* jv-lang.c (enum java_primitive_types): New type.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int is_digits_suffix (const char *str);
210
211 static int wild_match (const char *, int, const char *);
212
213 static struct value *ada_coerce_ref (struct value *);
214
215 static LONGEST pos_atr (struct value *);
216
217 static struct value *value_pos_atr (struct value *);
218
219 static struct value *value_val_atr (struct type *, struct value *);
220
221 static struct symbol *standard_lookup (const char *, const struct block *,
222 domain_enum);
223
224 static struct value *ada_search_struct_field (char *, struct value *, int,
225 struct type *);
226
227 static struct value *ada_value_primitive_field (struct value *, int, int,
228 struct type *);
229
230 static int find_struct_field (char *, struct type *, int,
231 struct type **, int *, int *, int *, int *);
232
233 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 struct value *);
235
236 static struct value *ada_to_fixed_value (struct value *);
237
238 static int ada_resolve_function (struct ada_symbol_info *, int,
239 struct value **, int, const char *,
240 struct type *);
241
242 static struct value *ada_coerce_to_simple_array (struct value *);
243
244 static int ada_is_direct_array_type (struct type *);
245
246 static void ada_language_arch_info (struct gdbarch *,
247 struct language_arch_info *);
248
249 static void check_size (const struct type *);
250
251 static struct value *ada_index_struct_field (int, struct value *, int,
252 struct type *);
253
254 static struct value *assign_aggregate (struct value *, struct value *,
255 struct expression *, int *, enum noside);
256
257 static void aggregate_assign_from_choices (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *,
260 int, LONGEST, LONGEST);
261
262 static void aggregate_assign_positional (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int *, int,
265 LONGEST, LONGEST);
266
267
268 static void aggregate_assign_others (struct value *, struct value *,
269 struct expression *,
270 int *, LONGEST *, int, LONGEST, LONGEST);
271
272
273 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274
275
276 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 int *, enum noside);
278
279 static void ada_forward_operator_length (struct expression *, int, int *,
280 int *);
281 \f
282
283
284 /* Maximum-sized dynamic type. */
285 static unsigned int varsize_limit;
286
287 /* FIXME: brobecker/2003-09-17: No longer a const because it is
288 returned by a function that does not return a const char *. */
289 static char *ada_completer_word_break_characters =
290 #ifdef VMS
291 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 #else
293 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 #endif
295
296 /* The name of the symbol to use to get the name of the main subprogram. */
297 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
298 = "__gnat_ada_main_program_name";
299
300 /* Limit on the number of warnings to raise per expression evaluation. */
301 static int warning_limit = 2;
302
303 /* Number of warning messages issued; reset to 0 by cleanups after
304 expression evaluation. */
305 static int warnings_issued = 0;
306
307 static const char *known_runtime_file_name_patterns[] = {
308 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 };
310
311 static const char *known_auxiliary_function_name_patterns[] = {
312 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 };
314
315 /* Space for allocating results of ada_lookup_symbol_list. */
316 static struct obstack symbol_list_obstack;
317
318 /* Utilities */
319
320 /* Given DECODED_NAME a string holding a symbol name in its
321 decoded form (ie using the Ada dotted notation), returns
322 its unqualified name. */
323
324 static const char *
325 ada_unqualified_name (const char *decoded_name)
326 {
327 const char *result = strrchr (decoded_name, '.');
328
329 if (result != NULL)
330 result++; /* Skip the dot... */
331 else
332 result = decoded_name;
333
334 return result;
335 }
336
337 /* Return a string starting with '<', followed by STR, and '>'.
338 The result is good until the next call. */
339
340 static char *
341 add_angle_brackets (const char *str)
342 {
343 static char *result = NULL;
344
345 xfree (result);
346 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347
348 sprintf (result, "<%s>", str);
349 return result;
350 }
351
352 static char *
353 ada_get_gdb_completer_word_break_characters (void)
354 {
355 return ada_completer_word_break_characters;
356 }
357
358 /* Print an array element index using the Ada syntax. */
359
360 static void
361 ada_print_array_index (struct value *index_value, struct ui_file *stream,
362 int format, enum val_prettyprint pretty)
363 {
364 LA_VALUE_PRINT (index_value, stream, format, pretty);
365 fprintf_filtered (stream, " => ");
366 }
367
368 /* Read the string located at ADDR from the inferior and store the
369 result into BUF. */
370
371 static void
372 extract_string (CORE_ADDR addr, char *buf)
373 {
374 int char_index = 0;
375
376 /* Loop, reading one byte at a time, until we reach the '\000'
377 end-of-string marker. */
378 do
379 {
380 target_read_memory (addr + char_index * sizeof (char),
381 buf + char_index * sizeof (char), sizeof (char));
382 char_index++;
383 }
384 while (buf[char_index - 1] != '\000');
385 }
386
387 /* Assuming VECT points to an array of *SIZE objects of size
388 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
389 updating *SIZE as necessary and returning the (new) array. */
390
391 void *
392 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 {
394 if (*size < min_size)
395 {
396 *size *= 2;
397 if (*size < min_size)
398 *size = min_size;
399 vect = xrealloc (vect, *size * element_size);
400 }
401 return vect;
402 }
403
404 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
405 suffix of FIELD_NAME beginning "___". */
406
407 static int
408 field_name_match (const char *field_name, const char *target)
409 {
410 int len = strlen (target);
411 return
412 (strncmp (field_name, target, len) == 0
413 && (field_name[len] == '\0'
414 || (strncmp (field_name + len, "___", 3) == 0
415 && strcmp (field_name + strlen (field_name) - 6,
416 "___XVN") != 0)));
417 }
418
419
420 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
421 FIELD_NAME, and return its index. This function also handles fields
422 whose name have ___ suffixes because the compiler sometimes alters
423 their name by adding such a suffix to represent fields with certain
424 constraints. If the field could not be found, return a negative
425 number if MAYBE_MISSING is set. Otherwise raise an error. */
426
427 int
428 ada_get_field_index (const struct type *type, const char *field_name,
429 int maybe_missing)
430 {
431 int fieldno;
432 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
433 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
434 return fieldno;
435
436 if (!maybe_missing)
437 error (_("Unable to find field %s in struct %s. Aborting"),
438 field_name, TYPE_NAME (type));
439
440 return -1;
441 }
442
443 /* The length of the prefix of NAME prior to any "___" suffix. */
444
445 int
446 ada_name_prefix_len (const char *name)
447 {
448 if (name == NULL)
449 return 0;
450 else
451 {
452 const char *p = strstr (name, "___");
453 if (p == NULL)
454 return strlen (name);
455 else
456 return p - name;
457 }
458 }
459
460 /* Return non-zero if SUFFIX is a suffix of STR.
461 Return zero if STR is null. */
462
463 static int
464 is_suffix (const char *str, const char *suffix)
465 {
466 int len1, len2;
467 if (str == NULL)
468 return 0;
469 len1 = strlen (str);
470 len2 = strlen (suffix);
471 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
472 }
473
474 /* Create a value of type TYPE whose contents come from VALADDR, if it
475 is non-null, and whose memory address (in the inferior) is
476 ADDRESS. */
477
478 struct value *
479 value_from_contents_and_address (struct type *type,
480 const gdb_byte *valaddr,
481 CORE_ADDR address)
482 {
483 struct value *v = allocate_value (type);
484 if (valaddr == NULL)
485 set_value_lazy (v, 1);
486 else
487 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
488 VALUE_ADDRESS (v) = address;
489 if (address != 0)
490 VALUE_LVAL (v) = lval_memory;
491 return v;
492 }
493
494 /* The contents of value VAL, treated as a value of type TYPE. The
495 result is an lval in memory if VAL is. */
496
497 static struct value *
498 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 {
500 type = ada_check_typedef (type);
501 if (value_type (val) == type)
502 return val;
503 else
504 {
505 struct value *result;
506
507 /* Make sure that the object size is not unreasonable before
508 trying to allocate some memory for it. */
509 check_size (type);
510
511 result = allocate_value (type);
512 VALUE_LVAL (result) = VALUE_LVAL (val);
513 set_value_bitsize (result, value_bitsize (val));
514 set_value_bitpos (result, value_bitpos (val));
515 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
516 if (value_lazy (val)
517 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
518 set_value_lazy (result, 1);
519 else
520 memcpy (value_contents_raw (result), value_contents (val),
521 TYPE_LENGTH (type));
522 return result;
523 }
524 }
525
526 static const gdb_byte *
527 cond_offset_host (const gdb_byte *valaddr, long offset)
528 {
529 if (valaddr == NULL)
530 return NULL;
531 else
532 return valaddr + offset;
533 }
534
535 static CORE_ADDR
536 cond_offset_target (CORE_ADDR address, long offset)
537 {
538 if (address == 0)
539 return 0;
540 else
541 return address + offset;
542 }
543
544 /* Issue a warning (as for the definition of warning in utils.c, but
545 with exactly one argument rather than ...), unless the limit on the
546 number of warnings has passed during the evaluation of the current
547 expression. */
548
549 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
550 provided by "complaint". */
551 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552
553 static void
554 lim_warning (const char *format, ...)
555 {
556 va_list args;
557 va_start (args, format);
558
559 warnings_issued += 1;
560 if (warnings_issued <= warning_limit)
561 vwarning (format, args);
562
563 va_end (args);
564 }
565
566 /* Issue an error if the size of an object of type T is unreasonable,
567 i.e. if it would be a bad idea to allocate a value of this type in
568 GDB. */
569
570 static void
571 check_size (const struct type *type)
572 {
573 if (TYPE_LENGTH (type) > varsize_limit)
574 error (_("object size is larger than varsize-limit"));
575 }
576
577
578 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
579 gdbtypes.h, but some of the necessary definitions in that file
580 seem to have gone missing. */
581
582 /* Maximum value of a SIZE-byte signed integer type. */
583 static LONGEST
584 max_of_size (int size)
585 {
586 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
587 return top_bit | (top_bit - 1);
588 }
589
590 /* Minimum value of a SIZE-byte signed integer type. */
591 static LONGEST
592 min_of_size (int size)
593 {
594 return -max_of_size (size) - 1;
595 }
596
597 /* Maximum value of a SIZE-byte unsigned integer type. */
598 static ULONGEST
599 umax_of_size (int size)
600 {
601 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
602 return top_bit | (top_bit - 1);
603 }
604
605 /* Maximum value of integral type T, as a signed quantity. */
606 static LONGEST
607 max_of_type (struct type *t)
608 {
609 if (TYPE_UNSIGNED (t))
610 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 else
612 return max_of_size (TYPE_LENGTH (t));
613 }
614
615 /* Minimum value of integral type T, as a signed quantity. */
616 static LONGEST
617 min_of_type (struct type *t)
618 {
619 if (TYPE_UNSIGNED (t))
620 return 0;
621 else
622 return min_of_size (TYPE_LENGTH (t));
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static LONGEST
627 discrete_type_high_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return TYPE_HIGH_BOUND (type);
633 case TYPE_CODE_ENUM:
634 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
635 case TYPE_CODE_BOOL:
636 return 1;
637 case TYPE_CODE_CHAR:
638 case TYPE_CODE_INT:
639 return max_of_type (type);
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static LONGEST
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return TYPE_LOW_BOUND (type);
653 case TYPE_CODE_ENUM:
654 return TYPE_FIELD_BITPOS (type, 0);
655 case TYPE_CODE_BOOL:
656 return 0;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return min_of_type (type);
660 default:
661 error (_("Unexpected type in discrete_type_low_bound."));
662 }
663 }
664
665 /* The identity on non-range types. For range types, the underlying
666 non-range scalar type. */
667
668 static struct type *
669 base_type (struct type *type)
670 {
671 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
672 {
673 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
674 return type;
675 type = TYPE_TARGET_TYPE (type);
676 }
677 return type;
678 }
679 \f
680
681 /* Language Selection */
682
683 /* If the main program is in Ada, return language_ada, otherwise return LANG
684 (the main program is in Ada iif the adainit symbol is found).
685
686 MAIN_PST is not used. */
687
688 enum language
689 ada_update_initial_language (enum language lang,
690 struct partial_symtab *main_pst)
691 {
692 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
693 (struct objfile *) NULL) != NULL)
694 return language_ada;
695
696 return lang;
697 }
698
699 /* If the main procedure is written in Ada, then return its name.
700 The result is good until the next call. Return NULL if the main
701 procedure doesn't appear to be in Ada. */
702
703 char *
704 ada_main_name (void)
705 {
706 struct minimal_symbol *msym;
707 CORE_ADDR main_program_name_addr;
708 static char main_program_name[1024];
709
710 /* For Ada, the name of the main procedure is stored in a specific
711 string constant, generated by the binder. Look for that symbol,
712 extract its address, and then read that string. If we didn't find
713 that string, then most probably the main procedure is not written
714 in Ada. */
715 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716
717 if (msym != NULL)
718 {
719 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
720 if (main_program_name_addr == 0)
721 error (_("Invalid address for Ada main program name."));
722
723 extract_string (main_program_name_addr, main_program_name);
724 return main_program_name;
725 }
726
727 /* The main procedure doesn't seem to be in Ada. */
728 return NULL;
729 }
730 \f
731 /* Symbols */
732
733 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 of NULLs. */
735
736 const struct ada_opname_map ada_opname_table[] = {
737 {"Oadd", "\"+\"", BINOP_ADD},
738 {"Osubtract", "\"-\"", BINOP_SUB},
739 {"Omultiply", "\"*\"", BINOP_MUL},
740 {"Odivide", "\"/\"", BINOP_DIV},
741 {"Omod", "\"mod\"", BINOP_MOD},
742 {"Orem", "\"rem\"", BINOP_REM},
743 {"Oexpon", "\"**\"", BINOP_EXP},
744 {"Olt", "\"<\"", BINOP_LESS},
745 {"Ole", "\"<=\"", BINOP_LEQ},
746 {"Ogt", "\">\"", BINOP_GTR},
747 {"Oge", "\">=\"", BINOP_GEQ},
748 {"Oeq", "\"=\"", BINOP_EQUAL},
749 {"One", "\"/=\"", BINOP_NOTEQUAL},
750 {"Oand", "\"and\"", BINOP_BITWISE_AND},
751 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
752 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
753 {"Oconcat", "\"&\"", BINOP_CONCAT},
754 {"Oabs", "\"abs\"", UNOP_ABS},
755 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
756 {"Oadd", "\"+\"", UNOP_PLUS},
757 {"Osubtract", "\"-\"", UNOP_NEG},
758 {NULL, NULL}
759 };
760
761 /* Return non-zero if STR should be suppressed in info listings. */
762
763 static int
764 is_suppressed_name (const char *str)
765 {
766 if (strncmp (str, "_ada_", 5) == 0)
767 str += 5;
768 if (str[0] == '_' || str[0] == '\000')
769 return 1;
770 else
771 {
772 const char *p;
773 const char *suffix = strstr (str, "___");
774 if (suffix != NULL && suffix[3] != 'X')
775 return 1;
776 if (suffix == NULL)
777 suffix = str + strlen (str);
778 for (p = suffix - 1; p != str; p -= 1)
779 if (isupper (*p))
780 {
781 int i;
782 if (p[0] == 'X' && p[-1] != '_')
783 goto OK;
784 if (*p != 'O')
785 return 1;
786 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
787 if (strncmp (ada_opname_table[i].encoded, p,
788 strlen (ada_opname_table[i].encoded)) == 0)
789 goto OK;
790 return 1;
791 OK:;
792 }
793 return 0;
794 }
795 }
796
797 /* The "encoded" form of DECODED, according to GNAT conventions.
798 The result is valid until the next call to ada_encode. */
799
800 char *
801 ada_encode (const char *decoded)
802 {
803 static char *encoding_buffer = NULL;
804 static size_t encoding_buffer_size = 0;
805 const char *p;
806 int k;
807
808 if (decoded == NULL)
809 return NULL;
810
811 GROW_VECT (encoding_buffer, encoding_buffer_size,
812 2 * strlen (decoded) + 10);
813
814 k = 0;
815 for (p = decoded; *p != '\0'; p += 1)
816 {
817 if (!ADA_RETAIN_DOTS && *p == '.')
818 {
819 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
820 k += 2;
821 }
822 else if (*p == '"')
823 {
824 const struct ada_opname_map *mapping;
825
826 for (mapping = ada_opname_table;
827 mapping->encoded != NULL
828 && strncmp (mapping->decoded, p,
829 strlen (mapping->decoded)) != 0; mapping += 1)
830 ;
831 if (mapping->encoded == NULL)
832 error (_("invalid Ada operator name: %s"), p);
833 strcpy (encoding_buffer + k, mapping->encoded);
834 k += strlen (mapping->encoded);
835 break;
836 }
837 else
838 {
839 encoding_buffer[k] = *p;
840 k += 1;
841 }
842 }
843
844 encoding_buffer[k] = '\0';
845 return encoding_buffer;
846 }
847
848 /* Return NAME folded to lower case, or, if surrounded by single
849 quotes, unfolded, but with the quotes stripped away. Result good
850 to next call. */
851
852 char *
853 ada_fold_name (const char *name)
854 {
855 static char *fold_buffer = NULL;
856 static size_t fold_buffer_size = 0;
857
858 int len = strlen (name);
859 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
860
861 if (name[0] == '\'')
862 {
863 strncpy (fold_buffer, name + 1, len - 2);
864 fold_buffer[len - 2] = '\000';
865 }
866 else
867 {
868 int i;
869 for (i = 0; i <= len; i += 1)
870 fold_buffer[i] = tolower (name[i]);
871 }
872
873 return fold_buffer;
874 }
875
876 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
877
878 static int
879 is_lower_alphanum (const char c)
880 {
881 return (isdigit (c) || (isalpha (c) && islower (c)));
882 }
883
884 /* Remove either of these suffixes:
885 . .{DIGIT}+
886 . ${DIGIT}+
887 . ___{DIGIT}+
888 . __{DIGIT}+.
889 These are suffixes introduced by the compiler for entities such as
890 nested subprogram for instance, in order to avoid name clashes.
891 They do not serve any purpose for the debugger. */
892
893 static void
894 ada_remove_trailing_digits (const char *encoded, int *len)
895 {
896 if (*len > 1 && isdigit (encoded[*len - 1]))
897 {
898 int i = *len - 2;
899 while (i > 0 && isdigit (encoded[i]))
900 i--;
901 if (i >= 0 && encoded[i] == '.')
902 *len = i;
903 else if (i >= 0 && encoded[i] == '$')
904 *len = i;
905 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
906 *len = i - 2;
907 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
908 *len = i - 1;
909 }
910 }
911
912 /* Remove the suffix introduced by the compiler for protected object
913 subprograms. */
914
915 static void
916 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
917 {
918 /* Remove trailing N. */
919
920 /* Protected entry subprograms are broken into two
921 separate subprograms: The first one is unprotected, and has
922 a 'N' suffix; the second is the protected version, and has
923 the 'P' suffix. The second calls the first one after handling
924 the protection. Since the P subprograms are internally generated,
925 we leave these names undecoded, giving the user a clue that this
926 entity is internal. */
927
928 if (*len > 1
929 && encoded[*len - 1] == 'N'
930 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 *len = *len - 1;
932 }
933
934 /* If ENCODED follows the GNAT entity encoding conventions, then return
935 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 replaced by ENCODED.
937
938 The resulting string is valid until the next call of ada_decode.
939 If the string is unchanged by decoding, the original string pointer
940 is returned. */
941
942 const char *
943 ada_decode (const char *encoded)
944 {
945 int i, j;
946 int len0;
947 const char *p;
948 char *decoded;
949 int at_start_name;
950 static char *decoding_buffer = NULL;
951 static size_t decoding_buffer_size = 0;
952
953 /* The name of the Ada main procedure starts with "_ada_".
954 This prefix is not part of the decoded name, so skip this part
955 if we see this prefix. */
956 if (strncmp (encoded, "_ada_", 5) == 0)
957 encoded += 5;
958
959 /* If the name starts with '_', then it is not a properly encoded
960 name, so do not attempt to decode it. Similarly, if the name
961 starts with '<', the name should not be decoded. */
962 if (encoded[0] == '_' || encoded[0] == '<')
963 goto Suppress;
964
965 len0 = strlen (encoded);
966
967 ada_remove_trailing_digits (encoded, &len0);
968 ada_remove_po_subprogram_suffix (encoded, &len0);
969
970 /* Remove the ___X.* suffix if present. Do not forget to verify that
971 the suffix is located before the current "end" of ENCODED. We want
972 to avoid re-matching parts of ENCODED that have previously been
973 marked as discarded (by decrementing LEN0). */
974 p = strstr (encoded, "___");
975 if (p != NULL && p - encoded < len0 - 3)
976 {
977 if (p[3] == 'X')
978 len0 = p - encoded;
979 else
980 goto Suppress;
981 }
982
983 /* Remove any trailing TKB suffix. It tells us that this symbol
984 is for the body of a task, but that information does not actually
985 appear in the decoded name. */
986
987 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
988 len0 -= 3;
989
990 /* Remove trailing "B" suffixes. */
991 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
992
993 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
994 len0 -= 1;
995
996 /* Make decoded big enough for possible expansion by operator name. */
997
998 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
999 decoded = decoding_buffer;
1000
1001 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1002
1003 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1004 {
1005 i = len0 - 2;
1006 while ((i >= 0 && isdigit (encoded[i]))
1007 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1008 i -= 1;
1009 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1010 len0 = i - 1;
1011 else if (encoded[i] == '$')
1012 len0 = i;
1013 }
1014
1015 /* The first few characters that are not alphabetic are not part
1016 of any encoding we use, so we can copy them over verbatim. */
1017
1018 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1019 decoded[j] = encoded[i];
1020
1021 at_start_name = 1;
1022 while (i < len0)
1023 {
1024 /* Is this a symbol function? */
1025 if (at_start_name && encoded[i] == 'O')
1026 {
1027 int k;
1028 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1029 {
1030 int op_len = strlen (ada_opname_table[k].encoded);
1031 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1032 op_len - 1) == 0)
1033 && !isalnum (encoded[i + op_len]))
1034 {
1035 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 at_start_name = 0;
1037 i += op_len;
1038 j += strlen (ada_opname_table[k].decoded);
1039 break;
1040 }
1041 }
1042 if (ada_opname_table[k].encoded != NULL)
1043 continue;
1044 }
1045 at_start_name = 0;
1046
1047 /* Replace "TK__" with "__", which will eventually be translated
1048 into "." (just below). */
1049
1050 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 i += 2;
1052
1053 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1054 be translated into "." (just below). These are internal names
1055 generated for anonymous blocks inside which our symbol is nested. */
1056
1057 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1058 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1059 && isdigit (encoded [i+4]))
1060 {
1061 int k = i + 5;
1062
1063 while (k < len0 && isdigit (encoded[k]))
1064 k++; /* Skip any extra digit. */
1065
1066 /* Double-check that the "__B_{DIGITS}+" sequence we found
1067 is indeed followed by "__". */
1068 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 i = k;
1070 }
1071
1072 /* Remove _E{DIGITS}+[sb] */
1073
1074 /* Just as for protected object subprograms, there are 2 categories
1075 of subprograms created by the compiler for each entry. The first
1076 one implements the actual entry code, and has a suffix following
1077 the convention above; the second one implements the barrier and
1078 uses the same convention as above, except that the 'E' is replaced
1079 by a 'B'.
1080
1081 Just as above, we do not decode the name of barrier functions
1082 to give the user a clue that the code he is debugging has been
1083 internally generated. */
1084
1085 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1086 && isdigit (encoded[i+2]))
1087 {
1088 int k = i + 3;
1089
1090 while (k < len0 && isdigit (encoded[k]))
1091 k++;
1092
1093 if (k < len0
1094 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 {
1096 k++;
1097 /* Just as an extra precaution, make sure that if this
1098 suffix is followed by anything else, it is a '_'.
1099 Otherwise, we matched this sequence by accident. */
1100 if (k == len0
1101 || (k < len0 && encoded[k] == '_'))
1102 i = k;
1103 }
1104 }
1105
1106 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1107 the GNAT front-end in protected object subprograms. */
1108
1109 if (i < len0 + 3
1110 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1111 {
1112 /* Backtrack a bit up until we reach either the begining of
1113 the encoded name, or "__". Make sure that we only find
1114 digits or lowercase characters. */
1115 const char *ptr = encoded + i - 1;
1116
1117 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 ptr--;
1119 if (ptr < encoded
1120 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 i++;
1122 }
1123
1124 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1125 {
1126 /* This is a X[bn]* sequence not separated from the previous
1127 part of the name with a non-alpha-numeric character (in other
1128 words, immediately following an alpha-numeric character), then
1129 verify that it is placed at the end of the encoded name. If
1130 not, then the encoding is not valid and we should abort the
1131 decoding. Otherwise, just skip it, it is used in body-nested
1132 package names. */
1133 do
1134 i += 1;
1135 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 if (i < len0)
1137 goto Suppress;
1138 }
1139 else if (!ADA_RETAIN_DOTS
1140 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1141 {
1142 /* Replace '__' by '.'. */
1143 decoded[j] = '.';
1144 at_start_name = 1;
1145 i += 2;
1146 j += 1;
1147 }
1148 else
1149 {
1150 /* It's a character part of the decoded name, so just copy it
1151 over. */
1152 decoded[j] = encoded[i];
1153 i += 1;
1154 j += 1;
1155 }
1156 }
1157 decoded[j] = '\000';
1158
1159 /* Decoded names should never contain any uppercase character.
1160 Double-check this, and abort the decoding if we find one. */
1161
1162 for (i = 0; decoded[i] != '\0'; i += 1)
1163 if (isupper (decoded[i]) || decoded[i] == ' ')
1164 goto Suppress;
1165
1166 if (strcmp (decoded, encoded) == 0)
1167 return encoded;
1168 else
1169 return decoded;
1170
1171 Suppress:
1172 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1173 decoded = decoding_buffer;
1174 if (encoded[0] == '<')
1175 strcpy (decoded, encoded);
1176 else
1177 sprintf (decoded, "<%s>", encoded);
1178 return decoded;
1179
1180 }
1181
1182 /* Table for keeping permanent unique copies of decoded names. Once
1183 allocated, names in this table are never released. While this is a
1184 storage leak, it should not be significant unless there are massive
1185 changes in the set of decoded names in successive versions of a
1186 symbol table loaded during a single session. */
1187 static struct htab *decoded_names_store;
1188
1189 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1190 in the language-specific part of GSYMBOL, if it has not been
1191 previously computed. Tries to save the decoded name in the same
1192 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1193 in any case, the decoded symbol has a lifetime at least that of
1194 GSYMBOL).
1195 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1196 const, but nevertheless modified to a semantically equivalent form
1197 when a decoded name is cached in it.
1198 */
1199
1200 char *
1201 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1202 {
1203 char **resultp =
1204 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1205 if (*resultp == NULL)
1206 {
1207 const char *decoded = ada_decode (gsymbol->name);
1208 if (gsymbol->obj_section != NULL)
1209 {
1210 struct objfile *objf = gsymbol->obj_section->objfile;
1211 *resultp = obsavestring (decoded, strlen (decoded),
1212 &objf->objfile_obstack);
1213 }
1214 /* Sometimes, we can't find a corresponding objfile, in which
1215 case, we put the result on the heap. Since we only decode
1216 when needed, we hope this usually does not cause a
1217 significant memory leak (FIXME). */
1218 if (*resultp == NULL)
1219 {
1220 char **slot = (char **) htab_find_slot (decoded_names_store,
1221 decoded, INSERT);
1222 if (*slot == NULL)
1223 *slot = xstrdup (decoded);
1224 *resultp = *slot;
1225 }
1226 }
1227
1228 return *resultp;
1229 }
1230
1231 char *
1232 ada_la_decode (const char *encoded, int options)
1233 {
1234 return xstrdup (ada_decode (encoded));
1235 }
1236
1237 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1238 suffixes that encode debugging information or leading _ada_ on
1239 SYM_NAME (see is_name_suffix commentary for the debugging
1240 information that is ignored). If WILD, then NAME need only match a
1241 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1242 either argument is NULL. */
1243
1244 int
1245 ada_match_name (const char *sym_name, const char *name, int wild)
1246 {
1247 if (sym_name == NULL || name == NULL)
1248 return 0;
1249 else if (wild)
1250 return wild_match (name, strlen (name), sym_name);
1251 else
1252 {
1253 int len_name = strlen (name);
1254 return (strncmp (sym_name, name, len_name) == 0
1255 && is_name_suffix (sym_name + len_name))
1256 || (strncmp (sym_name, "_ada_", 5) == 0
1257 && strncmp (sym_name + 5, name, len_name) == 0
1258 && is_name_suffix (sym_name + len_name + 5));
1259 }
1260 }
1261
1262 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1263 suppressed in info listings. */
1264
1265 int
1266 ada_suppress_symbol_printing (struct symbol *sym)
1267 {
1268 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1269 return 1;
1270 else
1271 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1272 }
1273 \f
1274
1275 /* Arrays */
1276
1277 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1278
1279 static char *bound_name[] = {
1280 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1281 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1282 };
1283
1284 /* Maximum number of array dimensions we are prepared to handle. */
1285
1286 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1287
1288 /* Like modify_field, but allows bitpos > wordlength. */
1289
1290 static void
1291 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1292 {
1293 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1294 }
1295
1296
1297 /* The desc_* routines return primitive portions of array descriptors
1298 (fat pointers). */
1299
1300 /* The descriptor or array type, if any, indicated by TYPE; removes
1301 level of indirection, if needed. */
1302
1303 static struct type *
1304 desc_base_type (struct type *type)
1305 {
1306 if (type == NULL)
1307 return NULL;
1308 type = ada_check_typedef (type);
1309 if (type != NULL
1310 && (TYPE_CODE (type) == TYPE_CODE_PTR
1311 || TYPE_CODE (type) == TYPE_CODE_REF))
1312 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1313 else
1314 return type;
1315 }
1316
1317 /* True iff TYPE indicates a "thin" array pointer type. */
1318
1319 static int
1320 is_thin_pntr (struct type *type)
1321 {
1322 return
1323 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1324 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1325 }
1326
1327 /* The descriptor type for thin pointer type TYPE. */
1328
1329 static struct type *
1330 thin_descriptor_type (struct type *type)
1331 {
1332 struct type *base_type = desc_base_type (type);
1333 if (base_type == NULL)
1334 return NULL;
1335 if (is_suffix (ada_type_name (base_type), "___XVE"))
1336 return base_type;
1337 else
1338 {
1339 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1340 if (alt_type == NULL)
1341 return base_type;
1342 else
1343 return alt_type;
1344 }
1345 }
1346
1347 /* A pointer to the array data for thin-pointer value VAL. */
1348
1349 static struct value *
1350 thin_data_pntr (struct value *val)
1351 {
1352 struct type *type = value_type (val);
1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1354 return value_cast (desc_data_type (thin_descriptor_type (type)),
1355 value_copy (val));
1356 else
1357 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1358 VALUE_ADDRESS (val) + value_offset (val));
1359 }
1360
1361 /* True iff TYPE indicates a "thick" array pointer type. */
1362
1363 static int
1364 is_thick_pntr (struct type *type)
1365 {
1366 type = desc_base_type (type);
1367 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1368 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its bounds data; otherwise, NULL. */
1373
1374 static struct type *
1375 desc_bounds_type (struct type *type)
1376 {
1377 struct type *r;
1378
1379 type = desc_base_type (type);
1380
1381 if (type == NULL)
1382 return NULL;
1383 else if (is_thin_pntr (type))
1384 {
1385 type = thin_descriptor_type (type);
1386 if (type == NULL)
1387 return NULL;
1388 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1389 if (r != NULL)
1390 return ada_check_typedef (r);
1391 }
1392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1393 {
1394 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1395 if (r != NULL)
1396 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1397 }
1398 return NULL;
1399 }
1400
1401 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1402 one, a pointer to its bounds data. Otherwise NULL. */
1403
1404 static struct value *
1405 desc_bounds (struct value *arr)
1406 {
1407 struct type *type = ada_check_typedef (value_type (arr));
1408 if (is_thin_pntr (type))
1409 {
1410 struct type *bounds_type =
1411 desc_bounds_type (thin_descriptor_type (type));
1412 LONGEST addr;
1413
1414 if (bounds_type == NULL)
1415 error (_("Bad GNAT array descriptor"));
1416
1417 /* NOTE: The following calculation is not really kosher, but
1418 since desc_type is an XVE-encoded type (and shouldn't be),
1419 the correct calculation is a real pain. FIXME (and fix GCC). */
1420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1421 addr = value_as_long (arr);
1422 else
1423 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1424
1425 return
1426 value_from_longest (lookup_pointer_type (bounds_type),
1427 addr - TYPE_LENGTH (bounds_type));
1428 }
1429
1430 else if (is_thick_pntr (type))
1431 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1432 _("Bad GNAT array descriptor"));
1433 else
1434 return NULL;
1435 }
1436
1437 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1438 position of the field containing the address of the bounds data. */
1439
1440 static int
1441 fat_pntr_bounds_bitpos (struct type *type)
1442 {
1443 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 size of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitsize (struct type *type)
1451 {
1452 type = desc_base_type (type);
1453
1454 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1455 return TYPE_FIELD_BITSIZE (type, 1);
1456 else
1457 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1458 }
1459
1460 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1461 pointer to one, the type of its array data (a
1462 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1463 ada_type_of_array to get an array type with bounds data. */
1464
1465 static struct type *
1466 desc_data_type (struct type *type)
1467 {
1468 type = desc_base_type (type);
1469
1470 /* NOTE: The following is bogus; see comment in desc_bounds. */
1471 if (is_thin_pntr (type))
1472 return lookup_pointer_type
1473 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1474 else if (is_thick_pntr (type))
1475 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1476 else
1477 return NULL;
1478 }
1479
1480 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1481 its array data. */
1482
1483 static struct value *
1484 desc_data (struct value *arr)
1485 {
1486 struct type *type = value_type (arr);
1487 if (is_thin_pntr (type))
1488 return thin_data_pntr (arr);
1489 else if (is_thick_pntr (type))
1490 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1491 _("Bad GNAT array descriptor"));
1492 else
1493 return NULL;
1494 }
1495
1496
1497 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1498 position of the field containing the address of the data. */
1499
1500 static int
1501 fat_pntr_data_bitpos (struct type *type)
1502 {
1503 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1504 }
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 size of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitsize (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513
1514 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1515 return TYPE_FIELD_BITSIZE (type, 0);
1516 else
1517 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1518 }
1519
1520 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1521 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1522 bound, if WHICH is 1. The first bound is I=1. */
1523
1524 static struct value *
1525 desc_one_bound (struct value *bounds, int i, int which)
1526 {
1527 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1528 _("Bad GNAT array descriptor bounds"));
1529 }
1530
1531 /* If BOUNDS is an array-bounds structure type, return the bit position
1532 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1533 bound, if WHICH is 1. The first bound is I=1. */
1534
1535 static int
1536 desc_bound_bitpos (struct type *type, int i, int which)
1537 {
1538 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1539 }
1540
1541 /* If BOUNDS is an array-bounds structure type, return the bit field size
1542 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1543 bound, if WHICH is 1. The first bound is I=1. */
1544
1545 static int
1546 desc_bound_bitsize (struct type *type, int i, int which)
1547 {
1548 type = desc_base_type (type);
1549
1550 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1551 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1552 else
1553 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1554 }
1555
1556 /* If TYPE is the type of an array-bounds structure, the type of its
1557 Ith bound (numbering from 1). Otherwise, NULL. */
1558
1559 static struct type *
1560 desc_index_type (struct type *type, int i)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1565 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1566 else
1567 return NULL;
1568 }
1569
1570 /* The number of index positions in the array-bounds type TYPE.
1571 Return 0 if TYPE is NULL. */
1572
1573 static int
1574 desc_arity (struct type *type)
1575 {
1576 type = desc_base_type (type);
1577
1578 if (type != NULL)
1579 return TYPE_NFIELDS (type) / 2;
1580 return 0;
1581 }
1582
1583 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1584 an array descriptor type (representing an unconstrained array
1585 type). */
1586
1587 static int
1588 ada_is_direct_array_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return 0;
1592 type = ada_check_typedef (type);
1593 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1594 || ada_is_array_descriptor_type (type));
1595 }
1596
1597 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1598 * to one. */
1599
1600 int
1601 ada_is_array_type (struct type *type)
1602 {
1603 while (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 type = TYPE_TARGET_TYPE (type);
1607 return ada_is_direct_array_type (type);
1608 }
1609
1610 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1611
1612 int
1613 ada_is_simple_array_type (struct type *type)
1614 {
1615 if (type == NULL)
1616 return 0;
1617 type = ada_check_typedef (type);
1618 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1619 || (TYPE_CODE (type) == TYPE_CODE_PTR
1620 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1621 }
1622
1623 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1624
1625 int
1626 ada_is_array_descriptor_type (struct type *type)
1627 {
1628 struct type *data_type = desc_data_type (type);
1629
1630 if (type == NULL)
1631 return 0;
1632 type = ada_check_typedef (type);
1633 return
1634 data_type != NULL
1635 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1636 && TYPE_TARGET_TYPE (data_type) != NULL
1637 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1638 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1639 && desc_arity (desc_bounds_type (type)) > 0;
1640 }
1641
1642 /* Non-zero iff type is a partially mal-formed GNAT array
1643 descriptor. FIXME: This is to compensate for some problems with
1644 debugging output from GNAT. Re-examine periodically to see if it
1645 is still needed. */
1646
1647 int
1648 ada_is_bogus_array_descriptor (struct type *type)
1649 {
1650 return
1651 type != NULL
1652 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1653 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1654 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1655 && !ada_is_array_descriptor_type (type);
1656 }
1657
1658
1659 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1660 (fat pointer) returns the type of the array data described---specifically,
1661 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1662 in from the descriptor; otherwise, they are left unspecified. If
1663 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1664 returns NULL. The result is simply the type of ARR if ARR is not
1665 a descriptor. */
1666 struct type *
1667 ada_type_of_array (struct value *arr, int bounds)
1668 {
1669 if (ada_is_packed_array_type (value_type (arr)))
1670 return decode_packed_array_type (value_type (arr));
1671
1672 if (!ada_is_array_descriptor_type (value_type (arr)))
1673 return value_type (arr);
1674
1675 if (!bounds)
1676 return
1677 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1678 else
1679 {
1680 struct type *elt_type;
1681 int arity;
1682 struct value *descriptor;
1683 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1684
1685 elt_type = ada_array_element_type (value_type (arr), -1);
1686 arity = ada_array_arity (value_type (arr));
1687
1688 if (elt_type == NULL || arity == 0)
1689 return ada_check_typedef (value_type (arr));
1690
1691 descriptor = desc_bounds (arr);
1692 if (value_as_long (descriptor) == 0)
1693 return NULL;
1694 while (arity > 0)
1695 {
1696 struct type *range_type = alloc_type (objf);
1697 struct type *array_type = alloc_type (objf);
1698 struct value *low = desc_one_bound (descriptor, arity, 0);
1699 struct value *high = desc_one_bound (descriptor, arity, 1);
1700 arity -= 1;
1701
1702 create_range_type (range_type, value_type (low),
1703 longest_to_int (value_as_long (low)),
1704 longest_to_int (value_as_long (high)));
1705 elt_type = create_array_type (array_type, elt_type, range_type);
1706 }
1707
1708 return lookup_pointer_type (elt_type);
1709 }
1710 }
1711
1712 /* If ARR does not represent an array, returns ARR unchanged.
