symbol = sym;
4857 info.block = block;
4858 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4859 }
4860 }
4861
4862 /* Number of block_symbol structures currently collected in current vector in
4863 OBSTACKP. */
4864
4865 static int
4866 num_defns_collected (struct obstack *obstackp)
4867 {
4868 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4869 }
4870
4871 /* Vector of block_symbol structures currently collected in current vector in
4872 OBSTACKP. If FINISH, close off the vector and return its final address. */
4873
4874 static struct block_symbol *
4875 defns_collected (struct obstack *obstackp, int finish)
4876 {
4877 if (finish)
4878 return (struct block_symbol *) obstack_finish (obstackp);
4879 else
4880 return (struct block_symbol *) obstack_base (obstackp);
4881 }
4882
4883 /* Return a bound minimal symbol matching NAME according to Ada
4884 decoding rules. Returns an invalid symbol if there is no such
4885 minimal symbol. Names prefixed with "standard__" are handled
4886 specially: "standard__" is first stripped off, and only static and
4887 global symbols are searched. */
4888
4889 struct bound_minimal_symbol
4890 ada_lookup_simple_minsym (const char *name)
4891 {
4892 struct bound_minimal_symbol result;
4893
4894 memset (&result, 0, sizeof (result));
4895
4896 symbol_name_match_type match_type = name_match_type_from_name (name);
4897 lookup_name_info lookup_name (name, match_type);
4898
4899 symbol_name_matcher_ftype *match_name
4900 = ada_get_symbol_name_matcher (lookup_name);
4901
4902 for (objfile *objfile : current_program_space->objfiles ())
4903 {
4904 for (minimal_symbol *msymbol : objfile->msymbols ())
4905 {
4906 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4907 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4908 {
4909 result.minsym = msymbol;
4910 result.objfile = objfile;
4911 break;
4912 }
4913 }
4914 }
4915
4916 return result;
4917 }
4918
4919 /* For all subprograms that statically enclose the subprogram of the
4920 selected frame, add symbols matching identifier NAME in DOMAIN
4921 and their blocks to the list of data in OBSTACKP, as for
4922 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4923 with a wildcard prefix. */
4924
4925 static void
4926 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4927 const lookup_name_info &lookup_name,
4928 domain_enum domain)
4929 {
4930 }
4931
4932 /* True if TYPE is definitely an artificial type supplied to a symbol
4933 for which no debugging information was given in the symbol file. */
4934
4935 static int
4936 is_nondebugging_type (struct type *type)
4937 {
4938 const char *name = ada_type_name (type);
4939
4940 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4941 }
4942
4943 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4944 that are deemed "identical" for practical purposes.
4945
4946 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4947 types and that their number of enumerals is identical (in other
4948 words, type1->num_fields () == type2->num_fields ()). */
4949
4950 static int
4951 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4952 {
4953 int i;
4954
4955 /* The heuristic we use here is fairly conservative. We consider
4956 that 2 enumerate types are identical if they have the same
4957 number of enumerals and that all enumerals have the same
4958 underlying value and name. */
4959
4960 /* All enums in the type should have an identical underlying value. */
4961 for (i = 0; i < type1->num_fields (); i++)
4962 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4963 return 0;
4964
4965 /* All enumerals should also have the same name (modulo any numerical
4966 suffix). */
4967 for (i = 0; i < type1->num_fields (); i++)
4968 {
4969 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4970 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4971 int len_1 = strlen (name_1);
4972 int len_2 = strlen (name_2);
4973
4974 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4975 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4976 if (len_1 != len_2
4977 || strncmp (TYPE_FIELD_NAME (type1, i),
4978 TYPE_FIELD_NAME (type2, i),
4979 len_1) != 0)
4980 return 0;
4981 }
4982
4983 return 1;
4984 }
4985
4986 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4987 that are deemed "identical" for practical purposes. Sometimes,
4988 enumerals are not strictly identical, but their types are so similar
4989 that they can be considered identical.
4990
4991 For instance, consider the following code:
4992
4993 type Color is (Black, Red, Green, Blue, White);
4994 type RGB_Color is new Color range Red .. Blue;
4995
4996 Type RGB_Color is a subrange of an implicit type which is a copy
4997 of type Color. If we call that implicit type RGB_ColorB ("B" is
4998 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4999 As a result, when an expression references any of the enumeral
5000 by name (Eg. "print green"), the expression is technically
5001 ambiguous and the user should be asked to disambiguate. But
5002 doing so would only hinder the user, since it wouldn't matter
5003 what choice he makes, the outcome would always be the same.
5004 So, for practical purposes, we consider them as the same. */
5005
5006 static int
5007 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5008 {
5009 int i;
5010
5011 /* Before performing a thorough comparison check of each type,
5012 we perform a series of inexpensive checks. We expect that these
5013 checks will quickly fail in the vast majority of cases, and thus
5014 help prevent the unnecessary use of a more expensive comparison.
5015 Said comparison also expects us to make some of these checks
5016 (see ada_identical_enum_types_p). */
5017
5018 /* Quick check: All symbols should have an enum type. */
5019 for (i = 0; i < syms.size (); i++)
5020 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5021 return 0;
5022
5023 /* Quick check: They should all have the same value. */
5024 for (i = 1; i < syms.size (); i++)
5025 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5026 return 0;
5027
5028 /* Quick check: They should all have the same number of enumerals. */
5029 for (i = 1; i < syms.size (); i++)
5030 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5031 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5032 return 0;
5033
5034 /* All the sanity checks passed, so we might have a set of
5035 identical enumeration types. Perform a more complete
5036 comparison of the type of each symbol. */
5037 for (i = 1; i < syms.size (); i++)
5038 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5039 SYMBOL_TYPE (syms[0].symbol)))
5040 return 0;
5041
5042 return 1;
5043 }
5044
5045 /* Remove any non-debugging symbols in SYMS that definitely
5046 duplicate other symbols in the list (The only case I know of where
5047 this happens is when object files containing stabs-in-ecoff are
5048 linked with files containing ordinary ecoff debugging symbols (or no
5049 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5050 Returns the number of items in the modified list. */
5051
5052 static int
5053 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5054 {
5055 int i, j;
5056
5057 /* We should never be called with less than 2 symbols, as there
5058 cannot be any extra symbol in that case. But it's easy to
5059 handle, since we have nothing to do in that case. */
5060 if (syms->size () < 2)
5061 return syms->size ();
5062
5063 i = 0;
5064 while (i < syms->size ())
5065 {
5066 int remove_p = 0;
5067
5068 /* If two symbols have the same name and one of them is a stub type,
5069 the get rid of the stub. */
5070
5071 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5072 && (*syms)[i].symbol->linkage_name () != NULL)
5073 {
5074 for (j = 0; j < syms->size (); j++)
5075 {
5076 if (j != i
5077 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5078 && (*syms)[j].symbol->linkage_name () != NULL
5079 && strcmp ((*syms)[i].symbol->linkage_name (),
5080 (*syms)[j].symbol->linkage_name ()) == 0)
5081 remove_p = 1;
5082 }
5083 }
5084
5085 /* Two symbols with the same name, same class and same address
5086 should be identical. */
5087
5088 else if ((*syms)[i].symbol->linkage_name () != NULL
5089 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5090 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5091 {
5092 for (j = 0; j < syms->size (); j += 1)
5093 {
5094 if (i != j
5095 && (*syms)[j].symbol->linkage_name () != NULL
5096 && strcmp ((*syms)[i].symbol->linkage_name (),
5097 (*syms)[j].symbol->linkage_name ()) == 0
5098 && SYMBOL_CLASS ((*syms)[i].symbol)
5099 == SYMBOL_CLASS ((*syms)[j].symbol)
5100 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5101 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5102 remove_p = 1;
5103 }
5104 }
5105
5106 if (remove_p)
5107 syms->erase (syms->begin () + i);
5108 else
5109 i += 1;
5110 }
5111
5112 /* If all the remaining symbols are identical enumerals, then
5113 just keep the first one and discard the rest.
5114
5115 Unlike what we did previously, we do not discard any entry
5116 unless they are ALL identical. This is because the symbol
5117 comparison is not a strict comparison, but rather a practical
5118 comparison. If all symbols are considered identical, then
5119 we can just go ahead and use the first one and discard the rest.
5120 But if we cannot reduce the list to a single element, we have
5121 to ask the user to disambiguate anyways. And if we have to
5122 present a multiple-choice menu, it's less confusing if the list
5123 isn't missing some choices that were identical and yet distinct. */
5124 if (symbols_are_identical_enums (*syms))
5125 syms->resize (1);
5126
5127 return syms->size ();
5128 }
5129
5130 /* Given a type that corresponds to a renaming entity, use the type name
5131 to extract the scope (package name or function name, fully qualified,
5132 and following the GNAT encoding convention) where this renaming has been
5133 defined. */
5134
5135 static std::string
5136 xget_renaming_scope (struct type *renaming_type)
5137 {
5138 /* The renaming types adhere to the following convention:
5139 <scope>__<rename>___<XR extension>.
5140 So, to extract the scope, we search for the "___XR" extension,
5141 and then backtrack until we find the first "__". */
5142
5143 const char *name = renaming_type->name ();
5144 const char *suffix = strstr (name, "___XR");
5145 const char *last;
5146
5147 /* Now, backtrack a bit until we find the first "__". Start looking
5148 at suffix - 3, as the <rename> part is at least one character long. */
5149
5150 for (last = suffix - 3; last > name; last--)
5151 if (last[0] == '_' && last[1] == '_')
5152 break;
5153
5154 /* Make a copy of scope and return it. */
5155 return std::string (name, last);
5156 }
5157
5158 /* Return nonzero if NAME corresponds to a package name. */
5159
5160 static int
5161 is_package_name (const char *name)
5162 {
5163 /* Here, We take advantage of the fact that no symbols are generated
5164 for packages, while symbols are generated for each function.
5165 So the condition for NAME represent a package becomes equivalent
5166 to NAME not existing in our list of symbols. There is only one
5167 small complication with library-level functions (see below). */
5168
5169 /* If it is a function that has not been defined at library level,
5170 then we should be able to look it up in the symbols. */
5171 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5172 return 0;
5173
5174 /* Library-level function names start with "_ada_". See if function
5175 "_ada_" followed by NAME can be found. */
5176
5177 /* Do a quick check that NAME does not contain "__", since library-level
5178 functions names cannot contain "__" in them. */
5179 if (strstr (name, "__") != NULL)
5180 return 0;
5181
5182 std::string fun_name = string_printf ("_ada_%s", name);
5183
5184 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5185 }
5186
5187 /* Return nonzero if SYM corresponds to a renaming entity that is
5188 not visible from FUNCTION_NAME. */
5189
5190 static int
5191 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5192 {
5193 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5194 return 0;
5195
5196 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5197
5198 /* If the rename has been defined in a package, then it is visible. */
5199 if (is_package_name (scope.c_str ()))
5200 return 0;
5201
5202 /* Check that the rename is in the current function scope by checking
5203 that its name starts with SCOPE. */
5204
5205 /* If the function name starts with "_ada_", it means that it is
5206 a library-level function. Strip this prefix before doing the
5207 comparison, as the encoding for the renaming does not contain
5208 this prefix. */
5209 if (startswith (function_name, "_ada_"))
5210 function_name += 5;
5211
5212 return !startswith (function_name, scope.c_str ());
5213 }
5214
5215 /* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
5220
5221 Rationale:
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
5234
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
5251
5252 static int
5253 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5254 const struct block *current_block)
5255 {
5256 struct symbol *current_function;
5257 const char *current_function_name;
5258 int i;
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
5263 First, zero out such symbols, then compress. */
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < syms->size (); i += 1)
5266 {
5267 struct symbol *sym = (*syms)[i].symbol;
5268 const struct block *block = (*syms)[i].block;
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = sym->linkage_name ();
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5281
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < syms->size (); j += 1)
5284 if (i != j && (*syms)[j].symbol != NULL
5285 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5286 name_len) == 0
5287 && block == (*syms)[j].block)
5288 (*syms)[j].symbol = NULL;
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < syms->size (); j += 1)
5296 if ((*syms)[j].symbol != NULL)
5297 {
5298 (*syms)[k] = (*syms)[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
5306
5307 if (current_block == NULL)
5308 return syms->size ();
5309
5310 current_function = block_linkage_function (current_block);
5311 if (current_function == NULL)
5312 return syms->size ();
5313
5314 current_function_name = current_function->linkage_name ();
5315 if (current_function_name == NULL)
5316 return syms->size ();
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < syms->size ())
5324 {
5325 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5326 == ADA_OBJECT_RENAMING
5327 && old_renaming_is_invisible ((*syms)[i].symbol,
5328 current_function_name))
5329 syms->erase (syms->begin () + i);
5330 else
5331 i += 1;
5332 }
5333
5334 return syms->size ();
5335 }
5336
5337 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5338 whose name and domain match NAME and DOMAIN respectively.
5339 If no match was found, then extend the search to "enclosing"
5340 routines (in other words, if we're inside a nested function,
5341 search the symbols defined inside the enclosing functions).
5342 If WILD_MATCH_P is nonzero, perform the naming matching in
5343 "wild" mode (see function "wild_match" for more info).
5344
5345 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5346
5347 static void
5348 ada_add_local_symbols (struct obstack *obstackp,
5349 const lookup_name_info &lookup_name,
5350 const struct block *block, domain_enum domain)
5351 {
5352 int block_depth = 0;
5353
5354 while (block != NULL)
5355 {
5356 block_depth += 1;
5357 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5358
5359 /* If we found a non-function match, assume that's the one. */
5360 if (is_nonfunction (defns_collected (obstackp, 0),
5361 num_defns_collected (obstackp)))
5362 return;
5363
5364 block = BLOCK_SUPERBLOCK (block);
5365 }
5366
5367 /* If no luck so far, try to find NAME as a local symbol in some lexically
5368 enclosing subprogram. */
5369 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5370 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5371 }
5372
5373 /* An object of this type is used as the user_data argument when
5374 calling the map_matching_symbols method. */
5375
5376 struct match_data
5377 {
5378 struct objfile *objfile;
5379 struct obstack *obstackp;
5380 struct symbol *arg_sym;
5381 int found_sym;
5382 };
5383
5384 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5385 to a list of symbols. DATA is a pointer to a struct match_data *
5386 containing the obstack that collects the symbol list, the file that SYM
5387 must come from, a flag indicating whether a non-argument symbol has
5388 been found in the current block, and the last argument symbol
5389 passed in SYM within the current block (if any). When SYM is null,
5390 marking the end of a block, the argument symbol is added if no
5391 other has been found. */
5392
5393 static bool
5394 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5395 struct match_data *data)
5396 {
5397 const struct block *block = bsym->block;
5398 struct symbol *sym = bsym->symbol;
5399
5400 if (sym == NULL)
5401 {
5402 if (!data->found_sym && data->arg_sym != NULL)
5403 add_defn_to_vec (data->obstackp,
5404 fixup_symbol_section (data->arg_sym, data->objfile),
5405 block);
5406 data->found_sym = 0;
5407 data->arg_sym = NULL;
5408 }
5409 else
5410 {
5411 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5412 return true;
5413 else if (SYMBOL_IS_ARGUMENT (sym))
5414 data->arg_sym = sym;
5415 else
5416 {
5417 data->found_sym = 1;
5418 add_defn_to_vec (data->obstackp,
5419 fixup_symbol_section (sym, data->objfile),
5420 block);
5421 }
5422 }
5423 return true;
5424 }
5425
5426 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5427 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5428 symbols to OBSTACKP. Return whether we found such symbols. */
5429
5430 static int
5431 ada_add_block_renamings (struct obstack *obstackp,
5432 const struct block *block,
5433 const lookup_name_info &lookup_name,
5434 domain_enum domain)
5435 {
5436 struct using_direct *renaming;
5437 int defns_mark = num_defns_collected (obstackp);
5438
5439 symbol_name_matcher_ftype *name_match
5440 = ada_get_symbol_name_matcher (lookup_name);
5441
5442 for (renaming = block_using (block);
5443 renaming != NULL;
5444 renaming = renaming->next)
5445 {
5446 const char *r_name;
5447
5448 /* Avoid infinite recursions: skip this renaming if we are actually
5449 already traversing it.
5450
5451 Currently, symbol lookup in Ada don't use the namespace machinery from
5452 C++/Fortran support: skip namespace imports that use them. */
5453 if (renaming->searched
5454 || (renaming->import_src != NULL
5455 && renaming->import_src[0] != '\0')
5456 || (renaming->import_dest != NULL
5457 && renaming->import_dest[0] != '\0'))
5458 continue;
5459 renaming->searched = 1;
5460
5461 /* TODO: here, we perform another name-based symbol lookup, which can
5462 pull its own multiple overloads. In theory, we should be able to do
5463 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5464 not a simple name. But in order to do this, we would need to enhance
5465 the DWARF reader to associate a symbol to this renaming, instead of a
5466 name. So, for now, we do something simpler: re-use the C++/Fortran
5467 namespace machinery. */
5468 r_name = (renaming->alias != NULL
5469 ? renaming->alias
5470 : renaming->declaration);
5471 if (name_match (r_name, lookup_name, NULL))
5472 {
5473 lookup_name_info decl_lookup_name (renaming->declaration,
5474 lookup_name.match_type ());
5475 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5476 1, NULL);
5477 }
5478 renaming->searched = 0;
5479 }
5480 return num_defns_collected (obstackp) != defns_mark;
5481 }
5482
5483 /* Implements compare_names, but only applying the comparision using
5484 the given CASING. */
5485
5486 static int
5487 compare_names_with_case (const char *string1, const char *string2,
5488 enum case_sensitivity casing)
5489 {
5490 while (*string1 != '\0' && *string2 != '\0')
5491 {
5492 char c1, c2;
5493
5494 if (isspace (*string1) || isspace (*string2))
5495 return strcmp_iw_ordered (string1, string2);
5496
5497 if (casing == case_sensitive_off)
5498 {
5499 c1 = tolower (*string1);
5500 c2 = tolower (*string2);
5501 }
5502 else
5503 {
5504 c1 = *string1;
5505 c2 = *string2;
5506 }
5507 if (c1 != c2)
5508 break;
5509
5510 string1 += 1;
5511 string2 += 1;
5512 }
5513
5514 switch (*string1)
5515 {
5516 case '(':
5517 return strcmp_iw_ordered (string1, string2);
5518 case '_':
5519 if (*string2 == '\0')
5520 {
5521 if (is_name_suffix (string1))
5522 return 0;
5523 else
5524 return 1;
5525 }
5526 /* FALLTHROUGH */
5527 default:
5528 if (*string2 == '(')
5529 return strcmp_iw_ordered (string1, string2);
5530 else
5531 {
5532 if (casing == case_sensitive_off)
5533 return tolower (*string1) - tolower (*string2);
5534 else
5535 return *string1 - *string2;
5536 }
5537 }
5538 }
5539
5540 /* Compare STRING1 to STRING2, with results as for strcmp.
5541 Compatible with strcmp_iw_ordered in that...
5542
5543 strcmp_iw_ordered (STRING1, STRING2) <= 0
5544
5545 ... implies...
5546
5547 compare_names (STRING1, STRING2) <= 0
5548
5549 (they may differ as to what symbols compare equal). */
5550
5551 static int
5552 compare_names (const char *string1, const char *string2)
5553 {
5554 int result;
5555
5556 /* Similar to what strcmp_iw_ordered does, we need to perform
5557 a case-insensitive comparison first, and only resort to
5558 a second, case-sensitive, comparison if the first one was
5559 not sufficient to differentiate the two strings. */
5560
5561 result = compare_names_with_case (string1, string2, case_sensitive_off);
5562 if (result == 0)
5563 result = compare_names_with_case (string1, string2, case_sensitive_on);
5564
5565 return result;
5566 }
5567
5568 /* Convenience function to get at the Ada encoded lookup name for
5569 LOOKUP_NAME, as a C string. */
5570
5571 static const char *
5572 ada_lookup_name (const lookup_name_info &lookup_name)
5573 {
5574 return lookup_name.ada ().lookup_name ().c_str ();
5575 }
5576
5577 /* Add to OBSTACKP all non-local symbols whose name and domain match
5578 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5579 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5580 symbols otherwise. */
5581
5582 static void
5583 add_nonlocal_symbols (struct obstack *obstackp,
5584 const lookup_name_info &lookup_name,
5585 domain_enum domain, int global)
5586 {
5587 struct match_data data;
5588
5589 memset (&data, 0, sizeof data);
5590 data.obstackp = obstackp;
5591
5592 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5593
5594 auto callback = [&] (struct block_symbol *bsym)
5595 {
5596 return aux_add_nonlocal_symbols (bsym, &data);
5597 };
5598
5599 for (objfile *objfile : current_program_space->objfiles ())
5600 {
5601 data.objfile = objfile;
5602
5603 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5604 domain, global, callback,
5605 (is_wild_match
5606 ? NULL : compare_names));
5607
5608 for (compunit_symtab *cu : objfile->compunits ())
5609 {
5610 const struct block *global_block
5611 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5612
5613 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5614 domain))
5615 data.found_sym = 1;
5616 }
5617 }
5618
5619 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5620 {
5621 const char *name = ada_lookup_name (lookup_name);
5622 std::string bracket_name = std::string ("<_ada_") + name + '>';
5623 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5624
5625 for (objfile *objfile : current_program_space->objfiles ())
5626 {
5627 data.objfile = objfile;
5628 objfile->sf->qf->map_matching_symbols (objfile, name1,
5629 domain, global, callback,
5630 compare_names);
5631 }
5632 }
5633 }
5634
5635 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5636 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5637 returning the number of matches. Add these to OBSTACKP.
5638
5639 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5640 symbol match within the nest of blocks whose innermost member is BLOCK,
5641 is the one match returned (no other matches in that or
5642 enclosing blocks is returned). If there are any matches in or
5643 surrounding BLOCK, then these alone are returned.
5644
5645 Names prefixed with "standard__" are handled specially:
5646 "standard__" is first stripped off (by the lookup_name
5647 constructor), and only static and global symbols are searched.
5648
5649 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5650 to lookup global symbols. */
5651
5652 static void
5653 ada_add_all_symbols (struct obstack *obstackp,
5654 const struct block *block,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain,
5657 int full_search,
5658 int *made_global_lookup_p)
5659 {
5660 struct symbol *sym;
5661
5662 if (made_global_lookup_p)
5663 *made_global_lookup_p = 0;
5664
5665 /* Special case: If the user specifies a symbol name inside package
5666 Standard, do a non-wild matching of the symbol name without
5667 the "standard__" prefix. This was primarily introduced in order
5668 to allow the user to specifically access the standard exceptions
5669 using, for instance, Standard.Constraint_Error when Constraint_Error
5670 is ambiguous (due to the user defining its own Constraint_Error
5671 entity inside its program). */
5672 if (lookup_name.ada ().standard_p ())
5673 block = NULL;
5674
5675 /* Check the non-global symbols. If we have ANY match, then we're done. */
5676
5677 if (block != NULL)
5678 {
5679 if (full_search)
5680 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5681 else
5682 {
5683 /* In the !full_search case we're are being called by
5684 iterate_over_symbols, and we don't want to search
5685 superblocks. */
5686 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5687 }
5688 if (num_defns_collected (obstackp) > 0 || !full_search)
5689 return;
5690 }
5691
5692 /* No non-global symbols found. Check our cache to see if we have
5693 already performed this search before. If we have, then return
5694 the same result. */
5695
5696 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5697 domain, &sym, &block))
5698 {
5699 if (sym != NULL)
5700 add_defn_to_vec (obstackp, sym, block);
5701 return;
5702 }
5703
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 1;
5706
5707 /* Search symbols from all global blocks. */
5708
5709 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5710
5711 /* Now add symbols from all per-file blocks if we've gotten no hits
5712 (not strictly correct, but perhaps better than an error). */
5713
5714 if (num_defns_collected (obstackp) == 0)
5715 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5716 }
5717
5718 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5719 is non-zero, enclosing scope and in global scopes, returning the number of
5720 matches.
5721 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5722 found and the blocks and symbol tables (if any) in which they were
5723 found.
5724
5725 When full_search is non-zero, any non-function/non-enumeral
5726 symbol match within the nest of blocks whose innermost member is BLOCK,
5727 is the one match returned (no other matches in that or
5728 enclosing blocks is returned). If there are any matches in or
5729 surrounding BLOCK, then these alone are returned.
5730
5731 Names prefixed with "standard__" are handled specially: "standard__"
5732 is first stripped off, and only static and global symbols are searched. */
5733
5734 static int
5735 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5736 const struct block *block,
5737 domain_enum domain,
5738 std::vector<struct block_symbol> *results,
5739 int full_search)
5740 {
5741 int syms_from_global_search;
5742 int ndefns;
5743 auto_obstack obstack;
5744
5745 ada_add_all_symbols (&obstack, block, lookup_name,
5746 domain, full_search, &syms_from_global_search);
5747
5748 ndefns = num_defns_collected (&obstack);
5749
5750 struct block_symbol *base = defns_collected (&obstack, 1);
5751 for (int i = 0; i < ndefns; ++i)
5752 results->push_back (base[i]);
5753
5754 ndefns = remove_extra_symbols (results);
5755
5756 if (ndefns == 0 && full_search && syms_from_global_search)
5757 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5758
5759 if (ndefns == 1 && full_search && syms_from_global_search)
5760 cache_symbol (ada_lookup_name (lookup_name), domain,
5761 (*results)[0].symbol, (*results)[0].block);
5762
5763 ndefns = remove_irrelevant_renamings (results, block);
5764
5765 return ndefns;
5766 }
5767
5768 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5769 in global scopes, returning the number of matches, and filling *RESULTS
5770 with (SYM,BLOCK) tuples.
5771
5772 See ada_lookup_symbol_list_worker for further details. */
5773
5774 int
5775 ada_lookup_symbol_list (const char *name, const struct block *block,
5776 domain_enum domain,
5777 std::vector<struct block_symbol> *results)
5778 {
5779 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5780 lookup_name_info lookup_name (name, name_match_type);
5781
5782 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5783 }
5784
5785 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5786 to 1, but choosing the first symbol found if there are multiple
5787 choices.
5788
5789 The result is stored in *INFO, which must be non-NULL.
5790 If no match is found, INFO->SYM is set to NULL. */
5791
5792 void
5793 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5794 domain_enum domain,
5795 struct block_symbol *info)
5796 {
5797 /* Since we already have an encoded name, wrap it in '<>' to force a
5798 verbatim match. Otherwise, if the name happens to not look like
5799 an encoded name (because it doesn't include a "__"),
5800 ada_lookup_name_info would re-encode/fold it again, and that
5801 would e.g., incorrectly lowercase object renaming names like
5802 "R28b" -> "r28b". */
5803 std::string verbatim = std::string ("<") + name + '>';
5804
5805 gdb_assert (info != NULL);
5806 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5807 }
5808
5809 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5810 scope and in global scopes, or NULL if none. NAME is folded and
5811 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5812 choosing the first symbol if there are multiple choices. */
5813
5814 struct block_symbol
5815 ada_lookup_symbol (const char *name, const struct block *block0,
5816 domain_enum domain)
5817 {
5818 std::vector<struct block_symbol> candidates;
5819 int n_candidates;
5820
5821 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5822
5823 if (n_candidates == 0)
5824 return {};
5825
5826 block_symbol info = candidates[0];
5827 info.symbol = fixup_symbol_section (info.symbol, NULL);
5828 return info;
5829 }
5830
5831
5832 /* True iff STR is a possible encoded suffix of a normal Ada name
5833 that is to be ignored for matching purposes. Suffixes of parallel
5834 names (e.g., XVE) are not included here. Currently, the possible suffixes
5835 are given by any of the regular expressions:
5836
5837 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5838 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5839 TKB [subprogram suffix for task bodies]
5840 _E[0-9]+[bs]$ [protected object entry suffixes]
5841 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5842
5843 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5844 match is performed. This sequence is used to differentiate homonyms,
5845 is an optional part of a valid name suffix. */
5846
5847 static int
5848 is_name_suffix (const char *str)
5849 {
5850 int k;
5851 const char *matching;
5852 const int len = strlen (str);
5853
5854 /* Skip optional leading __[0-9]+. */
5855
5856 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5857 {
5858 str += 3;
5859 while (isdigit (str[0]))
5860 str += 1;
5861 }
5862
5863 /* [.$][0-9]+ */
5864
5865 if (str[0] == '.' || str[0] == '$')
5866 {
5867 matching = str + 1;
5868 while (isdigit (matching[0]))
5869 matching += 1;
5870 if (matching[0] == '\0')
5871 return 1;
5872 }
5873
5874 /* ___[0-9]+ */
5875
5876 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5877 {
5878 matching = str + 3;
5879 while (isdigit (matching[0]))
5880 matching += 1;
5881 if (matching[0] == '\0')
5882 return 1;
5883 }
5884
5885 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5886
5887 if (strcmp (str, "TKB") == 0)
5888 return 1;
5889
5890 #if 0
5891 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5892 with a N at the end. Unfortunately, the compiler uses the same
5893 convention for other internal types it creates. So treating
5894 all entity names that end with an "N" as a name suffix causes
5895 some regressions. For instance, consider the case of an enumerated
5896 type. To support the 'Image attribute, it creates an array whose
5897 name ends with N.
5898 Having a single character like this as a suffix carrying some
5899 information is a bit risky. Perhaps we should change the encoding
5900 to be something like "_N" instead. In the meantime, do not do
5901 the following check. */
5902 /* Protected Object Subprograms */
5903 if (len == 1 && str [0] == 'N')
5904 return 1;
5905 #endif
5906
5907 /* _E[0-9]+[bs]$ */
5908 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5909 {
5910 matching = str + 3;
5911 while (isdigit (matching[0]))
5912 matching += 1;
5913 if ((matching[0] == 'b' || matching[0] == 's')
5914 && matching [1] == '\0')
5915 return 1;
5916 }
5917
5918 /* ??? We should not modify STR directly, as we are doing below. This
5919 is fine in this case, but may become problematic later if we find
5920 that this alternative did not work, and want to try matching
5921 another one from the begining of STR. Since we modified it, we
5922 won't be able to find the begining of the string anymore! */
5923 if (str[0] == 'X')
5924 {
5925 str += 1;
5926 while (str[0] != '_' && str[0] != '\0')
5927 {
5928 if (str[0] != 'n' && str[0] != 'b')
5929 return 0;
5930 str += 1;
5931 }
5932 }
5933
5934 if (str[0] == '\000')
5935 return 1;
5936
5937 if (str[0] == '_')
5938 {
5939 if (str[1] != '_' || str[2] == '\000')
5940 return 0;
5941 if (str[2] == '_')
5942 {
5943 if (strcmp (str + 3, "JM") == 0)
5944 return 1;
5945 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5946 the LJM suffix in favor of the JM one. But we will
5947 still accept LJM as a valid suffix for a reasonable
5948 amount of time, just to allow ourselves to debug programs
5949 compiled using an older version of GNAT. */
5950 if (strcmp (str + 3, "LJM") == 0)
5951 return 1;
5952 if (str[3] != 'X')
5953 return 0;
5954 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5955 || str[4] == 'U' || str[4] == 'P')
5956 return 1;
5957 if (str[4] == 'R' && str[5] != 'T')
5958 return 1;
5959 return 0;
5960 }
5961 if (!isdigit (str[2]))
5962 return 0;
5963 for (k = 3; str[k] != '\0'; k += 1)
5964 if (!isdigit (str[k]) && str[k] != '_')
5965 return 0;
5966 return 1;
5967 }
5968 if (str[0] == '$' && isdigit (str[1]))
5969 {
5970 for (k = 2; str[k] != '\0'; k += 1)
5971 if (!isdigit (str[k]) && str[k] != '_')
5972 return 0;
5973 return 1;
5974 }
5975 return 0;
5976 }
5977
5978 /* Return non-zero if the string starting at NAME and ending before
5979 NAME_END contains no capital letters. */
5980
5981 static int
5982 is_valid_name_for_wild_match (const char *name0)
5983 {
5984 std::string decoded_name = ada_decode (name0);
5985 int i;
5986
5987 /* If the decoded name starts with an angle bracket, it means that
5988 NAME0 does not follow the GNAT encoding format. It should then
5989 not be allowed as a possible wild match. */
5990 if (decoded_name[0] == '<')
5991 return 0;
5992
5993 for (i=0; decoded_name[i] != '\0'; i++)
5994 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5995 return 0;
5996
5997 return 1;
5998 }
5999
6000 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6001 character which could start a simple name. Assumes that *NAMEP points
6002 somewhere inside the string beginning at NAME0. */
6003
6004 static int
6005 advance_wild_match (const char **namep, const char *name0, char target0)
6006 {
6007 const char *name = *namep;
6008
6009 while (1)
6010 {
6011 char t0, t1;
6012
6013 t0 = *name;
6014 if (t0 == '_')
6015 {
6016 t1 = name[1];
6017 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6018 {
6019 name += 1;
6020 if (name == name0 + 5 && startswith (name0, "_ada"))
6021 break;
6022 else
6023 name += 1;
6024 }
6025 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6026 || name[2] == target0))
6027 {
6028 name += 2;
6029 break;
6030 }
6031 else
6032 return 0;
6033 }
6034 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6035 name += 1;
6036 else
6037 return 0;
6038 }
6039
6040 *namep = name;
6041 return 1;
6042 }
6043
6044 /* Return true iff NAME encodes a name of the form prefix.PATN.
6045 Ignores any informational suffixes of NAME (i.e., for which
6046 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6047 simple name. */
6048
6049 static bool
6050 wild_match (const char *name, const char *patn)
6051 {
6052 const char *p;
6053 const char *name0 = name;
6054
6055 while (1)
6056 {
6057 const char *match = name;
6058
6059 if (*name == *patn)
6060 {
6061 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6062 if (*p != *name)
6063 break;
6064 if (*p == '\0' && is_name_suffix (name))
6065 return match == name0 || is_valid_name_for_wild_match (name0);
6066
6067 if (name[-1] == '_')
6068 name -= 1;
6069 }
6070 if (!advance_wild_match (&name, name0, *patn))
6071 return false;
6072 }
6073 }
6074
6075 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6076 any trailing suffixes that encode debugging information or leading
6077 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6078 information that is ignored). */
6079
6080 static bool
6081 full_match (const char *sym_name, const char *search_name)
6082 {
6083 size_t search_name_len = strlen (search_name);
6084
6085 if (strncmp (sym_name, search_name, search_name_len) == 0
6086 && is_name_suffix (sym_name + search_name_len))
6087 return true;
6088
6089 if (startswith (sym_name, "_ada_")
6090 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6091 && is_name_suffix (sym_name + search_name_len + 5))
6092 return true;
6093
6094 return false;
6095 }
6096
6097 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6098 *defn_symbols, updating the list of symbols in OBSTACKP (if
6099 necessary). OBJFILE is the section containing BLOCK. */
6100
6101 static void
6102 ada_add_block_symbols (struct obstack *obstackp,
6103 const struct block *block,
6104 const lookup_name_info &lookup_name,
6105 domain_enum domain, struct objfile *objfile)
6106 {
6107 struct block_iterator iter;
6108 /* A matching argument symbol, if any. */
6109 struct symbol *arg_sym;
6110 /* Set true when we find a matching non-argument symbol. */
6111 int found_sym;
6112 struct symbol *sym;
6113
6114 arg_sym = NULL;
6115 found_sym = 0;
6116 for (sym = block_iter_match_first (block, lookup_name, &iter);
6117 sym != NULL;
6118 sym = block_iter_match_next (lookup_name, &iter))
6119 {
6120 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6121 {
6122 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6123 {
6124 if (SYMBOL_IS_ARGUMENT (sym))
6125 arg_sym = sym;
6126 else
6127 {
6128 found_sym = 1;
6129 add_defn_to_vec (obstackp,
6130 fixup_symbol_section (sym, objfile),
6131 block);
6132 }
6133 }
6134 }
6135 }
6136
6137 /* Handle renamings. */
6138
6139 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6140 found_sym = 1;
6141
6142 if (!found_sym && arg_sym != NULL)
6143 {
6144 add_defn_to_vec (obstackp,
6145 fixup_symbol_section (arg_sym, objfile),
6146 block);
6147 }
6148
6149 if (!lookup_name.ada ().wild_match_p ())
6150 {
6151 arg_sym = NULL;
6152 found_sym = 0;
6153 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6154 const char *name = ada_lookup_name.c_str ();
6155 size_t name_len = ada_lookup_name.size ();
6156
6157 ALL_BLOCK_SYMBOLS (block, iter, sym)
6158 {
6159 if (symbol_matches_domain (sym->language (),
6160 SYMBOL_DOMAIN (sym), domain))
6161 {
6162 int cmp;
6163
6164 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6165 if (cmp == 0)
6166 {
6167 cmp = !startswith (sym->linkage_name (), "_ada_");
6168 if (cmp == 0)
6169 cmp = strncmp (name, sym->linkage_name () + 5,
6170 name_len);
6171 }
6172
6173 if (cmp == 0
6174 && is_name_suffix (sym->linkage_name () + name_len + 5))
6175 {
6176 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6177 {
6178 if (SYMBOL_IS_ARGUMENT (sym))
6179 arg_sym = sym;
6180 else
6181 {
6182 found_sym = 1;
6183 add_defn_to_vec (obstackp,
6184 fixup_symbol_section (sym, objfile),
6185 block);
6186 }
6187 }
6188 }
6189 }
6190 }
6191
6192 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6193 They aren't parameters, right? */
6194 if (!found_sym && arg_sym != NULL)
6195 {
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (arg_sym, objfile),
6198 block);
6199 }
6200 }
6201 }
6202 \f
6203
6204 /* Symbol Completion */
6205
6206 /* See symtab.h. */
6207
6208 bool
6209 ada_lookup_name_info::matches
6210 (const char *sym_name,
6211 symbol_name_match_type match_type,
6212 completion_match_result *comp_match_res) const
6213 {
6214 bool match = false;
6215 const char *text = m_encoded_name.c_str ();
6216 size_t text_len = m_encoded_name.size ();
6217
6218 /* First, test against the fully qualified name of the symbol. */
6219
6220 if (strncmp (sym_name, text, text_len) == 0)
6221 match = true;
6222
6223 std::string decoded_name = ada_decode (sym_name);
6224 if (match && !m_encoded_p)
6225 {
6226 /* One needed check before declaring a positive match is to verify
6227 that iff we are doing a verbatim match, the decoded version
6228 of the symbol name starts with '<'. Otherwise, this symbol name
6229 is not a suitable completion. */
6230
6231 bool has_angle_bracket = (decoded_name[0] == '<');
6232 match = (has_angle_bracket == m_verbatim_p);
6233 }
6234
6235 if (match && !m_verbatim_p)
6236 {
6237 /* When doing non-verbatim match, another check that needs to
6238 be done is to verify that the potentially matching symbol name
6239 does not include capital letters, because the ada-mode would
6240 not be able to understand these symbol names without the
6241 angle bracket notation. */
6242 const char *tmp;
6243
6244 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6245 if (*tmp != '\0')
6246 match = false;
6247 }
6248
6249 /* Second: Try wild matching... */
6250
6251 if (!match && m_wild_match_p)
6252 {
6253 /* Since we are doing wild matching, this means that TEXT
6254 may represent an unqualified symbol name. We therefore must
6255 also compare TEXT against the unqualified name of the symbol. */
6256 sym_name = ada_unqualified_name (decoded_name.c_str ());
6257
6258 if (strncmp (sym_name, text, text_len) == 0)
6259 match = true;
6260 }
6261
6262 /* Finally: If we found a match, prepare the result to return. */
6263
6264 if (!match)
6265 return false;
6266
6267 if (comp_match_res != NULL)
6268 {
6269 std::string &match_str = comp_match_res->match.storage ();
6270
6271 if (!m_encoded_p)
6272 match_str = ada_decode (sym_name);
6273 else
6274 {
6275 if (m_verbatim_p)
6276 match_str = add_angle_brackets (sym_name);
6277 else
6278 match_str = sym_name;
6279
6280 }
6281
6282 comp_match_res->set_match (match_str.c_str ());
6283 }
6284
6285 return true;
6286 }
6287
6288 /* Field Access */
6289
6290 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6291 for tagged types. */
6292
6293 static int
6294 ada_is_dispatch_table_ptr_type (struct type *type)
6295 {
6296 const char *name;
6297
6298 if (type->code () != TYPE_CODE_PTR)
6299 return 0;
6300
6301 name = TYPE_TARGET_TYPE (type)->name ();
6302 if (name == NULL)
6303 return 0;
6304
6305 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6306 }
6307
6308 /* Return non-zero if TYPE is an interface tag. */
6309
6310 static int
6311 ada_is_interface_tag (struct type *type)
6312 {
6313 const char *name = type->name ();
6314
6315 if (name == NULL)
6316 return 0;
6317
6318 return (strcmp (name, "ada__tags__interface_tag") == 0);
6319 }
6320
6321 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6322 to be invisible to users. */
6323
6324 int
6325 ada_is_ignored_field (struct type *type, int field_num)
6326 {
6327 if (field_num < 0 || field_num > type->num_fields ())
6328 return 1;
6329
6330 /* Check the name of that field. */
6331 {
6332 const char *name = TYPE_FIELD_NAME (type, field_num);
6333
6334 /* Anonymous field names should not be printed.
6335 brobecker/2007-02-20: I don't think this can actually happen
6336 but we don't want to print the value of anonymous fields anyway. */
6337 if (name == NULL)
6338 return 1;
6339
6340 /* Normally, fields whose name start with an underscore ("_")
6341 are fields that have been internally generated by the compiler,
6342 and thus should not be printed. The "_parent" field is special,
6343 however: This is a field internally generated by the compiler
6344 for tagged types, and it contains the components inherited from
6345 the parent type. This field should not be printed as is, but
6346 should not be ignored either. */
6347 if (name[0] == '_' && !startswith (name, "_parent"))
6348 return 1;
6349 }
6350
6351 /* If this is the dispatch table of a tagged type or an interface tag,
6352 then ignore. */
6353 if (ada_is_tagged_type (type, 1)
6354 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6355 || ada_is_interface_tag (type->field (field_num).type ())))
6356 return 1;
6357
6358 /* Not a special field, so it should not be ignored. */
6359 return 0;
6360 }
6361
6362 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6363 pointer or reference type whose ultimate target has a tag field. */
6364
6365 int
6366 ada_is_tagged_type (struct type *type, int refok)
6367 {
6368 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6369 }
6370
6371 /* True iff TYPE represents the type of X'Tag */
6372
6373 int
6374 ada_is_tag_type (struct type *type)
6375 {
6376 type = ada_check_typedef (type);
6377
6378 if (type == NULL || type->code () != TYPE_CODE_PTR)
6379 return 0;
6380 else
6381 {
6382 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6383
6384 return (name != NULL
6385 && strcmp (name, "ada__tags__dispatch_table") == 0);
6386 }
6387 }
6388
6389 /* The type of the tag on VAL. */
6390
6391 static struct type *
6392 ada_tag_type (struct value *val)
6393 {
6394 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6395 }
6396
6397 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6398 retired at Ada 05). */
6399
6400 static int
6401 is_ada95_tag (struct value *tag)
6402 {
6403 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6404 }
6405
6406 /* The value of the tag on VAL. */
6407
6408 static struct value *
6409 ada_value_tag (struct value *val)
6410 {
6411 return ada_value_struct_elt (val, "_tag", 0);
6412 }
6413
6414 /* The value of the tag on the object of type TYPE whose contents are
6415 saved at VALADDR, if it is non-null, or is at memory address
6416 ADDRESS. */
6417
6418 static struct value *
6419 value_tag_from_contents_and_address (struct type *type,
6420 const gdb_byte *valaddr,
6421 CORE_ADDR address)
6422 {
6423 int tag_byte_offset;
6424 struct type *tag_type;
6425
6426 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6427 NULL, NULL, NULL))
6428 {
6429 const gdb_byte *valaddr1 = ((valaddr == NULL)
6430 ? NULL
6431 : valaddr + tag_byte_offset);
6432 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6433
6434 return value_from_contents_and_address (tag_type, valaddr1, address1);
6435 }
6436 return NULL;
6437 }
6438
6439 static struct type *
6440 type_from_tag (struct value *tag)
6441 {
6442 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6443
6444 if (type_name != NULL)
6445 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6446 return NULL;
6447 }
6448
6449 /* Given a value OBJ of a tagged type, return a value of this
6450 type at the base address of the object. The base address, as
6451 defined in Ada.Tags, it is the address of the primary tag of
6452 the object, and therefore where the field values of its full
6453 view can be fetched. */
6454
6455 struct value *
6456 ada_tag_value_at_base_address (struct value *obj)
6457 {
6458 struct value *val;
6459 LONGEST offset_to_top = 0;
6460 struct type *ptr_type, *obj_type;
6461 struct value *tag;
6462 CORE_ADDR base_address;
6463
6464 obj_type = value_type (obj);
6465
6466 /* It is the responsability of the caller to deref pointers. */
6467
6468 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6469 return obj;
6470
6471 tag = ada_value_tag (obj);
6472 if (!tag)
6473 return obj;
6474
6475 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6476
6477 if (is_ada95_tag (tag))
6478 return obj;
6479
6480 ptr_type = language_lookup_primitive_type
6481 (language_def (language_ada), target_gdbarch(), "storage_offset");
6482 ptr_type = lookup_pointer_type (ptr_type);
6483 val = value_cast (ptr_type, tag);
6484 if (!val)
6485 return obj;
6486
6487 /* It is perfectly possible that an exception be raised while
6488 trying to determine the base address, just like for the tag;
6489 see ada_tag_name for more details. We do not print the error
6490 message for the same reason. */
6491
6492 try
6493 {
6494 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6495 }
6496
6497 catch (const gdb_exception_error &e)
6498 {
6499 return obj;
6500 }
6501
6502 /* If offset is null, nothing to do. */
6503
6504 if (offset_to_top == 0)
6505 return obj;
6506
6507 /* -1 is a special case in Ada.Tags; however, what should be done
6508 is not quite clear from the documentation. So do nothing for
6509 now. */
6510
6511 if (offset_to_top == -1)
6512 return obj;
6513
6514 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6515 from the base address. This was however incompatible with
6516 C++ dispatch table: C++ uses a *negative* value to *add*
6517 to the base address. Ada's convention has therefore been
6518 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6519 use the same convention. Here, we support both cases by
6520 checking the sign of OFFSET_TO_TOP. */
6521
6522 if (offset_to_top > 0)
6523 offset_to_top = -offset_to_top;
6524
6525 base_address = value_address (obj) + offset_to_top;
6526 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6527
6528 /* Make sure that we have a proper tag at the new address.
6529 Otherwise, offset_to_top is bogus (which can happen when
6530 the object is not initialized yet). */
6531
6532 if (!tag)
6533 return obj;
6534
6535 obj_type = type_from_tag (tag);
6536
6537 if (!obj_type)
6538 return obj;
6539
6540 return value_from_contents_and_address (obj_type, NULL, base_address);
6541 }
6542
6543 /* Return the "ada__tags__type_specific_data" type. */
6544
6545 static struct type *
6546 ada_get_tsd_type (struct inferior *inf)
6547 {
6548 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6549
6550 if (data->tsd_type == 0)
6551 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6552 return data->tsd_type;
6553 }
6554
6555 /* Return the TSD (type-specific data) associated to the given TAG.
6556 TAG is assumed to be the tag of a tagged-type entity.
6557
6558 May return NULL if we are unable to get the TSD. */
6559
6560 static struct value *
6561 ada_get_tsd_from_tag (struct value *tag)
6562 {
6563 struct value *val;
6564 struct type *type;
6565
6566 /* First option: The TSD is simply stored as a field of our TAG.
6567 Only older versions of GNAT would use this format, but we have
6568 to test it first, because there are no visible markers for
6569 the current approach except the absence of that field. */
6570
6571 val = ada_value_struct_elt (tag, "tsd", 1);
6572 if (val)
6573 return val;
6574
6575 /* Try the second representation for the dispatch table (in which
6576 there is no explicit 'tsd' field in the referent of the tag pointer,
6577 and instead the tsd pointer is stored just before the dispatch
6578 table. */
6579
6580 type = ada_get_tsd_type (current_inferior());
6581 if (type == NULL)
6582 return NULL;
6583 type = lookup_pointer_type (lookup_pointer_type (type));
6584 val = value_cast (type, tag);
6585 if (val == NULL)
6586 return NULL;
6587 return value_ind (value_ptradd (val, -1));
6588 }
6589
6590 /* Given the TSD of a tag (type-specific data), return a string
6591 containing the name of the associated type.
6592
6593 May return NULL if we are unable to determine the tag name. */
6594
6595 static gdb::unique_xmalloc_ptr<char>
6596 ada_tag_name_from_tsd (struct value *tsd)
6597 {
6598 char *p;
6599 struct value *val;
6600
6601 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6602 if (val == NULL)
6603 return NULL;
6604 gdb::unique_xmalloc_ptr<char> buffer
6605 = target_read_string (value_as_address (val), INT_MAX);
6606 if (buffer == nullptr)
6607 return nullptr;
6608
6609 for (p = buffer.get (); *p != '\0'; ++p)
6610 {
6611 if (isalpha (*p))
6612 *p = tolower (*p);
6613 }
6614
6615 return buffer;
6616 }
6617
6618 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6619 a C string.
6620
6621 Return NULL if the TAG is not an Ada tag, or if we were unable to
6622 determine the name of that tag. */
6623
6624 gdb::unique_xmalloc_ptr<char>
6625 ada_tag_name (struct value *tag)
6626 {
6627 gdb::unique_xmalloc_ptr<char> name;
6628
6629 if (!ada_is_tag_type (value_type (tag)))
6630 return NULL;
6631
6632 /* It is perfectly possible that an exception be raised while trying
6633 to determine the TAG's name, even under normal circumstances:
6634 The associated variable may be uninitialized or corrupted, for
6635 instance. We do not let any exception propagate past this point.
6636 instead we return NULL.
6637
6638 We also do not print the error message either (which often is very
6639 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6640 the caller print a more meaningful message if necessary. */
6641 try
6642 {
6643 struct value *tsd = ada_get_tsd_from_tag (tag);
6644
6645 if (tsd != NULL)
6646 name = ada_tag_name_from_tsd (tsd);
6647 }
6648 catch (const gdb_exception_error &e)
6649 {
6650 }
6651
6652 return name;
6653 }
6654
6655 /* The parent type of TYPE, or NULL if none. */
6656
6657 struct type *
6658 ada_parent_type (struct type *type)
6659 {
6660 int i;
6661
6662 type = ada_check_typedef (type);
6663
6664 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6665 return NULL;
6666
6667 for (i = 0; i < type->num_fields (); i += 1)
6668 if (ada_is_parent_field (type, i))
6669 {
6670 struct type *parent_type = type->field (i).type ();
6671
6672 /* If the _parent field is a pointer, then dereference it. */
6673 if (parent_type->code () == TYPE_CODE_PTR)
6674 parent_type = TYPE_TARGET_TYPE (parent_type);
6675 /* If there is a parallel XVS type, get the actual base type. */
6676 parent_type = ada_get_base_type (parent_type);
6677
6678 return ada_check_typedef (parent_type);
6679 }
6680
6681 return NULL;
6682 }
6683
6684 /* True iff field number FIELD_NUM of structure type TYPE contains the
6685 parent-type (inherited) fields of a derived type. Assumes TYPE is
6686 a structure type with at least FIELD_NUM+1 fields. */
6687
6688 int
6689 ada_is_parent_field (struct type *type, int field_num)
6690 {
6691 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6692
6693 return (name != NULL
6694 && (startswith (name, "PARENT")
6695 || startswith (name, "_parent")));
6696 }
6697
6698 /* True iff field number FIELD_NUM of structure type TYPE is a
6699 transparent wrapper field (which should be silently traversed when doing
6700 field selection and flattened when printing). Assumes TYPE is a
6701 structure type with at least FIELD_NUM+1 fields. Such fields are always
6702 structures. */
6703
6704 int
6705 ada_is_wrapper_field (struct type *type, int field_num)
6706 {
6707 const char *name = TYPE_FIELD_NAME (type, field_num);
6708
6709 if (name != NULL && strcmp (name, "RETVAL") == 0)
6710 {
6711 /* This happens in functions with "out" or "in out" parameters
6712 which are passed by copy. For such functions, GNAT describes
6713 the function's return type as being a struct where the return
6714 value is in a field called RETVAL, and where the other "out"
6715 or "in out" parameters are fields of that struct. This is not
6716 a wrapper. */
6717 return 0;
6718 }
6719
6720 return (name != NULL
6721 && (startswith (name, "PARENT")
6722 || strcmp (name, "REP") == 0
6723 || startswith (name, "_parent")
6724 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6725 }
6726
6727 /* True iff field number FIELD_NUM of structure or union type TYPE
6728 is a variant wrapper. Assumes TYPE is a structure type with at least
6729 FIELD_NUM+1 fields. */
6730
6731 int
6732 ada_is_variant_part (struct type *type, int field_num)
6733 {
6734 /* Only Ada types are eligible. */
6735 if (!ADA_TYPE_P (type))
6736 return 0;
6737
6738 struct type *field_type = type->field (field_num).type ();
6739
6740 return (field_type->code () == TYPE_CODE_UNION
6741 || (is_dynamic_field (type, field_num)
6742 && (TYPE_TARGET_TYPE (field_type)->code ()
6743 == TYPE_CODE_UNION)));
6744 }
6745
6746 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6747 whose discriminants are contained in the record type OUTER_TYPE,
6748 returns the type of the controlling discriminant for the variant.
6749 May return NULL if the type could not be found. */
6750
6751 struct type *
6752 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6753 {
6754 const char *name = ada_variant_discrim_name (var_type);
6755
6756 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6757 }
6758
6759 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6760 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6761 represents a 'when others' clause; otherwise 0. */
6762
6763 static int
6764 ada_is_others_clause (struct type *type, int field_num)
6765 {
6766 const char *name = TYPE_FIELD_NAME (type, field_num);
6767
6768 return (name != NULL && name[0] == 'O');
6769 }
6770
6771 /* Assuming that TYPE0 is the type of the variant part of a record,
6772 returns the name of the discriminant controlling the variant.
6773 The value is valid until the next call to ada_variant_discrim_name. */
6774
6775 const char *
6776 ada_variant_discrim_name (struct type *type0)
6777 {
6778 static char *result = NULL;
6779 static size_t result_len = 0;
6780 struct type *type;
6781 const char *name;
6782 const char *discrim_end;
6783 const char *discrim_start;
6784
6785 if (type0->code () == TYPE_CODE_PTR)
6786 type = TYPE_TARGET_TYPE (type0);
6787 else
6788 type = type0;
6789
6790 name = ada_type_name (type);
6791
6792 if (name == NULL || name[0] == '\000')
6793 return "";
6794
6795 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6796 discrim_end -= 1)
6797 {
6798 if (startswith (discrim_end, "___XVN"))
6799 break;
6800 }
6801 if (discrim_end == name)
6802 return "";
6803
6804 for (discrim_start = discrim_end; discrim_start != name + 3;
6805 discrim_start -= 1)
6806 {
6807 if (discrim_start == name + 1)
6808 return "";
6809 if ((discrim_start > name + 3
6810 && startswith (discrim_start - 3, "___"))
6811 || discrim_start[-1] == '.')
6812 break;
6813 }
6814
6815 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6816 strncpy (result, discrim_start, discrim_end - discrim_start);
6817 result[discrim_end - discrim_start] = '\0';
6818 return result;
6819 }
6820
6821 /* Scan STR for a subtype-encoded number, beginning at position K.
6822 Put the position of the character just past the number scanned in
6823 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6824 Return 1 if there was a valid number at the given position, and 0
6825 otherwise. A "subtype-encoded" number consists of the absolute value
6826 in decimal, followed by the letter 'm' to indicate a negative number.
6827 Assumes 0m does not occur. */
6828
6829 int
6830 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6831 {
6832 ULONGEST RU;
6833
6834 if (!isdigit (str[k]))
6835 return 0;
6836
6837 /* Do it the hard way so as not to make any assumption about
6838 the relationship of unsigned long (%lu scan format code) and
6839 LONGEST. */
6840 RU = 0;
6841 while (isdigit (str[k]))
6842 {
6843 RU = RU * 10 + (str[k] - '0');
6844 k += 1;
6845 }
6846
6847 if (str[k] == 'm')
6848 {
6849 if (R != NULL)
6850 *R = (-(LONGEST) (RU - 1)) - 1;
6851 k += 1;
6852 }
6853 else if (R != NULL)
6854 *R = (LONGEST) RU;
6855
6856 /* NOTE on the above: Technically, C does not say what the results of
6857 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6858 number representable as a LONGEST (although either would probably work
6859 in most implementations). When RU>0, the locution in the then branch
6860 above is always equivalent to the negative of RU. */
6861
6862 if (new_k != NULL)
6863 *new_k = k;
6864 return 1;
6865 }
6866
6867 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6868 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6869 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6870
6871 static int
6872 ada_in_variant (LONGEST val, struct type *type, int field_num)
6873 {
6874 const char *name = TYPE_FIELD_NAME (type, field_num);
6875 int p;
6876
6877 p = 0;
6878 while (1)
6879 {
6880 switch (name[p])
6881 {
6882 case '\0':
6883 return 0;
6884 case 'S':
6885 {
6886 LONGEST W;
6887
6888 if (!ada_scan_number (name, p + 1, &W, &p))
6889 return 0;
6890 if (val == W)
6891 return 1;
6892 break;
6893 }
6894 case 'R':
6895 {
6896 LONGEST L, U;
6897
6898 if (!ada_scan_number (name, p + 1, &L, &p)
6899 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6900 return 0;
6901 if (val >= L && val <= U)
6902 return 1;
6903 break;
6904 }
6905 case 'O':
6906 return 1;
6907 default:
6908 return 0;
6909 }
6910 }
6911 }
6912
6913 /* FIXME: Lots of redundancy below. Try to consolidate. */
6914
6915 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6916 ARG_TYPE, extract and return the value of one of its (non-static)
6917 fields. FIELDNO says which field. Differs from value_primitive_field
6918 only in that it can handle packed values of arbitrary type. */
6919
6920 struct value *
6921 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6922 struct type *arg_type)
6923 {
6924 struct type *type;
6925
6926 arg_type = ada_check_typedef (arg_type);
6927 type = arg_type->field (fieldno).type ();
6928
6929 /* Handle packed fields. It might be that the field is not packed
6930 relative to its containing structure, but the structure itself is
6931 packed; in this case we must take the bit-field path. */
6932 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6933 {
6934 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6935 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6936
6937 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6938 offset + bit_pos / 8,
6939 bit_pos % 8, bit_size, type);
6940 }
6941 else
6942 return value_primitive_field (arg1, offset, fieldno, arg_type);
6943 }
6944
6945 /* Find field with name NAME in object of type TYPE. If found,
6946 set the following for each argument that is non-null:
6947 - *FIELD_TYPE_P to the field's type;
6948 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6949 an object of that type;
6950 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6951 - *BIT_SIZE_P to its size in bits if the field is packed, and
6952 0 otherwise;
6953 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6954 fields up to but not including the desired field, or by the total
6955 number of fields if not found. A NULL value of NAME never
6956 matches; the function just counts visible fields in this case.
6957
6958 Notice that we need to handle when a tagged record hierarchy
6959 has some components with the same name, like in this scenario:
6960
6961 type Top_T is tagged record
6962 N : Integer := 1;
6963 U : Integer := 974;
6964 A : Integer := 48;
6965 end record;
6966
6967 type Middle_T is new Top.Top_T with record
6968 N : Character := 'a';
6969 C : Integer := 3;
6970 end record;
6971
6972 type Bottom_T is new Middle.Middle_T with record
6973 N : Float := 4.0;
6974 C : Character := '5';
6975 X : Integer := 6;
6976 A : Character := 'J';
6977 end record;
6978
6979 Let's say we now have a variable declared and initialized as follow:
6980
6981 TC : Top_A := new Bottom_T;
6982
6983 And then we use this variable to call this function
6984
6985 procedure Assign (Obj: in out Top_T; TV : Integer);
6986
6987 as follow:
6988
6989 Assign (Top_T (B), 12);
6990
6991 Now, we're in the debugger, and we're inside that procedure
6992 then and we want to print the value of obj.c:
6993
6994 Usually, the tagged record or one of the parent type owns the
6995 component to print and there's no issue but in this particular
6996 case, what does it mean to ask for Obj.C? Since the actual
6997 type for object is type Bottom_T, it could mean two things: type
6998 component C from the Middle_T view, but also component C from
6999 Bottom_T. So in that "undefined" case, when the component is
7000 not found in the non-resolved type (which includes all the
7001 components of the parent type), then resolve it and see if we
7002 get better luck once expanded.
7003
7004 In the case of homonyms in the derived tagged type, we don't
7005 guaranty anything, and pick the one that's easiest for us
7006 to program.
7007
7008 Returns 1 if found, 0 otherwise. */
7009
7010 static int
7011 find_struct_field (const char *name, struct type *type, int offset,
7012 struct type **field_type_p,
7013 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7014 int *index_p)
7015 {
7016 int i;
7017 int parent_offset = -1;
7018
7019 type = ada_check_typedef (type);
7020
7021 if (field_type_p != NULL)
7022 *field_type_p = NULL;
7023 if (byte_offset_p != NULL)
7024 *byte_offset_p = 0;
7025 if (bit_offset_p != NULL)
7026 *bit_offset_p = 0;
7027 if (bit_size_p != NULL)
7028 *bit_size_p = 0;
7029
7030 for (i = 0; i < type->num_fields (); i += 1)
7031 {
7032 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7033 int fld_offset = offset + bit_pos / 8;
7034 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7035
7036 if (t_field_name == NULL)
7037 continue;
7038
7039 else if (ada_is_parent_field (type, i))
7040 {
7041 /* This is a field pointing us to the parent type of a tagged
7042 type. As hinted in this function's documentation, we give
7043 preference to fields in the current record first, so what
7044 we do here is just record the index of this field before
7045 we skip it. If it turns out we couldn't find our field
7046 in the current record, then we'll get back to it and search
7047 inside it whether the field might exist in the parent. */
7048
7049 parent_offset = i;
7050 continue;
7051 }
7052
7053 else if (name != NULL && field_name_match (t_field_name, name))
7054 {
7055 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7056
7057 if (field_type_p != NULL)
7058 *field_type_p = type->field (i).type ();
7059 if (byte_offset_p != NULL)
7060 *byte_offset_p = fld_offset;
7061 if (bit_offset_p != NULL)
7062 *bit_offset_p = bit_pos % 8;
7063 if (bit_size_p != NULL)
7064 *bit_size_p = bit_size;
7065 return 1;
7066 }
7067 else if (ada_is_wrapper_field (type, i))
7068 {
7069 if (find_struct_field (name, type->field (i).type (), fld_offset,
7070 field_type_p, byte_offset_p, bit_offset_p,
7071 bit_size_p, index_p))
7072 return 1;
7073 }
7074 else if (ada_is_variant_part (type, i))
7075 {
7076 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7077 fixed type?? */
7078 int j;
7079 struct type *field_type
7080 = ada_check_typedef (type->field (i).type ());
7081
7082 for (j = 0; j < field_type->num_fields (); j += 1)
7083 {
7084 if (find_struct_field (name, field_type->field (j).type (),
7085 fld_offset
7086 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7087 field_type_p, byte_offset_p,
7088 bit_offset_p, bit_size_p, index_p))
7089 return 1;
7090 }
7091 }
7092 else if (index_p != NULL)
7093 *index_p += 1;
7094 }
7095
7096 /* Field not found so far. If this is a tagged type which
7097 has a parent, try finding that field in the parent now. */
7098
7099 if (parent_offset != -1)
7100 {
7101 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7102 int fld_offset = offset + bit_pos / 8;
7103
7104 if (find_struct_field (name, type->field (parent_offset).type (),
7105 fld_offset, field_type_p, byte_offset_p,
7106 bit_offset_p, bit_size_p, index_p))
7107 return 1;
7108 }
7109
7110 return 0;
7111 }
7112
7113 /* Number of user-visible fields in record type TYPE. */
7114
7115 static int
7116 num_visible_fields (struct type *type)
7117 {
7118 int n;
7119
7120 n = 0;
7121 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7122 return n;
7123 }
7124
7125 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7126 and search in it assuming it has (class) type TYPE.
7127 If found, return value, else return NULL.
7128
7129 Searches recursively through wrapper fields (e.g., '_parent').
7130
7131 In the case of homonyms in the tagged types, please refer to the
7132 long explanation in find_struct_field's function documentation. */
7133
7134 static struct value *
7135 ada_search_struct_field (const char *name, struct value *arg, int offset,
7136 struct type *type)
7137 {
7138 int i;
7139 int parent_offset = -1;
7140
7141 type = ada_check_typedef (type);
7142 for (i = 0; i < type->num_fields (); i += 1)
7143 {
7144 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7145
7146 if (t_field_name == NULL)
7147 continue;
7148
7149 else if (ada_is_parent_field (type, i))
7150 {
7151 /* This is a field pointing us to the parent type of a tagged
7152 type. As hinted in this function's documentation, we give
7153 preference to fields in the current record first, so what
7154 we do here is just record the index of this field before
7155 we skip it. If it turns out we couldn't find our field
7156 in the current record, then we'll get back to it and search
7157 inside it whether the field might exist in the parent. */
7158
7159 parent_offset = i;
7160 continue;
7161 }
7162
7163 else if (field_name_match (t_field_name, name))
7164 return ada_value_primitive_field (arg, offset, i, type);
7165
7166 else if (ada_is_wrapper_field (type, i))
7167 {
7168 struct value *v = /* Do not let indent join lines here. */
7169 ada_search_struct_field (name, arg,
7170 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7171 type->field (i).type ());
7172
7173 if (v != NULL)
7174 return v;
7175 }
7176
7177 else if (ada_is_variant_part (type, i))
7178 {
7179 /* PNH: Do we ever get here? See find_struct_field. */
7180 int j;
7181 struct type *field_type = ada_check_typedef (type->field (i).type ());
7182 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7183
7184 for (j = 0; j < field_type->num_fields (); j += 1)
7185 {
7186 struct value *v = ada_search_struct_field /* Force line
7187 break. */
7188 (name, arg,
7189 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7190 field_type->field (j).type ());
7191
7192 if (v != NULL)
7193 return v;
7194 }
7195 }
7196 }
7197
7198 /* Field not found so far. If this is a tagged type which
7199 has a parent, try finding that field in the parent now. */
7200
7201 if (parent_offset != -1)
7202 {
7203 struct value *v = ada_search_struct_field (
7204 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7205 type->field (parent_offset).type ());
7206
7207 if (v != NULL)
7208 return v;
7209 }
7210
7211 return NULL;
7212 }
7213
7214 static struct value *ada_index_struct_field_1 (int *, struct value *,
7215 int, struct type *);
7216
7217
7218 /* Return field #INDEX in ARG, where the index is that returned by
7219 * find_struct_field through its INDEX_P argument. Adjust the address
7220 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7221 * If found, return value, else return NULL. */
7222
7223 static struct value *
7224 ada_index_struct_field (int index, struct value *arg, int offset,
7225 struct type *type)
7226 {
7227 return ada_index_struct_field_1 (&index, arg, offset, type);
7228 }
7229
7230
7231 /* Auxiliary function for ada_index_struct_field. Like
7232 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7233 * *INDEX_P. */
7234
7235 static struct value *
7236 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7237 struct type *type)
7238 {
7239 int i;
7240 type = ada_check_typedef (type);
7241
7242 for (i = 0; i < type->num_fields (); i += 1)
7243 {
7244 if (TYPE_FIELD_NAME (type, i) == NULL)
7245 continue;
7246 else if (ada_is_wrapper_field (type, i))
7247 {
7248 struct value *v = /* Do not let indent join lines here. */
7249 ada_index_struct_field_1 (index_p, arg,
7250 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7251 type->field (i).type ());
7252
7253 if (v != NULL)
7254 return v;
7255 }
7256
7257 else if (ada_is_variant_part (type, i))
7258 {
7259 /* PNH: Do we ever get here? See ada_search_struct_field,
7260 find_struct_field. */
7261 error (_("Cannot assign this kind of variant record"));
7262 }
7263 else if (*index_p == 0)
7264 return ada_value_primitive_field (arg, offset, i, type);
7265 else
7266 *index_p -= 1;
7267 }
7268 return NULL;
7269 }
7270
7271 /* Return a string representation of type TYPE. */
7272
7273 static std::string
7274 type_as_string (struct type *type)
7275 {
7276 string_file tmp_stream;
7277
7278 type_print (type, "", &tmp_stream, -1);
7279
7280 return std::move (tmp_stream.string ());
7281 }
7282
7283 /* Given a type TYPE, look up the type of the component of type named NAME.
7284 If DISPP is non-null, add its byte displacement from the beginning of a
7285 structure (pointed to by a value) of type TYPE to *DISPP (does not
7286 work for packed fields).
7287
7288 Matches any field whose name has NAME as a prefix, possibly
7289 followed by "___".
7290
7291 TYPE can be either a struct or union. If REFOK, TYPE may also
7292 be a (pointer or reference)+ to a struct or union, and the
7293 ultimate target type will be searched.
7294
7295 Looks recursively into variant clauses and parent types.
7296
7297 In the case of homonyms in the tagged types, please refer to the
7298 long explanation in find_struct_field's function documentation.
7299
7300 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7301 TYPE is not a type of the right kind. */
7302
7303 static struct type *
7304 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7305 int noerr)
7306 {
7307 int i;
7308 int parent_offset = -1;
7309
7310 if (name == NULL)
7311 goto BadName;
7312
7313 if (refok && type != NULL)
7314 while (1)
7315 {
7316 type = ada_check_typedef (type);
7317 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7318 break;
7319 type = TYPE_TARGET_TYPE (type);
7320 }
7321
7322 if (type == NULL
7323 || (type->code () != TYPE_CODE_STRUCT
7324 && type->code () != TYPE_CODE_UNION))
7325 {
7326 if (noerr)
7327 return NULL;
7328
7329 error (_("Type %s is not a structure or union type"),
7330 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7331 }
7332
7333 type = to_static_fixed_type (type);
7334
7335 for (i = 0; i < type->num_fields (); i += 1)
7336 {
7337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7338 struct type *t;
7339
7340 if (t_field_name == NULL)
7341 continue;
7342
7343 else if (ada_is_parent_field (type, i))
7344 {
7345 /* This is a field pointing us to the parent type of a tagged
7346 type. As hinted in this function's documentation, we give
7347 preference to fields in the current record first, so what
7348 we do here is just record the index of this field before
7349 we skip it. If it turns out we couldn't find our field
7350 in the current record, then we'll get back to it and search
7351 inside it whether the field might exist in the parent. */
7352
7353 parent_offset = i;
7354 continue;
7355 }
7356
7357 else if (field_name_match (t_field_name, name))
7358 return type->field (i).type ();
7359
7360 else if (ada_is_wrapper_field (type, i))
7361 {
7362 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7363 0, 1);
7364 if (t != NULL)
7365 return t;
7366 }
7367
7368 else if (ada_is_variant_part (type, i))
7369 {
7370 int j;
7371 struct type *field_type = ada_check_typedef (type->field (i).type ());
7372
7373 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7374 {
7375 /* FIXME pnh 2008/01/26: We check for a field that is
7376 NOT wrapped in a struct, since the compiler sometimes
7377 generates these for unchecked variant types. Revisit
7378 if the compiler changes this practice. */
7379 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7380
7381 if (v_field_name != NULL
7382 && field_name_match (v_field_name, name))
7383 t = field_type->field (j).type ();
7384 else
7385 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7386 name, 0, 1);
7387
7388 if (t != NULL)
7389 return t;
7390 }
7391 }
7392
7393 }
7394
7395 /* Field not found so far. If this is a tagged type which
7396 has a parent, try finding that field in the parent now. */
7397
7398 if (parent_offset != -1)
7399 {
7400 struct type *t;
7401
7402 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7403 name, 0, 1);
7404 if (t != NULL)
7405 return t;
7406 }
7407
7408 BadName:
7409 if (!noerr)
7410 {
7411 const char *name_str = name != NULL ? name : _("<null>");
7412
7413 error (_("Type %s has no component named %s"),
7414 type_as_string (type).c_str (), name_str);
7415 }
7416
7417 return NULL;
7418 }
7419
7420 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7421 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7422 represents an unchecked union (that is, the variant part of a
7423 record that is named in an Unchecked_Union pragma). */
7424
7425 static int
7426 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7427 {
7428 const char *discrim_name = ada_variant_discrim_name (var_type);
7429
7430 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7431 }
7432
7433
7434 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7435 within OUTER, determine which variant clause (field number in VAR_TYPE,
7436 numbering from 0) is applicable. Returns -1 if none are. */
7437
7438 int
7439 ada_which_variant_applies (struct type *var_type, struct value *outer)
7440 {
7441 int others_clause;
7442 int i;
7443 const char *discrim_name = ada_variant_discrim_name (var_type);
7444 struct value *discrim;
7445 LONGEST discrim_val;
7446
7447 /* Using plain value_from_contents_and_address here causes problems
7448 because we will end up trying to resolve a type that is currently
7449 being constructed. */
7450 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7451 if (discrim == NULL)
7452 return -1;
7453 discrim_val = value_as_long (discrim);
7454
7455 others_clause = -1;
7456 for (i = 0; i < var_type->num_fields (); i += 1)
7457 {
7458 if (ada_is_others_clause (var_type, i))
7459 others_clause = i;
7460 else if (ada_in_variant (discrim_val, var_type, i))
7461 return i;
7462 }
7463
7464 return others_clause;
7465 }
7466 \f
7467
7468
7469 /* Dynamic-Sized Records */
7470
7471 /* Strategy: The type ostensibly attached to a value with dynamic size
7472 (i.e., a size that is not statically recorded in the debugging
7473 data) does not accurately reflect the size or layout of the value.