1713 Otherwise, returns either a standard GDB array with bounds set
1714 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1715 GDB array. Returns NULL if ARR is a null fat pointer. */
1716
1717 struct value *
1718 ada_coerce_to_simple_array_ptr (struct value *arr)
1719 {
1720 if (ada_is_array_descriptor_type (value_type (arr)))
1721 {
1722 struct type *arrType = ada_type_of_array (arr, 1);
1723 if (arrType == NULL)
1724 return NULL;
1725 return value_cast (arrType, value_copy (desc_data (arr)));
1726 }
1727 else if (ada_is_packed_array_type (value_type (arr)))
1728 return decode_packed_array (arr);
1729 else
1730 return arr;
1731 }
1732
1733 /* If ARR does not represent an array, returns ARR unchanged.
1734 Otherwise, returns a standard GDB array describing ARR (which may
1735 be ARR itself if it already is in the proper form). */
1736
1737 static struct value *
1738 ada_coerce_to_simple_array (struct value *arr)
1739 {
1740 if (ada_is_array_descriptor_type (value_type (arr)))
1741 {
1742 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1743 if (arrVal == NULL)
1744 error (_("Bounds unavailable for null array pointer."));
1745 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1746 return value_ind (arrVal);
1747 }
1748 else if (ada_is_packed_array_type (value_type (arr)))
1749 return decode_packed_array (arr);
1750 else
1751 return arr;
1752 }
1753
1754 /* If TYPE represents a GNAT array type, return it translated to an
1755 ordinary GDB array type (possibly with BITSIZE fields indicating
1756 packing). For other types, is the identity. */
1757
1758 struct type *
1759 ada_coerce_to_simple_array_type (struct type *type)
1760 {
1761 struct value *mark = value_mark ();
1762 struct value *dummy = value_from_longest (builtin_type_long, 0);
1763 struct type *result;
1764 deprecated_set_value_type (dummy, type);
1765 result = ada_type_of_array (dummy, 0);
1766 value_free_to_mark (mark);
1767 return result;
1768 }
1769
1770 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1771
1772 int
1773 ada_is_packed_array_type (struct type *type)
1774 {
1775 if (type == NULL)
1776 return 0;
1777 type = desc_base_type (type);
1778 type = ada_check_typedef (type);
1779 return
1780 ada_type_name (type) != NULL
1781 && strstr (ada_type_name (type), "___XP") != NULL;
1782 }
1783
1784 /* Given that TYPE is a standard GDB array type with all bounds filled
1785 in, and that the element size of its ultimate scalar constituents
1786 (that is, either its elements, or, if it is an array of arrays, its
1787 elements' elements, etc.) is *ELT_BITS, return an identical type,
1788 but with the bit sizes of its elements (and those of any
1789 constituent arrays) recorded in the BITSIZE components of its
1790 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1791 in bits. */
1792
1793 static struct type *
1794 packed_array_type (struct type *type, long *elt_bits)
1795 {
1796 struct type *new_elt_type;
1797 struct type *new_type;
1798 LONGEST low_bound, high_bound;
1799
1800 type = ada_check_typedef (type);
1801 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1802 return type;
1803
1804 new_type = alloc_type (TYPE_OBJFILE (type));
1805 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1828
1829 static struct type *
1830 decode_packed_array_type (struct type *type)
1831 {
1832 struct symbol *sym;
1833 struct block **blocks;
1834 char *raw_name = ada_type_name (ada_check_typedef (type));
1835 char *name;
1836 char *tail;
1837 struct type *shadow_type;
1838 long bits;
1839 int i, n;
1840
1841 if (!raw_name)
1842 raw_name = ada_type_name (desc_base_type (type));
1843
1844 if (!raw_name)
1845 return NULL;
1846
1847 name = (char *) alloca (strlen (raw_name) + 1);
1848 tail = strstr (raw_name, "___XP");
1849 type = desc_base_type (type);
1850
1851 memcpy (name, raw_name, tail - raw_name);
1852 name[tail - raw_name] = '\000';
1853
1854 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1855 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 shadow_type = SYMBOL_TYPE (sym);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1869 {
1870 lim_warning
1871 (_("could not understand bit size information on packed array"));
1872 return NULL;
1873 }
1874
1875 return packed_array_type (shadow_type, &bits);
1876 }
1877
1878 /* Given that ARR is a struct value *indicating a GNAT packed array,
1879 returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
1882 type length is set appropriately. */
1883
1884 static struct value *
1885 decode_packed_array (struct value *arr)
1886 {
1887 struct type *type;
1888
1889 arr = ada_coerce_ref (arr);
1890 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1891 arr = ada_value_ind (arr);
1892
1893 type = decode_packed_array_type (value_type (arr));
1894 if (type == NULL)
1895 {
1896 error (_("can't unpack array"));
1897 return NULL;
1898 }
1899
1900 if (gdbarch_bits_big_endian (current_gdbarch)
1901 && ada_is_modular_type (value_type (arr)))
1902 {
1903 /* This is a (right-justified) modular type representing a packed
1904 array with no wrapper. In order to interpret the value through
1905 the (left-justified) packed array type we just built, we must
1906 first left-justify it. */
1907 int bit_size, bit_pos;
1908 ULONGEST mod;
1909
1910 mod = ada_modulus (value_type (arr)) - 1;
1911 bit_size = 0;
1912 while (mod > 0)
1913 {
1914 bit_size += 1;
1915 mod >>= 1;
1916 }
1917 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1918 arr = ada_value_primitive_packed_val (arr, NULL,
1919 bit_pos / HOST_CHAR_BIT,
1920 bit_pos % HOST_CHAR_BIT,
1921 bit_size,
1922 type);
1923 }
1924
1925 return coerce_unspec_val_to_type (arr, type);
1926 }
1927
1928
1929 /* The value of the element of packed array ARR at the ARITY indices
1930 given in IND. ARR must be a simple array. */
1931
1932 static struct value *
1933 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1934 {
1935 int i;
1936 int bits, elt_off, bit_off;
1937 long elt_total_bit_offset;
1938 struct type *elt_type;
1939 struct value *v;
1940
1941 bits = 0;
1942 elt_total_bit_offset = 0;
1943 elt_type = ada_check_typedef (value_type (arr));
1944 for (i = 0; i < arity; i += 1)
1945 {
1946 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1947 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1948 error
1949 (_("attempt to do packed indexing of something other than a packed array"));
1950 else
1951 {
1952 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1953 LONGEST lowerbound, upperbound;
1954 LONGEST idx;
1955
1956 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1957 {
1958 lim_warning (_("don't know bounds of array"));
1959 lowerbound = upperbound = 0;
1960 }
1961
1962 idx = value_as_long (value_pos_atr (ind[i]));
1963 if (idx < lowerbound || idx > upperbound)
1964 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1965 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1966 elt_total_bit_offset += (idx - lowerbound) * bits;
1967 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1968 }
1969 }
1970 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1971 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1972
1973 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1974 bits, elt_type);
1975 return v;
1976 }
1977
1978 /* Non-zero iff TYPE includes negative integer values. */
1979
1980 static int
1981 has_negatives (struct type *type)
1982 {
1983 switch (TYPE_CODE (type))
1984 {
1985 default:
1986 return 0;
1987 case TYPE_CODE_INT:
1988 return !TYPE_UNSIGNED (type);
1989 case TYPE_CODE_RANGE:
1990 return TYPE_LOW_BOUND (type) < 0;
1991 }
1992 }
1993
1994
1995 /* Create a new value of type TYPE from the contents of OBJ starting
1996 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1997 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1998 assigning through the result will set the field fetched from.
1999 VALADDR is ignored unless OBJ is NULL, in which case,
2000 VALADDR+OFFSET must address the start of storage containing the
2001 packed value. The value returned in this case is never an lval.
2002 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2003
2004 struct value *
2005 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2006 long offset, int bit_offset, int bit_size,
2007 struct type *type)
2008 {
2009 struct value *v;
2010 int src, /* Index into the source area */
2011 targ, /* Index into the target area */
2012 srcBitsLeft, /* Number of source bits left to move */
2013 nsrc, ntarg, /* Number of source and target bytes */
2014 unusedLS, /* Number of bits in next significant
2015 byte of source that are unused */
2016 accumSize; /* Number of meaningful bits in accum */
2017 unsigned char *bytes; /* First byte containing data to unpack */
2018 unsigned char *unpacked;
2019 unsigned long accum; /* Staging area for bits being transferred */
2020 unsigned char sign;
2021 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2022 /* Transmit bytes from least to most significant; delta is the direction
2023 the indices move. */
2024 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2025
2026 type = ada_check_typedef (type);
2027
2028 if (obj == NULL)
2029 {
2030 v = allocate_value (type);
2031 bytes = (unsigned char *) (valaddr + offset);
2032 }
2033 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2034 {
2035 v = value_at (type,
2036 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2037 bytes = (unsigned char *) alloca (len);
2038 read_memory (VALUE_ADDRESS (v), bytes, len);
2039 }
2040 else
2041 {
2042 v = allocate_value (type);
2043 bytes = (unsigned char *) value_contents (obj) + offset;
2044 }
2045
2046 if (obj != NULL)
2047 {
2048 VALUE_LVAL (v) = VALUE_LVAL (obj);
2049 if (VALUE_LVAL (obj) == lval_internalvar)
2050 VALUE_LVAL (v) = lval_internalvar_component;
2051 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 VALUE_ADDRESS (v) += 1;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 }
2060 else
2061 set_value_bitsize (v, bit_size);
2062 unpacked = (unsigned char *) value_contents (v);
2063
2064 srcBitsLeft = bit_size;
2065 nsrc = len;
2066 ntarg = TYPE_LENGTH (type);
2067 sign = 0;
2068 if (bit_size == 0)
2069 {
2070 memset (unpacked, 0, TYPE_LENGTH (type));
2071 return v;
2072 }
2073 else if (gdbarch_bits_big_endian (current_gdbarch))
2074 {
2075 src = len - 1;
2076 if (has_negatives (type)
2077 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2078 sign = ~0;
2079
2080 unusedLS =
2081 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2082 % HOST_CHAR_BIT;
2083
2084 switch (TYPE_CODE (type))
2085 {
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_UNION:
2088 case TYPE_CODE_STRUCT:
2089 /* Non-scalar values must be aligned at a byte boundary... */
2090 accumSize =
2091 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2092 /* ... And are placed at the beginning (most-significant) bytes
2093 of the target. */
2094 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2095 break;
2096 default:
2097 accumSize = 0;
2098 targ = TYPE_LENGTH (type) - 1;
2099 break;
2100 }
2101 }
2102 else
2103 {
2104 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2105
2106 src = targ = 0;
2107 unusedLS = bit_offset;
2108 accumSize = 0;
2109
2110 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2111 sign = ~0;
2112 }
2113
2114 accum = 0;
2115 while (nsrc > 0)
2116 {
2117 /* Mask for removing bits of the next source byte that are not
2118 part of the value. */
2119 unsigned int unusedMSMask =
2120 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2121 1;
2122 /* Sign-extend bits for this byte. */
2123 unsigned int signMask = sign & ~unusedMSMask;
2124 accum |=
2125 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2126 accumSize += HOST_CHAR_BIT - unusedLS;
2127 if (accumSize >= HOST_CHAR_BIT)
2128 {
2129 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2130 accumSize -= HOST_CHAR_BIT;
2131 accum >>= HOST_CHAR_BIT;
2132 ntarg -= 1;
2133 targ += delta;
2134 }
2135 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 unusedLS = 0;
2137 nsrc -= 1;
2138 src += delta;
2139 }
2140 while (ntarg > 0)
2141 {
2142 accum |= sign << accumSize;
2143 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2144 accumSize -= HOST_CHAR_BIT;
2145 accum >>= HOST_CHAR_BIT;
2146 ntarg -= 1;
2147 targ += delta;
2148 }
2149
2150 return v;
2151 }
2152
2153 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2154 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2155 not overlap. */
2156 static void
2157 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2158 int src_offset, int n)
2159 {
2160 unsigned int accum, mask;
2161 int accum_bits, chunk_size;
2162
2163 target += targ_offset / HOST_CHAR_BIT;
2164 targ_offset %= HOST_CHAR_BIT;
2165 source += src_offset / HOST_CHAR_BIT;
2166 src_offset %= HOST_CHAR_BIT;
2167 if (gdbarch_bits_big_endian (current_gdbarch))
2168 {
2169 accum = (unsigned char) *source;
2170 source += 1;
2171 accum_bits = HOST_CHAR_BIT - src_offset;
2172
2173 while (n > 0)
2174 {
2175 int unused_right;
2176 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2177 accum_bits += HOST_CHAR_BIT;
2178 source += 1;
2179 chunk_size = HOST_CHAR_BIT - targ_offset;
2180 if (chunk_size > n)
2181 chunk_size = n;
2182 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2183 mask = ((1 << chunk_size) - 1) << unused_right;
2184 *target =
2185 (*target & ~mask)
2186 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2187 n -= chunk_size;
2188 accum_bits -= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 else
2194 {
2195 accum = (unsigned char) *source >> src_offset;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
2199 while (n > 0)
2200 {
2201 accum = accum + ((unsigned char) *source << accum_bits);
2202 accum_bits += HOST_CHAR_BIT;
2203 source += 1;
2204 chunk_size = HOST_CHAR_BIT - targ_offset;
2205 if (chunk_size > n)
2206 chunk_size = n;
2207 mask = ((1 << chunk_size) - 1) << targ_offset;
2208 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2209 n -= chunk_size;
2210 accum_bits -= chunk_size;
2211 accum >>= chunk_size;
2212 target += 1;
2213 targ_offset = 0;
2214 }
2215 }
2216 }
2217
2218 /* Store the contents of FROMVAL into the location of TOVAL.
2219 Return a new value with the location of TOVAL and contents of
2220 FROMVAL. Handles assignment into packed fields that have
2221 floating-point or non-scalar types. */
2222
2223 static struct value *
2224 ada_value_assign (struct value *toval, struct value *fromval)
2225 {
2226 struct type *type = value_type (toval);
2227 int bits = value_bitsize (toval);
2228
2229 toval = ada_coerce_ref (toval);
2230 fromval = ada_coerce_ref (fromval);
2231
2232 if (ada_is_direct_array_type (value_type (toval)))
2233 toval = ada_coerce_to_simple_array (toval);
2234 if (ada_is_direct_array_type (value_type (fromval)))
2235 fromval = ada_coerce_to_simple_array (fromval);
2236
2237 if (!deprecated_value_modifiable (toval))
2238 error (_("Left operand of assignment is not a modifiable lvalue."));
2239
2240 if (VALUE_LVAL (toval) == lval_memory
2241 && bits > 0
2242 && (TYPE_CODE (type) == TYPE_CODE_FLT
2243 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2244 {
2245 int len = (value_bitpos (toval)
2246 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247 int from_size;
2248 char *buffer = (char *) alloca (len);
2249 struct value *val;
2250 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2253 fromval = value_cast (type, fromval);
2254
2255 read_memory (to_addr, buffer, len);
2256 from_size = value_bitsize (fromval);
2257 if (from_size == 0)
2258 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2259 if (gdbarch_bits_big_endian (current_gdbarch))
2260 move_bits (buffer, value_bitpos (toval),
2261 value_contents (fromval), from_size - bits, bits);
2262 else
2263 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2264 0, bits);
2265 write_memory (to_addr, buffer, len);
2266 if (deprecated_memory_changed_hook)
2267 deprecated_memory_changed_hook (to_addr, len);
2268
2269 val = value_copy (toval);
2270 memcpy (value_contents_raw (val), value_contents (fromval),
2271 TYPE_LENGTH (type));
2272 deprecated_set_value_type (val, type);
2273
2274 return val;
2275 }
2276
2277 return value_assign (toval, fromval);
2278 }
2279
2280
2281 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2282 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2283 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2284 * COMPONENT, and not the inferior's memory. The current contents
2285 * of COMPONENT are ignored. */
2286 static void
2287 value_assign_to_component (struct value *container, struct value *component,
2288 struct value *val)
2289 {
2290 LONGEST offset_in_container =
2291 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2292 - VALUE_ADDRESS (container) - value_offset (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (current_gdbarch))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, value_pos_atr (ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356 struct value *idx;
2357
2358 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2359 error (_("too many subscripts (%d expected)"), k);
2360 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2361 value_copy (arr));
2362 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2363 idx = value_pos_atr (ind[k]);
2364 if (lwb != 0)
2365 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2366 arr = value_add (arr, idx);
2367 type = TYPE_TARGET_TYPE (type);
2368 }
2369
2370 return value_ind (arr);
2371 }
2372
2373 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2374 actual type of ARRAY_PTR is ignored), returns a reference to
2375 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2376 bound of this array is LOW, as per Ada rules. */
2377 static struct value *
2378 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2379 int low, int high)
2380 {
2381 CORE_ADDR base = value_as_address (array_ptr)
2382 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2383 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2384 struct type *index_type =
2385 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2386 low, high);
2387 struct type *slice_type =
2388 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2389 return value_from_pointer (lookup_reference_type (slice_type), base);
2390 }
2391
2392
2393 static struct value *
2394 ada_value_slice (struct value *array, int low, int high)
2395 {
2396 struct type *type = value_type (array);
2397 struct type *index_type =
2398 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2399 struct type *slice_type =
2400 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2401 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2402 }
2403
2404 /* If type is a record type in the form of a standard GNAT array
2405 descriptor, returns the number of dimensions for type. If arr is a
2406 simple array, returns the number of "array of"s that prefix its
2407 type designation. Otherwise, returns 0. */
2408
2409 int
2410 ada_array_arity (struct type *type)
2411 {
2412 int arity;
2413
2414 if (type == NULL)
2415 return 0;
2416
2417 type = desc_base_type (type);
2418
2419 arity = 0;
2420 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2421 return desc_arity (desc_bounds_type (type));
2422 else
2423 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2424 {
2425 arity += 1;
2426 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2427 }
2428
2429 return arity;
2430 }
2431
2432 /* If TYPE is a record type in the form of a standard GNAT array
2433 descriptor or a simple array type, returns the element type for
2434 TYPE after indexing by NINDICES indices, or by all indices if
2435 NINDICES is -1. Otherwise, returns NULL. */
2436
2437 struct type *
2438 ada_array_element_type (struct type *type, int nindices)
2439 {
2440 type = desc_base_type (type);
2441
2442 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2443 {
2444 int k;
2445 struct type *p_array_type;
2446
2447 p_array_type = desc_data_type (type);
2448
2449 k = ada_array_arity (type);
2450 if (k == 0)
2451 return NULL;
2452
2453 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2454 if (nindices >= 0 && k > nindices)
2455 k = nindices;
2456 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2457 while (k > 0 && p_array_type != NULL)
2458 {
2459 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2460 k -= 1;
2461 }
2462 return p_array_type;
2463 }
2464 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2465 {
2466 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 type = TYPE_TARGET_TYPE (type);
2469 nindices -= 1;
2470 }
2471 return type;
2472 }
2473
2474 return NULL;
2475 }
2476
2477 /* The type of nth index in arrays of given type (n numbering from 1).
2478 Does not examine memory. */
2479
2480 struct type *
2481 ada_index_type (struct type *type, int n)
2482 {
2483 struct type *result_type;
2484
2485 type = desc_base_type (type);
2486
2487 if (n > ada_array_arity (type))
2488 return NULL;
2489
2490 if (ada_is_simple_array_type (type))
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
2495 type = TYPE_TARGET_TYPE (type);
2496 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2499 perhaps stabsread.c would make more sense. */
2500 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = builtin_type_int;
2502
2503 return result_type;
2504 }
2505 else
2506 return desc_index_type (desc_bounds_type (type), n);
2507 }
2508
2509 /* Given that arr is an array type, returns the lower bound of the
2510 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2511 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2512 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2513 bounds type. It works for other arrays with bounds supplied by
2514 run-time quantities other than discriminants. */
2515
2516 static LONGEST
2517 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2518 struct type ** typep)
2519 {
2520 struct type *type;
2521 struct type *index_type_desc;
2522
2523 if (ada_is_packed_array_type (arr_type))
2524 arr_type = decode_packed_array_type (arr_type);
2525
2526 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2527 {
2528 if (typep != NULL)
2529 *typep = builtin_type_int;
2530 return (LONGEST) - which;
2531 }
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
2538 index_type_desc = ada_find_parallel_type (type, "___XA");
2539 if (index_type_desc == NULL)
2540 {
2541 struct type *index_type;
2542
2543 while (n > 1)
2544 {
2545 type = TYPE_TARGET_TYPE (type);
2546 n -= 1;
2547 }
2548
2549 index_type = TYPE_INDEX_TYPE (type);
2550 if (typep != NULL)
2551 *typep = index_type;
2552
2553 /* The index type is either a range type or an enumerated type.
2554 For the range type, we have some macros that allow us to
2555 extract the value of the low and high bounds. But they
2556 do now work for enumerated types. The expressions used
2557 below work for both range and enum types. */
2558 return
2559 (LONGEST) (which == 0
2560 ? TYPE_FIELD_BITPOS (index_type, 0)
2561 : TYPE_FIELD_BITPOS (index_type,
2562 TYPE_NFIELDS (index_type) - 1));
2563 }
2564 else
2565 {
2566 struct type *index_type =
2567 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2568 NULL, TYPE_OBJFILE (arr_type));
2569
2570 if (typep != NULL)
2571 *typep = index_type;
2572
2573 return
2574 (LONGEST) (which == 0
2575 ? TYPE_LOW_BOUND (index_type)
2576 : TYPE_HIGH_BOUND (index_type));
2577 }
2578 }
2579
2580 /* Given that arr is an array value, returns the lower bound of the
2581 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2582 WHICH is 1. This routine will also work for arrays with bounds
2583 supplied by run-time quantities other than discriminants. */
2584
2585 struct value *
2586 ada_array_bound (struct value *arr, int n, int which)
2587 {
2588 struct type *arr_type = value_type (arr);
2589
2590 if (ada_is_packed_array_type (arr_type))
2591 return ada_array_bound (decode_packed_array (arr), n, which);
2592 else if (ada_is_simple_array_type (arr_type))
2593 {
2594 struct type *type;
2595 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2596 return value_from_longest (type, v);
2597 }
2598 else
2599 return desc_one_bound (desc_bounds (arr), n, which);
2600 }
2601
2602 /* Given that arr is an array value, returns the length of the
2603 nth index. This routine will also work for arrays with bounds
2604 supplied by run-time quantities other than discriminants.
2605 Does not work for arrays indexed by enumeration types with representation
2606 clauses at the moment. */
2607
2608 struct value *
2609 ada_array_length (struct value *arr, int n)
2610 {
2611 struct type *arr_type = ada_check_typedef (value_type (arr));
2612
2613 if (ada_is_packed_array_type (arr_type))
2614 return ada_array_length (decode_packed_array (arr), n);
2615
2616 if (ada_is_simple_array_type (arr_type))
2617 {
2618 struct type *type;
2619 LONGEST v =
2620 ada_array_bound_from_type (arr_type, n, 1, &type) -
2621 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2622 return value_from_longest (type, v);
2623 }
2624 else
2625 return
2626 value_from_longest (builtin_type_int32,
2627 value_as_long (desc_one_bound (desc_bounds (arr),
2628 n, 1))
2629 - value_as_long (desc_one_bound (desc_bounds (arr),
2630 n, 0)) + 1);
2631 }
2632
2633 /* An empty array whose type is that of ARR_TYPE (an array type),
2634 with bounds LOW to LOW-1. */
2635
2636 static struct value *
2637 empty_array (struct type *arr_type, int low)
2638 {
2639 struct type *index_type =
2640 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2641 low, low - 1);
2642 struct type *elt_type = ada_array_element_type (arr_type, 1);
2643 return allocate_value (create_array_type (NULL, elt_type, index_type));
2644 }
2645 \f
2646
2647 /* Name resolution */
2648
2649 /* The "decoded" name for the user-definable Ada operator corresponding
2650 to OP. */
2651
2652 static const char *
2653 ada_decoded_op_name (enum exp_opcode op)
2654 {
2655 int i;
2656
2657 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2658 {
2659 if (ada_opname_table[i].op == op)
2660 return ada_opname_table[i].decoded;
2661 }
2662 error (_("Could not find operator name for opcode"));
2663 }
2664
2665
2666 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2667 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2668 undefined namespace) and converts operators that are
2669 user-defined into appropriate function calls. If CONTEXT_TYPE is
2670 non-null, it provides a preferred result type [at the moment, only
2671 type void has any effect---causing procedures to be preferred over
2672 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2673 return type is preferred. May change (expand) *EXP. */
2674
2675 static void
2676 resolve (struct expression **expp, int void_context_p)
2677 {
2678 int pc;
2679 pc = 0;
2680 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2681 }
2682
2683 /* Resolve the operator of the subexpression beginning at
2684 position *POS of *EXPP. "Resolving" consists of replacing
2685 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2686 with their resolutions, replacing built-in operators with
2687 function calls to user-defined operators, where appropriate, and,
2688 when DEPROCEDURE_P is non-zero, converting function-valued variables
2689 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2690 are as in ada_resolve, above. */
2691
2692 static struct value *
2693 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2694 struct type *context_type)
2695 {
2696 int pc = *pos;
2697 int i;
2698 struct expression *exp; /* Convenience: == *expp. */
2699 enum exp_opcode op = (*expp)->elts[pc].opcode;
2700 struct value **argvec; /* Vector of operand types (alloca'ed). */
2701 int nargs; /* Number of operands. */
2702 int oplen;
2703
2704 argvec = NULL;
2705 nargs = 0;
2706 exp = *expp;
2707
2708 /* Pass one: resolve operands, saving their types and updating *pos,
2709 if needed. */
2710 switch (op)
2711 {
2712 case OP_FUNCALL:
2713 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2714 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2715 *pos += 7;
2716 else
2717 {
2718 *pos += 3;
2719 resolve_subexp (expp, pos, 0, NULL);
2720 }
2721 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2722 break;
2723
2724 case UNOP_ADDR:
2725 *pos += 1;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 break;
2728
2729 case UNOP_QUAL:
2730 *pos += 3;
2731 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2732 break;
2733
2734 case OP_ATR_MODULUS:
2735 case OP_ATR_SIZE:
2736 case OP_ATR_TAG:
2737 case OP_ATR_FIRST:
2738 case OP_ATR_LAST:
2739 case OP_ATR_LENGTH:
2740 case OP_ATR_POS:
2741 case OP_ATR_VAL:
2742 case OP_ATR_MIN:
2743 case OP_ATR_MAX:
2744 case TERNOP_IN_RANGE:
2745 case BINOP_IN_BOUNDS:
2746 case UNOP_IN_RANGE:
2747 case OP_AGGREGATE:
2748 case OP_OTHERS:
2749 case OP_CHOICES:
2750 case OP_POSITIONAL:
2751 case OP_DISCRETE_RANGE:
2752 case OP_NAME:
2753 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2754 *pos += oplen;
2755 break;
2756
2757 case BINOP_ASSIGN:
2758 {
2759 struct value *arg1;
2760
2761 *pos += 1;
2762 arg1 = resolve_subexp (expp, pos, 0, NULL);
2763 if (arg1 == NULL)
2764 resolve_subexp (expp, pos, 1, NULL);
2765 else
2766 resolve_subexp (expp, pos, 1, value_type (arg1));
2767 break;
2768 }
2769
2770 case UNOP_CAST:
2771 *pos += 3;
2772 nargs = 1;
2773 break;
2774
2775 case BINOP_ADD:
2776 case BINOP_SUB:
2777 case BINOP_MUL:
2778 case BINOP_DIV:
2779 case BINOP_REM:
2780 case BINOP_MOD:
2781 case BINOP_EXP:
2782 case BINOP_CONCAT:
2783 case BINOP_LOGICAL_AND:
2784 case BINOP_LOGICAL_OR:
2785 case BINOP_BITWISE_AND:
2786 case BINOP_BITWISE_IOR:
2787 case BINOP_BITWISE_XOR:
2788
2789 case BINOP_EQUAL:
2790 case BINOP_NOTEQUAL:
2791 case BINOP_LESS:
2792 case BINOP_GTR:
2793 case BINOP_LEQ:
2794 case BINOP_GEQ:
2795
2796 case BINOP_REPEAT:
2797 case BINOP_SUBSCRIPT:
2798 case BINOP_COMMA:
2799 *pos += 1;
2800 nargs = 2;
2801 break;
2802
2803 case UNOP_NEG:
2804 case UNOP_PLUS:
2805 case UNOP_LOGICAL_NOT:
2806 case UNOP_ABS:
2807 case UNOP_IND:
2808 *pos += 1;
2809 nargs = 1;
2810 break;
2811
2812 case OP_LONG:
2813 case OP_DOUBLE:
2814 case OP_VAR_VALUE:
2815 *pos += 4;
2816 break;
2817
2818 case OP_TYPE:
2819 case OP_BOOL:
2820 case OP_LAST:
2821 case OP_INTERNALVAR:
2822 *pos += 3;
2823 break;
2824
2825 case UNOP_MEMVAL:
2826 *pos += 3;
2827 nargs = 1;
2828 break;
2829
2830 case OP_REGISTER:
2831 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2832 break;
2833
2834 case STRUCTOP_STRUCT:
2835 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2836 nargs = 1;
2837 break;
2838
2839 case TERNOP_SLICE:
2840 *pos += 1;
2841 nargs = 3;
2842 break;
2843
2844 case OP_STRING:
2845 break;
2846
2847 default:
2848 error (_("Unexpected operator during name resolution"));
2849 }
2850
2851 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2852 for (i = 0; i < nargs; i += 1)
2853 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2854 argvec[i] = NULL;
2855 exp = *expp;
2856
2857 /* Pass two: perform any resolution on principal operator. */
2858 switch (op)
2859 {
2860 default:
2861 break;
2862
2863 case OP_VAR_VALUE:
2864 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2865 {
2866 struct ada_symbol_info *candidates;
2867 int n_candidates;
2868
2869 n_candidates =
2870 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2871 (exp->elts[pc + 2].symbol),
2872 exp->elts[pc + 1].block, VAR_DOMAIN,
2873 &candidates);
2874
2875 if (n_candidates > 1)
2876 {
2877 /* Types tend to get re-introduced locally, so if there
2878 are any local symbols that are not types, first filter
2879 out all types. */
2880 int j;
2881 for (j = 0; j < n_candidates; j += 1)
2882 switch (SYMBOL_CLASS (candidates[j].sym))
2883 {
2884 case LOC_REGISTER:
2885 case LOC_ARG:
2886 case LOC_REF_ARG:
2887 case LOC_REGPARM_ADDR:
2888 case LOC_LOCAL:
2889 case LOC_COMPUTED:
2890 goto FoundNonType;
2891 default:
2892 break;
2893 }
2894 FoundNonType:
2895 if (j < n_candidates)
2896 {
2897 j = 0;
2898 while (j < n_candidates)
2899 {
2900 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2901 {
2902 candidates[j] = candidates[n_candidates - 1];
2903 n_candidates -= 1;
2904 }
2905 else
2906 j += 1;
2907 }
2908 }
2909 }
2910
2911 if (n_candidates == 0)
2912 error (_("No definition found for %s"),
2913 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2914 else if (n_candidates == 1)
2915 i = 0;
2916 else if (deprocedure_p
2917 && !is_nonfunction (candidates, n_candidates))
2918 {
2919 i = ada_resolve_function
2920 (candidates, n_candidates, NULL, 0,
2921 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2922 context_type);
2923 if (i < 0)
2924 error (_("Could not find a match for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 }
2927 else
2928 {
2929 printf_filtered (_("Multiple matches for %s\n"),
2930 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2931 user_select_syms (candidates, n_candidates, 1);
2932 i = 0;
2933 }
2934
2935 exp->elts[pc + 1].block = candidates[i].block;
2936 exp->elts[pc + 2].symbol = candidates[i].sym;
2937 if (innermost_block == NULL
2938 || contained_in (candidates[i].block, innermost_block))
2939 innermost_block = candidates[i].block;
2940 }
2941
2942 if (deprocedure_p
2943 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2944 == TYPE_CODE_FUNC))
2945 {
2946 replace_operator_with_call (expp, pc, 0, 0,
2947 exp->elts[pc + 2].symbol,
2948 exp->elts[pc + 1].block);
2949 exp = *expp;
2950 }
2951 break;
2952
2953 case OP_FUNCALL:
2954 {
2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2957 {
2958 struct ada_symbol_info *candidates;
2959 int n_candidates;
2960
2961 n_candidates =
2962 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2963 (exp->elts[pc + 5].symbol),
2964 exp->elts[pc + 4].block, VAR_DOMAIN,
2965 &candidates);
2966 if (n_candidates == 1)
2967 i = 0;
2968 else
2969 {
2970 i = ada_resolve_function
2971 (candidates, n_candidates,
2972 argvec, nargs,
2973 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2974 context_type);
2975 if (i < 0)
2976 error (_("Could not find a match for %s"),
2977 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2978 }
2979
2980 exp->elts[pc + 4].block = candidates[i].block;
2981 exp->elts[pc + 5].symbol = candidates[i].sym;
2982 if (innermost_block == NULL
2983 || contained_in (candidates[i].block, innermost_block))
2984 innermost_block = candidates[i].block;
2985 }
2986 }
2987 break;
2988 case BINOP_ADD:
2989 case BINOP_SUB:
2990 case BINOP_MUL:
2991 case BINOP_DIV:
2992 case BINOP_REM:
2993 case BINOP_MOD:
2994 case BINOP_CONCAT:
2995 case BINOP_BITWISE_AND:
2996 case BINOP_BITWISE_IOR:
2997 case BINOP_BITWISE_XOR:
2998 case BINOP_EQUAL:
2999 case BINOP_NOTEQUAL:
3000 case BINOP_LESS:
3001 case BINOP_GTR:
3002 case BINOP_LEQ:
3003 case BINOP_GEQ:
3004 case BINOP_EXP:
3005 case UNOP_NEG:
3006 case UNOP_PLUS:
3007 case UNOP_LOGICAL_NOT:
3008 case UNOP_ABS:
3009 if (possible_user_operator_p (op, argvec))
3010 {
3011 struct ada_symbol_info *candidates;
3012 int n_candidates;
3013
3014 n_candidates =
3015 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3016 (struct block *) NULL, VAR_DOMAIN,
3017 &candidates);
3018 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3019 ada_decoded_op_name (op), NULL);
3020 if (i < 0)
3021 break;
3022
3023 replace_operator_with_call (expp, pc, nargs, 1,
3024 candidates[i].sym, candidates[i].block);
3025 exp = *expp;
3026 }
3027 break;
3028
3029 case OP_TYPE:
3030 case OP_REGISTER:
3031 return NULL;
3032 }
3033
3034 *pos = pc;
3035 return evaluate_subexp_type (exp, pos);
3036 }
3037
3038 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3039 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3040 a non-pointer. A type of 'void' (which is never a valid expression type)
3041 by convention matches anything. */
3042 /* The term "match" here is rather loose. The match is heuristic and
3043 liberal. FIXME: TOO liberal, in fact. */
3044
3045 static int
3046 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3047 {
3048 ftype = ada_check_typedef (ftype);
3049 atype = ada_check_typedef (atype);
3050
3051 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3052 ftype = TYPE_TARGET_TYPE (ftype);
3053 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3054 atype = TYPE_TARGET_TYPE (atype);
3055
3056 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3057 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3058 return 1;
3059
3060 switch (TYPE_CODE (ftype))
3061 {
3062 default:
3063 return 1;
3064 case TYPE_CODE_PTR:
3065 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3066 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3067 TYPE_TARGET_TYPE (atype), 0);
3068 else
3069 return (may_deref
3070 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3071 case TYPE_CODE_INT:
3072 case TYPE_CODE_ENUM:
3073 case TYPE_CODE_RANGE:
3074 switch (TYPE_CODE (atype))
3075 {
3076 case TYPE_CODE_INT:
3077 case TYPE_CODE_ENUM:
3078 case TYPE_CODE_RANGE:
3079 return 1;
3080 default:
3081 return 0;
3082 }
3083
3084 case TYPE_CODE_ARRAY:
3085 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3086 || ada_is_array_descriptor_type (atype));
3087
3088 case TYPE_CODE_STRUCT:
3089 if (ada_is_array_descriptor_type (ftype))
3090 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3091 || ada_is_array_descriptor_type (atype));
3092 else
3093 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3094 && !ada_is_array_descriptor_type (atype));
3095
3096 case TYPE_CODE_UNION:
3097 case TYPE_CODE_FLT:
3098 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3099 }
3100 }
3101
3102 /* Return non-zero if the formals of FUNC "sufficiently match" the
3103 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3104 may also be an enumeral, in which case it is treated as a 0-
3105 argument function. */
3106
3107 static int
3108 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3109 {
3110 int i;
3111 struct type *func_type = SYMBOL_TYPE (func);
3112
3113 if (SYMBOL_CLASS (func) == LOC_CONST
3114 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3115 return (n_actuals == 0);
3116 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3117 return 0;
3118
3119 if (TYPE_NFIELDS (func_type) != n_actuals)
3120 return 0;
3121
3122 for (i = 0; i < n_actuals; i += 1)
3123 {
3124 if (actuals[i] == NULL)
3125 return 0;
3126 else
3127 {
3128 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3129 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3130
3131 if (!ada_type_match (ftype, atype, 1))
3132 return 0;
3133 }
3134 }
3135 return 1;
3136 }
3137
3138 /* False iff function type FUNC_TYPE definitely does not produce a value
3139 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3140 FUNC_TYPE is not a valid function type with a non-null return type
3141 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3142
3143 static int
3144 return_match (struct type *func_type, struct type *context_type)
3145 {
3146 struct type *return_type;
3147
3148 if (func_type == NULL)
3149 return 1;
3150
3151 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3152 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3153 else
3154 return_type = base_type (func_type);
3155 if (return_type == NULL)
3156 return 1;
3157
3158 context_type = base_type (context_type);
3159
3160 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3161 return context_type == NULL || return_type == context_type;
3162 else if (context_type == NULL)
3163 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3164 else
3165 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3166 }
3167
3168
3169 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3170 function (if any) that matches the types of the NARGS arguments in
3171 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3172 that returns that type, then eliminate matches that don't. If
3173 CONTEXT_TYPE is void and there is at least one match that does not
3174 return void, eliminate all matches that do.