7474 Our strategy is to convert these values to values with accurate,
7475 conventional types that are constructed on the fly. */
7476
7477 /* There is a subtle and tricky problem here. In general, we cannot
7478 determine the size of dynamic records without its data. However,
7479 the 'struct value' data structure, which GDB uses to represent
7480 quantities in the inferior process (the target), requires the size
7481 of the type at the time of its allocation in order to reserve space
7482 for GDB's internal copy of the data. That's why the
7483 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7484 rather than struct value*s.
7485
7486 However, GDB's internal history variables ($1, $2, etc.) are
7487 struct value*s containing internal copies of the data that are not, in
7488 general, the same as the data at their corresponding addresses in
7489 the target. Fortunately, the types we give to these values are all
7490 conventional, fixed-size types (as per the strategy described
7491 above), so that we don't usually have to perform the
7492 'to_fixed_xxx_type' conversions to look at their values.
7493 Unfortunately, there is one exception: if one of the internal
7494 history variables is an array whose elements are unconstrained
7495 records, then we will need to create distinct fixed types for each
7496 element selected. */
7497
7498 /* The upshot of all of this is that many routines take a (type, host
7499 address, target address) triple as arguments to represent a value.
7500 The host address, if non-null, is supposed to contain an internal
7501 copy of the relevant data; otherwise, the program is to consult the
7502 target at the target address. */
7503
7504 /* Assuming that VAL0 represents a pointer value, the result of
7505 dereferencing it. Differs from value_ind in its treatment of
7506 dynamic-sized types. */
7507
7508 struct value *
7509 ada_value_ind (struct value *val0)
7510 {
7511 struct value *val = value_ind (val0);
7512
7513 if (ada_is_tagged_type (value_type (val), 0))
7514 val = ada_tag_value_at_base_address (val);
7515
7516 return ada_to_fixed_value (val);
7517 }
7518
7519 /* The value resulting from dereferencing any "reference to"
7520 qualifiers on VAL0. */
7521
7522 static struct value *
7523 ada_coerce_ref (struct value *val0)
7524 {
7525 if (value_type (val0)->code () == TYPE_CODE_REF)
7526 {
7527 struct value *val = val0;
7528
7529 val = coerce_ref (val);
7530
7531 if (ada_is_tagged_type (value_type (val), 0))
7532 val = ada_tag_value_at_base_address (val);
7533
7534 return ada_to_fixed_value (val);
7535 }
7536 else
7537 return val0;
7538 }
7539
7540 /* Return the bit alignment required for field #F of template type TYPE. */
7541
7542 static unsigned int
7543 field_alignment (struct type *type, int f)
7544 {
7545 const char *name = TYPE_FIELD_NAME (type, f);
7546 int len;
7547 int align_offset;
7548
7549 /* The field name should never be null, unless the debugging information
7550 is somehow malformed. In this case, we assume the field does not
7551 require any alignment. */
7552 if (name == NULL)
7553 return 1;
7554
7555 len = strlen (name);
7556
7557 if (!isdigit (name[len - 1]))
7558 return 1;
7559
7560 if (isdigit (name[len - 2]))
7561 align_offset = len - 2;
7562 else
7563 align_offset = len - 1;
7564
7565 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7566 return TARGET_CHAR_BIT;
7567
7568 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7569 }
7570
7571 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7572
7573 static struct symbol *
7574 ada_find_any_type_symbol (const char *name)
7575 {
7576 struct symbol *sym;
7577
7578 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7579 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7580 return sym;
7581
7582 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7583 return sym;
7584 }
7585
7586 /* Find a type named NAME. Ignores ambiguity. This routine will look
7587 solely for types defined by debug info, it will not search the GDB
7588 primitive types. */
7589
7590 static struct type *
7591 ada_find_any_type (const char *name)
7592 {
7593 struct symbol *sym = ada_find_any_type_symbol (name);
7594
7595 if (sym != NULL)
7596 return SYMBOL_TYPE (sym);
7597
7598 return NULL;
7599 }
7600
7601 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7602 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7603 symbol, in which case it is returned. Otherwise, this looks for
7604 symbols whose name is that of NAME_SYM suffixed with "___XR".
7605 Return symbol if found, and NULL otherwise. */
7606
7607 static bool
7608 ada_is_renaming_symbol (struct symbol *name_sym)
7609 {
7610 const char *name = name_sym->linkage_name ();
7611 return strstr (name, "___XR") != NULL;
7612 }
7613
7614 /* Because of GNAT encoding conventions, several GDB symbols may match a
7615 given type name. If the type denoted by TYPE0 is to be preferred to
7616 that of TYPE1 for purposes of type printing, return non-zero;
7617 otherwise return 0. */
7618
7619 int
7620 ada_prefer_type (struct type *type0, struct type *type1)
7621 {
7622 if (type1 == NULL)
7623 return 1;
7624 else if (type0 == NULL)
7625 return 0;
7626 else if (type1->code () == TYPE_CODE_VOID)
7627 return 1;
7628 else if (type0->code () == TYPE_CODE_VOID)
7629 return 0;
7630 else if (type1->name () == NULL && type0->name () != NULL)
7631 return 1;
7632 else if (ada_is_constrained_packed_array_type (type0))
7633 return 1;
7634 else if (ada_is_array_descriptor_type (type0)
7635 && !ada_is_array_descriptor_type (type1))
7636 return 1;
7637 else
7638 {
7639 const char *type0_name = type0->name ();
7640 const char *type1_name = type1->name ();
7641
7642 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7643 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7644 return 1;
7645 }
7646 return 0;
7647 }
7648
7649 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7650 null. */
7651
7652 const char *
7653 ada_type_name (struct type *type)
7654 {
7655 if (type == NULL)
7656 return NULL;
7657 return type->name ();
7658 }
7659
7660 /* Search the list of "descriptive" types associated to TYPE for a type
7661 whose name is NAME. */
7662
7663 static struct type *
7664 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7665 {
7666 struct type *result, *tmp;
7667
7668 if (ada_ignore_descriptive_types_p)
7669 return NULL;
7670
7671 /* If there no descriptive-type info, then there is no parallel type
7672 to be found. */
7673 if (!HAVE_GNAT_AUX_INFO (type))
7674 return NULL;
7675
7676 result = TYPE_DESCRIPTIVE_TYPE (type);
7677 while (result != NULL)
7678 {
7679 const char *result_name = ada_type_name (result);
7680
7681 if (result_name == NULL)
7682 {
7683 warning (_("unexpected null name on descriptive type"));
7684 return NULL;
7685 }
7686
7687 /* If the names match, stop. */
7688 if (strcmp (result_name, name) == 0)
7689 break;
7690
7691 /* Otherwise, look at the next item on the list, if any. */
7692 if (HAVE_GNAT_AUX_INFO (result))
7693 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7694 else
7695 tmp = NULL;
7696
7697 /* If not found either, try after having resolved the typedef. */
7698 if (tmp != NULL)
7699 result = tmp;
7700 else
7701 {
7702 result = check_typedef (result);
7703 if (HAVE_GNAT_AUX_INFO (result))
7704 result = TYPE_DESCRIPTIVE_TYPE (result);
7705 else
7706 result = NULL;
7707 }
7708 }
7709
7710 /* If we didn't find a match, see whether this is a packed array. With
7711 older compilers, the descriptive type information is either absent or
7712 irrelevant when it comes to packed arrays so the above lookup fails.
7713 Fall back to using a parallel lookup by name in this case. */
7714 if (result == NULL && ada_is_constrained_packed_array_type (type))
7715 return ada_find_any_type (name);
7716
7717 return result;
7718 }
7719
7720 /* Find a parallel type to TYPE with the specified NAME, using the
7721 descriptive type taken from the debugging information, if available,
7722 and otherwise using the (slower) name-based method. */
7723
7724 static struct type *
7725 ada_find_parallel_type_with_name (struct type *type, const char *name)
7726 {
7727 struct type *result = NULL;
7728
7729 if (HAVE_GNAT_AUX_INFO (type))
7730 result = find_parallel_type_by_descriptive_type (type, name);
7731 else
7732 result = ada_find_any_type (name);
7733
7734 return result;
7735 }
7736
7737 /* Same as above, but specify the name of the parallel type by appending
7738 SUFFIX to the name of TYPE. */
7739
7740 struct type *
7741 ada_find_parallel_type (struct type *type, const char *suffix)
7742 {
7743 char *name;
7744 const char *type_name = ada_type_name (type);
7745 int len;
7746
7747 if (type_name == NULL)
7748 return NULL;
7749
7750 len = strlen (type_name);
7751
7752 name = (char *) alloca (len + strlen (suffix) + 1);
7753
7754 strcpy (name, type_name);
7755 strcpy (name + len, suffix);
7756
7757 return ada_find_parallel_type_with_name (type, name);
7758 }
7759
7760 /* If TYPE is a variable-size record type, return the corresponding template
7761 type describing its fields. Otherwise, return NULL. */
7762
7763 static struct type *
7764 dynamic_template_type (struct type *type)
7765 {
7766 type = ada_check_typedef (type);
7767
7768 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7769 || ada_type_name (type) == NULL)
7770 return NULL;
7771 else
7772 {
7773 int len = strlen (ada_type_name (type));
7774
7775 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7776 return type;
7777 else
7778 return ada_find_parallel_type (type, "___XVE");
7779 }
7780 }
7781
7782 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7783 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7784
7785 static int
7786 is_dynamic_field (struct type *templ_type, int field_num)
7787 {
7788 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7789
7790 return name != NULL
7791 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7792 && strstr (name, "___XVL") != NULL;
7793 }
7794
7795 /* The index of the variant field of TYPE, or -1 if TYPE does not
7796 represent a variant record type. */
7797
7798 static int
7799 variant_field_index (struct type *type)
7800 {
7801 int f;
7802
7803 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7804 return -1;
7805
7806 for (f = 0; f < type->num_fields (); f += 1)
7807 {
7808 if (ada_is_variant_part (type, f))
7809 return f;
7810 }
7811 return -1;
7812 }
7813
7814 /* A record type with no fields. */
7815
7816 static struct type *
7817 empty_record (struct type *templ)
7818 {
7819 struct type *type = alloc_type_copy (templ);
7820
7821 type->set_code (TYPE_CODE_STRUCT);
7822 INIT_NONE_SPECIFIC (type);
7823 type->set_name ("<empty>");
7824 TYPE_LENGTH (type) = 0;
7825 return type;
7826 }
7827
7828 /* An ordinary record type (with fixed-length fields) that describes
7829 the value of type TYPE at VALADDR or ADDRESS (see comments at
7830 the beginning of this section) VAL according to GNAT conventions.
7831 DVAL0 should describe the (portion of a) record that contains any
7832 necessary discriminants. It should be NULL if value_type (VAL) is
7833 an outer-level type (i.e., as opposed to a branch of a variant.) A
7834 variant field (unless unchecked) is replaced by a particular branch
7835 of the variant.
7836
7837 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7838 length are not statically known are discarded. As a consequence,
7839 VALADDR, ADDRESS and DVAL0 are ignored.
7840
7841 NOTE: Limitations: For now, we assume that dynamic fields and
7842 variants occupy whole numbers of bytes. However, they need not be
7843 byte-aligned. */
7844
7845 struct type *
7846 ada_template_to_fixed_record_type_1 (struct type *type,
7847 const gdb_byte *valaddr,
7848 CORE_ADDR address, struct value *dval0,
7849 int keep_dynamic_fields)
7850 {
7851 struct value *mark = value_mark ();
7852 struct value *dval;
7853 struct type *rtype;
7854 int nfields, bit_len;
7855 int variant_field;
7856 long off;
7857 int fld_bit_len;
7858 int f;
7859
7860 /* Compute the number of fields in this record type that are going
7861 to be processed: unless keep_dynamic_fields, this includes only
7862 fields whose position and length are static will be processed. */
7863 if (keep_dynamic_fields)
7864 nfields = type->num_fields ();
7865 else
7866 {
7867 nfields = 0;
7868 while (nfields < type->num_fields ()
7869 && !ada_is_variant_part (type, nfields)
7870 && !is_dynamic_field (type, nfields))
7871 nfields++;
7872 }
7873
7874 rtype = alloc_type_copy (type);
7875 rtype->set_code (TYPE_CODE_STRUCT);
7876 INIT_NONE_SPECIFIC (rtype);
7877 rtype->set_num_fields (nfields);
7878 rtype->set_fields
7879 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7880 rtype->set_name (ada_type_name (type));
7881 rtype->set_is_fixed_instance (true);
7882
7883 off = 0;
7884 bit_len = 0;
7885 variant_field = -1;
7886
7887 for (f = 0; f < nfields; f += 1)
7888 {
7889 off = align_up (off, field_alignment (type, f))
7890 + TYPE_FIELD_BITPOS (type, f);
7891 SET_FIELD_BITPOS (rtype->field (f), off);
7892 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7893
7894 if (ada_is_variant_part (type, f))
7895 {
7896 variant_field = f;
7897 fld_bit_len = 0;
7898 }
7899 else if (is_dynamic_field (type, f))
7900 {
7901 const gdb_byte *field_valaddr = valaddr;
7902 CORE_ADDR field_address = address;
7903 struct type *field_type =
7904 TYPE_TARGET_TYPE (type->field (f).type ());
7905
7906 if (dval0 == NULL)
7907 {
7908 /* rtype's length is computed based on the run-time
7909 value of discriminants. If the discriminants are not
7910 initialized, the type size may be completely bogus and
7911 GDB may fail to allocate a value for it. So check the
7912 size first before creating the value. */
7913 ada_ensure_varsize_limit (rtype);
7914 /* Using plain value_from_contents_and_address here
7915 causes problems because we will end up trying to
7916 resolve a type that is currently being
7917 constructed. */
7918 dval = value_from_contents_and_address_unresolved (rtype,
7919 valaddr,
7920 address);
7921 rtype = value_type (dval);
7922 }
7923 else
7924 dval = dval0;
7925
7926 /* If the type referenced by this field is an aligner type, we need
7927 to unwrap that aligner type, because its size might not be set.
7928 Keeping the aligner type would cause us to compute the wrong
7929 size for this field, impacting the offset of the all the fields
7930 that follow this one. */
7931 if (ada_is_aligner_type (field_type))
7932 {
7933 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7934
7935 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7936 field_address = cond_offset_target (field_address, field_offset);
7937 field_type = ada_aligned_type (field_type);
7938 }
7939
7940 field_valaddr = cond_offset_host (field_valaddr,
7941 off / TARGET_CHAR_BIT);
7942 field_address = cond_offset_target (field_address,
7943 off / TARGET_CHAR_BIT);
7944
7945 /* Get the fixed type of the field. Note that, in this case,
7946 we do not want to get the real type out of the tag: if
7947 the current field is the parent part of a tagged record,
7948 we will get the tag of the object. Clearly wrong: the real
7949 type of the parent is not the real type of the child. We
7950 would end up in an infinite loop. */
7951 field_type = ada_get_base_type (field_type);
7952 field_type = ada_to_fixed_type (field_type, field_valaddr,
7953 field_address, dval, 0);
7954 /* If the field size is already larger than the maximum
7955 object size, then the record itself will necessarily
7956 be larger than the maximum object size. We need to make
7957 this check now, because the size might be so ridiculously
7958 large (due to an uninitialized variable in the inferior)
7959 that it would cause an overflow when adding it to the
7960 record size. */
7961 ada_ensure_varsize_limit (field_type);
7962
7963 rtype->field (f).set_type (field_type);
7964 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7965 /* The multiplication can potentially overflow. But because
7966 the field length has been size-checked just above, and
7967 assuming that the maximum size is a reasonable value,
7968 an overflow should not happen in practice. So rather than
7969 adding overflow recovery code to this already complex code,
7970 we just assume that it's not going to happen. */
7971 fld_bit_len =
7972 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7973 }
7974 else
7975 {
7976 /* Note: If this field's type is a typedef, it is important
7977 to preserve the typedef layer.
7978
7979 Otherwise, we might be transforming a typedef to a fat
7980 pointer (encoding a pointer to an unconstrained array),
7981 into a basic fat pointer (encoding an unconstrained
7982 array). As both types are implemented using the same
7983 structure, the typedef is the only clue which allows us
7984 to distinguish between the two options. Stripping it
7985 would prevent us from printing this field appropriately. */
7986 rtype->field (f).set_type (type->field (f).type ());
7987 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7988 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7989 fld_bit_len =
7990 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7991 else
7992 {
7993 struct type *field_type = type->field (f).type ();
7994
7995 /* We need to be careful of typedefs when computing
7996 the length of our field. If this is a typedef,
7997 get the length of the target type, not the length
7998 of the typedef. */
7999 if (field_type->code () == TYPE_CODE_TYPEDEF)
8000 field_type = ada_typedef_target_type (field_type);
8001
8002 fld_bit_len =
8003 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8004 }
8005 }
8006 if (off + fld_bit_len > bit_len)
8007 bit_len = off + fld_bit_len;
8008 off += fld_bit_len;
8009 TYPE_LENGTH (rtype) =
8010 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8011 }
8012
8013 /* We handle the variant part, if any, at the end because of certain
8014 odd cases in which it is re-ordered so as NOT to be the last field of
8015 the record. This can happen in the presence of representation
8016 clauses. */
8017 if (variant_field >= 0)
8018 {
8019 struct type *branch_type;
8020
8021 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8022
8023 if (dval0 == NULL)
8024 {
8025 /* Using plain value_from_contents_and_address here causes
8026 problems because we will end up trying to resolve a type
8027 that is currently being constructed. */
8028 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8029 address);
8030 rtype = value_type (dval);
8031 }
8032 else
8033 dval = dval0;
8034
8035 branch_type =
8036 to_fixed_variant_branch_type
8037 (type->field (variant_field).type (),
8038 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8039 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8040 if (branch_type == NULL)
8041 {
8042 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8043 rtype->field (f - 1) = rtype->field (f);
8044 rtype->set_num_fields (rtype->num_fields () - 1);
8045 }
8046 else
8047 {
8048 rtype->field (variant_field).set_type (branch_type);
8049 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8050 fld_bit_len =
8051 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8052 TARGET_CHAR_BIT;
8053 if (off + fld_bit_len > bit_len)
8054 bit_len = off + fld_bit_len;
8055 TYPE_LENGTH (rtype) =
8056 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8057 }
8058 }
8059
8060 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8061 should contain the alignment of that record, which should be a strictly
8062 positive value. If null or negative, then something is wrong, most
8063 probably in the debug info. In that case, we don't round up the size
8064 of the resulting type. If this record is not part of another structure,
8065 the current RTYPE length might be good enough for our purposes. */
8066 if (TYPE_LENGTH (type) <= 0)
8067 {
8068 if (rtype->name ())
8069 warning (_("Invalid type size for `%s' detected: %s."),
8070 rtype->name (), pulongest (TYPE_LENGTH (type)));
8071 else
8072 warning (_("Invalid type size for <unnamed> detected: %s."),
8073 pulongest (TYPE_LENGTH (type)));
8074 }
8075 else
8076 {
8077 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8078 TYPE_LENGTH (type));
8079 }
8080
8081 value_free_to_mark (mark);
8082 if (TYPE_LENGTH (rtype) > varsize_limit)
8083 error (_("record type with dynamic size is larger than varsize-limit"));
8084 return rtype;
8085 }
8086
8087 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8088 of 1. */
8089
8090 static struct type *
8091 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8092 CORE_ADDR address, struct value *dval0)
8093 {
8094 return ada_template_to_fixed_record_type_1 (type, valaddr,
8095 address, dval0, 1);
8096 }
8097
8098 /* An ordinary record type in which ___XVL-convention fields and
8099 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8100 static approximations, containing all possible fields. Uses
8101 no runtime values. Useless for use in values, but that's OK,
8102 since the results are used only for type determinations. Works on both
8103 structs and unions. Representation note: to save space, we memorize
8104 the result of this function in the TYPE_TARGET_TYPE of the
8105 template type. */
8106
8107 static struct type *
8108 template_to_static_fixed_type (struct type *type0)
8109 {
8110 struct type *type;
8111 int nfields;
8112 int f;
8113
8114 /* No need no do anything if the input type is already fixed. */
8115 if (type0->is_fixed_instance ())
8116 return type0;
8117
8118 /* Likewise if we already have computed the static approximation. */
8119 if (TYPE_TARGET_TYPE (type0) != NULL)
8120 return TYPE_TARGET_TYPE (type0);
8121
8122 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8123 type = type0;
8124 nfields = type0->num_fields ();
8125
8126 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8127 recompute all over next time. */
8128 TYPE_TARGET_TYPE (type0) = type;
8129
8130 for (f = 0; f < nfields; f += 1)
8131 {
8132 struct type *field_type = type0->field (f).type ();
8133 struct type *new_type;
8134
8135 if (is_dynamic_field (type0, f))
8136 {
8137 field_type = ada_check_typedef (field_type);
8138 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8139 }
8140 else
8141 new_type = static_unwrap_type (field_type);
8142
8143 if (new_type != field_type)
8144 {
8145 /* Clone TYPE0 only the first time we get a new field type. */
8146 if (type == type0)
8147 {
8148 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8149 type->set_code (type0->code ());
8150 INIT_NONE_SPECIFIC (type);
8151 type->set_num_fields (nfields);
8152
8153 field *fields =
8154 ((struct field *)
8155 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8156 memcpy (fields, type0->fields (),
8157 sizeof (struct field) * nfields);
8158 type->set_fields (fields);
8159
8160 type->set_name (ada_type_name (type0));
8161 type->set_is_fixed_instance (true);
8162 TYPE_LENGTH (type) = 0;
8163 }
8164 type->field (f).set_type (new_type);
8165 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8166 }
8167 }
8168
8169 return type;
8170 }
8171
8172 /* Given an object of type TYPE whose contents are at VALADDR and
8173 whose address in memory is ADDRESS, returns a revision of TYPE,
8174 which should be a non-dynamic-sized record, in which the variant
8175 part, if any, is replaced with the appropriate branch. Looks
8176 for discriminant values in DVAL0, which can be NULL if the record
8177 contains the necessary discriminant values. */
8178
8179 static struct type *
8180 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8181 CORE_ADDR address, struct value *dval0)
8182 {
8183 struct value *mark = value_mark ();
8184 struct value *dval;
8185 struct type *rtype;
8186 struct type *branch_type;
8187 int nfields = type->num_fields ();
8188 int variant_field = variant_field_index (type);
8189
8190 if (variant_field == -1)
8191 return type;
8192
8193 if (dval0 == NULL)
8194 {
8195 dval = value_from_contents_and_address (type, valaddr, address);
8196 type = value_type (dval);
8197 }
8198 else
8199 dval = dval0;
8200
8201 rtype = alloc_type_copy (type);
8202 rtype->set_code (TYPE_CODE_STRUCT);
8203 INIT_NONE_SPECIFIC (rtype);
8204 rtype->set_num_fields (nfields);
8205
8206 field *fields =
8207 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8208 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8209 rtype->set_fields (fields);
8210
8211 rtype->set_name (ada_type_name (type));
8212 rtype->set_is_fixed_instance (true);
8213 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8214
8215 branch_type = to_fixed_variant_branch_type
8216 (type->field (variant_field).type (),
8217 cond_offset_host (valaddr,
8218 TYPE_FIELD_BITPOS (type, variant_field)
8219 / TARGET_CHAR_BIT),
8220 cond_offset_target (address,
8221 TYPE_FIELD_BITPOS (type, variant_field)
8222 / TARGET_CHAR_BIT), dval);
8223 if (branch_type == NULL)
8224 {
8225 int f;
8226
8227 for (f = variant_field + 1; f < nfields; f += 1)
8228 rtype->field (f - 1) = rtype->field (f);
8229 rtype->set_num_fields (rtype->num_fields () - 1);
8230 }
8231 else
8232 {
8233 rtype->field (variant_field).set_type (branch_type);
8234 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8235 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8236 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8237 }
8238 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8239
8240 value_free_to_mark (mark);
8241 return rtype;
8242 }
8243
8244 /* An ordinary record type (with fixed-length fields) that describes
8245 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8246 beginning of this section]. Any necessary discriminants' values
8247 should be in DVAL, a record value; it may be NULL if the object
8248 at ADDR itself contains any necessary discriminant values.
8249 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8250 values from the record are needed. Except in the case that DVAL,
8251 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8252 unchecked) is replaced by a particular branch of the variant.
8253
8254 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8255 is questionable and may be removed. It can arise during the
8256 processing of an unconstrained-array-of-record type where all the
8257 variant branches have exactly the same size. This is because in
8258 such cases, the compiler does not bother to use the XVS convention
8259 when encoding the record. I am currently dubious of this
8260 shortcut and suspect the compiler should be altered. FIXME. */
8261
8262 static struct type *
8263 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8264 CORE_ADDR address, struct value *dval)
8265 {
8266 struct type *templ_type;
8267
8268 if (type0->is_fixed_instance ())
8269 return type0;
8270
8271 templ_type = dynamic_template_type (type0);
8272
8273 if (templ_type != NULL)
8274 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8275 else if (variant_field_index (type0) >= 0)
8276 {
8277 if (dval == NULL && valaddr == NULL && address == 0)
8278 return type0;
8279 return to_record_with_fixed_variant_part (type0, valaddr, address,
8280 dval);
8281 }
8282 else
8283 {
8284 type0->set_is_fixed_instance (true);
8285 return type0;
8286 }
8287
8288 }
8289
8290 /* An ordinary record type (with fixed-length fields) that describes
8291 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8292 union type. Any necessary discriminants' values should be in DVAL,
8293 a record value. That is, this routine selects the appropriate
8294 branch of the union at ADDR according to the discriminant value
8295 indicated in the union's type name. Returns VAR_TYPE0 itself if
8296 it represents a variant subject to a pragma Unchecked_Union. */
8297
8298 static struct type *
8299 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8300 CORE_ADDR address, struct value *dval)
8301 {
8302 int which;
8303 struct type *templ_type;
8304 struct type *var_type;
8305
8306 if (var_type0->code () == TYPE_CODE_PTR)
8307 var_type = TYPE_TARGET_TYPE (var_type0);
8308 else
8309 var_type = var_type0;
8310
8311 templ_type = ada_find_parallel_type (var_type, "___XVU");
8312
8313 if (templ_type != NULL)
8314 var_type = templ_type;
8315
8316 if (is_unchecked_variant (var_type, value_type (dval)))
8317 return var_type0;
8318 which = ada_which_variant_applies (var_type, dval);
8319
8320 if (which < 0)
8321 return empty_record (var_type);
8322 else if (is_dynamic_field (var_type, which))
8323 return to_fixed_record_type
8324 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8325 valaddr, address, dval);
8326 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8327 return
8328 to_fixed_record_type
8329 (var_type->field (which).type (), valaddr, address, dval);
8330 else
8331 return var_type->field (which).type ();
8332 }
8333
8334 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8335 ENCODING_TYPE, a type following the GNAT conventions for discrete
8336 type encodings, only carries redundant information. */
8337
8338 static int
8339 ada_is_redundant_range_encoding (struct type *range_type,
8340 struct type *encoding_type)
8341 {
8342 const char *bounds_str;
8343 int n;
8344 LONGEST lo, hi;
8345
8346 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8347
8348 if (get_base_type (range_type)->code ()
8349 != get_base_type (encoding_type)->code ())
8350 {
8351 /* The compiler probably used a simple base type to describe
8352 the range type instead of the range's actual base type,
8353 expecting us to get the real base type from the encoding
8354 anyway. In this situation, the encoding cannot be ignored
8355 as redundant. */
8356 return 0;
8357 }
8358
8359 if (is_dynamic_type (range_type))
8360 return 0;
8361
8362 if (encoding_type->name () == NULL)
8363 return 0;
8364
8365 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8366 if (bounds_str == NULL)
8367 return 0;
8368
8369 n = 8; /* Skip "___XDLU_". */
8370 if (!ada_scan_number (bounds_str, n, &lo, &n))
8371 return 0;
8372 if (range_type->bounds ()->low.const_val () != lo)
8373 return 0;
8374
8375 n += 2; /* Skip the "__" separator between the two bounds. */
8376 if (!ada_scan_number (bounds_str, n, &hi, &n))
8377 return 0;
8378 if (range_type->bounds ()->high.const_val () != hi)
8379 return 0;
8380
8381 return 1;
8382 }
8383
8384 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8385 a type following the GNAT encoding for describing array type
8386 indices, only carries redundant information. */
8387
8388 static int
8389 ada_is_redundant_index_type_desc (struct type *array_type,
8390 struct type *desc_type)
8391 {
8392 struct type *this_layer = check_typedef (array_type);
8393 int i;
8394
8395 for (i = 0; i < desc_type->num_fields (); i++)
8396 {
8397 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8398 desc_type->field (i).type ()))
8399 return 0;
8400 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8401 }
8402
8403 return 1;
8404 }
8405
8406 /* Assuming that TYPE0 is an array type describing the type of a value
8407 at ADDR, and that DVAL describes a record containing any
8408 discriminants used in TYPE0, returns a type for the value that
8409 contains no dynamic components (that is, no components whose sizes
8410 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8411 true, gives an error message if the resulting type's size is over
8412 varsize_limit. */
8413
8414 static struct type *
8415 to_fixed_array_type (struct type *type0, struct value *dval,
8416 int ignore_too_big)
8417 {
8418 struct type *index_type_desc;
8419 struct type *result;
8420 int constrained_packed_array_p;
8421 static const char *xa_suffix = "___XA";
8422
8423 type0 = ada_check_typedef (type0);
8424 if (type0->is_fixed_instance ())
8425 return type0;
8426
8427 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8428 if (constrained_packed_array_p)
8429 {
8430 type0 = decode_constrained_packed_array_type (type0);
8431 if (type0 == nullptr)
8432 error (_("could not decode constrained packed array type"));
8433 }
8434
8435 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8436
8437 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8438 encoding suffixed with 'P' may still be generated. If so,
8439 it should be used to find the XA type. */
8440
8441 if (index_type_desc == NULL)
8442 {
8443 const char *type_name = ada_type_name (type0);
8444
8445 if (type_name != NULL)
8446 {
8447 const int len = strlen (type_name);
8448 char *name = (char *) alloca (len + strlen (xa_suffix));
8449
8450 if (type_name[len - 1] == 'P')
8451 {
8452 strcpy (name, type_name);
8453 strcpy (name + len - 1, xa_suffix);
8454 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8455 }
8456 }
8457 }
8458
8459 ada_fixup_array_indexes_type (index_type_desc);
8460 if (index_type_desc != NULL
8461 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8462 {
8463 /* Ignore this ___XA parallel type, as it does not bring any
8464 useful information. This allows us to avoid creating fixed
8465 versions of the array's index types, which would be identical
8466 to the original ones. This, in turn, can also help avoid
8467 the creation of fixed versions of the array itself. */
8468 index_type_desc = NULL;
8469 }
8470
8471 if (index_type_desc == NULL)
8472 {
8473 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8474
8475 /* NOTE: elt_type---the fixed version of elt_type0---should never
8476 depend on the contents of the array in properly constructed
8477 debugging data. */
8478 /* Create a fixed version of the array element type.
8479 We're not providing the address of an element here,
8480 and thus the actual object value cannot be inspected to do
8481 the conversion. This should not be a problem, since arrays of
8482 unconstrained objects are not allowed. In particular, all
8483 the elements of an array of a tagged type should all be of
8484 the same type specified in the debugging info. No need to
8485 consult the object tag. */
8486 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8487
8488 /* Make sure we always create a new array type when dealing with
8489 packed array types, since we're going to fix-up the array
8490 type length and element bitsize a little further down. */
8491 if (elt_type0 == elt_type && !constrained_packed_array_p)
8492 result = type0;
8493 else
8494 result = create_array_type (alloc_type_copy (type0),
8495 elt_type, type0->index_type ());
8496 }
8497 else
8498 {
8499 int i;
8500 struct type *elt_type0;
8501
8502 elt_type0 = type0;
8503 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8504 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8505
8506 /* NOTE: result---the fixed version of elt_type0---should never
8507 depend on the contents of the array in properly constructed
8508 debugging data. */
8509 /* Create a fixed version of the array element type.
8510 We're not providing the address of an element here,
8511 and thus the actual object value cannot be inspected to do
8512 the conversion. This should not be a problem, since arrays of
8513 unconstrained objects are not allowed. In particular, all
8514 the elements of an array of a tagged type should all be of
8515 the same type specified in the debugging info. No need to
8516 consult the object tag. */
8517 result =
8518 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8519
8520 elt_type0 = type0;
8521 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8522 {
8523 struct type *range_type =
8524 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8525
8526 result = create_array_type (alloc_type_copy (elt_type0),
8527 result, range_type);
8528 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8529 }
8530 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8531 error (_("array type with dynamic size is larger than varsize-limit"));
8532 }
8533
8534 /* We want to preserve the type name. This can be useful when
8535 trying to get the type name of a value that has already been
8536 printed (for instance, if the user did "print VAR; whatis $". */
8537 result->set_name (type0->name ());
8538
8539 if (constrained_packed_array_p)
8540 {
8541 /* So far, the resulting type has been created as if the original
8542 type was a regular (non-packed) array type. As a result, the
8543 bitsize of the array elements needs to be set again, and the array
8544 length needs to be recomputed based on that bitsize. */
8545 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8546 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8547
8548 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8549 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8550 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8551 TYPE_LENGTH (result)++;
8552 }
8553
8554 result->set_is_fixed_instance (true);
8555 return result;
8556 }
8557
8558
8559 /* A standard type (containing no dynamically sized components)
8560 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8561 DVAL describes a record containing any discriminants used in TYPE0,
8562 and may be NULL if there are none, or if the object of type TYPE at
8563 ADDRESS or in VALADDR contains these discriminants.
8564
8565 If CHECK_TAG is not null, in the case of tagged types, this function
8566 attempts to locate the object's tag and use it to compute the actual
8567 type. However, when ADDRESS is null, we cannot use it to determine the
8568 location of the tag, and therefore compute the tagged type's actual type.