3175
3176 Asks the user if there is more than one match remaining. Returns -1
3177 if there is no such symbol or none is selected. NAME is used
3178 solely for messages. May re-arrange and modify SYMS in
3179 the process; the index returned is for the modified vector. */
3180
3181 static int
3182 ada_resolve_function (struct ada_symbol_info syms[],
3183 int nsyms, struct value **args, int nargs,
3184 const char *name, struct type *context_type)
3185 {
3186 int k;
3187 int m; /* Number of hits */
3188 struct type *fallback;
3189 struct type *return_type;
3190
3191 return_type = context_type;
3192 if (context_type == NULL)
3193 fallback = builtin_type_void;
3194 else
3195 fallback = NULL;
3196
3197 m = 0;
3198 while (1)
3199 {
3200 for (k = 0; k < nsyms; k += 1)
3201 {
3202 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3203
3204 if (ada_args_match (syms[k].sym, args, nargs)
3205 && return_match (type, return_type))
3206 {
3207 syms[m] = syms[k];
3208 m += 1;
3209 }
3210 }
3211 if (m > 0 || return_type == fallback)
3212 break;
3213 else
3214 return_type = fallback;
3215 }
3216
3217 if (m == 0)
3218 return -1;
3219 else if (m > 1)
3220 {
3221 printf_filtered (_("Multiple matches for %s\n"), name);
3222 user_select_syms (syms, m, 1);
3223 return 0;
3224 }
3225 return 0;
3226 }
3227
3228 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3229 in a listing of choices during disambiguation (see sort_choices, below).
3230 The idea is that overloadings of a subprogram name from the
3231 same package should sort in their source order. We settle for ordering
3232 such symbols by their trailing number (__N or $N). */
3233
3234 static int
3235 encoded_ordered_before (char *N0, char *N1)
3236 {
3237 if (N1 == NULL)
3238 return 0;
3239 else if (N0 == NULL)
3240 return 1;
3241 else
3242 {
3243 int k0, k1;
3244 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3245 ;
3246 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3247 ;
3248 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3249 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3250 {
3251 int n0, n1;
3252 n0 = k0;
3253 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3254 n0 -= 1;
3255 n1 = k1;
3256 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3257 n1 -= 1;
3258 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3259 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3260 }
3261 return (strcmp (N0, N1) < 0);
3262 }
3263 }
3264
3265 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3266 encoded names. */
3267
3268 static void
3269 sort_choices (struct ada_symbol_info syms[], int nsyms)
3270 {
3271 int i;
3272 for (i = 1; i < nsyms; i += 1)
3273 {
3274 struct ada_symbol_info sym = syms[i];
3275 int j;
3276
3277 for (j = i - 1; j >= 0; j -= 1)
3278 {
3279 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3280 SYMBOL_LINKAGE_NAME (sym.sym)))
3281 break;
3282 syms[j + 1] = syms[j];
3283 }
3284 syms[j + 1] = sym;
3285 }
3286 }
3287
3288 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3289 by asking the user (if necessary), returning the number selected,
3290 and setting the first elements of SYMS items. Error if no symbols
3291 selected. */
3292
3293 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3294 to be re-integrated one of these days. */
3295
3296 int
3297 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3298 {
3299 int i;
3300 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3301 int n_chosen;
3302 int first_choice = (max_results == 1) ? 1 : 2;
3303 const char *select_mode = multiple_symbols_select_mode ();
3304
3305 if (max_results < 1)
3306 error (_("Request to select 0 symbols!"));
3307 if (nsyms <= 1)
3308 return nsyms;
3309
3310 if (select_mode == multiple_symbols_cancel)
3311 error (_("\
3312 canceled because the command is ambiguous\n\
3313 See set/show multiple-symbol."));
3314
3315 /* If select_mode is "all", then return all possible symbols.
3316 Only do that if more than one symbol can be selected, of course.
3317 Otherwise, display the menu as usual. */
3318 if (select_mode == multiple_symbols_all && max_results > 1)
3319 return nsyms;
3320
3321 printf_unfiltered (_("[0] cancel\n"));
3322 if (max_results > 1)
3323 printf_unfiltered (_("[1] all\n"));
3324
3325 sort_choices (syms, nsyms);
3326
3327 for (i = 0; i < nsyms; i += 1)
3328 {
3329 if (syms[i].sym == NULL)
3330 continue;
3331
3332 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3333 {
3334 struct symtab_and_line sal =
3335 find_function_start_sal (syms[i].sym, 1);
3336 if (sal.symtab == NULL)
3337 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym),
3340 sal.line);
3341 else
3342 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 sal.symtab->filename, sal.line);
3345 continue;
3346 }
3347 else
3348 {
3349 int is_enumeral =
3350 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3351 && SYMBOL_TYPE (syms[i].sym) != NULL
3352 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3353 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3354
3355 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3356 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3357 i + first_choice,
3358 SYMBOL_PRINT_NAME (syms[i].sym),
3359 symtab->filename, SYMBOL_LINE (syms[i].sym));
3360 else if (is_enumeral
3361 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3362 {
3363 printf_unfiltered (("[%d] "), i + first_choice);
3364 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3365 gdb_stdout, -1, 0);
3366 printf_unfiltered (_("'(%s) (enumeral)\n"),
3367 SYMBOL_PRINT_NAME (syms[i].sym));
3368 }
3369 else if (symtab != NULL)
3370 printf_unfiltered (is_enumeral
3371 ? _("[%d] %s in %s (enumeral)\n")
3372 : _("[%d] %s at %s:?\n"),
3373 i + first_choice,
3374 SYMBOL_PRINT_NAME (syms[i].sym),
3375 symtab->filename);
3376 else
3377 printf_unfiltered (is_enumeral
3378 ? _("[%d] %s (enumeral)\n")
3379 : _("[%d] %s at ?\n"),
3380 i + first_choice,
3381 SYMBOL_PRINT_NAME (syms[i].sym));
3382 }
3383 }
3384
3385 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3386 "overload-choice");
3387
3388 for (i = 0; i < n_chosen; i += 1)
3389 syms[i] = syms[chosen[i]];
3390
3391 return n_chosen;
3392 }
3393
3394 /* Read and validate a set of numeric choices from the user in the
3395 range 0 .. N_CHOICES-1. Place the results in increasing
3396 order in CHOICES[0 .. N-1], and return N.
3397
3398 The user types choices as a sequence of numbers on one line
3399 separated by blanks, encoding them as follows:
3400
3401 + A choice of 0 means to cancel the selection, throwing an error.
3402 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3403 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3404
3405 The user is not allowed to choose more than MAX_RESULTS values.
3406
3407 ANNOTATION_SUFFIX, if present, is used to annotate the input
3408 prompts (for use with the -f switch). */
3409
3410 int
3411 get_selections (int *choices, int n_choices, int max_results,
3412 int is_all_choice, char *annotation_suffix)
3413 {
3414 char *args;
3415 char *prompt;
3416 int n_chosen;
3417 int first_choice = is_all_choice ? 2 : 1;
3418
3419 prompt = getenv ("PS2");
3420 if (prompt == NULL)
3421 prompt = "> ";
3422
3423 args = command_line_input (prompt, 0, annotation_suffix);
3424
3425 if (args == NULL)
3426 error_no_arg (_("one or more choice numbers"));
3427
3428 n_chosen = 0;
3429
3430 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3431 order, as given in args. Choices are validated. */
3432 while (1)
3433 {
3434 char *args2;
3435 int choice, j;
3436
3437 while (isspace (*args))
3438 args += 1;
3439 if (*args == '\0' && n_chosen == 0)
3440 error_no_arg (_("one or more choice numbers"));
3441 else if (*args == '\0')
3442 break;
3443
3444 choice = strtol (args, &args2, 10);
3445 if (args == args2 || choice < 0
3446 || choice > n_choices + first_choice - 1)
3447 error (_("Argument must be choice number"));
3448 args = args2;
3449
3450 if (choice == 0)
3451 error (_("cancelled"));
3452
3453 if (choice < first_choice)
3454 {
3455 n_chosen = n_choices;
3456 for (j = 0; j < n_choices; j += 1)
3457 choices[j] = j;
3458 break;
3459 }
3460 choice -= first_choice;
3461
3462 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3463 {
3464 }
3465
3466 if (j < 0 || choice != choices[j])
3467 {
3468 int k;
3469 for (k = n_chosen - 1; k > j; k -= 1)
3470 choices[k + 1] = choices[k];
3471 choices[j + 1] = choice;
3472 n_chosen += 1;
3473 }
3474 }
3475
3476 if (n_chosen > max_results)
3477 error (_("Select no more than %d of the above"), max_results);
3478
3479 return n_chosen;
3480 }
3481
3482 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3483 on the function identified by SYM and BLOCK, and taking NARGS
3484 arguments. Update *EXPP as needed to hold more space. */
3485
3486 static void
3487 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3488 int oplen, struct symbol *sym,
3489 struct block *block)
3490 {
3491 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3492 symbol, -oplen for operator being replaced). */
3493 struct expression *newexp = (struct expression *)
3494 xmalloc (sizeof (struct expression)
3495 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3496 struct expression *exp = *expp;
3497
3498 newexp->nelts = exp->nelts + 7 - oplen;
3499 newexp->language_defn = exp->language_defn;
3500 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3501 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3502 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3503
3504 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3505 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3506
3507 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3508 newexp->elts[pc + 4].block = block;
3509 newexp->elts[pc + 5].symbol = sym;
3510
3511 *expp = newexp;
3512 xfree (exp);
3513 }
3514
3515 /* Type-class predicates */
3516
3517 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3518 or FLOAT). */
3519
3520 static int
3521 numeric_type_p (struct type *type)
3522 {
3523 if (type == NULL)
3524 return 0;
3525 else
3526 {
3527 switch (TYPE_CODE (type))
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 case TYPE_CODE_RANGE:
3533 return (type == TYPE_TARGET_TYPE (type)
3534 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3535 default:
3536 return 0;
3537 }
3538 }
3539 }
3540
3541 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3542
3543 static int
3544 integer_type_p (struct type *type)
3545 {
3546 if (type == NULL)
3547 return 0;
3548 else
3549 {
3550 switch (TYPE_CODE (type))
3551 {
3552 case TYPE_CODE_INT:
3553 return 1;
3554 case TYPE_CODE_RANGE:
3555 return (type == TYPE_TARGET_TYPE (type)
3556 || integer_type_p (TYPE_TARGET_TYPE (type)));
3557 default:
3558 return 0;
3559 }
3560 }
3561 }
3562
3563 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3564
3565 static int
3566 scalar_type_p (struct type *type)
3567 {
3568 if (type == NULL)
3569 return 0;
3570 else
3571 {
3572 switch (TYPE_CODE (type))
3573 {
3574 case TYPE_CODE_INT:
3575 case TYPE_CODE_RANGE:
3576 case TYPE_CODE_ENUM:
3577 case TYPE_CODE_FLT:
3578 return 1;
3579 default:
3580 return 0;
3581 }
3582 }
3583 }
3584
3585 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3586
3587 static int
3588 discrete_type_p (struct type *type)
3589 {
3590 if (type == NULL)
3591 return 0;
3592 else
3593 {
3594 switch (TYPE_CODE (type))
3595 {
3596 case TYPE_CODE_INT:
3597 case TYPE_CODE_RANGE:
3598 case TYPE_CODE_ENUM:
3599 return 1;
3600 default:
3601 return 0;
3602 }
3603 }
3604 }
3605
3606 /* Returns non-zero if OP with operands in the vector ARGS could be
3607 a user-defined function. Errs on the side of pre-defined operators
3608 (i.e., result 0). */
3609
3610 static int
3611 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3612 {
3613 struct type *type0 =
3614 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3615 struct type *type1 =
3616 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3617
3618 if (type0 == NULL)
3619 return 0;
3620
3621 switch (op)
3622 {
3623 default:
3624 return 0;
3625
3626 case BINOP_ADD:
3627 case BINOP_SUB:
3628 case BINOP_MUL:
3629 case BINOP_DIV:
3630 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3631
3632 case BINOP_REM:
3633 case BINOP_MOD:
3634 case BINOP_BITWISE_AND:
3635 case BINOP_BITWISE_IOR:
3636 case BINOP_BITWISE_XOR:
3637 return (!(integer_type_p (type0) && integer_type_p (type1)));
3638
3639 case BINOP_EQUAL:
3640 case BINOP_NOTEQUAL:
3641 case BINOP_LESS:
3642 case BINOP_GTR:
3643 case BINOP_LEQ:
3644 case BINOP_GEQ:
3645 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3646
3647 case BINOP_CONCAT:
3648 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3649
3650 case BINOP_EXP:
3651 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3652
3653 case UNOP_NEG:
3654 case UNOP_PLUS:
3655 case UNOP_LOGICAL_NOT:
3656 case UNOP_ABS:
3657 return (!numeric_type_p (type0));
3658
3659 }
3660 }
3661 \f
3662 /* Renaming */
3663
3664 /* NOTES:
3665
3666 1. In the following, we assume that a renaming type's name may
3667 have an ___XD suffix. It would be nice if this went away at some
3668 point.
3669 2. We handle both the (old) purely type-based representation of
3670 renamings and the (new) variable-based encoding. At some point,
3671 it is devoutly to be hoped that the former goes away
3672 (FIXME: hilfinger-2007-07-09).
3673 3. Subprogram renamings are not implemented, although the XRS
3674 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3675
3676 /* If SYM encodes a renaming,
3677
3678 <renaming> renames <renamed entity>,
3679
3680 sets *LEN to the length of the renamed entity's name,
3681 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3682 the string describing the subcomponent selected from the renamed
3683 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3684 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3685 are undefined). Otherwise, returns a value indicating the category
3686 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3687 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3688 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3689 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3690 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3691 may be NULL, in which case they are not assigned.
3692
3693 [Currently, however, GCC does not generate subprogram renamings.] */
3694
3695 enum ada_renaming_category
3696 ada_parse_renaming (struct symbol *sym,
3697 const char **renamed_entity, int *len,
3698 const char **renaming_expr)
3699 {
3700 enum ada_renaming_category kind;
3701 const char *info;
3702 const char *suffix;
3703
3704 if (sym == NULL)
3705 return ADA_NOT_RENAMING;
3706 switch (SYMBOL_CLASS (sym))
3707 {
3708 default:
3709 return ADA_NOT_RENAMING;
3710 case LOC_TYPEDEF:
3711 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3712 renamed_entity, len, renaming_expr);
3713 case LOC_LOCAL:
3714 case LOC_STATIC:
3715 case LOC_COMPUTED:
3716 case LOC_OPTIMIZED_OUT:
3717 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3718 if (info == NULL)
3719 return ADA_NOT_RENAMING;
3720 switch (info[5])
3721 {
3722 case '_':
3723 kind = ADA_OBJECT_RENAMING;
3724 info += 6;
3725 break;
3726 case 'E':
3727 kind = ADA_EXCEPTION_RENAMING;
3728 info += 7;
3729 break;
3730 case 'P':
3731 kind = ADA_PACKAGE_RENAMING;
3732 info += 7;
3733 break;
3734 case 'S':
3735 kind = ADA_SUBPROGRAM_RENAMING;
3736 info += 7;
3737 break;
3738 default:
3739 return ADA_NOT_RENAMING;
3740 }
3741 }
3742
3743 if (renamed_entity != NULL)
3744 *renamed_entity = info;
3745 suffix = strstr (info, "___XE");
3746 if (suffix == NULL || suffix == info)
3747 return ADA_NOT_RENAMING;
3748 if (len != NULL)
3749 *len = strlen (info) - strlen (suffix);
3750 suffix += 5;
3751 if (renaming_expr != NULL)
3752 *renaming_expr = suffix;
3753 return kind;
3754 }
3755
3756 /* Assuming TYPE encodes a renaming according to the old encoding in
3757 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3758 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3759 ADA_NOT_RENAMING otherwise. */
3760 static enum ada_renaming_category
3761 parse_old_style_renaming (struct type *type,
3762 const char **renamed_entity, int *len,
3763 const char **renaming_expr)
3764 {
3765 enum ada_renaming_category kind;
3766 const char *name;
3767 const char *info;
3768 const char *suffix;
3769
3770 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3771 || TYPE_NFIELDS (type) != 1)
3772 return ADA_NOT_RENAMING;
3773
3774 name = type_name_no_tag (type);
3775 if (name == NULL)
3776 return ADA_NOT_RENAMING;
3777
3778 name = strstr (name, "___XR");
3779 if (name == NULL)
3780 return ADA_NOT_RENAMING;
3781 switch (name[5])
3782 {
3783 case '\0':
3784 case '_':
3785 kind = ADA_OBJECT_RENAMING;
3786 break;
3787 case 'E':
3788 kind = ADA_EXCEPTION_RENAMING;
3789 break;
3790 case 'P':
3791 kind = ADA_PACKAGE_RENAMING;
3792 break;
3793 case 'S':
3794 kind = ADA_SUBPROGRAM_RENAMING;
3795 break;
3796 default:
3797 return ADA_NOT_RENAMING;
3798 }
3799
3800 info = TYPE_FIELD_NAME (type, 0);
3801 if (info == NULL)
3802 return ADA_NOT_RENAMING;
3803 if (renamed_entity != NULL)
3804 *renamed_entity = info;
3805 suffix = strstr (info, "___XE");
3806 if (renaming_expr != NULL)
3807 *renaming_expr = suffix + 5;
3808 if (suffix == NULL || suffix == info)
3809 return ADA_NOT_RENAMING;
3810 if (len != NULL)
3811 *len = suffix - info;
3812 return kind;
3813 }
3814
3815 \f
3816
3817 /* Evaluation: Function Calls */
3818
3819 /* Return an lvalue containing the value VAL. This is the identity on
3820 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3821 on the stack, using and updating *SP as the stack pointer, and
3822 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3823
3824 static struct value *
3825 ensure_lval (struct value *val, CORE_ADDR *sp)
3826 {
3827 if (! VALUE_LVAL (val))
3828 {
3829 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3830
3831 /* The following is taken from the structure-return code in
3832 call_function_by_hand. FIXME: Therefore, some refactoring seems
3833 indicated. */
3834 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3835 {
3836 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3837 reserving sufficient space. */
3838 *sp -= len;
3839 if (gdbarch_frame_align_p (current_gdbarch))
3840 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3841 VALUE_ADDRESS (val) = *sp;
3842 }
3843 else
3844 {
3845 /* Stack grows upward. Align the frame, allocate space, and
3846 then again, re-align the frame. */
3847 if (gdbarch_frame_align_p (current_gdbarch))
3848 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3849 VALUE_ADDRESS (val) = *sp;
3850 *sp += len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 }
3854 VALUE_LVAL (val) = lval_memory;
3855
3856 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3857 }
3858
3859 return val;
3860 }
3861
3862 /* Return the value ACTUAL, converted to be an appropriate value for a
3863 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3864 allocating any necessary descriptors (fat pointers), or copies of
3865 values not residing in memory, updating it as needed. */
3866
3867 struct value *
3868 ada_convert_actual (struct value *actual, struct type *formal_type0,
3869 CORE_ADDR *sp)
3870 {
3871 struct type *actual_type = ada_check_typedef (value_type (actual));
3872 struct type *formal_type = ada_check_typedef (formal_type0);
3873 struct type *formal_target =
3874 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3875 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3876 struct type *actual_target =
3877 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3878 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3879
3880 if (ada_is_array_descriptor_type (formal_target)
3881 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3882 return make_array_descriptor (formal_type, actual, sp);
3883 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3884 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3885 {
3886 struct value *result;
3887 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3888 && ada_is_array_descriptor_type (actual_target))
3889 result = desc_data (actual);
3890 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3891 {
3892 if (VALUE_LVAL (actual) != lval_memory)
3893 {
3894 struct value *val;
3895 actual_type = ada_check_typedef (value_type (actual));
3896 val = allocate_value (actual_type);
3897 memcpy ((char *) value_contents_raw (val),
3898 (char *) value_contents (actual),
3899 TYPE_LENGTH (actual_type));
3900 actual = ensure_lval (val, sp);
3901 }
3902 result = value_addr (actual);
3903 }
3904 else
3905 return actual;
3906 return value_cast_pointers (formal_type, result);
3907 }
3908 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3909 return ada_value_ind (actual);
3910
3911 return actual;
3912 }
3913
3914
3915 /* Push a descriptor of type TYPE for array value ARR on the stack at
3916 *SP, updating *SP to reflect the new descriptor. Return either
3917 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3918 to-descriptor type rather than a descriptor type), a struct value *
3919 representing a pointer to this descriptor. */
3920
3921 static struct value *
3922 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3923 {
3924 struct type *bounds_type = desc_bounds_type (type);
3925 struct type *desc_type = desc_base_type (type);
3926 struct value *descriptor = allocate_value (desc_type);
3927 struct value *bounds = allocate_value (bounds_type);
3928 int i;
3929
3930 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3931 {
3932 modify_general_field (value_contents_writeable (bounds),
3933 value_as_long (ada_array_bound (arr, i, 0)),
3934 desc_bound_bitpos (bounds_type, i, 0),
3935 desc_bound_bitsize (bounds_type, i, 0));
3936 modify_general_field (value_contents_writeable (bounds),
3937 value_as_long (ada_array_bound (arr, i, 1)),
3938 desc_bound_bitpos (bounds_type, i, 1),
3939 desc_bound_bitsize (bounds_type, i, 1));
3940 }
3941
3942 bounds = ensure_lval (bounds, sp);
3943
3944 modify_general_field (value_contents_writeable (descriptor),
3945 VALUE_ADDRESS (ensure_lval (arr, sp)),
3946 fat_pntr_data_bitpos (desc_type),
3947 fat_pntr_data_bitsize (desc_type));
3948
3949 modify_general_field (value_contents_writeable (descriptor),
3950 VALUE_ADDRESS (bounds),
3951 fat_pntr_bounds_bitpos (desc_type),
3952 fat_pntr_bounds_bitsize (desc_type));
3953
3954 descriptor = ensure_lval (descriptor, sp);
3955
3956 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3957 return value_addr (descriptor);
3958 else
3959 return descriptor;
3960 }
3961 \f
3962 /* Dummy definitions for an experimental caching module that is not
3963 * used in the public sources. */
3964
3965 static int
3966 lookup_cached_symbol (const char *name, domain_enum namespace,
3967 struct symbol **sym, struct block **block)
3968 {
3969 return 0;
3970 }
3971
3972 static void
3973 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3974 struct block *block)
3975 {
3976 }
3977 \f
3978 /* Symbol Lookup */
3979
3980 /* Return the result of a standard (literal, C-like) lookup of NAME in
3981 given DOMAIN, visible from lexical block BLOCK. */
3982
3983 static struct symbol *
3984 standard_lookup (const char *name, const struct block *block,
3985 domain_enum domain)
3986 {
3987 struct symbol *sym;
3988
3989 if (lookup_cached_symbol (name, domain, &sym, NULL))
3990 return sym;
3991 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3992 cache_symbol (name, domain, sym, block_found);
3993 return sym;
3994 }
3995
3996
3997 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3998 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3999 since they contend in overloading in the same way. */
4000 static int
4001 is_nonfunction (struct ada_symbol_info syms[], int n)
4002 {
4003 int i;
4004
4005 for (i = 0; i < n; i += 1)
4006 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4007 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4008 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4009 return 1;
4010
4011 return 0;
4012 }
4013
4014 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4015 struct types. Otherwise, they may not. */
4016
4017 static int
4018 equiv_types (struct type *type0, struct type *type1)
4019 {
4020 if (type0 == type1)
4021 return 1;
4022 if (type0 == NULL || type1 == NULL
4023 || TYPE_CODE (type0) != TYPE_CODE (type1))
4024 return 0;
4025 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4026 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4027 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4028 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4029 return 1;
4030
4031 return 0;
4032 }
4033
4034 /* True iff SYM0 represents the same entity as SYM1, or one that is
4035 no more defined than that of SYM1. */
4036
4037 static int
4038 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4039 {
4040 if (sym0 == sym1)
4041 return 1;
4042 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4043 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4044 return 0;
4045
4046 switch (SYMBOL_CLASS (sym0))
4047 {
4048 case LOC_UNDEF:
4049 return 1;
4050 case LOC_TYPEDEF:
4051 {
4052 struct type *type0 = SYMBOL_TYPE (sym0);
4053 struct type *type1 = SYMBOL_TYPE (sym1);
4054 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4055 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4056 int len0 = strlen (name0);
4057 return
4058 TYPE_CODE (type0) == TYPE_CODE (type1)
4059 && (equiv_types (type0, type1)
4060 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4061 && strncmp (name1 + len0, "___XV", 5) == 0));
4062 }
4063 case LOC_CONST:
4064 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4065 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4066 default:
4067 return 0;
4068 }
4069 }
4070
4071 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4072 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4073
4074 static void
4075 add_defn_to_vec (struct obstack *obstackp,
4076 struct symbol *sym,
4077 struct block *block)
4078 {
4079 int i;
4080 size_t tmp;
4081 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4082
4083 /* Do not try to complete stub types, as the debugger is probably
4084 already scanning all symbols matching a certain name at the
4085 time when this function is called. Trying to replace the stub
4086 type by its associated full type will cause us to restart a scan
4087 which may lead to an infinite recursion. Instead, the client
4088 collecting the matching symbols will end up collecting several
4089 matches, with at least one of them complete. It can then filter
4090 out the stub ones if needed. */
4091
4092 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4093 {
4094 if (lesseq_defined_than (sym, prevDefns[i].sym))
4095 return;
4096 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4097 {
4098 prevDefns[i].sym = sym;
4099 prevDefns[i].block = block;
4100 return;
4101 }
4102 }
4103
4104 {
4105 struct ada_symbol_info info;
4106
4107 info.sym = sym;
4108 info.block = block;
4109 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4110 }
4111 }
4112
4113 /* Number of ada_symbol_info structures currently collected in
4114 current vector in *OBSTACKP. */
4115
4116 static int
4117 num_defns_collected (struct obstack *obstackp)
4118 {
4119 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4120 }
4121
4122 /* Vector of ada_symbol_info structures currently collected in current
4123 vector in *OBSTACKP. If FINISH, close off the vector and return
4124 its final address. */
4125
4126 static struct ada_symbol_info *
4127 defns_collected (struct obstack *obstackp, int finish)
4128 {
4129 if (finish)
4130 return obstack_finish (obstackp);
4131 else
4132 return (struct ada_symbol_info *) obstack_base (obstackp);
4133 }
4134
4135 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4136 Check the global symbols if GLOBAL, the static symbols if not.
4137 Do wild-card match if WILD. */
4138
4139 static struct partial_symbol *
4140 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4141 int global, domain_enum namespace, int wild)
4142 {
4143 struct partial_symbol **start;
4144 int name_len = strlen (name);
4145 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4146 int i;
4147
4148 if (length == 0)
4149 {
4150 return (NULL);
4151 }
4152
4153 start = (global ?
4154 pst->objfile->global_psymbols.list + pst->globals_offset :
4155 pst->objfile->static_psymbols.list + pst->statics_offset);
4156
4157 if (wild)
4158 {
4159 for (i = 0; i < length; i += 1)
4160 {
4161 struct partial_symbol *psym = start[i];
4162
4163 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4164 SYMBOL_DOMAIN (psym), namespace)
4165 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4166 return psym;
4167 }
4168 return NULL;
4169 }
4170 else
4171 {
4172 if (global)
4173 {
4174 int U;
4175 i = 0;
4176 U = length - 1;
4177 while (U - i > 4)
4178 {
4179 int M = (U + i) >> 1;
4180 struct partial_symbol *psym = start[M];
4181 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4182 i = M + 1;
4183 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4184 U = M - 1;
4185 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4186 i = M + 1;
4187 else
4188 U = M;
4189 }
4190 }
4191 else
4192 i = 0;
4193
4194 while (i < length)
4195 {
4196 struct partial_symbol *psym = start[i];
4197
4198 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4199 SYMBOL_DOMAIN (psym), namespace))
4200 {
4201 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4202
4203 if (cmp < 0)
4204 {
4205 if (global)
4206 break;
4207 }
4208 else if (cmp == 0
4209 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4210 + name_len))
4211 return psym;
4212 }
4213 i += 1;
4214 }
4215
4216 if (global)
4217 {
4218 int U;
4219 i = 0;
4220 U = length - 1;
4221 while (U - i > 4)
4222 {
4223 int M = (U + i) >> 1;
4224 struct partial_symbol *psym = start[M];
4225 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4226 i = M + 1;
4227 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4228 U = M - 1;
4229 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4230 i = M + 1;
4231 else
4232 U = M;
4233 }
4234 }
4235 else
4236 i = 0;
4237
4238 while (i < length)
4239 {
4240 struct partial_symbol *psym = start[i];
4241
4242 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4243 SYMBOL_DOMAIN (psym), namespace))
4244 {
4245 int cmp;
4246
4247 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4248 if (cmp == 0)
4249 {
4250 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4251 if (cmp == 0)
4252 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4253 name_len);
4254 }
4255
4256 if (cmp < 0)
4257 {
4258 if (global)
4259 break;
4260 }
4261 else if (cmp == 0
4262 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4263 + name_len + 5))
4264 return psym;
4265 }
4266 i += 1;
4267 }
4268 }
4269 return NULL;
4270 }
4271
4272 /* Find a symbol table containing symbol SYM or NULL if none. */
4273
4274 static struct symtab *
4275 symtab_for_sym (struct symbol *sym)
4276 {
4277 struct symtab *s;
4278 struct objfile *objfile;
4279 struct block *b;
4280 struct symbol *tmp_sym;
4281 struct dict_iterator iter;
4282 int j;
4283
4284 ALL_PRIMARY_SYMTABS (objfile, s)
4285 {
4286 switch (SYMBOL_CLASS (sym))
4287 {
4288 case LOC_CONST:
4289 case LOC_STATIC:
4290 case LOC_TYPEDEF:
4291 case LOC_REGISTER:
4292 case LOC_LABEL:
4293 case LOC_BLOCK:
4294 case LOC_CONST_BYTES:
4295 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4296 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4297 return s;
4298 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4299 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4300 return s;
4301 break;
4302 default:
4303 break;
4304 }
4305 switch (SYMBOL_CLASS (sym))
4306 {
4307 case LOC_REGISTER:
4308 case LOC_ARG:
4309 case LOC_REF_ARG:
4310 case LOC_REGPARM_ADDR:
4311 case LOC_LOCAL:
4312 case LOC_TYPEDEF:
4313 case LOC_COMPUTED:
4314 for (j = FIRST_LOCAL_BLOCK;
4315 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4316 {
4317 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4318 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4319 return s;
4320 }
4321 break;
4322 default:
4323 break;
4324 }
4325 }
4326 return NULL;
4327 }
4328
4329 /* Return a minimal symbol matching NAME according to Ada decoding
4330 rules. Returns NULL if there is no such minimal symbol. Names
4331 prefixed with "standard__" are handled specially: "standard__" is
4332 first stripped off, and only static and global symbols are searched. */
4333
4334 struct minimal_symbol *
4335 ada_lookup_simple_minsym (const char *name)
4336 {
4337 struct objfile *objfile;
4338 struct minimal_symbol *msymbol;
4339 int wild_match;
4340
4341 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4342 {
4343 name += sizeof ("standard__") - 1;
4344 wild_match = 0;
4345 }
4346 else
4347 wild_match = (strstr (name, "__") == NULL);
4348
4349 ALL_MSYMBOLS (objfile, msymbol)
4350 {
4351 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4352 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4353 return msymbol;
4354 }
4355
4356 return NULL;
4357 }
4358
4359 /* For all subprograms that statically enclose the subprogram of the
4360 selected frame, add symbols matching identifier NAME in DOMAIN
4361 and their blocks to the list of data in OBSTACKP, as for
4362 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4363 wildcard prefix. */
4364
4365 static void
4366 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4367 const char *name, domain_enum namespace,
4368 int wild_match)
4369 {
4370 }
4371
4372 /* True if TYPE is definitely an artificial type supplied to a symbol
4373 for which no debugging information was given in the symbol file. */
4374
4375 static int
4376 is_nondebugging_type (struct type *type)
4377 {
4378 char *name = ada_type_name (type);
4379 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4380 }
4381
4382 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4383 duplicate other symbols in the list (The only case I know of where
4384 this happens is when object files containing stabs-in-ecoff are
4385 linked with files containing ordinary ecoff debugging symbols (or no
4386 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4387 Returns the number of items in the modified list. */
4388
4389 static int
4390 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4391 {
4392 int i, j;
4393
4394 i = 0;
4395 while (i < nsyms)
4396 {
4397 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4398 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4399 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4400 {
4401 for (j = 0; j < nsyms; j += 1)
4402 {
4403 if (i != j
4404 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4405 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4406 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4407 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4408 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4409 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4410 {
4411 int k;
4412 for (k = i + 1; k < nsyms; k += 1)
4413 syms[k - 1] = syms[k];
4414 nsyms -= 1;
4415 goto NextSymbol;
4416 }
4417 }
4418 }
4419 i += 1;
4420 NextSymbol:
4421 ;
4422 }
4423 return nsyms;
4424 }
4425
4426 /* Given a type that corresponds to a renaming entity, use the type name
4427 to extract the scope (package name or function name, fully qualified,
4428 and following the GNAT encoding convention) where this renaming has been
4429 defined. The string returned needs to be deallocated after use. */
4430
4431 static char *
4432 xget_renaming_scope (struct type *renaming_type)
4433 {
4434 /* The renaming types adhere to the following convention:
4435 <scope>__<rename>___<XR extension>.
4436 So, to extract the scope, we search for the "___XR" extension,
4437 and then backtrack until we find the first "__". */
4438
4439 const char *name = type_name_no_tag (renaming_type);
4440 char *suffix = strstr (name, "___XR");
4441 char *last;
4442 int scope_len;
4443 char *scope;
4444
4445 /* Now, backtrack a bit until we find the first "__". Start looking
4446 at suffix - 3, as the <rename> part is at least one character long. */
4447
4448 for (last = suffix - 3; last > name; last--)
4449 if (last[0] == '_' && last[1] == '_')
4450 break;
4451
4452 /* Make a copy of scope and return it. */
4453
4454 scope_len = last - name;
4455 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4456
4457 strncpy (scope, name, scope_len);
4458 scope[scope_len] = '\0';
4459
4460 return scope;
4461 }
4462
4463 /* Return nonzero if NAME corresponds to a package name. */
4464
4465 static int
4466 is_package_name (const char *name)
4467 {
4468 /* Here, We take advantage of the fact that no symbols are generated
4469 for packages, while symbols are generated for each function.