8569 So we return the tagged type without consulting the tag. */
8570
8571 static struct type *
8572 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8573 CORE_ADDR address, struct value *dval, int check_tag)
8574 {
8575 type = ada_check_typedef (type);
8576
8577 /* Only un-fixed types need to be handled here. */
8578 if (!HAVE_GNAT_AUX_INFO (type))
8579 return type;
8580
8581 switch (type->code ())
8582 {
8583 default:
8584 return type;
8585 case TYPE_CODE_STRUCT:
8586 {
8587 struct type *static_type = to_static_fixed_type (type);
8588 struct type *fixed_record_type =
8589 to_fixed_record_type (type, valaddr, address, NULL);
8590
8591 /* If STATIC_TYPE is a tagged type and we know the object's address,
8592 then we can determine its tag, and compute the object's actual
8593 type from there. Note that we have to use the fixed record
8594 type (the parent part of the record may have dynamic fields
8595 and the way the location of _tag is expressed may depend on
8596 them). */
8597
8598 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8599 {
8600 struct value *tag =
8601 value_tag_from_contents_and_address
8602 (fixed_record_type,
8603 valaddr,
8604 address);
8605 struct type *real_type = type_from_tag (tag);
8606 struct value *obj =
8607 value_from_contents_and_address (fixed_record_type,
8608 valaddr,
8609 address);
8610 fixed_record_type = value_type (obj);
8611 if (real_type != NULL)
8612 return to_fixed_record_type
8613 (real_type, NULL,
8614 value_address (ada_tag_value_at_base_address (obj)), NULL);
8615 }
8616
8617 /* Check to see if there is a parallel ___XVZ variable.
8618 If there is, then it provides the actual size of our type. */
8619 else if (ada_type_name (fixed_record_type) != NULL)
8620 {
8621 const char *name = ada_type_name (fixed_record_type);
8622 char *xvz_name
8623 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8624 bool xvz_found = false;
8625 LONGEST size;
8626
8627 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8628 try
8629 {
8630 xvz_found = get_int_var_value (xvz_name, size);
8631 }
8632 catch (const gdb_exception_error &except)
8633 {
8634 /* We found the variable, but somehow failed to read
8635 its value. Rethrow the same error, but with a little
8636 bit more information, to help the user understand
8637 what went wrong (Eg: the variable might have been
8638 optimized out). */
8639 throw_error (except.error,
8640 _("unable to read value of %s (%s)"),
8641 xvz_name, except.what ());
8642 }
8643
8644 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8645 {
8646 fixed_record_type = copy_type (fixed_record_type);
8647 TYPE_LENGTH (fixed_record_type) = size;
8648
8649 /* The FIXED_RECORD_TYPE may have be a stub. We have
8650 observed this when the debugging info is STABS, and
8651 apparently it is something that is hard to fix.
8652
8653 In practice, we don't need the actual type definition
8654 at all, because the presence of the XVZ variable allows us
8655 to assume that there must be a XVS type as well, which we
8656 should be able to use later, when we need the actual type
8657 definition.
8658
8659 In the meantime, pretend that the "fixed" type we are
8660 returning is NOT a stub, because this can cause trouble
8661 when using this type to create new types targeting it.
8662 Indeed, the associated creation routines often check
8663 whether the target type is a stub and will try to replace
8664 it, thus using a type with the wrong size. This, in turn,
8665 might cause the new type to have the wrong size too.
8666 Consider the case of an array, for instance, where the size
8667 of the array is computed from the number of elements in
8668 our array multiplied by the size of its element. */
8669 fixed_record_type->set_is_stub (false);
8670 }
8671 }
8672 return fixed_record_type;
8673 }
8674 case TYPE_CODE_ARRAY:
8675 return to_fixed_array_type (type, dval, 1);
8676 case TYPE_CODE_UNION:
8677 if (dval == NULL)
8678 return type;
8679 else
8680 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8681 }
8682 }
8683
8684 /* The same as ada_to_fixed_type_1, except that it preserves the type
8685 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8686
8687 The typedef layer needs be preserved in order to differentiate between
8688 arrays and array pointers when both types are implemented using the same
8689 fat pointer. In the array pointer case, the pointer is encoded as
8690 a typedef of the pointer type. For instance, considering:
8691
8692 type String_Access is access String;
8693 S1 : String_Access := null;
8694
8695 To the debugger, S1 is defined as a typedef of type String. But
8696 to the user, it is a pointer. So if the user tries to print S1,
8697 we should not dereference the array, but print the array address
8698 instead.
8699
8700 If we didn't preserve the typedef layer, we would lose the fact that
8701 the type is to be presented as a pointer (needs de-reference before
8702 being printed). And we would also use the source-level type name. */
8703
8704 struct type *
8705 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8706 CORE_ADDR address, struct value *dval, int check_tag)
8707
8708 {
8709 struct type *fixed_type =
8710 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8711
8712 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8713 then preserve the typedef layer.
8714
8715 Implementation note: We can only check the main-type portion of
8716 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8717 from TYPE now returns a type that has the same instance flags
8718 as TYPE. For instance, if TYPE is a "typedef const", and its
8719 target type is a "struct", then the typedef elimination will return
8720 a "const" version of the target type. See check_typedef for more
8721 details about how the typedef layer elimination is done.
8722
8723 brobecker/2010-11-19: It seems to me that the only case where it is
8724 useful to preserve the typedef layer is when dealing with fat pointers.
8725 Perhaps, we could add a check for that and preserve the typedef layer
8726 only in that situation. But this seems unnecessary so far, probably
8727 because we call check_typedef/ada_check_typedef pretty much everywhere.
8728 */
8729 if (type->code () == TYPE_CODE_TYPEDEF
8730 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8731 == TYPE_MAIN_TYPE (fixed_type)))
8732 return type;
8733
8734 return fixed_type;
8735 }
8736
8737 /* A standard (static-sized) type corresponding as well as possible to
8738 TYPE0, but based on no runtime data. */
8739
8740 static struct type *
8741 to_static_fixed_type (struct type *type0)
8742 {
8743 struct type *type;
8744
8745 if (type0 == NULL)
8746 return NULL;
8747
8748 if (type0->is_fixed_instance ())
8749 return type0;
8750
8751 type0 = ada_check_typedef (type0);
8752
8753 switch (type0->code ())
8754 {
8755 default:
8756 return type0;
8757 case TYPE_CODE_STRUCT:
8758 type = dynamic_template_type (type0);
8759 if (type != NULL)
8760 return template_to_static_fixed_type (type);
8761 else
8762 return template_to_static_fixed_type (type0);
8763 case TYPE_CODE_UNION:
8764 type = ada_find_parallel_type (type0, "___XVU");
8765 if (type != NULL)
8766 return template_to_static_fixed_type (type);
8767 else
8768 return template_to_static_fixed_type (type0);
8769 }
8770 }
8771
8772 /* A static approximation of TYPE with all type wrappers removed. */
8773
8774 static struct type *
8775 static_unwrap_type (struct type *type)
8776 {
8777 if (ada_is_aligner_type (type))
8778 {
8779 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8780 if (ada_type_name (type1) == NULL)
8781 type1->set_name (ada_type_name (type));
8782
8783 return static_unwrap_type (type1);
8784 }
8785 else
8786 {
8787 struct type *raw_real_type = ada_get_base_type (type);
8788
8789 if (raw_real_type == type)
8790 return type;
8791 else
8792 return to_static_fixed_type (raw_real_type);
8793 }
8794 }
8795
8796 /* In some cases, incomplete and private types require
8797 cross-references that are not resolved as records (for example,
8798 type Foo;
8799 type FooP is access Foo;
8800 V: FooP;
8801 type Foo is array ...;
8802 ). In these cases, since there is no mechanism for producing
8803 cross-references to such types, we instead substitute for FooP a
8804 stub enumeration type that is nowhere resolved, and whose tag is
8805 the name of the actual type. Call these types "non-record stubs". */
8806
8807 /* A type equivalent to TYPE that is not a non-record stub, if one
8808 exists, otherwise TYPE. */
8809
8810 struct type *
8811 ada_check_typedef (struct type *type)
8812 {
8813 if (type == NULL)
8814 return NULL;
8815
8816 /* If our type is an access to an unconstrained array, which is encoded
8817 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8818 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8819 what allows us to distinguish between fat pointers that represent
8820 array types, and fat pointers that represent array access types
8821 (in both cases, the compiler implements them as fat pointers). */
8822 if (ada_is_access_to_unconstrained_array (type))
8823 return type;
8824
8825 type = check_typedef (type);
8826 if (type == NULL || type->code () != TYPE_CODE_ENUM
8827 || !type->is_stub ()
8828 || type->name () == NULL)
8829 return type;
8830 else
8831 {
8832 const char *name = type->name ();
8833 struct type *type1 = ada_find_any_type (name);
8834
8835 if (type1 == NULL)
8836 return type;
8837
8838 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8839 stubs pointing to arrays, as we don't create symbols for array
8840 types, only for the typedef-to-array types). If that's the case,
8841 strip the typedef layer. */
8842 if (type1->code () == TYPE_CODE_TYPEDEF)
8843 type1 = ada_check_typedef (type1);
8844
8845 return type1;
8846 }
8847 }
8848
8849 /* A value representing the data at VALADDR/ADDRESS as described by
8850 type TYPE0, but with a standard (static-sized) type that correctly
8851 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8852 type, then return VAL0 [this feature is simply to avoid redundant
8853 creation of struct values]. */
8854
8855 static struct value *
8856 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8857 struct value *val0)
8858 {
8859 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8860
8861 if (type == type0 && val0 != NULL)
8862 return val0;
8863
8864 if (VALUE_LVAL (val0) != lval_memory)
8865 {
8866 /* Our value does not live in memory; it could be a convenience
8867 variable, for instance. Create a not_lval value using val0's
8868 contents. */
8869 return value_from_contents (type, value_contents (val0));
8870 }
8871
8872 return value_from_contents_and_address (type, 0, address);
8873 }
8874
8875 /* A value representing VAL, but with a standard (static-sized) type
8876 that correctly describes it. Does not necessarily create a new
8877 value. */
8878
8879 struct value *
8880 ada_to_fixed_value (struct value *val)
8881 {
8882 val = unwrap_value (val);
8883 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8884 return val;
8885 }
8886 \f
8887
8888 /* Attributes */
8889
8890 /* Table mapping attribute numbers to names.
8891 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8892
8893 static const char * const attribute_names[] = {
8894 "<?>",
8895
8896 "first",
8897 "last",
8898 "length",
8899 "image",
8900 "max",
8901 "min",
8902 "modulus",
8903 "pos",
8904 "size",
8905 "tag",
8906 "val",
8907 0
8908 };
8909
8910 static const char *
8911 ada_attribute_name (enum exp_opcode n)
8912 {
8913 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8914 return attribute_names[n - OP_ATR_FIRST + 1];
8915 else
8916 return attribute_names[0];
8917 }
8918
8919 /* Evaluate the 'POS attribute applied to ARG. */
8920
8921 static LONGEST
8922 pos_atr (struct value *arg)
8923 {
8924 struct value *val = coerce_ref (arg);
8925 struct type *type = value_type (val);
8926 LONGEST result;
8927
8928 if (!discrete_type_p (type))
8929 error (_("'POS only defined on discrete types"));
8930
8931 if (!discrete_position (type, value_as_long (val), &result))
8932 error (_("enumeration value is invalid: can't find 'POS"));
8933
8934 return result;
8935 }
8936
8937 static struct value *
8938 value_pos_atr (struct type *type, struct value *arg)
8939 {
8940 return value_from_longest (type, pos_atr (arg));
8941 }
8942
8943 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8944
8945 static struct value *
8946 val_atr (struct type *type, LONGEST val)
8947 {
8948 gdb_assert (discrete_type_p (type));
8949 if (type->code () == TYPE_CODE_RANGE)
8950 type = TYPE_TARGET_TYPE (type);
8951 if (type->code () == TYPE_CODE_ENUM)
8952 {
8953 if (val < 0 || val >= type->num_fields ())
8954 error (_("argument to 'VAL out of range"));
8955 val = TYPE_FIELD_ENUMVAL (type, val);
8956 }
8957 return value_from_longest (type, val);
8958 }
8959
8960 static struct value *
8961 value_val_atr (struct type *type, struct value *arg)
8962 {
8963 if (!discrete_type_p (type))
8964 error (_("'VAL only defined on discrete types"));
8965 if (!integer_type_p (value_type (arg)))
8966 error (_("'VAL requires integral argument"));
8967
8968 return val_atr (type, value_as_long (arg));
8969 }
8970 \f
8971
8972 /* Evaluation */
8973
8974 /* True if TYPE appears to be an Ada character type.
8975 [At the moment, this is true only for Character and Wide_Character;
8976 It is a heuristic test that could stand improvement]. */
8977
8978 bool
8979 ada_is_character_type (struct type *type)
8980 {
8981 const char *name;
8982
8983 /* If the type code says it's a character, then assume it really is,
8984 and don't check any further. */
8985 if (type->code () == TYPE_CODE_CHAR)
8986 return true;
8987
8988 /* Otherwise, assume it's a character type iff it is a discrete type
8989 with a known character type name. */
8990 name = ada_type_name (type);
8991 return (name != NULL
8992 && (type->code () == TYPE_CODE_INT
8993 || type->code () == TYPE_CODE_RANGE)
8994 && (strcmp (name, "character") == 0
8995 || strcmp (name, "wide_character") == 0
8996 || strcmp (name, "wide_wide_character") == 0
8997 || strcmp (name, "unsigned char") == 0));
8998 }
8999
9000 /* True if TYPE appears to be an Ada string type. */
9001
9002 bool
9003 ada_is_string_type (struct type *type)
9004 {
9005 type = ada_check_typedef (type);
9006 if (type != NULL
9007 && type->code () != TYPE_CODE_PTR
9008 && (ada_is_simple_array_type (type)
9009 || ada_is_array_descriptor_type (type))
9010 && ada_array_arity (type) == 1)
9011 {
9012 struct type *elttype = ada_array_element_type (type, 1);
9013
9014 return ada_is_character_type (elttype);
9015 }
9016 else
9017 return false;
9018 }
9019
9020 /* The compiler sometimes provides a parallel XVS type for a given
9021 PAD type. Normally, it is safe to follow the PAD type directly,
9022 but older versions of the compiler have a bug that causes the offset
9023 of its "F" field to be wrong. Following that field in that case
9024 would lead to incorrect results, but this can be worked around
9025 by ignoring the PAD type and using the associated XVS type instead.
9026
9027 Set to True if the debugger should trust the contents of PAD types.
9028 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9029 static bool trust_pad_over_xvs = true;
9030
9031 /* True if TYPE is a struct type introduced by the compiler to force the
9032 alignment of a value. Such types have a single field with a
9033 distinctive name. */
9034
9035 int
9036 ada_is_aligner_type (struct type *type)
9037 {
9038 type = ada_check_typedef (type);
9039
9040 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9041 return 0;
9042
9043 return (type->code () == TYPE_CODE_STRUCT
9044 && type->num_fields () == 1
9045 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9046 }
9047
9048 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9049 the parallel type. */
9050
9051 struct type *
9052 ada_get_base_type (struct type *raw_type)
9053 {
9054 struct type *real_type_namer;
9055 struct type *raw_real_type;
9056
9057 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9058 return raw_type;
9059
9060 if (ada_is_aligner_type (raw_type))
9061 /* The encoding specifies that we should always use the aligner type.
9062 So, even if this aligner type has an associated XVS type, we should
9063 simply ignore it.
9064
9065 According to the compiler gurus, an XVS type parallel to an aligner
9066 type may exist because of a stabs limitation. In stabs, aligner
9067 types are empty because the field has a variable-sized type, and
9068 thus cannot actually be used as an aligner type. As a result,
9069 we need the associated parallel XVS type to decode the type.
9070 Since the policy in the compiler is to not change the internal
9071 representation based on the debugging info format, we sometimes
9072 end up having a redundant XVS type parallel to the aligner type. */
9073 return raw_type;
9074
9075 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9076 if (real_type_namer == NULL
9077 || real_type_namer->code () != TYPE_CODE_STRUCT
9078 || real_type_namer->num_fields () != 1)
9079 return raw_type;
9080
9081 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9082 {
9083 /* This is an older encoding form where the base type needs to be
9084 looked up by name. We prefer the newer encoding because it is
9085 more efficient. */
9086 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9087 if (raw_real_type == NULL)
9088 return raw_type;
9089 else
9090 return raw_real_type;
9091 }
9092
9093 /* The field in our XVS type is a reference to the base type. */
9094 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9095 }
9096
9097 /* The type of value designated by TYPE, with all aligners removed. */
9098
9099 struct type *
9100 ada_aligned_type (struct type *type)
9101 {
9102 if (ada_is_aligner_type (type))
9103 return ada_aligned_type (type->field (0).type ());
9104 else
9105 return ada_get_base_type (type);
9106 }
9107
9108
9109 /* The address of the aligned value in an object at address VALADDR
9110 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9111
9112 const gdb_byte *
9113 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9114 {
9115 if (ada_is_aligner_type (type))
9116 return ada_aligned_value_addr (type->field (0).type (),
9117 valaddr +
9118 TYPE_FIELD_BITPOS (type,
9119 0) / TARGET_CHAR_BIT);
9120 else
9121 return valaddr;
9122 }
9123
9124
9125
9126 /* The printed representation of an enumeration literal with encoded
9127 name NAME. The value is good to the next call of ada_enum_name. */
9128 const char *
9129 ada_enum_name (const char *name)
9130 {
9131 static char *result;
9132 static size_t result_len = 0;
9133 const char *tmp;
9134
9135 /* First, unqualify the enumeration name:
9136 1. Search for the last '.' character. If we find one, then skip
9137 all the preceding characters, the unqualified name starts
9138 right after that dot.
9139 2. Otherwise, we may be debugging on a target where the compiler
9140 translates dots into "__". Search forward for double underscores,
9141 but stop searching when we hit an overloading suffix, which is
9142 of the form "__" followed by digits. */
9143
9144 tmp = strrchr (name, '.');
9145 if (tmp != NULL)
9146 name = tmp + 1;
9147 else
9148 {
9149 while ((tmp = strstr (name, "__")) != NULL)
9150 {
9151 if (isdigit (tmp[2]))
9152 break;
9153 else
9154 name = tmp + 2;
9155 }
9156 }
9157
9158 if (name[0] == 'Q')
9159 {
9160 int v;
9161
9162 if (name[1] == 'U' || name[1] == 'W')
9163 {
9164 if (sscanf (name + 2, "%x", &v) != 1)
9165 return name;
9166 }
9167 else if (((name[1] >= '0' && name[1] <= '9')
9168 || (name[1] >= 'a' && name[1] <= 'z'))
9169 && name[2] == '\0')
9170 {
9171 GROW_VECT (result, result_len, 4);
9172 xsnprintf (result, result_len, "'%c'", name[1]);
9173 return result;
9174 }
9175 else
9176 return name;
9177
9178 GROW_VECT (result, result_len, 16);
9179 if (isascii (v) && isprint (v))
9180 xsnprintf (result, result_len, "'%c'", v);
9181 else if (name[1] == 'U')
9182 xsnprintf (result, result_len, "[\"%02x\"]", v);
9183 else
9184 xsnprintf (result, result_len, "[\"%04x\"]", v);
9185
9186 return result;
9187 }
9188 else
9189 {
9190 tmp = strstr (name, "__");
9191 if (tmp == NULL)
9192 tmp = strstr (name, "$");
9193 if (tmp != NULL)
9194 {
9195 GROW_VECT (result, result_len, tmp - name + 1);
9196 strncpy (result, name, tmp - name);
9197 result[tmp - name] = '\0';
9198 return result;
9199 }
9200
9201 return name;
9202 }
9203 }
9204
9205 /* Evaluate the subexpression of EXP starting at *POS as for
9206 evaluate_type, updating *POS to point just past the evaluated
9207 expression. */
9208
9209 static struct value *
9210 evaluate_subexp_type (struct expression *exp, int *pos)
9211 {
9212 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9213 }
9214
9215 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9216 value it wraps. */
9217
9218 static struct value *
9219 unwrap_value (struct value *val)
9220 {
9221 struct type *type = ada_check_typedef (value_type (val));
9222
9223 if (ada_is_aligner_type (type))
9224 {
9225 struct value *v = ada_value_struct_elt (val, "F", 0);
9226 struct type *val_type = ada_check_typedef (value_type (v));
9227
9228 if (ada_type_name (val_type) == NULL)
9229 val_type->set_name (ada_type_name (type));
9230
9231 return unwrap_value (v);
9232 }
9233 else
9234 {
9235 struct type *raw_real_type =
9236 ada_check_typedef (ada_get_base_type (type));
9237
9238 /* If there is no parallel XVS or XVE type, then the value is
9239 already unwrapped. Return it without further modification. */
9240 if ((type == raw_real_type)
9241 && ada_find_parallel_type (type, "___XVE") == NULL)
9242 return val;
9243
9244 return
9245 coerce_unspec_val_to_type
9246 (val, ada_to_fixed_type (raw_real_type, 0,
9247 value_address (val),
9248 NULL, 1));
9249 }
9250 }
9251
9252 static struct value *
9253 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9254 {
9255 struct value *scale
9256 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9257 arg = value_cast (value_type (scale), arg);
9258
9259 arg = value_binop (arg, scale, BINOP_MUL);
9260 return value_cast (type, arg);
9261 }
9262
9263 static struct value *
9264 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9265 {
9266 if (type == value_type (arg))
9267 return arg;
9268
9269 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9270 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9271 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9272 else
9273 arg = value_cast (value_type (scale), arg);
9274
9275 arg = value_binop (arg, scale, BINOP_DIV);
9276 return value_cast (type, arg);
9277 }
9278
9279 /* Given two array types T1 and T2, return nonzero iff both arrays
9280 contain the same number of elements. */
9281
9282 static int
9283 ada_same_array_size_p (struct type *t1, struct type *t2)
9284 {
9285 LONGEST lo1, hi1, lo2, hi2;
9286
9287 /* Get the array bounds in order to verify that the size of
9288 the two arrays match. */
9289 if (!get_array_bounds (t1, &lo1, &hi1)
9290 || !get_array_bounds (t2, &lo2, &hi2))
9291 error (_("unable to determine array bounds"));
9292
9293 /* To make things easier for size comparison, normalize a bit
9294 the case of empty arrays by making sure that the difference
9295 between upper bound and lower bound is always -1. */
9296 if (lo1 > hi1)
9297 hi1 = lo1 - 1;
9298 if (lo2 > hi2)
9299 hi2 = lo2 - 1;
9300
9301 return (hi1 - lo1 == hi2 - lo2);
9302 }
9303
9304 /* Assuming that VAL is an array of integrals, and TYPE represents
9305 an array with the same number of elements, but with wider integral
9306 elements, return an array "casted" to TYPE. In practice, this
9307 means that the returned array is built by casting each element
9308 of the original array into TYPE's (wider) element type. */
9309
9310 static struct value *
9311 ada_promote_array_of_integrals (struct type *type, struct value *val)
9312 {
9313 struct type *elt_type = TYPE_TARGET_TYPE (type);
9314 LONGEST lo, hi;
9315 struct value *res;
9316 LONGEST i;
9317
9318 /* Verify that both val and type are arrays of scalars, and
9319 that the size of val's elements is smaller than the size
9320 of type's element. */
9321 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9322 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9323 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9324 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9325 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9326 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9327
9328 if (!get_array_bounds (type, &lo, &hi))
9329 error (_("unable to determine array bounds"));
9330
9331 res = allocate_value (type);
9332
9333 /* Promote each array element. */
9334 for (i = 0; i < hi - lo + 1; i++)
9335 {
9336 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9337
9338 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9339 value_contents_all (elt), TYPE_LENGTH (elt_type));
9340 }
9341
9342 return res;
9343 }
9344
9345 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9346 return the converted value. */
9347
9348 static struct value *
9349 coerce_for_assign (struct type *type, struct value *val)
9350 {
9351 struct type *type2 = value_type (val);
9352
9353 if (type == type2)
9354 return val;
9355
9356 type2 = ada_check_typedef (type2);
9357 type = ada_check_typedef (type);
9358
9359 if (type2->code () == TYPE_CODE_PTR
9360 && type->code () == TYPE_CODE_ARRAY)
9361 {
9362 val = ada_value_ind (val);
9363 type2 = value_type (val);
9364 }
9365
9366 if (type2->code () == TYPE_CODE_ARRAY
9367 && type->code () == TYPE_CODE_ARRAY)
9368 {
9369 if (!ada_same_array_size_p (type, type2))
9370 error (_("cannot assign arrays of different length"));
9371
9372 if (is_integral_type (TYPE_TARGET_TYPE (type))
9373 && is_integral_type (TYPE_TARGET_TYPE (type2))
9374 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9375 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9376 {
9377 /* Allow implicit promotion of the array elements to
9378 a wider type. */
9379 return ada_promote_array_of_integrals (type, val);
9380 }
9381
9382 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9383 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9384 error (_("Incompatible types in assignment"));
9385 deprecated_set_value_type (val, type);
9386 }
9387 return val;
9388 }
9389
9390 static struct value *
9391 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9392 {
9393 struct value *val;
9394 struct type *type1, *type2;
9395 LONGEST v, v1, v2;
9396
9397 arg1 = coerce_ref (arg1);
9398 arg2 = coerce_ref (arg2);
9399 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9400 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9401
9402 if (type1->code () != TYPE_CODE_INT
9403 || type2->code () != TYPE_CODE_INT)
9404 return value_binop (arg1, arg2, op);
9405
9406 switch (op)
9407 {
9408 case BINOP_MOD:
9409 case BINOP_DIV:
9410 case BINOP_REM:
9411 break;
9412 default:
9413 return value_binop (arg1, arg2, op);
9414 }
9415
9416 v2 = value_as_long (arg2);
9417 if (v2 == 0)
9418 error (_("second operand of %s must not be zero."), op_string (op));
9419
9420 if (type1->is_unsigned () || op == BINOP_MOD)
9421 return value_binop (arg1, arg2, op);
9422
9423 v1 = value_as_long (arg1);
9424 switch (op)
9425 {
9426 case BINOP_DIV:
9427 v = v1 / v2;
9428 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9429 v += v > 0 ? -1 : 1;
9430 break;
9431 case BINOP_REM:
9432 v = v1 % v2;
9433 if (v * v1 < 0)
9434 v -= v2;
9435 break;
9436 default:
9437 /* Should not reach this point. */
9438 v = 0;
9439 }
9440
9441 val = allocate_value (type1);
9442 store_unsigned_integer (value_contents_raw (val),
9443 TYPE_LENGTH (value_type (val)),
9444 type_byte_order (type1), v);
9445 return val;
9446 }
9447
9448 static int
9449 ada_value_equal (struct value *arg1, struct value *arg2)
9450 {
9451 if (ada_is_direct_array_type (value_type (arg1))
9452 || ada_is_direct_array_type (value_type (arg2)))
9453 {
9454 struct type *arg1_type, *arg2_type;
9455
9456 /* Automatically dereference any array reference before
9457 we attempt to perform the comparison. */
9458 arg1 = ada_coerce_ref (arg1);
9459 arg2 = ada_coerce_ref (arg2);
9460
9461 arg1 = ada_coerce_to_simple_array (arg1);
9462 arg2 = ada_coerce_to_simple_array (arg2);
9463
9464 arg1_type = ada_check_typedef (value_type (arg1));
9465 arg2_type = ada_check_typedef (value_type (arg2));
9466
9467 if (arg1_type->code () != TYPE_CODE_ARRAY
9468 || arg2_type->code () != TYPE_CODE_ARRAY)
9469 error (_("Attempt to compare array with non-array"));
9470 /* FIXME: The following works only for types whose
9471 representations use all bits (no padding or undefined bits)
9472 and do not have user-defined equality. */
9473 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9474 && memcmp (value_contents (arg1), value_contents (arg2),
9475 TYPE_LENGTH (arg1_type)) == 0);
9476 }
9477 return value_equal (arg1, arg2);
9478 }
9479
9480 /* Total number of component associations in the aggregate starting at
9481 index PC in EXP. Assumes that index PC is the start of an
9482 OP_AGGREGATE. */
9483
9484 static int
9485 num_component_specs (struct expression *exp, int pc)
9486 {
9487 int n, m, i;
9488
9489 m = exp->elts[pc + 1].longconst;
9490 pc += 3;
9491 n = 0;
9492 for (i = 0; i < m; i += 1)
9493 {
9494 switch (exp->elts[pc].opcode)
9495 {
9496 default:
9497 n += 1;
9498 break;
9499 case OP_CHOICES:
9500 n += exp->elts[pc + 1].longconst;
9501 break;
9502 }
9503 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9504 }
9505 return n;
9506 }
9507
9508 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9509 component of LHS (a simple array or a record), updating *POS past
9510 the expression, assuming that LHS is contained in CONTAINER. Does
9511 not modify the inferior's memory, nor does it modify LHS (unless
9512 LHS == CONTAINER). */
9513
9514 static void
9515 assign_component (struct value *container, struct value *lhs, LONGEST index,
9516 struct expression *exp, int *pos)
9517 {
9518 struct value *mark = value_mark ();
9519 struct value *elt;
9520 struct type *lhs_type = check_typedef (value_type (lhs));
9521
9522 if (lhs_type->code () == TYPE_CODE_ARRAY)
9523 {
9524 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9525 struct value *index_val = value_from_longest (index_type, index);
9526
9527 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9528 }
9529 else
9530 {
9531 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9532 elt = ada_to_fixed_value (elt);
9533 }
9534
9535 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9536 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9537 else
9538 value_assign_to_component (container, elt,
9539 ada_evaluate_subexp (NULL, exp, pos,
9540 EVAL_NORMAL));
9541
9542 value_free_to_mark (mark);
9543 }
9544
9545 /* Assuming that LHS represents an lvalue having a record or array
9546 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9547 of that aggregate's value to LHS, advancing *POS past the
9548 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9549 lvalue containing LHS (possibly LHS itself). Does not modify
9550 the inferior's memory, nor does it modify the contents of
9551 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9552
9553 static struct value *
9554 assign_aggregate (struct value *container,
9555 struct value *lhs, struct expression *exp,
9556 int *pos, enum noside noside)
9557 {
9558 struct type *lhs_type;
9559 int n = exp->elts[*pos+1].longconst;
9560 LONGEST low_index, high_index;
9561 int num_specs;
9562 LONGEST *indices;
9563 int max_indices, num_indices;
9564 int i;
9565
9566 *pos += 3;
9567 if (noside != EVAL_NORMAL)
9568 {
9569 for (i = 0; i < n; i += 1)
9570 ada_evaluate_subexp (NULL, exp, pos, noside);
9571 return container;
9572 }
9573
9574 container = ada_coerce_ref (container);
9575 if (ada_is_direct_array_type (value_type (container)))
9576 container = ada_coerce_to_simple_array (container);
9577 lhs = ada_coerce_ref (lhs);
9578 if (!deprecated_value_modifiable (lhs))
9579 error (_("Left operand of assignment is not a modifiable lvalue."));
9580
9581 lhs_type = check_typedef (value_type (lhs));
9582 if (ada_is_direct_array_type (lhs_type))
9583 {
9584 lhs = ada_coerce_to_simple_array (lhs);
9585 lhs_type = check_typedef (value_type (lhs));
9586 low_index = lhs_type->bounds ()->low.const_val ();
9587 high_index = lhs_type->bounds ()->high.const_val ();
9588 }
9589 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9590 {
9591 low_index = 0;
9592 high_index = num_visible_fields (lhs_type) - 1;
9593 }
9594 else
9595 error (_("Left-hand side must be array or record."));
9596
9597 num_specs = num_component_specs (exp, *pos - 3);
9598 max_indices = 4 * num_specs + 4;
9599 indices = XALLOCAVEC (LONGEST, max_indices);
9600 indices[0] = indices[1] = low_index - 1;
9601 indices[2] = indices[3] = high_index + 1;
9602 num_indices = 4;
9603
9604 for (i = 0; i < n; i += 1)
9605 {
9606 switch (exp->elts[*pos].opcode)
9607 {
9608 case OP_CHOICES:
9609 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9610 &num_indices, max_indices,
9611 low_index, high_index);
9612 break;
9613 case OP_POSITIONAL:
9614 aggregate_assign_positional (container, lhs, exp, pos, indices,
9615 &num_indices, max_indices,
9616 low_index, high_index);
9617 break;
9618 case OP_OTHERS:
9619 if (i != n-1)
9620 error (_("Misplaced 'others' clause"));
9621 aggregate_assign_others (container, lhs, exp, pos, indices,
9622 num_indices, low_index, high_index);
9623 break;
9624 default:
9625 error (_("Internal error: bad aggregate clause"));
9626 }
9627 }
9628
9629 return container;
9630 }
9631
9632 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9633 construct at *POS, updating *POS past the construct, given that
9634 the positions are relative to lower bound LOW, where HIGH is the
9635 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9636 updating *NUM_INDICES as needed. CONTAINER is as for
9637 assign_aggregate. */
9638 static void
9639 aggregate_assign_positional (struct value *container,
9640 struct value *lhs, struct expression *exp,
9641 int *pos, LONGEST *indices, int *num_indices,
9642 int max_indices, LONGEST low, LONGEST high)
9643 {
9644 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9645
9646 if (ind - 1 == high)
9647 warning (_("Extra components in aggregate ignored."));
9648 if (ind <= high)
9649 {
9650 add_component_interval (ind, ind, indices, num_indices, max_indices);
9651 *pos += 3;
9652 assign_component (container, lhs, ind, exp, pos);
9653 }
9654 else
9655 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9656 }
9657
9658 /* Assign into the components of LHS indexed by the OP_CHOICES
9659 construct at *POS, updating *POS past the construct, given that
9660 the allowable indices are LOW..HIGH. Record the indices assigned
9661 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9662 needed. CONTAINER is as for assign_aggregate. */
9663 static void
9664 aggregate_assign_from_choices (struct value *container,
9665 struct value *lhs, struct expression *exp,
9666 int *pos, LONGEST *indices, int *num_indices,
9667 int max_indices, LONGEST low, LONGEST high)
9668 {
9669 int j;
9670 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9671 int choice_pos, expr_pc;
9672 int is_array = ada_is_direct_array_type (value_type (lhs));
9673
9674 choice_pos = *pos += 3;
9675
9676 for (j = 0; j < n_choices; j += 1)
9677 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9678 expr_pc = *pos;
9679 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9680
9681 for (j = 0; j < n_choices; j += 1)
9682 {
9683 LONGEST lower, upper;
9684 enum exp_opcode op = exp->elts[choice_pos].opcode;
9685
9686 if (op == OP_DISCRETE_RANGE)
9687 {
9688 choice_pos += 1;
9689 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9690 EVAL_NORMAL));
9691 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9692 EVAL_NORMAL));
9693 }
9694 else if (is_array)
9695 {
9696 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9697 EVAL_NORMAL));
9698 upper = lower;
9699 }
9700 else
9701 {
9702 int ind;
9703 const char *name;
9704
9705 switch (op)
9706 {
9707 case OP_NAME:
9708 name = &exp->elts[choice_pos + 2].string;
9709 break;
9710 case OP_VAR_VALUE:
9711 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9712 break;
9713 default:
9714 error (_("Invalid record component association."));
9715 }
9716 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9717 ind = 0;
9718 if (! find_struct_field (name, value_type (lhs), 0,
9719 NULL, NULL, NULL, NULL, &ind))
9720 error (_("Unknown component name: %s."), name);
9721 lower = upper = ind;
9722 }
9723
9724 if (lower <= upper && (lower < low || upper > high))
9725 error (_("Index in component association out of bounds."));
9726
9727 add_component_interval (lower, upper, indices, num_indices,
9728 max_indices);
9729 while (lower <= upper)
9730 {
9731 int pos1;
9732
9733 pos1 = expr_pc;
9734 assign_component (container, lhs, lower, exp, &pos1);
9735 lower += 1;
9736 }
9737 }
9738 }
9739
9740 /* Assign the value of the expression in the OP_OTHERS construct in
9741 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9742 have not been previously assigned. The index intervals already assigned
9743 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9744 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9745 static void
9746 aggregate_assign_others (struct value *container,
9747 struct value *lhs, struct expression *exp,
9748 int *pos, LONGEST *indices, int num_indices,
9749 LONGEST low, LONGEST high)
9750 {
9751 int i;
9752 int expr_pc = *pos + 1;
9753
9754 for (i = 0; i < num_indices - 2; i += 2)
9755 {
9756 LONGEST ind;
9757
9758 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9759 {
9760 int localpos;
9761
9762 localpos = expr_pc;
9763 assign_component (container, lhs, ind, exp, &localpos);
9764 }
9765 }
9766 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9767 }
9768
9769 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9770 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9771 modifying *SIZE as needed. It is an error if *SIZE exceeds
9772 MAX_SIZE. The resulting intervals do not overlap. */
9773 static void
9774 add_component_interval (LONGEST low, LONGEST high,
9775 LONGEST* indices, int *size, int max_size)
9776 {
9777 int i, j;
9778
9779 for (i = 0; i < *size; i += 2) {
9780 if (high >= indices[i] && low <= indices[i + 1])
9781 {
9782 int kh;
9783
9784 for (kh = i + 2; kh < *size; kh += 2)
9785 if (high < indices[kh])
9786 break;
9787 if (low < indices[i])
9788 indices[i] = low;
9789 indices[i + 1] = indices[kh - 1];
9790 if (high > indices[i + 1])
9791 indices[i + 1] = high;
9792 memcpy (indices + i + 2, indices + kh, *size - kh);
9793 *size -= kh - i - 2;
9794 return;
9795 }
9796 else if (high < indices[i])
9797 break;
9798 }
9799
9800 if (*size == max_size)
9801 error (_("Internal error: miscounted aggregate components."));
9802 *size += 2;
9803 for (j = *size-1; j >= i+2; j -= 1)
9804 indices[j] = indices[j - 2];
9805 indices[i] = low;
9806 indices[i + 1] = high;
9807 }
9808
9809 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9810 is different. */
9811
9812 static struct value *
9813 ada_value_cast (struct type *type, struct value *arg2)
9814 {
9815 if (type == ada_check_typedef (value_type (arg2)))
9816 return arg2;
9817
9818 if (ada_is_gnat_encoded_fixed_point_type (type))
9819 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9820
9821 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9822 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9823
9824 return value_cast (type, arg2);
9825 }
9826
9827 /* Evaluating Ada expressions, and printing their result.
9828 ------------------------------------------------------
9829
9830 1. Introduction:
9831 ----------------
9832
9833 We usually evaluate an Ada expression in order to print its value.
9834 We also evaluate an expression in order to print its type, which
9835 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9836 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9837 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9838 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9839 similar.
9840
9841 Evaluating expressions is a little more complicated for Ada entities
9842 than it is for entities in languages such as C. The main reason for
9843 this is that Ada provides types whose definition might be dynamic.
9844 One example of such types is variant records. Or another example
9845 would be an array whose bounds can only be known at run time.
9846
9847 The following description is a general guide as to what should be
9848 done (and what should NOT be done) in order to evaluate an expression
9849 involving such types, and when. This does not cover how the semantic
9850 information is encoded by GNAT as this is covered separatly. For the
9851 document used as the reference for the GNAT encoding, see exp_dbug.ads
9852 in the GNAT sources.
9853
9854 Ideally, we should embed each part of this description next to its
9855 associated code. Unfortunately, the amount of code is so vast right
9856 now that it's hard to see whether the code handling a particular
9857 situation might be duplicated or not. One day, when the code is
9858 cleaned up, this guide might become redundant with the comments
9859 inserted in the code, and we might want to remove it.
9860
9861 2. ``Fixing'' an Entity, the Simple Case:
9862 -----------------------------------------
9863
9864 When evaluating Ada expressions, the tricky issue is that they may
9865 reference entities whose type contents and size are not statically
9866 known. Consider for instance a variant record:
9867
9868 type Rec (Empty : Boolean := True) is record
9869 case Empty is
9870 when True => null;
9871 when False => Value : Integer;
9872 end case;
9873 end record;
9874 Yes : Rec := (Empty => False, Value => 1);
9875 No : Rec := (empty => True);
9876
9877 The size and contents of that record depends on the value of the
9878 descriminant (Rec.Empty). At this point, neither the debugging
9879 information nor the associated type structure in GDB are able to
9880 express such dynamic types. So what the debugger does is to create
9881 "fixed" versions of the type that applies to the specific object.
9882 We also informally refer to this operation as "fixing" an object,
9883 which means creating its associated fixed type.
9884
9885 Example: when printing the value of variable "Yes" above, its fixed
9886 type would look like this:
9887
9888 type Rec is record
9889 Empty : Boolean;
9890 Value : Integer;
9891 end record;
9892
9893 On the other hand, if we printed the value of "No", its fixed type
9894 would become:
9895
9896 type Rec is record
9897 Empty : Boolean;
9898 end record;
9899
9900 Things become a little more complicated when trying to fix an entity
9901 with a dynamic type that directly contains another dynamic type,
9902 such as an array of variant records, for instance. There are
9903 two possible cases: Arrays, and records.
9904
9905 3. ``Fixing'' Arrays:
9906 ---------------------
9907
9908 The type structure in GDB describes an array in terms of its bounds,
9909 and the type of its elements. By design, all elements in the array
9910 have the same type and we cannot represent an array of variant elements
9911 using the current type structure in GDB. When fixing an array,
9912 we cannot fix the array element, as we would potentially need one
9913 fixed type per element of the array. As a result, the best we can do
9914 when fixing an array is to produce an array whose bounds and size
9915 are correct (allowing us to read it from memory), but without having
9916 touched its element type. Fixing each element will be done later,
9917 when (if) necessary.
9918
9919 Arrays are a little simpler to handle than records, because the same
9920 amount of memory is allocated for each element of the array, even if
9921 the amount of space actually used by each element differs from element
9922 to element. Consider for instance the following array of type Rec:
9923
9924 type Rec_Array is array (1 .. 2) of Rec;
9925
9926 The actual amount of memory occupied by each element might be different
9927 from element to element, depending on the value of their discriminant.
9928 But the amount of space reserved for each element in the array remains
9929 fixed regardless. So we simply need to compute that size using
9930 the debugging information available, from which we can then determine
9931 the array size (we multiply the number of elements of the array by
9932 the size of each element).
9933
9934 The simplest case is when we have an array of a constrained element
9935 type. For instance, consider the following type declarations:
9936
9937 type Bounded_String (Max_Size : Integer) is
9938 Length : Integer;
9939 Buffer : String (1 .. Max_Size);
9940 end record;
9941 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9942
9943 In this case, the compiler describes the array as an array of
9944 variable-size elements (identified by its XVS suffix) for which
9945 the size can be read in the parallel XVZ variable.
9946
9947 In the case of an array of an unconstrained element type, the compiler
9948 wraps the array element inside a private PAD type. This type should not
9949 be shown to the user, and must be "unwrap"'ed before printing. Note
9950 that we also use the adjective "aligner" in our code to designate
9951 these wrapper types.
9952
9953 In some cases, the size allocated for each element is statically
9954 known. In that case, the PAD type already has the correct size,
9955 and the array element should remain unfixed.
9956
9957 But there are cases when this size is not statically known.
9958 For instance, assuming that "Five" is an integer variable:
9959
9960 type Dynamic is array (1 .. Five) of Integer;
9961 type Wrapper (Has_Length : Boolean := False) is record
9962 Data : Dynamic;
9963 case Has_Length is
9964 when True => Length : Integer;
9965 when False => null;
9966 end case;
9967 end record;
9968 type Wrapper_Array is array (1 .. 2) of Wrapper;
9969
9970 Hello : Wrapper_Array := (others => (Has_Length => True,
9971 Data => (others => 17),
9972 Length => 1));
9973
9974
9975 The debugging info would describe variable Hello as being an
9976 array of a PAD type. The size of that PAD type is not statically
9977 known, but can be determined using a parallel XVZ variable.
9978 In that case, a copy of the PAD type with the correct size should
9979 be used for the fixed array.
9980
9981 3. ``Fixing'' record type objects:
9982 ----------------------------------
9983
9984 Things are slightly different from arrays in the case of dynamic
9985 record types. In this case, in order to compute the associated
9986 fixed type, we need to determine the size and offset of each of
9987 its components. This, in turn, requires us to compute the fixed
9988 type of each of these components.
9989
9990 Consider for instance the example:
9991
9992 type Bounded_String (Max_Size : Natural) is record
9993 Str : String (1 .. Max_Size);
9994 Length : Natural;
9995 end record;
9996 My_String : Bounded_String (Max_Size => 10);
9997
9998 In that case, the position of field "Length" depends on the size
9999 of field Str, which itself depends on the value of the Max_Size
10000 discriminant. In order to fix the type of variable My_String,
10001 we need to fix the type of field Str. Therefore, fixing a variant
10002 record requires us to fix each of its components.
10003
10004 However, if a component does not have a dynamic size, the component
10005 should not be fixed. In particular, fields that use a PAD type
10006 should not fixed. Here is an example where this might happen
10007 (assuming type Rec above):
10008
10009 type Container (Big : Boolean) is record
10010 First : Rec;
10011 After : Integer;
10012 case Big is
10013 when True => Another : Integer;
10014 when False => null;
10015 end case;
10016 end record;
10017 My_Container : Container := (Big => False,
10018 First => (Empty => True),
10019 After => 42);
10020
10021 In that example, the compiler creates a PAD type for component First,
10022 whose size is constant, and then positions the component After just
10023 right after it. The offset of component After is therefore constant
10024 in this case.
10025
10026 The debugger computes the position of each field based on an algorithm
10027 that uses, among other things, the actual position and size of the field
10028 preceding it. Let's now imagine that the user is trying to print
10029 the value of My_Container. If the type fixing was recursive, we would
10030 end up computing the offset of field After based on the size of the
10031 fixed version of field First. And since in our example First has
10032 only one actual field, the size of the fixed type is actually smaller
10033 than the amount of space allocated to that field, and thus we would
10034 compute the wrong offset of field After.
10035
10036 To make things more complicated, we need to watch out for dynamic
10037 components of variant records (identified by the ___XVL suffix in
10038 the component name). Even if the target type is a PAD type, the size
10039 of that type might not be statically known. So the PAD type needs
10040 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10041 we might end up with the wrong size for our component. This can be
10042 observed with the following type declarations:
10043
10044 type Octal is new Integer range 0 .. 7;
10045 type Octal_Array is array (Positive range <>) of Octal;
10046 pragma Pack (Octal_Array);
10047
10048 type Octal_Buffer (Size : Positive) is record
10049 Buffer : Octal_Array (1 .. Size);
10050 Length : Integer;
10051 end record;
10052
10053 In that case, Buffer is a PAD type whose size is unset and needs
10054 to be computed by fixing the unwrapped type.
10055
10056 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10057 ----------------------------------------------------------
10058
10059 Lastly, when should the sub-elements of an entity that remained unfixed
10060 thus far, be actually fixed?
10061
10062 The answer is: Only when referencing that element. For instance
10063 when selecting one component of a record, this specific component
10064 should be fixed at that point in time. Or when printing the value
10065 of a record, each component should be fixed before its value gets
10066 printed. Similarly for arrays, the element of the array should be
10067 fixed when printing each element of the array, or when extracting
10068 one element out of that array. On the other hand, fixing should
10069 not be performed on the elements when taking a slice of an array!
10070
10071 Note that one of the side effects of miscomputing the offset and
10072 size of each field is that we end up also miscomputing the size
10073 of the containing type. This can have adverse results when computing
10074 the value of an entity. GDB fetches the value of an entity based
10075 on the size of its type, and thus a wrong size causes GDB to fetch
10076 the wrong amount of memory. In the case where the computed size is
10077 too small, GDB fetches too little data to print the value of our
10078 entity. Results in this case are unpredictable, as we usually read
10079 past the buffer containing the data =:-o. */
10080
10081 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10082 for that subexpression cast to TO_TYPE. Advance *POS over the
10083 subexpression. */
10084
10085 static value *
10086 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10087 enum noside noside, struct type *to_type)
10088 {
10089 int pc = *pos;
10090
10091 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10092 || exp->elts[pc].opcode == OP_VAR_VALUE)
10093 {
10094 (*pos) += 4;
10095
10096 value *val;
10097 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10098 {
10099 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10100 return value_zero (to_type, not_lval);
10101
10102 val = evaluate_var_msym_value (noside,
10103 exp->elts[pc + 1].objfile,
10104 exp->elts[pc + 2].msymbol);
10105 }
10106 else
10107 val = evaluate_var_value (noside,
10108 exp->elts[pc + 1].block,
10109 exp->elts[pc + 2].symbol);
10110
10111 if (noside == EVAL_SKIP)
10112 return eval_skip_value (exp);
10113
10114 val = ada_value_cast (to_type, val);
10115
10116 /* Follow the Ada language semantics that do not allow taking
10117 an address of the result of a cast (view conversion in Ada). */
10118 if (VALUE_LVAL (val) == lval_memory)
10119 {
10120 if (value_lazy (val))
10121 value_fetch_lazy (val);
10122 VALUE_LVAL (val) = not_lval;
10123 }
10124 return val;
10125 }
10126
10127 value *val = evaluate_subexp (to_type, exp, pos, noside);
10128 if (noside == EVAL_SKIP)
10129 return eval_skip_value (exp);
10130 return ada_value_cast (to_type, val);
10131 }
10132
10133 /* Implement the evaluate_exp routine in the exp_descriptor structure
10134 for the Ada language. */
10135
10136 static struct value *
10137 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10138 int *pos, enum noside noside)
10139 {
10140 enum exp_opcode op;
10141 int tem;
10142 int pc;
10143 int preeval_pos;
10144 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10145 struct type *type;
10146 int nargs, oplen;
10147 struct value **argvec;
10148
10149 pc = *pos;
10150 *pos += 1;
10151 op = exp->elts[pc].opcode;
10152
10153 switch (op)
10154 {
10155 default:
10156 *pos -= 1;
10157 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10158
10159 if (noside == EVAL_NORMAL)
10160 arg1 = unwrap_value (arg1);
10161
10162 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10163 then we need to perform the conversion manually, because
10164 evaluate_subexp_standard doesn't do it. This conversion is
10165 necessary in Ada because the different kinds of float/fixed
10166 types in Ada have different representations.
10167
10168 Similarly, we need to perform the conversion from OP_LONG
10169 ourselves. */
10170 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10171 arg1 = ada_value_cast (expect_type, arg1);
10172
10173 return arg1;
10174
10175 case OP_STRING:
10176 {
10177 struct value *result;
10178
10179 *pos -= 1;
10180 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10181 /* The result type will have code OP_STRING, bashed there from
10182 OP_ARRAY. Bash it back. */
10183 if (value_type (result)->code () == TYPE_CODE_STRING)
10184 value_type (result)->set_code (TYPE_CODE_ARRAY);
10185 return result;
10186 }
10187
10188 case UNOP_CAST:
10189 (*pos) += 2;
10190 type = exp->elts[pc + 1].type;
10191 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10192
10193 case UNOP_QUAL:
10194 (*pos) += 2;
10195 type = exp->elts[pc + 1].type;
10196 return ada_evaluate_subexp (type, exp, pos, noside);
10197
10198 case BINOP_ASSIGN:
10199 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10200 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10201 {
10202 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10203 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10204 return arg1;
10205 return ada_value_assign (arg1, arg1);
10206 }
10207 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10208 except if the lhs of our assignment is a convenience variable.
10209 In the case of assigning to a convenience variable, the lhs
10210 should be exactly the result of the evaluation of the rhs. */
10211 type = value_type (arg1);
10212 if (VALUE_LVAL (arg1) == lval_internalvar)
10213 type = NULL;
10214 arg2 = evaluate_subexp (type, exp, pos, noside);
10215 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10216 return arg1;
10217 if (VALUE_LVAL (arg1) == lval_internalvar)
10218 {
10219 /* Nothing. */
10220 }
10221 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10222 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10223 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10224 error
10225 (_("Fixed-point values must be assigned to fixed-point variables"));
10226 else
10227 arg2 = coerce_for_assign (value_type (arg1), arg2);
10228 return ada_value_assign (arg1, arg2);
10229
10230 case BINOP_ADD:
10231 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10232 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10233 if (noside == EVAL_SKIP)
10234 goto nosideret;
10235 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10236 return (value_from_longest
10237 (value_type (arg1),
10238 value_as_long (arg1) + value_as_long (arg2)));
10239 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10240 return (value_from_longest
10241 (value_type (arg2),
10242 value_as_long (arg1) + value_as_long (arg2)));
10243 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10244 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10245 && value_type (arg1) != value_type (arg2))
10246 error (_("Operands of fixed-point addition must have the same type"));
10247 /* Do the addition, and cast the result to the type of the first
10248 argument. We cannot cast the result to a reference type, so if
10249 ARG1 is a reference type, find its underlying type. */
10250 type = value_type (arg1);
10251 while (type->code () == TYPE_CODE_REF)
10252 type = TYPE_TARGET_TYPE (type);
10253 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10254 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10255
10256 case BINOP_SUB:
10257 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10258 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10259 if (noside == EVAL_SKIP)
10260 goto nosideret;
10261 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10262 return (value_from_longest
10263 (value_type (arg1),
10264 value_as_long (arg1) - value_as_long (arg2)));
10265 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10266 return (value_from_longest
10267 (value_type (arg2),
10268 value_as_long (arg1) - value_as_long (arg2)));
10269 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10270 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10271 && value_type (arg1) != value_type (arg2))
10272 error (_("Operands of fixed-point subtraction "
10273 "must have the same type"));
10274 /* Do the substraction, and cast the result to the type of the first
10275 argument. We cannot cast the result to a reference type, so if
10276 ARG1 is a reference type, find its underlying type. */
10277 type = value_type (arg1);
10278 while (type->code () == TYPE_CODE_REF)
10279 type = TYPE_TARGET_TYPE (type);
10280 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10281 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10282
10283 case BINOP_MUL:
10284 case BINOP_DIV:
10285 case BINOP_REM:
10286 case BINOP_MOD:
10287 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10288 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10289 if (noside == EVAL_SKIP)
10290 goto nosideret;
10291 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10292 {
10293 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10294 return value_zero (value_type (arg1), not_lval);
10295 }
10296 else
10297 {
10298 type = builtin_type (exp->gdbarch)->builtin_double;
10299 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10300 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10301 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10302 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10303 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10304 return ada_value_binop (arg1, arg2, op);
10305 }
10306
10307 case BINOP_EQUAL:
10308 case BINOP_NOTEQUAL:
10309 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10310 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10311 if (noside == EVAL_SKIP)
10312 goto nosideret;
10313 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10314 tem = 0;
10315 else
10316 {
10317 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10318 tem = ada_value_equal (arg1, arg2);
10319 }
10320 if (op == BINOP_NOTEQUAL)
10321 tem = !tem;
10322 type = language_bool_type (exp->language_defn, exp->gdbarch);
10323 return value_from_longest (type, (LONGEST) tem);
10324
10325 case UNOP_NEG:
10326 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10327 if (noside == EVAL_SKIP)
10328 goto nosideret;
10329 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10330 return value_cast (value_type (arg1), value_neg (arg1));
10331 else
10332 {
10333 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10334 return value_neg (arg1);
10335 }
10336
10337 case BINOP_LOGICAL_AND:
10338 case BINOP_LOGICAL_OR:
10339 case UNOP_LOGICAL_NOT:
10340 {
10341 struct value *val;
10342
10343 *pos -= 1;
10344 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10345 type = language_bool_type (exp->language_defn, exp->gdbarch);
10346 return value_cast (type, val);
10347 }
10348
10349 case BINOP_BITWISE_AND:
10350 case BINOP_BITWISE_IOR:
10351 case BINOP_BITWISE_XOR:
10352 {
10353 struct value *val;
10354
10355 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10356 *pos = pc;
10357 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10358
10359 return value_cast (value_type (arg1), val);
10360 }
10361
10362 case OP_VAR_VALUE:
10363 *pos -= 1;
10364
10365 if (noside == EVAL_SKIP)
10366 {
10367 *pos += 4;
10368 goto nosideret;
10369 }
10370
10371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10372 /* Only encountered when an unresolved symbol occurs in a
10373 context other than a function call, in which case, it is
10374 invalid. */
10375 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10376 exp->elts[pc + 2].symbol->print_name ());
10377
10378 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 {
10380 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10381 /* Check to see if this is a tagged type. We also need to handle
10382 the case where the type is a reference to a tagged type, but
10383 we have to be careful to exclude pointers to tagged types.
10384 The latter should be shown as usual (as a pointer), whereas
10385 a reference should mostly be transparent to the user. */
10386 if (ada_is_tagged_type (type, 0)
10387 || (type->code () == TYPE_CODE_REF
10388 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10389 {
10390 /* Tagged types are a little special in the fact that the real
10391 type is dynamic and can only be determined by inspecting the
10392 object's tag. This means that we need to get the object's
10393 value first (EVAL_NORMAL) and then extract the actual object
10394 type from its tag.
10395
10396 Note that we cannot skip the final step where we extract
10397 the object type from its tag, because the EVAL_NORMAL phase
10398 results in dynamic components being resolved into fixed ones.
10399 This can cause problems when trying to print the type
10400 description of tagged types whose parent has a dynamic size:
10401 We use the type name of the "_parent" component in order
10402 to print the name of the ancestor type in the type description.
10403 If that component had a dynamic size, the resolution into
10404 a fixed type would result in the loss of that type name,
10405 thus preventing us from printing the name of the ancestor
10406 type in the type description. */
10407 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10408
10409 if (type->code () != TYPE_CODE_REF)
10410 {
10411 struct type *actual_type;
10412
10413 actual_type = type_from_tag (ada_value_tag (arg1));
10414 if (actual_type == NULL)
10415 /* If, for some reason, we were unable to determine
10416 the actual type from the tag, then use the static
10417 approximation that we just computed as a fallback.
10418 This can happen if the debugging information is
10419 incomplete, for instance. */
10420 actual_type = type;
10421 return value_zero (actual_type, not_lval);
10422 }
10423 else
10424 {
10425 /* In the case of a ref, ada_coerce_ref takes care
10426 of determining the actual type. But the evaluation
10427 should return a ref as it should be valid to ask
10428 for its address; so rebuild a ref after coerce. */
10429 arg1 = ada_coerce_ref (arg1);
10430 return value_ref (arg1, TYPE_CODE_REF);
10431 }
10432 }
10433
10434 /* Records and unions for which GNAT encodings have been
10435 generated need to be statically fixed as well.
10436 Otherwise, non-static fixing produces a type where
10437 all dynamic properties are removed, which prevents "ptype"
10438 from being able to completely describe the type.
10439 For instance, a case statement in a variant record would be
10440 replaced by the relevant components based on the actual
10441 value of the discriminants. */
10442 if ((type->code () == TYPE_CODE_STRUCT
10443 && dynamic_template_type (type) != NULL)
10444 || (type->code () == TYPE_CODE_UNION
10445 && ada_find_parallel_type (type, "___XVU") != NULL))
10446 {
10447 *pos += 4;
10448 return value_zero (to_static_fixed_type (type), not_lval);
10449 }
10450 }
10451
10452 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10453 return ada_to_fixed_value (arg1);
10454
10455 case OP_FUNCALL:
10456 (*pos) += 2;
10457
10458 /* Allocate arg vector, including space for the function to be
10459 called in argvec[0] and a terminating NULL. */
10460 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10461 argvec = XALLOCAVEC (struct value *, nargs + 2);
10462
10463 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10464 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10465 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10466 exp->elts[pc + 5].symbol->print_name ());
10467 else
10468 {
10469 for (tem = 0; tem <= nargs; tem += 1)
10470 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10471 argvec[tem] = 0;
10472
10473 if (noside == EVAL_SKIP)
10474 goto nosideret;
10475 }
10476
10477 if (ada_is_constrained_packed_array_type
10478 (desc_base_type (value_type (argvec[0]))))
10479 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10480 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10481 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10482 /* This is a packed array that has already been fixed, and
10483 therefore already coerced to a simple array. Nothing further
10484 to do. */
10485 ;
10486 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10487 {
10488 /* Make sure we dereference references so that all the code below
10489 feels like it's really handling the referenced value. Wrapping
10490 types (for alignment) may be there, so make sure we strip them as
10491 well. */
10492 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10493 }
10494 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10495 && VALUE_LVAL (argvec[0]) == lval_memory)
10496 argvec[0] = value_addr (argvec[0]);
10497
10498 type = ada_check_typedef (value_type (argvec[0]));
10499
10500 /* Ada allows us to implicitly dereference arrays when subscripting
10501 them. So, if this is an array typedef (encoding use for array
10502 access types encoded as fat pointers), strip it now. */
10503 if (type->code () == TYPE_CODE_TYPEDEF)
10504 type = ada_typedef_target_type (type);
10505
10506 if (type->code () == TYPE_CODE_PTR)
10507 {
10508 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10509 {
10510 case TYPE_CODE_FUNC:
10511 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10512 break;
10513 case TYPE_CODE_ARRAY:
10514 break;
10515 case TYPE_CODE_STRUCT:
10516 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10517 argvec[0] = ada_value_ind (argvec[0]);
10518 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10519 break;
10520 default:
10521 error (_("cannot subscript or call something of type `%s'"),
10522 ada_type_name (value_type (argvec[0])));
10523 break;
10524 }
10525 }
10526
10527 switch (type->code ())
10528 {
10529 case TYPE_CODE_FUNC:
10530 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10531 {
10532 if (TYPE_TARGET_TYPE (type) == NULL)
10533 error_call_unknown_return_type (NULL);
10534 return allocate_value (TYPE_TARGET_TYPE (type));
10535 }
10536 return call_function_by_hand (argvec[0], NULL,
10537 gdb::make_array_view (argvec + 1,
10538 nargs));
10539 case TYPE_CODE_INTERNAL_FUNCTION:
10540 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10541 /* We don't know anything about what the internal
10542 function might return, but we have to return
10543 something. */
10544 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10545 not_lval);
10546 else
10547 return call_internal_function (exp->gdbarch, exp->language_defn,
10548 argvec[0], nargs, argvec + 1);
10549
10550 case TYPE_CODE_STRUCT:
10551 {
10552 int arity;
10553
10554 arity = ada_array_arity (type);
10555 type = ada_array_element_type (type, nargs);
10556 if (type == NULL)
10557 error (_("cannot subscript or call a record"));
10558 if (arity != nargs)
10559 error (_("wrong number of subscripts; expecting %d"), arity);
10560 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10561 return value_zero (ada_aligned_type (type), lval_memory);
10562 return
10563 unwrap_value (ada_value_subscript
10564 (argvec[0], nargs, argvec + 1));
10565 }
10566 case TYPE_CODE_ARRAY:
10567 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10568 {
10569 type = ada_array_element_type (type, nargs);
10570 if (type == NULL)
10571 error (_("element type of array unknown"));
10572 else
10573 return value_zero (ada_aligned_type (type), lval_memory);
10574 }
10575 return
10576 unwrap_value (ada_value_subscript
10577 (ada_coerce_to_simple_array (argvec[0]),
10578 nargs, argvec + 1));
10579 case TYPE_CODE_PTR: /* Pointer to array */
10580 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10581 {
10582 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10583 type = ada_array_element_type (type, nargs);
10584 if (type == NULL)
10585 error (_("element type of array unknown"));
10586 else
10587 return value_zero (ada_aligned_type (type), lval_memory);
10588 }
10589 return
10590 unwrap_value (ada_value_ptr_subscript (argvec[0],
10591 nargs, argvec + 1));
10592
10593 default:
10594 error (_("Attempt to index or call something other than an "
10595 "array or function"));
10596 }
10597
10598 case TERNOP_SLICE:
10599 {
10600 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10601 struct value *low_bound_val
10602 = evaluate_subexp (nullptr, exp, pos, noside);
10603 struct value *high_bound_val
10604 = evaluate_subexp (nullptr, exp, pos, noside);
10605 LONGEST low_bound;
10606 LONGEST high_bound;
10607
10608 low_bound_val = coerce_ref (low_bound_val);
10609 high_bound_val = coerce_ref (high_bound_val);
10610 low_bound = value_as_long (low_bound_val);
10611 high_bound = value_as_long (high_bound_val);
10612
10613 if (noside == EVAL_SKIP)
10614 goto nosideret;
10615
10616 /* If this is a reference to an aligner type, then remove all
10617 the aligners. */
10618 if (value_type (array)->code () == TYPE_CODE_REF
10619 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10620 TYPE_TARGET_TYPE (value_type (array)) =
10621 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10622
10623 if (ada_is_any_packed_array_type (value_type (array)))
10624 error (_("cannot slice a packed array"));
10625
10626 /* If this is a reference to an array or an array lvalue,
10627 convert to a pointer. */
10628 if (value_type (array)->code () == TYPE_CODE_REF
10629 || (value_type (array)->code () == TYPE_CODE_ARRAY
10630 && VALUE_LVAL (array) == lval_memory))
10631 array = value_addr (array);
10632
10633 if (noside == EVAL_AVOID_SIDE_EFFECTS
10634 && ada_is_array_descriptor_type (ada_check_typedef
10635 (value_type (array))))
10636 return empty_array (ada_type_of_array (array, 0), low_bound,
10637 high_bound);
10638
10639 array = ada_coerce_to_simple_array_ptr (array);
10640
10641 /* If we have more than one level of pointer indirection,
10642 dereference the value until we get only one level. */
10643 while (value_type (array)->code () == TYPE_CODE_PTR
10644 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10645 == TYPE_CODE_PTR))
10646 array = value_ind (array);
10647
10648 /* Make sure we really do have an array type before going further,
10649 to avoid a SEGV when trying to get the index type or the target
10650 type later down the road if the debug info generated by
10651 the compiler is incorrect or incomplete. */
10652 if (!ada_is_simple_array_type (value_type (array)))
10653 error (_("cannot take slice of non-array"));
10654
10655 if (ada_check_typedef (value_type (array))->code ()
10656 == TYPE_CODE_PTR)
10657 {
10658 struct type *type0 = ada_check_typedef (value_type (array));
10659
10660 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10661 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10662 else
10663 {
10664 struct type *arr_type0 =
10665 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10666
10667 return ada_value_slice_from_ptr (array, arr_type0,
10668 longest_to_int (low_bound),
10669 longest_to_int (high_bound));
10670 }
10671 }
10672 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10673 return array;
10674 else if (high_bound < low_bound)
10675 return empty_array (value_type (array), low_bound, high_bound);
10676 else
10677 return ada_value_slice (array, longest_to_int (low_bound),
10678 longest_to_int (high_bound));
10679 }
10680
10681 case UNOP_IN_RANGE:
10682 (*pos) += 2;
10683 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10684 type = check_typedef (exp->elts[pc + 1].type);
10685
10686 if (noside == EVAL_SKIP)
10687 goto nosideret;
10688
10689 switch (type->code ())
10690 {
10691 default:
10692 lim_warning (_("Membership test incompletely implemented; "
10693 "always returns true"));
10694 type = language_bool_type (exp->language_defn, exp->gdbarch);
10695 return value_from_longest (type, (LONGEST) 1);
10696
10697 case TYPE_CODE_RANGE:
10698 arg2 = value_from_longest (type,
10699 type->bounds ()->low.const_val ());
10700 arg3 = value_from_longest (type,
10701 type->bounds ()->high.const_val ());
10702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10704 type = language_bool_type (exp->language_defn, exp->gdbarch);
10705 return
10706 value_from_longest (type,
10707 (value_less (arg1, arg3)
10708 || value_equal (arg1, arg3))
10709 && (value_less (arg2, arg1)
10710 || value_equal (arg2, arg1)));
10711 }
10712
10713 case BINOP_IN_BOUNDS:
10714 (*pos) += 2;
10715 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10716 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10717
10718 if (noside == EVAL_SKIP)
10719 goto nosideret;
10720
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 {
10723 type = language_bool_type (exp->language_defn, exp->gdbarch);
10724 return value_zero (type, not_lval);
10725 }
10726
10727 tem = longest_to_int (exp->elts[pc + 1].longconst);
10728
10729 type = ada_index_type (value_type (arg2), tem, "range");
10730 if (!type)
10731 type = value_type (arg1);
10732
10733 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10734 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10735
10736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10737 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10738 type = language_bool_type (exp->language_defn, exp->gdbarch);
10739 return
10740 value_from_longest (type,
10741 (value_less (arg1, arg3)
10742 || value_equal (arg1, arg3))
10743 && (value_less (arg2, arg1)
10744 || value_equal (arg2, arg1)));
10745
10746 case TERNOP_IN_RANGE:
10747 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10748 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10749 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10750
10751 if (noside == EVAL_SKIP)
10752 goto nosideret;
10753
10754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10756 type = language_bool_type (exp->language_defn, exp->gdbarch);
10757 return
10758 value_from_longest (type,
10759 (value_less (arg1, arg3)
10760 || value_equal (arg1, arg3))
10761 && (value_less (arg2, arg1)
10762 || value_equal (arg2, arg1)));
10763
10764 case OP_ATR_FIRST:
10765 case OP_ATR_LAST:
10766 case OP_ATR_LENGTH:
10767 {
10768 struct type *type_arg;
10769
10770 if (exp->elts[*pos].opcode == OP_TYPE)
10771 {
10772 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10773 arg1 = NULL;
10774 type_arg = check_typedef (exp->elts[pc + 2].type);
10775 }
10776 else
10777 {
10778 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10779 type_arg = NULL;
10780 }
10781
10782 if (exp->elts[*pos].opcode != OP_LONG)
10783 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10784 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10785 *pos += 4;
10786
10787 if (noside == EVAL_SKIP)
10788 goto nosideret;
10789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10790 {
10791 if (type_arg == NULL)
10792 type_arg = value_type (arg1);
10793
10794 if (ada_is_constrained_packed_array_type (type_arg))
10795 type_arg = decode_constrained_packed_array_type (type_arg);
10796
10797 if (!discrete_type_p (type_arg))
10798 {
10799 switch (op)
10800 {
10801 default: /* Should never happen. */
10802 error (_("unexpected attribute encountered"));
10803 case OP_ATR_FIRST:
10804 case OP_ATR_LAST:
10805 type_arg = ada_index_type (type_arg, tem,
10806 ada_attribute_name (op));
10807 break;
10808 case OP_ATR_LENGTH:
10809 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10810 break;
10811 }
10812 }
10813
10814 return value_zero (type_arg, not_lval);
10815 }
10816 else if (type_arg == NULL)
10817 {
10818 arg1 = ada_coerce_ref (arg1);
10819
10820 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10821 arg1 = ada_coerce_to_simple_array (arg1);
10822
10823 if (op == OP_ATR_LENGTH)
10824 type = builtin_type (exp->gdbarch)->builtin_int;
10825 else
10826 {
10827 type = ada_index_type (value_type (arg1), tem,
10828 ada_attribute_name (op));
10829 if (type == NULL)
10830 type = builtin_type (exp->gdbarch)->builtin_int;
10831 }
10832
10833 switch (op)
10834 {
10835 default: /* Should never happen. */
10836 error (_("unexpected attribute encountered"));
10837 case OP_ATR_FIRST:
10838 return value_from_longest
10839 (type, ada_array_bound (arg1, tem, 0));
10840 case OP_ATR_LAST:
10841 return value_from_longest
10842 (type, ada_array_bound (arg1, tem, 1));
10843 case OP_ATR_LENGTH:
10844 return value_from_longest
10845 (type, ada_array_length (arg1, tem));
10846 }
10847 }
10848 else if (discrete_type_p (type_arg))
10849 {
10850 struct type *range_type;
10851 const char *name = ada_type_name (type_arg);
10852
10853 range_type = NULL;
10854 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10855 range_type = to_fixed_range_type (type_arg, NULL);
10856 if (range_type == NULL)
10857 range_type = type_arg;
10858 switch (op)
10859 {
10860 default:
10861 error (_("unexpected attribute encountered"));
10862 case OP_ATR_FIRST:
10863 return value_from_longest
10864 (range_type, ada_discrete_type_low_bound (range_type));
10865 case OP_ATR_LAST:
10866 return value_from_longest
10867 (range_type, ada_discrete_type_high_bound (range_type));
10868 case OP_ATR_LENGTH:
10869 error (_("the 'length attribute applies only to array types"));
10870 }
10871 }
10872 else if (type_arg->code () == TYPE_CODE_FLT)
10873 error (_("unimplemented type attribute"));
10874 else
10875 {
10876 LONGEST low, high;
10877
10878 if (ada_is_constrained_packed_array_type (type_arg))
10879 type_arg = decode_constrained_packed_array_type (type_arg);
10880
10881 if (op == OP_ATR_LENGTH)
10882 type = builtin_type (exp->gdbarch)->builtin_int;
10883 else
10884 {
10885 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10886 if (type == NULL)
10887 type = builtin_type (exp->gdbarch)->builtin_int;
10888 }
10889
10890 switch (op)
10891 {
10892 default:
10893 error (_("unexpected attribute encountered"));
10894 case OP_ATR_FIRST:
10895 low = ada_array_bound_from_type (type_arg, tem, 0);
10896 return value_from_longest (type, low);
10897 case OP_ATR_LAST:
10898 high = ada_array_bound_from_type (type_arg, tem, 1);
10899 return value_from_longest (type, high);
10900 case OP_ATR_LENGTH:
10901 low = ada_array_bound_from_type (type_arg, tem, 0);
10902 high = ada_array_bound_from_type (type_arg, tem, 1);
10903 return value_from_longest (type, high - low + 1);
10904 }
10905 }
10906 }
10907
10908 case OP_ATR_TAG:
10909 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10910 if (noside == EVAL_SKIP)
10911 goto nosideret;
10912
10913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10914 return value_zero (ada_tag_type (arg1), not_lval);
10915
10916 return ada_value_tag (arg1);
10917
10918 case OP_ATR_MIN:
10919 case OP_ATR_MAX:
10920 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10921 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10922 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 return value_zero (value_type (arg1), not_lval);
10927 else
10928 {
10929 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10930 return value_binop (arg1, arg2,
10931 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10932 }
10933
10934 case OP_ATR_MODULUS:
10935 {
10936 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10937
10938 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10939 if (noside == EVAL_SKIP)
10940 goto nosideret;
10941
10942 if (!ada_is_modular_type (type_arg))
10943 error (_("'modulus must be applied to modular type"));
10944
10945 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10946 ada_modulus (type_arg));
10947 }
10948
10949
10950 case OP_ATR_POS:
10951 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10952 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955 type = builtin_type (exp->gdbarch)->builtin_int;
10956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10957 return value_zero (type, not_lval);
10958 else
10959 return value_pos_atr (type, arg1);
10960
10961 case OP_ATR_SIZE:
10962 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10963 type = value_type (arg1);
10964
10965 /* If the argument is a reference, then dereference its type, since
10966 the user is really asking for the size of the actual object,
10967 not the size of the pointer. */
10968 if (type->code () == TYPE_CODE_REF)
10969 type = TYPE_TARGET_TYPE (type);
10970
10971 if (noside == EVAL_SKIP)
10972 goto nosideret;
10973 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10975 else
10976 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10977 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10978
10979 case OP_ATR_VAL:
10980 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10981 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10982 type = exp->elts[pc + 2].type;
10983 if (noside == EVAL_SKIP)
10984 goto nosideret;
10985 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10986 return value_zero (type, not_lval);
10987 else
10988 return value_val_atr (type, arg1);
10989
10990 case BINOP_EXP:
10991 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10992 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10993 if (noside == EVAL_SKIP)
10994 goto nosideret;
10995 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10996 return value_zero (value_type (arg1), not_lval);
10997 else
10998 {
10999 /* For integer exponentiation operations,
11000 only promote the first argument. */
11001 if (is_integral_type (value_type (arg2)))
11002 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11003 else
11004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11005
11006 return value_binop (arg1, arg2, op);
11007 }
11008
11009 case UNOP_PLUS:
11010 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11011 if (noside == EVAL_SKIP)
11012 goto nosideret;
11013 else
11014 return arg1;
11015
11016 case UNOP_ABS:
11017 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11021 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11022 return value_neg (arg1);
11023 else
11024 return arg1;
11025
11026 case UNOP_IND:
11027 preeval_pos = *pos;
11028 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11029 if (noside == EVAL_SKIP)
11030 goto nosideret;
11031 type = ada_check_typedef (value_type (arg1));
11032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11033 {
11034 if (ada_is_array_descriptor_type (type))
11035 /* GDB allows dereferencing GNAT array descriptors. */
11036 {
11037 struct type *arrType = ada_type_of_array (arg1, 0);
11038
11039 if (arrType == NULL)
11040 error (_("Attempt to dereference null array pointer."));
11041 return value_at_lazy (arrType, 0);
11042 }
11043 else if (type->code () == TYPE_CODE_PTR
11044 || type->code () == TYPE_CODE_REF
11045 /* In C you can dereference an array to get the 1st elt. */
11046 || type->code () == TYPE_CODE_ARRAY)
11047 {
11048 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11049 only be determined by inspecting the object's tag.