4470 So the condition for NAME represent a package becomes equivalent
4471 to NAME not existing in our list of symbols. There is only one
4472 small complication with library-level functions (see below). */
4473
4474 char *fun_name;
4475
4476 /* If it is a function that has not been defined at library level,
4477 then we should be able to look it up in the symbols. */
4478 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4479 return 0;
4480
4481 /* Library-level function names start with "_ada_". See if function
4482 "_ada_" followed by NAME can be found. */
4483
4484 /* Do a quick check that NAME does not contain "__", since library-level
4485 functions names cannot contain "__" in them. */
4486 if (strstr (name, "__") != NULL)
4487 return 0;
4488
4489 fun_name = xstrprintf ("_ada_%s", name);
4490
4491 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4492 }
4493
4494 /* Return nonzero if SYM corresponds to a renaming entity that is
4495 not visible from FUNCTION_NAME. */
4496
4497 static int
4498 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4499 {
4500 char *scope;
4501
4502 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4503 return 0;
4504
4505 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4506
4507 make_cleanup (xfree, scope);
4508
4509 /* If the rename has been defined in a package, then it is visible. */
4510 if (is_package_name (scope))
4511 return 0;
4512
4513 /* Check that the rename is in the current function scope by checking
4514 that its name starts with SCOPE. */
4515
4516 /* If the function name starts with "_ada_", it means that it is
4517 a library-level function. Strip this prefix before doing the
4518 comparison, as the encoding for the renaming does not contain
4519 this prefix. */
4520 if (strncmp (function_name, "_ada_", 5) == 0)
4521 function_name += 5;
4522
4523 return (strncmp (function_name, scope, strlen (scope)) != 0);
4524 }
4525
4526 /* Remove entries from SYMS that corresponds to a renaming entity that
4527 is not visible from the function associated with CURRENT_BLOCK or
4528 that is superfluous due to the presence of more specific renaming
4529 information. Places surviving symbols in the initial entries of
4530 SYMS and returns the number of surviving symbols.
4531
4532 Rationale:
4533 First, in cases where an object renaming is implemented as a
4534 reference variable, GNAT may produce both the actual reference
4535 variable and the renaming encoding. In this case, we discard the
4536 latter.
4537
4538 Second, GNAT emits a type following a specified encoding for each renaming
4539 entity. Unfortunately, STABS currently does not support the definition
4540 of types that are local to a given lexical block, so all renamings types
4541 are emitted at library level. As a consequence, if an application
4542 contains two renaming entities using the same name, and a user tries to
4543 print the value of one of these entities, the result of the ada symbol
4544 lookup will also contain the wrong renaming type.
4545
4546 This function partially covers for this limitation by attempting to
4547 remove from the SYMS list renaming symbols that should be visible
4548 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4549 method with the current information available. The implementation
4550 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4551
4552 - When the user tries to print a rename in a function while there
4553 is another rename entity defined in a package: Normally, the
4554 rename in the function has precedence over the rename in the
4555 package, so the latter should be removed from the list. This is
4556 currently not the case.
4557
4558 - This function will incorrectly remove valid renames if
4559 the CURRENT_BLOCK corresponds to a function which symbol name
4560 has been changed by an "Export" pragma. As a consequence,
4561 the user will be unable to print such rename entities. */
4562
4563 static int
4564 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4565 int nsyms, const struct block *current_block)
4566 {
4567 struct symbol *current_function;
4568 char *current_function_name;
4569 int i;
4570 int is_new_style_renaming;
4571
4572 /* If there is both a renaming foo___XR... encoded as a variable and
4573 a simple variable foo in the same block, discard the latter.
4574 First, zero out such symbols, then compress. */
4575 is_new_style_renaming = 0;
4576 for (i = 0; i < nsyms; i += 1)
4577 {
4578 struct symbol *sym = syms[i].sym;
4579 struct block *block = syms[i].block;
4580 const char *name;
4581 const char *suffix;
4582
4583 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4584 continue;
4585 name = SYMBOL_LINKAGE_NAME (sym);
4586 suffix = strstr (name, "___XR");
4587
4588 if (suffix != NULL)
4589 {
4590 int name_len = suffix - name;
4591 int j;
4592 is_new_style_renaming = 1;
4593 for (j = 0; j < nsyms; j += 1)
4594 if (i != j && syms[j].sym != NULL
4595 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4596 name_len) == 0
4597 && block == syms[j].block)
4598 syms[j].sym = NULL;
4599 }
4600 }
4601 if (is_new_style_renaming)
4602 {
4603 int j, k;
4604
4605 for (j = k = 0; j < nsyms; j += 1)
4606 if (syms[j].sym != NULL)
4607 {
4608 syms[k] = syms[j];
4609 k += 1;
4610 }
4611 return k;
4612 }
4613
4614 /* Extract the function name associated to CURRENT_BLOCK.
4615 Abort if unable to do so. */
4616
4617 if (current_block == NULL)
4618 return nsyms;
4619
4620 current_function = block_linkage_function (current_block);
4621 if (current_function == NULL)
4622 return nsyms;
4623
4624 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4625 if (current_function_name == NULL)
4626 return nsyms;
4627
4628 /* Check each of the symbols, and remove it from the list if it is
4629 a type corresponding to a renaming that is out of the scope of
4630 the current block. */
4631
4632 i = 0;
4633 while (i < nsyms)
4634 {
4635 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4636 == ADA_OBJECT_RENAMING
4637 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4638 {
4639 int j;
4640 for (j = i + 1; j < nsyms; j += 1)
4641 syms[j - 1] = syms[j];
4642 nsyms -= 1;
4643 }
4644 else
4645 i += 1;
4646 }
4647
4648 return nsyms;
4649 }
4650
4651 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4652 scope and in global scopes, returning the number of matches. Sets
4653 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4654 indicating the symbols found and the blocks and symbol tables (if
4655 any) in which they were found. This vector are transient---good only to
4656 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4657 symbol match within the nest of blocks whose innermost member is BLOCK0,
4658 is the one match returned (no other matches in that or
4659 enclosing blocks is returned). If there are any matches in or
4660 surrounding BLOCK0, then these alone are returned. Otherwise, the
4661 search extends to global and file-scope (static) symbol tables.
4662 Names prefixed with "standard__" are handled specially: "standard__"
4663 is first stripped off, and only static and global symbols are searched. */
4664
4665 int
4666 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4667 domain_enum namespace,
4668 struct ada_symbol_info **results)
4669 {
4670 struct symbol *sym;
4671 struct symtab *s;
4672 struct partial_symtab *ps;
4673 struct blockvector *bv;
4674 struct objfile *objfile;
4675 struct block *block;
4676 const char *name;
4677 struct minimal_symbol *msymbol;
4678 int wild_match;
4679 int cacheIfUnique;
4680 int block_depth;
4681 int ndefns;
4682
4683 obstack_free (&symbol_list_obstack, NULL);
4684 obstack_init (&symbol_list_obstack);
4685
4686 cacheIfUnique = 0;
4687
4688 /* Search specified block and its superiors. */
4689
4690 wild_match = (strstr (name0, "__") == NULL);
4691 name = name0;
4692 block = (struct block *) block0; /* FIXME: No cast ought to be
4693 needed, but adding const will
4694 have a cascade effect. */
4695 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4696 {
4697 wild_match = 0;
4698 block = NULL;
4699 name = name0 + sizeof ("standard__") - 1;
4700 }
4701
4702 block_depth = 0;
4703 while (block != NULL)
4704 {
4705 block_depth += 1;
4706 ada_add_block_symbols (&symbol_list_obstack, block, name,
4707 namespace, NULL, wild_match);
4708
4709 /* If we found a non-function match, assume that's the one. */
4710 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4711 num_defns_collected (&symbol_list_obstack)))
4712 goto done;
4713
4714 block = BLOCK_SUPERBLOCK (block);
4715 }
4716
4717 /* If no luck so far, try to find NAME as a local symbol in some lexically
4718 enclosing subprogram. */
4719 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4720 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4721 name, namespace, wild_match);
4722
4723 /* If we found ANY matches among non-global symbols, we're done. */
4724
4725 if (num_defns_collected (&symbol_list_obstack) > 0)
4726 goto done;
4727
4728 cacheIfUnique = 1;
4729 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4730 {
4731 if (sym != NULL)
4732 add_defn_to_vec (&symbol_list_obstack, sym, block);
4733 goto done;
4734 }
4735
4736 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4737 tables, and psymtab's. */
4738
4739 ALL_PRIMARY_SYMTABS (objfile, s)
4740 {
4741 QUIT;
4742 bv = BLOCKVECTOR (s);
4743 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4744 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4745 objfile, wild_match);
4746 }
4747
4748 if (namespace == VAR_DOMAIN)
4749 {
4750 ALL_MSYMBOLS (objfile, msymbol)
4751 {
4752 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4753 {
4754 switch (MSYMBOL_TYPE (msymbol))
4755 {
4756 case mst_solib_trampoline:
4757 break;
4758 default:
4759 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4760 if (s != NULL)
4761 {
4762 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4763 char *raw_name = SYMBOL_LINKAGE_NAME (msymbol);
4764 char *name1;
4765 const char *suffix;
4766 QUIT;
4767 suffix = strrchr (raw_name, '.');
4768 if (suffix == NULL)
4769 suffix = strrchr (raw_name, '$');
4770 if (suffix != NULL && is_digits_suffix (suffix + 1))
4771 {
4772 name1 = alloca (suffix - raw_name + 1);
4773 strncpy (name1, raw_name, suffix - raw_name);
4774 name1[suffix - raw_name] = '\0';
4775 }
4776 else
4777 name1 = raw_name;
4778
4779 bv = BLOCKVECTOR (s);
4780 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4781 ada_add_block_symbols (&symbol_list_obstack, block,
4782 name1, namespace, objfile, 0);
4783
4784 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4785 {
4786 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4787 ada_add_block_symbols (&symbol_list_obstack, block,
4788 name1, namespace, objfile, 0);
4789 }
4790 }
4791 }
4792 }
4793 }
4794 }
4795
4796 ALL_PSYMTABS (objfile, ps)
4797 {
4798 QUIT;
4799 if (!ps->readin
4800 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4801 {
4802 s = PSYMTAB_TO_SYMTAB (ps);
4803 if (!s->primary)
4804 continue;
4805 bv = BLOCKVECTOR (s);
4806 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4807 ada_add_block_symbols (&symbol_list_obstack, block, name,
4808 namespace, objfile, wild_match);
4809 }
4810 }
4811
4812 /* Now add symbols from all per-file blocks if we've gotten no hits
4813 (Not strictly correct, but perhaps better than an error).
4814 Do the symtabs first, then check the psymtabs. */
4815
4816 if (num_defns_collected (&symbol_list_obstack) == 0)
4817 {
4818
4819 ALL_PRIMARY_SYMTABS (objfile, s)
4820 {
4821 QUIT;
4822 bv = BLOCKVECTOR (s);
4823 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4824 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4825 objfile, wild_match);
4826 }
4827
4828 ALL_PSYMTABS (objfile, ps)
4829 {
4830 QUIT;
4831 if (!ps->readin
4832 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4833 {
4834 s = PSYMTAB_TO_SYMTAB (ps);
4835 bv = BLOCKVECTOR (s);
4836 if (!s->primary)
4837 continue;
4838 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4839 ada_add_block_symbols (&symbol_list_obstack, block, name,
4840 namespace, objfile, wild_match);
4841 }
4842 }
4843 }
4844
4845 done:
4846 ndefns = num_defns_collected (&symbol_list_obstack);
4847 *results = defns_collected (&symbol_list_obstack, 1);
4848
4849 ndefns = remove_extra_symbols (*results, ndefns);
4850
4851 if (ndefns == 0)
4852 cache_symbol (name0, namespace, NULL, NULL);
4853
4854 if (ndefns == 1 && cacheIfUnique)
4855 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4856
4857 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4858
4859 return ndefns;
4860 }
4861
4862 struct symbol *
4863 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4864 domain_enum namespace, struct block **block_found)
4865 {
4866 struct ada_symbol_info *candidates;
4867 int n_candidates;
4868
4869 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4870
4871 if (n_candidates == 0)
4872 return NULL;
4873
4874 if (block_found != NULL)
4875 *block_found = candidates[0].block;
4876
4877 return fixup_symbol_section (candidates[0].sym, NULL);
4878 }
4879
4880 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4881 scope and in global scopes, or NULL if none. NAME is folded and
4882 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4883 choosing the first symbol if there are multiple choices.
4884 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4885 table in which the symbol was found (in both cases, these
4886 assignments occur only if the pointers are non-null). */
4887 struct symbol *
4888 ada_lookup_symbol (const char *name, const struct block *block0,
4889 domain_enum namespace, int *is_a_field_of_this)
4890 {
4891 if (is_a_field_of_this != NULL)
4892 *is_a_field_of_this = 0;
4893
4894 return
4895 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4896 block0, namespace, NULL);
4897 }
4898
4899 static struct symbol *
4900 ada_lookup_symbol_nonlocal (const char *name,
4901 const char *linkage_name,
4902 const struct block *block,
4903 const domain_enum domain)
4904 {
4905 if (linkage_name == NULL)
4906 linkage_name = name;
4907 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4908 NULL);
4909 }
4910
4911
4912 /* True iff STR is a possible encoded suffix of a normal Ada name
4913 that is to be ignored for matching purposes. Suffixes of parallel
4914 names (e.g., XVE) are not included here. Currently, the possible suffixes
4915 are given by any of the regular expressions:
4916
4917 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4918 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4919 _E[0-9]+[bs]$ [protected object entry suffixes]
4920 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4921
4922 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4923 match is performed. This sequence is used to differentiate homonyms,
4924 is an optional part of a valid name suffix. */
4925
4926 static int
4927 is_name_suffix (const char *str)
4928 {
4929 int k;
4930 const char *matching;
4931 const int len = strlen (str);
4932
4933 /* Skip optional leading __[0-9]+. */
4934
4935 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4936 {
4937 str += 3;
4938 while (isdigit (str[0]))
4939 str += 1;
4940 }
4941
4942 /* [.$][0-9]+ */
4943
4944 if (str[0] == '.' || str[0] == '$')
4945 {
4946 matching = str + 1;
4947 while (isdigit (matching[0]))
4948 matching += 1;
4949 if (matching[0] == '\0')
4950 return 1;
4951 }
4952
4953 /* ___[0-9]+ */
4954
4955 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4956 {
4957 matching = str + 3;
4958 while (isdigit (matching[0]))
4959 matching += 1;
4960 if (matching[0] == '\0')
4961 return 1;
4962 }
4963
4964 #if 0
4965 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4966 with a N at the end. Unfortunately, the compiler uses the same
4967 convention for other internal types it creates. So treating
4968 all entity names that end with an "N" as a name suffix causes
4969 some regressions. For instance, consider the case of an enumerated
4970 type. To support the 'Image attribute, it creates an array whose
4971 name ends with N.
4972 Having a single character like this as a suffix carrying some
4973 information is a bit risky. Perhaps we should change the encoding
4974 to be something like "_N" instead. In the meantime, do not do
4975 the following check. */
4976 /* Protected Object Subprograms */
4977 if (len == 1 && str [0] == 'N')
4978 return 1;
4979 #endif
4980
4981 /* _E[0-9]+[bs]$ */
4982 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4983 {
4984 matching = str + 3;
4985 while (isdigit (matching[0]))
4986 matching += 1;
4987 if ((matching[0] == 'b' || matching[0] == 's')
4988 && matching [1] == '\0')
4989 return 1;
4990 }
4991
4992 /* ??? We should not modify STR directly, as we are doing below. This
4993 is fine in this case, but may become problematic later if we find
4994 that this alternative did not work, and want to try matching
4995 another one from the begining of STR. Since we modified it, we
4996 won't be able to find the begining of the string anymore! */
4997 if (str[0] == 'X')
4998 {
4999 str += 1;
5000 while (str[0] != '_' && str[0] != '\0')
5001 {
5002 if (str[0] != 'n' && str[0] != 'b')
5003 return 0;
5004 str += 1;
5005 }
5006 }
5007
5008 if (str[0] == '\000')
5009 return 1;
5010
5011 if (str[0] == '_')
5012 {
5013 if (str[1] != '_' || str[2] == '\000')
5014 return 0;
5015 if (str[2] == '_')
5016 {
5017 if (strcmp (str + 3, "JM") == 0)
5018 return 1;
5019 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5020 the LJM suffix in favor of the JM one. But we will
5021 still accept LJM as a valid suffix for a reasonable
5022 amount of time, just to allow ourselves to debug programs
5023 compiled using an older version of GNAT. */
5024 if (strcmp (str + 3, "LJM") == 0)
5025 return 1;
5026 if (str[3] != 'X')
5027 return 0;
5028 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5029 || str[4] == 'U' || str[4] == 'P')
5030 return 1;
5031 if (str[4] == 'R' && str[5] != 'T')
5032 return 1;
5033 return 0;
5034 }
5035 if (!isdigit (str[2]))
5036 return 0;
5037 for (k = 3; str[k] != '\0'; k += 1)
5038 if (!isdigit (str[k]) && str[k] != '_')
5039 return 0;
5040 return 1;
5041 }
5042 if (str[0] == '$' && isdigit (str[1]))
5043 {
5044 for (k = 2; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5046 return 0;
5047 return 1;
5048 }
5049 return 0;
5050 }
5051
5052 /* Return nonzero if the given string contains only digits.
5053 The empty string also matches. */
5054
5055 static int
5056 is_digits_suffix (const char *str)
5057 {
5058 while (isdigit (str[0]))
5059 str++;
5060 return (str[0] == '\0');
5061 }
5062
5063 /* Return non-zero if the string starting at NAME and ending before
5064 NAME_END contains no capital letters. */
5065
5066 static int
5067 is_valid_name_for_wild_match (const char *name0)
5068 {
5069 const char *decoded_name = ada_decode (name0);
5070 int i;
5071
5072 /* If the decoded name starts with an angle bracket, it means that
5073 NAME0 does not follow the GNAT encoding format. It should then
5074 not be allowed as a possible wild match. */
5075 if (decoded_name[0] == '<')
5076 return 0;
5077
5078 for (i=0; decoded_name[i] != '\0'; i++)
5079 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5080 return 0;
5081
5082 return 1;
5083 }
5084
5085 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5086 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5087 informational suffixes of NAME (i.e., for which is_name_suffix is
5088 true). */
5089
5090 static int
5091 wild_match (const char *patn0, int patn_len, const char *name0)
5092 {
5093 char* match;
5094 const char* start;
5095 start = name0;
5096 while (1)
5097 {
5098 match = strstr (start, patn0);
5099 if (match == NULL)
5100 return 0;
5101 if ((match == name0
5102 || match[-1] == '.'
5103 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5104 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5105 && is_name_suffix (match + patn_len))
5106 return (match == name0 || is_valid_name_for_wild_match (name0));
5107 start = match + 1;
5108 }
5109 }
5110
5111
5112 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5113 vector *defn_symbols, updating the list of symbols in OBSTACKP
5114 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5115 OBJFILE is the section containing BLOCK.
5116 SYMTAB is recorded with each symbol added. */
5117
5118 static void
5119 ada_add_block_symbols (struct obstack *obstackp,
5120 struct block *block, const char *name,
5121 domain_enum domain, struct objfile *objfile,
5122 int wild)
5123 {
5124 struct dict_iterator iter;
5125 int name_len = strlen (name);
5126 /* A matching argument symbol, if any. */
5127 struct symbol *arg_sym;
5128 /* Set true when we find a matching non-argument symbol. */
5129 int found_sym;
5130 struct symbol *sym;
5131
5132 arg_sym = NULL;
5133 found_sym = 0;
5134 if (wild)
5135 {
5136 struct symbol *sym;
5137 ALL_BLOCK_SYMBOLS (block, iter, sym)
5138 {
5139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5140 SYMBOL_DOMAIN (sym), domain)
5141 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5142 {
5143 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5144 continue;
5145 else if (SYMBOL_IS_ARGUMENT (sym))
5146 arg_sym = sym;
5147 else
5148 {
5149 found_sym = 1;
5150 add_defn_to_vec (obstackp,
5151 fixup_symbol_section (sym, objfile),
5152 block);
5153 }
5154 }
5155 }
5156 }
5157 else
5158 {
5159 ALL_BLOCK_SYMBOLS (block, iter, sym)
5160 {
5161 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5162 SYMBOL_DOMAIN (sym), domain))
5163 {
5164 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5165 if (cmp == 0
5166 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5167 {
5168 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5169 {
5170 if (SYMBOL_IS_ARGUMENT (sym))
5171 arg_sym = sym;
5172 else
5173 {
5174 found_sym = 1;
5175 add_defn_to_vec (obstackp,
5176 fixup_symbol_section (sym, objfile),
5177 block);
5178 }
5179 }
5180 }
5181 }
5182 }
5183 }
5184
5185 if (!found_sym && arg_sym != NULL)
5186 {
5187 add_defn_to_vec (obstackp,
5188 fixup_symbol_section (arg_sym, objfile),
5189 block);
5190 }
5191
5192 if (!wild)
5193 {
5194 arg_sym = NULL;
5195 found_sym = 0;
5196
5197 ALL_BLOCK_SYMBOLS (block, iter, sym)
5198 {
5199 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5200 SYMBOL_DOMAIN (sym), domain))
5201 {
5202 int cmp;
5203
5204 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5205 if (cmp == 0)
5206 {
5207 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5208 if (cmp == 0)
5209 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5210 name_len);
5211 }
5212
5213 if (cmp == 0
5214 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5215 {
5216 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5217 {
5218 if (SYMBOL_IS_ARGUMENT (sym))
5219 arg_sym = sym;
5220 else
5221 {
5222 found_sym = 1;
5223 add_defn_to_vec (obstackp,
5224 fixup_symbol_section (sym, objfile),
5225 block);
5226 }
5227 }
5228 }
5229 }
5230 }
5231
5232 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5233 They aren't parameters, right? */
5234 if (!found_sym && arg_sym != NULL)
5235 {
5236 add_defn_to_vec (obstackp,
5237 fixup_symbol_section (arg_sym, objfile),
5238 block);
5239 }
5240 }
5241 }
5242 \f
5243
5244 /* Symbol Completion */
5245
5246 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5247 name in a form that's appropriate for the completion. The result
5248 does not need to be deallocated, but is only good until the next call.
5249
5250 TEXT_LEN is equal to the length of TEXT.
5251 Perform a wild match if WILD_MATCH is set.
5252 ENCODED should be set if TEXT represents the start of a symbol name
5253 in its encoded form. */
5254
5255 static const char *
5256 symbol_completion_match (const char *sym_name,
5257 const char *text, int text_len,
5258 int wild_match, int encoded)
5259 {
5260 char *result;
5261 const int verbatim_match = (text[0] == '<');
5262 int match = 0;
5263
5264 if (verbatim_match)
5265 {
5266 /* Strip the leading angle bracket. */
5267 text = text + 1;
5268 text_len--;
5269 }
5270
5271 /* First, test against the fully qualified name of the symbol. */
5272
5273 if (strncmp (sym_name, text, text_len) == 0)
5274 match = 1;
5275
5276 if (match && !encoded)
5277 {
5278 /* One needed check before declaring a positive match is to verify
5279 that iff we are doing a verbatim match, the decoded version
5280 of the symbol name starts with '<'. Otherwise, this symbol name
5281 is not a suitable completion. */
5282 const char *sym_name_copy = sym_name;
5283 int has_angle_bracket;
5284
5285 sym_name = ada_decode (sym_name);
5286 has_angle_bracket = (sym_name[0] == '<');
5287 match = (has_angle_bracket == verbatim_match);
5288 sym_name = sym_name_copy;
5289 }
5290
5291 if (match && !verbatim_match)
5292 {
5293 /* When doing non-verbatim match, another check that needs to
5294 be done is to verify that the potentially matching symbol name
5295 does not include capital letters, because the ada-mode would
5296 not be able to understand these symbol names without the
5297 angle bracket notation. */
5298 const char *tmp;
5299
5300 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5301 if (*tmp != '\0')
5302 match = 0;
5303 }
5304
5305 /* Second: Try wild matching... */
5306
5307 if (!match && wild_match)
5308 {
5309 /* Since we are doing wild matching, this means that TEXT
5310 may represent an unqualified symbol name. We therefore must
5311 also compare TEXT against the unqualified name of the symbol. */
5312 sym_name = ada_unqualified_name (ada_decode (sym_name));
5313
5314 if (strncmp (sym_name, text, text_len) == 0)
5315 match = 1;
5316 }
5317
5318 /* Finally: If we found a mach, prepare the result to return. */
5319
5320 if (!match)
5321 return NULL;
5322
5323 if (verbatim_match)
5324 sym_name = add_angle_brackets (sym_name);
5325
5326 if (!encoded)
5327 sym_name = ada_decode (sym_name);
5328
5329 return sym_name;
5330 }
5331
5332 typedef char *char_ptr;
5333 DEF_VEC_P (char_ptr);
5334
5335 /* A companion function to ada_make_symbol_completion_list().
5336 Check if SYM_NAME represents a symbol which name would be suitable
5337 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5338 it is appended at the end of the given string vector SV.
5339
5340 ORIG_TEXT is the string original string from the user command
5341 that needs to be completed. WORD is the entire command on which
5342 completion should be performed. These two parameters are used to
5343 determine which part of the symbol name should be added to the
5344 completion vector.
5345 if WILD_MATCH is set, then wild matching is performed.
5346 ENCODED should be set if TEXT represents a symbol name in its
5347 encoded formed (in which case the completion should also be
5348 encoded). */
5349
5350 static void
5351 symbol_completion_add (VEC(char_ptr) **sv,
5352 const char *sym_name,
5353 const char *text, int text_len,
5354 const char *orig_text, const char *word,
5355 int wild_match, int encoded)
5356 {
5357 const char *match = symbol_completion_match (sym_name, text, text_len,
5358 wild_match, encoded);
5359 char *completion;
5360
5361 if (match == NULL)
5362 return;
5363
5364 /* We found a match, so add the appropriate completion to the given
5365 string vector. */
5366
5367 if (word == orig_text)
5368 {
5369 completion = xmalloc (strlen (match) + 5);
5370 strcpy (completion, match);
5371 }
5372 else if (word > orig_text)
5373 {
5374 /* Return some portion of sym_name. */
5375 completion = xmalloc (strlen (match) + 5);
5376 strcpy (completion, match + (word - orig_text));
5377 }
5378 else
5379 {
5380 /* Return some of ORIG_TEXT plus sym_name. */
5381 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5382 strncpy (completion, word, orig_text - word);
5383 completion[orig_text - word] = '\0';
5384 strcat (completion, match);
5385 }
5386
5387 VEC_safe_push (char_ptr, *sv, completion);
5388 }
5389
5390 /* Return a list of possible symbol names completing TEXT0. The list
5391 is NULL terminated. WORD is the entire command on which completion
5392 is made. */
5393
5394 static char **
5395 ada_make_symbol_completion_list (char *text0, char *word)
5396 {
5397 char *text;
5398 int text_len;
5399 int wild_match;
5400 int encoded;
5401 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5402 struct symbol *sym;
5403 struct symtab *s;
5404 struct partial_symtab *ps;
5405 struct minimal_symbol *msymbol;
5406 struct objfile *objfile;
5407 struct block *b, *surrounding_static_block = 0;
5408 int i;
5409 struct dict_iterator iter;
5410
5411 if (text0[0] == '<')
5412 {
5413 text = xstrdup (text0);
5414 make_cleanup (xfree, text);
5415 text_len = strlen (text);
5416 wild_match = 0;
5417 encoded = 1;
5418 }
5419 else
5420 {
5421 text = xstrdup (ada_encode (text0));
5422 make_cleanup (xfree, text);
5423 text_len = strlen (text);
5424 for (i = 0; i < text_len; i++)
5425 text[i] = tolower (text[i]);
5426
5427 encoded = (strstr (text0, "__") != NULL);
5428 /* If the name contains a ".", then the user is entering a fully
5429 qualified entity name, and the match must not be done in wild
5430 mode. Similarly, if the user wants to complete what looks like
5431 an encoded name, the match must not be done in wild mode. */
5432 wild_match = (strchr (text0, '.') == NULL && !encoded);
5433 }
5434
5435 /* First, look at the partial symtab symbols. */
5436 ALL_PSYMTABS (objfile, ps)
5437 {
5438 struct partial_symbol **psym;
5439
5440 /* If the psymtab's been read in we'll get it when we search
5441 through the blockvector. */
5442 if (ps->readin)
5443 continue;
5444
5445 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5446 psym < (objfile->global_psymbols.list + ps->globals_offset
5447 + ps->n_global_syms); psym++)
5448 {
5449 QUIT;
5450 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5451 text, text_len, text0, word,
5452 wild_match, encoded);
5453 }
5454
5455 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5456 psym < (objfile->static_psymbols.list + ps->statics_offset
5457 + ps->n_static_syms); psym++)
5458 {
5459 QUIT;
5460 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5461 text, text_len, text0, word,
5462 wild_match, encoded);
5463 }
5464 }
5465
5466 /* At this point scan through the misc symbol vectors and add each
5467 symbol you find to the list. Eventually we want to ignore
5468 anything that isn't a text symbol (everything else will be
5469 handled by the psymtab code above). */
5470
5471 ALL_MSYMBOLS (objfile, msymbol)
5472 {
5473 QUIT;
5474 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5475 text, text_len, text0, word, wild_match, encoded);
5476 }
5477
5478 /* Search upwards from currently selected frame (so that we can
5479 complete on local vars. */
5480
5481 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5482 {
5483 if (!BLOCK_SUPERBLOCK (b))
5484 surrounding_static_block = b; /* For elmin of dups */
5485
5486 ALL_BLOCK_SYMBOLS (b, iter, sym)
5487 {
5488 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5489 text, text_len, text0, word,
5490 wild_match, encoded);
5491 }
5492 }
5493
5494 /* Go through the symtabs and check the externs and statics for
5495 symbols which match. */
5496
5497 ALL_SYMTABS (objfile, s)
5498 {
5499 QUIT;
5500 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5501 ALL_BLOCK_SYMBOLS (b, iter, sym)
5502 {
5503 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5504 text, text_len, text0, word,
5505 wild_match, encoded);
5506 }
5507 }
5508
5509 ALL_SYMTABS (objfile, s)
5510 {
5511 QUIT;
5512 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5513 /* Don't do this block twice. */
5514 if (b == surrounding_static_block)
5515 continue;
5516 ALL_BLOCK_SYMBOLS (b, iter, sym)
5517 {
5518 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5519 text, text_len, text0, word,
5520 wild_match, encoded);
5521 }
5522 }
5523
5524 /* Append the closing NULL entry. */
5525 VEC_safe_push (char_ptr, completions, NULL);
5526
5527 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5528 return the copy. It's unfortunate that we have to make a copy
5529 of an array that we're about to destroy, but there is nothing much
5530 we can do about it. Fortunately, it's typically not a very large
5531 array. */
5532 {
5533 const size_t completions_size =
5534 VEC_length (char_ptr, completions) * sizeof (char *);
5535 char **result = malloc (completions_size);
5536
5537 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5538
5539 VEC_free (char_ptr, completions);
5540 return result;
5541 }
5542 }
5543
5544 /* Field Access */
5545
5546 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5547 for tagged types. */
5548
5549 static int
5550 ada_is_dispatch_table_ptr_type (struct type *type)
5551 {
5552 char *name;
5553
5554 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5555 return 0;
5556
5557 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5558 if (name == NULL)
5559 return 0;
5560
5561 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5562 }
5563
5564 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5565 to be invisible to users. */
5566
5567 int
5568 ada_is_ignored_field (struct type *type, int field_num)
5569 {
5570 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5571 return 1;
5572
5573 /* Check the name of that field. */
5574 {
5575 const char *name = TYPE_FIELD_NAME (type, field_num);
5576
5577 /* Anonymous field names should not be printed.
5578 brobecker/2007-02-20: I don't think this can actually happen
5579 but we don't want to print the value of annonymous fields anyway. */
5580 if (name == NULL)
5581 return 1;
5582
5583 /* A field named "_parent" is internally generated by GNAT for
5584 tagged types, and should not be printed either. */
5585 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5586 return 1;
5587 }
5588
5589 /* If this is the dispatch table of a tagged type, then ignore. */
5590 if (ada_is_tagged_type (type, 1)
5591 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5592 return 1;
5593
5594 /* Not a special field, so it should not be ignored. */
5595 return 0;
5596 }
5597
5598 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5599 pointer or reference type whose ultimate target has a tag field. */
5600
5601 int
5602 ada_is_tagged_type (struct type *type, int refok)
5603 {
5604 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5605 }
5606
5607 /* True iff TYPE represents the type of X'Tag */
5608
5609 int
5610 ada_is_tag_type (struct type *type)
5611 {
5612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5613 return 0;
5614 else
5615 {
5616 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5617 return (name != NULL
5618 && strcmp (name, "ada__tags__dispatch_table") == 0);
5619 }
5620 }
5621
5622 /* The type of the tag on VAL. */
5623
5624 struct type *
5625 ada_tag_type (struct value *val)
5626 {
5627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5628 }
5629
5630 /* The value of the tag on VAL. */
5631
5632 struct value *
5633 ada_value_tag (struct value *val)
5634 {
5635 return ada_value_struct_elt (val, "_tag", 0);
5636 }
5637
5638 /* The value of the tag on the object of type TYPE whose contents are
5639 saved at VALADDR, if it is non-null, or is at memory address
5640 ADDRESS. */
5641
5642 static struct value *
5643 value_tag_from_contents_and_address (struct type *type,
5644 const gdb_byte *valaddr,
5645 CORE_ADDR address)
5646 {
5647 int tag_byte_offset, dummy1, dummy2;
5648 struct type *tag_type;
5649 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5650 NULL, NULL, NULL))
5651 {
5652 const gdb_byte *valaddr1 = ((valaddr == NULL)
5653 ? NULL
5654 : valaddr + tag_byte_offset);
5655 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5656
5657 return value_from_contents_and_address (tag_type, valaddr1, address1);
5658 }
5659 return NULL;
5660 }
5661
5662 static struct type *
5663 type_from_tag (struct value *tag)
5664 {
5665 const char *type_name = ada_tag_name (tag);
5666 if (type_name != NULL)
5667 return ada_find_any_type (ada_encode (type_name));
5668 return NULL;
5669 }
5670
5671 struct tag_args
5672 {
5673 struct value *tag;
5674 char *name;
5675 };
5676
5677
5678 static int ada_tag_name_1 (void *);
5679 static int ada_tag_name_2 (struct tag_args *);
5680
5681 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5682 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5683 The value stored in ARGS->name is valid until the next call to
5684 ada_tag_name_1. */
5685
5686 static int
5687 ada_tag_name_1 (void *args0)
5688 {
5689 struct tag_args *args = (struct tag_args *) args0;
5690 static char name[1024];
5691 char *p;
5692 struct value *val;
5693 args->name = NULL;
5694 val = ada_value_struct_elt (args->tag, "tsd", 1);
5695 if (val == NULL)
5696 return ada_tag_name_2 (args);
5697 val = ada_value_struct_elt (val, "expanded_name", 1);
5698 if (val == NULL)
5699 return 0;
5700 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5701 for (p = name; *p != '\0'; p += 1)
5702 if (isalpha (*p))
5703 *p = tolower (*p);
5704 args->name = name;
5705 return 0;
5706 }
5707
5708 /* Utility function for ada_tag_name_1 that tries the second
5709 representation for the dispatch table (in which there is no
5710 explicit 'tsd' field in the referent of the tag pointer, and instead
5711 the tsd pointer is stored just before the dispatch table. */
5712
5713 static int
5714 ada_tag_name_2 (struct tag_args *args)
5715 {
5716 struct type *info_type;
5717 static char name[1024];
5718 char *p;
5719 struct value *val, *valp;
5720
5721 args->name = NULL;
5722 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5723 if (info_type == NULL)
5724 return 0;
5725 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5726 valp = value_cast (info_type, args->tag);
5727 if (valp == NULL)
5728 return 0;
5729 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5730 if (val == NULL)
5731 return 0;
5732 val = ada_value_struct_elt (val, "expanded_name", 1);
5733 if (val == NULL)
5734 return 0;
5735 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5736 for (p = name; *p != '\0'; p += 1)
5737 if (isalpha (*p))
5738 *p = tolower (*p);
5739 args->name = name;
5740 return 0;
5741 }
5742
5743 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5744 * a C string. */
5745
5746 const char *
5747 ada_tag_name (struct value *tag)
5748 {
5749 struct tag_args args;
5750 if (!ada_is_tag_type (value_type (tag)))
5751 return NULL;
5752 args.tag = tag;
5753 args.name = NULL;
5754 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5755 return args.name;
5756 }
5757
5758 /* The parent type of TYPE, or NULL if none. */
5759
5760 struct type *
5761 ada_parent_type (struct type *type)
5762 {
5763 int i;
5764
5765 type = ada_check_typedef (type);
5766
5767 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5768 return NULL;
5769
5770 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5771 if (ada_is_parent_field (type, i))
5772 {
5773 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5774
5775 /* If the _parent field is a pointer, then dereference it. */
5776 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5777 parent_type = TYPE_TARGET_TYPE (parent_type);
5778 /* If there is a parallel XVS type, get the actual base type. */
5779 parent_type = ada_get_base_type (parent_type);
5780
5781 return ada_check_typedef (parent_type);
5782 }
5783
5784 return NULL;
5785 }
5786
5787 /* True iff field number FIELD_NUM of structure type TYPE contains the
5788 parent-type (inherited) fields of a derived type. Assumes TYPE is
5789 a structure type with at least FIELD_NUM+1 fields. */
5790
5791 int
5792 ada_is_parent_field (struct type *type, int field_num)
5793 {
5794 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5795 return (name != NULL
5796 && (strncmp (name, "PARENT", 6) == 0
5797 || strncmp (name, "_parent", 7) == 0));
5798 }
5799
5800 /* True iff field number FIELD_NUM of structure type TYPE is a
5801 transparent wrapper field (which should be silently traversed when doing
5802 field selection and flattened when printing). Assumes TYPE is a
5803 structure type with at least FIELD_NUM+1 fields. Such fields are always
5804 structures. */
5805
5806 int
5807 ada_is_wrapper_field (struct type *type, int field_num)
5808 {
5809 const char *name = TYPE_FIELD_NAME (type, field_num);
5810 return (name != NULL
5811 && (strncmp (name, "PARENT", 6) == 0
5812 || strcmp (name, "REP") == 0
5813 || strncmp (name, "_parent", 7) == 0
5814 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5815 }
5816
5817 /* True iff field number FIELD_NUM of structure or union type TYPE
5818 is a variant wrapper. Assumes TYPE is a structure type with at least
5819 FIELD_NUM+1 fields. */
5820
5821 int
5822 ada_is_variant_part (struct type *type, int field_num)
5823 {
5824 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5825 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5826 || (is_dynamic_field (type, field_num)
5827 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5828 == TYPE_CODE_UNION)));
5829 }
5830
5831 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5832 whose discriminants are contained in the record type OUTER_TYPE,
5833 returns the type of the controlling discriminant for the variant. */
5834
5835 struct type *
5836 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5837 {
5838 char *name = ada_variant_discrim_name (var_type);
5839 struct type *type =
5840 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5841 if (type == NULL)
5842 return builtin_type_int;
5843 else
5844 return type;
5845 }
5846
5847 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5848 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5849 represents a 'when others' clause; otherwise 0. */
5850
5851 int
5852 ada_is_others_clause (struct type *type, int field_num)
5853 {
5854 const char *name = TYPE_FIELD_NAME (type, field_num);
5855 return (name != NULL && name[0] == 'O');
5856 }
5857
5858 /* Assuming that TYPE0 is the type of the variant part of a record,
5859 returns the name of the discriminant controlling the variant.