11050 This means that we need to evaluate completely the
11051 expression in order to get its type. */
11052
11053 if ((type->code () == TYPE_CODE_REF
11054 || type->code () == TYPE_CODE_PTR)
11055 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11056 {
11057 arg1
11058 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11059 type = value_type (ada_value_ind (arg1));
11060 }
11061 else
11062 {
11063 type = to_static_fixed_type
11064 (ada_aligned_type
11065 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11066 }
11067 ada_ensure_varsize_limit (type);
11068 return value_zero (type, lval_memory);
11069 }
11070 else if (type->code () == TYPE_CODE_INT)
11071 {
11072 /* GDB allows dereferencing an int. */
11073 if (expect_type == NULL)
11074 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11075 lval_memory);
11076 else
11077 {
11078 expect_type =
11079 to_static_fixed_type (ada_aligned_type (expect_type));
11080 return value_zero (expect_type, lval_memory);
11081 }
11082 }
11083 else
11084 error (_("Attempt to take contents of a non-pointer value."));
11085 }
11086 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11087 type = ada_check_typedef (value_type (arg1));
11088
11089 if (type->code () == TYPE_CODE_INT)
11090 /* GDB allows dereferencing an int. If we were given
11091 the expect_type, then use that as the target type.
11092 Otherwise, assume that the target type is an int. */
11093 {
11094 if (expect_type != NULL)
11095 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11096 arg1));
11097 else
11098 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11099 (CORE_ADDR) value_as_address (arg1));
11100 }
11101
11102 if (ada_is_array_descriptor_type (type))
11103 /* GDB allows dereferencing GNAT array descriptors. */
11104 return ada_coerce_to_simple_array (arg1);
11105 else
11106 return ada_value_ind (arg1);
11107
11108 case STRUCTOP_STRUCT:
11109 tem = longest_to_int (exp->elts[pc + 1].longconst);
11110 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11111 preeval_pos = *pos;
11112 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11113 if (noside == EVAL_SKIP)
11114 goto nosideret;
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 {
11117 struct type *type1 = value_type (arg1);
11118
11119 if (ada_is_tagged_type (type1, 1))
11120 {
11121 type = ada_lookup_struct_elt_type (type1,
11122 &exp->elts[pc + 2].string,
11123 1, 1);
11124
11125 /* If the field is not found, check if it exists in the
11126 extension of this object's type. This means that we
11127 need to evaluate completely the expression. */
11128
11129 if (type == NULL)
11130 {
11131 arg1
11132 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11133 arg1 = ada_value_struct_elt (arg1,
11134 &exp->elts[pc + 2].string,
11135 0);
11136 arg1 = unwrap_value (arg1);
11137 type = value_type (ada_to_fixed_value (arg1));
11138 }
11139 }
11140 else
11141 type =
11142 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11143 0);
11144
11145 return value_zero (ada_aligned_type (type), lval_memory);
11146 }
11147 else
11148 {
11149 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11150 arg1 = unwrap_value (arg1);
11151 return ada_to_fixed_value (arg1);
11152 }
11153
11154 case OP_TYPE:
11155 /* The value is not supposed to be used. This is here to make it
11156 easier to accommodate expressions that contain types. */
11157 (*pos) += 2;
11158 if (noside == EVAL_SKIP)
11159 goto nosideret;
11160 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11161 return allocate_value (exp->elts[pc + 1].type);
11162 else
11163 error (_("Attempt to use a type name as an expression"));
11164
11165 case OP_AGGREGATE:
11166 case OP_CHOICES:
11167 case OP_OTHERS:
11168 case OP_DISCRETE_RANGE:
11169 case OP_POSITIONAL:
11170 case OP_NAME:
11171 if (noside == EVAL_NORMAL)
11172 switch (op)
11173 {
11174 case OP_NAME:
11175 error (_("Undefined name, ambiguous name, or renaming used in "
11176 "component association: %s."), &exp->elts[pc+2].string);
11177 case OP_AGGREGATE:
11178 error (_("Aggregates only allowed on the right of an assignment"));
11179 default:
11180 internal_error (__FILE__, __LINE__,
11181 _("aggregate apparently mangled"));
11182 }
11183
11184 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11185 *pos += oplen - 1;
11186 for (tem = 0; tem < nargs; tem += 1)
11187 ada_evaluate_subexp (NULL, exp, pos, noside);
11188 goto nosideret;
11189 }
11190
11191 nosideret:
11192 return eval_skip_value (exp);
11193 }
11194 \f
11195
11196 /* Fixed point */
11197
11198 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11199 type name that encodes the 'small and 'delta information.
11200 Otherwise, return NULL. */
11201
11202 static const char *
11203 gnat_encoded_fixed_point_type_info (struct type *type)
11204 {
11205 const char *name = ada_type_name (type);
11206 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11207
11208 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11209 {
11210 const char *tail = strstr (name, "___XF_");
11211
11212 if (tail == NULL)
11213 return NULL;
11214 else
11215 return tail + 5;
11216 }
11217 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11218 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11219 else
11220 return NULL;
11221 }
11222
11223 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11224
11225 int
11226 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11227 {
11228 return gnat_encoded_fixed_point_type_info (type) != NULL;
11229 }
11230
11231 /* Return non-zero iff TYPE represents a System.Address type. */
11232
11233 int
11234 ada_is_system_address_type (struct type *type)
11235 {
11236 return (type->name () && strcmp (type->name (), "system__address") == 0);
11237 }
11238
11239 /* Assuming that TYPE is the representation of an Ada fixed-point
11240 type, return the target floating-point type to be used to represent
11241 of this type during internal computation. */
11242
11243 static struct type *
11244 ada_scaling_type (struct type *type)
11245 {
11246 return builtin_type (get_type_arch (type))->builtin_long_double;
11247 }
11248
11249 /* Assuming that TYPE is the representation of an Ada fixed-point
11250 type, return its delta, or NULL if the type is malformed and the
11251 delta cannot be determined. */
11252
11253 struct value *
11254 gnat_encoded_fixed_point_delta (struct type *type)
11255 {
11256 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11257 struct type *scale_type = ada_scaling_type (type);
11258
11259 long long num, den;
11260
11261 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11262 return nullptr;
11263 else
11264 return value_binop (value_from_longest (scale_type, num),
11265 value_from_longest (scale_type, den), BINOP_DIV);
11266 }
11267
11268 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11269 the scaling factor ('SMALL value) associated with the type. */
11270
11271 struct value *
11272 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11273 {
11274 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11275 struct type *scale_type = ada_scaling_type (type);
11276
11277 long long num0, den0, num1, den1;
11278 int n;
11279
11280 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11281 &num0, &den0, &num1, &den1);
11282
11283 if (n < 2)
11284 return value_from_longest (scale_type, 1);
11285 else if (n == 4)
11286 return value_binop (value_from_longest (scale_type, num1),
11287 value_from_longest (scale_type, den1), BINOP_DIV);
11288 else
11289 return value_binop (value_from_longest (scale_type, num0),
11290 value_from_longest (scale_type, den0), BINOP_DIV);
11291 }
11292
11293 \f
11294
11295 /* Range types */
11296
11297 /* Scan STR beginning at position K for a discriminant name, and
11298 return the value of that discriminant field of DVAL in *PX. If
11299 PNEW_K is not null, put the position of the character beyond the
11300 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11301 not alter *PX and *PNEW_K if unsuccessful. */
11302
11303 static int
11304 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11305 int *pnew_k)
11306 {
11307 static char *bound_buffer = NULL;
11308 static size_t bound_buffer_len = 0;
11309 const char *pstart, *pend, *bound;
11310 struct value *bound_val;
11311
11312 if (dval == NULL || str == NULL || str[k] == '\0')
11313 return 0;
11314
11315 pstart = str + k;
11316 pend = strstr (pstart, "__");
11317 if (pend == NULL)
11318 {
11319 bound = pstart;
11320 k += strlen (bound);
11321 }
11322 else
11323 {
11324 int len = pend - pstart;
11325
11326 /* Strip __ and beyond. */
11327 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11328 strncpy (bound_buffer, pstart, len);
11329 bound_buffer[len] = '\0';
11330
11331 bound = bound_buffer;
11332 k = pend - str;
11333 }
11334
11335 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11336 if (bound_val == NULL)
11337 return 0;
11338
11339 *px = value_as_long (bound_val);
11340 if (pnew_k != NULL)
11341 *pnew_k = k;
11342 return 1;
11343 }
11344
11345 /* Value of variable named NAME in the current environment. If
11346 no such variable found, then if ERR_MSG is null, returns 0, and
11347 otherwise causes an error with message ERR_MSG. */
11348
11349 static struct value *
11350 get_var_value (const char *name, const char *err_msg)
11351 {
11352 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11353
11354 std::vector<struct block_symbol> syms;
11355 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11356 get_selected_block (0),
11357 VAR_DOMAIN, &syms, 1);
11358
11359 if (nsyms != 1)
11360 {
11361 if (err_msg == NULL)
11362 return 0;
11363 else
11364 error (("%s"), err_msg);
11365 }
11366
11367 return value_of_variable (syms[0].symbol, syms[0].block);
11368 }
11369
11370 /* Value of integer variable named NAME in the current environment.
11371 If no such variable is found, returns false. Otherwise, sets VALUE
11372 to the variable's value and returns true. */
11373
11374 bool
11375 get_int_var_value (const char *name, LONGEST &value)
11376 {
11377 struct value *var_val = get_var_value (name, 0);
11378
11379 if (var_val == 0)
11380 return false;
11381
11382 value = value_as_long (var_val);
11383 return true;
11384 }
11385
11386
11387 /* Return a range type whose base type is that of the range type named
11388 NAME in the current environment, and whose bounds are calculated
11389 from NAME according to the GNAT range encoding conventions.
11390 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11391 corresponding range type from debug information; fall back to using it
11392 if symbol lookup fails. If a new type must be created, allocate it
11393 like ORIG_TYPE was. The bounds information, in general, is encoded
11394 in NAME, the base type given in the named range type. */
11395
11396 static struct type *
11397 to_fixed_range_type (struct type *raw_type, struct value *dval)
11398 {
11399 const char *name;
11400 struct type *base_type;
11401 const char *subtype_info;
11402
11403 gdb_assert (raw_type != NULL);
11404 gdb_assert (raw_type->name () != NULL);
11405
11406 if (raw_type->code () == TYPE_CODE_RANGE)
11407 base_type = TYPE_TARGET_TYPE (raw_type);
11408 else
11409 base_type = raw_type;
11410
11411 name = raw_type->name ();
11412 subtype_info = strstr (name, "___XD");
11413 if (subtype_info == NULL)
11414 {
11415 LONGEST L = ada_discrete_type_low_bound (raw_type);
11416 LONGEST U = ada_discrete_type_high_bound (raw_type);
11417
11418 if (L < INT_MIN || U > INT_MAX)
11419 return raw_type;
11420 else
11421 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11422 L, U);
11423 }
11424 else
11425 {
11426 static char *name_buf = NULL;
11427 static size_t name_len = 0;
11428 int prefix_len = subtype_info - name;
11429 LONGEST L, U;
11430 struct type *type;
11431 const char *bounds_str;
11432 int n;
11433
11434 GROW_VECT (name_buf, name_len, prefix_len + 5);
11435 strncpy (name_buf, name, prefix_len);
11436 name_buf[prefix_len] = '\0';
11437
11438 subtype_info += 5;
11439 bounds_str = strchr (subtype_info, '_');
11440 n = 1;
11441
11442 if (*subtype_info == 'L')
11443 {
11444 if (!ada_scan_number (bounds_str, n, &L, &n)
11445 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11446 return raw_type;
11447 if (bounds_str[n] == '_')
11448 n += 2;
11449 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11450 n += 1;
11451 subtype_info += 1;
11452 }
11453 else
11454 {
11455 strcpy (name_buf + prefix_len, "___L");
11456 if (!get_int_var_value (name_buf, L))
11457 {
11458 lim_warning (_("Unknown lower bound, using 1."));
11459 L = 1;
11460 }
11461 }
11462
11463 if (*subtype_info == 'U')
11464 {
11465 if (!ada_scan_number (bounds_str, n, &U, &n)
11466 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11467 return raw_type;
11468 }
11469 else
11470 {
11471 strcpy (name_buf + prefix_len, "___U");
11472 if (!get_int_var_value (name_buf, U))
11473 {
11474 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11475 U = L;
11476 }
11477 }
11478
11479 type = create_static_range_type (alloc_type_copy (raw_type),
11480 base_type, L, U);
11481 /* create_static_range_type alters the resulting type's length
11482 to match the size of the base_type, which is not what we want.
11483 Set it back to the original range type's length. */
11484 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11485 type->set_name (name);
11486 return type;
11487 }
11488 }
11489
11490 /* True iff NAME is the name of a range type. */
11491
11492 int
11493 ada_is_range_type_name (const char *name)
11494 {
11495 return (name != NULL && strstr (name, "___XD"));
11496 }
11497 \f
11498
11499 /* Modular types */
11500
11501 /* True iff TYPE is an Ada modular type. */
11502
11503 int
11504 ada_is_modular_type (struct type *type)
11505 {
11506 struct type *subranged_type = get_base_type (type);
11507
11508 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11509 && subranged_type->code () == TYPE_CODE_INT
11510 && subranged_type->is_unsigned ());
11511 }
11512
11513 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11514
11515 ULONGEST
11516 ada_modulus (struct type *type)
11517 {
11518 const dynamic_prop &high = type->bounds ()->high;
11519
11520 if (high.kind () == PROP_CONST)
11521 return (ULONGEST) high.const_val () + 1;
11522
11523 /* If TYPE is unresolved, the high bound might be a location list. Return
11524 0, for lack of a better value to return. */
11525 return 0;
11526 }
11527 \f
11528
11529 /* Ada exception catchpoint support:
11530 ---------------------------------
11531
11532 We support 3 kinds of exception catchpoints:
11533 . catchpoints on Ada exceptions
11534 . catchpoints on unhandled Ada exceptions
11535 . catchpoints on failed assertions
11536
11537 Exceptions raised during failed assertions, or unhandled exceptions
11538 could perfectly be caught with the general catchpoint on Ada exceptions.
11539 However, we can easily differentiate these two special cases, and having
11540 the option to distinguish these two cases from the rest can be useful
11541 to zero-in on certain situations.
11542
11543 Exception catchpoints are a specialized form of breakpoint,
11544 since they rely on inserting breakpoints inside known routines
11545 of the GNAT runtime. The implementation therefore uses a standard
11546 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11547 of breakpoint_ops.
11548
11549 Support in the runtime for exception catchpoints have been changed
11550 a few times already, and these changes affect the implementation
11551 of these catchpoints. In order to be able to support several
11552 variants of the runtime, we use a sniffer that will determine
11553 the runtime variant used by the program being debugged. */
11554
11555 /* Ada's standard exceptions.
11556
11557 The Ada 83 standard also defined Numeric_Error. But there so many
11558 situations where it was unclear from the Ada 83 Reference Manual
11559 (RM) whether Constraint_Error or Numeric_Error should be raised,
11560 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11561 Interpretation saying that anytime the RM says that Numeric_Error
11562 should be raised, the implementation may raise Constraint_Error.
11563 Ada 95 went one step further and pretty much removed Numeric_Error
11564 from the list of standard exceptions (it made it a renaming of
11565 Constraint_Error, to help preserve compatibility when compiling
11566 an Ada83 compiler). As such, we do not include Numeric_Error from
11567 this list of standard exceptions. */
11568
11569 static const char * const standard_exc[] = {
11570 "constraint_error",
11571 "program_error",
11572 "storage_error",
11573 "tasking_error"
11574 };
11575
11576 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11577
11578 /* A structure that describes how to support exception catchpoints
11579 for a given executable. */
11580
11581 struct exception_support_info
11582 {
11583 /* The name of the symbol to break on in order to insert
11584 a catchpoint on exceptions. */
11585 const char *catch_exception_sym;
11586
11587 /* The name of the symbol to break on in order to insert
11588 a catchpoint on unhandled exceptions. */
11589 const char *catch_exception_unhandled_sym;
11590
11591 /* The name of the symbol to break on in order to insert
11592 a catchpoint on failed assertions. */
11593 const char *catch_assert_sym;
11594
11595 /* The name of the symbol to break on in order to insert
11596 a catchpoint on exception handling. */
11597 const char *catch_handlers_sym;
11598
11599 /* Assuming that the inferior just triggered an unhandled exception
11600 catchpoint, this function is responsible for returning the address
11601 in inferior memory where the name of that exception is stored.
11602 Return zero if the address could not be computed. */
11603 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11604 };
11605
11606 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11607 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11608
11609 /* The following exception support info structure describes how to
11610 implement exception catchpoints with the latest version of the
11611 Ada runtime (as of 2019-08-??). */
11612
11613 static const struct exception_support_info default_exception_support_info =
11614 {
11615 "__gnat_debug_raise_exception", /* catch_exception_sym */
11616 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11617 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11618 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11619 ada_unhandled_exception_name_addr
11620 };
11621
11622 /* The following exception support info structure describes how to
11623 implement exception catchpoints with an earlier version of the
11624 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11625
11626 static const struct exception_support_info exception_support_info_v0 =
11627 {
11628 "__gnat_debug_raise_exception", /* catch_exception_sym */
11629 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11630 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11631 "__gnat_begin_handler", /* catch_handlers_sym */
11632 ada_unhandled_exception_name_addr
11633 };
11634
11635 /* The following exception support info structure describes how to
11636 implement exception catchpoints with a slightly older version
11637 of the Ada runtime. */
11638
11639 static const struct exception_support_info exception_support_info_fallback =
11640 {
11641 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11642 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11643 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11644 "__gnat_begin_handler", /* catch_handlers_sym */
11645 ada_unhandled_exception_name_addr_from_raise
11646 };
11647
11648 /* Return nonzero if we can detect the exception support routines
11649 described in EINFO.
11650
11651 This function errors out if an abnormal situation is detected
11652 (for instance, if we find the exception support routines, but
11653 that support is found to be incomplete). */
11654
11655 static int
11656 ada_has_this_exception_support (const struct exception_support_info *einfo)
11657 {
11658 struct symbol *sym;
11659
11660 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11661 that should be compiled with debugging information. As a result, we
11662 expect to find that symbol in the symtabs. */
11663
11664 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11665 if (sym == NULL)
11666 {
11667 /* Perhaps we did not find our symbol because the Ada runtime was
11668 compiled without debugging info, or simply stripped of it.
11669 It happens on some GNU/Linux distributions for instance, where
11670 users have to install a separate debug package in order to get
11671 the runtime's debugging info. In that situation, let the user
11672 know why we cannot insert an Ada exception catchpoint.
11673
11674 Note: Just for the purpose of inserting our Ada exception
11675 catchpoint, we could rely purely on the associated minimal symbol.
11676 But we would be operating in degraded mode anyway, since we are
11677 still lacking the debugging info needed later on to extract
11678 the name of the exception being raised (this name is printed in
11679 the catchpoint message, and is also used when trying to catch
11680 a specific exception). We do not handle this case for now. */
11681 struct bound_minimal_symbol msym
11682 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11683
11684 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11685 error (_("Your Ada runtime appears to be missing some debugging "
11686 "information.\nCannot insert Ada exception catchpoint "
11687 "in this configuration."));
11688
11689 return 0;
11690 }
11691
11692 /* Make sure that the symbol we found corresponds to a function. */
11693
11694 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11695 {
11696 error (_("Symbol \"%s\" is not a function (class = %d)"),
11697 sym->linkage_name (), SYMBOL_CLASS (sym));
11698 return 0;
11699 }
11700
11701 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11702 if (sym == NULL)
11703 {
11704 struct bound_minimal_symbol msym
11705 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11706
11707 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11708 error (_("Your Ada runtime appears to be missing some debugging "
11709 "information.\nCannot insert Ada exception catchpoint "
11710 "in this configuration."));
11711
11712 return 0;
11713 }
11714
11715 /* Make sure that the symbol we found corresponds to a function. */
11716
11717 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11718 {
11719 error (_("Symbol \"%s\" is not a function (class = %d)"),
11720 sym->linkage_name (), SYMBOL_CLASS (sym));
11721 return 0;
11722 }
11723
11724 return 1;
11725 }
11726
11727 /* Inspect the Ada runtime and determine which exception info structure
11728 should be used to provide support for exception catchpoints.
11729
11730 This function will always set the per-inferior exception_info,
11731 or raise an error. */
11732
11733 static void
11734 ada_exception_support_info_sniffer (void)
11735 {
11736 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11737
11738 /* If the exception info is already known, then no need to recompute it. */
11739 if (data->exception_info != NULL)
11740 return;
11741
11742 /* Check the latest (default) exception support info. */
11743 if (ada_has_this_exception_support (&default_exception_support_info))
11744 {
11745 data->exception_info = &default_exception_support_info;
11746 return;
11747 }
11748
11749 /* Try the v0 exception suport info. */
11750 if (ada_has_this_exception_support (&exception_support_info_v0))
11751 {
11752 data->exception_info = &exception_support_info_v0;
11753 return;
11754 }
11755
11756 /* Try our fallback exception suport info. */
11757 if (ada_has_this_exception_support (&exception_support_info_fallback))
11758 {
11759 data->exception_info = &exception_support_info_fallback;
11760 return;
11761 }
11762
11763 /* Sometimes, it is normal for us to not be able to find the routine
11764 we are looking for. This happens when the program is linked with
11765 the shared version of the GNAT runtime, and the program has not been
11766 started yet. Inform the user of these two possible causes if
11767 applicable. */
11768
11769 if (ada_update_initial_language (language_unknown) != language_ada)
11770 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11771
11772 /* If the symbol does not exist, then check that the program is
11773 already started, to make sure that shared libraries have been
11774 loaded. If it is not started, this may mean that the symbol is
11775 in a shared library. */
11776
11777 if (inferior_ptid.pid () == 0)
11778 error (_("Unable to insert catchpoint. Try to start the program first."));
11779
11780 /* At this point, we know that we are debugging an Ada program and
11781 that the inferior has been started, but we still are not able to
11782 find the run-time symbols. That can mean that we are in
11783 configurable run time mode, or that a-except as been optimized
11784 out by the linker... In any case, at this point it is not worth
11785 supporting this feature. */
11786
11787 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11788 }
11789
11790 /* True iff FRAME is very likely to be that of a function that is
11791 part of the runtime system. This is all very heuristic, but is
11792 intended to be used as advice as to what frames are uninteresting
11793 to most users. */
11794
11795 static int
11796 is_known_support_routine (struct frame_info *frame)
11797 {
11798 enum language func_lang;
11799 int i;
11800 const char *fullname;
11801
11802 /* If this code does not have any debugging information (no symtab),
11803 This cannot be any user code. */
11804
11805 symtab_and_line sal = find_frame_sal (frame);
11806 if (sal.symtab == NULL)
11807 return 1;
11808
11809 /* If there is a symtab, but the associated source file cannot be
11810 located, then assume this is not user code: Selecting a frame
11811 for which we cannot display the code would not be very helpful
11812 for the user. This should also take care of case such as VxWorks
11813 where the kernel has some debugging info provided for a few units. */
11814
11815 fullname = symtab_to_fullname (sal.symtab);
11816 if (access (fullname, R_OK) != 0)
11817 return 1;
11818
11819 /* Check the unit filename against the Ada runtime file naming.
11820 We also check the name of the objfile against the name of some
11821 known system libraries that sometimes come with debugging info
11822 too. */
11823
11824 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11825 {
11826 re_comp (known_runtime_file_name_patterns[i]);
11827 if (re_exec (lbasename (sal.symtab->filename)))
11828 return 1;
11829 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11830 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11831 return 1;
11832 }
11833
11834 /* Check whether the function is a GNAT-generated entity. */
11835
11836 gdb::unique_xmalloc_ptr<char> func_name
11837 = find_frame_funname (frame, &func_lang, NULL);
11838 if (func_name == NULL)
11839 return 1;
11840
11841 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11842 {
11843 re_comp (known_auxiliary_function_name_patterns[i]);
11844 if (re_exec (func_name.get ()))
11845 return 1;
11846 }
11847
11848 return 0;
11849 }
11850
11851 /* Find the first frame that contains debugging information and that is not
11852 part of the Ada run-time, starting from FI and moving upward. */
11853
11854 void
11855 ada_find_printable_frame (struct frame_info *fi)
11856 {
11857 for (; fi != NULL; fi = get_prev_frame (fi))
11858 {
11859 if (!is_known_support_routine (fi))
11860 {
11861 select_frame (fi);
11862 break;
11863 }
11864 }
11865
11866 }
11867
11868 /* Assuming that the inferior just triggered an unhandled exception
11869 catchpoint, return the address in inferior memory where the name
11870 of the exception is stored.
11871
11872 Return zero if the address could not be computed. */
11873
11874 static CORE_ADDR
11875 ada_unhandled_exception_name_addr (void)
11876 {
11877 return parse_and_eval_address ("e.full_name");
11878 }
11879
11880 /* Same as ada_unhandled_exception_name_addr, except that this function
11881 should be used when the inferior uses an older version of the runtime,
11882 where the exception name needs to be extracted from a specific frame
11883 several frames up in the callstack. */
11884
11885 static CORE_ADDR
11886 ada_unhandled_exception_name_addr_from_raise (void)
11887 {
11888 int frame_level;
11889 struct frame_info *fi;
11890 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11891
11892 /* To determine the name of this exception, we need to select
11893 the frame corresponding to RAISE_SYM_NAME. This frame is
11894 at least 3 levels up, so we simply skip the first 3 frames
11895 without checking the name of their associated function. */
11896 fi = get_current_frame ();
11897 for (frame_level = 0; frame_level < 3; frame_level += 1)
11898 if (fi != NULL)
11899 fi = get_prev_frame (fi);
11900
11901 while (fi != NULL)
11902 {
11903 enum language func_lang;
11904
11905 gdb::unique_xmalloc_ptr<char> func_name
11906 = find_frame_funname (fi, &func_lang, NULL);
11907 if (func_name != NULL)
11908 {
11909 if (strcmp (func_name.get (),
11910 data->exception_info->catch_exception_sym) == 0)
11911 break; /* We found the frame we were looking for... */
11912 }
11913 fi = get_prev_frame (fi);
11914 }
11915
11916 if (fi == NULL)
11917 return 0;
11918
11919 select_frame (fi);
11920 return parse_and_eval_address ("id.full_name");
11921 }
11922
11923 /* Assuming the inferior just triggered an Ada exception catchpoint
11924 (of any type), return the address in inferior memory where the name
11925 of the exception is stored, if applicable.
11926
11927 Assumes the selected frame is the current frame.
11928
11929 Return zero if the address could not be computed, or if not relevant. */
11930
11931 static CORE_ADDR
11932 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11933 struct breakpoint *b)
11934 {
11935 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11936
11937 switch (ex)
11938 {
11939 case ada_catch_exception:
11940 return (parse_and_eval_address ("e.full_name"));
11941 break;
11942
11943 case ada_catch_exception_unhandled:
11944 return data->exception_info->unhandled_exception_name_addr ();
11945 break;
11946
11947 case ada_catch_handlers:
11948 return 0; /* The runtimes does not provide access to the exception
11949 name. */
11950 break;
11951
11952 case ada_catch_assert:
11953 return 0; /* Exception name is not relevant in this case. */
11954 break;
11955
11956 default:
11957 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11958 break;
11959 }
11960
11961 return 0; /* Should never be reached. */
11962 }
11963
11964 /* Assuming the inferior is stopped at an exception catchpoint,
11965 return the message which was associated to the exception, if
11966 available. Return NULL if the message could not be retrieved.
11967
11968 Note: The exception message can be associated to an exception
11969 either through the use of the Raise_Exception function, or
11970 more simply (Ada 2005 and later), via:
11971
11972 raise Exception_Name with "exception message";
11973
11974 */
11975
11976 static gdb::unique_xmalloc_ptr<char>
11977 ada_exception_message_1 (void)
11978 {
11979 struct value *e_msg_val;
11980 int e_msg_len;
11981
11982 /* For runtimes that support this feature, the exception message
11983 is passed as an unbounded string argument called "message". */
11984 e_msg_val = parse_and_eval ("message");
11985 if (e_msg_val == NULL)
11986 return NULL; /* Exception message not supported. */
11987
11988 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11989 gdb_assert (e_msg_val != NULL);
11990 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11991
11992 /* If the message string is empty, then treat it as if there was
11993 no exception message. */
11994 if (e_msg_len <= 0)
11995 return NULL;
11996
11997 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11998 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11999 e_msg_len);
12000 e_msg.get ()[e_msg_len] = '\0';
12001
12002 return e_msg;
12003 }
12004
12005 /* Same as ada_exception_message_1, except that all exceptions are
12006 contained here (returning NULL instead). */
12007
12008 static gdb::unique_xmalloc_ptr<char>
12009 ada_exception_message (void)
12010 {
12011 gdb::unique_xmalloc_ptr<char> e_msg;
12012
12013 try
12014 {
12015 e_msg = ada_exception_message_1 ();
12016 }
12017 catch (const gdb_exception_error &e)
12018 {
12019 e_msg.reset (nullptr);
12020 }
12021
12022 return e_msg;
12023 }
12024
12025 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12026 any error that ada_exception_name_addr_1 might cause to be thrown.
12027 When an error is intercepted, a warning with the error message is printed,
12028 and zero is returned. */
12029
12030 static CORE_ADDR
12031 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12032 struct breakpoint *b)
12033 {
12034 CORE_ADDR result = 0;
12035
12036 try
12037 {
12038 result = ada_exception_name_addr_1 (ex, b);
12039 }
12040
12041 catch (const gdb_exception_error &e)
12042 {
12043 warning (_("failed to get exception name: %s"), e.what ());
12044 return 0;
12045 }
12046
12047 return result;
12048 }
12049
12050 static std::string ada_exception_catchpoint_cond_string
12051 (const char *excep_string,
12052 enum ada_exception_catchpoint_kind ex);
12053
12054 /* Ada catchpoints.
12055
12056 In the case of catchpoints on Ada exceptions, the catchpoint will
12057 stop the target on every exception the program throws. When a user
12058 specifies the name of a specific exception, we translate this
12059 request into a condition expression (in text form), and then parse
12060 it into an expression stored in each of the catchpoint's locations.