5860 The value is valid until the next call to ada_variant_discrim_name. */
5861
5862 char *
5863 ada_variant_discrim_name (struct type *type0)
5864 {
5865 static char *result = NULL;
5866 static size_t result_len = 0;
5867 struct type *type;
5868 const char *name;
5869 const char *discrim_end;
5870 const char *discrim_start;
5871
5872 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5873 type = TYPE_TARGET_TYPE (type0);
5874 else
5875 type = type0;
5876
5877 name = ada_type_name (type);
5878
5879 if (name == NULL || name[0] == '\000')
5880 return "";
5881
5882 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5883 discrim_end -= 1)
5884 {
5885 if (strncmp (discrim_end, "___XVN", 6) == 0)
5886 break;
5887 }
5888 if (discrim_end == name)
5889 return "";
5890
5891 for (discrim_start = discrim_end; discrim_start != name + 3;
5892 discrim_start -= 1)
5893 {
5894 if (discrim_start == name + 1)
5895 return "";
5896 if ((discrim_start > name + 3
5897 && strncmp (discrim_start - 3, "___", 3) == 0)
5898 || discrim_start[-1] == '.')
5899 break;
5900 }
5901
5902 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5903 strncpy (result, discrim_start, discrim_end - discrim_start);
5904 result[discrim_end - discrim_start] = '\0';
5905 return result;
5906 }
5907
5908 /* Scan STR for a subtype-encoded number, beginning at position K.
5909 Put the position of the character just past the number scanned in
5910 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5911 Return 1 if there was a valid number at the given position, and 0
5912 otherwise. A "subtype-encoded" number consists of the absolute value
5913 in decimal, followed by the letter 'm' to indicate a negative number.
5914 Assumes 0m does not occur. */
5915
5916 int
5917 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5918 {
5919 ULONGEST RU;
5920
5921 if (!isdigit (str[k]))
5922 return 0;
5923
5924 /* Do it the hard way so as not to make any assumption about
5925 the relationship of unsigned long (%lu scan format code) and
5926 LONGEST. */
5927 RU = 0;
5928 while (isdigit (str[k]))
5929 {
5930 RU = RU * 10 + (str[k] - '0');
5931 k += 1;
5932 }
5933
5934 if (str[k] == 'm')
5935 {
5936 if (R != NULL)
5937 *R = (-(LONGEST) (RU - 1)) - 1;
5938 k += 1;
5939 }
5940 else if (R != NULL)
5941 *R = (LONGEST) RU;
5942
5943 /* NOTE on the above: Technically, C does not say what the results of
5944 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5945 number representable as a LONGEST (although either would probably work
5946 in most implementations). When RU>0, the locution in the then branch
5947 above is always equivalent to the negative of RU. */
5948
5949 if (new_k != NULL)
5950 *new_k = k;
5951 return 1;
5952 }
5953
5954 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5955 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5956 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5957
5958 int
5959 ada_in_variant (LONGEST val, struct type *type, int field_num)
5960 {
5961 const char *name = TYPE_FIELD_NAME (type, field_num);
5962 int p;
5963
5964 p = 0;
5965 while (1)
5966 {
5967 switch (name[p])
5968 {
5969 case '\0':
5970 return 0;
5971 case 'S':
5972 {
5973 LONGEST W;
5974 if (!ada_scan_number (name, p + 1, &W, &p))
5975 return 0;
5976 if (val == W)
5977 return 1;
5978 break;
5979 }
5980 case 'R':
5981 {
5982 LONGEST L, U;
5983 if (!ada_scan_number (name, p + 1, &L, &p)
5984 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5985 return 0;
5986 if (val >= L && val <= U)
5987 return 1;
5988 break;
5989 }
5990 case 'O':
5991 return 1;
5992 default:
5993 return 0;
5994 }
5995 }
5996 }
5997
5998 /* FIXME: Lots of redundancy below. Try to consolidate. */
5999
6000 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6001 ARG_TYPE, extract and return the value of one of its (non-static)
6002 fields. FIELDNO says which field. Differs from value_primitive_field
6003 only in that it can handle packed values of arbitrary type. */
6004
6005 static struct value *
6006 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6007 struct type *arg_type)
6008 {
6009 struct type *type;
6010
6011 arg_type = ada_check_typedef (arg_type);
6012 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6013
6014 /* Handle packed fields. */
6015
6016 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6017 {
6018 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6019 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6020
6021 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6022 offset + bit_pos / 8,
6023 bit_pos % 8, bit_size, type);
6024 }
6025 else
6026 return value_primitive_field (arg1, offset, fieldno, arg_type);
6027 }
6028
6029 /* Find field with name NAME in object of type TYPE. If found,
6030 set the following for each argument that is non-null:
6031 - *FIELD_TYPE_P to the field's type;
6032 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6033 an object of that type;
6034 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6035 - *BIT_SIZE_P to its size in bits if the field is packed, and
6036 0 otherwise;
6037 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6038 fields up to but not including the desired field, or by the total
6039 number of fields if not found. A NULL value of NAME never
6040 matches; the function just counts visible fields in this case.
6041
6042 Returns 1 if found, 0 otherwise. */
6043
6044 static int
6045 find_struct_field (char *name, struct type *type, int offset,
6046 struct type **field_type_p,
6047 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6048 int *index_p)
6049 {
6050 int i;
6051
6052 type = ada_check_typedef (type);
6053
6054 if (field_type_p != NULL)
6055 *field_type_p = NULL;
6056 if (byte_offset_p != NULL)
6057 *byte_offset_p = 0;
6058 if (bit_offset_p != NULL)
6059 *bit_offset_p = 0;
6060 if (bit_size_p != NULL)
6061 *bit_size_p = 0;
6062
6063 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6064 {
6065 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6066 int fld_offset = offset + bit_pos / 8;
6067 char *t_field_name = TYPE_FIELD_NAME (type, i);
6068
6069 if (t_field_name == NULL)
6070 continue;
6071
6072 else if (name != NULL && field_name_match (t_field_name, name))
6073 {
6074 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6075 if (field_type_p != NULL)
6076 *field_type_p = TYPE_FIELD_TYPE (type, i);
6077 if (byte_offset_p != NULL)
6078 *byte_offset_p = fld_offset;
6079 if (bit_offset_p != NULL)
6080 *bit_offset_p = bit_pos % 8;
6081 if (bit_size_p != NULL)
6082 *bit_size_p = bit_size;
6083 return 1;
6084 }
6085 else if (ada_is_wrapper_field (type, i))
6086 {
6087 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6088 field_type_p, byte_offset_p, bit_offset_p,
6089 bit_size_p, index_p))
6090 return 1;
6091 }
6092 else if (ada_is_variant_part (type, i))
6093 {
6094 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6095 fixed type?? */
6096 int j;
6097 struct type *field_type
6098 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6099
6100 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6101 {
6102 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6103 fld_offset
6104 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6105 field_type_p, byte_offset_p,
6106 bit_offset_p, bit_size_p, index_p))
6107 return 1;
6108 }
6109 }
6110 else if (index_p != NULL)
6111 *index_p += 1;
6112 }
6113 return 0;
6114 }
6115
6116 /* Number of user-visible fields in record type TYPE. */
6117
6118 static int
6119 num_visible_fields (struct type *type)
6120 {
6121 int n;
6122 n = 0;
6123 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6124 return n;
6125 }
6126
6127 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6128 and search in it assuming it has (class) type TYPE.
6129 If found, return value, else return NULL.
6130
6131 Searches recursively through wrapper fields (e.g., '_parent'). */
6132
6133 static struct value *
6134 ada_search_struct_field (char *name, struct value *arg, int offset,
6135 struct type *type)
6136 {
6137 int i;
6138 type = ada_check_typedef (type);
6139
6140 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6141 {
6142 char *t_field_name = TYPE_FIELD_NAME (type, i);
6143
6144 if (t_field_name == NULL)
6145 continue;
6146
6147 else if (field_name_match (t_field_name, name))
6148 return ada_value_primitive_field (arg, offset, i, type);
6149
6150 else if (ada_is_wrapper_field (type, i))
6151 {
6152 struct value *v = /* Do not let indent join lines here. */
6153 ada_search_struct_field (name, arg,
6154 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6155 TYPE_FIELD_TYPE (type, i));
6156 if (v != NULL)
6157 return v;
6158 }
6159
6160 else if (ada_is_variant_part (type, i))
6161 {
6162 /* PNH: Do we ever get here? See find_struct_field. */
6163 int j;
6164 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6165 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6166
6167 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6168 {
6169 struct value *v = ada_search_struct_field /* Force line break. */
6170 (name, arg,
6171 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6172 TYPE_FIELD_TYPE (field_type, j));
6173 if (v != NULL)
6174 return v;
6175 }
6176 }
6177 }
6178 return NULL;
6179 }
6180
6181 static struct value *ada_index_struct_field_1 (int *, struct value *,
6182 int, struct type *);
6183
6184
6185 /* Return field #INDEX in ARG, where the index is that returned by
6186 * find_struct_field through its INDEX_P argument. Adjust the address
6187 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6188 * If found, return value, else return NULL. */
6189
6190 static struct value *
6191 ada_index_struct_field (int index, struct value *arg, int offset,
6192 struct type *type)
6193 {
6194 return ada_index_struct_field_1 (&index, arg, offset, type);
6195 }
6196
6197
6198 /* Auxiliary function for ada_index_struct_field. Like
6199 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6200 * *INDEX_P. */
6201
6202 static struct value *
6203 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6204 struct type *type)
6205 {
6206 int i;
6207 type = ada_check_typedef (type);
6208
6209 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6210 {
6211 if (TYPE_FIELD_NAME (type, i) == NULL)
6212 continue;
6213 else if (ada_is_wrapper_field (type, i))
6214 {
6215 struct value *v = /* Do not let indent join lines here. */
6216 ada_index_struct_field_1 (index_p, arg,
6217 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6218 TYPE_FIELD_TYPE (type, i));
6219 if (v != NULL)
6220 return v;
6221 }
6222
6223 else if (ada_is_variant_part (type, i))
6224 {
6225 /* PNH: Do we ever get here? See ada_search_struct_field,
6226 find_struct_field. */
6227 error (_("Cannot assign this kind of variant record"));
6228 }
6229 else if (*index_p == 0)
6230 return ada_value_primitive_field (arg, offset, i, type);
6231 else
6232 *index_p -= 1;
6233 }
6234 return NULL;
6235 }
6236
6237 /* Given ARG, a value of type (pointer or reference to a)*
6238 structure/union, extract the component named NAME from the ultimate
6239 target structure/union and return it as a value with its
6240 appropriate type. If ARG is a pointer or reference and the field
6241 is not packed, returns a reference to the field, otherwise the
6242 value of the field (an lvalue if ARG is an lvalue).
6243
6244 The routine searches for NAME among all members of the structure itself
6245 and (recursively) among all members of any wrapper members
6246 (e.g., '_parent').
6247
6248 If NO_ERR, then simply return NULL in case of error, rather than
6249 calling error. */
6250
6251 struct value *
6252 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6253 {
6254 struct type *t, *t1;
6255 struct value *v;
6256
6257 v = NULL;
6258 t1 = t = ada_check_typedef (value_type (arg));
6259 if (TYPE_CODE (t) == TYPE_CODE_REF)
6260 {
6261 t1 = TYPE_TARGET_TYPE (t);
6262 if (t1 == NULL)
6263 goto BadValue;
6264 t1 = ada_check_typedef (t1);
6265 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6266 {
6267 arg = coerce_ref (arg);
6268 t = t1;
6269 }
6270 }
6271
6272 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6273 {
6274 t1 = TYPE_TARGET_TYPE (t);
6275 if (t1 == NULL)
6276 goto BadValue;
6277 t1 = ada_check_typedef (t1);
6278 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6279 {
6280 arg = value_ind (arg);
6281 t = t1;
6282 }
6283 else
6284 break;
6285 }
6286
6287 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6288 goto BadValue;
6289
6290 if (t1 == t)
6291 v = ada_search_struct_field (name, arg, 0, t);
6292 else
6293 {
6294 int bit_offset, bit_size, byte_offset;
6295 struct type *field_type;
6296 CORE_ADDR address;
6297
6298 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6299 address = value_as_address (arg);
6300 else
6301 address = unpack_pointer (t, value_contents (arg));
6302
6303 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6304 if (find_struct_field (name, t1, 0,
6305 &field_type, &byte_offset, &bit_offset,
6306 &bit_size, NULL))
6307 {
6308 if (bit_size != 0)
6309 {
6310 if (TYPE_CODE (t) == TYPE_CODE_REF)
6311 arg = ada_coerce_ref (arg);
6312 else
6313 arg = ada_value_ind (arg);
6314 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6315 bit_offset, bit_size,
6316 field_type);
6317 }
6318 else
6319 v = value_from_pointer (lookup_reference_type (field_type),
6320 address + byte_offset);
6321 }
6322 }
6323
6324 if (v != NULL || no_err)
6325 return v;
6326 else
6327 error (_("There is no member named %s."), name);
6328
6329 BadValue:
6330 if (no_err)
6331 return NULL;
6332 else
6333 error (_("Attempt to extract a component of a value that is not a record."));
6334 }
6335
6336 /* Given a type TYPE, look up the type of the component of type named NAME.
6337 If DISPP is non-null, add its byte displacement from the beginning of a
6338 structure (pointed to by a value) of type TYPE to *DISPP (does not
6339 work for packed fields).
6340
6341 Matches any field whose name has NAME as a prefix, possibly
6342 followed by "___".
6343
6344 TYPE can be either a struct or union. If REFOK, TYPE may also
6345 be a (pointer or reference)+ to a struct or union, and the
6346 ultimate target type will be searched.
6347
6348 Looks recursively into variant clauses and parent types.
6349
6350 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6351 TYPE is not a type of the right kind. */
6352
6353 static struct type *
6354 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6355 int noerr, int *dispp)
6356 {
6357 int i;
6358
6359 if (name == NULL)
6360 goto BadName;
6361
6362 if (refok && type != NULL)
6363 while (1)
6364 {
6365 type = ada_check_typedef (type);
6366 if (TYPE_CODE (type) != TYPE_CODE_PTR
6367 && TYPE_CODE (type) != TYPE_CODE_REF)
6368 break;
6369 type = TYPE_TARGET_TYPE (type);
6370 }
6371
6372 if (type == NULL
6373 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6374 && TYPE_CODE (type) != TYPE_CODE_UNION))
6375 {
6376 if (noerr)
6377 return NULL;
6378 else
6379 {
6380 target_terminal_ours ();
6381 gdb_flush (gdb_stdout);
6382 if (type == NULL)
6383 error (_("Type (null) is not a structure or union type"));
6384 else
6385 {
6386 /* XXX: type_sprint */
6387 fprintf_unfiltered (gdb_stderr, _("Type "));
6388 type_print (type, "", gdb_stderr, -1);
6389 error (_(" is not a structure or union type"));
6390 }
6391 }
6392 }
6393
6394 type = to_static_fixed_type (type);
6395
6396 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6397 {
6398 char *t_field_name = TYPE_FIELD_NAME (type, i);
6399 struct type *t;
6400 int disp;
6401
6402 if (t_field_name == NULL)
6403 continue;
6404
6405 else if (field_name_match (t_field_name, name))
6406 {
6407 if (dispp != NULL)
6408 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6409 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6410 }
6411
6412 else if (ada_is_wrapper_field (type, i))
6413 {
6414 disp = 0;
6415 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6416 0, 1, &disp);
6417 if (t != NULL)
6418 {
6419 if (dispp != NULL)
6420 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6421 return t;
6422 }
6423 }
6424
6425 else if (ada_is_variant_part (type, i))
6426 {
6427 int j;
6428 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6429
6430 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6431 {
6432 disp = 0;
6433 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6434 name, 0, 1, &disp);
6435 if (t != NULL)
6436 {
6437 if (dispp != NULL)
6438 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6439 return t;
6440 }
6441 }
6442 }
6443
6444 }
6445
6446 BadName:
6447 if (!noerr)
6448 {
6449 target_terminal_ours ();
6450 gdb_flush (gdb_stdout);
6451 if (name == NULL)
6452 {
6453 /* XXX: type_sprint */
6454 fprintf_unfiltered (gdb_stderr, _("Type "));
6455 type_print (type, "", gdb_stderr, -1);
6456 error (_(" has no component named <null>"));
6457 }
6458 else
6459 {
6460 /* XXX: type_sprint */
6461 fprintf_unfiltered (gdb_stderr, _("Type "));
6462 type_print (type, "", gdb_stderr, -1);
6463 error (_(" has no component named %s"), name);
6464 }
6465 }
6466
6467 return NULL;
6468 }
6469
6470 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6471 within a value of type OUTER_TYPE that is stored in GDB at
6472 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6473 numbering from 0) is applicable. Returns -1 if none are. */
6474
6475 int
6476 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6477 const gdb_byte *outer_valaddr)
6478 {
6479 int others_clause;
6480 int i;
6481 char *discrim_name = ada_variant_discrim_name (var_type);
6482 struct value *outer;
6483 struct value *discrim;
6484 LONGEST discrim_val;
6485
6486 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6487 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6488 if (discrim == NULL)
6489 return -1;
6490 discrim_val = value_as_long (discrim);
6491
6492 others_clause = -1;
6493 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6494 {
6495 if (ada_is_others_clause (var_type, i))
6496 others_clause = i;
6497 else if (ada_in_variant (discrim_val, var_type, i))
6498 return i;
6499 }
6500
6501 return others_clause;
6502 }
6503 \f
6504
6505
6506 /* Dynamic-Sized Records */
6507
6508 /* Strategy: The type ostensibly attached to a value with dynamic size
6509 (i.e., a size that is not statically recorded in the debugging
6510 data) does not accurately reflect the size or layout of the value.
6511 Our strategy is to convert these values to values with accurate,
6512 conventional types that are constructed on the fly. */
6513
6514 /* There is a subtle and tricky problem here. In general, we cannot
6515 determine the size of dynamic records without its data. However,
6516 the 'struct value' data structure, which GDB uses to represent
6517 quantities in the inferior process (the target), requires the size
6518 of the type at the time of its allocation in order to reserve space
6519 for GDB's internal copy of the data. That's why the
6520 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6521 rather than struct value*s.
6522
6523 However, GDB's internal history variables ($1, $2, etc.) are
6524 struct value*s containing internal copies of the data that are not, in
6525 general, the same as the data at their corresponding addresses in
6526 the target. Fortunately, the types we give to these values are all
6527 conventional, fixed-size types (as per the strategy described
6528 above), so that we don't usually have to perform the
6529 'to_fixed_xxx_type' conversions to look at their values.
6530 Unfortunately, there is one exception: if one of the internal
6531 history variables is an array whose elements are unconstrained
6532 records, then we will need to create distinct fixed types for each
6533 element selected. */
6534
6535 /* The upshot of all of this is that many routines take a (type, host
6536 address, target address) triple as arguments to represent a value.
6537 The host address, if non-null, is supposed to contain an internal
6538 copy of the relevant data; otherwise, the program is to consult the
6539 target at the target address. */
6540
6541 /* Assuming that VAL0 represents a pointer value, the result of
6542 dereferencing it. Differs from value_ind in its treatment of
6543 dynamic-sized types. */
6544
6545 struct value *
6546 ada_value_ind (struct value *val0)
6547 {
6548 struct value *val = unwrap_value (value_ind (val0));
6549 return ada_to_fixed_value (val);
6550 }
6551
6552 /* The value resulting from dereferencing any "reference to"
6553 qualifiers on VAL0. */
6554
6555 static struct value *
6556 ada_coerce_ref (struct value *val0)
6557 {
6558 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6559 {
6560 struct value *val = val0;
6561 val = coerce_ref (val);
6562 val = unwrap_value (val);
6563 return ada_to_fixed_value (val);
6564 }
6565 else
6566 return val0;
6567 }
6568
6569 /* Return OFF rounded upward if necessary to a multiple of
6570 ALIGNMENT (a power of 2). */
6571
6572 static unsigned int
6573 align_value (unsigned int off, unsigned int alignment)
6574 {
6575 return (off + alignment - 1) & ~(alignment - 1);
6576 }
6577
6578 /* Return the bit alignment required for field #F of template type TYPE. */
6579
6580 static unsigned int
6581 field_alignment (struct type *type, int f)
6582 {
6583 const char *name = TYPE_FIELD_NAME (type, f);
6584 int len;
6585 int align_offset;
6586
6587 /* The field name should never be null, unless the debugging information
6588 is somehow malformed. In this case, we assume the field does not
6589 require any alignment. */
6590 if (name == NULL)
6591 return 1;
6592
6593 len = strlen (name);
6594
6595 if (!isdigit (name[len - 1]))
6596 return 1;
6597
6598 if (isdigit (name[len - 2]))
6599 align_offset = len - 2;
6600 else
6601 align_offset = len - 1;
6602
6603 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6604 return TARGET_CHAR_BIT;
6605
6606 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6607 }
6608
6609 /* Find a symbol named NAME. Ignores ambiguity. */
6610
6611 struct symbol *
6612 ada_find_any_symbol (const char *name)
6613 {
6614 struct symbol *sym;
6615
6616 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6617 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6618 return sym;
6619
6620 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6621 return sym;
6622 }
6623
6624 /* Find a type named NAME. Ignores ambiguity. */
6625
6626 struct type *
6627 ada_find_any_type (const char *name)
6628 {
6629 struct symbol *sym = ada_find_any_symbol (name);
6630
6631 if (sym != NULL)
6632 return SYMBOL_TYPE (sym);
6633
6634 return NULL;
6635 }
6636
6637 /* Given NAME and an associated BLOCK, search all symbols for
6638 NAME suffixed with "___XR", which is the ``renaming'' symbol
6639 associated to NAME. Return this symbol if found, return
6640 NULL otherwise. */
6641
6642 struct symbol *
6643 ada_find_renaming_symbol (const char *name, struct block *block)
6644 {
6645 struct symbol *sym;
6646
6647 sym = find_old_style_renaming_symbol (name, block);
6648
6649 if (sym != NULL)
6650 return sym;
6651
6652 /* Not right yet. FIXME pnh 7/20/2007. */
6653 sym = ada_find_any_symbol (name);
6654 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6655 return sym;
6656 else
6657 return NULL;
6658 }
6659
6660 static struct symbol *
6661 find_old_style_renaming_symbol (const char *name, struct block *block)
6662 {
6663 const struct symbol *function_sym = block_linkage_function (block);
6664 char *rename;
6665
6666 if (function_sym != NULL)
6667 {
6668 /* If the symbol is defined inside a function, NAME is not fully
6669 qualified. This means we need to prepend the function name
6670 as well as adding the ``___XR'' suffix to build the name of
6671 the associated renaming symbol. */
6672 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6673 /* Function names sometimes contain suffixes used
6674 for instance to qualify nested subprograms. When building
6675 the XR type name, we need to make sure that this suffix is
6676 not included. So do not include any suffix in the function
6677 name length below. */
6678 const int function_name_len = ada_name_prefix_len (function_name);
6679 const int rename_len = function_name_len + 2 /* "__" */
6680 + strlen (name) + 6 /* "___XR\0" */ ;
6681
6682 /* Strip the suffix if necessary. */
6683 function_name[function_name_len] = '\0';
6684
6685 /* Library-level functions are a special case, as GNAT adds
6686 a ``_ada_'' prefix to the function name to avoid namespace
6687 pollution. However, the renaming symbols themselves do not
6688 have this prefix, so we need to skip this prefix if present. */
6689 if (function_name_len > 5 /* "_ada_" */
6690 && strstr (function_name, "_ada_") == function_name)
6691 function_name = function_name + 5;
6692
6693 rename = (char *) alloca (rename_len * sizeof (char));
6694 sprintf (rename, "%s__%s___XR", function_name, name);
6695 }
6696 else
6697 {
6698 const int rename_len = strlen (name) + 6;
6699 rename = (char *) alloca (rename_len * sizeof (char));
6700 sprintf (rename, "%s___XR", name);
6701 }
6702
6703 return ada_find_any_symbol (rename);
6704 }
6705
6706 /* Because of GNAT encoding conventions, several GDB symbols may match a
6707 given type name. If the type denoted by TYPE0 is to be preferred to
6708 that of TYPE1 for purposes of type printing, return non-zero;
6709 otherwise return 0. */
6710
6711 int
6712 ada_prefer_type (struct type *type0, struct type *type1)
6713 {
6714 if (type1 == NULL)
6715 return 1;
6716 else if (type0 == NULL)
6717 return 0;
6718 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6719 return 1;
6720 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6721 return 0;
6722 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6723 return 1;
6724 else if (ada_is_packed_array_type (type0))
6725 return 1;
6726 else if (ada_is_array_descriptor_type (type0)
6727 && !ada_is_array_descriptor_type (type1))
6728 return 1;
6729 else
6730 {
6731 const char *type0_name = type_name_no_tag (type0);
6732 const char *type1_name = type_name_no_tag (type1);
6733
6734 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6735 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6736 return 1;
6737 }
6738 return 0;
6739 }
6740
6741 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6742 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6743
6744 char *
6745 ada_type_name (struct type *type)
6746 {
6747 if (type == NULL)
6748 return NULL;
6749 else if (TYPE_NAME (type) != NULL)
6750 return TYPE_NAME (type);
6751 else
6752 return TYPE_TAG_NAME (type);
6753 }
6754
6755 /* Find a parallel type to TYPE whose name is formed by appending
6756 SUFFIX to the name of TYPE. */
6757
6758 struct type *
6759 ada_find_parallel_type (struct type *type, const char *suffix)
6760 {
6761 static char *name;
6762 static size_t name_len = 0;
6763 int len;
6764 char *typename = ada_type_name (type);
6765
6766 if (typename == NULL)
6767 return NULL;
6768
6769 len = strlen (typename);
6770
6771 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6772
6773 strcpy (name, typename);
6774 strcpy (name + len, suffix);
6775
6776 return ada_find_any_type (name);
6777 }
6778
6779
6780 /* If TYPE is a variable-size record type, return the corresponding template
6781 type describing its fields. Otherwise, return NULL. */
6782
6783 static struct type *
6784 dynamic_template_type (struct type *type)
6785 {
6786 type = ada_check_typedef (type);
6787
6788 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6789 || ada_type_name (type) == NULL)
6790 return NULL;
6791 else
6792 {
6793 int len = strlen (ada_type_name (type));
6794 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6795 return type;
6796 else
6797 return ada_find_parallel_type (type, "___XVE");
6798 }
6799 }
6800
6801 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6802 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6803
6804 static int
6805 is_dynamic_field (struct type *templ_type, int field_num)
6806 {
6807 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6808 return name != NULL
6809 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6810 && strstr (name, "___XVL") != NULL;
6811 }
6812
6813 /* The index of the variant field of TYPE, or -1 if TYPE does not
6814 represent a variant record type. */
6815
6816 static int
6817 variant_field_index (struct type *type)
6818 {
6819 int f;
6820
6821 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6822 return -1;
6823
6824 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6825 {
6826 if (ada_is_variant_part (type, f))
6827 return f;
6828 }
6829 return -1;
6830 }
6831
6832 /* A record type with no fields. */
6833
6834 static struct type *
6835 empty_record (struct objfile *objfile)
6836 {
6837 struct type *type = alloc_type (objfile);
6838 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6839 TYPE_NFIELDS (type) = 0;
6840 TYPE_FIELDS (type) = NULL;
6841 TYPE_NAME (type) = "<empty>";
6842 TYPE_TAG_NAME (type) = NULL;
6843 TYPE_LENGTH (type) = 0;
6844 return type;
6845 }
6846
6847 /* An ordinary record type (with fixed-length fields) that describes
6848 the value of type TYPE at VALADDR or ADDRESS (see comments at
6849 the beginning of this section) VAL according to GNAT conventions.
6850 DVAL0 should describe the (portion of a) record that contains any
6851 necessary discriminants. It should be NULL if value_type (VAL) is
6852 an outer-level type (i.e., as opposed to a branch of a variant.) A
6853 variant field (unless unchecked) is replaced by a particular branch
6854 of the variant.
6855
6856 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6857 length are not statically known are discarded. As a consequence,
6858 VALADDR, ADDRESS and DVAL0 are ignored.
6859
6860 NOTE: Limitations: For now, we assume that dynamic fields and
6861 variants occupy whole numbers of bytes. However, they need not be
6862 byte-aligned. */
6863
6864 struct type *
6865 ada_template_to_fixed_record_type_1 (struct type *type,
6866 const gdb_byte *valaddr,
6867 CORE_ADDR address, struct value *dval0,
6868 int keep_dynamic_fields)
6869 {
6870 struct value *mark = value_mark ();
6871 struct value *dval;
6872 struct type *rtype;
6873 int nfields, bit_len;
6874 int variant_field;
6875 long off;
6876 int fld_bit_len, bit_incr;
6877 int f;
6878
6879 /* Compute the number of fields in this record type that are going
6880 to be processed: unless keep_dynamic_fields, this includes only
6881 fields whose position and length are static will be processed. */
6882 if (keep_dynamic_fields)
6883 nfields = TYPE_NFIELDS (type);
6884 else
6885 {
6886 nfields = 0;
6887 while (nfields < TYPE_NFIELDS (type)
6888 && !ada_is_variant_part (type, nfields)
6889 && !is_dynamic_field (type, nfields))
6890 nfields++;
6891 }
6892
6893 rtype = alloc_type (TYPE_OBJFILE (type));
6894 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6895 INIT_CPLUS_SPECIFIC (rtype);
6896 TYPE_NFIELDS (rtype) = nfields;
6897 TYPE_FIELDS (rtype) = (struct field *)
6898 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6899 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6900 TYPE_NAME (rtype) = ada_type_name (type);
6901 TYPE_TAG_NAME (rtype) = NULL;
6902 TYPE_FIXED_INSTANCE (rtype) = 1;
6903
6904 off = 0;
6905 bit_len = 0;
6906 variant_field = -1;
6907
6908 for (f = 0; f < nfields; f += 1)
6909 {
6910 off = align_value (off, field_alignment (type, f))
6911 + TYPE_FIELD_BITPOS (type, f);
6912 TYPE_FIELD_BITPOS (rtype, f) = off;
6913 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6914
6915 if (ada_is_variant_part (type, f))
6916 {
6917 variant_field = f;
6918 fld_bit_len = bit_incr = 0;
6919 }
6920 else if (is_dynamic_field (type, f))
6921 {
6922 if (dval0 == NULL)
6923 dval = value_from_contents_and_address (rtype, valaddr, address);
6924 else
6925 dval = dval0;
6926
6927 /* Get the fixed type of the field. Note that, in this case, we
6928 do not want to get the real type out of the tag: if the current
6929 field is the parent part of a tagged record, we will get the
6930 tag of the object. Clearly wrong: the real type of the parent
6931 is not the real type of the child. We would end up in an infinite
6932 loop. */
6933 TYPE_FIELD_TYPE (rtype, f) =
6934 ada_to_fixed_type
6935 (ada_get_base_type
6936 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6937 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6938 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6939 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6940 bit_incr = fld_bit_len =
6941 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6942 }
6943 else
6944 {
6945 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6946 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6947 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6948 bit_incr = fld_bit_len =
6949 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6950 else
6951 bit_incr = fld_bit_len =
6952 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6953 }
6954 if (off + fld_bit_len > bit_len)
6955 bit_len = off + fld_bit_len;
6956 off += bit_incr;
6957 TYPE_LENGTH (rtype) =
6958 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6959 }
6960
6961 /* We handle the variant part, if any, at the end because of certain
6962 odd cases in which it is re-ordered so as NOT the last field of
6963 the record. This can happen in the presence of representation
6964 clauses. */
6965 if (variant_field >= 0)
6966 {
6967 struct type *branch_type;
6968
6969 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6970
6971 if (dval0 == NULL)
6972 dval = value_from_contents_and_address (rtype, valaddr, address);
6973 else
6974 dval = dval0;
6975
6976 branch_type =
6977 to_fixed_variant_branch_type
6978 (TYPE_FIELD_TYPE (type, variant_field),
6979 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6980 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6981 if (branch_type == NULL)
6982 {
6983 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6984 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6985 TYPE_NFIELDS (rtype) -= 1;
6986 }
6987 else
6988 {
6989 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6990 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6991 fld_bit_len =
6992 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6993 TARGET_CHAR_BIT;
6994 if (off + fld_bit_len > bit_len)
6995 bit_len = off + fld_bit_len;
6996 TYPE_LENGTH (rtype) =
6997 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6998 }
6999 }
7000
7001 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7002 should contain the alignment of that record, which should be a strictly
7003 positive value. If null or negative, then something is wrong, most
7004 probably in the debug info. In that case, we don't round up the size
7005 of the resulting type. If this record is not part of another structure,
7006 the current RTYPE length might be good enough for our purposes. */
7007 if (TYPE_LENGTH (type) <= 0)
7008 {
7009 if (TYPE_NAME (rtype))
7010 warning (_("Invalid type size for `%s' detected: %d."),
7011 TYPE_NAME (rtype), TYPE_LENGTH (type));
7012 else
7013 warning (_("Invalid type size for <unnamed> detected: %d."),
7014 TYPE_LENGTH (type));
7015 }
7016 else
7017 {
7018 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7019 TYPE_LENGTH (type));
7020 }
7021
7022 value_free_to_mark (mark);
7023 if (TYPE_LENGTH (rtype) > varsize_limit)
7024 error (_("record type with dynamic size is larger than varsize-limit"));
7025 return rtype;
7026 }
7027
7028 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7029 of 1. */
7030
7031 static struct type *
7032 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7033 CORE_ADDR address, struct value *dval0)
7034 {
7035 return ada_template_to_fixed_record_type_1 (type, valaddr,
7036 address, dval0, 1);
7037 }
7038
7039 /* An ordinary record type in which ___XVL-convention fields and
7040 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7041 static approximations, containing all possible fields. Uses
7042 no runtime values. Useless for use in values, but that's OK,
7043 since the results are used only for type determinations. Works on both
7044 structs and unions. Representation note: to save space, we memorize
7045 the result of this function in the TYPE_TARGET_TYPE of the
7046 template type. */
7047
7048 static struct type *
7049 template_to_static_fixed_type (struct type *type0)
7050 {
7051 struct type *type;
7052 int nfields;
7053 int f;
7054
7055 if (TYPE_TARGET_TYPE (type0) != NULL)
7056 return TYPE_TARGET_TYPE (type0);
7057
7058 nfields = TYPE_NFIELDS (type0);
7059 type = type0;
7060
7061 for (f = 0; f < nfields; f += 1)
7062 {
7063 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7064 struct type *new_type;
7065
7066 if (is_dynamic_field (type0, f))
7067 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7068 else
7069 new_type = static_unwrap_type (field_type);
7070 if (type == type0 && new_type != field_type)
7071 {
7072 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7073 TYPE_CODE (type) = TYPE_CODE (type0);
7074 INIT_CPLUS_SPECIFIC (type);
7075 TYPE_NFIELDS (type) = nfields;
7076 TYPE_FIELDS (type) = (struct field *)
7077 TYPE_ALLOC (type, nfields * sizeof (struct field));
7078 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7079 sizeof (struct field) * nfields);
7080 TYPE_NAME (type) = ada_type_name (type0);
7081 TYPE_TAG_NAME (type) = NULL;
7082 TYPE_FIXED_INSTANCE (type) = 1;
7083 TYPE_LENGTH (type) = 0;
7084 }
7085 TYPE_FIELD_TYPE (type, f) = new_type;
7086 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7087 }
7088 return type;
7089 }
7090
7091 /* Given an object of type TYPE whose contents are at VALADDR and
7092 whose address in memory is ADDRESS, returns a revision of TYPE,
7093 which should be a non-dynamic-sized record, in which the variant
7094 part, if any, is replaced with the appropriate branch. Looks
7095 for discriminant values in DVAL0, which can be NULL if the record
7096 contains the necessary discriminant values. */
7097
7098 static struct type *
7099 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7100 CORE_ADDR address, struct value *dval0)
7101 {
7102 struct value *mark = value_mark ();
7103 struct value *dval;
7104 struct type *rtype;
7105 struct type *branch_type;
7106 int nfields = TYPE_NFIELDS (type);
7107 int variant_field = variant_field_index (type);
7108
7109 if (variant_field == -1)
7110 return type;
7111
7112 if (dval0 == NULL)
7113 dval = value_from_contents_and_address (type, valaddr, address);
7114 else
7115 dval = dval0;
7116
7117 rtype = alloc_type (TYPE_OBJFILE (type));
7118 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7119 INIT_CPLUS_SPECIFIC (rtype);
7120 TYPE_NFIELDS (rtype) = nfields;
7121 TYPE_FIELDS (rtype) =
7122 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7123 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7124 sizeof (struct field) * nfields);
7125 TYPE_NAME (rtype) = ada_type_name (type);
7126 TYPE_TAG_NAME (rtype) = NULL;
7127 TYPE_FIXED_INSTANCE (rtype) = 1;
7128 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7129
7130 branch_type = to_fixed_variant_branch_type
7131 (TYPE_FIELD_TYPE (type, variant_field),
7132 cond_offset_host (valaddr,
7133 TYPE_FIELD_BITPOS (type, variant_field)
7134 / TARGET_CHAR_BIT),
7135 cond_offset_target (address,
7136 TYPE_FIELD_BITPOS (type, variant_field)
7137 / TARGET_CHAR_BIT), dval);
7138 if (branch_type == NULL)
7139 {
7140 int f;
7141 for (f = variant_field + 1; f < nfields; f += 1)
7142 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7143 TYPE_NFIELDS (rtype) -= 1;
7144 }
7145 else
7146 {
7147 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7148 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7149 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7150 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7151 }
7152 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7153
7154 value_free_to_mark (mark);
7155 return rtype;
7156 }
7157
7158 /* An ordinary record type (with fixed-length fields) that describes
7159 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7160 beginning of this section]. Any necessary discriminants' values
7161 should be in DVAL, a record value; it may be NULL if the object
7162 at ADDR itself contains any necessary discriminant values.
7163 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7164 values from the record are needed. Except in the case that DVAL,
7165 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7166 unchecked) is replaced by a particular branch of the variant.
7167
7168 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7169 is questionable and may be removed. It can arise during the
7170 processing of an unconstrained-array-of-record type where all the
7171 variant branches have exactly the same size. This is because in
7172 such cases, the compiler does not bother to use the XVS convention
7173 when encoding the record. I am currently dubious of this
7174 shortcut and suspect the compiler should be altered. FIXME. */
7175
7176 static struct type *
7177 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7178 CORE_ADDR address, struct value *dval)
7179 {
7180 struct type *templ_type;
7181
7182 if (TYPE_FIXED_INSTANCE (type0))
7183 return type0;
7184
7185 templ_type = dynamic_template_type (type0);
7186
7187 if (templ_type != NULL)
7188 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7189 else if (variant_field_index (type0) >= 0)
7190 {
7191 if (dval == NULL && valaddr == NULL && address == 0)
7192 return type0;
7193 return to_record_with_fixed_variant_part (type0, valaddr, address,
7194 dval);
7195 }
7196 else
7197 {
7198 TYPE_FIXED_INSTANCE (type0) = 1;
7199 return type0;
7200 }
7201
7202 }
7203
7204 /* An ordinary record type (with fixed-length fields) that describes
7205 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7206 union type. Any necessary discriminants' values should be in DVAL,
7207 a record value. That is, this routine selects the appropriate
7208 branch of the union at ADDR according to the discriminant value
7209 indicated in the union's type name. */
7210
7211 static struct type *
7212 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7213 CORE_ADDR address, struct value *dval)
7214 {
7215 int which;
7216 struct type *templ_type;
7217 struct type *var_type;
7218
7219 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7220 var_type = TYPE_TARGET_TYPE (var_type0);
7221 else
7222 var_type = var_type0;
7223
7224 templ_type = ada_find_parallel_type (var_type, "___XVU");
7225
7226 if (templ_type != NULL)
7227 var_type = templ_type;
7228
7229 which =
7230 ada_which_variant_applies (var_type,
7231 value_type (dval), value_contents (dval));
7232
7233 if (which < 0)
7234 return empty_record (TYPE_OBJFILE (var_type));
7235 else if (is_dynamic_field (var_type, which))
7236 return to_fixed_record_type
7237 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7238 valaddr, address, dval);
7239 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7240 return
7241 to_fixed_record_type
7242 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7243 else
7244 return TYPE_FIELD_TYPE (var_type, which);
7245 }
7246
7247 /* Assuming that TYPE0 is an array type describing the type of a value
7248 at ADDR, and that DVAL describes a record containing any
7249 discriminants used in TYPE0, returns a type for the value that
7250 contains no dynamic components (that is, no components whose sizes
7251 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7252 true, gives an error message if the resulting type's size is over
7253 varsize_limit. */
7254
7255 static struct type *
7256 to_fixed_array_type (struct type *type0, struct value *dval,
7257 int ignore_too_big)
7258 {
7259 struct type *index_type_desc;
7260 struct type *result;
7261
7262 if (ada_is_packed_array_type (type0) /* revisit? */
7263 || TYPE_FIXED_INSTANCE (type0))
7264 return type0;
7265
7266 index_type_desc = ada_find_parallel_type (type0, "___XA");
7267 if (index_type_desc == NULL)
7268 {
7269 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7270 /* NOTE: elt_type---the fixed version of elt_type0---should never
7271 depend on the contents of the array in properly constructed
7272 debugging data. */
7273 /* Create a fixed version of the array element type.
7274 We're not providing the address of an element here,
7275 and thus the actual object value cannot be inspected to do
7276 the conversion. This should not be a problem, since arrays of
7277 unconstrained objects are not allowed. In particular, all
7278 the elements of an array of a tagged type should all be of
7279 the same type specified in the debugging info. No need to
7280 consult the object tag. */
7281 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7282
7283 if (elt_type0 == elt_type)
7284 result = type0;
7285 else
7286 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7287 elt_type, TYPE_INDEX_TYPE (type0));
7288 }
7289 else
7290 {
7291 int i;
7292 struct type *elt_type0;
7293
7294 elt_type0 = type0;
7295 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7296 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7297
7298 /* NOTE: result---the fixed version of elt_type0---should never
7299 depend on the contents of the array in properly constructed
7300 debugging data. */
7301 /* Create a fixed version of the array element type.
7302 We're not providing the address of an element here,
7303 and thus the actual object value cannot be inspected to do
7304 the conversion. This should not be a problem, since arrays of
7305 unconstrained objects are not allowed. In particular, all
7306 the elements of an array of a tagged type should all be of
7307 the same type specified in the debugging info. No need to
7308 consult the object tag. */
7309 result =
7310 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7311 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7312 {
7313 struct type *range_type =
7314 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7315 dval, TYPE_OBJFILE (type0));
7316 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7317 result, range_type);
7318 }
7319 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7320 error (_("array type with dynamic size is larger than varsize-limit"));
7321 }
7322
7323 TYPE_FIXED_INSTANCE (result) = 1;
7324 return result;
7325 }
7326
7327
7328 /* A standard type (containing no dynamically sized components)
7329 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7330 DVAL describes a record containing any discriminants used in TYPE0,
7331 and may be NULL if there are none, or if the object of type TYPE at
7332 ADDRESS or in VALADDR contains these discriminants.
7333
7334 If CHECK_TAG is not null, in the case of tagged types, this function
7335 attempts to locate the object's tag and use it to compute the actual
7336 type. However, when ADDRESS is null, we cannot use it to determine the
7337 location of the tag, and therefore compute the tagged type's actual type.
7338 So we return the tagged type without consulting the tag. */
7339
7340 static struct type *
7341 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7342 CORE_ADDR address, struct value *dval, int check_tag)
7343 {
7344 type = ada_check_typedef (type);
7345 switch (TYPE_CODE (type))
7346 {
7347 default:
7348 return type;
7349 case TYPE_CODE_STRUCT:
7350 {
7351 struct type *static_type = to_static_fixed_type (type);
7352 struct type *fixed_record_type =
7353 to_fixed_record_type (type, valaddr, address, NULL);
7354 /* If STATIC_TYPE is a tagged type and we know the object's address,
7355 then we can determine its tag, and compute the object's actual
7356 type from there. Note that we have to use the fixed record
7357 type (the parent part of the record may have dynamic fields
7358 and the way the location of _tag is expressed may depend on
7359 them). */
7360
7361 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7362 {
7363 struct type *real_type =
7364 type_from_tag (value_tag_from_contents_and_address
7365 (fixed_record_type,
7366 valaddr,
7367 address));
7368 if (real_type != NULL)
7369 return to_fixed_record_type (real_type, valaddr, address, NULL);
7370 }
7371 return fixed_record_type;
7372 }
7373 case TYPE_CODE_ARRAY:
7374 return to_fixed_array_type (type, dval, 1);
7375 case TYPE_CODE_UNION:
7376 if (dval == NULL)
7377 return type;
7378 else
7379 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7380 }
7381 }
7382
7383 /* The same as ada_to_fixed_type_1, except that it preserves the type
7384 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7385 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7386
7387 struct type *
7388 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7389 CORE_ADDR address, struct value *dval, int check_tag)
7390
7391 {
7392 struct type *fixed_type =
7393 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7394
7395 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7396 && TYPE_TARGET_TYPE (type) == fixed_type)
7397 return type;
7398
7399 return fixed_type;
7400 }
7401
7402 /* A standard (static-sized) type corresponding as well as possible to
7403 TYPE0, but based on no runtime data. */
7404
7405 static struct type *
7406 to_static_fixed_type (struct type *type0)
7407 {
7408 struct type *type;
7409
7410 if (type0 == NULL)
7411 return NULL;
7412
7413 if (TYPE_FIXED_INSTANCE (type0))
7414 return type0;
7415
7416 type0 = ada_check_typedef (type0);
7417
7418 switch (TYPE_CODE (type0))
7419 {
7420 default:
7421 return type0;
7422 case TYPE_CODE_STRUCT:
7423 type = dynamic_template_type (type0);
7424 if (type != NULL)
7425 return template_to_static_fixed_type (type);
7426 else
7427 return template_to_static_fixed_type (type0);
7428 case TYPE_CODE_UNION:
7429 type = ada_find_parallel_type (type0, "___XVU");
7430 if (type != NULL)
7431 return template_to_static_fixed_type (type);
7432 else
7433 return template_to_static_fixed_type (type0);
7434 }
7435 }
7436
7437 /* A static approximation of TYPE with all type wrappers removed. */
7438
7439 static struct type *
7440 static_unwrap_type (struct type *type)
7441 {
7442 if (ada_is_aligner_type (type))
7443 {
7444 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7445 if (ada_type_name (type1) == NULL)
7446 TYPE_NAME (type1) = ada_type_name (type);
7447
7448 return static_unwrap_type (type1);
7449 }
7450 else
7451 {
7452 struct type *raw_real_type = ada_get_base_type (type);
7453 if (raw_real_type == type)
7454 return type;
7455 else
7456 return to_static_fixed_type (raw_real_type);
7457 }
7458 }
7459
7460 /* In some cases, incomplete and private types require
7461 cross-references that are not resolved as records (for example,
7462 type Foo;
7463 type FooP is access Foo;
7464 V: FooP;
7465 type Foo is array ...;
7466 ). In these cases, since there is no mechanism for producing
7467 cross-references to such types, we instead substitute for FooP a
7468 stub enumeration type that is nowhere resolved, and whose tag is
7469 the name of the actual type. Call these types "non-record stubs". */
7470
7471 /* A type equivalent to TYPE that is not a non-record stub, if one
7472 exists, otherwise TYPE. */
7473
7474 struct type *
7475 ada_check_typedef (struct type *type)
7476 {
7477 if (type == NULL)
7478 return NULL;
7479
7480 CHECK_TYPEDEF (type);
7481 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7482 || !TYPE_STUB (type)
7483 || TYPE_TAG_NAME (type) == NULL)
7484 return type;
7485 else
7486 {
7487 char *name = TYPE_TAG_NAME (type);
7488 struct type *type1 = ada_find_any_type (name);
7489 return (type1 == NULL) ? type : type1;
7490 }
7491 }
7492
7493 /* A value representing the data at VALADDR/ADDRESS as described by
7494 type TYPE0, but with a standard (static-sized) type that correctly
7495 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7496 type, then return VAL0 [this feature is simply to avoid redundant
7497 creation of struct values]. */
7498
7499 static struct value *
7500 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7501 struct value *val0)
7502 {
7503 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7504 if (type == type0 && val0 != NULL)
7505 return val0;
7506 else
7507 return value_from_contents_and_address (type, 0, address);
7508 }
7509
7510 /* A value representing VAL, but with a standard (static-sized) type
7511 that correctly describes it. Does not necessarily create a new
7512 value. */
7513
7514 static struct value *
7515 ada_to_fixed_value (struct value *val)
7516 {
7517 return ada_to_fixed_value_create (value_type (val),
7518 VALUE_ADDRESS (val) + value_offset (val),
7519 val);
7520 }
7521
7522 /* A value representing VAL, but with a standard (static-sized) type
7523 chosen to approximate the real type of VAL as well as possible, but
7524 without consulting any runtime values. For Ada dynamic-sized
7525 types, therefore, the type of the result is likely to be inaccurate. */
7526
7527 struct value *
7528 ada_to_static_fixed_value (struct value *val)
7529 {
7530 struct type *type =
7531 to_static_fixed_type (static_unwrap_type (value_type (val)));
7532 if (type == value_type (val))
7533 return val;
7534 else
7535 return coerce_unspec_val_to_type (val, type);
7536 }
7537 \f
7538
7539 /* Attributes */
7540
7541 /* Table mapping attribute numbers to names.
7542 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7543
7544 static const char *attribute_names[] = {
7545 "<?>",
7546
7547 "first",
7548 "last",
7549 "length",
7550 "image",
7551 "max",
7552 "min",
7553 "modulus",
7554 "pos",
7555 "size",
7556 "tag",
7557 "val",
7558 0
7559 };
7560
7561 const char *
7562 ada_attribute_name (enum exp_opcode n)
7563 {
7564 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7565 return attribute_names[n - OP_ATR_FIRST + 1];
7566 else
7567 return attribute_names[0];
7568 }
7569
7570 /* Evaluate the 'POS attribute applied to ARG. */
7571
7572 static LONGEST
7573 pos_atr (struct value *arg)
7574 {
7575 struct value *val = coerce_ref (arg);
7576 struct type *type = value_type (val);
7577
7578 if (!discrete_type_p (type))
7579 error (_("'POS only defined on discrete types"));
7580
7581 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7582 {
7583 int i;
7584 LONGEST v = value_as_long (val);
7585
7586 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7587 {
7588 if (v == TYPE_FIELD_BITPOS (type, i))
7589 return i;
7590 }
7591 error (_("enumeration value is invalid: can't find 'POS"));
7592 }
7593 else
7594 return value_as_long (val);
7595 }
7596
7597 static struct value *
7598 value_pos_atr (struct value *arg)
7599 {
7600 return value_from_longest (builtin_type_int, pos_atr (arg));
7601 }
7602
7603 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7604
7605 static struct value *
7606 value_val_atr (struct type *type, struct value *arg)
7607 {
7608 if (!discrete_type_p (type))
7609 error (_("'VAL only defined on discrete types"));
7610 if (!integer_type_p (value_type (arg)))
7611 error (_("'VAL requires integral argument"));
7612
7613 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7614 {
7615 long pos = value_as_long (arg);
7616 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7617 error (_("argument to 'VAL out of range"));
7618 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7619 }
7620 else
7621 return value_from_longest (type, value_as_long (arg));
7622 }
7623 \f
7624
7625 /* Evaluation */
7626
7627 /* True if TYPE appears to be an Ada character type.
7628 [At the moment, this is true only for Character and Wide_Character;
7629 It is a heuristic test that could stand improvement]. */
7630
7631 int
7632 ada_is_character_type (struct type *type)
7633 {
7634 const char *name;
7635
7636 /* If the type code says it's a character, then assume it really is,
7637 and don't check any further. */
7638 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7639 return 1;
7640
7641 /* Otherwise, assume it's a character type iff it is a discrete type
7642 with a known character type name. */
7643 name = ada_type_name (type);
7644 return (name != NULL
7645 && (TYPE_CODE (type) == TYPE_CODE_INT
7646 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7647 && (strcmp (name, "character") == 0
7648 || strcmp (name, "wide_character") == 0
7649 || strcmp (name, "wide_wide_character") == 0
7650 || strcmp (name, "unsigned char") == 0));
7651 }
7652
7653 /* True if TYPE appears to be an Ada string type. */
7654
7655 int
7656 ada_is_string_type (struct type *type)
7657 {
7658 type = ada_check_typedef (type);
7659 if (type != NULL
7660 && TYPE_CODE (type) != TYPE_CODE_PTR
7661 && (ada_is_simple_array_type (type)
7662 || ada_is_array_descriptor_type (type))
7663 && ada_array_arity (type) == 1)
7664 {
7665 struct type *elttype = ada_array_element_type (type, 1);
7666
7667 return ada_is_character_type (elttype);
7668 }
7669 else
7670 return 0;
7671 }
7672
7673
7674 /* True if TYPE is a struct type introduced by the compiler to force the
7675 alignment of a value. Such types have a single field with a
7676 distinctive name. */
7677
7678 int
7679 ada_is_aligner_type (struct type *type)
7680 {
7681 type = ada_check_typedef (type);
7682
7683 /* If we can find a parallel XVS type, then the XVS type should
7684 be used instead of this type. And hence, this is not an aligner
7685 type. */
7686 if (ada_find_parallel_type (type, "___XVS") != NULL)
7687 return 0;
7688
7689 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7690 && TYPE_NFIELDS (type) == 1
7691 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7692 }
7693
7694 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7695 the parallel type. */
7696
7697 struct type *
7698 ada_get_base_type (struct type *raw_type)
7699 {
7700 struct type *real_type_namer;
7701 struct type *raw_real_type;
7702
7703 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7704 return raw_type;
7705
7706 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7707 if (real_type_namer == NULL
7708 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7709 || TYPE_NFIELDS (real_type_namer) != 1)
7710 return raw_type;
7711
7712 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7713 if (raw_real_type == NULL)
7714 return raw_type;
7715 else
7716 return raw_real_type;
7717 }
7718
7719 /* The type of value designated by TYPE, with all aligners removed. */
7720
7721 struct type *
7722 ada_aligned_type (struct type *type)
7723 {
7724 if (ada_is_aligner_type (type))
7725 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7726 else
7727 return ada_get_base_type (type);
7728 }
7729
7730
7731 /* The address of the aligned value in an object at address VALADDR
7732 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7733
7734 const gdb_byte *
7735 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7736 {
7737 if (ada_is_aligner_type (type))
7738 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7739 valaddr +
7740 TYPE_FIELD_BITPOS (type,
7741 0) / TARGET_CHAR_BIT);
7742 else
7743 return valaddr;
7744 }
7745
7746
7747
7748 /* The printed representation of an enumeration literal with encoded
7749 name NAME. The value is good to the next call of ada_enum_name. */
7750 const char *
7751 ada_enum_name (const char *name)
7752 {
7753 static char *result;
7754 static size_t result_len = 0;
7755 char *tmp;
7756
7757 /* First, unqualify the enumeration name:
7758 1. Search for the last '.' character. If we find one, then skip
7759 all the preceeding characters, the unqualified name starts
7760 right after that dot.
7761 2. Otherwise, we may be debugging on a target where the compiler
7762 translates dots into "__". Search forward for double underscores,
7763 but stop searching when we hit an overloading suffix, which is
7764 of the form "__" followed by digits. */
7765
7766 tmp = strrchr (name, '.');
7767 if (tmp != NULL)
7768 name = tmp + 1;
7769 else
7770 {
7771 while ((tmp = strstr (name, "__")) != NULL)
7772 {
7773 if (isdigit (tmp[2]))
7774 break;
7775 else
7776 name = tmp + 2;
7777 }
7778 }
7779
7780 if (name[0] == 'Q')
7781 {
7782 int v;
7783 if (name[1] == 'U' || name[1] == 'W')
7784 {
7785 if (sscanf (name + 2, "%x", &v) != 1)
7786 return name;
7787 }
7788 else
7789 return name;
7790
7791 GROW_VECT (result, result_len, 16);
7792 if (isascii (v) && isprint (v))
7793 sprintf (result, "'%c'", v);
7794 else if (name[1] == 'U')
7795 sprintf (result, "[\"%02x\"]", v);
7796 else
7797 sprintf (result, "[\"%04x\"]", v);
7798
7799 return result;
7800 }
7801 else
7802 {
7803 tmp = strstr (name, "__");
7804 if (tmp == NULL)
7805 tmp = strstr (name, "$");
7806 if (tmp != NULL)
7807 {
7808 GROW_VECT (result, result_len, tmp - name + 1);
7809 strncpy (result, name, tmp - name);
7810 result[tmp - name] = '\0';
7811 return result;
7812 }
7813
7814 return name;
7815 }
7816 }
7817
7818 static struct value *
7819 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7820 enum noside noside)
7821 {
7822 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7823 (expect_type, exp, pos, noside);
7824 }
7825
7826 /* Evaluate the subexpression of EXP starting at *POS as for
7827 evaluate_type, updating *POS to point just past the evaluated
7828 expression. */
7829
7830 static struct value *
7831 evaluate_subexp_type (struct expression *exp, int *pos)
7832 {
7833 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7834 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7835 }
7836
7837 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7838 value it wraps. */
7839
7840 static struct value *
7841 unwrap_value (struct value *val)
7842 {
7843 struct type *type = ada_check_typedef (value_type (val));
7844 if (ada_is_aligner_type (type))
7845 {
7846 struct value *v = ada_value_struct_elt (val, "F", 0);
7847 struct type *val_type = ada_check_typedef (value_type (v));
7848 if (ada_type_name (val_type) == NULL)
7849 TYPE_NAME (val_type) = ada_type_name (type);
7850
7851 return unwrap_value (v);
7852 }
7853 else
7854 {
7855 struct type *raw_real_type =
7856 ada_check_typedef (ada_get_base_type (type));
7857
7858 if (type == raw_real_type)
7859 return val;
7860
7861 return
7862 coerce_unspec_val_to_type
7863 (val, ada_to_fixed_type (raw_real_type, 0,
7864 VALUE_ADDRESS (val) + value_offset (val),
7865 NULL, 1));
7866 }
7867 }
7868
7869 static struct value *
7870 cast_to_fixed (struct type *type, struct value *arg)
7871 {
7872 LONGEST val;
7873
7874 if (type == value_type (arg))
7875 return arg;
7876 else if (ada_is_fixed_point_type (value_type (arg)))
7877 val = ada_float_to_fixed (type,
7878 ada_fixed_to_float (value_type (arg),
7879 value_as_long (arg)));
7880 else
7881 {
7882 DOUBLEST argd =
7883 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7884 val = ada_float_to_fixed (type, argd);
7885 }
7886
7887 return value_from_longest (type, val);
7888 }
7889
7890 static struct value *
7891 cast_from_fixed_to_double (struct value *arg)
7892 {
7893 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7894 value_as_long (arg));
7895 return value_from_double (builtin_type_double, val);
7896 }
7897
7898 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7899 return the converted value. */
7900
7901 static struct value *
7902 coerce_for_assign (struct type *type, struct value *val)
7903 {
7904 struct type *type2 = value_type (val);
7905 if (type == type2)
7906 return val;
7907
7908 type2 = ada_check_typedef (type2);
7909 type = ada_check_typedef (type);
7910
7911 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7912 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7913 {
7914 val = ada_value_ind (val);
7915 type2 = value_type (val);
7916 }
7917
7918 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7919 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7920 {
7921 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7922 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7923 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7924 error (_("Incompatible types in assignment"));
7925 deprecated_set_value_type (val, type);
7926 }
7927 return val;
7928 }
7929
7930 static struct value *
7931 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7932 {
7933 struct value *val;
7934 struct type *type1, *type2;
7935 LONGEST v, v1, v2;
7936
7937 arg1 = coerce_ref (arg1);
7938 arg2 = coerce_ref (arg2);
7939 type1 = base_type (ada_check_typedef (value_type (arg1)));
7940 type2 = base_type (ada_check_typedef (value_type (arg2)));
7941
7942 if (TYPE_CODE (type1) != TYPE_CODE_INT
7943 || TYPE_CODE (type2) != TYPE_CODE_INT)
7944 return value_binop (arg1, arg2, op);
7945
7946 switch (op)
7947 {
7948 case BINOP_MOD:
7949 case BINOP_DIV:
7950 case BINOP_REM:
7951 break;
7952 default:
7953 return value_binop (arg1, arg2, op);
7954 }
7955
7956 v2 = value_as_long (arg2);
7957 if (v2 == 0)
7958 error (_("second operand of %s must not be zero."), op_string (op));
7959
7960 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7961 return value_binop (arg1, arg2, op);
7962
7963 v1 = value_as_long (arg1);
7964 switch (op)
7965 {
7966 case BINOP_DIV:
7967 v = v1 / v2;
7968 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7969 v += v > 0 ? -1 : 1;
7970 break;
7971 case BINOP_REM:
7972 v = v1 % v2;
7973 if (v * v1 < 0)
7974 v -= v2;
7975 break;
7976 default:
7977 /* Should not reach this point. */
7978 v = 0;
7979 }
7980
7981 val = allocate_value (type1);
7982 store_unsigned_integer (value_contents_raw (val),
7983 TYPE_LENGTH (value_type (val)), v);
7984 return val;
7985 }
7986
7987 static int
7988 ada_value_equal (struct value *arg1, struct value *arg2)
7989 {
7990 if (ada_is_direct_array_type (value_type (arg1))
7991 || ada_is_direct_array_type (value_type (arg2)))
7992 {
7993 /* Automatically dereference any array reference before
7994 we attempt to perform the comparison. */
7995 arg1 = ada_coerce_ref (arg1);
7996 arg2 = ada_coerce_ref (arg2);
7997
7998 arg1 = ada_coerce_to_simple_array (arg1);
7999 arg2 = ada_coerce_to_simple_array (arg2);
8000 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8001 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8002 error (_("Attempt to compare array with non-array"));
8003 /* FIXME: The following works only for types whose
8004 representations use all bits (no padding or undefined bits)
8005 and do not have user-defined equality. */
8006 return
8007 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8008 && memcmp (value_contents (arg1), value_contents (arg2),
8009 TYPE_LENGTH (value_type (arg1))) == 0;
8010 }
8011 return value_equal (arg1, arg2);
8012 }
8013
8014 /* Total number of component associations in the aggregate starting at
8015 index PC in EXP. Assumes that index PC is the start of an
8016 OP_AGGREGATE. */
8017
8018 static int
8019 num_component_specs (struct expression *exp, int pc)
8020 {
8021 int n, m, i;
8022 m = exp->elts[pc + 1].longconst;
8023 pc += 3;
8024 n = 0;
8025 for (i = 0; i < m; i += 1)
8026 {
8027 switch (exp->elts[pc].opcode)
8028 {
8029 default:
8030 n += 1;
8031 break;
8032 case OP_CHOICES:
8033 n += exp->elts[pc + 1].longconst;
8034 break;
8035 }
8036 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8037 }
8038 return n;
8039 }
8040
8041 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8042 component of LHS (a simple array or a record), updating *POS past
8043 the expression, assuming that LHS is contained in CONTAINER. Does
8044 not modify the inferior's memory, nor does it modify LHS (unless
8045 LHS == CONTAINER). */
8046
8047 static void
8048 assign_component (struct value *container, struct value *lhs, LONGEST index,
8049 struct expression *exp, int *pos)
8050 {
8051 struct value *mark = value_mark ();
8052 struct value *elt;
8053 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8054 {
8055 struct value *index_val = value_from_longest (builtin_type_int, index);
8056 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8057 }
8058 else
8059 {
8060 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8061 elt = ada_to_fixed_value (unwrap_value (elt));
8062 }
8063
8064 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8065 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8066 else
8067 value_assign_to_component (container, elt,
8068 ada_evaluate_subexp (NULL, exp, pos,
8069 EVAL_NORMAL));
8070
8071 value_free_to_mark (mark);
8072 }
8073
8074 /* Assuming that LHS represents an lvalue having a record or array
8075 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8076 of that aggregate's value to LHS, advancing *POS past the
8077 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8078 lvalue containing LHS (possibly LHS itself). Does not modify
8079 the inferior's memory, nor does it modify the contents of
8080 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8081
8082 static struct value *
8083 assign_aggregate (struct value *container,
8084 struct value *lhs, struct expression *exp,
8085 int *pos, enum noside noside)
8086 {
8087 struct type *lhs_type;
8088 int n = exp->elts[*pos+1].longconst;
8089 LONGEST low_index, high_index;
8090 int num_specs;
8091 LONGEST *indices;
8092 int max_indices, num_indices;
8093 int is_array_aggregate;
8094 int i;
8095 struct value *mark = value_mark ();
8096
8097 *pos += 3;
8098 if (noside != EVAL_NORMAL)
8099 {
8100 int i;
8101 for (i = 0; i < n; i += 1)
8102 ada_evaluate_subexp (NULL, exp, pos, noside);
8103 return container;
8104 }
8105
8106 container = ada_coerce_ref (container);
8107 if (ada_is_direct_array_type (value_type (container)))
8108 container = ada_coerce_to_simple_array (container);
8109 lhs = ada_coerce_ref (lhs);
8110 if (!deprecated_value_modifiable (lhs))
8111 error (_("Left operand of assignment is not a modifiable lvalue."));
8112
8113 lhs_type = value_type (lhs);
8114 if (ada_is_direct_array_type (lhs_type))
8115 {
8116 lhs = ada_coerce_to_simple_array (lhs);
8117 lhs_type = value_type (lhs);
8118 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8119 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8120 is_array_aggregate = 1;
8121 }
8122 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8123 {
8124 low_index = 0;
8125 high_index = num_visible_fields (lhs_type) - 1;
8126 is_array_aggregate = 0;
8127 }
8128 else
8129 error (_("Left-hand side must be array or record."));
8130
8131 num_specs = num_component_specs (exp, *pos - 3);
8132 max_indices = 4 * num_specs + 4;
8133 indices = alloca (max_indices * sizeof (indices[0]));
8134 indices[0] = indices[1] = low_index - 1;
8135 indices[2] = indices[3] = high_index + 1;
8136 num_indices = 4;
8137
8138 for (i = 0; i < n; i += 1)
8139 {
8140 switch (exp->elts[*pos].opcode)
8141 {
8142 case OP_CHOICES:
8143 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8144 &num_indices, max_indices,
8145 low_index, high_index);
8146 break;
8147 case OP_POSITIONAL:
8148 aggregate_assign_positional (container, lhs, exp, pos, indices,
8149 &num_indices, max_indices,
8150 low_index, high_index);
8151 break;
8152 case OP_OTHERS:
8153 if (i != n-1)
8154 error (_("Misplaced 'others' clause"));
8155 aggregate_assign_others (container, lhs, exp, pos, indices,
8156 num_indices, low_index, high_index);
8157 break;
8158 default:
8159 error (_("Internal error: bad aggregate clause"));
8160 }
8161 }
8162
8163 return container;
8164 }
8165
8166 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8167 construct at *POS, updating *POS past the construct, given that
8168 the positions are relative to lower bound LOW, where HIGH is the
8169 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8170 updating *NUM_INDICES as needed. CONTAINER is as for
8171 assign_aggregate. */
8172 static void
8173 aggregate_assign_positional (struct value *container,
8174 struct value *lhs, struct expression *exp,
8175 int *pos, LONGEST *indices, int *num_indices,
8176 int max_indices, LONGEST low, LONGEST high)
8177 {
8178 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8179
8180 if (ind - 1 == high)
8181 warning (_("Extra components in aggregate ignored."));
8182 if (ind <= high)
8183 {
8184 add_component_interval (ind, ind, indices, num_indices, max_indices);
8185 *pos += 3;
8186 assign_component (container, lhs, ind, exp, pos);
8187 }
8188 else
8189 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8190 }
8191
8192 /* Assign into the components of LHS indexed by the OP_CHOICES
8193 construct at *POS, updating *POS past the construct, given that
8194 the allowable indices are LOW..HIGH. Record the indices assigned
8195 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8196 needed. CONTAINER is as for assign_aggregate. */
8197 static void
8198 aggregate_assign_from_choices (struct value *container,
8199 struct value *lhs, struct expression *exp,
8200 int *pos, LONGEST *indices, int *num_indices,
8201 int max_indices, LONGEST low, LONGEST high)
8202 {
8203 int j;
8204 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8205 int choice_pos, expr_pc;
8206 int is_array = ada_is_direct_array_type (value_type (lhs));
8207
8208 choice_pos = *pos += 3;
8209
8210 for (j = 0; j < n_choices; j += 1)
8211 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8212 expr_pc = *pos;
8213 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8214
8215 for (j = 0; j < n_choices; j += 1)
8216 {
8217 LONGEST lower, upper;
8218 enum exp_opcode op = exp->elts[choice_pos].opcode;
8219 if (op == OP_DISCRETE_RANGE)
8220 {
8221 choice_pos += 1;
8222 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8223 EVAL_NORMAL));
8224 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8225 EVAL_NORMAL));
8226 }
8227 else if (is_array)
8228 {
8229 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8230 EVAL_NORMAL));
8231 upper = lower;
8232 }
8233 else
8234 {
8235 int ind;
8236 char *name;
8237 switch (op)
8238 {
8239 case OP_NAME:
8240 name = &exp->elts[choice_pos + 2].string;
8241 break;
8242 case OP_VAR_VALUE:
8243 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8244 break;
8245 default:
8246 error (_("Invalid record component association."));
8247 }
8248 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8249 ind = 0;
8250 if (! find_struct_field (name, value_type (lhs), 0,
8251 NULL, NULL, NULL, NULL, &ind))
8252 error (_("Unknown component name: %s."), name);
8253 lower = upper = ind;
8254 }
8255
8256 if (lower <= upper && (lower < low || upper > high))
8257 error (_("Index in component association out of bounds."));
8258
8259 add_component_interval (lower, upper, indices, num_indices,
8260 max_indices);
8261 while (lower <= upper)
8262 {
8263 int pos1;
8264 pos1 = expr_pc;
8265 assign_component (container, lhs, lower, exp, &pos1);
8266 lower += 1;
8267 }
8268 }
8269 }
8270
8271 /* Assign the value of the expression in the OP_OTHERS construct in
8272 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8273 have not been previously assigned. The index intervals already assigned
8274 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8275 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8276 static void
8277 aggregate_assign_others (struct value *container,
8278 struct value *lhs, struct expression *exp,
8279 int *pos, LONGEST *indices, int num_indices,
8280 LONGEST low, LONGEST high)
8281 {
8282 int i;
8283 int expr_pc = *pos+1;
8284
8285 for (i = 0; i < num_indices - 2; i += 2)
8286 {
8287 LONGEST ind;
8288 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8289 {
8290 int pos;
8291 pos = expr_pc;
8292 assign_component (container, lhs, ind, exp, &pos);
8293 }
8294 }
8295 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8296 }
8297
8298 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8299 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8300 modifying *SIZE as needed. It is an error if *SIZE exceeds
8301 MAX_SIZE. The resulting intervals do not overlap. */
8302 static void
8303 add_component_interval (LONGEST low, LONGEST high,
8304 LONGEST* indices, int *size, int max_size)
8305 {
8306 int i, j;
8307 for (i = 0; i < *size; i += 2) {
8308 if (high >= indices[i] && low <= indices[i + 1])
8309 {
8310 int kh;
8311 for (kh = i + 2; kh < *size; kh += 2)
8312 if (high < indices[kh])
8313 break;
8314 if (low < indices[i])
8315 indices[i] = low;
8316 indices[i + 1] = indices[kh - 1];
8317 if (high > indices[i + 1])
8318 indices[i + 1] = high;
8319 memcpy (indices + i + 2, indices + kh, *size - kh);
8320 *size -= kh - i - 2;
8321 return;
8322 }
8323 else if (high < indices[i])
8324 break;
8325 }
8326
8327 if (*size == max_size)
8328 error (_("Internal error: miscounted aggregate components."));
8329 *size += 2;
8330 for (j = *size-1; j >= i+2; j -= 1)
8331 indices[j] = indices[j - 2];
8332 indices[i] = low;
8333 indices[i + 1] = high;
8334 }
8335
8336 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8337 is different. */
8338
8339 static struct value *
8340 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8341 {
8342 if (type == ada_check_typedef (value_type (arg2)))
8343 return arg2;
8344
8345 if (ada_is_fixed_point_type (type))
8346 return (cast_to_fixed (type, arg2));
8347
8348 if (ada_is_fixed_point_type (value_type (arg2)))
8349 return value_cast (type, cast_from_fixed_to_double (arg2));
8350
8351 return value_cast (type, arg2);
8352 }
8353
8354 static struct value *
8355 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8356 int *pos, enum noside noside)
8357 {
8358 enum exp_opcode op;
8359 int tem, tem2, tem3;
8360 int pc;
8361 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8362 struct type *type;
8363 int nargs, oplen;
8364 struct value **argvec;
8365
8366 pc = *pos;
8367 *pos += 1;
8368 op = exp->elts[pc].opcode;
8369
8370 switch (op)
8371 {
8372 default:
8373 *pos -= 1;
8374 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8375 arg1 = unwrap_value (arg1);
8376
8377 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8378 then we need to perform the conversion manually, because
8379 evaluate_subexp_standard doesn't do it. This conversion is
8380 necessary in Ada because the different kinds of float/fixed
8381 types in Ada have different representations.