12061 We then use this condition to check whether the exception that was
12062 raised is the one the user is interested in. If not, then the
12063 target is resumed again. We store the name of the requested
12064 exception, in order to be able to re-set the condition expression
12065 when symbols change. */
12066
12067 /* An instance of this type is used to represent an Ada catchpoint
12068 breakpoint location. */
12069
12070 class ada_catchpoint_location : public bp_location
12071 {
12072 public:
12073 ada_catchpoint_location (breakpoint *owner)
12074 : bp_location (owner, bp_loc_software_breakpoint)
12075 {}
12076
12077 /* The condition that checks whether the exception that was raised
12078 is the specific exception the user specified on catchpoint
12079 creation. */
12080 expression_up excep_cond_expr;
12081 };
12082
12083 /* An instance of this type is used to represent an Ada catchpoint. */
12084
12085 struct ada_catchpoint : public breakpoint
12086 {
12087 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12088 : m_kind (kind)
12089 {
12090 }
12091
12092 /* The name of the specific exception the user specified. */
12093 std::string excep_string;
12094
12095 /* What kind of catchpoint this is. */
12096 enum ada_exception_catchpoint_kind m_kind;
12097 };
12098
12099 /* Parse the exception condition string in the context of each of the
12100 catchpoint's locations, and store them for later evaluation. */
12101
12102 static void
12103 create_excep_cond_exprs (struct ada_catchpoint *c,
12104 enum ada_exception_catchpoint_kind ex)
12105 {
12106 struct bp_location *bl;
12107
12108 /* Nothing to do if there's no specific exception to catch. */
12109 if (c->excep_string.empty ())
12110 return;
12111
12112 /* Same if there are no locations... */
12113 if (c->loc == NULL)
12114 return;
12115
12116 /* Compute the condition expression in text form, from the specific
12117 expection we want to catch. */
12118 std::string cond_string
12119 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12120
12121 /* Iterate over all the catchpoint's locations, and parse an
12122 expression for each. */
12123 for (bl = c->loc; bl != NULL; bl = bl->next)
12124 {
12125 struct ada_catchpoint_location *ada_loc
12126 = (struct ada_catchpoint_location *) bl;
12127 expression_up exp;
12128
12129 if (!bl->shlib_disabled)
12130 {
12131 const char *s;
12132
12133 s = cond_string.c_str ();
12134 try
12135 {
12136 exp = parse_exp_1 (&s, bl->address,
12137 block_for_pc (bl->address),
12138 0);
12139 }
12140 catch (const gdb_exception_error &e)
12141 {
12142 warning (_("failed to reevaluate internal exception condition "
12143 "for catchpoint %d: %s"),
12144 c->number, e.what ());
12145 }
12146 }
12147
12148 ada_loc->excep_cond_expr = std::move (exp);
12149 }
12150 }
12151
12152 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12153 structure for all exception catchpoint kinds. */
12154
12155 static struct bp_location *
12156 allocate_location_exception (struct breakpoint *self)
12157 {
12158 return new ada_catchpoint_location (self);
12159 }
12160
12161 /* Implement the RE_SET method in the breakpoint_ops structure for all
12162 exception catchpoint kinds. */
12163
12164 static void
12165 re_set_exception (struct breakpoint *b)
12166 {
12167 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12168
12169 /* Call the base class's method. This updates the catchpoint's
12170 locations. */
12171 bkpt_breakpoint_ops.re_set (b);
12172
12173 /* Reparse the exception conditional expressions. One for each
12174 location. */
12175 create_excep_cond_exprs (c, c->m_kind);
12176 }
12177
12178 /* Returns true if we should stop for this breakpoint hit. If the
12179 user specified a specific exception, we only want to cause a stop
12180 if the program thrown that exception. */
12181
12182 static int
12183 should_stop_exception (const struct bp_location *bl)
12184 {
12185 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12186 const struct ada_catchpoint_location *ada_loc
12187 = (const struct ada_catchpoint_location *) bl;
12188 int stop;
12189
12190 struct internalvar *var = lookup_internalvar ("_ada_exception");
12191 if (c->m_kind == ada_catch_assert)
12192 clear_internalvar (var);
12193 else
12194 {
12195 try
12196 {
12197 const char *expr;
12198
12199 if (c->m_kind == ada_catch_handlers)
12200 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12201 ".all.occurrence.id");
12202 else
12203 expr = "e";
12204
12205 struct value *exc = parse_and_eval (expr);
12206 set_internalvar (var, exc);
12207 }
12208 catch (const gdb_exception_error &ex)
12209 {
12210 clear_internalvar (var);
12211 }
12212 }
12213
12214 /* With no specific exception, should always stop. */
12215 if (c->excep_string.empty ())
12216 return 1;
12217
12218 if (ada_loc->excep_cond_expr == NULL)
12219 {
12220 /* We will have a NULL expression if back when we were creating
12221 the expressions, this location's had failed to parse. */
12222 return 1;
12223 }
12224
12225 stop = 1;
12226 try
12227 {
12228 struct value *mark;
12229
12230 mark = value_mark ();
12231 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12232 value_free_to_mark (mark);
12233 }
12234 catch (const gdb_exception &ex)
12235 {
12236 exception_fprintf (gdb_stderr, ex,
12237 _("Error in testing exception condition:\n"));
12238 }
12239
12240 return stop;
12241 }
12242
12243 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12244 for all exception catchpoint kinds. */
12245
12246 static void
12247 check_status_exception (bpstat bs)
12248 {
12249 bs->stop = should_stop_exception (bs->bp_location_at);
12250 }
12251
12252 /* Implement the PRINT_IT method in the breakpoint_ops structure
12253 for all exception catchpoint kinds. */
12254
12255 static enum print_stop_action
12256 print_it_exception (bpstat bs)
12257 {
12258 struct ui_out *uiout = current_uiout;
12259 struct breakpoint *b = bs->breakpoint_at;
12260
12261 annotate_catchpoint (b->number);
12262
12263 if (uiout->is_mi_like_p ())
12264 {
12265 uiout->field_string ("reason",
12266 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12267 uiout->field_string ("disp", bpdisp_text (b->disposition));
12268 }
12269
12270 uiout->text (b->disposition == disp_del
12271 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12272 uiout->field_signed ("bkptno", b->number);
12273 uiout->text (", ");
12274
12275 /* ada_exception_name_addr relies on the selected frame being the
12276 current frame. Need to do this here because this function may be
12277 called more than once when printing a stop, and below, we'll
12278 select the first frame past the Ada run-time (see
12279 ada_find_printable_frame). */
12280 select_frame (get_current_frame ());
12281
12282 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12283 switch (c->m_kind)
12284 {
12285 case ada_catch_exception:
12286 case ada_catch_exception_unhandled:
12287 case ada_catch_handlers:
12288 {
12289 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12290 char exception_name[256];
12291
12292 if (addr != 0)
12293 {
12294 read_memory (addr, (gdb_byte *) exception_name,
12295 sizeof (exception_name) - 1);
12296 exception_name [sizeof (exception_name) - 1] = '\0';
12297 }
12298 else
12299 {
12300 /* For some reason, we were unable to read the exception
12301 name. This could happen if the Runtime was compiled
12302 without debugging info, for instance. In that case,
12303 just replace the exception name by the generic string
12304 "exception" - it will read as "an exception" in the
12305 notification we are about to print. */
12306 memcpy (exception_name, "exception", sizeof ("exception"));
12307 }
12308 /* In the case of unhandled exception breakpoints, we print
12309 the exception name as "unhandled EXCEPTION_NAME", to make
12310 it clearer to the user which kind of catchpoint just got
12311 hit. We used ui_out_text to make sure that this extra
12312 info does not pollute the exception name in the MI case. */
12313 if (c->m_kind == ada_catch_exception_unhandled)
12314 uiout->text ("unhandled ");
12315 uiout->field_string ("exception-name", exception_name);
12316 }
12317 break;
12318 case ada_catch_assert:
12319 /* In this case, the name of the exception is not really
12320 important. Just print "failed assertion" to make it clearer
12321 that his program just hit an assertion-failure catchpoint.
12322 We used ui_out_text because this info does not belong in
12323 the MI output. */
12324 uiout->text ("failed assertion");
12325 break;
12326 }
12327
12328 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12329 if (exception_message != NULL)
12330 {
12331 uiout->text (" (");
12332 uiout->field_string ("exception-message", exception_message.get ());
12333 uiout->text (")");
12334 }
12335
12336 uiout->text (" at ");
12337 ada_find_printable_frame (get_current_frame ());
12338
12339 return PRINT_SRC_AND_LOC;
12340 }
12341
12342 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12343 for all exception catchpoint kinds. */
12344
12345 static void
12346 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12347 {
12348 struct ui_out *uiout = current_uiout;
12349 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12350 struct value_print_options opts;
12351
12352 get_user_print_options (&opts);
12353
12354 if (opts.addressprint)
12355 uiout->field_skip ("addr");
12356
12357 annotate_field (5);
12358 switch (c->m_kind)
12359 {
12360 case ada_catch_exception:
12361 if (!c->excep_string.empty ())
12362 {
12363 std::string msg = string_printf (_("`%s' Ada exception"),
12364 c->excep_string.c_str ());
12365
12366 uiout->field_string ("what", msg);
12367 }
12368 else
12369 uiout->field_string ("what", "all Ada exceptions");
12370
12371 break;
12372
12373 case ada_catch_exception_unhandled:
12374 uiout->field_string ("what", "unhandled Ada exceptions");
12375 break;
12376
12377 case ada_catch_handlers:
12378 if (!c->excep_string.empty ())
12379 {
12380 uiout->field_fmt ("what",
12381 _("`%s' Ada exception handlers"),
12382 c->excep_string.c_str ());
12383 }
12384 else
12385 uiout->field_string ("what", "all Ada exceptions handlers");
12386 break;
12387
12388 case ada_catch_assert:
12389 uiout->field_string ("what", "failed Ada assertions");
12390 break;
12391
12392 default:
12393 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12394 break;
12395 }
12396 }
12397
12398 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12400
12401 static void
12402 print_mention_exception (struct breakpoint *b)
12403 {
12404 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12405 struct ui_out *uiout = current_uiout;
12406
12407 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12408 : _("Catchpoint "));
12409 uiout->field_signed ("bkptno", b->number);
12410 uiout->text (": ");
12411
12412 switch (c->m_kind)
12413 {
12414 case ada_catch_exception:
12415 if (!c->excep_string.empty ())
12416 {
12417 std::string info = string_printf (_("`%s' Ada exception"),
12418 c->excep_string.c_str ());
12419 uiout->text (info.c_str ());
12420 }
12421 else
12422 uiout->text (_("all Ada exceptions"));
12423 break;
12424
12425 case ada_catch_exception_unhandled:
12426 uiout->text (_("unhandled Ada exceptions"));
12427 break;
12428
12429 case ada_catch_handlers:
12430 if (!c->excep_string.empty ())
12431 {
12432 std::string info
12433 = string_printf (_("`%s' Ada exception handlers"),
12434 c->excep_string.c_str ());
12435 uiout->text (info.c_str ());
12436 }
12437 else
12438 uiout->text (_("all Ada exceptions handlers"));
12439 break;
12440
12441 case ada_catch_assert:
12442 uiout->text (_("failed Ada assertions"));
12443 break;
12444
12445 default:
12446 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12447 break;
12448 }
12449 }
12450
12451 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12452 for all exception catchpoint kinds. */
12453
12454 static void
12455 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12456 {
12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12458
12459 switch (c->m_kind)
12460 {
12461 case ada_catch_exception:
12462 fprintf_filtered (fp, "catch exception");
12463 if (!c->excep_string.empty ())
12464 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12465 break;
12466
12467 case ada_catch_exception_unhandled:
12468 fprintf_filtered (fp, "catch exception unhandled");
12469 break;
12470
12471 case ada_catch_handlers:
12472 fprintf_filtered (fp, "catch handlers");
12473 break;
12474
12475 case ada_catch_assert:
12476 fprintf_filtered (fp, "catch assert");
12477 break;
12478
12479 default:
12480 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12481 }
12482 print_recreate_thread (b, fp);
12483 }
12484
12485 /* Virtual tables for various breakpoint types. */
12486 static struct breakpoint_ops catch_exception_breakpoint_ops;
12487 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12488 static struct breakpoint_ops catch_assert_breakpoint_ops;
12489 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12490
12491 /* See ada-lang.h. */
12492
12493 bool
12494 is_ada_exception_catchpoint (breakpoint *bp)
12495 {
12496 return (bp->ops == &catch_exception_breakpoint_ops
12497 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12498 || bp->ops == &catch_assert_breakpoint_ops
12499 || bp->ops == &catch_handlers_breakpoint_ops);
12500 }
12501
12502 /* Split the arguments specified in a "catch exception" command.
12503 Set EX to the appropriate catchpoint type.
12504 Set EXCEP_STRING to the name of the specific exception if
12505 specified by the user.
12506 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12507 "catch handlers" command. False otherwise.
12508 If a condition is found at the end of the arguments, the condition
12509 expression is stored in COND_STRING (memory must be deallocated
12510 after use). Otherwise COND_STRING is set to NULL. */
12511
12512 static void
12513 catch_ada_exception_command_split (const char *args,
12514 bool is_catch_handlers_cmd,
12515 enum ada_exception_catchpoint_kind *ex,
12516 std::string *excep_string,
12517 std::string *cond_string)
12518 {
12519 std::string exception_name;
12520
12521 exception_name = extract_arg (&args);
12522 if (exception_name == "if")
12523 {
12524 /* This is not an exception name; this is the start of a condition
12525 expression for a catchpoint on all exceptions. So, "un-get"
12526 this token, and set exception_name to NULL. */
12527 exception_name.clear ();
12528 args -= 2;
12529 }
12530
12531 /* Check to see if we have a condition. */
12532
12533 args = skip_spaces (args);
12534 if (startswith (args, "if")
12535 && (isspace (args[2]) || args[2] == '\0'))
12536 {
12537 args += 2;
12538 args = skip_spaces (args);
12539
12540 if (args[0] == '\0')
12541 error (_("Condition missing after `if' keyword"));
12542 *cond_string = args;
12543
12544 args += strlen (args);
12545 }
12546
12547 /* Check that we do not have any more arguments. Anything else
12548 is unexpected. */
12549
12550 if (args[0] != '\0')
12551 error (_("Junk at end of expression"));
12552
12553 if (is_catch_handlers_cmd)
12554 {
12555 /* Catch handling of exceptions. */
12556 *ex = ada_catch_handlers;
12557 *excep_string = exception_name;
12558 }
12559 else if (exception_name.empty ())
12560 {
12561 /* Catch all exceptions. */
12562 *ex = ada_catch_exception;
12563 excep_string->clear ();
12564 }
12565 else if (exception_name == "unhandled")
12566 {
12567 /* Catch unhandled exceptions. */
12568 *ex = ada_catch_exception_unhandled;
12569 excep_string->clear ();
12570 }
12571 else
12572 {
12573 /* Catch a specific exception. */
12574 *ex = ada_catch_exception;
12575 *excep_string = exception_name;
12576 }
12577 }
12578
12579 /* Return the name of the symbol on which we should break in order to
12580 implement a catchpoint of the EX kind. */
12581
12582 static const char *
12583 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12584 {
12585 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12586
12587 gdb_assert (data->exception_info != NULL);
12588
12589 switch (ex)
12590 {
12591 case ada_catch_exception:
12592 return (data->exception_info->catch_exception_sym);
12593 break;
12594 case ada_catch_exception_unhandled:
12595 return (data->exception_info->catch_exception_unhandled_sym);
12596 break;
12597 case ada_catch_assert:
12598 return (data->exception_info->catch_assert_sym);
12599 break;
12600 case ada_catch_handlers:
12601 return (data->exception_info->catch_handlers_sym);
12602 break;
12603 default:
12604 internal_error (__FILE__, __LINE__,
12605 _("unexpected catchpoint kind (%d)"), ex);
12606 }
12607 }
12608
12609 /* Return the breakpoint ops "virtual table" used for catchpoints
12610 of the EX kind. */
12611
12612 static const struct breakpoint_ops *
12613 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12614 {
12615 switch (ex)
12616 {
12617 case ada_catch_exception:
12618 return (&catch_exception_breakpoint_ops);
12619 break;
12620 case ada_catch_exception_unhandled:
12621 return (&catch_exception_unhandled_breakpoint_ops);
12622 break;
12623 case ada_catch_assert:
12624 return (&catch_assert_breakpoint_ops);
12625 break;
12626 case ada_catch_handlers:
12627 return (&catch_handlers_breakpoint_ops);
12628 break;
12629 default:
12630 internal_error (__FILE__, __LINE__,
12631 _("unexpected catchpoint kind (%d)"), ex);
12632 }
12633 }
12634
12635 /* Return the condition that will be used to match the current exception
12636 being raised with the exception that the user wants to catch. This
12637 assumes that this condition is used when the inferior just triggered
12638 an exception catchpoint.
12639 EX: the type of catchpoints used for catching Ada exceptions. */
12640
12641 static std::string
12642 ada_exception_catchpoint_cond_string (const char *excep_string,
12643 enum ada_exception_catchpoint_kind ex)
12644 {
12645 int i;
12646 bool is_standard_exc = false;
12647 std::string result;
12648
12649 if (ex == ada_catch_handlers)
12650 {
12651 /* For exception handlers catchpoints, the condition string does
12652 not use the same parameter as for the other exceptions. */
12653 result = ("long_integer (GNAT_GCC_exception_Access"
12654 "(gcc_exception).all.occurrence.id)");
12655 }
12656 else
12657 result = "long_integer (e)";
12658
12659 /* The standard exceptions are a special case. They are defined in
12660 runtime units that have been compiled without debugging info; if
12661 EXCEP_STRING is the not-fully-qualified name of a standard
12662 exception (e.g. "constraint_error") then, during the evaluation
12663 of the condition expression, the symbol lookup on this name would
12664 *not* return this standard exception. The catchpoint condition
12665 may then be set only on user-defined exceptions which have the
12666 same not-fully-qualified name (e.g. my_package.constraint_error).
12667
12668 To avoid this unexcepted behavior, these standard exceptions are
12669 systematically prefixed by "standard". This means that "catch
12670 exception constraint_error" is rewritten into "catch exception
12671 standard.constraint_error".
12672
12673 If an exception named constraint_error is defined in another package of
12674 the inferior program, then the only way to specify this exception as a
12675 breakpoint condition is to use its fully-qualified named:
12676 e.g. my_package.constraint_error. */
12677
12678 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12679 {
12680 if (strcmp (standard_exc [i], excep_string) == 0)
12681 {
12682 is_standard_exc = true;
12683 break;
12684 }
12685 }
12686
12687 result += " = ";
12688
12689 if (is_standard_exc)
12690 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12691 else
12692 string_appendf (result, "long_integer (&%s)", excep_string);
12693
12694 return result;
12695 }
12696
12697 /* Return the symtab_and_line that should be used to insert an exception
12698 catchpoint of the TYPE kind.
12699
12700 ADDR_STRING returns the name of the function where the real
12701 breakpoint that implements the catchpoints is set, depending on the
12702 type of catchpoint we need to create. */
12703
12704 static struct symtab_and_line
12705 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12706 std::string *addr_string, const struct breakpoint_ops **ops)
12707 {
12708 const char *sym_name;
12709 struct symbol *sym;
12710
12711 /* First, find out which exception support info to use. */
12712 ada_exception_support_info_sniffer ();
12713
12714 /* Then lookup the function on which we will break in order to catch
12715 the Ada exceptions requested by the user. */
12716 sym_name = ada_exception_sym_name (ex);
12717 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12718
12719 if (sym == NULL)
12720 error (_("Catchpoint symbol not found: %s"), sym_name);
12721
12722 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12723 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12724
12725 /* Set ADDR_STRING. */
12726 *addr_string = sym_name;
12727
12728 /* Set OPS. */
12729 *ops = ada_exception_breakpoint_ops (ex);
12730
12731 return find_function_start_sal (sym, 1);
12732 }
12733
12734 /* Create an Ada exception catchpoint.
12735
12736 EX_KIND is the kind of exception catchpoint to be created.
12737
12738 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12739 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12740 of the exception to which this catchpoint applies.
12741
12742 COND_STRING, if not empty, is the catchpoint condition.
12743
12744 TEMPFLAG, if nonzero, means that the underlying breakpoint
12745 should be temporary.
12746
12747 FROM_TTY is the usual argument passed to all commands implementations. */
12748
12749 void
12750 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12751 enum ada_exception_catchpoint_kind ex_kind,
12752 const std::string &excep_string,
12753 const std::string &cond_string,
12754 int tempflag,
12755 int disabled,
12756 int from_tty)
12757 {
12758 std::string addr_string;
12759 const struct breakpoint_ops *ops = NULL;
12760 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12761
12762 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12763 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12764 ops, tempflag, disabled, from_tty);
12765 c->excep_string = excep_string;
12766 create_excep_cond_exprs (c.get (), ex_kind);
12767 if (!cond_string.empty ())
12768 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12769 install_breakpoint (0, std::move (c), 1);
12770 }
12771
12772 /* Implement the "catch exception" command. */
12773
12774 static void
12775 catch_ada_exception_command (const char *arg_entry, int from_tty,
12776 struct cmd_list_element *command)
12777 {
12778 const char *arg = arg_entry;
12779 struct gdbarch *gdbarch = get_current_arch ();
12780 int tempflag;
12781 enum ada_exception_catchpoint_kind ex_kind;
12782 std::string excep_string;
12783 std::string cond_string;
12784
12785 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12786
12787 if (!arg)
12788 arg = "";
12789 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12790 &cond_string);
12791 create_ada_exception_catchpoint (gdbarch, ex_kind,
12792 excep_string, cond_string,
12793 tempflag, 1 /* enabled */,
12794 from_tty);
12795 }
12796
12797 /* Implement the "catch handlers" command. */
12798
12799 static void
12800 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12801 struct cmd_list_element *command)
12802 {
12803 const char *arg = arg_entry;
12804 struct gdbarch *gdbarch = get_current_arch ();
12805 int tempflag;
12806 enum ada_exception_catchpoint_kind ex_kind;
12807 std::string excep_string;
12808 std::string cond_string;
12809
12810 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12811
12812 if (!arg)
12813 arg = "";
12814 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12815 &cond_string);
12816 create_ada_exception_catchpoint (gdbarch, ex_kind,
12817 excep_string, cond_string,
12818 tempflag, 1 /* enabled */,
12819 from_tty);
12820 }
12821
12822 /* Completion function for the Ada "catch" commands. */
12823
12824 static void
12825 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12826 const char *text, const char *word)
12827 {
12828 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12829
12830 for (const ada_exc_info &info : exceptions)
12831 {
12832 if (startswith (info.name, word))
12833 tracker.add_completion (make_unique_xstrdup (info.name));
12834 }
12835 }
12836
12837 /* Split the arguments specified in a "catch assert" command.
12838
12839 ARGS contains the command's arguments (or the empty string if
12840 no arguments were passed).
12841
12842 If ARGS contains a condition, set COND_STRING to that condition
12843 (the memory needs to be deallocated after use). */
12844
12845 static void
12846 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12847 {
12848 args = skip_spaces (args);
12849
12850 /* Check whether a condition was provided. */
12851 if (startswith (args, "if")
12852 && (isspace (args[2]) || args[2] == '\0'))
12853 {
12854 args += 2;
12855 args = skip_spaces (args);
12856 if (args[0] == '\0')
12857 error (_("condition missing after `if' keyword"));
12858 cond_string.assign (args);
12859 }
12860
12861 /* Otherwise, there should be no other argument at the end of
12862 the command. */
12863 else if (args[0] != '\0')
12864 error (_("Junk at end of arguments."));
12865 }
12866
12867 /* Implement the "catch assert" command. */
12868
12869 static void
12870 catch_assert_command (const char *arg_entry, int from_tty,
12871 struct cmd_list_element *command)
12872 {
12873 const char *arg = arg_entry;
12874 struct gdbarch *gdbarch = get_current_arch ();
12875 int tempflag;
12876 std::string cond_string;
12877
12878 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12879
12880 if (!arg)
12881 arg = "";
12882 catch_ada_assert_command_split (arg, cond_string);
12883 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12884 "", cond_string,
12885 tempflag, 1 /* enabled */,
12886 from_tty);
12887 }
12888
12889 /* Return non-zero if the symbol SYM is an Ada exception object. */
12890
12891 static int
12892 ada_is_exception_sym (struct symbol *sym)
12893 {
12894 const char *type_name = SYMBOL_TYPE (sym)->name ();
12895
12896 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12897 && SYMBOL_CLASS (sym) != LOC_BLOCK
12898 && SYMBOL_CLASS (sym) != LOC_CONST
12899 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12900 && type_name != NULL && strcmp (type_name, "exception") == 0);
12901 }
12902
12903 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12904 Ada exception object. This matches all exceptions except the ones
12905 defined by the Ada language. */
12906
12907 static int
12908 ada_is_non_standard_exception_sym (struct symbol *sym)
12909 {
12910 int i;
12911
12912 if (!ada_is_exception_sym (sym))
12913 return 0;
12914
12915 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12916 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12917 return 0; /* A standard exception. */
12918
12919 /* Numeric_Error is also a standard exception, so exclude it.
12920 See the STANDARD_EXC description for more details as to why
12921 this exception is not listed in that array. */
12922 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12923 return 0;
12924
12925 return 1;
12926 }
12927
12928 /* A helper function for std::sort, comparing two struct ada_exc_info
12929 objects.
12930
12931 The comparison is determined first by exception name, and then
12932 by exception address. */
12933
12934 bool
12935 ada_exc_info::operator< (const ada_exc_info &other) const
12936 {
12937 int result;
12938
12939 result = strcmp (name, other.name);
12940 if (result < 0)
12941 return true;
12942 if (result == 0 && addr < other.addr)
12943 return true;
12944 return false;
12945 }
12946
12947 bool
12948 ada_exc_info::operator== (const ada_exc_info &other) const
12949 {
12950 return addr == other.addr && strcmp (name, other.name) == 0;
12951 }
12952
12953 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12954 routine, but keeping the first SKIP elements untouched.
12955
12956 All duplicates are also removed. */
12957
12958 static void
12959 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12960 int skip)
12961 {
12962 std::sort (exceptions->begin () + skip, exceptions->end ());
12963 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12964 exceptions->end ());
12965 }
12966
12967 /* Add all exceptions defined by the Ada standard whose name match
12968 a regular expression.
12969
12970 If PREG is not NULL, then this regexp_t object is used to
12971 perform the symbol name matching. Otherwise, no name-based
12972 filtering is performed.
12973
12974 EXCEPTIONS is a vector of exceptions to which matching exceptions
12975 gets pushed. */
12976
12977 static void
12978 ada_add_standard_exceptions (compiled_regex *preg,
12979 std::vector<ada_exc_info> *exceptions)
12980 {
12981 int i;
12982
12983 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12984 {
12985 if (preg == NULL
12986 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12987 {
12988 struct bound_minimal_symbol msymbol
12989 = ada_lookup_simple_minsym (standard_exc[i]);
12990
12991 if (msymbol.minsym != NULL)
12992 {
12993 struct ada_exc_info info
12994 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12995
12996 exceptions->push_back (info);
12997 }
12998 }
12999 }
13000 }
13001
13002 /* Add all Ada exceptions defined locally and accessible from the given
13003 FRAME.
13004
13005 If PREG is not NULL, then this regexp_t object is used to
13006 perform the symbol name matching. Otherwise, no name-based
13007 filtering is performed.
13008
13009 EXCEPTIONS is a vector of exceptions to which matching exceptions
13010 gets pushed. */
13011
13012 static void
13013 ada_add_exceptions_from_frame (compiled_regex *preg,
13014 struct frame_info *frame,
13015 std::vector<ada_exc_info> *exceptions)
13016 {
13017 const struct block *block = get_frame_block (frame, 0);
13018
13019 while (block != 0)
13020 {
13021 struct block_iterator iter;
13022 struct symbol *sym;
13023
13024 ALL_BLOCK_SYMBOLS (block, iter, sym)
13025 {
13026 switch (SYMBOL_CLASS (sym))
13027 {
13028 case LOC_TYPEDEF:
13029 case LOC_BLOCK:
13030 case LOC_CONST:
13031 break;
13032 default:
13033 if (ada_is_exception_sym (sym))
13034 {
13035 struct ada_exc_info info = {sym->print_name (),
13036 SYMBOL_VALUE_ADDRESS (sym)};
13037
13038 exceptions->push_back (info);
13039 }
13040 }
13041 }
13042 if (BLOCK_FUNCTION (block) != NULL)
13043 break;
13044 block = BLOCK_SUPERBLOCK (block);
13045 }
13046 }
13047
13048 /* Return true if NAME matches PREG or if PREG is NULL. */
13049
13050 static bool
13051 name_matches_regex (const char *name, compiled_regex *preg)
13052 {
13053 return (preg == NULL
13054 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13055 }
13056
13057 /* Add all exceptions defined globally whose name name match
13058 a regular expression, excluding standard exceptions.
13059
13060 The reason we exclude standard exceptions is that they need
13061 to be handled separately: Standard exceptions are defined inside
13062 a runtime unit which is normally not compiled with debugging info,
13063 and thus usually do not show up in our symbol search. However,
13064 if the unit was in fact built with debugging info, we need to
13065 exclude them because they would duplicate the entry we found
13066 during the special loop that specifically searches for those
13067 standard exceptions.
13068
13069 If PREG is not NULL, then this regexp_t object is used to
13070 perform the symbol name matching. Otherwise, no name-based
13071 filtering is performed.
13072
13073 EXCEPTIONS is a vector of exceptions to which matching exceptions
13074 gets pushed. */
13075
13076 static void
13077 ada_add_global_exceptions (compiled_regex *preg,
13078 std::vector<ada_exc_info> *exceptions)
13079 {
13080 /* In Ada, the symbol "search name" is a linkage name, whereas the
13081 regular expression used to do the matching refers to the natural
13082 name. So match against the decoded name. */
13083 expand_symtabs_matching (NULL,
13084 lookup_name_info::match_any (),
13085 [&] (const char *search_name)
13086 {
13087 std::string decoded = ada_decode (search_name);
13088 return name_matches_regex (decoded.c_str (), preg);
13089 },
13090 NULL,
13091 VARIABLES_DOMAIN);
13092
13093 for (objfile *objfile : current_program_space->objfiles ())
13094 {
13095 for (compunit_symtab *s : objfile->compunits ())
13096 {
13097 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13098 int i;
13099
13100 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13101 {
13102 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13103 struct block_iterator iter;
13104 struct symbol *sym;
13105
13106 ALL_BLOCK_SYMBOLS (b, iter, sym)
13107 if (ada_is_non_standard_exception_sym (sym)
13108 && name_matches_regex (sym->natural_name (), preg))
13109 {
13110 struct ada_exc_info info
13111 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13112
13113 exceptions->push_back (info);
13114 }
13115 }
13116 }
13117 }
13118 }
13119
13120 /* Implements ada_exceptions_list with the regular expression passed
13121 as a regex_t, rather than a string.
13122
13123 If not NULL, PREG is used to filter out exceptions whose names
13124 do not match. Otherwise, all exceptions are listed. */
13125
13126 static std::vector<ada_exc_info>
13127 ada_exceptions_list_1 (compiled_regex *preg)
13128 {
13129 std::vector<ada_exc_info> result;
13130 int prev_len;
13131
13132 /* First, list the known standard exceptions. These exceptions
13133 need to be handled separately, as they are usually defined in
13134 runtime units that have been compiled without debugging info. */
13135
13136 ada_add_standard_exceptions (preg, &result);
13137
13138 /* Next, find all exceptions whose scope is local and accessible
13139 from the currently selected frame. */
13140
13141 if (has_stack_frames ())
13142 {
13143 prev_len = result.size ();
13144 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13145 &result);
13146 if (result.size () > prev_len)
13147 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13148 }
13149
13150 /* Add all exceptions whose scope is global. */
13151
13152 prev_len = result.size ();
13153 ada_add_global_exceptions (preg, &result);
13154 if (result.size () > prev_len)
13155 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13156
13157 return result;
13158 }
13159
13160 /* Return a vector of ada_exc_info.
13161
13162 If REGEXP is NULL, all exceptions are included in the result.
13163 Otherwise, it should contain a valid regular expression,
13164 and only the exceptions whose names match that regular expression
13165 are included in the result.