8382
8383 Similarly, we need to perform the conversion from OP_LONG
8384 ourselves. */
8385 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8386 arg1 = ada_value_cast (expect_type, arg1, noside);
8387
8388 return arg1;
8389
8390 case OP_STRING:
8391 {
8392 struct value *result;
8393 *pos -= 1;
8394 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8395 /* The result type will have code OP_STRING, bashed there from
8396 OP_ARRAY. Bash it back. */
8397 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8398 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8399 return result;
8400 }
8401
8402 case UNOP_CAST:
8403 (*pos) += 2;
8404 type = exp->elts[pc + 1].type;
8405 arg1 = evaluate_subexp (type, exp, pos, noside);
8406 if (noside == EVAL_SKIP)
8407 goto nosideret;
8408 arg1 = ada_value_cast (type, arg1, noside);
8409 return arg1;
8410
8411 case UNOP_QUAL:
8412 (*pos) += 2;
8413 type = exp->elts[pc + 1].type;
8414 return ada_evaluate_subexp (type, exp, pos, noside);
8415
8416 case BINOP_ASSIGN:
8417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8418 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8419 {
8420 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8421 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8422 return arg1;
8423 return ada_value_assign (arg1, arg1);
8424 }
8425 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8426 except if the lhs of our assignment is a convenience variable.
8427 In the case of assigning to a convenience variable, the lhs
8428 should be exactly the result of the evaluation of the rhs. */
8429 type = value_type (arg1);
8430 if (VALUE_LVAL (arg1) == lval_internalvar)
8431 type = NULL;
8432 arg2 = evaluate_subexp (type, exp, pos, noside);
8433 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8434 return arg1;
8435 if (ada_is_fixed_point_type (value_type (arg1)))
8436 arg2 = cast_to_fixed (value_type (arg1), arg2);
8437 else if (ada_is_fixed_point_type (value_type (arg2)))
8438 error
8439 (_("Fixed-point values must be assigned to fixed-point variables"));
8440 else
8441 arg2 = coerce_for_assign (value_type (arg1), arg2);
8442 return ada_value_assign (arg1, arg2);
8443
8444 case BINOP_ADD:
8445 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8446 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8447 if (noside == EVAL_SKIP)
8448 goto nosideret;
8449 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8450 return (value_from_longest
8451 (value_type (arg1),
8452 value_as_long (arg1) + value_as_long (arg2)));
8453 if ((ada_is_fixed_point_type (value_type (arg1))
8454 || ada_is_fixed_point_type (value_type (arg2)))
8455 && value_type (arg1) != value_type (arg2))
8456 error (_("Operands of fixed-point addition must have the same type"));
8457 /* Do the addition, and cast the result to the type of the first
8458 argument. We cannot cast the result to a reference type, so if
8459 ARG1 is a reference type, find its underlying type. */
8460 type = value_type (arg1);
8461 while (TYPE_CODE (type) == TYPE_CODE_REF)
8462 type = TYPE_TARGET_TYPE (type);
8463 return value_cast (type, value_add (arg1, arg2));
8464
8465 case BINOP_SUB:
8466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8468 if (noside == EVAL_SKIP)
8469 goto nosideret;
8470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8471 return (value_from_longest
8472 (value_type (arg1),
8473 value_as_long (arg1) - value_as_long (arg2)));
8474 if ((ada_is_fixed_point_type (value_type (arg1))
8475 || ada_is_fixed_point_type (value_type (arg2)))
8476 && value_type (arg1) != value_type (arg2))
8477 error (_("Operands of fixed-point subtraction must have the same type"));
8478 /* Do the substraction, and cast the result to the type of the first
8479 argument. We cannot cast the result to a reference type, so if
8480 ARG1 is a reference type, find its underlying type. */
8481 type = value_type (arg1);
8482 while (TYPE_CODE (type) == TYPE_CODE_REF)
8483 type = TYPE_TARGET_TYPE (type);
8484 return value_cast (type, value_sub (arg1, arg2));
8485
8486 case BINOP_MUL:
8487 case BINOP_DIV:
8488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8489 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 if (noside == EVAL_SKIP)
8491 goto nosideret;
8492 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8493 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8494 return value_zero (value_type (arg1), not_lval);
8495 else
8496 {
8497 if (ada_is_fixed_point_type (value_type (arg1)))
8498 arg1 = cast_from_fixed_to_double (arg1);
8499 if (ada_is_fixed_point_type (value_type (arg2)))
8500 arg2 = cast_from_fixed_to_double (arg2);
8501 return ada_value_binop (arg1, arg2, op);
8502 }
8503
8504 case BINOP_REM:
8505 case BINOP_MOD:
8506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8507 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8508 if (noside == EVAL_SKIP)
8509 goto nosideret;
8510 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8511 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8512 return value_zero (value_type (arg1), not_lval);
8513 else
8514 return ada_value_binop (arg1, arg2, op);
8515
8516 case BINOP_EQUAL:
8517 case BINOP_NOTEQUAL:
8518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8519 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8520 if (noside == EVAL_SKIP)
8521 goto nosideret;
8522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8523 tem = 0;
8524 else
8525 tem = ada_value_equal (arg1, arg2);
8526 if (op == BINOP_NOTEQUAL)
8527 tem = !tem;
8528 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8529
8530 case UNOP_NEG:
8531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8532 if (noside == EVAL_SKIP)
8533 goto nosideret;
8534 else if (ada_is_fixed_point_type (value_type (arg1)))
8535 return value_cast (value_type (arg1), value_neg (arg1));
8536 else
8537 return value_neg (arg1);
8538
8539 case BINOP_LOGICAL_AND:
8540 case BINOP_LOGICAL_OR:
8541 case UNOP_LOGICAL_NOT:
8542 {
8543 struct value *val;
8544
8545 *pos -= 1;
8546 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8547 return value_cast (LA_BOOL_TYPE, val);
8548 }
8549
8550 case BINOP_BITWISE_AND:
8551 case BINOP_BITWISE_IOR:
8552 case BINOP_BITWISE_XOR:
8553 {
8554 struct value *val;
8555
8556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8557 *pos = pc;
8558 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8559
8560 return value_cast (value_type (arg1), val);
8561 }
8562
8563 case OP_VAR_VALUE:
8564 *pos -= 1;
8565
8566 if (noside == EVAL_SKIP)
8567 {
8568 *pos += 4;
8569 goto nosideret;
8570 }
8571 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8572 /* Only encountered when an unresolved symbol occurs in a
8573 context other than a function call, in which case, it is
8574 invalid. */
8575 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8576 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8578 {
8579 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8580 if (ada_is_tagged_type (type, 0))
8581 {
8582 /* Tagged types are a little special in the fact that the real
8583 type is dynamic and can only be determined by inspecting the
8584 object's tag. This means that we need to get the object's
8585 value first (EVAL_NORMAL) and then extract the actual object
8586 type from its tag.
8587
8588 Note that we cannot skip the final step where we extract
8589 the object type from its tag, because the EVAL_NORMAL phase
8590 results in dynamic components being resolved into fixed ones.
8591 This can cause problems when trying to print the type
8592 description of tagged types whose parent has a dynamic size:
8593 We use the type name of the "_parent" component in order
8594 to print the name of the ancestor type in the type description.
8595 If that component had a dynamic size, the resolution into
8596 a fixed type would result in the loss of that type name,
8597 thus preventing us from printing the name of the ancestor
8598 type in the type description. */
8599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8600 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8601 }
8602
8603 *pos += 4;
8604 return value_zero
8605 (to_static_fixed_type
8606 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8607 not_lval);
8608 }
8609 else
8610 {
8611 arg1 =
8612 unwrap_value (evaluate_subexp_standard
8613 (expect_type, exp, pos, noside));
8614 return ada_to_fixed_value (arg1);
8615 }
8616
8617 case OP_FUNCALL:
8618 (*pos) += 2;
8619
8620 /* Allocate arg vector, including space for the function to be
8621 called in argvec[0] and a terminating NULL. */
8622 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8623 argvec =
8624 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8625
8626 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8628 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8629 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8630 else
8631 {
8632 for (tem = 0; tem <= nargs; tem += 1)
8633 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8634 argvec[tem] = 0;
8635
8636 if (noside == EVAL_SKIP)
8637 goto nosideret;
8638 }
8639
8640 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8641 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8642 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8643 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8644 && VALUE_LVAL (argvec[0]) == lval_memory))
8645 argvec[0] = value_addr (argvec[0]);
8646
8647 type = ada_check_typedef (value_type (argvec[0]));
8648 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8649 {
8650 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8651 {
8652 case TYPE_CODE_FUNC:
8653 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8654 break;
8655 case TYPE_CODE_ARRAY:
8656 break;
8657 case TYPE_CODE_STRUCT:
8658 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8659 argvec[0] = ada_value_ind (argvec[0]);
8660 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8661 break;
8662 default:
8663 error (_("cannot subscript or call something of type `%s'"),
8664 ada_type_name (value_type (argvec[0])));
8665 break;
8666 }
8667 }
8668
8669 switch (TYPE_CODE (type))
8670 {
8671 case TYPE_CODE_FUNC:
8672 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8673 return allocate_value (TYPE_TARGET_TYPE (type));
8674 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8675 case TYPE_CODE_STRUCT:
8676 {
8677 int arity;
8678
8679 arity = ada_array_arity (type);
8680 type = ada_array_element_type (type, nargs);
8681 if (type == NULL)
8682 error (_("cannot subscript or call a record"));
8683 if (arity != nargs)
8684 error (_("wrong number of subscripts; expecting %d"), arity);
8685 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8686 return value_zero (ada_aligned_type (type), lval_memory);
8687 return
8688 unwrap_value (ada_value_subscript
8689 (argvec[0], nargs, argvec + 1));
8690 }
8691 case TYPE_CODE_ARRAY:
8692 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8693 {
8694 type = ada_array_element_type (type, nargs);
8695 if (type == NULL)
8696 error (_("element type of array unknown"));
8697 else
8698 return value_zero (ada_aligned_type (type), lval_memory);
8699 }
8700 return
8701 unwrap_value (ada_value_subscript
8702 (ada_coerce_to_simple_array (argvec[0]),
8703 nargs, argvec + 1));
8704 case TYPE_CODE_PTR: /* Pointer to array */
8705 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8707 {
8708 type = ada_array_element_type (type, nargs);
8709 if (type == NULL)
8710 error (_("element type of array unknown"));
8711 else
8712 return value_zero (ada_aligned_type (type), lval_memory);
8713 }
8714 return
8715 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8716 nargs, argvec + 1));
8717
8718 default:
8719 error (_("Attempt to index or call something other than an "
8720 "array or function"));
8721 }
8722
8723 case TERNOP_SLICE:
8724 {
8725 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8726 struct value *low_bound_val =
8727 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 struct value *high_bound_val =
8729 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8730 LONGEST low_bound;
8731 LONGEST high_bound;
8732 low_bound_val = coerce_ref (low_bound_val);
8733 high_bound_val = coerce_ref (high_bound_val);
8734 low_bound = pos_atr (low_bound_val);
8735 high_bound = pos_atr (high_bound_val);
8736
8737 if (noside == EVAL_SKIP)
8738 goto nosideret;
8739
8740 /* If this is a reference to an aligner type, then remove all
8741 the aligners. */
8742 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8743 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8744 TYPE_TARGET_TYPE (value_type (array)) =
8745 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8746
8747 if (ada_is_packed_array_type (value_type (array)))
8748 error (_("cannot slice a packed array"));
8749
8750 /* If this is a reference to an array or an array lvalue,
8751 convert to a pointer. */
8752 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8753 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8754 && VALUE_LVAL (array) == lval_memory))
8755 array = value_addr (array);
8756
8757 if (noside == EVAL_AVOID_SIDE_EFFECTS
8758 && ada_is_array_descriptor_type (ada_check_typedef
8759 (value_type (array))))
8760 return empty_array (ada_type_of_array (array, 0), low_bound);
8761
8762 array = ada_coerce_to_simple_array_ptr (array);
8763
8764 /* If we have more than one level of pointer indirection,
8765 dereference the value until we get only one level. */
8766 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8767 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8768 == TYPE_CODE_PTR))
8769 array = value_ind (array);
8770
8771 /* Make sure we really do have an array type before going further,
8772 to avoid a SEGV when trying to get the index type or the target
8773 type later down the road if the debug info generated by
8774 the compiler is incorrect or incomplete. */
8775 if (!ada_is_simple_array_type (value_type (array)))
8776 error (_("cannot take slice of non-array"));
8777
8778 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8779 {
8780 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8781 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8782 low_bound);
8783 else
8784 {
8785 struct type *arr_type0 =
8786 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8787 NULL, 1);
8788 return ada_value_slice_ptr (array, arr_type0,
8789 longest_to_int (low_bound),
8790 longest_to_int (high_bound));
8791 }
8792 }
8793 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8794 return array;
8795 else if (high_bound < low_bound)
8796 return empty_array (value_type (array), low_bound);
8797 else
8798 return ada_value_slice (array, longest_to_int (low_bound),
8799 longest_to_int (high_bound));
8800 }
8801
8802 case UNOP_IN_RANGE:
8803 (*pos) += 2;
8804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 type = exp->elts[pc + 1].type;
8806
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809
8810 switch (TYPE_CODE (type))
8811 {
8812 default:
8813 lim_warning (_("Membership test incompletely implemented; "
8814 "always returns true"));
8815 return value_from_longest (builtin_type_int, (LONGEST) 1);
8816
8817 case TYPE_CODE_RANGE:
8818 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8819 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8820 return
8821 value_from_longest (builtin_type_int,
8822 (value_less (arg1, arg3)
8823 || value_equal (arg1, arg3))
8824 && (value_less (arg2, arg1)
8825 || value_equal (arg2, arg1)));
8826 }
8827
8828 case BINOP_IN_BOUNDS:
8829 (*pos) += 2;
8830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8832
8833 if (noside == EVAL_SKIP)
8834 goto nosideret;
8835
8836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8837 return value_zero (builtin_type_int, not_lval);
8838
8839 tem = longest_to_int (exp->elts[pc + 1].longconst);
8840
8841 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8842 error (_("invalid dimension number to 'range"));
8843
8844 arg3 = ada_array_bound (arg2, tem, 1);
8845 arg2 = ada_array_bound (arg2, tem, 0);
8846
8847 return
8848 value_from_longest (builtin_type_int,
8849 (value_less (arg1, arg3)
8850 || value_equal (arg1, arg3))
8851 && (value_less (arg2, arg1)
8852 || value_equal (arg2, arg1)));
8853
8854 case TERNOP_IN_RANGE:
8855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8856 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8858
8859 if (noside == EVAL_SKIP)
8860 goto nosideret;
8861
8862 return
8863 value_from_longest (builtin_type_int,
8864 (value_less (arg1, arg3)
8865 || value_equal (arg1, arg3))
8866 && (value_less (arg2, arg1)
8867 || value_equal (arg2, arg1)));
8868
8869 case OP_ATR_FIRST:
8870 case OP_ATR_LAST:
8871 case OP_ATR_LENGTH:
8872 {
8873 struct type *type_arg;
8874 if (exp->elts[*pos].opcode == OP_TYPE)
8875 {
8876 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8877 arg1 = NULL;
8878 type_arg = exp->elts[pc + 2].type;
8879 }
8880 else
8881 {
8882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8883 type_arg = NULL;
8884 }
8885
8886 if (exp->elts[*pos].opcode != OP_LONG)
8887 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8888 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8889 *pos += 4;
8890
8891 if (noside == EVAL_SKIP)
8892 goto nosideret;
8893
8894 if (type_arg == NULL)
8895 {
8896 arg1 = ada_coerce_ref (arg1);
8897
8898 if (ada_is_packed_array_type (value_type (arg1)))
8899 arg1 = ada_coerce_to_simple_array (arg1);
8900
8901 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8902 error (_("invalid dimension number to '%s"),
8903 ada_attribute_name (op));
8904
8905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8906 {
8907 type = ada_index_type (value_type (arg1), tem);
8908 if (type == NULL)
8909 error
8910 (_("attempt to take bound of something that is not an array"));
8911 return allocate_value (type);
8912 }
8913
8914 switch (op)
8915 {
8916 default: /* Should never happen. */
8917 error (_("unexpected attribute encountered"));
8918 case OP_ATR_FIRST:
8919 return ada_array_bound (arg1, tem, 0);
8920 case OP_ATR_LAST:
8921 return ada_array_bound (arg1, tem, 1);
8922 case OP_ATR_LENGTH:
8923 return ada_array_length (arg1, tem);
8924 }
8925 }
8926 else if (discrete_type_p (type_arg))
8927 {
8928 struct type *range_type;
8929 char *name = ada_type_name (type_arg);
8930 range_type = NULL;
8931 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8932 range_type =
8933 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8934 if (range_type == NULL)
8935 range_type = type_arg;
8936 switch (op)
8937 {
8938 default:
8939 error (_("unexpected attribute encountered"));
8940 case OP_ATR_FIRST:
8941 return value_from_longest
8942 (range_type, discrete_type_low_bound (range_type));
8943 case OP_ATR_LAST:
8944 return value_from_longest
8945 (range_type, discrete_type_high_bound (range_type));
8946 case OP_ATR_LENGTH:
8947 error (_("the 'length attribute applies only to array types"));
8948 }
8949 }
8950 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8951 error (_("unimplemented type attribute"));
8952 else
8953 {
8954 LONGEST low, high;
8955
8956 if (ada_is_packed_array_type (type_arg))
8957 type_arg = decode_packed_array_type (type_arg);
8958
8959 if (tem < 1 || tem > ada_array_arity (type_arg))
8960 error (_("invalid dimension number to '%s"),
8961 ada_attribute_name (op));
8962
8963 type = ada_index_type (type_arg, tem);
8964 if (type == NULL)
8965 error
8966 (_("attempt to take bound of something that is not an array"));
8967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8968 return allocate_value (type);
8969
8970 switch (op)
8971 {
8972 default:
8973 error (_("unexpected attribute encountered"));
8974 case OP_ATR_FIRST:
8975 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8976 return value_from_longest (type, low);
8977 case OP_ATR_LAST:
8978 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8979 return value_from_longest (type, high);
8980 case OP_ATR_LENGTH:
8981 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8982 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8983 return value_from_longest (type, high - low + 1);
8984 }
8985 }
8986 }
8987
8988 case OP_ATR_TAG:
8989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8990 if (noside == EVAL_SKIP)
8991 goto nosideret;
8992
8993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8994 return value_zero (ada_tag_type (arg1), not_lval);
8995
8996 return ada_value_tag (arg1);
8997
8998 case OP_ATR_MIN:
8999 case OP_ATR_MAX:
9000 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9001 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9002 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9003 if (noside == EVAL_SKIP)
9004 goto nosideret;
9005 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9006 return value_zero (value_type (arg1), not_lval);
9007 else
9008 return value_binop (arg1, arg2,
9009 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9010
9011 case OP_ATR_MODULUS:
9012 {
9013 struct type *type_arg = exp->elts[pc + 2].type;
9014 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9015
9016 if (noside == EVAL_SKIP)
9017 goto nosideret;
9018
9019 if (!ada_is_modular_type (type_arg))
9020 error (_("'modulus must be applied to modular type"));
9021
9022 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9023 ada_modulus (type_arg));
9024 }
9025
9026
9027 case OP_ATR_POS:
9028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 if (noside == EVAL_SKIP)
9031 goto nosideret;
9032 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9033 return value_zero (builtin_type_int, not_lval);
9034 else
9035 return value_pos_atr (arg1);
9036
9037 case OP_ATR_SIZE:
9038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9039 if (noside == EVAL_SKIP)
9040 goto nosideret;
9041 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9042 return value_zero (builtin_type_int32, not_lval);
9043 else
9044 return value_from_longest (builtin_type_int32,
9045 TARGET_CHAR_BIT
9046 * TYPE_LENGTH (value_type (arg1)));
9047
9048 case OP_ATR_VAL:
9049 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051 type = exp->elts[pc + 2].type;
9052 if (noside == EVAL_SKIP)
9053 goto nosideret;
9054 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9055 return value_zero (type, not_lval);
9056 else
9057 return value_val_atr (type, arg1);
9058
9059 case BINOP_EXP:
9060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9061 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9062 if (noside == EVAL_SKIP)
9063 goto nosideret;
9064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9065 return value_zero (value_type (arg1), not_lval);
9066 else
9067 return value_binop (arg1, arg2, op);
9068
9069 case UNOP_PLUS:
9070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9071 if (noside == EVAL_SKIP)
9072 goto nosideret;
9073 else
9074 return arg1;
9075
9076 case UNOP_ABS:
9077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9081 return value_neg (arg1);
9082 else
9083 return arg1;
9084
9085 case UNOP_IND:
9086 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9087 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9088 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9089 if (noside == EVAL_SKIP)
9090 goto nosideret;
9091 type = ada_check_typedef (value_type (arg1));
9092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 {
9094 if (ada_is_array_descriptor_type (type))
9095 /* GDB allows dereferencing GNAT array descriptors. */
9096 {
9097 struct type *arrType = ada_type_of_array (arg1, 0);
9098 if (arrType == NULL)
9099 error (_("Attempt to dereference null array pointer."));
9100 return value_at_lazy (arrType, 0);
9101 }
9102 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9103 || TYPE_CODE (type) == TYPE_CODE_REF
9104 /* In C you can dereference an array to get the 1st elt. */
9105 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9106 {
9107 type = to_static_fixed_type
9108 (ada_aligned_type
9109 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9110 check_size (type);
9111 return value_zero (type, lval_memory);
9112 }
9113 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9114 /* GDB allows dereferencing an int. */
9115 return value_zero (builtin_type_int, lval_memory);
9116 else
9117 error (_("Attempt to take contents of a non-pointer value."));
9118 }
9119 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9120 type = ada_check_typedef (value_type (arg1));
9121
9122 if (ada_is_array_descriptor_type (type))
9123 /* GDB allows dereferencing GNAT array descriptors. */
9124 return ada_coerce_to_simple_array (arg1);
9125 else
9126 return ada_value_ind (arg1);
9127
9128 case STRUCTOP_STRUCT:
9129 tem = longest_to_int (exp->elts[pc + 1].longconst);
9130 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9132 if (noside == EVAL_SKIP)
9133 goto nosideret;
9134 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9135 {
9136 struct type *type1 = value_type (arg1);
9137 if (ada_is_tagged_type (type1, 1))
9138 {
9139 type = ada_lookup_struct_elt_type (type1,
9140 &exp->elts[pc + 2].string,
9141 1, 1, NULL);
9142 if (type == NULL)
9143 /* In this case, we assume that the field COULD exist
9144 in some extension of the type. Return an object of
9145 "type" void, which will match any formal
9146 (see ada_type_match). */
9147 return value_zero (builtin_type_void, lval_memory);
9148 }
9149 else
9150 type =
9151 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9152 0, NULL);
9153
9154 return value_zero (ada_aligned_type (type), lval_memory);
9155 }
9156 else
9157 return
9158 ada_to_fixed_value (unwrap_value
9159 (ada_value_struct_elt
9160 (arg1, &exp->elts[pc + 2].string, 0)));
9161 case OP_TYPE:
9162 /* The value is not supposed to be used. This is here to make it
9163 easier to accommodate expressions that contain types. */
9164 (*pos) += 2;
9165 if (noside == EVAL_SKIP)
9166 goto nosideret;
9167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9168 return allocate_value (exp->elts[pc + 1].type);
9169 else
9170 error (_("Attempt to use a type name as an expression"));
9171
9172 case OP_AGGREGATE:
9173 case OP_CHOICES:
9174 case OP_OTHERS:
9175 case OP_DISCRETE_RANGE:
9176 case OP_POSITIONAL:
9177 case OP_NAME:
9178 if (noside == EVAL_NORMAL)
9179 switch (op)
9180 {
9181 case OP_NAME:
9182 error (_("Undefined name, ambiguous name, or renaming used in "
9183 "component association: %s."), &exp->elts[pc+2].string);
9184 case OP_AGGREGATE:
9185 error (_("Aggregates only allowed on the right of an assignment"));
9186 default:
9187 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9188 }
9189
9190 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9191 *pos += oplen - 1;
9192 for (tem = 0; tem < nargs; tem += 1)
9193 ada_evaluate_subexp (NULL, exp, pos, noside);
9194 goto nosideret;
9195 }
9196
9197 nosideret:
9198 return value_from_longest (builtin_type_long, (LONGEST) 1);
9199 }
9200 \f
9201
9202 /* Fixed point */
9203
9204 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9205 type name that encodes the 'small and 'delta information.
9206 Otherwise, return NULL. */
9207
9208 static const char *
9209 fixed_type_info (struct type *type)
9210 {
9211 const char *name = ada_type_name (type);
9212 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9213
9214 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9215 {
9216 const char *tail = strstr (name, "___XF_");
9217 if (tail == NULL)
9218 return NULL;
9219 else
9220 return tail + 5;
9221 }
9222 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9223 return fixed_type_info (TYPE_TARGET_TYPE (type));
9224 else
9225 return NULL;
9226 }
9227
9228 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9229
9230 int
9231 ada_is_fixed_point_type (struct type *type)
9232 {
9233 return fixed_type_info (type) != NULL;
9234 }
9235
9236 /* Return non-zero iff TYPE represents a System.Address type. */
9237
9238 int
9239 ada_is_system_address_type (struct type *type)
9240 {
9241 return (TYPE_NAME (type)
9242 && strcmp (TYPE_NAME (type), "system__address") == 0);
9243 }
9244
9245 /* Assuming that TYPE is the representation of an Ada fixed-point
9246 type, return its delta, or -1 if the type is malformed and the
9247 delta cannot be determined. */
9248
9249 DOUBLEST
9250 ada_delta (struct type *type)
9251 {
9252 const char *encoding = fixed_type_info (type);
9253 long num, den;
9254
9255 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9256 return -1.0;
9257 else
9258 return (DOUBLEST) num / (DOUBLEST) den;
9259 }
9260
9261 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9262 factor ('SMALL value) associated with the type. */
9263
9264 static DOUBLEST
9265 scaling_factor (struct type *type)
9266 {
9267 const char *encoding = fixed_type_info (type);
9268 unsigned long num0, den0, num1, den1;
9269 int n;
9270
9271 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9272
9273 if (n < 2)
9274 return 1.0;
9275 else if (n == 4)
9276 return (DOUBLEST) num1 / (DOUBLEST) den1;
9277 else
9278 return (DOUBLEST) num0 / (DOUBLEST) den0;
9279 }
9280
9281
9282 /* Assuming that X is the representation of a value of fixed-point
9283 type TYPE, return its floating-point equivalent. */
9284
9285 DOUBLEST
9286 ada_fixed_to_float (struct type *type, LONGEST x)
9287 {
9288 return (DOUBLEST) x *scaling_factor (type);
9289 }
9290
9291 /* The representation of a fixed-point value of type TYPE
9292 corresponding to the value X. */
9293
9294 LONGEST
9295 ada_float_to_fixed (struct type *type, DOUBLEST x)
9296 {
9297 return (LONGEST) (x / scaling_factor (type) + 0.5);
9298 }
9299
9300
9301 /* VAX floating formats */
9302
9303 /* Non-zero iff TYPE represents one of the special VAX floating-point
9304 types. */
9305
9306 int
9307 ada_is_vax_floating_type (struct type *type)
9308 {
9309 int name_len =
9310 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9311 return
9312 name_len > 6
9313 && (TYPE_CODE (type) == TYPE_CODE_INT
9314 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9315 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9316 }
9317
9318 /* The type of special VAX floating-point type this is, assuming
9319 ada_is_vax_floating_point. */
9320
9321 int
9322 ada_vax_float_type_suffix (struct type *type)
9323 {
9324 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9325 }
9326
9327 /* A value representing the special debugging function that outputs
9328 VAX floating-point values of the type represented by TYPE. Assumes
9329 ada_is_vax_floating_type (TYPE). */
9330
9331 struct value *
9332 ada_vax_float_print_function (struct type *type)
9333 {
9334 switch (ada_vax_float_type_suffix (type))
9335 {
9336 case 'F':
9337 return get_var_value ("DEBUG_STRING_F", 0);
9338 case 'D':
9339 return get_var_value ("DEBUG_STRING_D", 0);
9340 case 'G':
9341 return get_var_value ("DEBUG_STRING_G", 0);
9342 default:
9343 error (_("invalid VAX floating-point type"));
9344 }
9345 }
9346 \f
9347
9348 /* Range types */
9349
9350 /* Scan STR beginning at position K for a discriminant name, and
9351 return the value of that discriminant field of DVAL in *PX. If
9352 PNEW_K is not null, put the position of the character beyond the
9353 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9354 not alter *PX and *PNEW_K if unsuccessful. */
9355
9356 static int
9357 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9358 int *pnew_k)
9359 {
9360 static char *bound_buffer = NULL;
9361 static size_t bound_buffer_len = 0;
9362 char *bound;
9363 char *pend;
9364 struct value *bound_val;
9365
9366 if (dval == NULL || str == NULL || str[k] == '\0')
9367 return 0;
9368
9369 pend = strstr (str + k, "__");
9370 if (pend == NULL)
9371 {
9372 bound = str + k;
9373 k += strlen (bound);
9374 }
9375 else
9376 {
9377 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9378 bound = bound_buffer;
9379 strncpy (bound_buffer, str + k, pend - (str + k));
9380 bound[pend - (str + k)] = '\0';
9381 k = pend - str;
9382 }
9383
9384 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9385 if (bound_val == NULL)
9386 return 0;
9387
9388 *px = value_as_long (bound_val);
9389 if (pnew_k != NULL)
9390 *pnew_k = k;
9391 return 1;
9392 }
9393
9394 /* Value of variable named NAME in the current environment. If
9395 no such variable found, then if ERR_MSG is null, returns 0, and
9396 otherwise causes an error with message ERR_MSG. */
9397
9398 static struct value *
9399 get_var_value (char *name, char *err_msg)
9400 {
9401 struct ada_symbol_info *syms;
9402 int nsyms;
9403
9404 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9405 &syms);
9406
9407 if (nsyms != 1)
9408 {
9409 if (err_msg == NULL)
9410 return 0;
9411 else
9412 error (("%s"), err_msg);
9413 }
9414
9415 return value_of_variable (syms[0].sym, syms[0].block);
9416 }
9417
9418 /* Value of integer variable named NAME in the current environment. If
9419 no such variable found, returns 0, and sets *FLAG to 0. If
9420 successful, sets *FLAG to 1. */
9421
9422 LONGEST
9423 get_int_var_value (char *name, int *flag)
9424 {
9425 struct value *var_val = get_var_value (name, 0);
9426
9427 if (var_val == 0)
9428 {
9429 if (flag != NULL)
9430 *flag = 0;
9431 return 0;
9432 }
9433 else
9434 {
9435 if (flag != NULL)
9436 *flag = 1;
9437 return value_as_long (var_val);
9438 }
9439 }
9440
9441
9442 /* Return a range type whose base type is that of the range type named
9443 NAME in the current environment, and whose bounds are calculated
9444 from NAME according to the GNAT range encoding conventions.
9445 Extract discriminant values, if needed, from DVAL. If a new type
9446 must be created, allocate in OBJFILE's space. The bounds
9447 information, in general, is encoded in NAME, the base type given in
9448 the named range type. */
9449
9450 static struct type *
9451 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9452 {
9453 struct type *raw_type = ada_find_any_type (name);
9454 struct type *base_type;
9455 char *subtype_info;
9456
9457 if (raw_type == NULL)
9458 base_type = builtin_type_int;
9459 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9460 base_type = TYPE_TARGET_TYPE (raw_type);
9461 else
9462 base_type = raw_type;
9463
9464 subtype_info = strstr (name, "___XD");
9465 if (subtype_info == NULL)
9466 {
9467 LONGEST L = discrete_type_low_bound (raw_type);
9468 LONGEST U = discrete_type_high_bound (raw_type);
9469 if (L < INT_MIN || U > INT_MAX)
9470 return raw_type;
9471 else
9472 return create_range_type (alloc_type (objfile), raw_type,
9473 discrete_type_low_bound (raw_type),
9474 discrete_type_high_bound (raw_type));
9475 }
9476 else
9477 {
9478 static char *name_buf = NULL;
9479 static size_t name_len = 0;
9480 int prefix_len = subtype_info - name;
9481 LONGEST L, U;
9482 struct type *type;
9483 char *bounds_str;
9484 int n;
9485
9486 GROW_VECT (name_buf, name_len, prefix_len + 5);
9487 strncpy (name_buf, name, prefix_len);
9488 name_buf[prefix_len] = '\0';
9489
9490 subtype_info += 5;
9491 bounds_str = strchr (subtype_info, '_');
9492 n = 1;
9493
9494 if (*subtype_info == 'L')
9495 {
9496 if (!ada_scan_number (bounds_str, n, &L, &n)
9497 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9498 return raw_type;
9499 if (bounds_str[n] == '_')
9500 n += 2;
9501 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9502 n += 1;
9503 subtype_info += 1;
9504 }
9505 else
9506 {
9507 int ok;
9508 strcpy (name_buf + prefix_len, "___L");
9509 L = get_int_var_value (name_buf, &ok);
9510 if (!ok)
9511 {
9512 lim_warning (_("Unknown lower bound, using 1."));
9513 L = 1;
9514 }
9515 }
9516
9517 if (*subtype_info == 'U')
9518 {
9519 if (!ada_scan_number (bounds_str, n, &U, &n)
9520 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9521 return raw_type;
9522 }
9523 else
9524 {
9525 int ok;
9526 strcpy (name_buf + prefix_len, "___U");
9527 U = get_int_var_value (name_buf, &ok);
9528 if (!ok)
9529 {
9530 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9531 U = L;
9532 }
9533 }
9534
9535 if (objfile == NULL)
9536 objfile = TYPE_OBJFILE (base_type);
9537 type = create_range_type (alloc_type (objfile), base_type, L, U);
9538 TYPE_NAME (type) = name;
9539 return type;
9540 }
9541 }
9542
9543 /* True iff NAME is the name of a range type. */
9544
9545 int
9546 ada_is_range_type_name (const char *name)
9547 {
9548 return (name != NULL && strstr (name, "___XD"));
9549 }
9550 \f
9551
9552 /* Modular types */
9553
9554 /* True iff TYPE is an Ada modular type. */
9555
9556 int
9557 ada_is_modular_type (struct type *type)
9558 {
9559 struct type *subranged_type = base_type (type);
9560
9561 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9562 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9563 && TYPE_UNSIGNED (subranged_type));
9564 }
9565
9566 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9567
9568 ULONGEST
9569 ada_modulus (struct type * type)
9570 {
9571 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9572 }
9573 \f
9574
9575 /* Ada exception catchpoint support:
9576 ---------------------------------
9577
9578 We support 3 kinds of exception catchpoints:
9579 . catchpoints on Ada exceptions
9580 . catchpoints on unhandled Ada exceptions
9581 . catchpoints on failed assertions
9582
9583 Exceptions raised during failed assertions, or unhandled exceptions
9584 could perfectly be caught with the general catchpoint on Ada exceptions.
9585 However, we can easily differentiate these two special cases, and having
9586 the option to distinguish these two cases from the rest can be useful
9587 to zero-in on certain situations.
9588
9589 Exception catchpoints are a specialized form of breakpoint,
9590 since they rely on inserting breakpoints inside known routines
9591 of the GNAT runtime. The implementation therefore uses a standard
9592 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9593 of breakpoint_ops.
9594
9595 Support in the runtime for exception catchpoints have been changed
9596 a few times already, and these changes affect the implementation
9597 of these catchpoints. In order to be able to support several
9598 variants of the runtime, we use a sniffer that will determine
9599 the runtime variant used by the program being debugged.
9600
9601 At this time, we do not support the use of conditions on Ada exception
9602 catchpoints. The COND and COND_STRING fields are therefore set
9603 to NULL (most of the time, see below).
9604
9605 Conditions where EXP_STRING, COND, and COND_STRING are used:
9606
9607 When a user specifies the name of a specific exception in the case
9608 of catchpoints on Ada exceptions, we store the name of that exception
9609 in the EXP_STRING. We then translate this request into an actual
9610 condition stored in COND_STRING, and then parse it into an expression
9611 stored in COND. */
9612
9613 /* The different types of catchpoints that we introduced for catching
9614 Ada exceptions. */
9615
9616 enum exception_catchpoint_kind
9617 {
9618 ex_catch_exception,
9619 ex_catch_exception_unhandled,
9620 ex_catch_assert
9621 };
9622
9623 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9624
9625 /* A structure that describes how to support exception catchpoints
9626 for a given executable. */
9627
9628 struct exception_support_info
9629 {
9630 /* The name of the symbol to break on in order to insert
9631 a catchpoint on exceptions. */
9632 const char *catch_exception_sym;
9633
9634 /* The name of the symbol to break on in order to insert
9635 a catchpoint on unhandled exceptions. */
9636 const char *catch_exception_unhandled_sym;
9637
9638 /* The name of the symbol to break on in order to insert
9639 a catchpoint on failed assertions. */
9640 const char *catch_assert_sym;
9641
9642 /* Assuming that the inferior just triggered an unhandled exception
9643 catchpoint, this function is responsible for returning the address
9644 in inferior memory where the name of that exception is stored.
9645 Return zero if the address could not be computed. */
9646 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9647 };
9648
9649 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9650 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9651
9652 /* The following exception support info structure describes how to
9653 implement exception catchpoints with the latest version of the
9654 Ada runtime (as of 2007-03-06). */
9655
9656 static const struct exception_support_info default_exception_support_info =
9657 {
9658 "__gnat_debug_raise_exception", /* catch_exception_sym */
9659 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9660 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9661 ada_unhandled_exception_name_addr
9662 };
9663
9664 /* The following exception support info structure describes how to
9665 implement exception catchpoints with a slightly older version
9666 of the Ada runtime. */
9667
9668 static const struct exception_support_info exception_support_info_fallback =
9669 {
9670 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9671 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9672 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9673 ada_unhandled_exception_name_addr_from_raise
9674 };
9675
9676 /* For each executable, we sniff which exception info structure to use
9677 and cache it in the following global variable. */
9678
9679 static const struct exception_support_info *exception_info = NULL;
9680
9681 /* Inspect the Ada runtime and determine which exception info structure
9682 should be used to provide support for exception catchpoints.
9683
9684 This function will always set exception_info, or raise an error. */
9685
9686 static void
9687 ada_exception_support_info_sniffer (void)
9688 {
9689 struct symbol *sym;
9690
9691 /* If the exception info is already known, then no need to recompute it. */
9692 if (exception_info != NULL)
9693 return;
9694
9695 /* Check the latest (default) exception support info. */
9696 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9697 NULL, VAR_DOMAIN);
9698 if (sym != NULL)
9699 {
9700 exception_info = &default_exception_support_info;
9701 return;
9702 }
9703
9704 /* Try our fallback exception suport info. */
9705 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9706 NULL, VAR_DOMAIN);
9707 if (sym != NULL)
9708 {
9709 exception_info = &exception_support_info_fallback;
9710 return;
9711 }
9712
9713 /* Sometimes, it is normal for us to not be able to find the routine
9714 we are looking for. This happens when the program is linked with
9715 the shared version of the GNAT runtime, and the program has not been
9716 started yet. Inform the user of these two possible causes if
9717 applicable. */
9718
9719 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9720 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9721
9722 /* If the symbol does not exist, then check that the program is
9723 already started, to make sure that shared libraries have been
9724 loaded. If it is not started, this may mean that the symbol is
9725 in a shared library. */
9726
9727 if (ptid_get_pid (inferior_ptid) == 0)
9728 error (_("Unable to insert catchpoint. Try to start the program first."));
9729
9730 /* At this point, we know that we are debugging an Ada program and
9731 that the inferior has been started, but we still are not able to
9732 find the run-time symbols. That can mean that we are in
9733 configurable run time mode, or that a-except as been optimized
9734 out by the linker... In any case, at this point it is not worth
9735 supporting this feature. */
9736
9737 error (_("Cannot insert catchpoints in this configuration."));
9738 }
9739
9740 /* An observer of "executable_changed" events.
9741 Its role is to clear certain cached values that need to be recomputed
9742 each time a new executable is loaded by GDB. */
9743
9744 static void
9745 ada_executable_changed_observer (void)
9746 {
9747 /* If the executable changed, then it is possible that the Ada runtime
9748 is different. So we need to invalidate the exception support info
9749 cache. */
9750 exception_info = NULL;
9751 }
9752
9753 /* Return the name of the function at PC, NULL if could not find it.
9754 This function only checks the debugging information, not the symbol
9755 table. */
9756
9757 static char *
9758 function_name_from_pc (CORE_ADDR pc)
9759 {
9760 char *func_name;
9761
9762 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9763 return NULL;
9764
9765 return func_name;
9766 }
9767
9768 /* True iff FRAME is very likely to be that of a function that is
9769 part of the runtime system. This is all very heuristic, but is
9770 intended to be used as advice as to what frames are uninteresting
9771 to most users. */
9772
9773 static int
9774 is_known_support_routine (struct frame_info *frame)
9775 {
9776 struct symtab_and_line sal;
9777 char *func_name;
9778 int i;
9779
9780 /* If this code does not have any debugging information (no symtab),
9781 This cannot be any user code. */
9782
9783 find_frame_sal (frame, &sal);
9784 if (sal.symtab == NULL)
9785 return 1;
9786
9787 /* If there is a symtab, but the associated source file cannot be
9788 located, then assume this is not user code: Selecting a frame
9789 for which we cannot display the code would not be very helpful
9790 for the user. This should also take care of case such as VxWorks
9791 where the kernel has some debugging info provided for a few units. */
9792
9793 if (symtab_to_fullname (sal.symtab) == NULL)
9794 return 1;
9795
9796 /* Check the unit filename againt the Ada runtime file naming.
9797 We also check the name of the objfile against the name of some
9798 known system libraries that sometimes come with debugging info
9799 too. */
9800
9801 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9802 {
9803 re_comp (known_runtime_file_name_patterns[i]);
9804 if (re_exec (sal.symtab->filename))
9805 return 1;
9806 if (sal.symtab->objfile != NULL
9807 && re_exec (sal.symtab->objfile->name))
9808 return 1;
9809 }
9810
9811 /* Check whether the function is a GNAT-generated entity. */
9812
9813 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9814 if (func_name == NULL)
9815 return 1;
9816
9817 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9818 {
9819 re_comp (known_auxiliary_function_name_patterns[i]);
9820 if (re_exec (func_name))
9821 return 1;
9822 }
9823
9824 return 0;
9825 }
9826
9827 /* Find the first frame that contains debugging information and that is not
9828 part of the Ada run-time, starting from FI and moving upward. */
9829
9830 static void
9831 ada_find_printable_frame (struct frame_info *fi)
9832 {
9833 for (; fi != NULL; fi = get_prev_frame (fi))
9834 {
9835 if (!is_known_support_routine (fi))
9836 {
9837 select_frame (fi);
9838 break;
9839 }
9840 }
9841
9842 }
9843
9844 /* Assuming that the inferior just triggered an unhandled exception
9845 catchpoint, return the address in inferior memory where the name
9846 of the exception is stored.
9847
9848 Return zero if the address could not be computed. */
9849
9850 static CORE_ADDR
9851 ada_unhandled_exception_name_addr (void)
9852 {
9853 return parse_and_eval_address ("e.full_name");
9854 }
9855
9856 /* Same as ada_unhandled_exception_name_addr, except that this function
9857 should be used when the inferior uses an older version of the runtime,
9858 where the exception name needs to be extracted from a specific frame
9859 several frames up in the callstack. */
9860
9861 static CORE_ADDR
9862 ada_unhandled_exception_name_addr_from_raise (void)
9863 {
9864 int frame_level;
9865 struct frame_info *fi;
9866
9867 /* To determine the name of this exception, we need to select
9868 the frame corresponding to RAISE_SYM_NAME. This frame is
9869 at least 3 levels up, so we simply skip the first 3 frames
9870 without checking the name of their associated function. */
9871 fi = get_current_frame ();
9872 for (frame_level = 0; frame_level < 3; frame_level += 1)
9873 if (fi != NULL)
9874 fi = get_prev_frame (fi);
9875
9876 while (fi != NULL)
9877 {
9878 const char *func_name =
9879 function_name_from_pc (get_frame_address_in_block (fi));
9880 if (func_name != NULL
9881 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9882 break; /* We found the frame we were looking for... */
9883 fi = get_prev_frame (fi);
9884 }
9885
9886 if (fi == NULL)
9887 return 0;
9888
9889 select_frame (fi);
9890 return parse_and_eval_address ("id.full_name");
9891 }
9892
9893 /* Assuming the inferior just triggered an Ada exception catchpoint
9894 (of any type), return the address in inferior memory where the name
9895 of the exception is stored, if applicable.
9896
9897 Return zero if the address could not be computed, or if not relevant. */
9898
9899 static CORE_ADDR
9900 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9901 struct breakpoint *b)
9902 {
9903 switch (ex)
9904 {
9905 case ex_catch_exception:
9906 return (parse_and_eval_address ("e.full_name"));
9907 break;
9908
9909 case ex_catch_exception_unhandled:
9910 return exception_info->unhandled_exception_name_addr ();
9911 break;
9912
9913 case ex_catch_assert:
9914 return 0; /* Exception name is not relevant in this case. */
9915 break;
9916
9917 default:
9918 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9919 break;
9920 }
9921
9922 return 0; /* Should never be reached. */
9923 }
9924
9925 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9926 any error that ada_exception_name_addr_1 might cause to be thrown.
9927 When an error is intercepted, a warning with the error message is printed,
9928 and zero is returned. */
9929
9930 static CORE_ADDR
9931 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9932 struct breakpoint *b)
9933 {
9934 struct gdb_exception e;
9935 CORE_ADDR result = 0;
9936
9937 TRY_CATCH (e, RETURN_MASK_ERROR)
9938 {
9939 result = ada_exception_name_addr_1 (ex, b);
9940 }
9941
9942 if (e.reason < 0)
9943 {
9944 warning (_("failed to get exception name: %s"), e.message);
9945 return 0;
9946 }
9947
9948 return result;
9949 }
9950
9951 /* Implement the PRINT_IT method in the breakpoint_ops structure
9952 for all exception catchpoint kinds. */
9953
9954 static enum print_stop_action
9955 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9956 {
9957 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9958 char exception_name[256];
9959
9960 if (addr != 0)
9961 {
9962 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9963 exception_name [sizeof (exception_name) - 1] = '\0';
9964 }
9965
9966 ada_find_printable_frame (get_current_frame ());
9967
9968 annotate_catchpoint (b->number);
9969 switch (ex)
9970 {
9971 case ex_catch_exception:
9972 if (addr != 0)
9973 printf_filtered (_("\nCatchpoint %d, %s at "),
9974 b->number, exception_name);
9975 else
9976 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9977 break;
9978 case ex_catch_exception_unhandled:
9979 if (addr != 0)
9980 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9981 b->number, exception_name);
9982 else
9983 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9984 b->number);
9985 break;
9986 case ex_catch_assert:
9987 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9988 b->number);
9989 break;
9990 }
9991
9992 return PRINT_SRC_AND_LOC;
9993 }
9994
9995 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9996 for all exception catchpoint kinds. */
9997
9998 static void
9999 print_one_exception (enum exception_catchpoint_kind ex,
10000 struct breakpoint *b, CORE_ADDR *last_addr)
10001 {
10002 if (addressprint)
10003 {
10004 annotate_field (4);
10005 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10006 }
10007
10008 annotate_field (5);
10009 *last_addr = b->loc->address;
10010 switch (ex)
10011 {
10012 case ex_catch_exception:
10013 if (b->exp_string != NULL)
10014 {
10015 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10016
10017 ui_out_field_string (uiout, "what", msg);
10018 xfree (msg);
10019 }
10020 else
10021 ui_out_field_string (uiout, "what", "all Ada exceptions");
10022
10023 break;
10024
10025 case ex_catch_exception_unhandled:
10026 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10027 break;
10028
10029 case ex_catch_assert:
10030 ui_out_field_string (uiout, "what", "failed Ada assertions");
10031 break;
10032
10033 default:
10034 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10035 break;
10036 }
10037 }
10038
10039 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10040 for all exception catchpoint kinds. */
10041
10042 static void
10043 print_mention_exception (enum exception_catchpoint_kind ex,
10044 struct breakpoint *b)
10045 {
10046 switch (ex)
10047 {
10048 case ex_catch_exception:
10049 if (b->exp_string != NULL)
10050 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10051 b->number, b->exp_string);
10052 else
10053 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10054
10055 break;
10056
10057 case ex_catch_exception_unhandled:
10058 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10059 b->number);
10060 break;
10061
10062 case ex_catch_assert:
10063 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10064 break;
10065
10066 default:
10067 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10068 break;
10069 }
10070 }
10071
10072 /* Virtual table for "catch exception" breakpoints. */
10073
10074 static enum print_stop_action
10075 print_it_catch_exception (struct breakpoint *b)
10076 {
10077 return print_it_exception (ex_catch_exception, b);
10078 }
10079
10080 static void
10081 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10082 {
10083 print_one_exception (ex_catch_exception, b, last_addr);
10084 }
10085
10086 static void
10087 print_mention_catch_exception (struct breakpoint *b)
10088 {
10089 print_mention_exception (ex_catch_exception, b);
10090 }
10091
10092 static struct breakpoint_ops catch_exception_breakpoint_ops =
10093 {
10094 print_it_catch_exception,
10095 print_one_catch_exception,
10096 print_mention_catch_exception
10097 };
10098
10099 /* Virtual table for "catch exception unhandled" breakpoints. */
10100
10101 static enum print_stop_action
10102 print_it_catch_exception_unhandled (struct breakpoint *b)
10103 {
10104 return print_it_exception (ex_catch_exception_unhandled, b);
10105 }
10106
10107 static void
10108 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10109 {
10110 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10111 }
10112
10113 static void
10114 print_mention_catch_exception_unhandled (struct breakpoint *b)
10115 {
10116 print_mention_exception (ex_catch_exception_unhandled, b);
10117 }
10118
10119 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10120 print_it_catch_exception_unhandled,
10121 print_one_catch_exception_unhandled,
10122 print_mention_catch_exception_unhandled
10123 };
10124
10125 /* Virtual table for "catch assert" breakpoints. */
10126
10127 static enum print_stop_action
10128 print_it_catch_assert (struct breakpoint *b)
10129 {
10130 return print_it_exception (ex_catch_assert, b);
10131 }
10132
10133 static void
10134 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10135 {
10136 print_one_exception (ex_catch_assert, b, last_addr);
10137 }
10138
10139 static void
10140 print_mention_catch_assert (struct breakpoint *b)
10141 {
10142 print_mention_exception (ex_catch_assert, b);
10143 }
10144
10145 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10146 print_it_catch_assert,
10147 print_one_catch_assert,
10148 print_mention_catch_assert
10149 };
10150
10151 /* Return non-zero if B is an Ada exception catchpoint. */
10152
10153 int
10154 ada_exception_catchpoint_p (struct breakpoint *b)
10155 {
10156 return (b->ops == &catch_exception_breakpoint_ops
10157 || b->ops == &catch_exception_unhandled_breakpoint_ops
10158 || b->ops == &catch_assert_breakpoint_ops);
10159 }
10160
10161 /* Return a newly allocated copy of the first space-separated token
10162 in ARGSP, and then adjust ARGSP to point immediately after that
10163 token.
10164
10165 Return NULL if ARGPS does not contain any more tokens. */
10166
10167 static char *
10168 ada_get_next_arg (char **argsp)
10169 {
10170 char *args = *argsp;
10171 char *end;
10172 char *result;
10173
10174 /* Skip any leading white space. */
10175
10176 while (isspace (*args))
10177 args++;
10178
10179 if (args[0] == '\0')
10180 return NULL; /* No more arguments. */
10181
10182 /* Find the end of the current argument. */
10183
10184 end = args;
10185 while (*end != '\0' && !isspace (*end))
10186 end++;
10187
10188 /* Adjust ARGSP to point to the start of the next argument. */
10189
10190 *argsp = end;
10191
10192 /* Make a copy of the current argument and return it. */
10193
10194 result = xmalloc (end - args + 1);
10195 strncpy (result, args, end - args);
10196 result[end - args] = '\0';
10197
10198 return result;
10199 }
10200
10201 /* Split the arguments specified in a "catch exception" command.
10202 Set EX to the appropriate catchpoint type.
10203 Set EXP_STRING to the name of the specific exception if
10204 specified by the user. */
10205
10206 static void
10207 catch_ada_exception_command_split (char *args,
10208 enum exception_catchpoint_kind *ex,
10209 char **exp_string)
10210 {
10211 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10212 char *exception_name;
10213
10214 exception_name = ada_get_next_arg (&args);
10215 make_cleanup (xfree, exception_name);
10216
10217 /* Check that we do not have any more arguments. Anything else
10218 is unexpected. */
10219
10220 while (isspace (*args))
10221 args++;
10222
10223 if (args[0] != '\0')
10224 error (_("Junk at end of expression"));
10225
10226 discard_cleanups (old_chain);
10227
10228 if (exception_name == NULL)
10229 {
10230 /* Catch all exceptions. */
10231 *ex = ex_catch_exception;
10232 *exp_string = NULL;
10233 }
10234 else if (strcmp (exception_name, "unhandled") == 0)
10235 {
10236 /* Catch unhandled exceptions. */
10237 *ex = ex_catch_exception_unhandled;
10238 *exp_string = NULL;
10239 }
10240 else
10241 {
10242 /* Catch a specific exception. */
10243 *ex = ex_catch_exception;
10244 *exp_string = exception_name;
10245 }
10246 }
10247
10248 /* Return the name of the symbol on which we should break in order to
10249 implement a catchpoint of the EX kind. */
10250
10251 static const char *
10252 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10253 {
10254 gdb_assert (exception_info != NULL);
10255
10256 switch (ex)
10257 {
10258 case ex_catch_exception:
10259 return (exception_info->catch_exception_sym);
10260 break;
10261 case ex_catch_exception_unhandled:
10262 return (exception_info->catch_exception_unhandled_sym);
10263 break;
10264 case ex_catch_assert:
10265 return (exception_info->catch_assert_sym);
10266 break;
10267 default:
10268 internal_error (__FILE__, __LINE__,
10269 _("unexpected catchpoint kind (%d)"), ex);
10270 }
10271 }
10272
10273 /* Return the breakpoint ops "virtual table" used for catchpoints
10274 of the EX kind. */
10275
10276 static struct breakpoint_ops *
10277 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10278 {
10279 switch (ex)
10280 {
10281 case ex_catch_exception:
10282 return (&catch_exception_breakpoint_ops);
10283 break;
10284 case ex_catch_exception_unhandled:
10285 return (&catch_exception_unhandled_breakpoint_ops);
10286 break;
10287 case ex_catch_assert:
10288 return (&catch_assert_breakpoint_ops);
10289 break;
10290 default:
10291 internal_error (__FILE__, __LINE__,
10292 _("unexpected catchpoint kind (%d)"), ex);
10293 }
10294 }
10295
10296 /* Return the condition that will be used to match the current exception
10297 being raised with the exception that the user wants to catch. This
10298 assumes that this condition is used when the inferior just triggered
10299 an exception catchpoint.
10300
10301 The string returned is a newly allocated string that needs to be
10302 deallocated later. */
10303
10304 static char *
10305 ada_exception_catchpoint_cond_string (const char *exp_string)
10306 {
10307 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10308 }
10309
10310 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10311
10312 static struct expression *
10313 ada_parse_catchpoint_condition (char *cond_string,
10314 struct symtab_and_line sal)
10315 {
10316 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10317 }
10318
10319 /* Return the symtab_and_line that should be used to insert an exception
10320 catchpoint of the TYPE kind.
10321
10322 EX_STRING should contain the name of a specific exception
10323 that the catchpoint should catch, or NULL otherwise.
10324
10325 The idea behind all the remaining parameters is that their names match
10326 the name of certain fields in the breakpoint structure that are used to
10327 handle exception catchpoints. This function returns the value to which
10328 these fields should be set, depending on the type of catchpoint we need
10329 to create.
10330
10331 If COND and COND_STRING are both non-NULL, any value they might
10332 hold will be free'ed, and then replaced by newly allocated ones.
10333 These parameters are left untouched otherwise. */
10334
10335 static struct symtab_and_line
10336 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10337 char **addr_string, char **cond_string,
10338 struct expression **cond, struct breakpoint_ops **ops)
10339 {
10340 const char *sym_name;
10341 struct symbol *sym;
10342 struct symtab_and_line sal;
10343
10344 /* First, find out which exception support info to use. */
10345 ada_exception_support_info_sniffer ();
10346
10347 /* Then lookup the function on which we will break in order to catch
10348 the Ada exceptions requested by the user. */
10349
10350 sym_name = ada_exception_sym_name (ex);
10351 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10352
10353 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10354 that should be compiled with debugging information. As a result, we
10355 expect to find that symbol in the symtabs. If we don't find it, then
10356 the target most likely does not support Ada exceptions, or we cannot
10357 insert exception breakpoints yet, because the GNAT runtime hasn't been
10358 loaded yet. */
10359
10360 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10361 in such a way that no debugging information is produced for the symbol
10362 we are looking for. In this case, we could search the minimal symbols
10363 as a fall-back mechanism. This would still be operating in degraded
10364 mode, however, as we would still be missing the debugging information
10365 that is needed in order to extract the name of the exception being
10366 raised (this name is printed in the catchpoint message, and is also
10367 used when trying to catch a specific exception). We do not handle
10368 this case for now. */
10369
10370 if (sym == NULL)
10371 error (_("Unable to break on '%s' in this configuration."), sym_name);
10372
10373 /* Make sure that the symbol we found corresponds to a function. */
10374 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10375 error (_("Symbol \"%s\" is not a function (class = %d)"),
10376 sym_name, SYMBOL_CLASS (sym));
10377
10378 sal = find_function_start_sal (sym, 1);
10379
10380 /* Set ADDR_STRING. */
10381
10382 *addr_string = xstrdup (sym_name);
10383
10384 /* Set the COND and COND_STRING (if not NULL). */
10385
10386 if (cond_string != NULL && cond != NULL)
10387 {
10388 if (*cond_string != NULL)
10389 {
10390 xfree (*cond_string);
10391 *cond_string = NULL;
10392 }
10393 if (*cond != NULL)
10394 {
10395 xfree (*cond);
10396 *cond = NULL;
10397 }
10398 if (exp_string != NULL)
10399 {
10400 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10401 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10402 }
10403 }
10404
10405 /* Set OPS. */
10406 *ops = ada_exception_breakpoint_ops (ex);
10407
10408 return sal;
10409 }
10410
10411 /* Parse the arguments (ARGS) of the "catch exception" command.
10412
10413 Set TYPE to the appropriate exception catchpoint type.
10414 If the user asked the catchpoint to catch only a specific
10415 exception, then save the exception name in ADDR_STRING.
10416
10417 See ada_exception_sal for a description of all the remaining
10418 function arguments of this function. */
10419
10420 struct symtab_and_line
10421 ada_decode_exception_location (char *args, char **addr_string,
10422 char **exp_string, char **cond_string,
10423 struct expression **cond,
10424 struct breakpoint_ops **ops)
10425 {
10426 enum exception_catchpoint_kind ex;
10427
10428 catch_ada_exception_command_split (args, &ex, exp_string);
10429 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10430 cond, ops);
10431 }
10432
10433 struct symtab_and_line
10434 ada_decode_assert_location (char *args, char **addr_string,
10435 struct breakpoint_ops **ops)
10436 {
10437 /* Check that no argument where provided at the end of the command. */
10438
10439 if (args != NULL)
10440 {
10441 while (isspace (*args))
10442 args++;
10443 if (*args != '\0')
10444 error (_("Junk at end of arguments."));
10445 }
10446
10447 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10448 ops);
10449 }
10450
10451 /* Operators */
10452 /* Information about operators given special treatment in functions
10453 below. */
10454 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10455
10456 #define ADA_OPERATORS \
10457 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10458 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10459 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10460 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10461 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10462 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10463 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10464 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10465 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10466 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10467 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10468 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10469 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10470 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10471 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10472 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10473 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10474 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10475 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10476
10477 static void
10478 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10479 {
10480 switch (exp->elts[pc - 1].opcode)
10481 {
10482 default:
10483 operator_length_standard (exp, pc, oplenp, argsp);
10484 break;
10485
10486 #define OP_DEFN(op, len, args, binop) \
10487 case op: *oplenp = len; *argsp = args; break;
10488 ADA_OPERATORS;
10489 #undef OP_DEFN
10490
10491 case OP_AGGREGATE:
10492 *oplenp = 3;
10493 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10494 break;
10495
10496 case OP_CHOICES:
10497 *oplenp = 3;
10498 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10499 break;
10500 }
10501 }
10502
10503 static char *
10504 ada_op_name (enum exp_opcode opcode)
10505 {
10506 switch (opcode)
10507 {
10508 default:
10509 return op_name_standard (opcode);
10510
10511 #define OP_DEFN(op, len, args, binop) case op: return #op;
10512 ADA_OPERATORS;
10513 #undef OP_DEFN
10514
10515 case OP_AGGREGATE:
10516 return "OP_AGGREGATE";
10517 case OP_CHOICES:
10518 return "OP_CHOICES";
10519 case OP_NAME:
10520 return "OP_NAME";
10521 }
10522 }
10523
10524 /* As for operator_length, but assumes PC is pointing at the first
10525 element of the operator, and gives meaningful results only for the
10526 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10527
10528 static void
10529 ada_forward_operator_length (struct expression *exp, int pc,
10530 int *oplenp, int *argsp)
10531 {
10532 switch (exp->elts[pc].opcode)
10533 {
10534 default:
10535 *oplenp = *argsp = 0;
10536 break;
10537
10538 #define OP_DEFN(op, len, args, binop) \
10539 case op: *oplenp = len; *argsp = args; break;
10540 ADA_OPERATORS;
10541 #undef OP_DEFN
10542
10543 case OP_AGGREGATE:
10544 *oplenp = 3;
10545 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10546 break;
10547
10548 case OP_CHOICES:
10549 *oplenp = 3;
10550 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10551 break;
10552
10553 case OP_STRING:
10554 case OP_NAME:
10555 {
10556 int len = longest_to_int (exp->elts[pc + 1].longconst);
10557 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10558 *argsp = 0;
10559 break;
10560 }
10561 }
10562 }
10563
10564 static int
10565 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10566 {
10567 enum exp_opcode op = exp->elts[elt].opcode;
10568 int oplen, nargs;
10569 int pc = elt;
10570 int i;
10571
10572 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10573
10574 switch (op)
10575 {
10576 /* Ada attributes ('Foo). */
10577 case OP_ATR_FIRST:
10578 case OP_ATR_LAST:
10579 case OP_ATR_LENGTH:
10580 case OP_ATR_IMAGE:
10581 case OP_ATR_MAX:
10582 case OP_ATR_MIN:
10583 case OP_ATR_MODULUS:
10584 case OP_ATR_POS:
10585 case OP_ATR_SIZE:
10586 case OP_ATR_TAG:
10587 case OP_ATR_VAL:
10588 break;
10589
10590 case UNOP_IN_RANGE:
10591 case UNOP_QUAL:
10592 /* XXX: gdb_sprint_host_address, type_sprint */
10593 fprintf_filtered (stream, _("Type @"));
10594 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10595 fprintf_filtered (stream, " (");
10596 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10597 fprintf_filtered (stream, ")");
10598 break;
10599 case BINOP_IN_BOUNDS:
10600 fprintf_filtered (stream, " (%d)",
10601 longest_to_int (exp->elts[pc + 2].longconst));
10602 break;
10603 case TERNOP_IN_RANGE:
10604 break;
10605
10606 case OP_AGGREGATE:
10607 case OP_OTHERS:
10608 case OP_DISCRETE_RANGE:
10609 case OP_POSITIONAL:
10610 case OP_CHOICES:
10611 break;
10612
10613 case OP_NAME:
10614 case OP_STRING:
10615 {
10616 char *name = &exp->elts[elt + 2].string;
10617 int len = longest_to_int (exp->elts[elt + 1].longconst);
10618 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10619 break;
10620 }
10621
10622 default:
10623 return dump_subexp_body_standard (exp, stream, elt);
10624 }
10625
10626 elt += oplen;
10627 for (i = 0; i < nargs; i += 1)
10628 elt = dump_subexp (exp, stream, elt);
10629
10630 return elt;
10631 }
10632
10633 /* The Ada extension of print_subexp (q.v.). */
10634
10635 static void
10636 ada_print_subexp (struct expression *exp, int *pos,
10637 struct ui_file *stream, enum precedence prec)
10638 {
10639 int oplen, nargs, i;
10640 int pc = *pos;
10641 enum exp_opcode op = exp->elts[pc].opcode;
10642
10643 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10644
10645 *pos += oplen;
10646 switch (op)
10647 {
10648 default:
10649 *pos -= oplen;
10650 print_subexp_standard (exp, pos, stream, prec);
10651 return;
10652
10653 case OP_VAR_VALUE:
10654 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10655 return;
10656
10657 case BINOP_IN_BOUNDS:
10658 /* XXX: sprint_subexp */
10659 print_subexp (exp, pos, stream, PREC_SUFFIX);
10660 fputs_filtered (" in ", stream);
10661 print_subexp (exp, pos, stream, PREC_SUFFIX);
10662 fputs_filtered ("'range", stream);
10663 if (exp->elts[pc + 1].longconst > 1)
10664 fprintf_filtered (stream, "(%ld)",
10665 (long) exp->elts[pc + 1].longconst);
10666 return;
10667
10668 case TERNOP_IN_RANGE:
10669 if (prec >= PREC_EQUAL)
10670 fputs_filtered ("(", stream);
10671 /* XXX: sprint_subexp */
10672 print_subexp (exp, pos, stream, PREC_SUFFIX);
10673 fputs_filtered (" in ", stream);
10674 print_subexp (exp, pos, stream, PREC_EQUAL);
10675 fputs_filtered (" .. ", stream);
10676 print_subexp (exp, pos, stream, PREC_EQUAL);
10677 if (prec >= PREC_EQUAL)
10678 fputs_filtered (")", stream);
10679 return;
10680
10681 case OP_ATR_FIRST:
10682 case OP_ATR_LAST:
10683 case OP_ATR_LENGTH:
10684 case OP_ATR_IMAGE:
10685 case OP_ATR_MAX:
10686 case OP_ATR_MIN:
10687 case OP_ATR_MODULUS:
10688 case OP_ATR_POS:
10689 case OP_ATR_SIZE:
10690 case OP_ATR_TAG:
10691 case OP_ATR_VAL:
10692 if (exp->elts[*pos].opcode == OP_TYPE)
10693 {
10694 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10695 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10696 *pos += 3;
10697 }
10698 else
10699 print_subexp (exp, pos, stream, PREC_SUFFIX);
10700 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10701 if (nargs > 1)
10702 {
10703 int tem;
10704 for (tem = 1; tem < nargs; tem += 1)
10705 {
10706 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10707 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10708 }
10709 fputs_filtered (")", stream);
10710 }
10711 return;
10712
10713 case UNOP_QUAL:
10714 type_print (exp->elts[pc + 1].type, "", stream, 0);
10715 fputs_filtered ("'(", stream);
10716 print_subexp (exp, pos, stream, PREC_PREFIX);
10717 fputs_filtered (")", stream);
10718 return;
10719
10720 case UNOP_IN_RANGE:
10721 /* XXX: sprint_subexp */
10722 print_subexp (exp, pos, stream, PREC_SUFFIX);
10723 fputs_filtered (" in ", stream);
10724 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10725 return;
10726
10727 case OP_DISCRETE_RANGE:
10728 print_subexp (exp, pos, stream, PREC_SUFFIX);
10729 fputs_filtered ("..", stream);
10730 print_subexp (exp, pos, stream, PREC_SUFFIX);
10731 return;
10732
10733 case OP_OTHERS:
10734 fputs_filtered ("others => ", stream);
10735 print_subexp (exp, pos, stream, PREC_SUFFIX);
10736 return;
10737
10738 case OP_CHOICES:
10739 for (i = 0; i < nargs-1; i += 1)
10740 {
10741 if (i > 0)
10742 fputs_filtered ("|", stream);
10743 print_subexp (exp, pos, stream, PREC_SUFFIX);
10744 }
10745 fputs_filtered (" => ", stream);
10746 print_subexp (exp, pos, stream, PREC_SUFFIX);
10747 return;
10748
10749 case OP_POSITIONAL:
10750 print_subexp (exp, pos, stream, PREC_SUFFIX);
10751 return;
10752
10753 case OP_AGGREGATE:
10754 fputs_filtered ("(", stream);
10755 for (i = 0; i < nargs; i += 1)
10756 {
10757 if (i > 0)
10758 fputs_filtered (", ", stream);
10759 print_subexp (exp, pos, stream, PREC_SUFFIX);
10760 }
10761 fputs_filtered (")", stream);
10762 return;
10763 }
10764 }
10765
10766 /* Table mapping opcodes into strings for printing operators
10767 and precedences of the operators. */
10768
10769 static const struct op_print ada_op_print_tab[] = {
10770 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10771 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10772 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10773 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10774 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10775 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10776 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10777 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10778 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10779 {">=", BINOP_GEQ, PREC_ORDER, 0},
10780 {">", BINOP_GTR, PREC_ORDER, 0},
10781 {"<", BINOP_LESS, PREC_ORDER, 0},
10782 {">>", BINOP_RSH, PREC_SHIFT, 0},
10783 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10784 {"+", BINOP_ADD, PREC_ADD, 0},
10785 {"-", BINOP_SUB, PREC_ADD, 0},
10786 {"&", BINOP_CONCAT, PREC_ADD, 0},
10787 {"*", BINOP_MUL, PREC_MUL, 0},
10788 {"/", BINOP_DIV, PREC_MUL, 0},
10789 {"rem", BINOP_REM, PREC_MUL, 0},
10790 {"mod", BINOP_MOD, PREC_MUL, 0},
10791 {"**", BINOP_EXP, PREC_REPEAT, 0},
10792 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10793 {"-", UNOP_NEG, PREC_PREFIX, 0},
10794 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10795 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10796 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10797 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10798 {".all", UNOP_IND, PREC_SUFFIX, 1},
10799 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10800 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10801 {NULL, 0, 0, 0}
10802 };
10803 \f
10804 enum ada_primitive_types {
10805 ada_primitive_type_int,
10806 ada_primitive_type_long,
10807 ada_primitive_type_short,
10808 ada_primitive_type_char,
10809 ada_primitive_type_float,
10810 ada_primitive_type_double,
10811 ada_primitive_type_void,
10812 ada_primitive_type_long_long,
10813 ada_primitive_type_long_double,
10814 ada_primitive_type_natural,
10815 ada_primitive_type_positive,
10816 ada_primitive_type_system_address,
10817 nr_ada_primitive_types
10818 };
10819
10820 static void
10821 ada_language_arch_info (struct gdbarch *gdbarch,
10822 struct language_arch_info *lai)
10823 {
10824 const struct builtin_type *builtin = builtin_type (gdbarch);
10825 lai->primitive_type_vector
10826 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10827 struct type *);
10828 lai->primitive_type_vector [ada_primitive_type_int] =
10829 init_type (TYPE_CODE_INT,
10830 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10831 0, "integer", (struct objfile *) NULL);
10832 lai->primitive_type_vector [ada_primitive_type_long] =
10833 init_type (TYPE_CODE_INT,
10834 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10835 0, "long_integer", (struct objfile *) NULL);
10836 lai->primitive_type_vector [ada_primitive_type_short] =
10837 init_type (TYPE_CODE_INT,
10838 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10839 0, "short_integer", (struct objfile *) NULL);
10840 lai->string_char_type =
10841 lai->primitive_type_vector [ada_primitive_type_char] =
10842 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10843 0, "character", (struct objfile *) NULL);
10844 lai->primitive_type_vector [ada_primitive_type_float] =
10845 init_type (TYPE_CODE_FLT,
10846 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10847 0, "float", (struct objfile *) NULL);
10848 lai->primitive_type_vector [ada_primitive_type_double] =
10849 init_type (TYPE_CODE_FLT,
10850 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10851 0, "long_float", (struct objfile *) NULL);
10852 lai->primitive_type_vector [ada_primitive_type_long_long] =
10853 init_type (TYPE_CODE_INT,
10854 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10855 0, "long_long_integer", (struct objfile *) NULL);
10856 lai->primitive_type_vector [ada_primitive_type_long_double] =
10857 init_type (TYPE_CODE_FLT,
10858 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10859 0, "long_long_float", (struct objfile *) NULL);
10860 lai->primitive_type_vector [ada_primitive_type_natural] =
10861 init_type (TYPE_CODE_INT,
10862 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10863 0, "natural", (struct objfile *) NULL);
10864 lai->primitive_type_vector [ada_primitive_type_positive] =
10865 init_type (TYPE_CODE_INT,
10866 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10867 0, "positive", (struct objfile *) NULL);
10868 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10869
10870 lai->primitive_type_vector [ada_primitive_type_system_address] =
10871 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10872 (struct objfile *) NULL));
10873 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10874 = "system__address";
10875 }
10876 \f
10877 /* Language vector */
10878
10879 /* Not really used, but needed in the ada_language_defn. */
10880
10881 static void
10882 emit_char (int c, struct ui_file *stream, int quoter)
10883 {
10884 ada_emit_char (c, stream, quoter, 1);
10885 }
10886
10887 static int
10888 parse (void)
10889 {
10890 warnings_issued = 0;
10891 return ada_parse ();
10892 }
10893
10894 static const struct exp_descriptor ada_exp_descriptor = {
10895 ada_print_subexp,
10896 ada_operator_length,
10897 ada_op_name,
10898 ada_dump_subexp_body,
10899 ada_evaluate_subexp
10900 };
10901
10902 const struct language_defn ada_language_defn = {
10903 "ada", /* Language name */
10904 language_ada,
10905 range_check_off,
10906 type_check_off,
10907 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10908 that's not quite what this means. */
10909 array_row_major,
10910 &ada_exp_descriptor,
10911 parse,
10912 ada_error,
10913 resolve,
10914 ada_printchar, /* Print a character constant */
10915 ada_printstr, /* Function to print string constant */
10916 emit_char, /* Function to print single char (not used) */
10917 ada_print_type, /* Print a type using appropriate syntax */
10918 ada_val_print, /* Print a value using appropriate syntax */
10919 ada_value_print, /* Print a top-level value */
10920 NULL, /* Language specific skip_trampoline */
10921 NULL, /* name_of_this */
10922 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10923 basic_lookup_transparent_type, /* lookup_transparent_type */
10924 ada_la_decode, /* Language specific symbol demangler */
10925 NULL, /* Language specific class_name_from_physname */
10926 ada_op_print_tab, /* expression operators for printing */
10927 0, /* c-style arrays */
10928 1, /* String lower bound */
10929 ada_get_gdb_completer_word_break_characters,
10930 ada_make_symbol_completion_list,
10931 ada_language_arch_info,
10932 ada_print_array_index,
10933 default_pass_by_reference,
10934 LANG_MAGIC
10935 };
10936
10937 void
10938 _initialize_ada_language (void)
10939 {
10940 add_language (&ada_language_defn);
10941
10942 varsize_limit = 65536;
10943
10944 obstack_init (&symbol_list_obstack);
10945
10946 decoded_names_store = htab_create_alloc
10947 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10948 NULL, xcalloc, xfree);
10949
10950 observer_attach_executable_changed (ada_executable_changed_observer);
10951 }
This page took 0.235906 seconds and 5 git commands to generate.