13166
13167 The exceptions are sorted in the following order:
13168 - Standard exceptions (defined by the Ada language), in
13169 alphabetical order;
13170 - Exceptions only visible from the current frame, in
13171 alphabetical order;
13172 - Exceptions whose scope is global, in alphabetical order. */
13173
13174 std::vector<ada_exc_info>
13175 ada_exceptions_list (const char *regexp)
13176 {
13177 if (regexp == NULL)
13178 return ada_exceptions_list_1 (NULL);
13179
13180 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13181 return ada_exceptions_list_1 (&reg);
13182 }
13183
13184 /* Implement the "info exceptions" command. */
13185
13186 static void
13187 info_exceptions_command (const char *regexp, int from_tty)
13188 {
13189 struct gdbarch *gdbarch = get_current_arch ();
13190
13191 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13192
13193 if (regexp != NULL)
13194 printf_filtered
13195 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13196 else
13197 printf_filtered (_("All defined Ada exceptions:\n"));
13198
13199 for (const ada_exc_info &info : exceptions)
13200 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13201 }
13202
13203 /* Operators */
13204 /* Information about operators given special treatment in functions
13205 below. */
13206 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13207
13208 #define ADA_OPERATORS \
13209 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13210 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13211 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13212 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13213 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13214 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13215 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13216 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13217 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13218 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13219 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13220 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13221 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13222 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13223 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13224 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13225 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13226 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13227 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13228
13229 static void
13230 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13231 int *argsp)
13232 {
13233 switch (exp->elts[pc - 1].opcode)
13234 {
13235 default:
13236 operator_length_standard (exp, pc, oplenp, argsp);
13237 break;
13238
13239 #define OP_DEFN(op, len, args, binop) \
13240 case op: *oplenp = len; *argsp = args; break;
13241 ADA_OPERATORS;
13242 #undef OP_DEFN
13243
13244 case OP_AGGREGATE:
13245 *oplenp = 3;
13246 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13247 break;
13248
13249 case OP_CHOICES:
13250 *oplenp = 3;
13251 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13252 break;
13253 }
13254 }
13255
13256 /* Implementation of the exp_descriptor method operator_check. */
13257
13258 static int
13259 ada_operator_check (struct expression *exp, int pos,
13260 int (*objfile_func) (struct objfile *objfile, void *data),
13261 void *data)
13262 {
13263 const union exp_element *const elts = exp->elts;
13264 struct type *type = NULL;
13265
13266 switch (elts[pos].opcode)
13267 {
13268 case UNOP_IN_RANGE:
13269 case UNOP_QUAL:
13270 type = elts[pos + 1].type;
13271 break;
13272
13273 default:
13274 return operator_check_standard (exp, pos, objfile_func, data);
13275 }
13276
13277 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13278
13279 if (type && TYPE_OBJFILE (type)
13280 && (*objfile_func) (TYPE_OBJFILE (type), data))
13281 return 1;
13282
13283 return 0;
13284 }
13285
13286 static const char *
13287 ada_op_name (enum exp_opcode opcode)
13288 {
13289 switch (opcode)
13290 {
13291 default:
13292 return op_name_standard (opcode);
13293
13294 #define OP_DEFN(op, len, args, binop) case op: return #op;
13295 ADA_OPERATORS;
13296 #undef OP_DEFN
13297
13298 case OP_AGGREGATE:
13299 return "OP_AGGREGATE";
13300 case OP_CHOICES:
13301 return "OP_CHOICES";
13302 case OP_NAME:
13303 return "OP_NAME";
13304 }
13305 }
13306
13307 /* As for operator_length, but assumes PC is pointing at the first
13308 element of the operator, and gives meaningful results only for the
13309 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13310
13311 static void
13312 ada_forward_operator_length (struct expression *exp, int pc,
13313 int *oplenp, int *argsp)
13314 {
13315 switch (exp->elts[pc].opcode)
13316 {
13317 default:
13318 *oplenp = *argsp = 0;
13319 break;
13320
13321 #define OP_DEFN(op, len, args, binop) \
13322 case op: *oplenp = len; *argsp = args; break;
13323 ADA_OPERATORS;
13324 #undef OP_DEFN
13325
13326 case OP_AGGREGATE:
13327 *oplenp = 3;
13328 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13329 break;
13330
13331 case OP_CHOICES:
13332 *oplenp = 3;
13333 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13334 break;
13335
13336 case OP_STRING:
13337 case OP_NAME:
13338 {
13339 int len = longest_to_int (exp->elts[pc + 1].longconst);
13340
13341 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13342 *argsp = 0;
13343 break;
13344 }
13345 }
13346 }
13347
13348 static int
13349 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13350 {
13351 enum exp_opcode op = exp->elts[elt].opcode;
13352 int oplen, nargs;
13353 int pc = elt;
13354 int i;
13355
13356 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13357
13358 switch (op)
13359 {
13360 /* Ada attributes ('Foo). */
13361 case OP_ATR_FIRST:
13362 case OP_ATR_LAST:
13363 case OP_ATR_LENGTH:
13364 case OP_ATR_IMAGE:
13365 case OP_ATR_MAX:
13366 case OP_ATR_MIN:
13367 case OP_ATR_MODULUS:
13368 case OP_ATR_POS:
13369 case OP_ATR_SIZE:
13370 case OP_ATR_TAG:
13371 case OP_ATR_VAL:
13372 break;
13373
13374 case UNOP_IN_RANGE:
13375 case UNOP_QUAL:
13376 /* XXX: gdb_sprint_host_address, type_sprint */
13377 fprintf_filtered (stream, _("Type @"));
13378 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13379 fprintf_filtered (stream, " (");
13380 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13381 fprintf_filtered (stream, ")");
13382 break;
13383 case BINOP_IN_BOUNDS:
13384 fprintf_filtered (stream, " (%d)",
13385 longest_to_int (exp->elts[pc + 2].longconst));
13386 break;
13387 case TERNOP_IN_RANGE:
13388 break;
13389
13390 case OP_AGGREGATE:
13391 case OP_OTHERS:
13392 case OP_DISCRETE_RANGE:
13393 case OP_POSITIONAL:
13394 case OP_CHOICES:
13395 break;
13396
13397 case OP_NAME:
13398 case OP_STRING:
13399 {
13400 char *name = &exp->elts[elt + 2].string;
13401 int len = longest_to_int (exp->elts[elt + 1].longconst);
13402
13403 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13404 break;
13405 }
13406
13407 default:
13408 return dump_subexp_body_standard (exp, stream, elt);
13409 }
13410
13411 elt += oplen;
13412 for (i = 0; i < nargs; i += 1)
13413 elt = dump_subexp (exp, stream, elt);
13414
13415 return elt;
13416 }
13417
13418 /* The Ada extension of print_subexp (q.v.). */
13419
13420 static void
13421 ada_print_subexp (struct expression *exp, int *pos,
13422 struct ui_file *stream, enum precedence prec)
13423 {
13424 int oplen, nargs, i;
13425 int pc = *pos;
13426 enum exp_opcode op = exp->elts[pc].opcode;
13427
13428 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13429
13430 *pos += oplen;
13431 switch (op)
13432 {
13433 default:
13434 *pos -= oplen;
13435 print_subexp_standard (exp, pos, stream, prec);
13436 return;
13437
13438 case OP_VAR_VALUE:
13439 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13440 return;
13441
13442 case BINOP_IN_BOUNDS:
13443 /* XXX: sprint_subexp */
13444 print_subexp (exp, pos, stream, PREC_SUFFIX);
13445 fputs_filtered (" in ", stream);
13446 print_subexp (exp, pos, stream, PREC_SUFFIX);
13447 fputs_filtered ("'range", stream);
13448 if (exp->elts[pc + 1].longconst > 1)
13449 fprintf_filtered (stream, "(%ld)",
13450 (long) exp->elts[pc + 1].longconst);
13451 return;
13452
13453 case TERNOP_IN_RANGE:
13454 if (prec >= PREC_EQUAL)
13455 fputs_filtered ("(", stream);
13456 /* XXX: sprint_subexp */
13457 print_subexp (exp, pos, stream, PREC_SUFFIX);
13458 fputs_filtered (" in ", stream);
13459 print_subexp (exp, pos, stream, PREC_EQUAL);
13460 fputs_filtered (" .. ", stream);
13461 print_subexp (exp, pos, stream, PREC_EQUAL);
13462 if (prec >= PREC_EQUAL)
13463 fputs_filtered (")", stream);
13464 return;
13465
13466 case OP_ATR_FIRST:
13467 case OP_ATR_LAST:
13468 case OP_ATR_LENGTH:
13469 case OP_ATR_IMAGE:
13470 case OP_ATR_MAX:
13471 case OP_ATR_MIN:
13472 case OP_ATR_MODULUS:
13473 case OP_ATR_POS:
13474 case OP_ATR_SIZE:
13475 case OP_ATR_TAG:
13476 case OP_ATR_VAL:
13477 if (exp->elts[*pos].opcode == OP_TYPE)
13478 {
13479 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13480 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13481 &type_print_raw_options);
13482 *pos += 3;
13483 }
13484 else
13485 print_subexp (exp, pos, stream, PREC_SUFFIX);
13486 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13487 if (nargs > 1)
13488 {
13489 int tem;
13490
13491 for (tem = 1; tem < nargs; tem += 1)
13492 {
13493 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13494 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13495 }
13496 fputs_filtered (")", stream);
13497 }
13498 return;
13499
13500 case UNOP_QUAL:
13501 type_print (exp->elts[pc + 1].type, "", stream, 0);
13502 fputs_filtered ("'(", stream);
13503 print_subexp (exp, pos, stream, PREC_PREFIX);
13504 fputs_filtered (")", stream);
13505 return;
13506
13507 case UNOP_IN_RANGE:
13508 /* XXX: sprint_subexp */
13509 print_subexp (exp, pos, stream, PREC_SUFFIX);
13510 fputs_filtered (" in ", stream);
13511 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13512 &type_print_raw_options);
13513 return;
13514
13515 case OP_DISCRETE_RANGE:
13516 print_subexp (exp, pos, stream, PREC_SUFFIX);
13517 fputs_filtered ("..", stream);
13518 print_subexp (exp, pos, stream, PREC_SUFFIX);
13519 return;
13520
13521 case OP_OTHERS:
13522 fputs_filtered ("others => ", stream);
13523 print_subexp (exp, pos, stream, PREC_SUFFIX);
13524 return;
13525
13526 case OP_CHOICES:
13527 for (i = 0; i < nargs-1; i += 1)
13528 {
13529 if (i > 0)
13530 fputs_filtered ("|", stream);
13531 print_subexp (exp, pos, stream, PREC_SUFFIX);
13532 }
13533 fputs_filtered (" => ", stream);
13534 print_subexp (exp, pos, stream, PREC_SUFFIX);
13535 return;
13536
13537 case OP_POSITIONAL:
13538 print_subexp (exp, pos, stream, PREC_SUFFIX);
13539 return;
13540
13541 case OP_AGGREGATE:
13542 fputs_filtered ("(", stream);
13543 for (i = 0; i < nargs; i += 1)
13544 {
13545 if (i > 0)
13546 fputs_filtered (", ", stream);
13547 print_subexp (exp, pos, stream, PREC_SUFFIX);
13548 }
13549 fputs_filtered (")", stream);
13550 return;
13551 }
13552 }
13553
13554 /* Table mapping opcodes into strings for printing operators
13555 and precedences of the operators. */
13556
13557 static const struct op_print ada_op_print_tab[] = {
13558 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13559 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13560 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13561 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13562 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13563 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13564 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13565 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13566 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13567 {">=", BINOP_GEQ, PREC_ORDER, 0},
13568 {">", BINOP_GTR, PREC_ORDER, 0},
13569 {"<", BINOP_LESS, PREC_ORDER, 0},
13570 {">>", BINOP_RSH, PREC_SHIFT, 0},
13571 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13572 {"+", BINOP_ADD, PREC_ADD, 0},
13573 {"-", BINOP_SUB, PREC_ADD, 0},
13574 {"&", BINOP_CONCAT, PREC_ADD, 0},
13575 {"*", BINOP_MUL, PREC_MUL, 0},
13576 {"/", BINOP_DIV, PREC_MUL, 0},
13577 {"rem", BINOP_REM, PREC_MUL, 0},
13578 {"mod", BINOP_MOD, PREC_MUL, 0},
13579 {"**", BINOP_EXP, PREC_REPEAT, 0},
13580 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13581 {"-", UNOP_NEG, PREC_PREFIX, 0},
13582 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13583 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13584 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13585 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13586 {".all", UNOP_IND, PREC_SUFFIX, 1},
13587 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13588 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13589 {NULL, OP_NULL, PREC_SUFFIX, 0}
13590 };
13591 \f
13592 enum ada_primitive_types {
13593 ada_primitive_type_int,
13594 ada_primitive_type_long,
13595 ada_primitive_type_short,
13596 ada_primitive_type_char,
13597 ada_primitive_type_float,
13598 ada_primitive_type_double,
13599 ada_primitive_type_void,
13600 ada_primitive_type_long_long,
13601 ada_primitive_type_long_double,
13602 ada_primitive_type_natural,
13603 ada_primitive_type_positive,
13604 ada_primitive_type_system_address,
13605 ada_primitive_type_storage_offset,
13606 nr_ada_primitive_types
13607 };
13608
13609 \f
13610 /* Language vector */
13611
13612 static const struct exp_descriptor ada_exp_descriptor = {
13613 ada_print_subexp,
13614 ada_operator_length,
13615 ada_operator_check,
13616 ada_op_name,
13617 ada_dump_subexp_body,
13618 ada_evaluate_subexp
13619 };
13620
13621 /* symbol_name_matcher_ftype adapter for wild_match. */
13622
13623 static bool
13624 do_wild_match (const char *symbol_search_name,
13625 const lookup_name_info &lookup_name,
13626 completion_match_result *comp_match_res)
13627 {
13628 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13629 }
13630
13631 /* symbol_name_matcher_ftype adapter for full_match. */
13632
13633 static bool
13634 do_full_match (const char *symbol_search_name,
13635 const lookup_name_info &lookup_name,
13636 completion_match_result *comp_match_res)
13637 {
13638 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13639 }
13640
13641 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13642
13643 static bool
13644 do_exact_match (const char *symbol_search_name,
13645 const lookup_name_info &lookup_name,
13646 completion_match_result *comp_match_res)
13647 {
13648 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13649 }
13650
13651 /* Build the Ada lookup name for LOOKUP_NAME. */
13652
13653 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13654 {
13655 gdb::string_view user_name = lookup_name.name ();
13656
13657 if (user_name[0] == '<')
13658 {
13659 if (user_name.back () == '>')
13660 m_encoded_name
13661 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13662 else
13663 m_encoded_name
13664 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13665 m_encoded_p = true;
13666 m_verbatim_p = true;
13667 m_wild_match_p = false;
13668 m_standard_p = false;
13669 }
13670 else
13671 {
13672 m_verbatim_p = false;
13673
13674 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13675
13676 if (!m_encoded_p)
13677 {
13678 const char *folded = ada_fold_name (user_name);
13679 m_encoded_name = ada_encode_1 (folded, false);
13680 if (m_encoded_name.empty ())
13681 m_encoded_name = gdb::to_string (user_name);
13682 }
13683 else
13684 m_encoded_name = gdb::to_string (user_name);
13685
13686 /* Handle the 'package Standard' special case. See description
13687 of m_standard_p. */
13688 if (startswith (m_encoded_name.c_str (), "standard__"))
13689 {
13690 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13691 m_standard_p = true;
13692 }
13693 else
13694 m_standard_p = false;
13695
13696 /* If the name contains a ".", then the user is entering a fully
13697 qualified entity name, and the match must not be done in wild
13698 mode. Similarly, if the user wants to complete what looks
13699 like an encoded name, the match must not be done in wild
13700 mode. Also, in the standard__ special case always do
13701 non-wild matching. */
13702 m_wild_match_p
13703 = (lookup_name.match_type () != symbol_name_match_type::FULL
13704 && !m_encoded_p
13705 && !m_standard_p
13706 && user_name.find ('.') == std::string::npos);
13707 }
13708 }
13709
13710 /* symbol_name_matcher_ftype method for Ada. This only handles
13711 completion mode. */
13712
13713 static bool
13714 ada_symbol_name_matches (const char *symbol_search_name,
13715 const lookup_name_info &lookup_name,
13716 completion_match_result *comp_match_res)
13717 {
13718 return lookup_name.ada ().matches (symbol_search_name,
13719 lookup_name.match_type (),
13720 comp_match_res);
13721 }
13722
13723 /* A name matcher that matches the symbol name exactly, with
13724 strcmp. */
13725
13726 static bool
13727 literal_symbol_name_matcher (const char *symbol_search_name,
13728 const lookup_name_info &lookup_name,
13729 completion_match_result *comp_match_res)
13730 {
13731 gdb::string_view name_view = lookup_name.name ();
13732
13733 if (lookup_name.completion_mode ()
13734 ? (strncmp (symbol_search_name, name_view.data (),
13735 name_view.size ()) == 0)
13736 : symbol_search_name == name_view)
13737 {
13738 if (comp_match_res != NULL)
13739 comp_match_res->set_match (symbol_search_name);
13740 return true;
13741 }
13742 else
13743 return false;
13744 }
13745
13746 /* Implement the "get_symbol_name_matcher" language_defn method for
13747 Ada. */
13748
13749 static symbol_name_matcher_ftype *
13750 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13751 {
13752 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13753 return literal_symbol_name_matcher;
13754
13755 if (lookup_name.completion_mode ())
13756 return ada_symbol_name_matches;
13757 else
13758 {
13759 if (lookup_name.ada ().wild_match_p ())
13760 return do_wild_match;
13761 else if (lookup_name.ada ().verbatim_p ())
13762 return do_exact_match;
13763 else
13764 return do_full_match;
13765 }
13766 }
13767
13768 /* Class representing the Ada language. */
13769
13770 class ada_language : public language_defn
13771 {
13772 public:
13773 ada_language ()
13774 : language_defn (language_ada)
13775 { /* Nothing. */ }
13776
13777 /* See language.h. */
13778
13779 const char *name () const override
13780 { return "ada"; }
13781
13782 /* See language.h. */
13783
13784 const char *natural_name () const override
13785 { return "Ada"; }
13786
13787 /* See language.h. */
13788
13789 const std::vector<const char *> &filename_extensions () const override
13790 {
13791 static const std::vector<const char *> extensions
13792 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13793 return extensions;
13794 }
13795
13796 /* Print an array element index using the Ada syntax. */
13797
13798 void print_array_index (struct type *index_type,
13799 LONGEST index,
13800 struct ui_file *stream,
13801 const value_print_options *options) const override
13802 {
13803 struct value *index_value = val_atr (index_type, index);
13804
13805 value_print (index_value, stream, options);
13806 fprintf_filtered (stream, " => ");
13807 }
13808
13809 /* Implement the "read_var_value" language_defn method for Ada. */
13810
13811 struct value *read_var_value (struct symbol *var,
13812 const struct block *var_block,
13813 struct frame_info *frame) const override
13814 {
13815 /* The only case where default_read_var_value is not sufficient
13816 is when VAR is a renaming... */
13817 if (frame != nullptr)
13818 {
13819 const struct block *frame_block = get_frame_block (frame, NULL);
13820 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13821 return ada_read_renaming_var_value (var, frame_block);
13822 }
13823
13824 /* This is a typical case where we expect the default_read_var_value
13825 function to work. */
13826 return language_defn::read_var_value (var, var_block, frame);
13827 }
13828
13829 /* See language.h. */
13830 void language_arch_info (struct gdbarch *gdbarch,
13831 struct language_arch_info *lai) const override
13832 {
13833 const struct builtin_type *builtin = builtin_type (gdbarch);
13834
13835 lai->primitive_type_vector
13836 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13837 struct type *);
13838
13839 lai->primitive_type_vector [ada_primitive_type_int]
13840 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13841 0, "integer");
13842 lai->primitive_type_vector [ada_primitive_type_long]
13843 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13844 0, "long_integer");
13845 lai->primitive_type_vector [ada_primitive_type_short]
13846 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13847 0, "short_integer");
13848 lai->string_char_type
13849 = lai->primitive_type_vector [ada_primitive_type_char]
13850 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13851 lai->primitive_type_vector [ada_primitive_type_float]
13852 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13853 "float", gdbarch_float_format (gdbarch));
13854 lai->primitive_type_vector [ada_primitive_type_double]
13855 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13856 "long_float", gdbarch_double_format (gdbarch));
13857 lai->primitive_type_vector [ada_primitive_type_long_long]
13858 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13859 0, "long_long_integer");
13860 lai->primitive_type_vector [ada_primitive_type_long_double]
13861 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13862 "long_long_float", gdbarch_long_double_format (gdbarch));
13863 lai->primitive_type_vector [ada_primitive_type_natural]
13864 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13865 0, "natural");
13866 lai->primitive_type_vector [ada_primitive_type_positive]
13867 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13868 0, "positive");
13869 lai->primitive_type_vector [ada_primitive_type_void]
13870 = builtin->builtin_void;
13871
13872 lai->primitive_type_vector [ada_primitive_type_system_address]
13873 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13874 "void"));
13875 lai->primitive_type_vector [ada_primitive_type_system_address]
13876 ->set_name ("system__address");
13877
13878 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13879 type. This is a signed integral type whose size is the same as
13880 the size of addresses. */
13881 {
13882 unsigned int addr_length = TYPE_LENGTH
13883 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13884
13885 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13886 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13887 "storage_offset");
13888 }
13889
13890 lai->bool_type_symbol = NULL;
13891 lai->bool_type_default = builtin->builtin_bool;
13892 }
13893
13894 /* See language.h. */
13895
13896 bool iterate_over_symbols
13897 (const struct block *block, const lookup_name_info &name,
13898 domain_enum domain,
13899 gdb::function_view<symbol_found_callback_ftype> callback) const override
13900 {
13901 std::vector<struct block_symbol> results;
13902
13903 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13904 for (block_symbol &sym : results)
13905 {
13906 if (!callback (&sym))
13907 return false;
13908 }
13909
13910 return true;
13911 }
13912
13913 /* See language.h. */
13914 bool sniff_from_mangled_name (const char *mangled,
13915 char **out) const override
13916 {
13917 std::string demangled = ada_decode (mangled);
13918
13919 *out = NULL;
13920
13921 if (demangled != mangled && demangled[0] != '<')
13922 {
13923 /* Set the gsymbol language to Ada, but still return 0.
13924 Two reasons for that:
13925
13926 1. For Ada, we prefer computing the symbol's decoded name
13927 on the fly rather than pre-compute it, in order to save
13928 memory (Ada projects are typically very large).
13929
13930 2. There are some areas in the definition of the GNAT
13931 encoding where, with a bit of bad luck, we might be able
13932 to decode a non-Ada symbol, generating an incorrect
13933 demangled name (Eg: names ending with "TB" for instance
13934 are identified as task bodies and so stripped from
13935 the decoded name returned).
13936
13937 Returning true, here, but not setting *DEMANGLED, helps us get
13938 a little bit of the best of both worlds. Because we're last,
13939 we should not affect any of the other languages that were
13940 able to demangle the symbol before us; we get to correctly
13941 tag Ada symbols as such; and even if we incorrectly tagged a
13942 non-Ada symbol, which should be rare, any routing through the
13943 Ada language should be transparent (Ada tries to behave much
13944 like C/C++ with non-Ada symbols). */
13945 return true;
13946 }
13947
13948 return false;
13949 }
13950
13951 /* See language.h. */
13952
13953 char *demangle_symbol (const char *mangled, int options) const override
13954 {
13955 return ada_la_decode (mangled, options);
13956 }
13957
13958 /* See language.h. */
13959
13960 void print_type (struct type *type, const char *varstring,
13961 struct ui_file *stream, int show, int level,
13962 const struct type_print_options *flags) const override
13963 {
13964 ada_print_type (type, varstring, stream, show, level, flags);
13965 }
13966
13967 /* See language.h. */
13968
13969 const char *word_break_characters (void) const override
13970 {
13971 return ada_completer_word_break_characters;
13972 }
13973
13974 /* See language.h. */
13975
13976 void collect_symbol_completion_matches (completion_tracker &tracker,
13977 complete_symbol_mode mode,
13978 symbol_name_match_type name_match_type,
13979 const char *text, const char *word,
13980 enum type_code code) const override
13981 {
13982 struct symbol *sym;
13983 const struct block *b, *surrounding_static_block = 0;
13984 struct block_iterator iter;
13985
13986 gdb_assert (code == TYPE_CODE_UNDEF);
13987
13988 lookup_name_info lookup_name (text, name_match_type, true);
13989
13990 /* First, look at the partial symtab symbols. */
13991 expand_symtabs_matching (NULL,
13992 lookup_name,
13993 NULL,
13994 NULL,
13995 ALL_DOMAIN);
13996
13997 /* At this point scan through the misc symbol vectors and add each
13998 symbol you find to the list. Eventually we want to ignore
13999 anything that isn't a text symbol (everything else will be
14000 handled by the psymtab code above). */
14001
14002 for (objfile *objfile : current_program_space->objfiles ())
14003 {
14004 for (minimal_symbol *msymbol : objfile->msymbols ())
14005 {
14006 QUIT;
14007
14008 if (completion_skip_symbol (mode, msymbol))
14009 continue;
14010
14011 language symbol_language = msymbol->language ();
14012
14013 /* Ada minimal symbols won't have their language set to Ada. If
14014 we let completion_list_add_name compare using the
14015 default/C-like matcher, then when completing e.g., symbols in a
14016 package named "pck", we'd match internal Ada symbols like
14017 "pckS", which are invalid in an Ada expression, unless you wrap
14018 them in '<' '>' to request a verbatim match.
14019
14020 Unfortunately, some Ada encoded names successfully demangle as
14021 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14022 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14023 with the wrong language set. Paper over that issue here. */
14024 if (symbol_language == language_auto
14025 || symbol_language == language_cplus)
14026 symbol_language = language_ada;
14027
14028 completion_list_add_name (tracker,
14029 symbol_language,
14030 msymbol->linkage_name (),
14031 lookup_name, text, word);
14032 }
14033 }
14034
14035 /* Search upwards from currently selected frame (so that we can
14036 complete on local vars. */
14037
14038 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14039 {
14040 if (!BLOCK_SUPERBLOCK (b))
14041 surrounding_static_block = b; /* For elmin of dups */
14042
14043 ALL_BLOCK_SYMBOLS (b, iter, sym)
14044 {
14045 if (completion_skip_symbol (mode, sym))
14046 continue;
14047
14048 completion_list_add_name (tracker,
14049 sym->language (),
14050 sym->linkage_name (),
14051 lookup_name, text, word);
14052 }
14053 }
14054
14055 /* Go through the symtabs and check the externs and statics for
14056 symbols which match. */
14057
14058 for (objfile *objfile : current_program_space->objfiles ())
14059 {
14060 for (compunit_symtab *s : objfile->compunits ())
14061 {
14062 QUIT;
14063 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14064 ALL_BLOCK_SYMBOLS (b, iter, sym)
14065 {
14066 if (completion_skip_symbol (mode, sym))
14067 continue;
14068
14069 completion_list_add_name (tracker,
14070 sym->language (),
14071 sym->linkage_name (),
14072 lookup_name, text, word);
14073 }
14074 }
14075 }
14076
14077 for (objfile *objfile : current_program_space->objfiles ())
14078 {
14079 for (compunit_symtab *s : objfile->compunits ())
14080 {
14081 QUIT;
14082 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14083 /* Don't do this block twice. */
14084 if (b == surrounding_static_block)
14085 continue;
14086 ALL_BLOCK_SYMBOLS (b, iter, sym)
14087 {
14088 if (completion_skip_symbol (mode, sym))
14089 continue;
14090
14091 completion_list_add_name (tracker,
14092 sym->language (),
14093 sym->linkage_name (),
14094 lookup_name, text, word);
14095 }
14096 }
14097 }
14098 }
14099
14100 /* See language.h. */
14101
14102 gdb::unique_xmalloc_ptr<char> watch_location_expression
14103 (struct type *type, CORE_ADDR addr) const override
14104 {
14105 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14106 std::string name = type_to_string (type);
14107 return gdb::unique_xmalloc_ptr<char>
14108 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14109 }
14110
14111 /* See language.h. */
14112
14113 void value_print (struct value *val, struct ui_file *stream,
14114 const struct value_print_options *options) const override
14115 {
14116 return ada_value_print (val, stream, options);
14117 }
14118
14119 /* See language.h. */
14120
14121 void value_print_inner
14122 (struct value *val, struct ui_file *stream, int recurse,
14123 const struct value_print_options *options) const override
14124 {
14125 return ada_value_print_inner (val, stream, recurse, options);
14126 }
14127
14128 /* See language.h. */
14129
14130 struct block_symbol lookup_symbol_nonlocal
14131 (const char *name, const struct block *block,
14132 const domain_enum domain) const override
14133 {
14134 struct block_symbol sym;
14135
14136 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14137 if (sym.symbol != NULL)
14138 return sym;
14139
14140 /* If we haven't found a match at this point, try the primitive
14141 types. In other languages, this search is performed before
14142 searching for global symbols in order to short-circuit that
14143 global-symbol search if it happens that the name corresponds
14144 to a primitive type. But we cannot do the same in Ada, because
14145 it is perfectly legitimate for a program to declare a type which
14146 has the same name as a standard type. If looking up a type in
14147 that situation, we have traditionally ignored the primitive type
14148 in favor of user-defined types. This is why, unlike most other
14149 languages, we search the primitive types this late and only after
14150 having searched the global symbols without success. */
14151
14152 if (domain == VAR_DOMAIN)
14153 {
14154 struct gdbarch *gdbarch;
14155
14156 if (block == NULL)
14157 gdbarch = target_gdbarch ();
14158 else
14159 gdbarch = block_gdbarch (block);
14160 sym.symbol
14161 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14162 if (sym.symbol != NULL)
14163 return sym;
14164 }
14165
14166 return {};
14167 }
14168
14169 /* See language.h. */
14170
14171 int parser (struct parser_state *ps) const override
14172 {
14173 warnings_issued = 0;
14174 return ada_parse (ps);
14175 }
14176
14177 /* See language.h.
14178
14179 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14180 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14181 namespace) and converts operators that are user-defined into
14182 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14183 a preferred result type [at the moment, only type void has any
14184 effect---causing procedures to be preferred over functions in calls].
14185 A null CONTEXT_TYPE indicates that a non-void return type is
14186 preferred. May change (expand) *EXP. */
14187
14188 void post_parser (expression_up *expp, int void_context_p, int completing,
14189 innermost_block_tracker *tracker) const override
14190 {
14191 struct type *context_type = NULL;
14192 int pc = 0;
14193
14194 if (void_context_p)
14195 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14196
14197 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14198 }
14199
14200 /* See language.h. */
14201
14202 void emitchar (int ch, struct type *chtype,
14203 struct ui_file *stream, int quoter) const override
14204 {
14205 ada_emit_char (ch, chtype, stream, quoter, 1);
14206 }
14207
14208 /* See language.h. */
14209
14210 void printchar (int ch, struct type *chtype,
14211 struct ui_file *stream) const override
14212 {
14213 ada_printchar (ch, chtype, stream);
14214 }
14215
14216 /* See language.h. */
14217
14218 void printstr (struct ui_file *stream, struct type *elttype,
14219 const gdb_byte *string, unsigned int length,
14220 const char *encoding, int force_ellipses,
14221 const struct value_print_options *options) const override
14222 {
14223 ada_printstr (stream, elttype, string, length, encoding,
14224 force_ellipses, options);
14225 }
14226
14227 /* See language.h. */
14228
14229 void print_typedef (struct type *type, struct symbol *new_symbol,
14230 struct ui_file *stream) const override
14231 {
14232 ada_print_typedef (type, new_symbol, stream);
14233 }
14234
14235 /* See language.h. */
14236
14237 bool is_string_type_p (struct type *type) const override
14238 {
14239 return ada_is_string_type (type);
14240 }
14241
14242 /* See language.h. */
14243
14244 const char *struct_too_deep_ellipsis () const override
14245 { return "(...)"; }
14246
14247 /* See language.h. */
14248
14249 bool c_style_arrays_p () const override
14250 { return false; }
14251
14252 /* See language.h. */
14253
14254 bool store_sym_names_in_linkage_form_p () const override
14255 { return true; }
14256
14257 /* See language.h. */
14258
14259 const struct lang_varobj_ops *varobj_ops () const override
14260 { return &ada_varobj_ops; }
14261
14262 /* See language.h. */
14263
14264 const struct exp_descriptor *expression_ops () const override
14265 { return &ada_exp_descriptor; }
14266
14267 /* See language.h. */
14268
14269 const struct op_print *opcode_print_table () const override
14270 { return ada_op_print_tab; }
14271
14272 protected:
14273 /* See language.h. */
14274
14275 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14276 (const lookup_name_info &lookup_name) const override
14277 {
14278 return ada_get_symbol_name_matcher (lookup_name);
14279 }
14280 };
14281
14282 /* Single instance of the Ada language class. */
14283
14284 static ada_language ada_language_defn;
14285
14286 /* Command-list for the "set/show ada" prefix command. */
14287 static struct cmd_list_element *set_ada_list;
14288 static struct cmd_list_element *show_ada_list;
14289
14290 static void
14291 initialize_ada_catchpoint_ops (void)
14292 {
14293 struct breakpoint_ops *ops;
14294
14295 initialize_breakpoint_ops ();
14296
14297 ops = &catch_exception_breakpoint_ops;
14298 *ops = bkpt_breakpoint_ops;
14299 ops->allocate_location = allocate_location_exception;
14300 ops->re_set = re_set_exception;
14301 ops->check_status = check_status_exception;
14302 ops->print_it = print_it_exception;
14303 ops->print_one = print_one_exception;
14304 ops->print_mention = print_mention_exception;
14305 ops->print_recreate = print_recreate_exception;
14306
14307 ops = &catch_exception_unhandled_breakpoint_ops;
14308 *ops = bkpt_breakpoint_ops;
14309 ops->allocate_location = allocate_location_exception;
14310 ops->re_set = re_set_exception;
14311 ops->check_status = check_status_exception;
14312 ops->print_it = print_it_exception;
14313 ops->print_one = print_one_exception;
14314 ops->print_mention = print_mention_exception;
14315 ops->print_recreate = print_recreate_exception;
14316
14317 ops = &catch_assert_breakpoint_ops;
14318 *ops = bkpt_breakpoint_ops;
14319 ops->allocate_location = allocate_location_exception;
14320 ops->re_set = re_set_exception;
14321 ops->check_status = check_status_exception;
14322 ops->print_it = print_it_exception;
14323 ops->print_one = print_one_exception;
14324 ops->print_mention = print_mention_exception;
14325 ops->print_recreate = print_recreate_exception;
14326
14327 ops = &catch_handlers_breakpoint_ops;
14328 *ops = bkpt_breakpoint_ops;
14329 ops->allocate_location = allocate_location_exception;
14330 ops->re_set = re_set_exception;
14331 ops->check_status = check_status_exception;
14332 ops->print_it = print_it_exception;
14333 ops->print_one = print_one_exception;
14334 ops->print_mention = print_mention_exception;
14335 ops->print_recreate = print_recreate_exception;
14336 }
14337
14338 /* This module's 'new_objfile' observer. */
14339
14340 static void
14341 ada_new_objfile_observer (struct objfile *objfile)
14342 {
14343 ada_clear_symbol_cache ();
14344 }
14345
14346 /* This module's 'free_objfile' observer. */
14347
14348 static void
14349 ada_free_objfile_observer (struct objfile *objfile)
14350 {
14351 ada_clear_symbol_cache ();
14352 }
14353
14354 void _initialize_ada_language ();
14355 void
14356 _initialize_ada_language ()
14357 {
14358 initialize_ada_catchpoint_ops ();
14359
14360 add_basic_prefix_cmd ("ada", no_class,
14361 _("Prefix command for changing Ada-specific settings."),
14362 &set_ada_list, "set ada ", 0, &setlist);
14363
14364 add_show_prefix_cmd ("ada", no_class,
14365 _("Generic command for showing Ada-specific settings."),
14366 &show_ada_list, "show ada ", 0, &showlist);
14367
14368 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14369 &trust_pad_over_xvs, _("\
14370 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14371 Show whether an optimization trusting PAD types over XVS types is activated."),
14372 _("\
14373 This is related to the encoding used by the GNAT compiler. The debugger\n\
14374 should normally trust the contents of PAD types, but certain older versions\n\
14375 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14376 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14377 work around this bug. It is always safe to turn this option \"off\", but\n\
14378 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14379 this option to \"off\" unless necessary."),
14380 NULL, NULL, &set_ada_list, &show_ada_list);
14381
14382 add_setshow_boolean_cmd ("print-signatures", class_vars,
14383 &print_signatures, _("\
14384 Enable or disable the output of formal and return types for functions in the \
14385 overloads selection menu."), _("\
14386 Show whether the output of formal and return types for functions in the \
14387 overloads selection menu is activated."),
14388 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14389
14390 add_catch_command ("exception", _("\
14391 Catch Ada exceptions, when raised.\n\
14392 Usage: catch exception [ARG] [if CONDITION]\n\
14393 Without any argument, stop when any Ada exception is raised.\n\
14394 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14395 being raised does not have a handler (and will therefore lead to the task's\n\
14396 termination).\n\
14397 Otherwise, the catchpoint only stops when the name of the exception being\n\
14398 raised is the same as ARG.\n\
14399 CONDITION is a boolean expression that is evaluated to see whether the\n\
14400 exception should cause a stop."),
14401 catch_ada_exception_command,
14402 catch_ada_completer,
14403 CATCH_PERMANENT,
14404 CATCH_TEMPORARY);
14405
14406 add_catch_command ("handlers", _("\
14407 Catch Ada exceptions, when handled.\n\
14408 Usage: catch handlers [ARG] [if CONDITION]\n\
14409 Without any argument, stop when any Ada exception is handled.\n\
14410 With an argument, catch only exceptions with the given name.\n\
14411 CONDITION is a boolean expression that is evaluated to see whether the\n\
14412 exception should cause a stop."),
14413 catch_ada_handlers_command,
14414 catch_ada_completer,
14415 CATCH_PERMANENT,
14416 CATCH_TEMPORARY);
14417 add_catch_command ("assert", _("\
14418 Catch failed Ada assertions, when raised.\n\
14419 Usage: catch assert [if CONDITION]\n\
14420 CONDITION is a boolean expression that is evaluated to see whether the\n\
14421 exception should cause a stop."),
14422 catch_assert_command,
14423 NULL,
14424 CATCH_PERMANENT,
14425 CATCH_TEMPORARY);
14426
14427 varsize_limit = 65536;
14428 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14429 &varsize_limit, _("\
14430 Set the maximum number of bytes allowed in a variable-size object."), _("\
14431 Show the maximum number of bytes allowed in a variable-size object."), _("\
14432 Attempts to access an object whose size is not a compile-time constant\n\
14433 and exceeds this limit will cause an error."),
14434 NULL, NULL, &setlist, &showlist);
14435
14436 add_info ("exceptions", info_exceptions_command,
14437 _("\
14438 List all Ada exception names.\n\
14439 Usage: info exceptions [REGEXP]\n\
14440 If a regular expression is passed as an argument, only those matching\n\
14441 the regular expression are listed."));
14442
14443 add_basic_prefix_cmd ("ada", class_maintenance,
14444 _("Set Ada maintenance-related variables."),
14445 &maint_set_ada_cmdlist, "maintenance set ada ",
14446 0/*allow-unknown*/, &maintenance_set_cmdlist);
14447
14448 add_show_prefix_cmd ("ada", class_maintenance,
14449 _("Show Ada maintenance-related variables."),
14450 &maint_show_ada_cmdlist, "maintenance show ada ",
14451 0/*allow-unknown*/, &maintenance_show_cmdlist);
14452
14453 add_setshow_boolean_cmd
14454 ("ignore-descriptive-types", class_maintenance,
14455 &ada_ignore_descriptive_types_p,
14456 _("Set whether descriptive types generated by GNAT should be ignored."),
14457 _("Show whether descriptive types generated by GNAT should be ignored."),
14458 _("\
14459 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14460 DWARF attribute."),
14461 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14462
14463 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14464 NULL, xcalloc, xfree);
14465
14466 /* The ada-lang observers. */
14467 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14468 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14469 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14470 }
This page took 0.315768 seconds and 5 git commands to generate.